1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 */
27
28 #include <sys/sysmacros.h>
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/txg.h>
33 #include <sys/spa_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/zio_impl.h>
36 #include <sys/zio_compress.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/ddt.h>
41 #include <sys/blkptr.h>
42 #include <sys/zfeature.h>
43
44 /*
45 * ==========================================================================
46 * I/O type descriptions
47 * ==========================================================================
48 */
49 const char *zio_type_name[ZIO_TYPES] = {
50 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
51 "zio_ioctl"
52 };
53
54 /*
55 * ==========================================================================
56 * I/O kmem caches
57 * ==========================================================================
58 */
59 kmem_cache_t *zio_cache;
60 kmem_cache_t *zio_link_cache;
61 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
62 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
63
64 #ifdef _KERNEL
65 extern vmem_t *zio_alloc_arena;
66 #endif
67
68 #define ZIO_PIPELINE_CONTINUE 0x100
69 #define ZIO_PIPELINE_STOP 0x101
70
71 #define BP_SPANB(indblkshift, level) \
72 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
73 #define COMPARE_META_LEVEL 0x80000000ul
74 /*
75 * The following actions directly effect the spa's sync-to-convergence logic.
76 * The values below define the sync pass when we start performing the action.
77 * Care should be taken when changing these values as they directly impact
78 * spa_sync() performance. Tuning these values may introduce subtle performance
79 * pathologies and should only be done in the context of performance analysis.
80 * These tunables will eventually be removed and replaced with #defines once
81 * enough analysis has been done to determine optimal values.
82 *
83 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
84 * regular blocks are not deferred.
85 */
86 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
87 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
88 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
89
90 /*
91 * An allocating zio is one that either currently has the DVA allocate
92 * stage set or will have it later in its lifetime.
93 */
94 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
95
96 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE;
97
98 #ifdef ZFS_DEBUG
99 int zio_buf_debug_limit = 16384;
100 #else
101 int zio_buf_debug_limit = 0;
102 #endif
103
104 void
zio_init(void)105 zio_init(void)
106 {
107 size_t c;
108 vmem_t *data_alloc_arena = NULL;
109
110 #ifdef _KERNEL
111 data_alloc_arena = zio_alloc_arena;
112 #endif
113 zio_cache = kmem_cache_create("zio_cache",
114 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
115 zio_link_cache = kmem_cache_create("zio_link_cache",
116 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
117
118 /*
119 * For small buffers, we want a cache for each multiple of
120 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
121 * for each quarter-power of 2.
122 */
123 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
124 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
125 size_t p2 = size;
126 size_t align = 0;
127 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
128
129 while (!ISP2(p2))
130 p2 &= p2 - 1;
131
132 #ifndef _KERNEL
133 /*
134 * If we are using watchpoints, put each buffer on its own page,
135 * to eliminate the performance overhead of trapping to the
136 * kernel when modifying a non-watched buffer that shares the
137 * page with a watched buffer.
138 */
139 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
140 continue;
141 #endif
142 if (size <= 4 * SPA_MINBLOCKSIZE) {
143 align = SPA_MINBLOCKSIZE;
144 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
145 align = MIN(p2 >> 2, PAGESIZE);
146 }
147
148 if (align != 0) {
149 char name[36];
150 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
151 zio_buf_cache[c] = kmem_cache_create(name, size,
152 align, NULL, NULL, NULL, NULL, NULL, cflags);
153
154 /*
155 * Since zio_data bufs do not appear in crash dumps, we
156 * pass KMC_NOTOUCH so that no allocator metadata is
157 * stored with the buffers.
158 */
159 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
160 zio_data_buf_cache[c] = kmem_cache_create(name, size,
161 align, NULL, NULL, NULL, NULL, data_alloc_arena,
162 cflags | KMC_NOTOUCH);
163 }
164 }
165
166 while (--c != 0) {
167 ASSERT(zio_buf_cache[c] != NULL);
168 if (zio_buf_cache[c - 1] == NULL)
169 zio_buf_cache[c - 1] = zio_buf_cache[c];
170
171 ASSERT(zio_data_buf_cache[c] != NULL);
172 if (zio_data_buf_cache[c - 1] == NULL)
173 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
174 }
175
176 zio_inject_init();
177 }
178
179 void
zio_fini(void)180 zio_fini(void)
181 {
182 size_t c;
183 kmem_cache_t *last_cache = NULL;
184 kmem_cache_t *last_data_cache = NULL;
185
186 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
187 if (zio_buf_cache[c] != last_cache) {
188 last_cache = zio_buf_cache[c];
189 kmem_cache_destroy(zio_buf_cache[c]);
190 }
191 zio_buf_cache[c] = NULL;
192
193 if (zio_data_buf_cache[c] != last_data_cache) {
194 last_data_cache = zio_data_buf_cache[c];
195 kmem_cache_destroy(zio_data_buf_cache[c]);
196 }
197 zio_data_buf_cache[c] = NULL;
198 }
199
200 kmem_cache_destroy(zio_link_cache);
201 kmem_cache_destroy(zio_cache);
202
203 zio_inject_fini();
204 }
205
206 /*
207 * ==========================================================================
208 * Allocate and free I/O buffers
209 * ==========================================================================
210 */
211
212 /*
213 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
214 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
215 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
216 * excess / transient data in-core during a crashdump.
217 */
218 void *
zio_buf_alloc(size_t size)219 zio_buf_alloc(size_t size)
220 {
221 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
222
223 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
224
225 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
226 }
227
228 /*
229 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
230 * crashdump if the kernel panics. This exists so that we will limit the amount
231 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
232 * of kernel heap dumped to disk when the kernel panics)
233 */
234 void *
zio_data_buf_alloc(size_t size)235 zio_data_buf_alloc(size_t size)
236 {
237 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
238
239 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
240
241 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
242 }
243
244 void
zio_buf_free(void * buf,size_t size)245 zio_buf_free(void *buf, size_t size)
246 {
247 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
248
249 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
250
251 kmem_cache_free(zio_buf_cache[c], buf);
252 }
253
254 void
zio_data_buf_free(void * buf,size_t size)255 zio_data_buf_free(void *buf, size_t size)
256 {
257 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
258
259 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
260
261 kmem_cache_free(zio_data_buf_cache[c], buf);
262 }
263
264 /*
265 * ==========================================================================
266 * Push and pop I/O transform buffers
267 * ==========================================================================
268 */
269 static void
zio_push_transform(zio_t * zio,void * data,uint64_t size,uint64_t bufsize,zio_transform_func_t * transform)270 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
271 zio_transform_func_t *transform)
272 {
273 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
274
275 zt->zt_orig_data = zio->io_data;
276 zt->zt_orig_size = zio->io_size;
277 zt->zt_bufsize = bufsize;
278 zt->zt_transform = transform;
279
280 zt->zt_next = zio->io_transform_stack;
281 zio->io_transform_stack = zt;
282
283 zio->io_data = data;
284 zio->io_size = size;
285 }
286
287 static void
zio_pop_transforms(zio_t * zio)288 zio_pop_transforms(zio_t *zio)
289 {
290 zio_transform_t *zt;
291
292 while ((zt = zio->io_transform_stack) != NULL) {
293 if (zt->zt_transform != NULL)
294 zt->zt_transform(zio,
295 zt->zt_orig_data, zt->zt_orig_size);
296
297 if (zt->zt_bufsize != 0)
298 zio_buf_free(zio->io_data, zt->zt_bufsize);
299
300 zio->io_data = zt->zt_orig_data;
301 zio->io_size = zt->zt_orig_size;
302 zio->io_transform_stack = zt->zt_next;
303
304 kmem_free(zt, sizeof (zio_transform_t));
305 }
306 }
307
308 /*
309 * ==========================================================================
310 * I/O transform callbacks for subblocks and decompression
311 * ==========================================================================
312 */
313 static void
zio_subblock(zio_t * zio,void * data,uint64_t size)314 zio_subblock(zio_t *zio, void *data, uint64_t size)
315 {
316 ASSERT(zio->io_size > size);
317
318 if (zio->io_type == ZIO_TYPE_READ)
319 bcopy(zio->io_data, data, size);
320 }
321
322 static void
zio_decompress(zio_t * zio,void * data,uint64_t size)323 zio_decompress(zio_t *zio, void *data, uint64_t size)
324 {
325 if (zio->io_error == 0 &&
326 zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
327 zio->io_data, data, zio->io_size, size) != 0)
328 zio->io_error = SET_ERROR(EIO);
329 }
330
331 /*
332 * ==========================================================================
333 * I/O parent/child relationships and pipeline interlocks
334 * ==========================================================================
335 */
336 /*
337 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
338 * continue calling these functions until they return NULL.
339 * Otherwise, the next caller will pick up the list walk in
340 * some indeterminate state. (Otherwise every caller would
341 * have to pass in a cookie to keep the state represented by
342 * io_walk_link, which gets annoying.)
343 */
344 zio_t *
zio_walk_parents(zio_t * cio)345 zio_walk_parents(zio_t *cio)
346 {
347 zio_link_t *zl = cio->io_walk_link;
348 list_t *pl = &cio->io_parent_list;
349
350 zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
351 cio->io_walk_link = zl;
352
353 if (zl == NULL)
354 return (NULL);
355
356 ASSERT(zl->zl_child == cio);
357 return (zl->zl_parent);
358 }
359
360 zio_t *
zio_walk_children(zio_t * pio)361 zio_walk_children(zio_t *pio)
362 {
363 zio_link_t *zl = pio->io_walk_link;
364 list_t *cl = &pio->io_child_list;
365
366 zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
367 pio->io_walk_link = zl;
368
369 if (zl == NULL)
370 return (NULL);
371
372 ASSERT(zl->zl_parent == pio);
373 return (zl->zl_child);
374 }
375
376 zio_t *
zio_unique_parent(zio_t * cio)377 zio_unique_parent(zio_t *cio)
378 {
379 zio_t *pio = zio_walk_parents(cio);
380
381 VERIFY(zio_walk_parents(cio) == NULL);
382 return (pio);
383 }
384
385 void
zio_add_child(zio_t * pio,zio_t * cio)386 zio_add_child(zio_t *pio, zio_t *cio)
387 {
388 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
389
390 /*
391 * Logical I/Os can have logical, gang, or vdev children.
392 * Gang I/Os can have gang or vdev children.
393 * Vdev I/Os can only have vdev children.
394 * The following ASSERT captures all of these constraints.
