1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 * Copyright (c) 2024, Klara, Inc.
28 */
29
30 #include <sys/zio.h>
31 #include <sys/spa.h>
32 #include <sys/dmu.h>
33 #include <sys/zfs_context.h>
34 #include <sys/zap.h>
35 #include <sys/zap_impl.h>
36 #include <sys/zap_leaf.h>
37 #include <sys/btree.h>
38 #include <sys/arc.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/spa_impl.h>
41
42 #ifdef _KERNEL
43 #include <sys/sunddi.h>
44 #endif
45
46 /*
47 * The maximum size (in bytes) of a microzap before it is converted to a
48 * fatzap. It will be rounded up to next multiple of 512 (SPA_MINBLOCKSIZE).
49 *
50 * By definition, a microzap must fit into a single block, so this has
51 * traditionally been SPA_OLD_MAXBLOCKSIZE, and is set to that by default.
52 * Setting this higher requires both the large_blocks feature (to even create
53 * blocks that large) and the large_microzap feature (to enable the stream
54 * machinery to understand not to try to split a microzap block).
55 *
56 * If large_microzap is enabled, this value will be clamped to
57 * spa_maxblocksize(). If not, it will be clamped to SPA_OLD_MAXBLOCKSIZE.
58 */
59 static int zap_micro_max_size = SPA_OLD_MAXBLOCKSIZE;
60
61 uint64_t
zap_get_micro_max_size(spa_t * spa)62 zap_get_micro_max_size(spa_t *spa)
63 {
64 uint64_t maxsz = P2ROUNDUP(zap_micro_max_size, SPA_MINBLOCKSIZE);
65 if (maxsz <= SPA_OLD_MAXBLOCKSIZE)
66 return (maxsz);
67 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_MICROZAP))
68 return (MIN(maxsz, spa_maxblocksize(spa)));
69 return (SPA_OLD_MAXBLOCKSIZE);
70 }
71
72 static int mzap_upgrade(zap_t **zapp,
73 const void *tag, dmu_tx_t *tx, zap_flags_t flags);
74
75 uint64_t
zap_getflags(zap_t * zap)76 zap_getflags(zap_t *zap)
77 {
78 if (zap->zap_ismicro)
79 return (0);
80 return (zap_f_phys(zap)->zap_flags);
81 }
82
83 int
zap_hashbits(zap_t * zap)84 zap_hashbits(zap_t *zap)
85 {
86 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
87 return (48);
88 else
89 return (28);
90 }
91
92 uint32_t
zap_maxcd(zap_t * zap)93 zap_maxcd(zap_t *zap)
94 {
95 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
96 return ((1<<16)-1);
97 else
98 return (-1U);
99 }
100
101 static uint64_t
zap_hash(zap_name_t * zn)102 zap_hash(zap_name_t *zn)
103 {
104 zap_t *zap = zn->zn_zap;
105 uint64_t h = 0;
106
107 if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
108 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
109 h = *(uint64_t *)zn->zn_key_orig;
110 } else {
111 h = zap->zap_salt;
112 ASSERT(h != 0);
113 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
114
115 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
116 const uint64_t *wp = zn->zn_key_norm;
117
118 ASSERT(zn->zn_key_intlen == 8);
119 for (int i = 0; i < zn->zn_key_norm_numints;
120 wp++, i++) {
121 uint64_t word = *wp;
122
123 for (int j = 0; j < 8; j++) {
124 h = (h >> 8) ^
125 zfs_crc64_table[(h ^ word) & 0xFF];
126 word >>= NBBY;
127 }
128 }
129 } else {
130 const uint8_t *cp = zn->zn_key_norm;
131
132 /*
133 * We previously stored the terminating null on
134 * disk, but didn't hash it, so we need to
135 * continue to not hash it. (The
136 * zn_key_*_numints includes the terminating
137 * null for non-binary keys.)
138 */
139 int len = zn->zn_key_norm_numints - 1;
140
141 ASSERT(zn->zn_key_intlen == 1);
142 for (int i = 0; i < len; cp++, i++) {
143 h = (h >> 8) ^
144 zfs_crc64_table[(h ^ *cp) & 0xFF];
145 }
146 }
147 }
148 /*
149 * Don't use all 64 bits, since we need some in the cookie for
150 * the collision differentiator. We MUST use the high bits,
151 * since those are the ones that we first pay attention to when
152 * choosing the bucket.
153 */
154 h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
155
156 return (h);
157 }
158
159 static int
zap_normalize(zap_t * zap,const char * name,char * namenorm,int normflags,size_t outlen)160 zap_normalize(zap_t *zap, const char *name, char *namenorm, int normflags,
161 size_t outlen)
162 {
163 ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
164
165 size_t inlen = strlen(name) + 1;
166
167 int err = 0;
168 (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
169 normflags | U8_TEXTPREP_IGNORE_NULL | U8_TEXTPREP_IGNORE_INVALID,
170 U8_UNICODE_LATEST, &err);
171
172 return (err);
173 }
174
175 boolean_t
zap_match(zap_name_t * zn,const char * matchname)176 zap_match(zap_name_t *zn, const char *matchname)
177 {
178 boolean_t res = B_FALSE;
179 ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
180
181 if (zn->zn_matchtype & MT_NORMALIZE) {
182 size_t namelen = zn->zn_normbuf_len;
183 char normbuf[ZAP_MAXNAMELEN];
184 char *norm = normbuf;
185
186 /*
187 * Cannot allocate this on-stack as it exceed the stack-limit of
188 * 1024.
