1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * This file and its contents are supplied under the terms of the
6 * Common Development and Distribution License ("CDDL"), version 1.0.
7 * You may only use this file in accordance with the terms of version
8 * 1.0 of the CDDL.
9 *
10 * A full copy of the text of the CDDL should have accompanied this
11 * source. A copy of the CDDL is also available via the Internet at
12 * http://www.illumos.org/license/CDDL.
13 *
14 * CDDL HEADER END
15 */
16
17 /*
18 * Copyright (c) 2016, 2018 by Delphix. All rights reserved.
19 */
20
21 /*
22 * ZFS Channel Programs (ZCP)
23 *
24 * The ZCP interface allows various ZFS commands and operations ZFS
25 * administrative operations (e.g. creating and destroying snapshots, typically
26 * performed via an ioctl to /dev/zfs by the zfs(8) command and
27 * libzfs/libzfs_core) to be run * programmatically as a Lua script. A ZCP
28 * script is run as a dsl_sync_task and fully executed during one transaction
29 * group sync. This ensures that no other changes can be written concurrently
30 * with a running Lua script. Combining multiple calls to the exposed ZFS
31 * functions into one script gives a number of benefits:
32 *
33 * 1. Atomicity. For some compound or iterative operations, it's useful to be
34 * able to guarantee that the state of a pool has not changed between calls to
35 * ZFS.
36 *
37 * 2. Performance. If a large number of changes need to be made (e.g. deleting
38 * many filesystems), there can be a significant performance penalty as a
39 * result of the need to wait for a transaction group sync to pass for every
40 * single operation. When expressed as a single ZCP script, all these changes
41 * can be performed at once in one txg sync.
42 *
43 * A modified version of the Lua 5.2 interpreter is used to run channel program
44 * scripts. The Lua 5.2 manual can be found at:
45 *
46 * http://www.lua.org/manual/5.2/
47 *
48 * If being run by a user (via an ioctl syscall), executing a ZCP script
49 * requires root privileges in the global zone.
50 *
51 * Scripts are passed to zcp_eval() as a string, then run in a synctask by
52 * zcp_eval_sync(). Arguments can be passed into the Lua script as an nvlist,
53 * which will be converted to a Lua table. Similarly, values returned from
54 * a ZCP script will be converted to an nvlist. See zcp_lua_to_nvlist_impl()
55 * for details on exact allowed types and conversion.
56 *
57 * ZFS functionality is exposed to a ZCP script as a library of function calls.
58 * These calls are sorted into submodules, such as zfs.list and zfs.sync, for
59 * iterators and synctasks, respectively. Each of these submodules resides in
60 * its own source file, with a zcp_*_info structure describing each library
61 * call in the submodule.
62 *
63 * Error handling in ZCP scripts is handled by a number of different methods
64 * based on severity:
65 *
66 * 1. Memory and time limits are in place to prevent a channel program from
67 * consuming excessive system or running forever. If one of these limits is
68 * hit, the channel program will be stopped immediately and return from
69 * zcp_eval() with an error code. No attempt will be made to roll back or undo
70 * any changes made by the channel program before the error occurred.
71 * Consumers invoking zcp_eval() from elsewhere in the kernel may pass a time
72 * limit of 0, disabling the time limit.
73 *
74 * 2. Internal Lua errors can occur as a result of a syntax error, calling a
75 * library function with incorrect arguments, invoking the error() function,
76 * failing an assert(), or other runtime errors. In these cases the channel
77 * program will stop executing and return from zcp_eval() with an error code.
78 * In place of a return value, an error message will also be returned in the
79 * 'result' nvlist containing information about the error. No attempt will be
80 * made to roll back or undo any changes made by the channel program before the
81 * error occurred.
82 *
83 * 3. If an error occurs inside a ZFS library call which returns an error code,
84 * the error is returned to the Lua script to be handled as desired.
85 *
86 * In the first two cases, Lua's error-throwing mechanism is used, which
87 * longjumps out of the script execution with luaL_error() and returns with the
88 * error.
89 *
90 * See zfs-program(8) for more information on high level usage.
91 */
92
93 #include <sys/lua/lua.h>
94 #include <sys/lua/lualib.h>
95 #include <sys/lua/lauxlib.h>
96
97 #include <sys/dsl_prop.h>
98 #include <sys/dsl_synctask.h>
99 #include <sys/dsl_dataset.h>
100 #include <sys/zcp.h>
101 #include <sys/zcp_iter.h>
102 #include <sys/zcp_prop.h>
103 #include <sys/zcp_global.h>
104 #include <sys/zvol.h>
105
106 #ifndef KM_NORMALPRI
107 #define KM_NORMALPRI 0
108 #endif
109
110 #define ZCP_NVLIST_MAX_DEPTH 20
111
112 static const uint64_t zfs_lua_check_instrlimit_interval = 100;
113 uint64_t zfs_lua_max_instrlimit = ZCP_MAX_INSTRLIMIT;
114 uint64_t zfs_lua_max_memlimit = ZCP_MAX_MEMLIMIT;
115
116 /*
117 * Forward declarations for mutually recursive functions
118 */
119 static int zcp_nvpair_value_to_lua(lua_State *, nvpair_t *, char *, int);
120 static int zcp_lua_to_nvlist_impl(lua_State *, int, nvlist_t *, const char *,
121 int);
122
123 /*
124 * The outer-most error callback handler for use with lua_pcall(). On
125 * error Lua will call this callback with a single argument that
126 * represents the error value. In most cases this will be a string
127 * containing an error message, but channel programs can use Lua's
128 * error() function to return arbitrary objects as errors. This callback
129 * returns (on the Lua stack) the original error object along with a traceback.
130 *
131 * Fatal Lua errors can occur while resources are held, so we also call any
132 * registered cleanup function here.
133 */
134 static int
zcp_error_handler(lua_State * state)135 zcp_error_handler(lua_State *state)
136 {
137 const char *msg;
138
139 zcp_cleanup(state);
140
141 VERIFY3U(1, ==, lua_gettop(state));
142 msg = lua_tostring(state, 1);
143 luaL_traceback(state, state, msg, 1);
144 return (1);
145 }
146
147 int
zcp_argerror(lua_State * state,int narg,const char * msg,...)148 zcp_argerror(lua_State *state, int narg, const char *msg, ...)
149 {
150 va_list alist;
151
152 va_start(alist, msg);
153 const char *buf = lua_pushvfstring(state, msg, alist);
154 va_end(alist);
155
156 return (luaL_argerror(state, narg, buf));
157 }
158
159 /*
160 * Install a new cleanup function, which will be invoked with the given
161 * opaque argument if a fatal error causes the Lua interpreter to longjump out
162 * of a function call.
163 *
164 * If an error occurs, the cleanup function will be invoked exactly once and
165 * then unregistered.
166 *
167 * Returns the registered cleanup handler so the caller can deregister it
168 * if no error occurs.