395 */
396 ASSERT(cio->io_child_type <= pio->io_child_type);
397
398 zl->zl_parent = pio;
399 zl->zl_child = cio;
400
401 mutex_enter(&cio->io_lock);
402 mutex_enter(&pio->io_lock);
403
404 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
405
406 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
407 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
408
409 list_insert_head(&pio->io_child_list, zl);
410 list_insert_head(&cio->io_parent_list, zl);
411
412 pio->io_child_count++;
413 cio->io_parent_count++;
414
415 mutex_exit(&pio->io_lock);
416 mutex_exit(&cio->io_lock);
417 }
418
419 static void
zio_remove_child(zio_t * pio,zio_t * cio,zio_link_t * zl)420 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
421 {
422 ASSERT(zl->zl_parent == pio);
423 ASSERT(zl->zl_child == cio);
424
425 mutex_enter(&cio->io_lock);
426 mutex_enter(&pio->io_lock);
427
428 list_remove(&pio->io_child_list, zl);
429 list_remove(&cio->io_parent_list, zl);
430
431 pio->io_child_count--;
432 cio->io_parent_count--;
433
434 mutex_exit(&pio->io_lock);
435 mutex_exit(&cio->io_lock);
436
437 kmem_cache_free(zio_link_cache, zl);
438 }
439
440 static boolean_t
zio_wait_for_children(zio_t * zio,uint8_t childbits,enum zio_wait_type wait)441 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
442 {
443 boolean_t waiting = B_FALSE;
444
445 mutex_enter(&zio->io_lock);
446 ASSERT(zio->io_stall == NULL);
447 for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
448 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
449 continue;
450
451 uint64_t *countp = &zio->io_children[c][wait];
452 if (*countp != 0) {
453 zio->io_stage >>= 1;
454 zio->io_stall = countp;
455 waiting = B_TRUE;
456 break;
457 }
458 }
459 mutex_exit(&zio->io_lock);
460 return (waiting);
461 }
462
463 static void
zio_notify_parent(zio_t * pio,zio_t * zio,enum zio_wait_type wait)464 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
465 {
466 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
467 int *errorp = &pio->io_child_error[zio->io_child_type];
468
469 mutex_enter(&pio->io_lock);
470 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
471 *errorp = zio_worst_error(*errorp, zio->io_error);
472 pio->io_reexecute |= zio->io_reexecute;
473 ASSERT3U(*countp, >, 0);
474
475 (*countp)--;
476
477 if (*countp == 0 && pio->io_stall == countp) {
478 pio->io_stall = NULL;
479 mutex_exit(&pio->io_lock);
480 zio_execute(pio);
481 } else {
482 mutex_exit(&pio->io_lock);
483 }
484 }
485
486 static void
zio_inherit_child_errors(zio_t * zio,enum zio_child c)487 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
488 {
489 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
490 zio->io_error = zio->io_child_error[c];
491 }
492
493 /*
494 * ==========================================================================
495 * Create the various types of I/O (read, write, free, etc)
496 * ==========================================================================
497 */
498 static zio_t *
zio_create(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,void * data,uint64_t size,zio_done_func_t * done,void * private,zio_type_t type,zio_priority_t priority,enum zio_flag flags,vdev_t * vd,uint64_t offset,const zbookmark_phys_t * zb,enum zio_stage stage,enum zio_stage pipeline)499 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
500 void *data, uint64_t size, zio_done_func_t *done, void *private,
501 zio_type_t type, zio_priority_t priority, enum zio_flag flags,
502 vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb,
503 enum zio_stage stage, enum zio_stage pipeline)
504 {
505 zio_t *zio;
506
507 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
508 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
509 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
510
511 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
512 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
513 ASSERT(vd || stage == ZIO_STAGE_OPEN);
514
515 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
516 bzero(zio, sizeof (zio_t));
517
518 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
519 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
520
521 list_create(&zio->io_parent_list, sizeof (zio_link_t),
522 offsetof(zio_link_t, zl_parent_node));
523 list_create(&zio->io_child_list, sizeof (zio_link_t),
524 offsetof(zio_link_t, zl_child_node));
525
526 if (vd != NULL)
527 zio->io_child_type = ZIO_CHILD_VDEV;
528 else if (flags & ZIO_FLAG_GANG_CHILD)
529 zio->io_child_type = ZIO_CHILD_GANG;
530 else if (flags & ZIO_FLAG_DDT_CHILD)
531 zio->io_child_type = ZIO_CHILD_DDT;
532 else
533 zio->io_child_type = ZIO_CHILD_LOGICAL;
534
535 if (bp != NULL) {
536 zio->io_bp = (blkptr_t *)bp;
537 zio->io_bp_copy = *bp;
538 zio->io_bp_orig = *bp;
539 if (type != ZIO_TYPE_WRITE ||
540 zio->io_child_type == ZIO_CHILD_DDT)
541 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
542 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
543 zio->io_logical = zio;
544 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
545 pipeline |= ZIO_GANG_STAGES;
546 }
547
548 zio->io_spa = spa;
549 zio->io_txg = txg;
550 zio->io_done = done;
551 zio->io_private = private;
552 zio->io_type = type;
553 zio->io_priority = priority;
554 zio->io_vd = vd;
555 zio->io_offset = offset;
556 zio->io_orig_data = zio->io_data = data;
557 zio->io_orig_size = zio->io_size = size;
558 zio->io_orig_flags = zio->io_flags = flags;
559 zio->io_orig_stage = zio->io_stage = stage;
560 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
561
562 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
563 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
564
565 if (zb != NULL)
566 zio->io_bookmark = *zb;
567
568 if (pio != NULL) {
569 if (zio->io_logical == NULL)
570 zio->io_logical = pio->io_logical;
571 if (zio->io_child_type == ZIO_CHILD_GANG)
572 zio->io_gang_leader = pio->io_gang_leader;
573 zio_add_child(pio, zio);
574 }
575
576 return (zio);
577 }
578
579 static void
zio_destroy(zio_t * zio)580 zio_destroy(zio_t *zio)
581 {
582 list_destroy(&zio->io_parent_list);
583 list_destroy(&zio->io_child_list);
584 mutex_destroy(&zio->io_lock);
585 cv_destroy(&zio->io_cv);
586 kmem_cache_free(zio_cache, zio);
587 }
588
589 zio_t *
zio_null(zio_t * pio,spa_t * spa,vdev_t * vd,zio_done_func_t * done,void * private,enum zio_flag flags)590 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
591 void *private, enum zio_flag flags)
592 {
593 zio_t *zio;
594
595 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
596 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
597 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
598
599 return (zio);
600 }
601
602 zio_t *
zio_root(spa_t * spa,zio_done_func_t * done,void * private,enum zio_flag flags)603 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
604 {
605 return (zio_null(NULL, spa, NULL, done, private, flags));
606 }
607
608 void
zfs_blkptr_verify(spa_t * spa,const blkptr_t * bp)609 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
610 {
611 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
612 zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
613 bp, (longlong_t)BP_GET_TYPE(bp));
614 }
615 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
616 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
617 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
618 bp, (longlong_t)BP_GET_CHECKSUM(bp));
619 }
620 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
621 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
622 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
623 bp, (longlong_t)BP_GET_COMPRESS(bp));
624 }
625 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
626 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
627 bp, (longlong_t)BP_GET_LSIZE(bp));
628 }
629 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
630 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
631 bp, (longlong_t)BP_GET_PSIZE(bp));
632 }
633
634 if (BP_IS_EMBEDDED(bp)) {
635 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
636 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
637 bp, (longlong_t)BPE_GET_ETYPE(bp));
638 }
639 }
640
641 /*
642 * Pool-specific checks.
643 *
644 * Note: it would be nice to verify that the blk_birth and
645 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
646 * allows the birth time of log blocks (and dmu_sync()-ed blocks
647 * that are in the log) to be arbitrarily large.
648 */
649 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
650 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
651 if (vdevid >= spa->spa_root_vdev->vdev_children) {
652 zfs_panic_recover("blkptr at %p DVA %u has invalid "
653 "VDEV %llu",
654 bp, i, (longlong_t)vdevid);
655 continue;
656 }
657 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
658 if (vd == NULL) {
659 zfs_panic_recover("blkptr at %p DVA %u has invalid "
660 "VDEV %llu",
661 bp, i, (longlong_t)vdevid);
662 continue;
663 }
664 if (vd->vdev_ops == &vdev_hole_ops) {
665 zfs_panic_recover("blkptr at %p DVA %u has hole "
666 "VDEV %llu",
667 bp, i, (longlong_t)vdevid);
668 continue;
669 }
670 if (vd->vdev_ops == &vdev_missing_ops) {
671 /*
672 * "missing" vdevs are valid during import, but we
673 * don't have their detailed info (e.g. asize), so
674 * we can't perform any more checks on them.
675 */
676 continue;
677 }
678 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
679 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
680 if (BP_IS_GANG(bp))
681 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
682 if (offset + asize > vd->vdev_asize) {
683 zfs_panic_recover("blkptr at %p DVA %u has invalid "
684 "OFFSET %llu",
685 bp, i, (longlong_t)offset);
686 }
687 }
688 }
689
690 zio_t *
zio_read(zio_t * pio,spa_t * spa,const blkptr_t * bp,void * data,uint64_t size,zio_done_func_t * done,void * private,zio_priority_t priority,enum zio_flag flags,const zbookmark_phys_t * zb)691 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
692 void *data, uint64_t size, zio_done_func_t *done, void *private,
693 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
694 {
695 zio_t *zio;
696
697 zfs_blkptr_verify(spa, bp);
698
699 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
700 data, size, done, private,
701 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
702 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
703 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
704
705 return (zio);
706 }
707
708 zio_t *
zio_write(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,void * data,uint64_t size,const zio_prop_t * zp,zio_done_func_t * ready,zio_done_func_t * physdone,zio_done_func_t * done,void * private,zio_priority_t priority,enum zio_flag flags,const zbookmark_phys_t * zb)709 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
710 void *data, uint64_t size, const zio_prop_t *zp,
711 zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done,
712 void *private,
713 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
714 {
715 zio_t *zio;
716
717 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
718 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
719 zp->zp_compress >= ZIO_COMPRESS_OFF &&
720 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
721 DMU_OT_IS_VALID(zp->zp_type) &&
722 zp->zp_level < 32 &&
723 zp->zp_copies > 0 &&
724 zp->zp_copies <= spa_max_replication(spa));
725
726 zio = zio_create(pio, spa, txg, bp, data, size, done, private,
727 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
728 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
729 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
730
731 zio->io_ready = ready;
732 zio->io_physdone = physdone;
733 zio->io_prop = *zp;
734
735 /*
736 * Data can be NULL if we are going to call zio_write_override() to
737 * provide the already-allocated BP. But we may need the data to
738 * verify a dedup hit (if requested). In this case, don't try to
739 * dedup (just take the already-allocated BP verbatim).
740 */
741 if (data == NULL && zio->io_prop.zp_dedup_verify) {
742 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
743 }
744
745 return (zio);
746 }
747
748 zio_t *
zio_rewrite(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,void * data,uint64_t size,zio_done_func_t * done,void * private,zio_priority_t priority,enum zio_flag flags,zbookmark_phys_t * zb)749 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
750 uint64_t size, zio_done_func_t *done, void *private,
751 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
752 {
753 zio_t *zio;
754
755 zio = zio_create(pio, spa, txg, bp, data, size, done, private,
756 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
757 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
758
759 return (zio);
760 }
761
762 void
zio_write_override(zio_t * zio,blkptr_t * bp,int copies,boolean_t nopwrite)763 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
764 {
765 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
766 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
767 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
768 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
769
770 /*
771 * We must reset the io_prop to match the values that existed
772 * when the bp was first written by dmu_sync() keeping in mind
773 * that nopwrite and dedup are mutually exclusive.
774 */
775 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
776 zio->io_prop.zp_nopwrite = nopwrite;
777 zio->io_prop.zp_copies = copies;
778 zio->io_bp_override = bp;
779 }
780
781 void
zio_free(spa_t * spa,uint64_t txg,const blkptr_t * bp)782 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
783 {
784
785 /*
786 * The check for EMBEDDED is a performance optimization. We
787 * process the free here (by ignoring it) rather than
788 * putting it on the list and then processing it in zio_free_sync().
789 */
790 if (BP_IS_EMBEDDED(bp))
791 return;
792 metaslab_check_free(spa, bp);
793
794 /*
795 * Frees that are for the currently-syncing txg, are not going to be
796 * deferred, and which will not need to do a read (i.e. not GANG or
797 * DEDUP), can be processed immediately. Otherwise, put them on the
798 * in-memory list for later processing.
799 */
800 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
801 txg != spa->spa_syncing_txg ||
802 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
803 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
804 } else {
805 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
806 }
807 }
808
809 zio_t *
zio_free_sync(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,enum zio_flag flags)810 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
811 enum zio_flag flags)
812 {
813 zio_t *zio;
814 enum zio_stage stage = ZIO_FREE_PIPELINE;
815
816 ASSERT(!BP_IS_HOLE(bp));
817 ASSERT(spa_syncing_txg(spa) == txg);
818 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
819
820 if (BP_IS_EMBEDDED(bp))
821 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
822
823 metaslab_check_free(spa, bp);
824 arc_freed(spa, bp);
825
826 /*
827 * GANG and DEDUP blocks can induce a read (for the gang block header,
828 * or the DDT), so issue them asynchronously so that this thread is
829 * not tied up.
830 */
831 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
832 stage |= ZIO_STAGE_ISSUE_ASYNC;
833
834 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
835 NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags,
836 NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
837
838 return (zio);
839 }
840
841 zio_t *
zio_claim(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,zio_done_func_t * done,void * private,enum zio_flag flags)842 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
843 zio_done_func_t *done, void *private, enum zio_flag flags)
844 {
845 zio_t *zio;
846
847 dprintf_bp(bp, "claiming in txg %llu", txg);
848
849 if (BP_IS_EMBEDDED(bp))
850 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
851
852 /*
853 * A claim is an allocation of a specific block. Claims are needed
854 * to support immediate writes in the intent log. The issue is that
855 * immediate writes contain committed data, but in a txg that was
856 * *not* committed. Upon opening the pool after an unclean shutdown,
857 * the intent log claims all blocks that contain immediate write data
858 * so that the SPA knows they're in use.
859 *
860 * All claims *must* be resolved in the first txg -- before the SPA
861 * starts allocating blocks -- so that nothing is allocated twice.
862 * If txg == 0 we just verify that the block is claimable.
863 */
864 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
865 ASSERT(txg == spa_first_txg(spa) || txg == 0);
866 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */
867
868 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
869 done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
870 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
871
872 return (zio);
873 }
874
875 zio_t *
zio_ioctl(zio_t * pio,spa_t * spa,vdev_t * vd,int cmd,zio_done_func_t * done,void * private,enum zio_flag flags)876 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
877 zio_done_func_t *done, void *private, enum zio_flag flags)
878 {
879 zio_t *zio;
880 int c;
881
882 if (vd->vdev_children == 0) {
883 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
884 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
885 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
886
887 zio->io_cmd = cmd;
888 } else {
889 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
890
891 for (c = 0; c < vd->vdev_children; c++)
892 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
893 done, private, flags));
894 }
895
896 return (zio);
897 }
898
899 zio_t *
zio_read_phys(zio_t * pio,vdev_t * vd,uint64_t offset,uint64_t size,void * data,int checksum,zio_done_func_t * done,void * private,zio_priority_t priority,enum zio_flag flags,boolean_t labels)900 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
901 void *data, int checksum, zio_done_func_t *done, void *private,
902 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
903 {
904 zio_t *zio;
905
906 ASSERT(vd->vdev_children == 0);
907 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
908 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
909 ASSERT3U(offset + size, <=, vd->vdev_psize);
910
911 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
912 ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
913 NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
914
915 zio->io_prop.zp_checksum = checksum;
916
917 return (zio);
918 }
919
920 zio_t *
zio_write_phys(zio_t * pio,vdev_t * vd,uint64_t offset,uint64_t size,void * data,int checksum,zio_done_func_t * done,void * private,zio_priority_t priority,enum zio_flag flags,boolean_t labels)921 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
922 void *data, int checksum, zio_done_func_t *done, void *private,
923 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
924 {
925 zio_t *zio;
926
927 ASSERT(vd->vdev_children == 0);
928 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
929 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
930 ASSERT3U(offset + size, <=, vd->vdev_psize);
931
932 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
933 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
934 NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
935
936 zio->io_prop.zp_checksum = checksum;
937
938 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
939 /*
940 * zec checksums are necessarily destructive -- they modify
941 * the end of the write buffer to hold the verifier/checksum.
942 * Therefore, we must make a local copy in case the data is
943 * being written to multiple places in parallel.
944 */
945 void *wbuf = zio_buf_alloc(size);
946 bcopy(data, wbuf, size);
947 zio_push_transform(zio, wbuf, size, size, NULL);
948 }
949
950 return (zio);
951 }
952
953 /*
954 * Create a child I/O to do some work for us.