189 */
190 if (namelen > ZAP_MAXNAMELEN)
191 norm = kmem_alloc(namelen, KM_SLEEP);
192
193 if (zap_normalize(zn->zn_zap, matchname, norm,
194 zn->zn_normflags, namelen) != 0) {
195 res = B_FALSE;
196 } else {
197 res = (strcmp(zn->zn_key_norm, norm) == 0);
198 }
199 if (norm != normbuf)
200 kmem_free(norm, namelen);
201 } else {
202 res = (strcmp(zn->zn_key_orig, matchname) == 0);
203 }
204 return (res);
205 }
206
207 static kmem_cache_t *zap_name_cache;
208 static kmem_cache_t *zap_attr_cache;
209 static kmem_cache_t *zap_name_long_cache;
210 static kmem_cache_t *zap_attr_long_cache;
211
212 void
zap_init(void)213 zap_init(void)
214 {
215 zap_name_cache = kmem_cache_create("zap_name",
216 sizeof (zap_name_t) + ZAP_MAXNAMELEN, 0, NULL, NULL,
217 NULL, NULL, NULL, 0);
218
219 zap_attr_cache = kmem_cache_create("zap_attr_cache",
220 sizeof (zap_attribute_t) + ZAP_MAXNAMELEN, 0, NULL,
221 NULL, NULL, NULL, NULL, 0);
222
223 zap_name_long_cache = kmem_cache_create("zap_name_long",
224 sizeof (zap_name_t) + ZAP_MAXNAMELEN_NEW, 0, NULL, NULL,
225 NULL, NULL, NULL, 0);
226
227 zap_attr_long_cache = kmem_cache_create("zap_attr_long_cache",
228 sizeof (zap_attribute_t) + ZAP_MAXNAMELEN_NEW, 0, NULL,
229 NULL, NULL, NULL, NULL, 0);
230 }
231
232 void
zap_fini(void)233 zap_fini(void)
234 {
235 kmem_cache_destroy(zap_name_cache);
236 kmem_cache_destroy(zap_attr_cache);
237 kmem_cache_destroy(zap_name_long_cache);
238 kmem_cache_destroy(zap_attr_long_cache);
239 }
240
241 static zap_name_t *
zap_name_alloc(zap_t * zap,boolean_t longname)242 zap_name_alloc(zap_t *zap, boolean_t longname)
243 {
244 kmem_cache_t *cache = longname ? zap_name_long_cache : zap_name_cache;
245 zap_name_t *zn = kmem_cache_alloc(cache, KM_SLEEP);
246
247 zn->zn_zap = zap;
248 zn->zn_normbuf_len = longname ? ZAP_MAXNAMELEN_NEW : ZAP_MAXNAMELEN;
249 return (zn);
250 }
251
252 void
zap_name_free(zap_name_t * zn)253 zap_name_free(zap_name_t *zn)
254 {
255 if (zn->zn_normbuf_len == ZAP_MAXNAMELEN) {
256 kmem_cache_free(zap_name_cache, zn);
257 } else {
258 ASSERT3U(zn->zn_normbuf_len, ==, ZAP_MAXNAMELEN_NEW);
259 kmem_cache_free(zap_name_long_cache, zn);
260 }
261 }
262
263 static int
zap_name_init_str(zap_name_t * zn,const char * key,matchtype_t mt)264 zap_name_init_str(zap_name_t *zn, const char *key, matchtype_t mt)
265 {
266 zap_t *zap = zn->zn_zap;
267 size_t key_len = strlen(key) + 1;
268
269 /* Make sure zn is allocated for longname if key is long */
270 IMPLY(key_len > ZAP_MAXNAMELEN,
271 zn->zn_normbuf_len == ZAP_MAXNAMELEN_NEW);
272
273 zn->zn_key_intlen = sizeof (*key);
274 zn->zn_key_orig = key;
275 zn->zn_key_orig_numints = key_len;
276 zn->zn_matchtype = mt;
277 zn->zn_normflags = zap->zap_normflags;
278
279 /*
280 * If we're dealing with a case sensitive lookup on a mixed or
281 * insensitive fs, remove U8_TEXTPREP_TOUPPER or the lookup
282 * will fold case to all caps overriding the lookup request.
283 */
284 if (mt & MT_MATCH_CASE)
285 zn->zn_normflags &= ~U8_TEXTPREP_TOUPPER;
286
287 if (zap->zap_normflags) {
288 /*
289 * We *must* use zap_normflags because this normalization is
290 * what the hash is computed from.
291 */
292 if (zap_normalize(zap, key, zn->zn_normbuf,
293 zap->zap_normflags, zn->zn_normbuf_len) != 0)
294 return (SET_ERROR(ENOTSUP));
295 zn->zn_key_norm = zn->zn_normbuf;
296 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
297 } else {
298 if (mt != 0)
299 return (SET_ERROR(ENOTSUP));
300 zn->zn_key_norm = zn->zn_key_orig;
301 zn->zn_key_norm_numints = zn->zn_key_orig_numints;
302 }
303
304 zn->zn_hash = zap_hash(zn);
305
306 if (zap->zap_normflags != zn->zn_normflags) {
307 /*
308 * We *must* use zn_normflags because this normalization is
309 * what the matching is based on. (Not the hash!)