169 */
170 zcp_cleanup_handler_t *
zcp_register_cleanup(lua_State * state,zcp_cleanup_t cleanfunc,void * cleanarg)171 zcp_register_cleanup(lua_State *state, zcp_cleanup_t cleanfunc, void *cleanarg)
172 {
173 zcp_run_info_t *ri = zcp_run_info(state);
174
175 zcp_cleanup_handler_t *zch = kmem_alloc(sizeof (*zch), KM_SLEEP);
176 zch->zch_cleanup_func = cleanfunc;
177 zch->zch_cleanup_arg = cleanarg;
178 list_insert_head(&ri->zri_cleanup_handlers, zch);
179
180 return (zch);
181 }
182
183 void
zcp_deregister_cleanup(lua_State * state,zcp_cleanup_handler_t * zch)184 zcp_deregister_cleanup(lua_State *state, zcp_cleanup_handler_t *zch)
185 {
186 zcp_run_info_t *ri = zcp_run_info(state);
187 list_remove(&ri->zri_cleanup_handlers, zch);
188 kmem_free(zch, sizeof (*zch));
189 }
190
191 /*
192 * Execute the currently registered cleanup handlers then free them and
193 * destroy the handler list.
194 */
195 void
zcp_cleanup(lua_State * state)196 zcp_cleanup(lua_State *state)
197 {
198 zcp_run_info_t *ri = zcp_run_info(state);
199
200 for (zcp_cleanup_handler_t *zch =
201 list_remove_head(&ri->zri_cleanup_handlers); zch != NULL;
202 zch = list_remove_head(&ri->zri_cleanup_handlers)) {
203 zch->zch_cleanup_func(zch->zch_cleanup_arg);
204 kmem_free(zch, sizeof (*zch));
205 }
206 }
207
208 /*
209 * Convert the lua table at the given index on the Lua stack to an nvlist
210 * and return it.
211 *
212 * If the table can not be converted for any reason, NULL is returned and
213 * an error message is pushed onto the Lua stack.
214 */
215 static nvlist_t *
zcp_table_to_nvlist(lua_State * state,int index,int depth)216 zcp_table_to_nvlist(lua_State *state, int index, int depth)
217 {
218 nvlist_t *nvl;
219 /*
220 * Converting a Lua table to an nvlist with key uniqueness checking is
221 * O(n^2) in the number of keys in the nvlist, which can take a long
222 * time when we return a large table from a channel program.
223 * Furthermore, Lua's table interface *almost* guarantees unique keys
224 * on its own (details below). Therefore, we don't use fnvlist_alloc()
225 * here to avoid the built-in uniqueness checking.
226 *
227 * The *almost* is because it's possible to have key collisions between
228 * e.g. the string "1" and the number 1, or the string "true" and the
229 * boolean true, so we explicitly check that when we're looking at a
230 * key which is an integer / boolean or a string that can be parsed as
231 * one of those types. In the worst case this could still devolve into
232 * O(n^2), so we only start doing these checks on boolean/integer keys
233 * once we've seen a string key which fits this weird usage pattern.
234 *
235 * Ultimately, we still want callers to know that the keys in this
236 * nvlist are unique, so before we return this we set the nvlist's
237 * flags to reflect that.
238 */
239 VERIFY0(nvlist_alloc(&nvl, 0, KM_SLEEP));
240
241 /*
242 * Push an empty stack slot where lua_next() will store each
243 * table key.
244 */
245 lua_pushnil(state);
246 boolean_t saw_str_could_collide = B_FALSE;
247 while (lua_next(state, index) != 0) {
248 /*
249 * The next key-value pair from the table at index is
250 * now on the stack, with the key at stack slot -2 and
251 * the value at slot -1.
252 */
253 int err = 0;
254 char buf[32];
255 const char *key = NULL;
256 boolean_t key_could_collide = B_FALSE;
257
258 switch (lua_type(state, -2)) {
259 case LUA_TSTRING:
260 key = lua_tostring(state, -2);
261
262 /* check if this could collide with a number or bool */
263 long long tmp;
264 int parselen;
265 if ((sscanf(key, "%lld%n", &tmp, &parselen) > 0 &&
266 parselen == strlen(key)) ||
267 strcmp(key, "true") == 0 ||
268 strcmp(key, "false") == 0) {
269 key_could_collide = B_TRUE;
270 saw_str_could_collide = B_TRUE;
271 }
272 break;
273 case LUA_TBOOLEAN:
274 key = (lua_toboolean(state, -2) == B_TRUE ?
275 "true" : "false");
276 if (saw_str_could_collide) {
277 key_could_collide = B_TRUE;
278 }
279 break;
280 case LUA_TNUMBER:
281 (void) snprintf(buf, sizeof (buf), "%lld",
282 (longlong_t)lua_tonumber(state, -2));
283
284 key = buf;
285 if (saw_str_could_collide) {
286 key_could_collide = B_TRUE;
287 }
288 break;
289 default:
290 fnvlist_free(nvl);
291 (void) lua_pushfstring(state, "Invalid key "
292 "type '%s' in table",
293 lua_typename(state, lua_type(state, -2)));
294 return (NULL);
295 }
296 /*
297 * Check for type-mismatched key collisions, and throw an error.
298 */
299 if (key_could_collide && nvlist_exists(nvl, key)) {
300 fnvlist_free(nvl);
301 (void) lua_pushfstring(state, "Collision of "
302 "key '%s' in table", key);
303 return (NULL);
304 }
305 /*
306 * Recursively convert the table value and insert into
307 * the new nvlist with the parsed key. To prevent
308 * stack overflow on circular or heavily nested tables,
309 * we track the current nvlist depth.
310 */
311 if (depth >= ZCP_NVLIST_MAX_DEPTH) {
312 fnvlist_free(nvl);
313 (void) lua_pushfstring(state, "Maximum table "
314 "depth (%d) exceeded for table",
315 ZCP_NVLIST_MAX_DEPTH);
316 return (NULL);
317 }
318 err = zcp_lua_to_nvlist_impl(state, -1, nvl, key,
319 depth + 1);
320 if (err != 0) {
321 fnvlist_free(nvl);
322 /*
323 * Error message has been pushed to the lua
324 * stack by the recursive call.
325 */
326 return (NULL);
327 }
328 /*
329 * Pop the value pushed by lua_next().
330 */
331 lua_pop(state, 1);
332 }
333
334 /*
335 * Mark the nvlist as having unique keys. This is a little ugly, but we
336 * ensured above that there are no duplicate keys in the nvlist.
337 */
338 nvl->nvl_nvflag |= NV_UNIQUE_NAME;
339
340 return (nvl);
341 }
342
343 /*
344 * Convert a value from the given index into the lua stack to an nvpair, adding
345 * it to an nvlist with the given key.
346 *
347 * Values are converted as follows:
348 *
349 * string -> string
350 * number -> int64
351 * boolean -> boolean
352 * nil -> boolean (no value)
353 *
354 * Lua tables are converted to nvlists and then inserted. The table's keys
355 * are converted to strings then used as keys in the nvlist to store each table
356 * element. Keys are converted as follows:
357 *
358 * string -> no change
359 * number -> "%lld"
360 * boolean -> "true" | "false"
361 * nil -> error
362 *
363 * In the case of a key collision, an error is thrown.
364 *
365 * If an error is encountered, a nonzero error code is returned, and an error
366 * string will be pushed onto the Lua stack.
