1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 */ 27 28 #include <sys/zio.h> 29 #include <sys/spa.h> 30 #include <sys/dmu.h> 31 #include <sys/zfs_context.h> 32 #include <sys/zap.h> 33 #include <sys/refcount.h> 34 #include <sys/zap_impl.h> 35 #include <sys/zap_leaf.h> 36 #include <sys/avl.h> 37 #include <sys/arc.h> 38 #include <sys/dmu_objset.h> 39 40 #ifdef _KERNEL 41 #include <sys/sunddi.h> 42 #endif 43 44 extern inline mzap_phys_t *zap_m_phys(zap_t *zap); 45 46 static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags); 47 48 uint64_t 49 zap_getflags(zap_t *zap) 50 { 51 if (zap->zap_ismicro) 52 return (0); 53 return (zap_f_phys(zap)->zap_flags); 54 } 55 56 int 57 zap_hashbits(zap_t *zap) 58 { 59 if (zap_getflags(zap) & ZAP_FLAG_HASH64) 60 return (48); 61 else 62 return (28); 63 } 64 65 uint32_t 66 zap_maxcd(zap_t *zap) 67 { 68 if (zap_getflags(zap) & ZAP_FLAG_HASH64) 69 return ((1<<16)-1); 70 else 71 return (-1U); 72 } 73 74 static uint64_t 75 zap_hash(zap_name_t *zn) 76 { 77 zap_t *zap = zn->zn_zap; 78 uint64_t h = 0; 79 80 if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) { 81 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY); 82 h = *(uint64_t *)zn->zn_key_orig; 83 } else { 84 h = zap->zap_salt; 85 ASSERT(h != 0); 86 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 87 88 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) { 89 int i; 90 const uint64_t *wp = zn->zn_key_norm; 91 92 ASSERT(zn->zn_key_intlen == 8); 93 for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) { 94 int j; 95 uint64_t word = *wp; 96 97 for (j = 0; j < zn->zn_key_intlen; j++) { 98 h = (h >> 8) ^ 99 zfs_crc64_table[(h ^ word) & 0xFF]; 100 word >>= NBBY; 101 } 102 } 103 } else { 104 int i, len; 105 const uint8_t *cp = zn->zn_key_norm; 106 107 /* 108 * We previously stored the terminating null on 109 * disk, but didn't hash it, so we need to 110 * continue to not hash it. (The 111 * zn_key_*_numints includes the terminating 112 * null for non-binary keys.) 113 */ 114 len = zn->zn_key_norm_numints - 1; 115 116 ASSERT(zn->zn_key_intlen == 1); 117 for (i = 0; i < len; cp++, i++) { 118 h = (h >> 8) ^ 119 zfs_crc64_table[(h ^ *cp) & 0xFF]; 120 } 121 } 122 } 123 /* 124 * Don't use all 64 bits, since we need some in the cookie for 125 * the collision differentiator. We MUST use the high bits, 126 * since those are the ones that we first pay attention to when 127 * chosing the bucket. 128 */ 129 h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1); 130 131 return (h); 132 } 133 134 static int 135 zap_normalize(zap_t *zap, const char *name, char *namenorm) 136 { 137 size_t inlen, outlen; 138 int err; 139 140 ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY)); 141 142 inlen = strlen(name) + 1; 143 outlen = ZAP_MAXNAMELEN; 144 145 err = 0; 146 (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen, 147 zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL | 148 U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err); 149 150 return (err); 151 } 152 153 boolean_t 154 zap_match(zap_name_t *zn, const char *matchname) 155 { 156 ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY)); 157 158 if (zn->zn_matchtype == MT_FIRST) { 159 char norm[ZAP_MAXNAMELEN]; 160 161 if (zap_normalize(zn->zn_zap, matchname, norm) != 0) 162 return (B_FALSE); 163 164 return (strcmp(zn->zn_key_norm, norm) == 0); 165 } else { 166 /* MT_BEST or MT_EXACT */ 167 return (strcmp(zn->zn_key_orig, matchname) == 0); 168 } 169 } 170 171 void 172 zap_name_free(zap_name_t *zn) 173 { 174 kmem_free(zn, sizeof (zap_name_t)); 175 } 176 177 zap_name_t * 178 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt) 179 { 180 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); 181 182 zn->zn_zap = zap; 183 zn->zn_key_intlen = sizeof (*key); 184 zn->zn_key_orig = key; 185 zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1; 186 zn->zn_matchtype = mt; 187 if (zap->zap_normflags) { 188 if (zap_normalize(zap, key, zn->zn_normbuf) != 0) { 189 zap_name_free(zn); 190 return (NULL); 191 } 192 zn->zn_key_norm = zn->zn_normbuf; 193 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1; 194 } else { 195 if (mt != MT_EXACT) { 196 zap_name_free(zn); 197 return (NULL); 198 } 199 zn->zn_key_norm = zn->zn_key_orig; 200 zn->zn_key_norm_numints = zn->zn_key_orig_numints; 201 } 202 203 zn->zn_hash = zap_hash(zn); 204 return (zn); 205 } 206 207 zap_name_t * 208 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints) 209 { 210 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); 211 212 ASSERT(zap->zap_normflags == 0); 213 zn->zn_zap = zap; 214 zn->zn_key_intlen = sizeof (*key); 215 zn->zn_key_orig = zn->zn_key_norm = key; 216 zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints; 217 zn->zn_matchtype = MT_EXACT; 218 219 zn->zn_hash = zap_hash(zn); 220 return (zn); 221 } 222 223 static void 224 mzap_byteswap(mzap_phys_t *buf, size_t size) 225 { 226 int i, max; 227 buf->mz_block_type = BSWAP_64(buf->mz_block_type); 228 buf->mz_salt = BSWAP_64(buf->mz_salt); 229 buf->mz_normflags = BSWAP_64(buf->mz_normflags); 230 max = (size / MZAP_ENT_LEN) - 1; 231 for (i = 0; i < max; i++) { 232 buf->mz_chunk[i].mze_value = 233 BSWAP_64(buf->mz_chunk[i].mze_value); 234 buf->mz_chunk[i].mze_cd = 235 BSWAP_32(buf->mz_chunk[i].mze_cd); 236 } 237 } 238 239 void 240 zap_byteswap(void *buf, size_t size) 241 { 242 uint64_t block_type; 243 244 block_type = *(uint64_t *)buf; 245 246 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) { 247 /* ASSERT(magic == ZAP_LEAF_MAGIC); */ 248 mzap_byteswap(buf, size); 249 } else { 250 fzap_byteswap(buf, size); 251 } 252 } 253 254 static int 255 mze_compare(const void *arg1, const void *arg2) 256 { 257 const mzap_ent_t *mze1 = arg1; 258 const mzap_ent_t *mze2 = arg2; 259 260 if (mze1->mze_hash > mze2->mze_hash) 261 return (+1); 262 if (mze1->mze_hash < mze2->mze_hash) 263 return (-1); 264 if (mze1->mze_cd > mze2->mze_cd) 265 return (+1); 266 if (mze1->mze_cd < mze2->mze_cd) 267 return (-1); 268 return (0); 269 } 270 271 static void 272 mze_insert(zap_t *zap, int chunkid, uint64_t hash) 273 { 274 mzap_ent_t *mze; 275 276 ASSERT(zap->zap_ismicro); 277 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 278 279 mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP); 280 mze->mze_chunkid = chunkid; 281 mze->mze_hash = hash; 282 mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd; 283 ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0); 284 avl_add(&zap->zap_m.zap_avl, mze); 285 } 286 287 static mzap_ent_t * 288 mze_find(zap_name_t *zn) 289 { 290 mzap_ent_t mze_tofind; 291 mzap_ent_t *mze; 292 avl_index_t idx; 293 avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl; 294 295 ASSERT(zn->zn_zap->zap_ismicro); 296 ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock)); 297 298 mze_tofind.mze_hash = zn->zn_hash; 299 mze_tofind.mze_cd = 0; 300 301 again: 302 mze = avl_find(avl, &mze_tofind, &idx); 303 if (mze == NULL) 304 mze = avl_nearest(avl, idx, AVL_AFTER); 305 for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) { 306 ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd); 307 if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name)) 308 return (mze); 309 } 310 if (zn->zn_matchtype == MT_BEST) { 311 zn->zn_matchtype = MT_FIRST; 312 goto again; 313 } 314 return (NULL); 315 } 316 317 static uint32_t 318 mze_find_unused_cd(zap_t *zap, uint64_t hash) 319 { 320 mzap_ent_t mze_tofind; 321 mzap_ent_t *mze; 322 avl_index_t idx; 323 avl_tree_t *avl = &zap->zap_m.zap_avl; 324 uint32_t cd; 325 326 ASSERT(zap->zap_ismicro); 327 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 328 329 mze_tofind.mze_hash = hash; 330 mze_tofind.mze_cd = 0; 331 332 cd = 0; 333 for (mze = avl_find(avl, &mze_tofind, &idx); 334 mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) { 335 if (mze->mze_cd != cd) 336 break; 337 cd++; 338 } 339 340 return (cd); 341 } 342 343 static void 344 mze_remove(zap_t *zap, mzap_ent_t *mze) 345 { 346 ASSERT(zap->zap_ismicro); 347 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 348 349 avl_remove(&zap->zap_m.zap_avl, mze); 350 kmem_free(mze, sizeof (mzap_ent_t)); 351 } 352 353 static void 354 mze_destroy(zap_t *zap) 355 { 356 mzap_ent_t *mze; 357 void *avlcookie = NULL; 358 359 while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie)) 360 kmem_free(mze, sizeof (mzap_ent_t)); 361 avl_destroy(&zap->zap_m.zap_avl); 362 } 363 364 static zap_t * 365 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db) 366 { 367 zap_t *winner; 368 zap_t *zap; 369 int i; 370 371 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t)); 372 373 zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP); 374 rw_init(&zap->zap_rwlock, 0, 0, 0); 375 rw_enter(&zap->zap_rwlock, RW_WRITER); 376 zap->zap_objset = os; 377 zap->zap_object = obj; 378 zap->zap_dbuf = db; 379 380 if (*(uint64_t *)db->db_data != ZBT_MICRO) { 381 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0); 382 zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1; 383 } else { 384 zap->zap_ismicro = TRUE; 385 } 386 387 /* 388 * Make sure that zap_ismicro is set before we let others see 389 * it, because zap_lockdir() checks zap_ismicro without the lock 390 * held. 391 */ 392 