310 */
311 if (zap_normalize(zap, key, zn->zn_normbuf,
312 zn->zn_normflags, zn->zn_normbuf_len) != 0)
313 return (SET_ERROR(ENOTSUP));
314 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
315 }
316
317 return (0);
318 }
319
320 zap_name_t *
zap_name_alloc_str(zap_t * zap,const char * key,matchtype_t mt)321 zap_name_alloc_str(zap_t *zap, const char *key, matchtype_t mt)
322 {
323 size_t key_len = strlen(key) + 1;
324 zap_name_t *zn = zap_name_alloc(zap, (key_len > ZAP_MAXNAMELEN));
325 if (zap_name_init_str(zn, key, mt) != 0) {
326 zap_name_free(zn);
327 return (NULL);
328 }
329 return (zn);
330 }
331
332 static zap_name_t *
zap_name_alloc_uint64(zap_t * zap,const uint64_t * key,int numints)333 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
334 {
335 zap_name_t *zn = kmem_cache_alloc(zap_name_cache, KM_SLEEP);
336
337 ASSERT(zap->zap_normflags == 0);
338 zn->zn_zap = zap;
339 zn->zn_key_intlen = sizeof (*key);
340 zn->zn_key_orig = zn->zn_key_norm = key;
341 zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
342 zn->zn_matchtype = 0;
343 zn->zn_normbuf_len = ZAP_MAXNAMELEN;
344
345 zn->zn_hash = zap_hash(zn);
346 return (zn);
347 }
348
349 static void
mzap_byteswap(mzap_phys_t * buf,size_t size)350 mzap_byteswap(mzap_phys_t *buf, size_t size)
351 {
352 buf->mz_block_type = BSWAP_64(buf->mz_block_type);
353 buf->mz_salt = BSWAP_64(buf->mz_salt);
354 buf->mz_normflags = BSWAP_64(buf->mz_normflags);
355 int max = (size / MZAP_ENT_LEN) - 1;
356 for (int i = 0; i < max; i++) {
357 buf->mz_chunk[i].mze_value =
358 BSWAP_64(buf->mz_chunk[i].mze_value);
359 buf->mz_chunk[i].mze_cd =
360 BSWAP_32(buf->mz_chunk[i].mze_cd);
361 }
362 }
363
364 void
zap_byteswap(void * buf,size_t size)365 zap_byteswap(void *buf, size_t size)
366 {
367 uint64_t block_type = *(uint64_t *)buf;
368
369 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
370 /* ASSERT(magic == ZAP_LEAF_MAGIC); */
371 mzap_byteswap(buf, size);
372 } else {
373 fzap_byteswap(buf, size);
374 }
375 }
376
377 __attribute__((always_inline)) inline
378 static int
mze_compare(const void * arg1,const void * arg2)379 mze_compare(const void *arg1, const void *arg2)
380 {
381 const mzap_ent_t *mze1 = arg1;
382 const mzap_ent_t *mze2 = arg2;
383
384 return (TREE_CMP((uint64_t)(mze1->mze_hash) << 32 | mze1->mze_cd,
385 (uint64_t)(mze2->mze_hash) << 32 | mze2->mze_cd));
386 }
387
ZFS_BTREE_FIND_IN_BUF_FUNC(mze_find_in_buf,mzap_ent_t,mze_compare)388 ZFS_BTREE_FIND_IN_BUF_FUNC(mze_find_in_buf, mzap_ent_t,
389 mze_compare)
390
391 static void
392 mze_insert(zap_t *zap, uint16_t chunkid, uint64_t hash)
393 {
394 mzap_ent_t mze;
395
396 ASSERT(zap->zap_ismicro);
397 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
398
399 mze.mze_chunkid = chunkid;
400 ASSERT0(hash & 0xffffffff);
401 mze.mze_hash = hash >> 32;
402 ASSERT3U(MZE_PHYS(zap, &mze)->mze_cd, <=, 0xffff);
403 mze.mze_cd = (uint16_t)MZE_PHYS(zap, &mze)->mze_cd;
404 ASSERT(MZE_PHYS(zap, &mze)->mze_name[0] != 0);
405 zfs_btree_add(&zap->zap_m.zap_tree, &mze);
406 }
407
408 static mzap_ent_t *
mze_find(zap_name_t * zn,zfs_btree_index_t * idx)409 mze_find(zap_name_t *zn, zfs_btree_index_t *idx)
410 {
411 mzap_ent_t mze_tofind;
412 mzap_ent_t *mze;
413 zfs_btree_t *tree = &zn->zn_zap->zap_m.zap_tree;
414
415 ASSERT(zn->zn_zap->zap_ismicro);
416 ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
417
418 ASSERT0(zn->zn_hash & 0xffffffff);
419 mze_tofind.mze_hash = zn->zn_hash >> 32;
420 mze_tofind.mze_cd = 0;
421
422 mze = zfs_btree_find(tree, &mze_tofind, idx);
423 if (mze == NULL)
424 mze = zfs_btree_next(tree, idx, idx);
425 for (; mze && mze->mze_hash == mze_tofind.mze_hash;
426 mze = zfs_btree_next(tree, idx, idx)) {
427 ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
428 if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
429 return (mze);
430 }
431
432 return (NULL);
433 }
434
435 static uint32_t
mze_find_unused_cd(zap_t * zap,uint64_t hash)436 mze_find_unused_cd(zap_t *zap, uint64_t hash)
437 {
438 mzap_ent_t mze_tofind;
439 zfs_btree_index_t idx;
440 zfs_btree_t *tree = &zap->zap_m.zap_tree;
441
442 ASSERT(zap->zap_ismicro);
443 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
444
445 ASSERT0(hash & 0xffffffff);
446 hash >>= 32;
447 mze_tofind.mze_hash = hash;
448 mze_tofind.mze_cd = 0;
449
450 uint32_t cd = 0;
451 for (mzap_ent_t *mze = zfs_btree_find(tree, &mze_tofind, &idx);
452 mze && mze->mze_hash == hash;
453 mze = zfs_btree_next(tree, &idx, &idx)) {
454 if (mze->mze_cd != cd)
455 break;
456 cd++;
457 }
458
459 return (cd);
460 }
461
462 /*
463 * Each mzap entry requires at max : 4 chunks
464 * 3 chunks for names + 1 chunk for value.