955 */
956 zio_t *
zio_vdev_child_io(zio_t * pio,blkptr_t * bp,vdev_t * vd,uint64_t offset,void * data,uint64_t size,int type,zio_priority_t priority,enum zio_flag flags,zio_done_func_t * done,void * private)957 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
958 void *data, uint64_t size, int type, zio_priority_t priority,
959 enum zio_flag flags, zio_done_func_t *done, void *private)
960 {
961 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
962 zio_t *zio;
963
964 ASSERT(vd->vdev_parent ==
965 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
966
967 if (type == ZIO_TYPE_READ && bp != NULL) {
968 /*
969 * If we have the bp, then the child should perform the
970 * checksum and the parent need not. This pushes error
971 * detection as close to the leaves as possible and
972 * eliminates redundant checksums in the interior nodes.
973 */
974 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
975 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
976 }
977
978 if (vd->vdev_children == 0)
979 offset += VDEV_LABEL_START_SIZE;
980
981 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
982
983 /*
984 * If we've decided to do a repair, the write is not speculative --
985 * even if the original read was.
986 */
987 if (flags & ZIO_FLAG_IO_REPAIR)
988 flags &= ~ZIO_FLAG_SPECULATIVE;
989
990 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
991 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
992 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
993
994 zio->io_physdone = pio->io_physdone;
995 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
996 zio->io_logical->io_phys_children++;
997
998 return (zio);
999 }
1000
1001 zio_t *
zio_vdev_delegated_io(vdev_t * vd,uint64_t offset,void * data,uint64_t size,int type,zio_priority_t priority,enum zio_flag flags,zio_done_func_t * done,void * private)1002 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
1003 int type, zio_priority_t priority, enum zio_flag flags,
1004 zio_done_func_t *done, void *private)
1005 {
1006 zio_t *zio;
1007
1008 ASSERT(vd->vdev_ops->vdev_op_leaf);
1009
1010 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1011 data, size, done, private, type, priority,
1012 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1013 vd, offset, NULL,
1014 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1015
1016 return (zio);
1017 }
1018
1019 void
zio_flush(zio_t * zio,vdev_t * vd)1020 zio_flush(zio_t *zio, vdev_t *vd)
1021 {
1022 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1023 NULL, NULL,
1024 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1025 }
1026
1027 void
zio_shrink(zio_t * zio,uint64_t size)1028 zio_shrink(zio_t *zio, uint64_t size)
1029 {
1030 ASSERT(zio->io_executor == NULL);
1031 ASSERT(zio->io_orig_size == zio->io_size);
1032 ASSERT(size <= zio->io_size);
1033
1034 /*
1035 * We don't shrink for raidz because of problems with the
1036 * reconstruction when reading back less than the block size.
1037 * Note, BP_IS_RAIDZ() assumes no compression.
1038 */
1039 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1040 if (!BP_IS_RAIDZ(zio->io_bp))
1041 zio->io_orig_size = zio->io_size = size;
1042 }
1043
1044 /*
1045 * ==========================================================================
1046 * Prepare to read and write logical blocks
1047 * ==========================================================================
1048 */
1049
1050 static int
zio_read_bp_init(zio_t * zio)1051 zio_read_bp_init(zio_t *zio)
1052 {
1053 blkptr_t *bp = zio->io_bp;
1054
1055 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1056 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1057 !(zio->io_flags & ZIO_FLAG_RAW)) {
1058 uint64_t psize =
1059 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1060 void *cbuf = zio_buf_alloc(psize);
1061
1062 zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
1063 }
1064
1065 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1066 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1067 decode_embedded_bp_compressed(bp, zio->io_data);
1068 } else {
1069 ASSERT(!BP_IS_EMBEDDED(bp));
1070 }
1071
1072 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1073 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1074
1075 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1076 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1077
1078 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1079 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1080
1081 return (ZIO_PIPELINE_CONTINUE);
1082 }
1083
1084 static int
zio_write_bp_init(zio_t * zio)1085 zio_write_bp_init(zio_t *zio)
1086 {
1087 spa_t *spa = zio->io_spa;
1088 zio_prop_t *zp = &zio->io_prop;
1089 enum zio_compress compress = zp->zp_compress;
1090 blkptr_t *bp = zio->io_bp;
1091 uint64_t lsize = zio->io_size;
1092 uint64_t psize = lsize;
1093 int pass = 1;
1094
1095 /*
1096 * If our children haven't all reached the ready stage,
1097 * wait for them and then repeat this pipeline stage.
1098 */
1099 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1100 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1101 return (ZIO_PIPELINE_STOP);
1102 }
1103
1104 if (!IO_IS_ALLOCATING(zio))
1105 return (ZIO_PIPELINE_CONTINUE);
1106
1107 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1108
1109 if (zio->io_bp_override) {
1110 ASSERT(bp->blk_birth != zio->io_txg);
1111 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1112
1113 *bp = *zio->io_bp_override;
1114 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1115
1116 if (BP_IS_EMBEDDED(bp))
1117 return (ZIO_PIPELINE_CONTINUE);
1118
1119 /*
1120 * If we've been overridden and nopwrite is set then
1121 * set the flag accordingly to indicate that a nopwrite
1122 * has already occurred.
1123 */
1124 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1125 ASSERT(!zp->zp_dedup);
1126 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1127 return (ZIO_PIPELINE_CONTINUE);
1128 }
1129
1130 ASSERT(!zp->zp_nopwrite);
1131
1132 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1133 return (ZIO_PIPELINE_CONTINUE);
1134
1135 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1136 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1137
1138 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1139 BP_SET_DEDUP(bp, 1);
1140 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1141 return (ZIO_PIPELINE_CONTINUE);
1142 }
1143 zio->io_bp_override = NULL;
1144 BP_ZERO(bp);
1145 }
1146
1147 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1148 /*
1149 * We're rewriting an existing block, which means we're
1150 * working on behalf of spa_sync(). For spa_sync() to
1151 * converge, it must eventually be the case that we don't
1152 * have to allocate new blocks. But compression changes
1153 * the blocksize, which forces a reallocate, and makes
1154 * convergence take longer. Therefore, after the first
1155 * few passes, stop compressing to ensure convergence.
1156 */
1157 pass = spa_sync_pass(spa);
1158
1159 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1160 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1161 ASSERT(!BP_GET_DEDUP(bp));
1162
1163 if (pass >= zfs_sync_pass_dont_compress)
1164 compress = ZIO_COMPRESS_OFF;
1165
1166 /* Make sure someone doesn't change their mind on overwrites */
1167 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1168 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1169 }
1170
1171 if (compress != ZIO_COMPRESS_OFF) {
1172 void *cbuf = zio_buf_alloc(lsize);
1173 psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1174 if (psize == 0 || psize == lsize) {
1175 compress = ZIO_COMPRESS_OFF;
1176 zio_buf_free(cbuf, lsize);
1177 } else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1178 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1179 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1180 encode_embedded_bp_compressed(bp,
1181 cbuf, compress, lsize, psize);
1182 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1183 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1184 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1185 zio_buf_free(cbuf, lsize);
1186 bp->blk_birth = zio->io_txg;
1187 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1188 ASSERT(spa_feature_is_active(spa,
1189 SPA_FEATURE_EMBEDDED_DATA));
1190 return (ZIO_PIPELINE_CONTINUE);
1191 } else {
1192 /*
1193 * Round up compressed size up to the ashift
1194 * of the smallest-ashift device, and zero the tail.
1195 * This ensures that the compressed size of the BP
1196 * (and thus compressratio property) are correct,
1197 * in that we charge for the padding used to fill out
1198 * the last sector.
1199 */
1200 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1201 size_t rounded = (size_t)P2ROUNDUP(psize,
1202 1ULL << spa->spa_min_ashift);
1203 if (rounded >= lsize) {
1204 compress = ZIO_COMPRESS_OFF;
1205 zio_buf_free(cbuf, lsize);
1206 psize = lsize;
1207 } else {
1208 bzero((char *)cbuf + psize, rounded - psize);
1209 psize = rounded;
1210 zio_push_transform(zio, cbuf,
1211 psize, lsize, NULL);
1212 }
1213 }
1214 }
1215
1216 /*
1217 * The final pass of spa_sync() must be all rewrites, but the first
1218 * few passes offer a trade-off: allocating blocks defers convergence,
1219 * but newly allocated blocks are sequential, so they can be written
1220 * to disk faster. Therefore, we allow the first few passes of
1221 * spa_sync() to allocate new blocks, but force rewrites after that.
1222 * There should only be a handful of blocks after pass 1 in any case.
1223 */
1224 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1225 BP_GET_PSIZE(bp) == psize &&
1226 pass >= zfs_sync_pass_rewrite) {
1227 ASSERT(psize != 0);
1228 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1229 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1230 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1231 } else {
1232 BP_ZERO(bp);
1233 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1234 }
1235
1236 if (psize == 0) {
1237 if (zio->io_bp_orig.blk_birth != 0 &&
1238 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1239 BP_SET_LSIZE(bp, lsize);
1240 BP_SET_TYPE(bp, zp->zp_type);
1241 BP_SET_LEVEL(bp, zp->zp_level);
1242 BP_SET_BIRTH(bp, zio->io_txg, 0);
1243 }
1244 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1245 } else {
1246 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1247 BP_SET_LSIZE(bp, lsize);
1248 BP_SET_TYPE(bp, zp->zp_type);
1249 BP_SET_LEVEL(bp, zp->zp_level);
1250 BP_SET_PSIZE(bp, psize);
1251 BP_SET_COMPRESS(bp, compress);
1252 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1253 BP_SET_DEDUP(bp, zp->zp_dedup);
1254 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1255 if (zp->zp_dedup) {
1256 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1257 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1258 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1259 }
1260 if (zp->zp_nopwrite) {
1261 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1262 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1263 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1264 }
1265 }
1266
1267 return (ZIO_PIPELINE_CONTINUE);
1268 }
1269
1270 static int
zio_free_bp_init(zio_t * zio)1271 zio_free_bp_init(zio_t *zio)
1272 {
1273 blkptr_t *bp = zio->io_bp;
1274
1275 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1276 if (BP_GET_DEDUP(bp))
1277 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1278 }
1279
1280 return (ZIO_PIPELINE_CONTINUE);
1281 }
1282
1283 /*
1284 * ==========================================================================
1285 * Execute the I/O pipeline
1286 * ==========================================================================
1287 */
1288
1289 static void
zio_taskq_dispatch(zio_t * zio,zio_taskq_type_t q,boolean_t cutinline)1290 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1291 {
1292 spa_t *spa = zio->io_spa;
1293 zio_type_t t = zio->io_type;
1294 int flags = (cutinline ? TQ_FRONT : 0);
1295
1296 /*
1297 * If we're a config writer or a probe, the normal issue and
1298 * interrupt threads may all be blocked waiting for the config lock.
1299 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1300 */
1301 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1302 t = ZIO_TYPE_NULL;
1303
1304 /*
1305 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1306 */
1307 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1308 t = ZIO_TYPE_NULL;
1309
1310 /*
1311 * If this is a high priority I/O, then use the high priority taskq if
1312 * available.
1313 */
1314 if (zio->io_priority == ZIO_PRIORITY_NOW &&
1315 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1316 q++;
1317
1318 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1319
1320 /*
1321 * NB: We are assuming that the zio can only be dispatched
1322 * to a single taskq at a time. It would be a grievous error
1323 * to dispatch the zio to another taskq at the same time.
1324 */
1325 ASSERT(zio->io_tqent.tqent_next == NULL);
1326 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1327 flags, &zio->io_tqent);
1328 }
1329
1330 static boolean_t
zio_taskq_member(zio_t * zio,zio_taskq_type_t q)1331 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1332 {
1333 kthread_t *executor = zio->io_executor;
1334 spa_t *spa = zio->io_spa;
1335
1336 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1337 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1338 uint_t i;
1339 for (i = 0; i < tqs->stqs_count; i++) {
1340 if (taskq_member(tqs->stqs_taskq[i], executor))
1341 return (B_TRUE);
1342 }
1343 }
1344
1345 return (B_FALSE);
1346 }
1347
1348 static int
zio_issue_async(zio_t * zio)1349 zio_issue_async(zio_t *zio)
1350 {
1351 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1352
1353 return (ZIO_PIPELINE_STOP);
1354 }
1355
1356 void
zio_interrupt(zio_t * zio)1357 zio_interrupt(zio_t *zio)
1358 {
1359 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1360 }
1361
1362 void
zio_delay_interrupt(zio_t * zio)1363 zio_delay_interrupt(zio_t *zio)
1364 {
1365 /*
1366 * The timeout_generic() function isn't defined in userspace, so
1367 * rather than trying to implement the function, the zio delay
1368 * functionality has been disabled for userspace builds.
1369 */
1370
1371 #ifdef _KERNEL
1372 /*
1373 * If io_target_timestamp is zero, then no delay has been registered
1374 * for this IO, thus jump to the end of this function and "skip" the
1375 * delay; issuing it directly to the zio layer.
1376 */
1377 if (zio->io_target_timestamp != 0) {
1378 hrtime_t now = gethrtime();
1379
1380 if (now >= zio->io_target_timestamp) {
1381 /*
1382 * This IO has already taken longer than the target
1383 * delay to complete, so we don't want to delay it
1384 * any longer; we "miss" the delay and issue it
1385 * directly to the zio layer. This is likely due to
1386 * the target latency being set to a value less than
1387 * the underlying hardware can satisfy (e.g. delay
1388 * set to 1ms, but the disks take 10ms to complete an
1389 * IO request).