dmu_buf_init_user(&zap->zap_dbu, zap_evict_sync, NULL, &zap->zap_dbuf); 393 winner = dmu_buf_set_user(db, &zap->zap_dbu); 394 395 if (winner != NULL) { 396 rw_exit(&zap->zap_rwlock); 397 rw_destroy(&zap->zap_rwlock); 398 if (!zap->zap_ismicro) 399 mutex_destroy(&zap->zap_f.zap_num_entries_mtx); 400 kmem_free(zap, sizeof (zap_t)); 401 return (winner); 402 } 403 404 if (zap->zap_ismicro) { 405 zap->zap_salt = zap_m_phys(zap)->mz_salt; 406 zap->zap_normflags = zap_m_phys(zap)->mz_normflags; 407 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1; 408 avl_create(&zap->zap_m.zap_avl, mze_compare, 409 sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node)); 410 411 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) { 412 mzap_ent_phys_t *mze = 413 &zap_m_phys(zap)->mz_chunk[i]; 414 if (mze->mze_name[0]) { 415 zap_name_t *zn; 416 417 zap->zap_m.zap_num_entries++; 418 zn = zap_name_alloc(zap, mze->mze_name, 419 MT_EXACT); 420 mze_insert(zap, i, zn->zn_hash); 421 zap_name_free(zn); 422 } 423 } 424 } else { 425 zap->zap_salt = zap_f_phys(zap)->zap_salt; 426 zap->zap_normflags = zap_f_phys(zap)->zap_normflags; 427 428 ASSERT3U(sizeof (struct zap_leaf_header), ==, 429 2*ZAP_LEAF_CHUNKSIZE); 430 431 /* 432 * The embedded pointer table should not overlap the 433 * other members. 434 */ 435 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >, 436 &zap_f_phys(zap)->zap_salt); 437 438 /* 439 * The embedded pointer table should end at the end of 440 * the block 441 */ 442 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap, 443 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) - 444 (uintptr_t)zap_f_phys(zap), ==, 445 zap->zap_dbuf->db_size); 446 } 447 rw_exit(&zap->zap_rwlock); 448 return (zap); 449 } 450 451 int 452 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx, 453 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp) 454 { 455 zap_t *zap; 456 dmu_buf_t *db; 457 krw_t lt; 458 int err; 459 460 *zapp = NULL; 461 462 err = dmu_buf_hold(os, obj, 0, NULL, &db, DMU_READ_NO_PREFETCH); 463 if (err) 464 return (err); 465 466 #ifdef ZFS_DEBUG 467 { 468 dmu_object_info_t doi; 469 dmu_object_info_from_db(db, &doi); 470 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP); 471 } 472 #endif 473 474 zap = dmu_buf_get_user(db); 475 if (zap == NULL) 476 zap = mzap_open(os, obj, db); 477 478 /* 479 * We're checking zap_ismicro without the lock held, in order to 480 * tell what type of lock we want. Once we have some sort of 481 * lock, see if it really is the right type. In practice this 482 * can only be different if it was upgraded from micro to fat, 483 * and micro wanted WRITER but fat only needs READER. 484 */ 485 lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti; 486 rw_enter(&zap->zap_rwlock, lt); 487 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) { 488 /* it was upgraded, now we only need reader */ 489 ASSERT(lt == RW_WRITER); 490 ASSERT(RW_READER == 491 (!zap->zap_ismicro && fatreader) ? RW_READER : lti); 492 rw_downgrade(&zap->zap_rwlock); 493 lt = RW_READER; 494 } 495 496 zap->zap_objset = os; 497 498 if (lt == RW_WRITER) 499 dmu_buf_will_dirty(db, tx); 500 501 ASSERT3P(zap->zap_dbuf, ==, db); 502 503 ASSERT(!zap->zap_ismicro || 504 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks); 505 if (zap->zap_ismicro && tx && adding && 506 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) { 507 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE; 508 if (newsz > MZAP_MAX_BLKSZ) { 509 dprintf("upgrading obj %llu: num_entries=%u\n", 510 obj, zap->zap_m.zap_num_entries); 511 *zapp = zap; 512 return (mzap_upgrade(zapp, tx, 0)); 513 } 514 err = dmu_object_set_blocksize(os, obj, newsz, 0, tx); 515 ASSERT0(err); 516 zap->zap_m.zap_num_chunks = 517 db->db_size / MZAP_ENT_LEN - 1; 518 } 519 520 *zapp = zap; 521 return (0); 522 } 523 524 void 525 zap_unlockdir(zap_t *zap) 526 { 527 rw_exit(&zap->zap_rwlock); 528 dmu_buf_rele(zap->zap_dbuf, NULL); 529 } 530 531 static int 532 mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags) 533 { 534 mzap_phys_t *mzp; 535 int i, sz, nchunks; 536 int err = 0; 537 zap_t *zap = *zapp; 538 539 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 540 541 sz = zap->zap_dbuf->db_size; 542 mzp = zio_buf_alloc(sz); 543 bcopy(zap->zap_dbuf->db_data, mzp, sz); 544 nchunks = zap->zap_m.zap_num_chunks; 545 546 if (!flags) { 547 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object, 548 1ULL << fzap_default_block_shift, 0, tx); 549 if (err) { 550 zio_buf_free(mzp, sz); 551 return (err); 552 } 553 } 554 555 dprintf("upgrading obj=%llu with %u chunks\n", 556 zap->zap_object, nchunks); 557 /* XXX