465 */
466 #define MZAP_ENT_CHUNKS (1 + ZAP_LEAF_ARRAY_NCHUNKS(MZAP_NAME_LEN) + \
467 ZAP_LEAF_ARRAY_NCHUNKS(sizeof (uint64_t)))
468
469 /*
470 * Check if the current entry keeps the colliding entries under the fatzap leaf
471 * size.
472 */
473 static boolean_t
mze_canfit_fzap_leaf(zap_name_t * zn,uint64_t hash)474 mze_canfit_fzap_leaf(zap_name_t *zn, uint64_t hash)
475 {
476 zap_t *zap = zn->zn_zap;
477 mzap_ent_t mze_tofind;
478 zfs_btree_index_t idx;
479 zfs_btree_t *tree = &zap->zap_m.zap_tree;
480 uint32_t mzap_ents = 0;
481
482 ASSERT0(hash & 0xffffffff);
483 hash >>= 32;
484 mze_tofind.mze_hash = hash;
485 mze_tofind.mze_cd = 0;
486
487 for (mzap_ent_t *mze = zfs_btree_find(tree, &mze_tofind, &idx);
488 mze && mze->mze_hash == hash;
489 mze = zfs_btree_next(tree, &idx, &idx)) {
490 mzap_ents++;
491 }
492
493 /* Include the new entry being added */
494 mzap_ents++;
495
496 return (ZAP_LEAF_NUMCHUNKS_DEF > (mzap_ents * MZAP_ENT_CHUNKS));
497 }
498
499 static void
mze_destroy(zap_t * zap)500 mze_destroy(zap_t *zap)
501 {
502 zfs_btree_clear(&zap->zap_m.zap_tree);
503 zfs_btree_destroy(&zap->zap_m.zap_tree);
504 }
505
506 static zap_t *
mzap_open(dmu_buf_t * db)507 mzap_open(dmu_buf_t *db)
508 {
509 zap_t *winner;
510 uint64_t *zap_hdr = (uint64_t *)db->db_data;
511 uint64_t zap_block_type = zap_hdr[0];
512 uint64_t zap_magic = zap_hdr[1];
513
514 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
515
516 zap_t *zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
517 rw_init(&zap->zap_rwlock, NULL, RW_DEFAULT, NULL);
518 rw_enter(&zap->zap_rwlock, RW_WRITER);
519 zap->zap_objset = dmu_buf_get_objset(db);
520 zap->zap_object = db->db_object;
521 zap->zap_dbuf = db;
522
523 if (zap_block_type != ZBT_MICRO) {
524 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT,
525 0);
526 zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
527 if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) {
528 winner = NULL; /* No actual winner here... */
529 goto handle_winner;
530 }
531 } else {
532 zap->zap_ismicro = TRUE;
533 }
534
535 /*
536 * Make sure that zap_ismicro is set before we let others see
537 * it, because zap_lockdir() checks zap_ismicro without the lock
538 * held.
539 */
540 dmu_buf_init_user(&zap->zap_dbu, zap_evict_sync, NULL, &zap->zap_dbuf);
541 winner = dmu_buf_set_user(db, &zap->zap_dbu);
542
543 if (winner != NULL)
544 goto handle_winner;
545
546 if (zap->zap_ismicro) {
547 zap->zap_salt = zap_m_phys(zap)->mz_salt;
548 zap->zap_normflags = zap_m_phys(zap)->mz_normflags;
549 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
550
551 /*
552 * Reduce B-tree leaf from 4KB to 512 bytes to reduce memmove()
553 * overhead on massive inserts below. It still allows to store
554 * 62 entries before we have to add 2KB B-tree core node.