1390 */
1391
1392 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1393 hrtime_t, now);
1394
1395 zio_interrupt(zio);
1396 } else {
1397 hrtime_t diff = zio->io_target_timestamp - now;
1398
1399 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1400 hrtime_t, now, hrtime_t, diff);
1401
1402 (void) timeout_generic(CALLOUT_NORMAL,
1403 (void (*)(void *))zio_interrupt, zio, diff, 1, 0);
1404 }
1405
1406 return;
1407 }
1408 #endif
1409
1410 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1411 zio_interrupt(zio);
1412 }
1413
1414 /*
1415 * Execute the I/O pipeline until one of the following occurs:
1416 *
1417 * (1) the I/O completes
1418 * (2) the pipeline stalls waiting for dependent child I/Os
1419 * (3) the I/O issues, so we're waiting for an I/O completion interrupt
1420 * (4) the I/O is delegated by vdev-level caching or aggregation
1421 * (5) the I/O is deferred due to vdev-level queueing
1422 * (6) the I/O is handed off to another thread.
1423 *
1424 * In all cases, the pipeline stops whenever there's no CPU work; it never
1425 * burns a thread in cv_wait().
1426 *
1427 * There's no locking on io_stage because there's no legitimate way
1428 * for multiple threads to be attempting to process the same I/O.
1429 */
1430 static zio_pipe_stage_t *zio_pipeline[];
1431
1432 void
zio_execute(zio_t * zio)1433 zio_execute(zio_t *zio)
1434 {
1435 zio->io_executor = curthread;
1436
1437 while (zio->io_stage < ZIO_STAGE_DONE) {
1438 enum zio_stage pipeline = zio->io_pipeline;
1439 enum zio_stage stage = zio->io_stage;
1440 int rv;
1441
1442 ASSERT(!MUTEX_HELD(&zio->io_lock));
1443 ASSERT(ISP2(stage));
1444 ASSERT(zio->io_stall == NULL);
1445
1446 do {
1447 stage <<= 1;
1448 } while ((stage & pipeline) == 0);
1449
1450 ASSERT(stage <= ZIO_STAGE_DONE);
1451
1452 /*
1453 * If we are in interrupt context and this pipeline stage
1454 * will grab a config lock that is held across I/O,
1455 * or may wait for an I/O that needs an interrupt thread
1456 * to complete, issue async to avoid deadlock.
1457 *
1458 * For VDEV_IO_START, we cut in line so that the io will
1459 * be sent to disk promptly.
1460 */
1461 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1462 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1463 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1464 zio_requeue_io_start_cut_in_line : B_FALSE;
1465 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1466 return;
1467 }
1468
1469 zio->io_stage = stage;
1470 rv = zio_pipeline[highbit64(stage) - 1](zio);
1471
1472 if (rv == ZIO_PIPELINE_STOP)
1473 return;
1474
1475 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1476 }
1477 }
1478
1479 /*
1480 * ==========================================================================
1481 * Initiate I/O, either sync or async
1482 * ==========================================================================
1483 */
1484 int
zio_wait(zio_t * zio)1485 zio_wait(zio_t *zio)
1486 {
1487 int error;
1488
1489 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1490 ASSERT(zio->io_executor == NULL);
1491
1492 zio->io_waiter = curthread;
1493
1494 zio_execute(zio);
1495
1496 mutex_enter(&zio->io_lock);
1497 while (zio->io_executor != NULL)
1498 cv_wait(&zio->io_cv, &zio->io_lock);
1499 mutex_exit(&zio->io_lock);
1500
1501 error = zio->io_error;
1502 zio_destroy(zio);
1503
1504 return (error);
1505 }
1506
1507 void
zio_nowait(zio_t * zio)1508 zio_nowait(zio_t *zio)
1509 {
1510 ASSERT(zio->io_executor == NULL);
1511
1512 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1513 zio_unique_parent(zio) == NULL) {
1514 /*
1515 * This is a logical async I/O with no parent to wait for it.
1516 * We add it to the spa_async_root_zio "Godfather" I/O which
1517 * will ensure they complete prior to unloading the pool.
1518 */
1519 spa_t *spa = zio->io_spa;
1520
1521 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1522 }
1523
1524 zio_execute(zio);
1525 }
1526
1527 /*
1528 * ==========================================================================
1529 * Reexecute or suspend/resume failed I/O
1530 * ==========================================================================
1531 */
1532
1533 static void
zio_reexecute(zio_t * pio)1534 zio_reexecute(zio_t *pio)
1535 {
1536 zio_t *cio, *cio_next;
1537
1538 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1539 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1540 ASSERT(pio->io_gang_leader == NULL);
1541 ASSERT(pio->io_gang_tree == NULL);
1542
1543 pio->io_flags = pio->io_orig_flags;
1544 pio->io_stage = pio->io_orig_stage;
1545 pio->io_pipeline = pio->io_orig_pipeline;
1546 pio->io_reexecute = 0;
1547 pio->io_flags |= ZIO_FLAG_REEXECUTED;
1548 pio->io_error = 0;
1549 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1550 pio->io_state[w] = 0;
1551 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1552 pio->io_child_error[c] = 0;
1553
1554 if (IO_IS_ALLOCATING(pio))
1555 BP_ZERO(pio->io_bp);
1556
1557 /*
1558 * As we reexecute pio's children, new children could be created.
1559 * New children go to the head of pio's io_child_list, however,
1560 * so we will (correctly) not reexecute them. The key is that
1561 * the remainder of pio's io_child_list, from 'cio_next' onward,
1562 * cannot be affected by any side effects of reexecuting 'cio'.
1563 */
1564 for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1565 cio_next = zio_walk_children(pio);
1566 mutex_enter(&pio->io_lock);
1567 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1568 pio->io_children[cio->io_child_type][w]++;
1569 mutex_exit(&pio->io_lock);
1570 zio_reexecute(cio);
1571 }
1572
1573 /*
1574 * Now that all children have been reexecuted, execute the parent.
1575 * We don't reexecute "The Godfather" I/O here as it's the
1576 * responsibility of the caller to wait on him.
1577 */
1578 if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1579 zio_execute(pio);
1580 }
1581
1582 void
zio_suspend(spa_t * spa,zio_t * zio)1583 zio_suspend(spa_t *spa, zio_t *zio)
1584 {
1585 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1586 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1587 "failure and the failure mode property for this pool "
1588 "is set to panic.", spa_name(spa));
1589
1590 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1591
1592 mutex_enter(&spa->spa_suspend_lock);
1593
1594 if (spa->spa_suspend_zio_root == NULL)
1595 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1596 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1597 ZIO_FLAG_GODFATHER);
1598
1599 spa->spa_suspended = B_TRUE;
1600
1601 if (zio != NULL) {
1602 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1603 ASSERT(zio != spa->spa_suspend_zio_root);
1604 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1605 ASSERT(zio_unique_parent(zio) == NULL);
1606 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1607 zio_add_child(spa->spa_suspend_zio_root, zio);
1608 }
1609
1610 mutex_exit(&spa->spa_suspend_lock);
1611 }
1612
1613 int
zio_resume(spa_t * spa)1614 zio_resume(spa_t *spa)
1615 {
1616 zio_t *pio;
1617
1618 /*
1619 * Reexecute all previously suspended i/o.
1620 */
1621 mutex_enter(&spa->spa_suspend_lock);
1622 spa->spa_suspended = B_FALSE;
1623 cv_broadcast(&spa->spa_suspend_cv);
1624 pio = spa->spa_suspend_zio_root;
1625 spa->spa_suspend_zio_root = NULL;
1626 mutex_exit(&spa->spa_suspend_lock);
1627
1628 if (pio == NULL)
1629 return (0);
1630
1631 zio_reexecute(pio);
1632 return (zio_wait(pio));
1633 }
1634
1635 void
zio_resume_wait(spa_t * spa)1636 zio_resume_wait(spa_t *spa)
1637 {
1638 mutex_enter(&spa->spa_suspend_lock);
1639 while (spa_suspended(spa))
1640 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1641 mutex_exit(&spa->spa_suspend_lock);
1642 }
1643
1644 /*
1645 * ==========================================================================
1646 * Gang blocks.
1647 *
1648 * A gang block is a collection of small blocks that looks to the DMU
1649 * like one large block. When zio_dva_allocate() cannot find a block
1650 * of the requested size, due to either severe fragmentation or the pool
1651 * being nearly full, it calls zio_write_gang_block() to construct the
1652 * block from smaller fragments.
1653 *
1654 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1655 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
1656 * an indirect block: it's an array of block pointers. It consumes
1657 * only one sector and hence is allocatable regardless of fragmentation.
1658 * The gang header's bps point to its gang members, which hold the data.
1659 *
1660 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1661 * as the verifier to ensure uniqueness of the SHA256 checksum.
1662 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1663 * not the gang header. This ensures that data block signatures (needed for
1664 * deduplication) are independent of how the block is physically stored.
1665 *
1666 * Gang blocks can be nested: a gang member may itself be a gang block.
1667 * Thus every gang block is a tree in which root and all interior nodes are
1668 * gang headers, and the leaves are normal blocks that contain user data.
1669 * The root of the gang tree is called the gang leader.
1670 *
1671 * To perform any operation (read, rewrite, free, claim) on a gang block,
1672 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1673 * in the io_gang_tree field of the original logical i/o by recursively
1674 * reading the gang leader and all gang headers below it. This yields
1675 * an in-core tree containing the contents of every gang header and the
1676 * bps for every constituent of the gang block.
1677 *
1678 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1679 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
1680 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1681 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1682 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1683 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
1684 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1685 * of the gang header plus zio_checksum_compute() of the data to update the
1686 * gang header's blk_cksum as described above.
1687 *
1688 * The two-phase assemble/issue model solves the problem of partial failure --
1689 * what if you'd freed part of a gang block but then couldn't read the
1690 * gang header for another part? Assembling the entire gang tree first
1691 * ensures that all the necessary gang header I/O has succeeded before
1692 * starting the actual work of free, claim, or write. Once the gang tree
1693 * is assembled, free and claim are in-memory operations that cannot fail.
1694 *
1695 * In the event that a gang write fails, zio_dva_unallocate() walks the
1696 * gang tree to immediately free (i.e. insert back into the space map)
1697 * everything we've allocated. This ensures that we don't get ENOSPC
1698 * errors during repeated suspend/resume cycles due to a flaky device.
1699 *
1700 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
1701 * the gang tree, we won't modify the block, so we can safely defer the free
1702 * (knowing that the block is still intact). If we *can* assemble the gang
1703 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1704 * each constituent bp and we can allocate a new block on the next sync pass.
1705 *
1706 * In all cases, the gang tree allows complete recovery from partial failure.
1707 * ==========================================================================
1708 */
1709
1710 static zio_t *
zio_read_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,void * data)1711 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1712 {
1713 if (gn != NULL)
1714 return (pio);
1715
1716 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1717 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1718 &pio->io_bookmark));
1719 }
1720
1721 zio_t *
zio_rewrite_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,void * data)1722 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1723 {
1724 zio_t *zio;
1725
1726 if (gn != NULL) {
1727 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1728 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1729 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1730 /*
1731 * As we rewrite each gang header, the pipeline will compute
1732 * a new gang block header checksum for it; but no one will
1733 * compute a new data checksum, so we do that here. The one
1734 * exception is the gang leader: the pipeline already computed
1735 * its data checksum because that stage precedes gang assembly.
1736 * (Presently, nothing actually uses interior data checksums;
1737 * this is just good hygiene.)
1738 */
1739 if (gn != pio->io_gang_leader->io_gang_tree) {
1740 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1741 data, BP_GET_PSIZE(bp));
1742 }
1743 /*
1744 * If we are here to damage data for testing purposes,
1745 * leave the GBH alone so that we can detect the damage.
1746 */
1747 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1748 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1749 } else {
1750 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1751 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1752 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1753 }
1754
1755 return (zio);
1756 }
1757
1758 /* ARGSUSED */
1759 zio_t *
zio_free_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,void * data)1760 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1761 {
1762 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1763 ZIO_GANG_CHILD_FLAGS(pio)));
1764 }
1765
1766 /* ARGSUSED */
1767 zio_t *
zio_claim_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,void * data)1768 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1769 {
1770 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1771 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1772 }
1773
1774 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1775 NULL,
1776 zio_read_gang,
1777 zio_rewrite_gang,
1778 zio_free_gang,
1779 zio_claim_gang,
1780 NULL
1781 };
1782
1783 static void zio_gang_tree_assemble_done(zio_t *zio);
1784
1785 static zio_gang_node_t *
zio_gang_node_alloc(zio_gang_node_t ** gnpp)1786 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1787 {
1788 zio_gang_node_t *gn;
1789
1790 ASSERT(*gnpp == NULL);
1791
1792 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1793 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1794 *gnpp = gn;
1795
1796 return (gn);
1797 }
1798
1799 static void
zio_gang_node_free(zio_gang_node_t ** gnpp)1800 zio_gang_node_free(zio_gang_node_t **gnpp)
1801 {
1802 zio_gang_node_t *gn = *gnpp;
1803
1804 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1805 ASSERT(gn->gn_child[g] == NULL);
1806
1807 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1808 kmem_free(gn, sizeof (*gn));
1809 *gnpp = NULL;
1810 }
1811
1812 static void
zio_gang_tree_free(zio_gang_node_t ** gnpp)1813 zio_gang_tree_free(zio_gang_node_t **gnpp)
1814 {
1815 zio_gang_node_t *gn = *gnpp;
1816
1817 if (gn == NULL)
1818 return;
1819
1820 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1821 zio_gang_tree_free(&gn->gn_child[g]);
1822
1823 zio_gang_node_free(gnpp);
1824 }
1825
1826 static void
zio_gang_tree_assemble(zio_t * gio,blkptr_t * bp,zio_gang_node_t ** gnpp)1827 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1828 {
1829 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1830
1831 ASSERT(gio->io_gang_leader == gio);
1832 ASSERT(BP_IS_GANG(bp));
1833
1834 zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1835 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1836 gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1837 }
1838
1839 static void
zio_gang_tree_assemble_done(zio_t * zio)1840 zio_gang_tree_assemble_done(zio_t *zio)
1841 {
1842 zio_t *gio = zio->io_gang_leader;
1843 zio_gang_node_t *gn = zio->io_private;
1844 blkptr_t *bp = zio->io_bp;
1845
1846 ASSERT(gio == zio_unique_parent(zio));
1847 ASSERT(zio->io_child_count == 0);
1848
1849 if (zio->io_error)
1850 return;
1851
1852 if (BP_SHOULD_BYTESWAP(bp))
1853 byteswap_uint64_array(zio->io_data, zio->io_size);
1854
1855 ASSERT(zio->io_data == gn->gn_gbh);
1856 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1857 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1858
1859 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1860 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1861 if (!BP_IS_GANG(gbp))
1862 continue;
1863 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1864 }
1865 }
1866
1867 static void
zio_gang_tree_issue(zio_t * pio,zio_gang_node_t * gn,blkptr_t * bp,void * data)1868 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1869 {
1870 zio_t *gio = pio->io_gang_leader;
1871 zio_t *zio;
1872
1873 ASSERT(BP_IS_GANG(bp) == !!gn);
1874 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1875 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1876
1877 /*
1878 * If you're a gang header, your data is in gn->gn_gbh.