destroy the avl later, so we can use the stored hash value */ 558 mze_destroy(zap); 559 560 fzap_upgrade(zap, tx, flags); 561 562 for (i = 0; i < nchunks; i++) { 563 mzap_ent_phys_t *mze = &mzp->mz_chunk[i]; 564 zap_name_t *zn; 565 if (mze->mze_name[0] == 0) 566 continue; 567 dprintf("adding %s=%llu\n", 568 mze->mze_name, mze->mze_value); 569 zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT); 570 err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx); 571 zap = zn->zn_zap; /* fzap_add_cd() may change zap */ 572 zap_name_free(zn); 573 if (err) 574 break; 575 } 576 zio_buf_free(mzp, sz); 577 *zapp = zap; 578 return (err); 579 } 580 581 void 582 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags, 583 dmu_tx_t *tx) 584 { 585 dmu_buf_t *db; 586 mzap_phys_t *zp; 587 588 VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH)); 589 590 #ifdef ZFS_DEBUG 591 { 592 dmu_object_info_t doi; 593 dmu_object_info_from_db(db, &doi); 594 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP); 595 } 596 #endif 597 598 dmu_buf_will_dirty(db, tx); 599 zp = db->db_data; 600 zp->mz_block_type = ZBT_MICRO; 601 zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL; 602 zp->mz_normflags = normflags; 603 dmu_buf_rele(db, FTAG); 604 605 if (flags != 0) { 606 zap_t *zap; 607 /* Only fat zap supports flags; upgrade immediately. */ 608 VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER, 609 B_FALSE, B_FALSE, &zap)); 610 VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags)); 611 zap_unlockdir(zap); 612 } 613 } 614 615 int 616 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot, 617 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 618 { 619 return (zap_create_claim_norm(os, obj, 620 0, ot, bonustype, bonuslen, tx)); 621 } 622 623 int 624 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags, 625 dmu_object_type_t ot, 626 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 627 { 628 int err; 629 630 err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx); 631 if (err != 0) 632 return (err); 633 mzap_create_impl(os, obj, normflags, 0, tx); 634 return (0); 635 } 636 637 uint64_t 638 zap_create(objset_t *os, dmu_object_type_t ot, 639 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 640 { 641 return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx)); 642 } 643 644 uint64_t 645 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot, 646 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 647 { 648 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx); 649 650 mzap_create_impl(os, obj, normflags, 0, tx); 651 return (obj); 652 } 653 654 uint64_t 655 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags, 656 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, 657 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 658 { 659 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx); 660 661 ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT && 662 leaf_blockshift <= SPA_OLD_MAXBLOCKSHIFT && 663 indirect_blockshift >= SPA_MINBLOCKSHIFT && 664 indirect_blockshift <= SPA_OLD_MAXBLOCKSHIFT); 665 666 VERIFY(dmu_object_set_blocksize(os, obj, 667 1ULL << leaf_blockshift, indirect_blockshift, tx) == 0); 668 669 mzap_create_impl(os, obj, normflags, flags, tx); 670 return (obj); 671 } 672 673 int 674 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx) 675 { 676 /* 677 * dmu_object_free will free the object number and free the 678 * data. Freeing the data will cause our pageout function to be 679 * called, which will destroy our data (zap_leaf_t's and zap_t). 680 */ 681 682 return (dmu_object_free(os, zapobj, tx)); 683 } 684 685 void 686 zap_evict_sync(void *dbu) 687 { 688 zap_t *zap = dbu; 689 690 rw_destroy(&zap->zap_rwlock); 691 692 if (zap->zap_ismicro) 693 mze_destroy(zap); 694 else 695 mutex_destroy(&zap->zap_f.zap_num_entries_mtx); 696 697 kmem_free(zap, sizeof (zap_t)); 698 } 699 700 int 701 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count) 702 { 703 zap_t *zap; 704 int err; 705 706 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 707 if (err) 708 return (err); 709 if (!zap->zap_ismicro) { 710 err = fzap_count(zap, count); 711 } else { 712 *count = zap->zap_m.zap_num_entries; 713 } 714 zap_unlockdir(zap); 715 return (err); 716 } 717 718 /* 719 * zn may be NULL; if not specified, it will be computed if needed. 720 * See also the comment above zap_entry_normalization_conflict(). 