555 */
556 zfs_btree_create_custom(&zap->zap_m.zap_tree, mze_compare,
557 mze_find_in_buf, sizeof (mzap_ent_t), 512);
558
559 zap_name_t *zn = zap_name_alloc(zap, B_FALSE);
560 for (uint16_t i = 0; i < zap->zap_m.zap_num_chunks; i++) {
561 mzap_ent_phys_t *mze =
562 &zap_m_phys(zap)->mz_chunk[i];
563 if (mze->mze_name[0]) {
564 zap->zap_m.zap_num_entries++;
565 zap_name_init_str(zn, mze->mze_name, 0);
566 mze_insert(zap, i, zn->zn_hash);
567 }
568 }
569 zap_name_free(zn);
570 } else {
571 zap->zap_salt = zap_f_phys(zap)->zap_salt;
572 zap->zap_normflags = zap_f_phys(zap)->zap_normflags;
573
574 ASSERT3U(sizeof (struct zap_leaf_header), ==,
575 2*ZAP_LEAF_CHUNKSIZE);
576
577 /*
578 * The embedded pointer table should not overlap the
579 * other members.
580 */
581 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
582 &zap_f_phys(zap)->zap_salt);
583
584 /*
585 * The embedded pointer table should end at the end of
586 * the block
587 */
588 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
589 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
590 (uintptr_t)zap_f_phys(zap), ==,
591 zap->zap_dbuf->db_size);
592 }
593 rw_exit(&zap->zap_rwlock);
594 return (zap);
595
596 handle_winner:
597 rw_exit(&zap->zap_rwlock);
598 rw_destroy(&zap->zap_rwlock);
599 if (!zap->zap_ismicro)
600 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
601 kmem_free(zap, sizeof (zap_t));
602 return (winner);
603 }
604
605 /*
606 * This routine "consumes" the caller's hold on the dbuf, which must
607 * have the specified tag.
608 */
609 static int
zap_lockdir_impl(dnode_t * dn,dmu_buf_t * db,const void * tag,dmu_tx_t * tx,krw_t lti,boolean_t fatreader,boolean_t adding,zap_t ** zapp)610 zap_lockdir_impl(dnode_t *dn, dmu_buf_t *db, const void *tag, dmu_tx_t *tx,
611 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
612 {
613 ASSERT0(db->db_offset);
614 objset_t *os = dmu_buf_get_objset(db);
615 uint64_t obj = db->db_object;
616 dmu_object_info_t doi;
617
618 *zapp = NULL;
619
620 dmu_object_info_from_dnode(dn, &doi);
621 if (DMU_OT_BYTESWAP(doi.doi_type) != DMU_BSWAP_ZAP)
622 return (SET_ERROR(EINVAL));
623
624 zap_t *zap = dmu_buf_get_user(db);
625 if (zap == NULL) {
626 zap = mzap_open(db);
627 if (zap == NULL) {
628 /*
629 * mzap_open() didn't like what it saw on-disk.
630 * Check for corruption!
631 */
632 return (SET_ERROR(EIO));
633 }
634 }
635
636 /*
637 * We're checking zap_ismicro without the lock held, in order to
638 * tell what type of lock we want. Once we have some sort of
639 * lock, see if it really is the right type. In practice this
640 * can only be different if it was upgraded from micro to fat,
641 * and micro wanted WRITER but fat only needs READER.
642 */
643 krw_t lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
644 rw_enter(&zap->zap_rwlock, lt);
645 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
646 /* it was upgraded, now we only need reader */
647 ASSERT(lt == RW_WRITER);
648 ASSERT(RW_READER ==
649 ((!zap->zap_ismicro && fatreader) ? RW_READER : lti));
650 rw_downgrade(&zap->zap_rwlock);
651 lt = RW_READER;
652 }
653
654 zap->zap_objset = os;
655 zap->zap_dnode = dn;
656
657 if (lt == RW_WRITER)
658 dmu_buf_will_dirty(db, tx);
659
660 ASSERT3P(zap->zap_dbuf, ==, db);
661
662 ASSERT(!zap->zap_ismicro ||
663 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
664 if (zap->zap_ismicro && tx && adding &&
665 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
666 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
667 if (newsz > zap_get_micro_max_size(dmu_objset_spa(os))) {
668 dprintf("upgrading obj %llu: num_entries=%u\n",
669 (u_longlong_t)obj, zap->zap_m.zap_num_entries);
670 *zapp = zap;
671 int err = mzap_upgrade(zapp, tag, tx, 0);
672 if (err != 0)
673 rw_exit(&zap->zap_rwlock);
674 return (err);
675 }
676 VERIFY0(dmu_object_set_blocksize(os, obj, newsz, 0, tx));
677 zap->zap_m.zap_num_chunks =
678 db->db_size / MZAP_ENT_LEN - 1;
679
680 if (newsz > SPA_OLD_MAXBLOCKSIZE) {
681 dsl_dataset_t *ds = dmu_objset_ds(os);
682 if (!dsl_dataset_feature_is_active(ds,
683 SPA_FEATURE_LARGE_MICROZAP)) {
684 /*
685 * A microzap just grew beyond the old limit
686 * for the first time, so we have to ensure the
687 * feature flag is activated.
688 * zap_get_micro_max_size() won't let us get
689 * here if the feature is not enabled, so we
690 * don't need any other checks beforehand.