1879 * If you're a gang member, your data is in 'data' and gn == NULL.
1880 */
1881 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1882
1883 if (gn != NULL) {
1884 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1885
1886 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1887 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1888 if (BP_IS_HOLE(gbp))
1889 continue;
1890 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1891 data = (char *)data + BP_GET_PSIZE(gbp);
1892 }
1893 }
1894
1895 if (gn == gio->io_gang_tree)
1896 ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1897
1898 if (zio != pio)
1899 zio_nowait(zio);
1900 }
1901
1902 static int
zio_gang_assemble(zio_t * zio)1903 zio_gang_assemble(zio_t *zio)
1904 {
1905 blkptr_t *bp = zio->io_bp;
1906
1907 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1908 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1909
1910 zio->io_gang_leader = zio;
1911
1912 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1913
1914 return (ZIO_PIPELINE_CONTINUE);
1915 }
1916
1917 static int
zio_gang_issue(zio_t * zio)1918 zio_gang_issue(zio_t *zio)
1919 {
1920 blkptr_t *bp = zio->io_bp;
1921
1922 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
1923 return (ZIO_PIPELINE_STOP);
1924 }
1925
1926 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1927 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1928
1929 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1930 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1931 else
1932 zio_gang_tree_free(&zio->io_gang_tree);
1933
1934 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1935
1936 return (ZIO_PIPELINE_CONTINUE);
1937 }
1938
1939 static void
zio_write_gang_member_ready(zio_t * zio)1940 zio_write_gang_member_ready(zio_t *zio)
1941 {
1942 zio_t *pio = zio_unique_parent(zio);
1943 zio_t *gio = zio->io_gang_leader;
1944 dva_t *cdva = zio->io_bp->blk_dva;
1945 dva_t *pdva = pio->io_bp->blk_dva;
1946 uint64_t asize;
1947
1948 if (BP_IS_HOLE(zio->io_bp))
1949 return;
1950
1951 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1952
1953 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1954 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1955 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1956 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1957 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1958
1959 mutex_enter(&pio->io_lock);
1960 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1961 ASSERT(DVA_GET_GANG(&pdva[d]));
1962 asize = DVA_GET_ASIZE(&pdva[d]);
1963 asize += DVA_GET_ASIZE(&cdva[d]);
1964 DVA_SET_ASIZE(&pdva[d], asize);
1965 }
1966 mutex_exit(&pio->io_lock);
1967 }
1968
1969 static int
zio_write_gang_block(zio_t * pio)1970 zio_write_gang_block(zio_t *pio)
1971 {
1972 spa_t *spa = pio->io_spa;
1973 blkptr_t *bp = pio->io_bp;
1974 zio_t *gio = pio->io_gang_leader;
1975 zio_t *zio;
1976 zio_gang_node_t *gn, **gnpp;
1977 zio_gbh_phys_t *gbh;
1978 uint64_t txg = pio->io_txg;
1979 uint64_t resid = pio->io_size;
1980 uint64_t lsize;
1981 int copies = gio->io_prop.zp_copies;
1982 int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1983 zio_prop_t zp;
1984 int error;
1985
1986 error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1987 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1988 METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1989 if (error) {
1990 pio->io_error = error;
1991 return (ZIO_PIPELINE_CONTINUE);
1992 }
1993
1994 if (pio == gio) {
1995 gnpp = &gio->io_gang_tree;
1996 } else {
1997 gnpp = pio->io_private;
1998 ASSERT(pio->io_ready == zio_write_gang_member_ready);
1999 }
2000
2001 gn = zio_gang_node_alloc(gnpp);
2002 gbh = gn->gn_gbh;
2003 bzero(gbh, SPA_GANGBLOCKSIZE);
2004
2005 /*
2006 * Create the gang header.
2007 */
2008 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
2009 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2010
2011 /*
2012 * Create and nowait the gang children.
2013 */
2014 for (int g = 0; resid != 0; resid -= lsize, g++) {
2015 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2016 SPA_MINBLOCKSIZE);
2017 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2018
2019 zp.zp_checksum = gio->io_prop.zp_checksum;
2020 zp.zp_compress = ZIO_COMPRESS_OFF;
2021 zp.zp_type = DMU_OT_NONE;
2022 zp.zp_level = 0;
2023 zp.zp_copies = gio->io_prop.zp_copies;
2024 zp.zp_dedup = B_FALSE;
2025 zp.zp_dedup_verify = B_FALSE;
2026 zp.zp_nopwrite = B_FALSE;
2027
2028 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2029 (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
2030 zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g],
2031 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2032 &pio->io_bookmark));
2033 }
2034
2035 /*
2036 * Set pio's pipeline to just wait for zio to finish.
2037 */
2038 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2039
2040 zio_nowait(zio);
2041
2042 return (ZIO_PIPELINE_CONTINUE);
2043 }
2044
2045 /*
2046 * The zio_nop_write stage in the pipeline determines if allocating a
2047 * new bp is necessary. The nopwrite feature can handle writes in
2048 * either syncing or open context (i.e. zil writes) and as a result is
2049 * mutually exclusive with dedup.
2050 *
2051 * By leveraging a cryptographically secure checksum, such as SHA256, we
2052 * can compare the checksums of the new data and the old to determine if
2053 * allocating a new block is required. Note that our requirements for
2054 * cryptographic strength are fairly weak: there can't be any accidental
2055 * hash collisions, but we don't need to be secure against intentional
2056 * (malicious) collisions. To trigger a nopwrite, you have to be able
2057 * to write the file to begin with, and triggering an incorrect (hash
2058 * collision) nopwrite is no worse than simply writing to the file.
2059 * That said, there are no known attacks against the checksum algorithms
2060 * used for nopwrite, assuming that the salt and the checksums
2061 * themselves remain secret.
2062 */
2063 static int
zio_nop_write(zio_t * zio)2064 zio_nop_write(zio_t *zio)
2065 {
2066 blkptr_t *bp = zio->io_bp;
2067 blkptr_t *bp_orig = &zio->io_bp_orig;
2068 zio_prop_t *zp = &zio->io_prop;
2069
2070 ASSERT(BP_GET_LEVEL(bp) == 0);
2071 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2072 ASSERT(zp->zp_nopwrite);
2073 ASSERT(!zp->zp_dedup);
2074 ASSERT(zio->io_bp_override == NULL);
2075 ASSERT(IO_IS_ALLOCATING(zio));
2076
2077 /*
2078 * Check to see if the original bp and the new bp have matching
2079 * characteristics (i.e. same checksum, compression algorithms, etc).
2080 * If they don't then just continue with the pipeline which will
2081 * allocate a new bp.
2082 */
2083 if (BP_IS_HOLE(bp_orig) ||
2084 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2085 ZCHECKSUM_FLAG_NOPWRITE) ||
2086 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2087 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2088 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2089 zp->zp_copies != BP_GET_NDVAS(bp_orig))
2090 return (ZIO_PIPELINE_CONTINUE);
2091
2092 /*
2093 * If the checksums match then reset the pipeline so that we
2094 * avoid allocating a new bp and issuing any I/O.
2095 */
2096 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2097 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2098 ZCHECKSUM_FLAG_NOPWRITE);
2099 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2100 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2101 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2102 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2103 sizeof (uint64_t)) == 0);
2104
2105 *bp = *bp_orig;
2106 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2107 zio->io_flags |= ZIO_FLAG_NOPWRITE;
2108 }
2109
2110 return (ZIO_PIPELINE_CONTINUE);
2111 }
2112
2113 /*
2114 * ==========================================================================
2115 * Dedup
2116 * ==========================================================================
2117 */
2118 static void
zio_ddt_child_read_done(zio_t * zio)2119 zio_ddt_child_read_done(zio_t *zio)
2120 {
2121 blkptr_t *bp = zio->io_bp;
2122 ddt_entry_t *dde = zio->io_private;
2123 ddt_phys_t *ddp;
2124 zio_t *pio = zio_unique_parent(zio);
2125
2126 mutex_enter(&pio->io_lock);
2127 ddp = ddt_phys_select(dde, bp);
2128 if (zio->io_error == 0)
2129 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
2130 if (zio->io_error == 0 && dde->dde_repair_data == NULL)
2131 dde->dde_repair_data = zio->io_data;
2132 else
2133 zio_buf_free(zio->io_data, zio->io_size);
2134 mutex_exit(&pio->io_lock);
2135 }
2136
2137 static int
zio_ddt_read_start(zio_t * zio)2138 zio_ddt_read_start(zio_t *zio)
2139 {
2140 blkptr_t *bp = zio->io_bp;
2141
2142 ASSERT(BP_GET_DEDUP(bp));
2143 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2144 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2145
2146 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2147 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2148 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2149 ddt_phys_t *ddp = dde->dde_phys;
2150 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2151 blkptr_t blk;
2152
2153 ASSERT(zio->io_vsd == NULL);
2154 zio->io_vsd = dde;
2155
2156 if (ddp_self == NULL)
2157 return (ZIO_PIPELINE_CONTINUE);
2158
2159 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2160 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2161 continue;
2162 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2163 &blk);
2164 zio_nowait(zio_read(zio, zio->io_spa, &blk,
2165 zio_buf_alloc(zio->io_size), zio->io_size,
2166 zio_ddt_child_read_done, dde, zio->io_priority,
2167 ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2168 &zio->io_bookmark));
2169 }
2170 return (ZIO_PIPELINE_CONTINUE);
2171 }
2172
2173 zio_nowait(zio_read(zio, zio->io_spa, bp,
2174 zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2175 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2176
2177 return (ZIO_PIPELINE_CONTINUE);
2178 }
2179
2180 static int
zio_ddt_read_done(zio_t * zio)2181 zio_ddt_read_done(zio_t *zio)
2182 {
2183 blkptr_t *bp = zio->io_bp;
2184
2185 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
2186 return (ZIO_PIPELINE_STOP);
2187 }
2188
2189 ASSERT(BP_GET_DEDUP(bp));
2190 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2191 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2192
2193 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2194 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2195 ddt_entry_t *dde = zio->io_vsd;
2196 if (ddt == NULL) {
2197 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2198 return (ZIO_PIPELINE_CONTINUE);
2199 }
2200 if (dde == NULL) {
2201 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2202 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2203 return (ZIO_PIPELINE_STOP);
2204 }
2205 if (dde->dde_repair_data != NULL) {
2206 bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2207 zio->io_child_error[ZIO_CHILD_DDT] = 0;
2208 }
2209 ddt_repair_done(ddt, dde);
2210 zio->io_vsd = NULL;
2211 }
2212
2213 ASSERT(zio->io_vsd == NULL);
2214
2215 return (ZIO_PIPELINE_CONTINUE);
2216 }
2217
2218 static boolean_t
zio_ddt_collision(zio_t * zio,ddt_t * ddt,ddt_entry_t * dde)2219 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2220 {
2221 spa_t *spa = zio->io_spa;
2222
2223 /*
2224 * Note: we compare the original data, not the transformed data,
2225 * because when zio->io_bp is an override bp, we will not have
2226 * pushed the I/O transforms. That's an important optimization
2227 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2228 */
2229 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2230 zio_t *lio = dde->dde_lead_zio[p];
2231
2232 if (lio != NULL) {
2233 return (lio->io_orig_size != zio->io_orig_size ||
2234 bcmp(zio->io_orig_data, lio->io_orig_data,
2235 zio->io_orig_size) != 0);
2236 }
2237 }
2238
2239 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2240 ddt_phys_t *ddp = &dde->dde_phys[p];
2241
2242 if (ddp->ddp_phys_birth != 0) {
2243 arc_buf_t *abuf = NULL;
2244 arc_flags_t aflags = ARC_FLAG_WAIT;
2245 blkptr_t blk = *zio->io_bp;
2246 int error;
2247
2248 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2249
2250 ddt_exit(ddt);
2251
2252 error = arc_read(NULL, spa, &blk,
2253 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2254 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2255 &aflags, &zio->io_bookmark);
2256
2257 if (error == 0) {
2258 if (arc_buf_size(abuf) != zio->io_orig_size ||
2259 bcmp(abuf->b_data, zio->io_orig_data,
2260 zio->io_orig_size) != 0)
2261 error = SET_ERROR(EEXIST);
2262 VERIFY(arc_buf_remove_ref(abuf, &abuf));
2263 }
2264
2265 ddt_enter(ddt);
2266 return (error != 0);