367 */
368 static int
zcp_lua_to_nvlist_impl(lua_State * state,int index,nvlist_t * nvl,const char * key,int depth)369 zcp_lua_to_nvlist_impl(lua_State *state, int index, nvlist_t *nvl,
370 const char *key, int depth)
371 {
372 /*
373 * Verify that we have enough remaining space in the lua stack to parse
374 * a key-value pair and push an error.
375 */
376 if (!lua_checkstack(state, 3)) {
377 (void) lua_pushstring(state, "Lua stack overflow");
378 return (1);
379 }
380
381 index = lua_absindex(state, index);
382
383 switch (lua_type(state, index)) {
384 case LUA_TNIL:
385 fnvlist_add_boolean(nvl, key);
386 break;
387 case LUA_TBOOLEAN:
388 fnvlist_add_boolean_value(nvl, key,
389 lua_toboolean(state, index));
390 break;
391 case LUA_TNUMBER:
392 fnvlist_add_int64(nvl, key, lua_tonumber(state, index));
393 break;
394 case LUA_TSTRING:
395 fnvlist_add_string(nvl, key, lua_tostring(state, index));
396 break;
397 case LUA_TTABLE: {
398 nvlist_t *value_nvl = zcp_table_to_nvlist(state, index, depth);
399 if (value_nvl == NULL)
400 return (SET_ERROR(EINVAL));
401
402 fnvlist_add_nvlist(nvl, key, value_nvl);
403 fnvlist_free(value_nvl);
404 break;
405 }
406 default:
407 (void) lua_pushfstring(state,
408 "Invalid value type '%s' for key '%s'",
409 lua_typename(state, lua_type(state, index)), key);
410 return (SET_ERROR(EINVAL));
411 }
412
413 return (0);
414 }
415
416 /*
417 * Convert a lua value to an nvpair, adding it to an nvlist with the given key.
418 */
419 static void
zcp_lua_to_nvlist(lua_State * state,int index,nvlist_t * nvl,const char * key)420 zcp_lua_to_nvlist(lua_State *state, int index, nvlist_t *nvl, const char *key)
421 {
422 /*
423 * On error, zcp_lua_to_nvlist_impl pushes an error string onto the Lua
424 * stack before returning with a nonzero error code. If an error is
425 * returned, throw a fatal lua error with the given string.
426 */
427 if (zcp_lua_to_nvlist_impl(state, index, nvl, key, 0) != 0)
428 (void) lua_error(state);
429 }
430
431 static int
zcp_lua_to_nvlist_helper(lua_State * state)432 zcp_lua_to_nvlist_helper(lua_State *state)
433 {
434 nvlist_t *nv = (nvlist_t *)lua_touserdata(state, 2);
435 const char *key = (const char *)lua_touserdata(state, 1);
436 zcp_lua_to_nvlist(state, 3, nv, key);
437 return (0);
438 }
439
440 static void
zcp_convert_return_values(lua_State * state,nvlist_t * nvl,const char * key,int * result)441 zcp_convert_return_values(lua_State *state, nvlist_t *nvl,
442 const char *key, int *result)
443 {
444 int err;
445 VERIFY3U(1, ==, lua_gettop(state));
446 lua_pushcfunction(state, zcp_lua_to_nvlist_helper);
447 lua_pushlightuserdata(state, (char *)key);
448 lua_pushlightuserdata(state, nvl);
449 lua_pushvalue(state, 1);
450 lua_remove(state, 1);
451 err = lua_pcall(state, 3, 0, 0); /* zcp_lua_to_nvlist_helper */
452 if (err != 0) {
453 zcp_lua_to_nvlist(state, 1, nvl, ZCP_RET_ERROR);
454 *result = SET_ERROR(ECHRNG);
455 }
456 }
457
458 /*
459 * Push a Lua table representing nvl onto the stack. If it can't be
460 * converted, return EINVAL, fill in errbuf, and push nothing. errbuf may
461 * be specified as NULL, in which case no error string will be output.
462 *
463 * Most nvlists are converted as simple key->value Lua tables, but we make
464 * an exception for the case where all nvlist entries are BOOLEANs (a string
465 * key without a value). In Lua, a table key pointing to a value of Nil
466 * (no value) is equivalent to the key not existing, so a BOOLEAN nvlist
467 * entry can't be directly converted to a Lua table entry. Nvlists of entirely
468 * BOOLEAN entries are frequently used to pass around lists of datasets, so for
469 * convenience we check for this case, and convert it to a simple Lua array of
470 * strings.
471 */
472 int
zcp_nvlist_to_lua(lua_State * state,nvlist_t * nvl,char * errbuf,int errbuf_len)473 zcp_nvlist_to_lua(lua_State *state, nvlist_t *nvl,
474 char *errbuf, int errbuf_len)
475 {
476 nvpair_t *pair;
477 lua_newtable(state);
478 boolean_t has_values = B_FALSE;
479 /*
480 * If the list doesn't have any values, just convert it to a string
481 * array.
482 */
483 for (pair = nvlist_next_nvpair(nvl, NULL);
484 pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
485 if (nvpair_type(pair) != DATA_TYPE_BOOLEAN) {
486 has_values = B_TRUE;
487 break;
488 }
489 }
490 if (!has_values) {
491 int i = 1;
492 for (pair = nvlist_next_nvpair(nvl, NULL);
493 pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
494 (void) lua_pushinteger(state, i);
495 (void) lua_pushstring(state, nvpair_name(pair));
496 (void) lua_settable(state, -3);
497 i++;
498 }
499 } else {
500 for (pair = nvlist_next_nvpair(nvl, NULL);
501 pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
502 int err = zcp_nvpair_value_to_lua(state, pair,
503 errbuf, errbuf_len);
504 if (err != 0) {
505 lua_pop(state, 1);
506 return (err);
507 }
508 (void) lua_setfield(state, -2, nvpair_name(pair));
509 }
510 }
511 return (0);
512 }
513
514 /*
515 * Push a Lua object representing the value of "pair" onto the stack.
516 *
517 * Only understands boolean_value, string, int64, nvlist,
518 * string_array, and int64_array type values. For other
519 * types, returns EINVAL, fills in errbuf, and pushes nothing.