691 *
692 * Since we're in open context, we can't
693 * activate the feature directly, so we instead
694 * flag it on the dataset for next sync.
695 */
696 dsl_dataset_dirty(ds, tx);
697 mutex_enter(&ds->ds_lock);
698 ds->ds_feature_activation
699 [SPA_FEATURE_LARGE_MICROZAP] =
700 (void *)B_TRUE;
701 mutex_exit(&ds->ds_lock);
702 }
703 }
704 }
705
706 *zapp = zap;
707 return (0);
708 }
709
710 static int
zap_lockdir_by_dnode(dnode_t * dn,dmu_tx_t * tx,krw_t lti,boolean_t fatreader,boolean_t adding,const void * tag,zap_t ** zapp)711 zap_lockdir_by_dnode(dnode_t *dn, dmu_tx_t *tx,
712 krw_t lti, boolean_t fatreader, boolean_t adding, const void *tag,
713 zap_t **zapp)
714 {
715 dmu_buf_t *db;
716 int err;
717
718 err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH);
719 if (err != 0)
720 return (err);
721 err = zap_lockdir_impl(dn, db, tag, tx, lti, fatreader, adding, zapp);
722 if (err != 0)
723 dmu_buf_rele(db, tag);
724 else
725 VERIFY(dnode_add_ref(dn, tag));
726 return (err);
727 }
728
729 int
zap_lockdir(objset_t * os,uint64_t obj,dmu_tx_t * tx,krw_t lti,boolean_t fatreader,boolean_t adding,const void * tag,zap_t ** zapp)730 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
731 krw_t lti, boolean_t fatreader, boolean_t adding, const void *tag,
732 zap_t **zapp)
733 {
734 dnode_t *dn;
735 dmu_buf_t *db;
736 int err;
737
738 err = dnode_hold(os, obj, tag, &dn);
739 if (err != 0)
740 return (err);
741 err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH);
742 if (err != 0) {
743 dnode_rele(dn, tag);
744 return (err);
745 }
746 err = zap_lockdir_impl(dn, db, tag, tx, lti, fatreader, adding, zapp);
747 if (err != 0) {
748 dmu_buf_rele(db, tag);
749 dnode_rele(dn, tag);
750 }
751 return (err);
752 }
753
754 void
zap_unlockdir(zap_t * zap,const void * tag)755 zap_unlockdir(zap_t *zap, const void *tag)
756 {
757 rw_exit(&zap->zap_rwlock);
758 dnode_rele(zap->zap_dnode, tag);
759 dmu_buf_rele(zap->zap_dbuf, tag);
760 }
761
762 static int
mzap_upgrade(zap_t ** zapp,const void * tag,dmu_tx_t * tx,zap_flags_t flags)763 mzap_upgrade(zap_t **zapp, const void *tag, dmu_tx_t *tx, zap_flags_t flags)
764 {
765 int err = 0;
766 zap_t *zap = *zapp;
767
768 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
769
770 int sz = zap->zap_dbuf->db_size;
771 mzap_phys_t *mzp = vmem_alloc(sz, KM_SLEEP);
772 memcpy(mzp, zap->zap_dbuf->db_data, sz);
773 int nchunks = zap->zap_m.zap_num_chunks;
774
775 if (!flags) {
776 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
777 1ULL << fzap_default_block_shift, 0, tx);
778 if (err != 0) {
779 vmem_free(mzp, sz);
780 return (err);
781 }
782 }
783
784 dprintf("upgrading obj=%llu with %u chunks\n",
785 (u_longlong_t)zap->zap_object, nchunks);
786 /* XXX destroy the tree later, so we can use the stored hash value */
787 mze_destroy(zap);
788
789 fzap_upgrade(zap, tx, flags);
790
791 zap_name_t *zn = zap_name_alloc(zap, B_FALSE);
792 for (int i = 0; i < nchunks; i++) {
793 mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
794 if (mze->mze_name[0] == 0)
795 continue;
796 dprintf("adding %s=%llu\n",
797 mze->mze_name, (u_longlong_t)mze->mze_value);
798 zap_name_init_str(zn, mze->mze_name, 0);
799 /* If we fail here, we would end up losing entries */
800 VERIFY0(fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd,
801 tag, tx));
802 zap = zn->zn_zap; /* fzap_add_cd() may change zap */
803 }
804 zap_name_free(zn);
805 vmem_free(mzp, sz);
806 *zapp = zap;
807 return (0);
808 }
809
810 /*
811 * The "normflags" determine the behavior of the matchtype_t which is
812 * passed to zap_lookup_norm(). Names which have the same normalized
813 * version will be stored with the same hash value, and therefore we can
814 * perform normalization-insensitive lookups. We can be Unicode form-
815 * insensitive and/or case-insensitive. The following flags are valid for
816 * "normflags":
817 *
818 * U8_TEXTPREP_NFC
819 * U8_TEXTPREP_NFD
820 * U8_TEXTPREP_NFKC
821 * U8_TEXTPREP_NFKD
822 * U8_TEXTPREP_TOUPPER
823 *
824 * The *_NF* (Normalization Form) flags are mutually exclusive; at most one
825 * of them may be supplied.