2267 }
2268 }
2269
2270 return (B_FALSE);
2271 }
2272
2273 static void
zio_ddt_child_write_ready(zio_t * zio)2274 zio_ddt_child_write_ready(zio_t *zio)
2275 {
2276 int p = zio->io_prop.zp_copies;
2277 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2278 ddt_entry_t *dde = zio->io_private;
2279 ddt_phys_t *ddp = &dde->dde_phys[p];
2280 zio_t *pio;
2281
2282 if (zio->io_error)
2283 return;
2284
2285 ddt_enter(ddt);
2286
2287 ASSERT(dde->dde_lead_zio[p] == zio);
2288
2289 ddt_phys_fill(ddp, zio->io_bp);
2290
2291 while ((pio = zio_walk_parents(zio)) != NULL)
2292 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2293
2294 ddt_exit(ddt);
2295 }
2296
2297 static void
zio_ddt_child_write_done(zio_t * zio)2298 zio_ddt_child_write_done(zio_t *zio)
2299 {
2300 int p = zio->io_prop.zp_copies;
2301 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2302 ddt_entry_t *dde = zio->io_private;
2303 ddt_phys_t *ddp = &dde->dde_phys[p];
2304
2305 ddt_enter(ddt);
2306
2307 ASSERT(ddp->ddp_refcnt == 0);
2308 ASSERT(dde->dde_lead_zio[p] == zio);
2309 dde->dde_lead_zio[p] = NULL;
2310
2311 if (zio->io_error == 0) {
2312 while (zio_walk_parents(zio) != NULL)
2313 ddt_phys_addref(ddp);
2314 } else {
2315 ddt_phys_clear(ddp);
2316 }
2317
2318 ddt_exit(ddt);
2319 }
2320
2321 static void
zio_ddt_ditto_write_done(zio_t * zio)2322 zio_ddt_ditto_write_done(zio_t *zio)
2323 {
2324 int p = DDT_PHYS_DITTO;
2325 zio_prop_t *zp = &zio->io_prop;
2326 blkptr_t *bp = zio->io_bp;
2327 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2328 ddt_entry_t *dde = zio->io_private;
2329 ddt_phys_t *ddp = &dde->dde_phys[p];
2330 ddt_key_t *ddk = &dde->dde_key;
2331
2332 ddt_enter(ddt);
2333
2334 ASSERT(ddp->ddp_refcnt == 0);
2335 ASSERT(dde->dde_lead_zio[p] == zio);
2336 dde->dde_lead_zio[p] = NULL;
2337
2338 if (zio->io_error == 0) {
2339 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2340 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2341 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2342 if (ddp->ddp_phys_birth != 0)
2343 ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2344 ddt_phys_fill(ddp, bp);
2345 }
2346
2347 ddt_exit(ddt);
2348 }
2349
2350 static int
zio_ddt_write(zio_t * zio)2351 zio_ddt_write(zio_t *zio)
2352 {
2353 spa_t *spa = zio->io_spa;
2354 blkptr_t *bp = zio->io_bp;
2355 uint64_t txg = zio->io_txg;
2356 zio_prop_t *zp = &zio->io_prop;
2357 int p = zp->zp_copies;
2358 int ditto_copies;
2359 zio_t *cio = NULL;
2360 zio_t *dio = NULL;
2361 ddt_t *ddt = ddt_select(spa, bp);
2362 ddt_entry_t *dde;
2363 ddt_phys_t *ddp;
2364
2365 ASSERT(BP_GET_DEDUP(bp));
2366 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2367 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2368
2369 ddt_enter(ddt);
2370 dde = ddt_lookup(ddt, bp, B_TRUE);
2371 ddp = &dde->dde_phys[p];
2372
2373 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2374 /*
2375 * If we're using a weak checksum, upgrade to a strong checksum
2376 * and try again. If we're already using a strong checksum,
2377 * we can't resolve it, so just convert to an ordinary write.
2378 * (And automatically e-mail a paper to Nature?)
2379 */
2380 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2381 ZCHECKSUM_FLAG_DEDUP)) {
2382 zp->zp_checksum = spa_dedup_checksum(spa);
2383 zio_pop_transforms(zio);
2384 zio->io_stage = ZIO_STAGE_OPEN;
2385 BP_ZERO(bp);
2386 } else {
2387 zp->zp_dedup = B_FALSE;
2388 }
2389 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2390 ddt_exit(ddt);
2391 return (ZIO_PIPELINE_CONTINUE);
2392 }
2393
2394 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2395 ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2396
2397 if (ditto_copies > ddt_ditto_copies_present(dde) &&
2398 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2399 zio_prop_t czp = *zp;
2400
2401 czp.zp_copies = ditto_copies;
2402
2403 /*
2404 * If we arrived here with an override bp, we won't have run
2405 * the transform stack, so we won't have the data we need to
2406 * generate a child i/o. So, toss the override bp and restart.
2407 * This is safe, because using the override bp is just an
2408 * optimization; and it's rare, so the cost doesn't matter.
2409 */
2410 if (zio->io_bp_override) {
2411 zio_pop_transforms(zio);
2412 zio->io_stage = ZIO_STAGE_OPEN;
2413 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2414 zio->io_bp_override = NULL;
2415 BP_ZERO(bp);
2416 ddt_exit(ddt);
2417 return (ZIO_PIPELINE_CONTINUE);
2418 }
2419
2420 dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2421 zio->io_orig_size, &czp, NULL, NULL,
2422 zio_ddt_ditto_write_done, dde, zio->io_priority,
2423 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2424
2425 zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2426 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2427 }
2428
2429 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2430 if (ddp->ddp_phys_birth != 0)
2431 ddt_bp_fill(ddp, bp, txg);
2432 if (dde->dde_lead_zio[p] != NULL)
2433 zio_add_child(zio, dde->dde_lead_zio[p]);
2434 else
2435 ddt_phys_addref(ddp);
2436 } else if (zio->io_bp_override) {
2437 ASSERT(bp->blk_birth == txg);
2438 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2439 ddt_phys_fill(ddp, bp);
2440 ddt_phys_addref(ddp);
2441 } else {
2442 cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2443 zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL,
2444 zio_ddt_child_write_done, dde, zio->io_priority,
2445 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2446
2447 zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2448 dde->dde_lead_zio[p] = cio;
2449 }
2450
2451 ddt_exit(ddt);
2452
2453 if (cio)
2454 zio_nowait(cio);
2455 if (dio)
2456 zio_nowait(dio);
2457
2458 return (ZIO_PIPELINE_CONTINUE);
2459 }
2460
2461 ddt_entry_t *freedde; /* for debugging */
2462
2463 static int
zio_ddt_free(zio_t * zio)2464 zio_ddt_free(zio_t *zio)
2465 {
2466 spa_t *spa = zio->io_spa;
2467 blkptr_t *bp = zio->io_bp;
2468 ddt_t *ddt = ddt_select(spa, bp);
2469 ddt_entry_t *dde;
2470 ddt_phys_t *ddp;
2471
2472 ASSERT(BP_GET_DEDUP(bp));
2473 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2474
2475 ddt_enter(ddt);
2476 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2477 ddp = ddt_phys_select(dde, bp);
2478 ddt_phys_decref(ddp);
2479 ddt_exit(ddt);
2480
2481 return (ZIO_PIPELINE_CONTINUE);
2482 }
2483
2484 /*
2485 * ==========================================================================
2486 * Allocate and free blocks
2487 * ==========================================================================
2488 */
2489 static int
zio_dva_allocate(zio_t * zio)2490 zio_dva_allocate(zio_t *zio)
2491 {
2492 spa_t *spa = zio->io_spa;
2493 metaslab_class_t *mc = spa_normal_class(spa);
2494 blkptr_t *bp = zio->io_bp;
2495 int error;
2496 int flags = 0;
2497
2498 if (zio->io_gang_leader == NULL) {
2499 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2500 zio->io_gang_leader = zio;
2501 }
2502
2503 ASSERT(BP_IS_HOLE(bp));
2504 ASSERT0(BP_GET_NDVAS(bp));
2505 ASSERT3U(zio->io_prop.zp_copies, >, 0);
2506 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2507 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2508
2509 /*
2510 * The dump device does not support gang blocks so allocation on
2511 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2512 * the "fast" gang feature.
2513 */
2514 flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2515 flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2516 METASLAB_GANG_CHILD : 0;
2517 error = metaslab_alloc(spa, mc, zio->io_size, bp,
2518 zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2519
2520 if (error) {
2521 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2522 "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2523 error);
2524 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2525 return (zio_write_gang_block(zio));
2526 zio->io_error = error;
2527 }
2528
2529 return (ZIO_PIPELINE_CONTINUE);
2530 }
2531
2532 static int
zio_dva_free(zio_t * zio)2533 zio_dva_free(zio_t *zio)
2534 {
2535 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2536
2537 return (ZIO_PIPELINE_CONTINUE);
2538 }
2539
2540 static int
zio_dva_claim(zio_t * zio)2541 zio_dva_claim(zio_t *zio)
2542 {
2543 int error;
2544
2545 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2546 if (error)
2547 zio->io_error = error;
2548
2549 return (ZIO_PIPELINE_CONTINUE);
2550 }
2551
2552 /*
2553 * Undo an allocation. This is used by zio_done() when an I/O fails
2554 * and we want to give back the block we just allocated.
2555 * This handles both normal blocks and gang blocks.
2556 */
2557 static void
zio_dva_unallocate(zio_t * zio,zio_gang_node_t * gn,blkptr_t * bp)2558 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2559 {
2560 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2561 ASSERT(zio->io_bp_override == NULL);
2562
2563 if (!BP_IS_HOLE(bp))
2564 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2565
2566 if (gn != NULL) {
2567 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2568 zio_dva_unallocate(zio, gn->gn_child[g],
2569 &gn->gn_gbh->zg_blkptr[g]);
2570 }
2571 }
2572 }
2573
2574 /*
2575 * Try to allocate an intent log block. Return 0 on success, errno on failure.
2576 */
2577 int
zio_alloc_zil(spa_t * spa,uint64_t txg,blkptr_t * new_bp,blkptr_t * old_bp,uint64_t size,boolean_t use_slog)2578 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2579 uint64_t size, boolean_t use_slog)
2580 {
2581 int error = 1;
2582
2583 ASSERT(txg > spa_syncing_txg(spa));
2584
2585 /*
2586 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2587 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2588 * when allocating them.
2589 */
2590 if (use_slog) {
2591 error = metaslab_alloc(spa, spa_log_class(spa), size,
2592 new_bp, 1, txg, old_bp,
2593 METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2594 }
2595
2596 if (error) {
2597 error = metaslab_alloc(spa, spa_normal_class(spa), size,
2598 new_bp, 1, txg, old_bp,
2599 METASLAB_HINTBP_AVOID);
2600 }
2601
2602 if (error == 0) {
2603 BP_SET_LSIZE(new_bp, size);
2604 BP_SET_PSIZE(new_bp, size);
2605 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2606 BP_SET_CHECKSUM(new_bp,
2607 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2608 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2609 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2610 BP_SET_LEVEL(new_bp, 0);
2611 BP_SET_DEDUP(new_bp, 0);
2612 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2613 }
2614
2615 return (error);
2616 }
2617
2618 /*
2619 * Free an intent log block.
2620 */
2621 void
zio_free_zil(spa_t * spa,uint64_t txg,blkptr_t * bp)2622 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2623 {
2624 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2625 ASSERT(!BP_IS_GANG(bp));
2626
2627 zio_free(spa, txg, bp);
2628 }
2629
2630 /*
2631 * ==========================================================================
2632 * Read and write to physical devices
2633 * ==========================================================================
2634 */
2635
2636
2637 /*
2638 * Issue an I/O to the underlying vdev. Typically the issue pipeline
2639 * stops after this stage and will resume upon I/O completion.
2640 * However, there are instances where the vdev layer may need to
2641 * continue the pipeline when an I/O was not issued. Since the I/O
2642 * that was sent to the vdev layer might be different than the one
2643 * currently active in the pipeline (see vdev_queue_io()), we explicitly
2644 * force the underlying vdev layers to call either zio_execute() or
2645 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
2646 */
2647 static int
zio_vdev_io_start(zio_t * zio)2648 zio_vdev_io_start(zio_t *zio)
2649 {
2650 vdev_t *vd = zio->io_vd;
2651 uint64_t align;
2652 spa_t *spa = zio->io_spa;
2653
2654 ASSERT(zio->io_error == 0);
2655 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2656
2657 if (vd == NULL) {
2658 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2659 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2660
2661 /*
2662 * The mirror_ops handle multiple DVAs in a single BP.
2663 */
2664 vdev_mirror_ops.vdev_op_io_start(zio);
2665 return (ZIO_PIPELINE_STOP);
2666 }
2667
2668 /*
2669 * We keep track of time-sensitive I/Os so that the scan thread
2670 * can quickly react to certain workloads. In particular, we care
2671 * about non-scrubbing, top-level reads and writes with the following
2672 * characteristics:
2673 * - synchronous writes of user data to non-slog devices
2674 * - any reads of user data
2675 * When these conditions are met, adjust the timestamp of spa_last_io
2676 * which allows the scan thread to adjust its workload accordingly.