520 */
521 static int
zcp_nvpair_value_to_lua(lua_State * state,nvpair_t * pair,char * errbuf,int errbuf_len)522 zcp_nvpair_value_to_lua(lua_State *state, nvpair_t *pair,
523 char *errbuf, int errbuf_len)
524 {
525 int err = 0;
526
527 if (pair == NULL) {
528 lua_pushnil(state);
529 return (0);
530 }
531
532 switch (nvpair_type(pair)) {
533 case DATA_TYPE_BOOLEAN_VALUE:
534 (void) lua_pushboolean(state,
535 fnvpair_value_boolean_value(pair));
536 break;
537 case DATA_TYPE_STRING:
538 (void) lua_pushstring(state, fnvpair_value_string(pair));
539 break;
540 case DATA_TYPE_INT64:
541 (void) lua_pushinteger(state, fnvpair_value_int64(pair));
542 break;
543 case DATA_TYPE_NVLIST:
544 err = zcp_nvlist_to_lua(state,
545 fnvpair_value_nvlist(pair), errbuf, errbuf_len);
546 break;
547 case DATA_TYPE_STRING_ARRAY: {
548 const char **strarr;
549 uint_t nelem;
550 (void) nvpair_value_string_array(pair, &strarr, &nelem);
551 lua_newtable(state);
552 for (int i = 0; i < nelem; i++) {
553 (void) lua_pushinteger(state, i + 1);
554 (void) lua_pushstring(state, strarr[i]);
555 (void) lua_settable(state, -3);
556 }
557 break;
558 }
559 case DATA_TYPE_UINT64_ARRAY: {
560 uint64_t *intarr;
561 uint_t nelem;
562 (void) nvpair_value_uint64_array(pair, &intarr, &nelem);
563 lua_newtable(state);
564 for (int i = 0; i < nelem; i++) {
565 (void) lua_pushinteger(state, i + 1);
566 (void) lua_pushinteger(state, intarr[i]);
567 (void) lua_settable(state, -3);
568 }
569 break;
570 }
571 case DATA_TYPE_INT64_ARRAY: {
572 int64_t *intarr;
573 uint_t nelem;
574 (void) nvpair_value_int64_array(pair, &intarr, &nelem);
575 lua_newtable(state);
576 for (int i = 0; i < nelem; i++) {
577 (void) lua_pushinteger(state, i + 1);
578 (void) lua_pushinteger(state, intarr[i]);
579 (void) lua_settable(state, -3);
580 }
581 break;
582 }
583 default: {
584 if (errbuf != NULL) {
585 (void) snprintf(errbuf, errbuf_len,
586 "Unhandled nvpair type %d for key '%s'",
587 nvpair_type(pair), nvpair_name(pair));
588 }
589 return (SET_ERROR(EINVAL));
590 }
591 }
592 return (err);
593 }
594
595 int
zcp_dataset_hold_error(lua_State * state,dsl_pool_t * dp,const char * dsname,int error)596 zcp_dataset_hold_error(lua_State *state, dsl_pool_t *dp, const char *dsname,
597 int error)
598 {
599 if (error == ENOENT) {
600 (void) zcp_argerror(state, 1, "no such dataset '%s'", dsname);
601 return (0); /* not reached; zcp_argerror will longjmp */
602 } else if (error == EXDEV) {
603 (void) zcp_argerror(state, 1,
604 "dataset '%s' is not in the target pool '%s'",
605 dsname, spa_name(dp->dp_spa));
606 return (0); /* not reached; zcp_argerror will longjmp */
607 } else if (error == EIO) {
608 (void) luaL_error(state,
609 "I/O error while accessing dataset '%s'", dsname);
610 return (0); /* not reached; luaL_error will longjmp */
611 } else if (error != 0) {
612 (void) luaL_error(state,
613 "unexpected error %d while accessing dataset '%s'",
614 error, dsname);
615 return (0); /* not reached; luaL_error will longjmp */
616 }
617 return (0);
618 }
619
620 /*
621 * Note: will longjmp (via lua_error()) on error.
622 * Assumes that the dsname is argument #1 (for error reporting purposes).
623 */
624 dsl_dataset_t *
zcp_dataset_hold(lua_State * state,dsl_pool_t * dp,const char * dsname,const void * tag)625 zcp_dataset_hold(lua_State *state, dsl_pool_t *dp, const char *dsname,
626 const void *tag)
627 {
628 dsl_dataset_t *ds;
629 int error = dsl_dataset_hold(dp, dsname, tag, &ds);
630 (void) zcp_dataset_hold_error(state, dp, dsname, error);
631 return (ds);
632 }
633
634 static int zcp_debug(lua_State *);
635 static const zcp_lib_info_t zcp_debug_info = {
636 .name = "debug",
637 .func = zcp_debug,
638 .pargs = {
639 { .za_name = "debug string", .za_lua_type = LUA_TSTRING },
640 {NULL, 0}
641 },
642 .kwargs = {
643 {NULL, 0}
644 }
645 };
646
647 static int
zcp_debug(lua_State * state)648 zcp_debug(lua_State *state)
649 {
650 const char *dbgstring;
651 zcp_run_info_t *ri = zcp_run_info(state);
652 const zcp_lib_info_t *libinfo = &zcp_debug_info;
653
654 zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
655
656 dbgstring = lua_tostring(state, 1);
657
658 zfs_dbgmsg("txg %lld ZCP: %s", (longlong_t)ri->zri_tx->tx_txg,
659 dbgstring);
660
661 return (0);
662 }
663
664 static int zcp_exists(lua_State *);
665 static const zcp_lib_info_t zcp_exists_info = {
666 .name = "exists",
667 .func = zcp_exists,
668 .pargs = {
669 { .za_name = "dataset", .za_lua_type = LUA_TSTRING },
670 {NULL, 0}
671 },
672 .kwargs = {
673 {NULL, 0}
674 }
675 };
676
677 static int
zcp_exists(lua_State * state)678 zcp_exists(lua_State *state)
679 {
680 zcp_run_info_t *ri = zcp_run_info(state);
681 dsl_pool_t *dp = ri->zri_pool;
682 const zcp_lib_info_t *libinfo = &zcp_exists_info;
683
684 zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
685
686 const char *dsname = lua_tostring(state, 1);
687
688 dsl_dataset_t *ds;
689 int error = dsl_dataset_hold(dp, dsname, FTAG, &ds);
690 if (error == 0) {
691 dsl_dataset_rele(ds, FTAG);
692 lua_pushboolean(state, B_TRUE);
693 } else if (error == ENOENT) {
694 lua_pushboolean(state, B_FALSE);
695 } else if (error == EXDEV) {
696 return (luaL_error(state, "dataset '%s' is not in the "
697 "target pool", dsname));
698 } else if (error == EIO) {
699 return (luaL_error(state, "I/O error opening dataset '%s'",
700 dsname));
701 } else if (error != 0) {
702 return (luaL_error(state, "unexpected error %d", error));
703 }
704
705 return (1);
706 }
707
708 /*
709 * Allocate/realloc/free a buffer for the lua interpreter.
710 *
711 * When nsize is 0, behaves as free() and returns NULL.
712 *
713 * If ptr is NULL, behaves as malloc() and returns an allocated buffer of size
714 * at least nsize.
715 *
716 * Otherwise, behaves as realloc(), changing the allocation from osize to nsize.
717 * Shrinking the buffer size never fails.
718 *
719 * The original allocated buffer size is stored as a uint64 at the beginning of
720 * the buffer to avoid actually reallocating when shrinking a buffer, since lua
721 * requires that this operation never fail.
722 */
723 static void *
zcp_lua_alloc(void * ud,void * ptr,size_t osize,size_t nsize)724 zcp_lua_alloc(void *ud, void *ptr, size_t osize, size_t nsize)
725 {
726 zcp_alloc_arg_t *allocargs = ud;
727
728 if (nsize == 0) {
729 if (ptr != NULL) {
730 int64_t *allocbuf = (int64_t *)ptr - 1;
731 int64_t allocsize = *allocbuf;
732 ASSERT3S(allocsize, >, 0);
733 ASSERT3S(allocargs->aa_alloc_remaining + allocsize, <=,
734 allocargs->aa_alloc_limit);
735 allocargs->aa_alloc_remaining += allocsize;
736 vmem_free(allocbuf, allocsize);
737 }
738 return (NULL);
739 } else if (ptr == NULL) {
740 int64_t *allocbuf;
741 int64_t allocsize = nsize + sizeof (int64_t);
742
743 if (!allocargs->aa_must_succeed &&
744 (allocsize <= 0 ||
745 allocsize > allocargs->aa_alloc_remaining)) {
746 return (NULL);
747 }
748
749 allocbuf = vmem_alloc(allocsize, KM_SLEEP);
750 allocargs->aa_alloc_remaining -= allocsize;
751
752 *allocbuf = allocsize;
753 return (allocbuf + 1);
754 } else if (nsize <= osize) {
755 /*
756 * If shrinking the buffer, lua requires that the reallocation
757 * never fail.