721 */ 722 static boolean_t 723 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze) 724 { 725 mzap_ent_t *other; 726 int direction = AVL_BEFORE; 727 boolean_t allocdzn = B_FALSE; 728 729 if (zap->zap_normflags == 0) 730 return (B_FALSE); 731 732 again: 733 for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction); 734 other && other->mze_hash == mze->mze_hash; 735 other = avl_walk(&zap->zap_m.zap_avl, other, direction)) { 736 737 if (zn == NULL) { 738 zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name, 739 MT_FIRST); 740 allocdzn = B_TRUE; 741 } 742 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) { 743 if (allocdzn) 744 zap_name_free(zn); 745 return (B_TRUE); 746 } 747 } 748 749 if (direction == AVL_BEFORE) { 750 direction = AVL_AFTER; 751 goto again; 752 } 753 754 if (allocdzn) 755 zap_name_free(zn); 756 return (B_FALSE); 757 } 758 759 /* 760 * Routines for manipulating attributes. 761 */ 762 763 int 764 zap_lookup(objset_t *os, uint64_t zapobj, const char *name, 765 uint64_t integer_size, uint64_t num_integers, void *buf) 766 { 767 return (zap_lookup_norm(os, zapobj, name, integer_size, 768 num_integers, buf, MT_EXACT, NULL, 0, NULL)); 769 } 770 771 int 772 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name, 773 uint64_t integer_size, uint64_t num_integers, void *buf, 774 matchtype_t mt, char *realname, int rn_len, 775 boolean_t *ncp) 776 { 777 zap_t *zap; 778 int err; 779 mzap_ent_t *mze; 780 zap_name_t *zn; 781 782 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 783 if (err) 784 return (err); 785 zn = zap_name_alloc(zap, name, mt); 786 if (zn == NULL) { 787 zap_unlockdir(zap); 788 return (SET_ERROR(ENOTSUP)); 789 } 790 791 if (!zap->zap_ismicro) { 792 err = fzap_lookup(zn, integer_size, num_integers, buf, 793 realname, rn_len, ncp); 794 } else { 795 mze = mze_find(zn); 796 if (mze == NULL) { 797 err = SET_ERROR(ENOENT); 798 } else { 799 if (num_integers < 1) { 800 err = SET_ERROR(EOVERFLOW); 801 } else if (integer_size != 8) { 802 err = SET_ERROR(EINVAL); 803 } else { 804 *(uint64_t *)buf = 805 MZE_PHYS(zap, mze)->mze_value; 806 (void) strlcpy(realname, 807 MZE_PHYS(zap, mze)->mze_name, rn_len); 808 if (ncp) { 809 *ncp = mzap_normalization_conflict(zap, 810 zn, mze); 811 } 812 } 813 } 814 } 815 zap_name_free(zn); 816 zap_unlockdir(zap); 817 return (err); 818 } 819 820 int 821 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 822 int key_numints) 823 { 824 zap_t *zap; 825 int err; 826 zap_name_t *zn; 827 828 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 829 if (err) 830 return (err); 831 zn = zap_name_alloc_uint64(zap, key, key_numints); 832 if (zn == NULL) { 833 zap_unlockdir(zap); 834 return (SET_ERROR(ENOTSUP)); 835 } 836 837 fzap_prefetch(zn); 838 zap_name_free(zn); 839 zap_unlockdir(zap); 840 return (err); 841 } 842 843 int 844 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 845 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf) 846 { 847 zap_t *zap; 848 int err; 849 zap_name_t *zn; 850 851 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 852 if (err) 853 return (err); 854 zn = zap_name_alloc_uint64(zap, key, key_numints); 855 if (zn == NULL) { 856 zap_unlockdir(zap); 857 return (SET_ERROR(ENOTSUP)); 858 } 859 860 err = fzap_lookup(zn, integer_size, num_integers, buf, 861 NULL, 0, NULL); 862 zap_name_free(zn); 863 zap_unlockdir(zap); 864 return (err); 865 } 866 867 int 868 zap_contains(objset_t *os, uint64_t zapobj, const char *name) 869 { 870 int err = zap_lookup_norm(os, zapobj, name, 0, 871 0, NULL, MT_EXACT, NULL, 0, NULL); 872 if (err == EOVERFLOW || err == EINVAL) 873 err = 0; /* found, but skipped reading the value */ 874 return (err); 875 } 876 877 int 878 zap_length(objset_t *os, uint64_t zapobj, const char *name, 879 uint64_t *integer_size, uint64_t *num_integers) 880 { 881 zap_t *zap; 882 int err; 883 mzap_ent_t *mze; 884 zap_name_t *zn; 885 886 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 887 if (err) 888 return (err); 889 zn = zap_name_alloc(zap, name, MT_EXACT); 890 if (zn == NULL) { 891 zap_unlockdir(zap); 892 return (SET_ERROR(ENOTSUP)); 893 } 894 if (!zap->zap_ismicro) { 895 err = fzap_length(zn, integer_size, num_integers); 896 } else { 897 mze = mze_find(zn); 898 if (mze == NULL) { 899 err = SET_ERROR(ENOENT); 900 } else { 901 if (integer_size) 902 *integer_size = 8; 903 if (num_integers) 904 *num_integers = 1; 905 } 906 } 907 zap_name_free(zn); 908 zap_unlockdir(zap); 909 return (err); 910 } 911 912 int 913 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 914 int key_numints, uint64_t *integer_size, uint64_t *num_integers) 915 { 916 zap_t *zap; 917 int err; 918 zap_name_t *zn; 919 920 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 921 if (err) 922 return (err); 923 zn = zap_name_alloc_uint64(zap, key, key_numints); 924 if (zn == NULL) { 