2677 */
2678 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2679 vd == vd->vdev_top && !vd->vdev_islog &&
2680 zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2681 zio->io_txg != spa_syncing_txg(spa)) {
2682 uint64_t old = spa->spa_last_io;
2683 uint64_t new = ddi_get_lbolt64();
2684 if (old != new)
2685 (void) atomic_cas_64(&spa->spa_last_io, old, new);
2686 }
2687
2688 align = 1ULL << vd->vdev_top->vdev_ashift;
2689
2690 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
2691 P2PHASE(zio->io_size, align) != 0) {
2692 /* Transform logical writes to be a full physical block size. */
2693 uint64_t asize = P2ROUNDUP(zio->io_size, align);
2694 char *abuf = zio_buf_alloc(asize);
2695 ASSERT(vd == vd->vdev_top);
2696 if (zio->io_type == ZIO_TYPE_WRITE) {
2697 bcopy(zio->io_data, abuf, zio->io_size);
2698 bzero(abuf + zio->io_size, asize - zio->io_size);
2699 }
2700 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2701 }
2702
2703 /*
2704 * If this is not a physical io, make sure that it is properly aligned
2705 * before proceeding.
2706 */
2707 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
2708 ASSERT0(P2PHASE(zio->io_offset, align));
2709 ASSERT0(P2PHASE(zio->io_size, align));
2710 } else {
2711 /*
2712 * For physical writes, we allow 512b aligned writes and assume
2713 * the device will perform a read-modify-write as necessary.
2714 */
2715 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
2716 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
2717 }
2718
2719 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2720
2721 /*
2722 * If this is a repair I/O, and there's no self-healing involved --
2723 * that is, we're just resilvering what we expect to resilver --
2724 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2725 * This prevents spurious resilvering with nested replication.
2726 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2727 * A is out of date, we'll read from C+D, then use the data to
2728 * resilver A+B -- but we don't actually want to resilver B, just A.
2729 * The top-level mirror has no way to know this, so instead we just
2730 * discard unnecessary repairs as we work our way down the vdev tree.
2731 * The same logic applies to any form of nested replication:
2732 * ditto + mirror, RAID-Z + replacing, etc. This covers them all.
2733 */
2734 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2735 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2736 zio->io_txg != 0 && /* not a delegated i/o */
2737 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2738 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2739 zio_vdev_io_bypass(zio);
2740 return (ZIO_PIPELINE_CONTINUE);
2741 }
2742
2743 if (vd->vdev_ops->vdev_op_leaf &&
2744 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2745
2746 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
2747 return (ZIO_PIPELINE_CONTINUE);
2748
2749 if ((zio = vdev_queue_io(zio)) == NULL)
2750 return (ZIO_PIPELINE_STOP);
2751
2752 if (!vdev_accessible(vd, zio)) {
2753 zio->io_error = SET_ERROR(ENXIO);
2754 zio_interrupt(zio);
2755 return (ZIO_PIPELINE_STOP);
2756 }
2757 }
2758
2759 vd->vdev_ops->vdev_op_io_start(zio);
2760 return (ZIO_PIPELINE_STOP);
2761 }
2762
2763 static int
zio_vdev_io_done(zio_t * zio)2764 zio_vdev_io_done(zio_t *zio)
2765 {
2766 vdev_t *vd = zio->io_vd;
2767 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2768 boolean_t unexpected_error = B_FALSE;
2769
2770 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
2771 return (ZIO_PIPELINE_STOP);
2772 }
2773
2774 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2775
2776 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2777
2778 vdev_queue_io_done(zio);
2779
2780 if (zio->io_type == ZIO_TYPE_WRITE)
2781 vdev_cache_write(zio);
2782
2783 if (zio_injection_enabled && zio->io_error == 0)
2784 zio->io_error = zio_handle_device_injection(vd,
2785 zio, EIO);
2786
2787 if (zio_injection_enabled && zio->io_error == 0)
2788 zio->io_error = zio_handle_label_injection(zio, EIO);
2789
2790 if (zio->io_error) {
2791 if (!vdev_accessible(vd, zio)) {
2792 zio->io_error = SET_ERROR(ENXIO);
2793 } else {
2794 unexpected_error = B_TRUE;
2795 }
2796 }
2797 }
2798
2799 ops->vdev_op_io_done(zio);
2800
2801 if (unexpected_error)
2802 VERIFY(vdev_probe(vd, zio) == NULL);
2803
2804 return (ZIO_PIPELINE_CONTINUE);
2805 }
2806
2807 /*
2808 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2809 * disk, and use that to finish the checksum ereport later.
2810 */
2811 static void
zio_vsd_default_cksum_finish(zio_cksum_report_t * zcr,const void * good_buf)2812 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2813 const void *good_buf)
2814 {
2815 /* no processing needed */
2816 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2817 }
2818
2819 /*ARGSUSED*/
2820 void
zio_vsd_default_cksum_report(zio_t * zio,zio_cksum_report_t * zcr,void * ignored)2821 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2822 {
2823 void *buf = zio_buf_alloc(zio->io_size);
2824
2825 bcopy(zio->io_data, buf, zio->io_size);
2826
2827 zcr->zcr_cbinfo = zio->io_size;
2828 zcr->zcr_cbdata = buf;
2829 zcr->zcr_finish = zio_vsd_default_cksum_finish;
2830 zcr->zcr_free = zio_buf_free;
2831 }
2832
2833 static int
zio_vdev_io_assess(zio_t * zio)2834 zio_vdev_io_assess(zio_t *zio)
2835 {
2836 vdev_t *vd = zio->io_vd;
2837
2838 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
2839 return (ZIO_PIPELINE_STOP);
2840 }
2841
2842 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2843 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2844
2845 if (zio->io_vsd != NULL) {
2846 zio->io_vsd_ops->vsd_free(zio);
2847 zio->io_vsd = NULL;
2848 }
2849
2850 if (zio_injection_enabled && zio->io_error == 0)
2851 zio->io_error = zio_handle_fault_injection(zio, EIO);
2852
2853 /*
2854 * If the I/O failed, determine whether we should attempt to retry it.
2855 *
2856 * On retry, we cut in line in the issue queue, since we don't want
2857 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2858 */
2859 if (zio->io_error && vd == NULL &&
2860 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2861 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
2862 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
2863 zio->io_error = 0;
2864 zio->io_flags |= ZIO_FLAG_IO_RETRY |
2865 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2866 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2867 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2868 zio_requeue_io_start_cut_in_line);
2869 return (ZIO_PIPELINE_STOP);
2870 }
2871
2872 /*
2873 * If we got an error on a leaf device, convert it to ENXIO
2874 * if the device is not accessible at all.
2875 */
2876 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2877 !vdev_accessible(vd, zio))
2878 zio->io_error = SET_ERROR(ENXIO);
2879
2880 /*
2881 * If we can't write to an interior vdev (mirror or RAID-Z),
2882 * set vdev_cant_write so that we stop trying to allocate from it.
2883 */
2884 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2885 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2886 vd->vdev_cant_write = B_TRUE;
2887 }
2888
2889 if (zio->io_error)
2890 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2891
2892 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2893 zio->io_physdone != NULL) {
2894 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
2895 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
2896 zio->io_physdone(zio->io_logical);
2897 }
2898
2899 return (ZIO_PIPELINE_CONTINUE);
2900 }
2901
2902 void
zio_vdev_io_reissue(zio_t * zio)2903 zio_vdev_io_reissue(zio_t *zio)
2904 {
2905 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2906 ASSERT(zio->io_error == 0);
2907
2908 zio->io_stage >>= 1;
2909 }
2910
2911 void
zio_vdev_io_redone(zio_t * zio)2912 zio_vdev_io_redone(zio_t *zio)
2913 {
2914 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2915
2916 zio->io_stage >>= 1;
2917 }
2918
2919 void
zio_vdev_io_bypass(zio_t * zio)2920 zio_vdev_io_bypass(zio_t *zio)
2921 {
2922 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2923 ASSERT(zio->io_error == 0);
2924
2925 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2926 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2927 }
2928
2929 /*
2930 * ==========================================================================
2931 * Generate and verify checksums
2932 * ==========================================================================
2933 */
2934 static int
zio_checksum_generate(zio_t * zio)2935 zio_checksum_generate(zio_t *zio)
2936 {
2937 blkptr_t *bp = zio->io_bp;
2938 enum zio_checksum checksum;
2939
2940 if (bp == NULL) {
2941 /*
2942 * This is zio_write_phys().
2943 * We're either generating a label checksum, or none at all.
2944 */
2945 checksum = zio->io_prop.zp_checksum;
2946
2947 if (checksum == ZIO_CHECKSUM_OFF)
2948 return (ZIO_PIPELINE_CONTINUE);
2949
2950 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2951 } else {
2952 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2953 ASSERT(!IO_IS_ALLOCATING(zio));
2954 checksum = ZIO_CHECKSUM_GANG_HEADER;
2955 } else {
2956 checksum = BP_GET_CHECKSUM(bp);
2957 }
2958 }
2959
2960 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2961
2962 return (ZIO_PIPELINE_CONTINUE);
2963 }
2964
2965 static int
zio_checksum_verify(zio_t * zio)2966 zio_checksum_verify(zio_t *zio)
2967 {
2968 zio_bad_cksum_t info;
2969 blkptr_t *bp = zio->io_bp;
2970 int error;
2971
2972 ASSERT(zio->io_vd != NULL);
2973
2974 if (bp == NULL) {
2975 /*
2976 * This is zio_read_phys().
2977 * We're either verifying a label checksum, or nothing at all.
2978 */
2979 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2980 return (ZIO_PIPELINE_CONTINUE);
2981
2982 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2983 }
2984
2985 if ((error = zio_checksum_error(zio, &info)) != 0) {
2986 zio->io_error = error;
2987 if (error == ECKSUM &&
2988 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2989 zfs_ereport_start_checksum(zio->io_spa,
2990 zio->io_vd, zio, zio->io_offset,
2991 zio->io_size, NULL, &info);
2992 }
2993 }
2994
2995 return (ZIO_PIPELINE_CONTINUE);
2996 }
2997
2998 /*
2999 * Called by RAID-Z to ensure we don't compute the checksum twice.
3000 */
3001 void
zio_checksum_verified(zio_t * zio)3002 zio_checksum_verified(zio_t *zio)
3003 {
3004 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3005 }
3006
3007 /*
3008 * ==========================================================================
3009 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3010 * An error of 0 indicates success. ENXIO indicates whole-device failure,
3011 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO
3012 * indicate errors that are specific to one I/O, and most likely permanent.
3013 * Any other error is presumed to be worse because we weren't expecting it.
3014 * ==========================================================================
3015 */
3016 int
zio_worst_error(int e1,int e2)3017 zio_worst_error(int e1, int e2)
3018 {
3019 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3020 int r1, r2;
3021
3022 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3023 if (e1 == zio_error_rank[r1])
3024 break;
3025
3026 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3027 if (e2 == zio_error_rank[r2])
3028 break;
3029
3030 return (r1 > r2 ? e1 : e2);
3031 }
3032
3033 /*
3034 * ==========================================================================
3035 * I/O completion
3036 * ==========================================================================
3037 */
3038 static int
zio_ready(zio_t * zio)3039 zio_ready(zio_t *zio)
3040 {
3041 blkptr_t *bp = zio->io_bp;
3042 zio_t *pio, *pio_next;
3043
3044 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
3045 ZIO_WAIT_READY)) {
3046 return (ZIO_PIPELINE_STOP);
3047 }
3048
3049 if (zio->io_ready) {
3050 ASSERT(IO_IS_ALLOCATING(zio));
3051 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3052 (zio->io_flags & ZIO_FLAG_NOPWRITE));
3053 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3054
3055 zio->io_ready(zio);
3056 }
3057
3058 if (bp != NULL && bp != &zio->io_bp_copy)
3059 zio->io_bp_copy = *bp;
3060
3061 if (zio->io_error)
3062 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3063
3064 mutex_enter(&zio->io_lock);
3065 zio->io_state[ZIO_WAIT_READY] = 1;
3066 pio = zio_walk_parents(zio);
3067 mutex_exit(&zio->io_lock);
3068
3069 /*
3070 * As we notify zio's parents, new parents could be added.
3071 * New parents go to the head of zio's io_parent_list, however,
3072 * so we will (correctly) not notify them. The remainder of zio's
3073 * io_parent_list, from 'pio_next' onward, cannot change because
3074 * all parents must wait for us to be done before they can be done.
3075 */
3076 for (; pio != NULL; pio = pio_next) {
3077 pio_next = zio_walk_parents(zio);
3078 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3079 }
3080
3081 if (zio->io_flags & ZIO_FLAG_NODATA) {
3082 if (BP_IS_GANG(bp)) {
3083 zio->io_flags &= ~ZIO_FLAG_NODATA;
3084 } else {
3085 ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
3086 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3087 }
3088 }
3089
3090 if (zio_injection_enabled &&
3091 zio->io_spa->spa_syncing_txg == zio->io_txg)
3092 zio_handle_ignored_writes(zio);
3093
3094 return (ZIO_PIPELINE_CONTINUE);
3095 }
3096
3097 static int
zio_done(zio_t * zio)3098 zio_done(zio_t *zio)
3099 {
3100 spa_t *spa = zio->io_spa;
3101 zio_t *lio = zio->io_logical;
3102 blkptr_t *bp = zio->io_bp;
3103 vdev_t *vd = zio->io_vd;
3104 uint64_t psize = zio->io_size;
3105 zio_t *pio, *pio_next;
3106
3107 /*
3108 * If our children haven't all completed,
3109 * wait for them and then repeat this pipeline stage.