826 */
827 void
mzap_create_impl(dnode_t * dn,int normflags,zap_flags_t flags,dmu_tx_t * tx)828 mzap_create_impl(dnode_t *dn, int normflags, zap_flags_t flags, dmu_tx_t *tx)
829 {
830 dmu_buf_t *db;
831
832 VERIFY0(dmu_buf_hold_by_dnode(dn, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
833
834 dmu_buf_will_dirty(db, tx);
835 mzap_phys_t *zp = db->db_data;
836 zp->mz_block_type = ZBT_MICRO;
837 zp->mz_salt =
838 ((uintptr_t)db ^ (uintptr_t)tx ^ (dn->dn_object << 1)) | 1ULL;
839 zp->mz_normflags = normflags;
840
841 if (flags != 0) {
842 zap_t *zap;
843 /* Only fat zap supports flags; upgrade immediately. */
844 VERIFY(dnode_add_ref(dn, FTAG));
845 VERIFY0(zap_lockdir_impl(dn, db, FTAG, tx, RW_WRITER,
846 B_FALSE, B_FALSE, &zap));
847 VERIFY0(mzap_upgrade(&zap, FTAG, tx, flags));
848 zap_unlockdir(zap, FTAG);
849 } else {
850 dmu_buf_rele(db, FTAG);
851 }
852 }
853
854 static uint64_t
zap_create_impl(objset_t * os,int normflags,zap_flags_t flags,dmu_object_type_t ot,int leaf_blockshift,int indirect_blockshift,dmu_object_type_t bonustype,int bonuslen,int dnodesize,dnode_t ** allocated_dnode,const void * tag,dmu_tx_t * tx)855 zap_create_impl(objset_t *os, int normflags, zap_flags_t flags,
856 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
857 dmu_object_type_t bonustype, int bonuslen, int dnodesize,
858 dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx)
859 {
860 uint64_t obj;
861
862 ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP);
863
864 if (allocated_dnode == NULL) {
865 dnode_t *dn;
866 obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift,
867 indirect_blockshift, bonustype, bonuslen, dnodesize,
868 &dn, FTAG, tx);
869 mzap_create_impl(dn, normflags, flags, tx);
870 dnode_rele(dn, FTAG);
871 } else {
872 obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift,
873 indirect_blockshift, bonustype, bonuslen, dnodesize,
874 allocated_dnode, tag, tx);
875 mzap_create_impl(*allocated_dnode, normflags, flags, tx);
876 }
877
878 return (obj);
879 }
880
881 int
zap_create_claim(objset_t * os,uint64_t obj,dmu_object_type_t ot,dmu_object_type_t bonustype,int bonuslen,dmu_tx_t * tx)882 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
883 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
884 {
885 return (zap_create_claim_dnsize(os, obj, ot, bonustype, bonuslen,
886 0, tx));
887 }
888
889 int
zap_create_claim_dnsize(objset_t * os,uint64_t obj,dmu_object_type_t ot,dmu_object_type_t bonustype,int bonuslen,int dnodesize,dmu_tx_t * tx)890 zap_create_claim_dnsize(objset_t *os, uint64_t obj, dmu_object_type_t ot,
891 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
892 {
893 return (zap_create_claim_norm_dnsize(os, obj,
894 0, ot, bonustype, bonuslen, dnodesize, tx));
895 }
896
897 int
zap_create_claim_norm(objset_t * os,uint64_t obj,int normflags,dmu_object_type_t ot,dmu_object_type_t bonustype,int bonuslen,dmu_tx_t * tx)898 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
899 dmu_object_type_t ot,
900 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
901 {
902 return (zap_create_claim_norm_dnsize(os, obj, normflags, ot, bonustype,
903 bonuslen, 0, tx));
904 }
905
906 int
zap_create_claim_norm_dnsize(objset_t * os,uint64_t obj,int normflags,dmu_object_type_t ot,dmu_object_type_t bonustype,int bonuslen,int dnodesize,dmu_tx_t * tx)907 zap_create_claim_norm_dnsize(objset_t *os, uint64_t obj, int normflags,
908 dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen,
909 int dnodesize, dmu_tx_t *tx)
910 {
911 dnode_t *dn;
912 int error;
913
914 ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP);
915 error = dmu_object_claim_dnsize(os, obj, ot, 0, bonustype, bonuslen,
916 dnodesize, tx);
917 if (error != 0)
918 return (error);
919
920 error = dnode_hold(os, obj, FTAG, &dn);
921 if (error != 0)
922 return (error);
923
924 mzap_create_impl(dn, normflags, 0, tx);
925
926 dnode_rele(dn, FTAG);
927
928 return (0);
929 }
930
931 uint64_t
zap_create(objset_t * os,dmu_object_type_t ot,dmu_object_type_t bonustype,int bonuslen,dmu_tx_t * tx)932 zap_create(objset_t *os, dmu_object_type_t ot,
933 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
934 {
935 return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
936 }
937
938 uint64_t
zap_create_dnsize(objset_t * os,dmu_object_type_t ot,dmu_object_type_t bonustype,int bonuslen,int dnodesize,dmu_tx_t * tx)939 zap_create_dnsize(objset_t *os, dmu_object_type_t ot,
940 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
941 {
942 return (zap_create_norm_dnsize(os, 0, ot, bonustype, bonuslen,
943 dnodesize, tx));
944 }
945
946 uint64_t