925 zap_unlockdir(zap); 926 return (SET_ERROR(ENOTSUP)); 927 } 928 err = fzap_length(zn, integer_size, num_integers); 929 zap_name_free(zn); 930 zap_unlockdir(zap); 931 return (err); 932 } 933 934 static void 935 mzap_addent(zap_name_t *zn, uint64_t value) 936 { 937 int i; 938 zap_t *zap = zn->zn_zap; 939 int start = zap->zap_m.zap_alloc_next; 940 uint32_t cd; 941 942 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 943 944 #ifdef ZFS_DEBUG 945 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) { 946 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i]; 947 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0); 948 } 949 #endif 950 951 cd = mze_find_unused_cd(zap, zn->zn_hash); 952 /* given the limited size of the microzap, this can't happen */ 953 ASSERT(cd < zap_maxcd(zap)); 954 955 again: 956 for (i = start; i < zap->zap_m.zap_num_chunks; i++) { 957 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i]; 958 if (mze->mze_name[0] == 0) { 959 mze->mze_value = value; 960 mze->mze_cd = cd; 961 (void) strcpy(mze->mze_name, zn->zn_key_orig); 962 zap->zap_m.zap_num_entries++; 963 zap->zap_m.zap_alloc_next = i+1; 964 if (zap->zap_m.zap_alloc_next == 965 zap->zap_m.zap_num_chunks) 966 zap->zap_m.zap_alloc_next = 0; 967 mze_insert(zap, i, zn->zn_hash); 968 return; 969 } 970 } 971 if (start != 0) { 972 start = 0; 973 goto again; 974 } 975 ASSERT(!"out of entries!"); 976 } 977 978 int 979 zap_add(objset_t *os, uint64_t zapobj, const char *key, 980 int integer_size, uint64_t num_integers, 981 const void *val, dmu_tx_t *tx) 982 { 983 zap_t *zap; 984 int err; 985 mzap_ent_t *mze; 986 const uint64_t *intval = val; 987 zap_name_t *zn; 988 989 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 990 if (err) 991 return (err); 992 zn = zap_name_alloc(zap, key, MT_EXACT); 993 if (zn == NULL) { 994 zap_unlockdir(zap); 995 return (SET_ERROR(ENOTSUP)); 996 } 997 if (!zap->zap_ismicro) { 998 err = fzap_add(zn, integer_size, num_integers, val, tx); 999 zap = zn->zn_zap; /* fzap_add() may change zap */ 1000 } else if (integer_size != 8 || num_integers != 1 || 1001 strlen(key) >= MZAP_NAME_LEN) { 1002 err = mzap_upgrade(&zn->zn_zap, tx, 0); 1003 if (err == 0) 1004 err = fzap_add(zn, integer_size, num_integers, val, tx); 1005 zap = zn->zn_zap; /* fzap_add() may change zap */ 1006 } else { 1007 mze = mze_find(zn); 1008 if (mze != NULL) { 1009 err = SET_ERROR(EEXIST); 1010 } else { 1011 mzap_addent(zn, *intval); 1012 } 1013 } 1014 ASSERT(zap == zn->zn_zap); 1015 zap_name_free(zn); 1016 if (zap != NULL) /* may be NULL if fzap_add() failed */ 1017 zap_unlockdir(zap); 1018 return (err); 1019 } 1020 1021 int 1022 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1023 int key_numints, int integer_size, uint64_t num_integers, 1024 const void *val, dmu_tx_t *tx) 1025 { 1026 zap_t *zap; 1027 int err; 1028 zap_name_t *zn; 1029 1030 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 1031 if (err) 1032 return (err); 1033 zn = zap_name_alloc_uint64(zap, key, key_numints); 1034 if (zn == NULL) { 1035 zap_unlockdir(zap); 1036 return (SET_ERROR(ENOTSUP)); 1037 } 1038 err = fzap_add(zn, integer_size, num_integers, val, tx); 1039 zap = zn->zn_zap; /* fzap_add() may change zap */ 1040 zap_name_free(zn); 1041 if (zap != NULL) /* may be NULL if fzap_add() failed */ 1042 zap_unlockdir(zap); 1043 return (err); 1044 } 1045 1046 int 1047 zap_update(objset_t *os, uint64_t zapobj, const char *name, 1048 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 1049 { 1050 zap_t *zap; 1051 mzap_ent_t *mze; 1052 uint64_t oldval; 1053 const uint64_t *intval = val; 1054 zap_name_t *zn; 1055 int err; 1056 1057 #ifdef ZFS_DEBUG 1058 /* 1059 * If there is an old value, it shouldn't change across the 1060 * lockdir (eg, due to bprewrite's xlation). 1061 */ 1062 if (integer_size == 8 && num_integers == 1) 1063 (void) zap_lookup(os, zapobj, name, 8, 1, &oldval); 1064 #endif 1065 1066 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 1067 if (err) 1068 return (err); 1069 zn = zap_name_alloc(zap, name, MT_EXACT); 1070 if (zn == NULL) { 1071 zap_unlockdir(zap); 1072 return (SET_ERROR(ENOTSUP)); 1073 } 1074 if (!zap->zap_ismicro) { 1075 err = fzap_update(zn, integer_size, num_integers, val, tx); 1076 zap = zn->zn_zap; /* fzap_update() may change zap */ 1077 } else if (integer_size != 8 || num_integers != 1 || 1078 strlen(name) >= MZAP_NAME_LEN) { 1079 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n", 1080 zapobj, integer_size, num_integers, name); 1081 err = mzap_upgrade(&zn->zn_zap, tx, 0); 1082 if (err == 0) 1083 err = fzap_update(zn, integer_size, num_integers, 1084 