3110 */
3111 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
3112 return (ZIO_PIPELINE_STOP);
3113 }
3114
3115 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3116 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3117 ASSERT(zio->io_children[c][w] == 0);
3118
3119 if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3120 ASSERT(bp->blk_pad[0] == 0);
3121 ASSERT(bp->blk_pad[1] == 0);
3122 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3123 (bp == zio_unique_parent(zio)->io_bp));
3124 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3125 zio->io_bp_override == NULL &&
3126 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3127 ASSERT(!BP_SHOULD_BYTESWAP(bp));
3128 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3129 ASSERT(BP_COUNT_GANG(bp) == 0 ||
3130 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3131 }
3132 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3133 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3134 }
3135
3136 /*
3137 * If there were child vdev/gang/ddt errors, they apply to us now.
3138 */
3139 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3140 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3141 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3142
3143 /*
3144 * If the I/O on the transformed data was successful, generate any
3145 * checksum reports now while we still have the transformed data.
3146 */
3147 if (zio->io_error == 0) {
3148 while (zio->io_cksum_report != NULL) {
3149 zio_cksum_report_t *zcr = zio->io_cksum_report;
3150 uint64_t align = zcr->zcr_align;
3151 uint64_t asize = P2ROUNDUP(psize, align);
3152 char *abuf = zio->io_data;
3153
3154 if (asize != psize) {
3155 abuf = zio_buf_alloc(asize);
3156 bcopy(zio->io_data, abuf, psize);
3157 bzero(abuf + psize, asize - psize);
3158 }
3159
3160 zio->io_cksum_report = zcr->zcr_next;
3161 zcr->zcr_next = NULL;
3162 zcr->zcr_finish(zcr, abuf);
3163 zfs_ereport_free_checksum(zcr);
3164
3165 if (asize != psize)
3166 zio_buf_free(abuf, asize);
3167 }
3168 }
3169
3170 zio_pop_transforms(zio); /* note: may set zio->io_error */
3171
3172 vdev_stat_update(zio, psize);
3173
3174 if (zio->io_error) {
3175 /*
3176 * If this I/O is attached to a particular vdev,
3177 * generate an error message describing the I/O failure
3178 * at the block level. We ignore these errors if the
3179 * device is currently unavailable.
3180 */
3181 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3182 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3183
3184 if ((zio->io_error == EIO || !(zio->io_flags &
3185 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3186 zio == lio) {
3187 /*
3188 * For logical I/O requests, tell the SPA to log the
3189 * error and generate a logical data ereport.
3190 */
3191 spa_log_error(spa, zio);
3192 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3193 0, 0);
3194 }
3195 }
3196
3197 if (zio->io_error && zio == lio) {
3198 /*
3199 * Determine whether zio should be reexecuted. This will
3200 * propagate all the way to the root via zio_notify_parent().
3201 */
3202 ASSERT(vd == NULL && bp != NULL);
3203 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3204
3205 if (IO_IS_ALLOCATING(zio) &&
3206 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3207 if (zio->io_error != ENOSPC)
3208 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3209 else
3210 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3211 }
3212
3213 if ((zio->io_type == ZIO_TYPE_READ ||
3214 zio->io_type == ZIO_TYPE_FREE) &&
3215 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3216 zio->io_error == ENXIO &&
3217 spa_load_state(spa) == SPA_LOAD_NONE &&
3218 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3219 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3220
3221 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3222 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3223
3224 /*
3225 * Here is a possibly good place to attempt to do
3226 * either combinatorial reconstruction or error correction
3227 * based on checksums. It also might be a good place
3228 * to send out preliminary ereports before we suspend
3229 * processing.
3230 */
3231 }
3232
3233 /*
3234 * If there were logical child errors, they apply to us now.
3235 * We defer this until now to avoid conflating logical child
3236 * errors with errors that happened to the zio itself when
3237 * updating vdev stats and reporting FMA events above.
3238 */
3239 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3240
3241 if ((zio->io_error || zio->io_reexecute) &&
3242 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3243 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3244 zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3245
3246 zio_gang_tree_free(&zio->io_gang_tree);
3247
3248 /*
3249 * Godfather I/Os should never suspend.
3250 */
3251 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3252 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3253 zio->io_reexecute = 0;
3254
3255 if (zio->io_reexecute) {
3256 /*
3257 * This is a logical I/O that wants to reexecute.
3258 *
3259 * Reexecute is top-down. When an i/o fails, if it's not
3260 * the root, it simply notifies its parent and sticks around.
3261 * The parent, seeing that it still has children in zio_done(),
3262 * does the same. This percolates all the way up to the root.
3263 * The root i/o will reexecute or suspend the entire tree.
3264 *
3265 * This approach ensures that zio_reexecute() honors
3266 * all the original i/o dependency relationships, e.g.
3267 * parents not executing until children are ready.
3268 */
3269 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3270
3271 zio->io_gang_leader = NULL;
3272
3273 mutex_enter(&zio->io_lock);
3274 zio->io_state[ZIO_WAIT_DONE] = 1;
3275 mutex_exit(&zio->io_lock);
3276
3277 /*
3278 * "The Godfather" I/O monitors its children but is
3279 * not a true parent to them. It will track them through
3280 * the pipeline but severs its ties whenever they get into
3281 * trouble (e.g. suspended). This allows "The Godfather"
3282 * I/O to return status without blocking.
3283 */
3284 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3285 zio_link_t *zl = zio->io_walk_link;
3286 pio_next = zio_walk_parents(zio);
3287
3288 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3289 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3290 zio_remove_child(pio, zio, zl);
3291 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3292 }
3293 }
3294
3295 if ((pio = zio_unique_parent(zio)) != NULL) {
3296 /*
3297 * We're not a root i/o, so there's nothing to do
3298 * but notify our parent. Don't propagate errors
3299 * upward since we haven't permanently failed yet.
3300 */
3301 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3302 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3303 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3304 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3305 /*
3306 * We'd fail again if we reexecuted now, so suspend
3307 * until conditions improve (e.g. device comes online).
3308 */
3309 zio_suspend(spa, zio);
3310 } else {
3311 /*
3312 * Reexecution is potentially a huge amount of work.
3313 * Hand it off to the otherwise-unused claim taskq.
3314 */
3315 ASSERT(zio->io_tqent.tqent_next == NULL);
3316 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3317 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3318 0, &zio->io_tqent);
3319 }
3320 return (ZIO_PIPELINE_STOP);
3321 }
3322
3323 ASSERT(zio->io_child_count == 0);
3324 ASSERT(zio->io_reexecute == 0);
3325 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3326
3327 /*
3328 * Report any checksum errors, since the I/O is complete.
3329 */
3330 while (zio->io_cksum_report != NULL) {
3331 zio_cksum_report_t *zcr = zio->io_cksum_report;
3332 zio->io_cksum_report = zcr->zcr_next;
3333 zcr->zcr_next = NULL;
3334 zcr->zcr_finish(zcr, NULL);
3335 zfs_ereport_free_checksum(zcr);
3336 }
3337
3338 /*
3339 * It is the responsibility of the done callback to ensure that this
3340 * particular zio is no longer discoverable for adoption, and as
3341 * such, cannot acquire any new parents.
3342 */
3343 if (zio->io_done)
3344 zio->io_done(zio);
3345
3346 mutex_enter(&zio->io_lock);
3347 zio->io_state[ZIO_WAIT_DONE] = 1;
3348 mutex_exit(&zio->io_lock);
3349
3350 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3351 zio_link_t *zl = zio->io_walk_link;
3352 pio_next = zio_walk_parents(zio);
3353 zio_remove_child(pio, zio, zl);
3354 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3355 }
3356
3357 if (zio->io_waiter != NULL) {
3358 mutex_enter(&zio->io_lock);
3359 zio->io_executor = NULL;
3360 cv_broadcast(&zio->io_cv);
3361 mutex_exit(&zio->io_lock);
3362 } else {
3363 zio_destroy(zio);
3364 }
3365
3366 return (ZIO_PIPELINE_STOP);
3367 }
3368
3369 /*
3370 * ==========================================================================
3371 * I/O pipeline definition
3372 * ==========================================================================
3373 */
3374 static zio_pipe_stage_t *zio_pipeline[] = {
3375 NULL,
3376 zio_read_bp_init,
3377 zio_free_bp_init,
3378 zio_issue_async,
3379 zio_write_bp_init,
3380 zio_checksum_generate,
3381 zio_nop_write,
3382 zio_ddt_read_start,
3383 zio_ddt_read_done,
3384 zio_ddt_write,
3385 zio_ddt_free,
3386 zio_gang_assemble,
3387 zio_gang_issue,
3388 zio_dva_allocate,
3389 zio_dva_free,
3390 zio_dva_claim,
3391 zio_ready,
3392 zio_vdev_io_start,
3393 zio_vdev_io_done,
3394 zio_vdev_io_assess,
3395 zio_checksum_verify,
3396 zio_done
3397 };
3398
3399
3400
3401
3402 /*
3403 * Compare two zbookmark_phys_t's to see which we would reach first in a
3404 * pre-order traversal of the object tree.
3405 *
3406 * This is simple in every case aside from the meta-dnode object. For all other
3407 * objects, we traverse them in order (object 1 before object 2, and so on).
3408 * However, all of these objects are traversed while traversing object 0, since
3409 * the data it points to is the list of objects. Thus, we need to convert to a
3410 * canonical representation so we can compare meta-dnode bookmarks to
3411 * non-meta-dnode bookmarks.
3412 *
3413 * We do this by calculating "equivalents" for each field of the zbookmark.
3414 * zbookmarks outside of the meta-dnode use their own object and level, and
3415 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
3416 * blocks this bookmark refers to) by multiplying their blkid by their span
3417 * (the number of L0 blocks contained within one block at their level).
3418 * zbookmarks inside the meta-dnode calculate their object equivalent
3419 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
3420 * level + 1<<31 (any value larger than a level could ever be) for their level.
3421 * This causes them to always compare before a bookmark in their object
3422 * equivalent, compare appropriately to bookmarks in other objects, and to
3423 * compare appropriately to other bookmarks in the meta-dnode.
3424 */
3425 int
zbookmark_compare(uint16_t dbss1,uint8_t ibs1,uint16_t dbss2,uint8_t ibs2,const zbookmark_phys_t * zb1,const zbookmark_phys_t * zb2)3426 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
3427 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
3428 {
3429 /*
3430 * These variables represent the "equivalent" values for the zbookmark,
3431 * after converting zbookmarks inside the meta dnode to their
3432 * normal-object equivalents.
3433 */
3434 uint64_t zb1obj, zb2obj;
3435 uint64_t zb1L0, zb2L0;
3436 uint64_t zb1level, zb2level;
3437
3438 if (zb1->zb_object == zb2->zb_object &&
3439 zb1->zb_level == zb2->zb_level &&
3440 zb1->zb_blkid == zb2->zb_blkid)
3441 return (0);
3442
3443 /*
3444 * BP_SPANB calculates the span in blocks.
3445 */
3446 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
3447 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
3448
3449 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3450 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3451 zb1L0 = 0;
3452 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
3453 } else {
3454 zb1obj = zb1->zb_object;
3455 zb1level = zb1->zb_level;
3456 }
3457
3458 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
3459 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3460 zb2L0 = 0;
3461 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
3462 } else {
3463 zb2obj = zb2->zb_object;
3464 zb2level = zb2->zb_level;
3465 }
3466
3467 /* Now that we have a canonical representation, do the comparison. */
3468 if (zb1obj != zb2obj)
3469 return (zb1obj < zb2obj ? -1 : 1);
3470 else if (zb1L0 != zb2L0)
3471 return (zb1L0 < zb2L0 ? -1 : 1);
3472 else if (zb1level != zb2level)
3473 return (zb1level > zb2level ? -1 : 1);
3474 /*
3475 * This can (theoretically) happen if the bookmarks have the same object
3476 * and level, but different blkids, if the block sizes are not the same.
3477 * There is presently no way to change the indirect block sizes
3478 */
3479 return (0);
3480 }
3481
3482 /*
3483 * This function checks the following: given that last_block is the place that
3484 * our traversal stopped last time, does that guarantee that we've visited
3485 * every node under subtree_root? Therefore, we can't just use the raw output
3486 * of zbookmark_compare. We have to pass in a modified version of
3487 * subtree_root; by incrementing the block id, and then checking whether
3488 * last_block is before or equal to that, we can tell whether or not having
3489 * visited last_block implies that all of subtree_root's children have been
3490 * visited.
3491 */
3492 boolean_t
zbookmark_subtree_completed(const dnode_phys_t * dnp,const zbookmark_phys_t * subtree_root,const zbookmark_phys_t * last_block)3493 zbookmark_subtree_completed(const dnode_phys_t *dnp,
3494 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
3495 {
3496 zbookmark_phys_t mod_zb = *subtree_root;
3497 mod_zb.zb_blkid++;
3498 ASSERT(last_block->zb_level == 0);
3499
3500 /* The objset_phys_t isn't before anything. */
3501 if (dnp == NULL)
3502 return (B_FALSE);
3503
3504 /*
3505 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
3506 * data block size in sectors, because that variable is only used if
3507 * the bookmark refers to a block in the meta-dnode. Since we don't
3508 * know without examining it what object it refers to, and there's no
3509 * harm in passing in this value in other cases, we always pass it in.
3510 *
3511 * We pass in 0 for the indirect block size shift because zb2 must be
3512 * level 0. The indirect block size is only used to calculate the span
3513 * of the bookmark, but since the bookmark must be level 0, the span is
3514 * always 1, so the math works out.
3515 *
3516 * If you make changes to how the zbookmark_compare code works, be sure
3517 * to make sure that this code still works afterwards.
3518 */
3519 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
3520 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
3521 last_block) <= 0);
3522 }
3523