758 */
759 return (ptr);
760 } else {
761 ASSERT3U(nsize, >, osize);
762
763 uint64_t *luabuf = zcp_lua_alloc(ud, NULL, 0, nsize);
764 if (luabuf == NULL) {
765 return (NULL);
766 }
767 (void) memcpy(luabuf, ptr, osize);
768 VERIFY3P(zcp_lua_alloc(ud, ptr, osize, 0), ==, NULL);
769 return (luabuf);
770 }
771 }
772
773 static void
zcp_lua_counthook(lua_State * state,lua_Debug * ar)774 zcp_lua_counthook(lua_State *state, lua_Debug *ar)
775 {
776 (void) ar;
777 lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
778 zcp_run_info_t *ri = lua_touserdata(state, -1);
779
780 /*
781 * Check if we were canceled while waiting for the
782 * txg to sync or from our open context thread
783 */
784 if (ri->zri_canceled || (!ri->zri_sync && issig())) {
785 ri->zri_canceled = B_TRUE;
786 (void) lua_pushstring(state, "Channel program was canceled.");
787 (void) lua_error(state);
788 /* Unreachable */
789 }
790
791 /*
792 * Check how many instructions the channel program has
793 * executed so far, and compare against the limit.
794 */
795 ri->zri_curinstrs += zfs_lua_check_instrlimit_interval;
796 if (ri->zri_maxinstrs != 0 && ri->zri_curinstrs > ri->zri_maxinstrs) {
797 ri->zri_timed_out = B_TRUE;
798 (void) lua_pushstring(state,
799 "Channel program timed out.");
800 (void) lua_error(state);
801 /* Unreachable */
802 }
803 }
804
805 static int
zcp_panic_cb(lua_State * state)806 zcp_panic_cb(lua_State *state)
807 {
808 panic("unprotected error in call to Lua API (%s)\n",
809 lua_tostring(state, -1));
810 return (0);
811 }
812
813 static void
zcp_eval_impl(dmu_tx_t * tx,zcp_run_info_t * ri)814 zcp_eval_impl(dmu_tx_t *tx, zcp_run_info_t *ri)
815 {
816 int err;
817 lua_State *state = ri->zri_state;
818
819 VERIFY3U(3, ==, lua_gettop(state));
820
821 /* finish initializing our runtime state */
822 ri->zri_pool = dmu_tx_pool(tx);
823 ri->zri_tx = tx;
824 list_create(&ri->zri_cleanup_handlers, sizeof (zcp_cleanup_handler_t),
825 offsetof(zcp_cleanup_handler_t, zch_node));
826
827 /*
828 * Store the zcp_run_info_t struct for this run in the Lua registry.
829 * Registry entries are not directly accessible by the Lua scripts but
830 * can be accessed by our callbacks.
831 */
832 lua_pushlightuserdata(state, ri);
833 lua_setfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
834 VERIFY3U(3, ==, lua_gettop(state));
835
836 /*
837 * Tell the Lua interpreter to call our handler every count
838 * instructions. Channel programs that execute too many instructions
839 * should die with ETIME.
840 */
841 (void) lua_sethook(state, zcp_lua_counthook, LUA_MASKCOUNT,
842 zfs_lua_check_instrlimit_interval);
843
844 /*
845 * Tell the Lua memory allocator to stop using KM_SLEEP before handing
846 * off control to the channel program. Channel programs that use too
847 * much memory should die with ENOSPC.
848 */
849 ri->zri_allocargs->aa_must_succeed = B_FALSE;
850
851 /*
852 * Call the Lua function that open-context passed us. This pops the
853 * function and its input from the stack and pushes any return
854 * or error values.
855 */
856 err = lua_pcall(state, 1, LUA_MULTRET, 1);
857
858 /*
859 * Let Lua use KM_SLEEP while we interpret the return values.
860 */
861 ri->zri_allocargs->aa_must_succeed = B_TRUE;
862
863 /*
864 * Remove the error handler callback from the stack. At this point,
865 * there shouldn't be any cleanup handler registered in the handler
866 * list (zri_cleanup_handlers), regardless of whether it ran or not.
867 */
868 list_destroy(&ri->zri_cleanup_handlers);
869 lua_remove(state, 1);
870
871 switch (err) {
872 case LUA_OK: {
873 /*
874 * Lua supports returning multiple values in a single return
875 * statement. Return values will have been pushed onto the
876 * stack:
877 * 1: Return value 1
878 * 2: Return value 2
879 * 3: etc...
880 * To simplify the process of retrieving a return value from a
881 * channel program, we disallow returning more than one value
882 * to ZFS from the Lua script, yielding a singleton return
883 * nvlist of the form { "return": Return value 1 }.
884 */
885 int return_count = lua_gettop(state);
886
887 if (return_count == 1) {
888 ri->zri_result = 0;
889 zcp_convert_return_values(state, ri->zri_outnvl,
890 ZCP_RET_RETURN, &ri->zri_result);
891 } else if (return_count > 1) {
892 ri->zri_result = SET_ERROR(ECHRNG);
893 lua_settop(state, 0);
894 (void) lua_pushfstring(state, "Multiple return "
895 "values not supported");
896 zcp_convert_return_values(state, ri->zri_outnvl,
897 ZCP_RET_ERROR, &ri->zri_result);
898 }
899 break;
900 }
901 case LUA_ERRRUN:
902 case LUA_ERRGCMM: {
903 /*
904 * The channel program encountered a fatal error within the
905 * script, such as failing an assertion, or calling a function
906 * with incompatible arguments. The error value and the
907 * traceback generated by zcp_error_handler() should be on the
908 * stack.
909 */
910 VERIFY3U(1, ==, lua_gettop(state));
911 if (ri->zri_timed_out) {
912 ri->zri_result = SET_ERROR(ETIME);
913 } else if (ri->zri_canceled) {
914 ri->zri_result = SET_ERROR(EINTR);
915 } else {
916 ri->zri_result = SET_ERROR(ECHRNG);
917 }
918
919 zcp_convert_return_values(state, ri->zri_outnvl,
920 ZCP_RET_ERROR, &ri->zri_result);
921
922 if (ri->zri_result == ETIME && ri->zri_outnvl != NULL) {
923 (void) nvlist_add_uint64(ri->zri_outnvl,
924 ZCP_ARG_INSTRLIMIT, ri->zri_curinstrs);
925 }
926 break;
927 }
928 case LUA_ERRERR: {
929 /*
930 * The channel program encountered a fatal error within the
931 * script, and we encountered another error while trying to
932 * compute the traceback in zcp_error_handler(). We can only
933 * return the error message.