val, tx); 1085 zap = zn->zn_zap; /* fzap_update() may change zap */ 1086 } else { 1087 mze = mze_find(zn); 1088 if (mze != NULL) { 1089 ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval); 1090 MZE_PHYS(zap, mze)->mze_value = *intval; 1091 } else { 1092 mzap_addent(zn, *intval); 1093 } 1094 } 1095 ASSERT(zap == zn->zn_zap); 1096 zap_name_free(zn); 1097 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ 1098 zap_unlockdir(zap); 1099 return (err); 1100 } 1101 1102 int 1103 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1104 int key_numints, 1105 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 1106 { 1107 zap_t *zap; 1108 zap_name_t *zn; 1109 int err; 1110 1111 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 1112 if (err) 1113 return (err); 1114 zn = zap_name_alloc_uint64(zap, key, key_numints); 1115 if (zn == NULL) { 1116 zap_unlockdir(zap); 1117 return (SET_ERROR(ENOTSUP)); 1118 } 1119 err = fzap_update(zn, integer_size, num_integers, val, tx); 1120 zap = zn->zn_zap; /* fzap_update() may change zap */ 1121 zap_name_free(zn); 1122 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ 1123 zap_unlockdir(zap); 1124 return (err); 1125 } 1126 1127 int 1128 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx) 1129 { 1130 return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx)); 1131 } 1132 1133 int 1134 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name, 1135 matchtype_t mt, dmu_tx_t *tx) 1136 { 1137 zap_t *zap; 1138 int err; 1139 mzap_ent_t *mze; 1140 zap_name_t *zn; 1141 1142 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap); 1143 if (err) 1144 return (err); 1145 zn = zap_name_alloc(zap, name, mt); 1146 if (zn == NULL) { 1147 zap_unlockdir(zap); 1148 return (SET_ERROR(ENOTSUP)); 1149 } 1150 if (!zap->zap_ismicro) { 1151 err = fzap_remove(zn, tx); 1152 } else { 1153 mze = mze_find(zn); 1154 if (mze == NULL) { 1155 err = SET_ERROR(ENOENT); 1156 } else { 1157 zap->zap_m.zap_num_entries--; 1158 bzero(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid], 1159 sizeof (mzap_ent_phys_t)); 1160 mze_remove(zap, mze); 1161 } 1162 } 1163 zap_name_free(zn); 1164 zap_unlockdir(zap); 1165 return (err); 1166 } 1167 1168 int 1169 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1170 int key_numints, dmu_tx_t *tx) 1171 { 1172 zap_t *zap; 1173 int err; 1174 zap_name_t *zn; 1175 1176 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap); 1177 if (err) 1178 return (err); 1179 zn = zap_name_alloc_uint64(zap, key, key_numints); 1180 if (zn == NULL) { 1181 zap_unlockdir(zap); 1182 return (SET_ERROR(ENOTSUP)); 1183 } 1184 err = fzap_remove(zn, tx); 1185 zap_name_free(zn); 1186 zap_unlockdir(zap); 1187 return (err); 1188 } 1189 1190 /* 1191 * Routines for iterating over the attributes. 1192 */ 1193 1194 void 1195 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj, 1196 uint64_t serialized) 1197 { 1198 zc->zc_objset = os; 1199 zc->zc_zap = NULL; 1200 zc->zc_leaf = NULL; 1201 zc->zc_zapobj = zapobj; 1202 zc->zc_serialized = serialized; 1203 zc->zc_hash = 0; 1204 zc->zc_cd = 0; 1205 } 1206 1207 void 1208 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj) 1209 { 1210 zap_cursor_init_serialized(zc, os, zapobj, 0); 1211 } 1212 1213 void 1214 zap_cursor_fini(zap_cursor_t *zc) 1215 { 1216 if (zc->zc_zap) { 1217 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 1218 zap_unlockdir(zc->zc_zap); 1219 zc->zc_zap = NULL; 1220 } 1221 if (zc->zc_leaf) { 1222 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 1223 zap_put_leaf(zc->zc_leaf); 1224 zc->zc_leaf = NULL; 1225 } 1226 zc->zc_objset = NULL; 1227 } 1228 1229 uint64_t 1230 zap_cursor_serialize(zap_cursor_t *zc) 1231 { 1232 if (zc->zc_hash == -1ULL) 1233 return (-1ULL); 1234 if (zc->zc_zap == NULL) 1235 return (zc->zc_serialized); 1236 ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0); 1237 ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap)); 1238 1239 /* 1240 * We want to keep the high 32 bits of the cursor zero if we can, so 1241 * that 32-bit programs can access this. So usually use a small 1242 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits 1243 * of the cursor. 1244 * 1245 * [ collision differentiator | zap_hashbits()-bit hash value ] 1246 */ 1247 return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) | 1248 ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap))); 1249 } 1250 1251 int 1252 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za) 1253 { 1254 int err; 1255 avl_index_t idx; 1256 mzap_ent_t mze_tofind; 1257 mzap_ent_t *mze; 1258 1259 if (zc->zc_hash == -1ULL) 1260 return (SET_ERROR(ENOENT)); 1261 1262 if (zc->zc_zap == NULL) { 1263 int hb; 1264 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL, 1265 RW_READER, TRUE, FALSE, &zc->zc_zap); 1266 if (err) 1267 return (err); 1268 1269 /* 1270 * To support zap_cursor_init_serialized, advance, retrieve, 1271 * we must add to the existing zc_cd, which may already 1272 * be 1 due to the zap_cursor_advance. 1273 */ 1274 ASSERT(zc->zc_hash == 0); 1275 hb = zap_hashbits(zc->zc_zap); 1276 zc->zc_hash = zc->zc_serialized << (64 - hb); 1277 zc->zc_cd += zc->zc_serialized >> hb; 1278 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */ 1279 zc->zc_cd = 0; 1280 } else { 1281 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 1282 } 1283 if (!zc->zc_zap->zap_ismicro) { 1284 err = fzap_cursor_retrieve(zc->zc_zap, zc, za); 1285 } else { 1286 mze_tofind.mze_hash = zc->zc_hash; 1287 mze_tofind.mze_cd = zc->zc_cd; 1288 1289 mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx); 1290 if (mze == NULL) { 1291 mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl, 1292 idx, AVL_AFTER); 1293 } 1294 if (mze) { 1295 mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze); 1296 ASSERT3U(mze->mze_cd, ==, mzep->mze_cd); 1297 za->za_normalization_conflict = 1298 mzap_normalization_conflict(zc->zc_zap, NULL, mze); 1299 za->za_integer_length = 8; 1300 za->za_num_integers = 1; 1301 za->za_first_integer = mzep->mze_value; 1302 (void) strcpy(za->za_name, mzep->mze_name); 1303 zc->zc_hash = mze->mze_hash; 1304 zc->zc_cd = mze->mze_cd; 1305 err = 0; 1306 } else { 1307 zc->zc_hash = -1ULL; 1308 err = SET_ERROR(ENOENT); 1309 } 1310 } 1311 rw_exit(&zc->zc_zap->zap_rwlock); 1312 return (err); 1313 } 1314 1315 void 1316 zap_cursor_advance(zap_cursor_t *zc) 1317 { 1318 if (zc->zc_hash == -1ULL) 1319 return; 1320 zc->zc_cd++; 1321 } 1322 1323 int 1324 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs) 1325 { 1326 int err; 1327 zap_t *zap; 1328 1329 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 1330 if (err) 1331 return (err); 1332 1333 bzero(zs, sizeof (zap_stats_t)); 1334 1335 if (zap->zap_ismicro) { 1336 zs->zs_blocksize = zap->zap_dbuf->db_size; 1337 zs->zs_num_entries = zap->zap_m.zap_num_entries; 1338 zs->zs_num_blocks = 1; 1339 } else { 1340 fzap_get_stats(zap, zs); 1341 } 1342 zap_unlockdir(zap); 1343 return (0); 1344 } 1345 1346 int 1347 zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add, 1348 uint64_t *towrite, uint64_t *tooverwrite) 1349 { 1350 zap_t *zap; 1351 int err = 0; 1352 1353 /* 1354 * Since, we don't have a name, we cannot figure out which blocks will 1355 * be affected in this operation. So, account for the worst case : 1356 * - 3 blocks overwritten: target leaf, ptrtbl block, header block 1357 * - 4 new blocks written if adding: 1358 * - 2 blocks for possibly split leaves, 1359 * - 2 grown ptrtbl blocks 1360 * 1361 * This also accomodates the case where an add operation to a fairly 1362 * large microzap results in a promotion to fatzap. 1363 */ 1364 if (name == NULL) { 1365 *towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE; 1366 return (err); 1367 } 1368 1369 /* 1370 * We lock the zap with adding == FALSE. Because, if we pass 1371 * the actual value of add, it could trigger a mzap_upgrade(). 1372 * At present we are just evaluating the possibility of this operation 1373 * and hence we donot want to trigger an upgrade. 1374 */ 1375 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 1376 if (err) 1377 return (err); 1378 1379 if (!zap->zap_ismicro) { 1380 zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT); 1381 if (zn) { 1382 err = fzap_count_write(zn, add, towrite, 1383 tooverwrite); 1384 zap_name_free(zn); 1385 } else { 1386 /* 1387 * We treat this case as similar to (name == NULL) 1388 */ 1389 *towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE; 1390 } 1391 } else { 1392 /* 1393 * We are here if (name != NULL) and this is a micro-zap. 1394 * We account for the header block depending on whether it 1395 * is freeable. 1396 * 1397 * Incase of an add-operation it is hard to find out 1398 * if this add will promote this microzap to fatzap. 1399 * Hence, we consider the worst case and account for the 1400 * blocks assuming this microzap would be promoted to a 1401 * fatzap. 1402 * 1403 * 1 block overwritten : header block 1404 * 4 new blocks written : 2 new split leaf, 2 grown 1405 * ptrtbl blocks 1406 */ 1407 if (dmu_buf_freeable(zap->zap_dbuf)) 1408 *tooverwrite += MZAP_MAX_BLKSZ; 1409 else 1410 *towrite += MZAP_MAX_BLKSZ; 1411 1412 if (add) { 1413 *towrite += 4 * MZAP_MAX_BLKSZ; 1414 } 1415 } 1416 1417 zap_unlockdir(zap); 1418 return (err); 1419 } 1420