934 */
935 VERIFY3U(1, ==, lua_gettop(state));
936 if (ri->zri_timed_out) {
937 ri->zri_result = SET_ERROR(ETIME);
938 } else if (ri->zri_canceled) {
939 ri->zri_result = SET_ERROR(EINTR);
940 } else {
941 ri->zri_result = SET_ERROR(ECHRNG);
942 }
943
944 zcp_convert_return_values(state, ri->zri_outnvl,
945 ZCP_RET_ERROR, &ri->zri_result);
946 break;
947 }
948 case LUA_ERRMEM:
949 /*
950 * Lua ran out of memory while running the channel program.
951 * There's not much we can do.
952 */
953 ri->zri_result = SET_ERROR(ENOSPC);
954 break;
955 default:
956 VERIFY0(err);
957 }
958 }
959
960 static void
zcp_pool_error(zcp_run_info_t * ri,const char * poolname,int error)961 zcp_pool_error(zcp_run_info_t *ri, const char *poolname, int error)
962 {
963 ri->zri_result = SET_ERROR(ECHRNG);
964 lua_settop(ri->zri_state, 0);
965 (void) lua_pushfstring(ri->zri_state, "Could not open pool: %s "
966 "errno: %d", poolname, error);
967 zcp_convert_return_values(ri->zri_state, ri->zri_outnvl,
968 ZCP_RET_ERROR, &ri->zri_result);
969
970 }
971
972 /*
973 * This callback is called when txg_wait_synced_sig encountered a signal.
974 * The txg_wait_synced_sig will continue to wait for the txg to complete
975 * after calling this callback.
976 */
977 static void
zcp_eval_sig(void * arg,dmu_tx_t * tx)978 zcp_eval_sig(void *arg, dmu_tx_t *tx)
979 {
980 (void) tx;
981 zcp_run_info_t *ri = arg;
982
983 ri->zri_canceled = B_TRUE;
984 }
985
986 static void
zcp_eval_sync(void * arg,dmu_tx_t * tx)987 zcp_eval_sync(void *arg, dmu_tx_t *tx)
988 {
989 zcp_run_info_t *ri = arg;
990
991 /*
992 * Open context should have setup the stack to contain:
993 * 1: Error handler callback
994 * 2: Script to run (converted to a Lua function)
995 * 3: nvlist input to function (converted to Lua table or nil)
996 */
997 VERIFY3U(3, ==, lua_gettop(ri->zri_state));
998
999 zcp_eval_impl(tx, ri);
1000 }
1001
1002 static void
zcp_eval_open(zcp_run_info_t * ri,const char * poolname)1003 zcp_eval_open(zcp_run_info_t *ri, const char *poolname)
1004 {
1005 int error;
1006 dsl_pool_t *dp;
1007 dmu_tx_t *tx;
1008
1009 /*
1010 * See comment from the same assertion in zcp_eval_sync().
1011 */
1012 VERIFY3U(3, ==, lua_gettop(ri->zri_state));
1013
1014 error = dsl_pool_hold(poolname, FTAG, &dp);
1015 if (error != 0) {
1016 zcp_pool_error(ri, poolname, error);
1017 return;
1018 }
1019
1020 /*
1021 * As we are running in open-context, we have no transaction associated
1022 * with the channel program. At the same time, functions from the
1023 * zfs.check submodule need to be associated with a transaction as
1024 * they are basically dry-runs of their counterparts in the zfs.sync
1025 * submodule. These functions should be able to run in open-context.
1026 * Therefore we create a new transaction that we later abort once
1027 * the channel program has been evaluated.
1028 */
1029 tx = dmu_tx_create_dd(dp->dp_mos_dir);
1030
1031 zcp_eval_impl(tx, ri);
1032
1033 dmu_tx_abort(tx);
1034
1035 dsl_pool_rele(dp, FTAG);
1036 }
1037
1038 int
zcp_eval(const char * poolname,const char * program,boolean_t sync,uint64_t instrlimit,uint64_t memlimit,nvpair_t * nvarg,nvlist_t * outnvl)1039 zcp_eval(const char *poolname, const char *program, boolean_t sync,
1040 uint64_t instrlimit, uint64_t memlimit, nvpair_t *nvarg, nvlist_t *outnvl)
1041 {
1042 int err;
1043 lua_State *state;
1044 zcp_run_info_t runinfo;
1045
1046 if (instrlimit > zfs_lua_max_instrlimit)
1047 return (SET_ERROR(EINVAL));
1048 if (memlimit == 0 || memlimit > zfs_lua_max_memlimit)
1049 return (SET_ERROR(EINVAL));
1050
1051 zcp_alloc_arg_t allocargs = {
1052 .aa_must_succeed = B_TRUE,
1053 .aa_alloc_remaining = (int64_t)memlimit,
1054 .aa_alloc_limit = (int64_t)memlimit,
1055 };
1056
1057 /*
1058 * Creates a Lua state with a memory allocator that uses KM_SLEEP.
1059 * This should never fail.
1060 */
1061 state = lua_newstate(zcp_lua_alloc, &allocargs);
1062 VERIFY(state != NULL);
1063 (void) lua_atpanic(state, zcp_panic_cb);
1064
1065 /*
1066 * Load core Lua libraries we want access to.
1067 */
1068 VERIFY3U(1, ==, luaopen_base(state));
1069 lua_pop(state, 1);
1070 VERIFY3U(1, ==, luaopen_coroutine(state));
1071 lua_setglobal(state, LUA_COLIBNAME);
1072 VERIFY0(lua_gettop(state));
1073 VERIFY3U(1, ==, luaopen_string(state));
1074 lua_setglobal(state, LUA_STRLIBNAME);
1075 VERIFY0(lua_gettop(state));
1076 VERIFY3U(1, ==, luaopen_table(state));
1077 lua_setglobal(state, LUA_TABLIBNAME);
1078 VERIFY0(lua_gettop(state));
1079
1080 /*
1081 * Load globally visible variables such as errno aliases.
1082 */
1083 zcp_load_globals(state);
1084 VERIFY0(lua_gettop(state));
1085
1086 /*
1087 * Load ZFS-specific modules.
1088 */
1089 lua_newtable(state);
1090 VERIFY3U(1, ==, zcp_load_list_lib(state));
1091 lua_setfield(state, -2, "list");
1092 VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_FALSE));
1093 lua_setfield(state, -2, "check");
1094 VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_TRUE));
1095 lua_setfield(state, -2, "sync");
1096 VERIFY3U(1, ==, zcp_load_get_lib(state));
1097 lua_pushcclosure(state, zcp_debug_info.func, 0);
1098 lua_setfield(state, -2, zcp_debug_info.name);
1099 lua_pushcclosure(state, zcp_exists_info.func, 0);
1100 lua_setfield(state, -2, zcp_exists_info.name);
1101 lua_setglobal(state, "zfs");
1102 VERIFY0(lua_gettop(state));
1103
1104 /*
1105 * Push the error-callback that calculates Lua stack traces on
1106 * unexpected failures.
1107 */
1108 lua_pushcfunction(state, zcp_error_handler);
1109 VERIFY3U(1, ==, lua_gettop(state));
1110
1111 /*
1112 * Load the actual script as a function onto the stack as text ("t").
1113 * The only valid error condition is a syntax error in the script.
1114 * ERRMEM should not be possible because our allocator is using
1115 * KM_SLEEP. ERRGCMM should not be possible because we have not added
1116 * any objects with __gc metamethods to the interpreter that could
1117 * fail.
1118 */
1119 err = luaL_loadbufferx(state, program, strlen(program),
1120 "channel program", "t");
1121 if (err == LUA_ERRSYNTAX) {
1122 fnvlist_add_string(outnvl, ZCP_RET_ERROR,
1123 lua_tostring(state, -1));
1124 lua_close(state);
1125 return (SET_ERROR(EINVAL));
1126 }
1127 VERIFY0(err);
1128 VERIFY3U(2, ==, lua_gettop(state));
1129
1130 /*
1131 * Convert the input nvlist to a Lua object and put it on top of the
1132 * stack.
1133 */
1134 char errmsg[128];
1135 err = zcp_nvpair_value_to_lua(state, nvarg,
1136 errmsg, sizeof (errmsg));
1137 if (err != 0) {
1138 fnvlist_add_string(outnvl, ZCP_RET_ERROR, errmsg);
1139 lua_close(state);
1140 return (SET_ERROR(EINVAL));
1141 }
1142 VERIFY3U(3, ==, lua_gettop(state));
1143
1144 runinfo.zri_state = state;
1145 runinfo.zri_allocargs = &allocargs;
1146 runinfo.zri_outnvl = outnvl;
1147 runinfo.zri_result = 0;
1148 runinfo.zri_cred = CRED();
1149 runinfo.zri_proc = curproc;
1150 runinfo.zri_timed_out = B_FALSE;
1151 runinfo.zri_canceled = B_FALSE;
1152 runinfo.zri_sync = sync;
1153 runinfo.zri_space_used = 0;
1154 runinfo.zri_curinstrs = 0;
1155 runinfo.zri_maxinstrs = instrlimit;
1156 runinfo.zri_new_zvols = fnvlist_alloc();
1157
1158 if (sync) {
1159 err = dsl_sync_task_sig(poolname, NULL, zcp_eval_sync,
1160 zcp_eval_sig, &runinfo, 0, ZFS_SPACE_CHECK_ZCP_EVAL);
1161 if (err != 0)
1162 zcp_pool_error(&runinfo, poolname, err);
1163 } else {
1164 zcp_eval_open(&runinfo, poolname);
1165 }
1166 lua_close(state);
1167
1168 /*
1169 * Create device minor nodes for any new zvols.
1170 */
1171 for (nvpair_t *pair = nvlist_next_nvpair(runinfo.zri_new_zvols, NULL);
1172 pair != NULL;
1173 pair = nvlist_next_nvpair(runinfo.zri_new_zvols, pair)) {
1174 zvol_create_minor(nvpair_name(pair));
1175 }
1176 fnvlist_free(runinfo.zri_new_zvols);
1177
1178 return (runinfo.zri_result);
1179 }
1180
1181 /*
1182 * Retrieve metadata about the currently running channel program.
1183 */
1184 zcp_run_info_t *
zcp_run_info(lua_State * state)1185 zcp_run_info(lua_State *state)
1186 {
1187 zcp_run_info_t *ri;
1188
1189 lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
1190 ri = lua_touserdata(state, -1);
1191 lua_pop(state, 1);
1192 return (ri);
1193 }
1194
1195 /*
1196 * Argument Parsing
1197 * ================
1198 *
1199 * The Lua language allows methods to be called with any number
1200 * of arguments of any type. When calling back into ZFS we need to sanitize
1201 * arguments from channel programs to make sure unexpected arguments or
1202 * arguments of the wrong type result in clear error messages. To do this
1203 * in a uniform way all callbacks from channel programs should use the
1204 * zcp_parse_args() function to interpret inputs.
1205 *
1206 * Positional vs Keyword Arguments
1207 * ===============================
1208 *
1209 * Every callback function takes a fixed set of required positional arguments
1210 * and optional keyword arguments. For example, the destroy function takes
1211 * a single positional string argument (the name of the dataset to destroy)
1212 * and an optional "defer" keyword boolean argument. When calling lua functions
1213 * with parentheses, only positional arguments can be used:
1214 *
1215 * zfs.sync.snapshot("rpool@snap")
1216 *
1217 * To use keyword arguments functions should be called with a single argument
1218 * that is a lua table containing mappings of integer -> positional arguments
1219 * and string -> keyword arguments:
1220 *
1221 * zfs.sync.snapshot({1="rpool@snap", defer=true})
1222 *
1223 * The lua language allows curly braces to be used in place of parenthesis as
1224 * syntactic sugar for this calling convention:
1225 *
1226 * zfs.sync.snapshot{"rpool@snap", defer=true}
1227 */
1228
1229 /*
1230 * Throw an error and print the given arguments. If there are too many
1231 * arguments to fit in the output buffer, only the error format string is
1232 * output.
1233 */
1234 static void
zcp_args_error(lua_State * state,const char * fname,const zcp_arg_t * pargs,const zcp_arg_t * kwargs,const char * fmt,...)1235 zcp_args_error(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1236 const zcp_arg_t *kwargs, const char *fmt, ...)
1237 {
1238 int i;
1239 char errmsg[512];
1240 size_t len = sizeof (errmsg);
1241 size_t msglen = 0;
1242 va_list argp;
1243
1244 va_start(argp, fmt);
1245 VERIFY3U(len, >, vsnprintf(errmsg, len, fmt, argp));
1246 va_end(argp);
1247
1248 /*
1249 * Calculate the total length of the final string, including extra
1250 * formatting characters. If the argument dump would be too large,
1251 * only print the error string.
1252 */
1253 msglen = strlen(errmsg);
1254 msglen += strlen(fname) + 4; /* : + {} + null terminator */
1255 for (i = 0; pargs[i].za_name != NULL; i++) {
1256 msglen += strlen(pargs[i].za_name);
1257 msglen += strlen(lua_typename(state, pargs[i].za_lua_type));
1258 if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL)
1259 msglen += 5; /* < + ( + )> + , */
1260 else
1261 msglen += 4; /* < + ( + )> */
1262 }
1263 for (i = 0; kwargs[i].za_name != NULL; i++) {
1264 msglen += strlen(kwargs[i].za_name);
1265 msglen += strlen(lua_typename(state, kwargs[i].za_lua_type));
1266 if (kwargs[i + 1].za_name != NULL)
1267 msglen += 4; /* =( + ) + , */
1268 else
1269 msglen += 3; /* =( + ) */
1270 }
1271
1272 if (msglen >= len)
1273 (void) luaL_error(state, errmsg);
1274
1275 VERIFY3U(len, >, strlcat(errmsg, ": ", len));
1276 VERIFY3U(len, >, strlcat(errmsg, fname, len));
1277 VERIFY3U(len, >, strlcat(errmsg, "{", len));
1278 for (i = 0; pargs[i].za_name != NULL; i++) {
1279 VERIFY3U(len, >, strlcat(errmsg, "<", len));
1280 VERIFY3U(len, >, strlcat(errmsg, pargs[i].za_name, len));
1281 VERIFY3U(len, >, strlcat(errmsg, "(", len));
1282 VERIFY3U(len, >, strlcat(errmsg,
1283 lua_typename(state, pargs[i].za_lua_type), len));
1284 VERIFY3U(len, >, strlcat(errmsg, ")>", len));
1285 if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL) {
1286 VERIFY3U(len, >, strlcat(errmsg, ", ", len));
1287 }
1288 }
1289 for (i = 0; kwargs[i].za_name != NULL; i++) {
1290 VERIFY3U(len, >, strlcat(errmsg, kwargs[i].za_name, len));
1291 VERIFY3U(len, >, strlcat(errmsg, "=(", len));
1292 VERIFY3U(len, >, strlcat(errmsg,
1293 lua_typename(state, kwargs[i].za_lua_type), len));
1294 VERIFY3U(len, >, strlcat(errmsg, ")", len));
1295 if (kwargs[i + 1].za_name != NULL) {
1296 VERIFY3U(len, >, strlcat(errmsg, ", ", len));
1297 }
1298 }
1299 VERIFY3U(len, >, strlcat(errmsg, "}", len));
1300
1301 (void) luaL_error(state, errmsg);
1302 panic("unreachable code");
1303 }
1304
1305 static void
zcp_parse_table_args(lua_State * state,const char * fname,const zcp_arg_t * pargs,const zcp_arg_t * kwargs)1306 zcp_parse_table_args(lua_State *state, const char *fname,
1307 const zcp_arg_t *pargs, const zcp_arg_t *kwargs)
1308 {
1309 int i;
1310 int type;
1311
1312 for (i = 0; pargs[i].za_name != NULL; i++) {
1313 /*
1314 * Check the table for this positional argument, leaving it
1315 * on the top of the stack once we finish validating it.
1316 */
1317 lua_pushinteger(state, i + 1);
1318 lua_gettable(state, 1);
1319
1320 type = lua_type(state, -1);
1321 if (type == LUA_TNIL) {
1322 zcp_args_error(state, fname, pargs, kwargs,
1323 "too few arguments");
1324 panic("unreachable code");
1325 } else if (type != pargs[i].za_lua_type) {
1326 zcp_args_error(state, fname, pargs, kwargs,
1327 "arg %d wrong type (is '%s', expected '%s')",
1328 i + 1, lua_typename(state, type),
1329 lua_typename(state, pargs[i].za_lua_type));
1330 panic("unreachable code");
1331 }
1332
1333 /*
1334 * Remove the positional argument from the table.
1335 */
1336 lua_pushinteger(state, i + 1);
1337 lua_pushnil(state);
1338 lua_settable(state, 1);
1339 }
1340
1341 for (i = 0; kwargs[i].za_name != NULL; i++) {
1342 /*
1343 * Check the table for this keyword argument, which may be
1344 * nil if it was omitted. Leave the value on the top of
1345 * the stack after validating it.
1346 */
1347 lua_getfield(state, 1, kwargs[i].za_name);
1348
1349 type = lua_type(state, -1);
1350 if (type != LUA_TNIL && type != kwargs[i].za_lua_type) {
1351 zcp_args_error(state, fname, pargs, kwargs,
1352 "kwarg '%s' wrong type (is '%s', expected '%s')",
1353 kwargs[i].za_name, lua_typename(state, type),
1354 lua_typename(state, kwargs[i].za_lua_type));
1355 panic("unreachable code");
1356 }
1357
1358 /*
1359 * Remove the keyword argument from the table.
1360 */
1361 lua_pushnil(state);
1362 lua_setfield(state, 1, kwargs[i].za_name);
1363 }
1364
1365 /*
1366 * Any entries remaining in the table are invalid inputs, print
1367 * an error message based on what the entry is.
1368 */
1369 lua_pushnil(state);
1370 if (lua_next(state, 1)) {
1371 if (lua_isnumber(state, -2) && lua_tointeger(state, -2) > 0) {
1372 zcp_args_error(state, fname, pargs, kwargs,
1373 "too many positional arguments");
1374 } else if (lua_isstring(state, -2)) {
1375 zcp_args_error(state, fname, pargs, kwargs,
1376 "invalid kwarg '%s'", lua_tostring(state, -2));
1377 } else {
1378 zcp_args_error(state, fname, pargs, kwargs,
1379 "kwarg keys must be strings");
1380 }
1381 panic("unreachable code");
1382 }
1383
1384 lua_remove(state, 1);
1385 }
1386
1387 static void
zcp_parse_pos_args(lua_State * state,const char * fname,const zcp_arg_t * pargs,const zcp_arg_t * kwargs)1388 zcp_parse_pos_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1389 const zcp_arg_t *kwargs)
1390 {
1391 int i;
1392 int type;
1393
1394 for (i = 0; pargs[i].za_name != NULL; i++) {
1395 type = lua_type(state, i + 1);
1396 if (type == LUA_TNONE) {
1397 zcp_args_error(state, fname, pargs, kwargs,
1398 "too few arguments");
1399 panic("unreachable code");
1400 } else if (type != pargs[i].za_lua_type) {
1401 zcp_args_error(state, fname, pargs, kwargs,
1402 "arg %d wrong type (is '%s', expected '%s')",
1403 i + 1, lua_typename(state, type),
1404 lua_typename(state, pargs[i].za_lua_type));
1405 panic("unreachable code");
1406 }
1407 }
1408 if (lua_gettop(state) != i) {
1409 zcp_args_error(state, fname, pargs, kwargs,
1410 "too many positional arguments");
1411 panic("unreachable code");
1412 }
1413
1414 for (i = 0; kwargs[i].za_name != NULL; i++) {
1415 lua_pushnil(state);
1416 }
1417 }
1418
1419 /*
1420 * Checks the current Lua stack against an expected set of positional and
1421 * keyword arguments. If the stack does not match the expected arguments
1422 * aborts the current channel program with a useful error message, otherwise
1423 * it re-arranges the stack so that it contains the positional arguments
1424 * followed by the keyword argument values in declaration order. Any missing
1425 * keyword argument will be represented by a nil value on the stack.
1426 *
1427 * If the stack contains exactly one argument of type LUA_TTABLE the curly
1428 * braces calling convention is assumed, otherwise the stack is parsed for
1429 * positional arguments only.
1430 *
1431 * This function should be used by every function callback. It should be called
1432 * before the callback manipulates the Lua stack as it assumes the stack
1433 * represents the function arguments.
1434 */
1435 void
zcp_parse_args(lua_State * state,const char * fname,const zcp_arg_t * pargs,const zcp_arg_t * kwargs)1436 zcp_parse_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1437 const zcp_arg_t *kwargs)
1438 {
1439 if (lua_gettop(state) == 1 && lua_istable(state, 1)) {
1440 zcp_parse_table_args(state, fname, pargs, kwargs);
1441 } else {
1442 zcp_parse_pos_args(state, fname, pargs, kwargs);
1443 }
1444 }
1445
1446 ZFS_MODULE_PARAM(zfs_lua, zfs_lua_, max_instrlimit, U64, ZMOD_RW,
1447 "Max instruction limit that can be specified for a channel program");
1448
1449 ZFS_MODULE_PARAM(zfs_lua, zfs_lua_, max_memlimit, U64, ZMOD_RW,
1450 "Max memory limit that can be specified for a channel program");
1451