zap_create_norm(objset_t * os,int normflags,dmu_object_type_t ot,dmu_object_type_t bonustype,int bonuslen,dmu_tx_t * tx)947 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
948 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
949 {
950 return (zap_create_norm_dnsize(os, normflags, ot, bonustype, bonuslen,
951 0, tx));
952 }
953
954 uint64_t
zap_create_norm_dnsize(objset_t * os,int normflags,dmu_object_type_t ot,dmu_object_type_t bonustype,int bonuslen,int dnodesize,dmu_tx_t * tx)955 zap_create_norm_dnsize(objset_t *os, int normflags, dmu_object_type_t ot,
956 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
957 {
958 return (zap_create_impl(os, normflags, 0, ot, 0, 0,
959 bonustype, bonuslen, dnodesize, NULL, NULL, tx));
960 }
961
962 uint64_t
zap_create_flags(objset_t * os,int normflags,zap_flags_t flags,dmu_object_type_t ot,int leaf_blockshift,int indirect_blockshift,dmu_object_type_t bonustype,int bonuslen,dmu_tx_t * tx)963 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
964 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
965 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
966 {
967 return (zap_create_flags_dnsize(os, normflags, flags, ot,
968 leaf_blockshift, indirect_blockshift, bonustype, bonuslen, 0, tx));
969 }
970
971 uint64_t
zap_create_flags_dnsize(objset_t * os,int normflags,zap_flags_t flags,dmu_object_type_t ot,int leaf_blockshift,int indirect_blockshift,dmu_object_type_t bonustype,int bonuslen,int dnodesize,dmu_tx_t * tx)972 zap_create_flags_dnsize(objset_t *os, int normflags, zap_flags_t flags,
973 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
974 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
975 {
976 return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift,
977 indirect_blockshift, bonustype, bonuslen, dnodesize, NULL, NULL,
978 tx));
979 }
980
981 /*
982 * Create a zap object and return a pointer to the newly allocated dnode via
983 * the allocated_dnode argument. The returned dnode will be held and the
984 * caller is responsible for releasing the hold by calling dnode_rele().
985 */
986 uint64_t
zap_create_hold(objset_t * os,int normflags,zap_flags_t flags,dmu_object_type_t ot,int leaf_blockshift,int indirect_blockshift,dmu_object_type_t bonustype,int bonuslen,int dnodesize,dnode_t ** allocated_dnode,const void * tag,dmu_tx_t * tx)987 zap_create_hold(objset_t *os, int normflags, zap_flags_t flags,
988 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
989 dmu_object_type_t bonustype, int bonuslen, int dnodesize,
990 dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx)
991 {
992 return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift,
993 indirect_blockshift, bonustype, bonuslen, dnodesize,
994 allocated_dnode, tag, tx));
995 }
996
997 int
zap_destroy(objset_t * os,uint64_t zapobj,dmu_tx_t * tx)998 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
999 {
1000 /*
1001 * dmu_object_free will free the object number and free the
1002 * data. Freeing the data will cause our pageout function to be
1003 * called, which will destroy our data (zap_leaf_t's and zap_t).
1004 */
1005
1006 return (dmu_object_free(os, zapobj, tx));
1007 }
1008
1009 void
zap_evict_sync(void * dbu)1010 zap_evict_sync(void *dbu)
1011 {
1012 zap_t *zap = dbu;
1013
1014 rw_destroy(&zap->zap_rwlock);
1015
1016 if (zap->zap_ismicro)
1017 mze_destroy(zap);
1018 else
1019 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
1020
1021 kmem_free(zap, sizeof (zap_t));
1022 }
1023
1024 int
zap_count(objset_t * os,uint64_t zapobj,uint64_t * count)1025 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
1026 {
1027 zap_t *zap;
1028
1029 int err =
1030 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1031 if (err != 0)
1032 return (err);
1033 if (!zap->zap_ismicro) {
1034 err = fzap_count(zap, count);
1035 } else {
1036 *count = zap->zap_m.zap_num_entries;
1037 }
1038 zap_unlockdir(zap, FTAG);
1039 return (err);
1040 }
1041
1042 /*
1043 * zn may be NULL; if not specified, it will be computed if needed.
1044 * See also the comment above zap_entry_normalization_conflict().
1045 */
1046 static boolean_t
mzap_normalization_conflict(zap_t * zap,zap_name_t * zn,mzap_ent_t * mze,zfs_btree_index_t * idx)1047 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze,
1048 zfs_btree_index_t *idx)
1049 {
1050 boolean_t allocdzn = B_FALSE;
1051 mzap_ent_t *other;
1052 zfs_btree_index_t oidx;
1053
1054 if (zap->zap_normflags == 0)
1055 return (B_FALSE);
1056
1057 for (other = zfs_btree_prev(&zap->zap_m.zap_tree, idx, &oidx);
1058 other && other->mze_hash == mze->mze_hash;
1059 other = zfs_btree_prev(&zap->zap_m.zap_tree, &oidx, &oidx)) {
1060
1061 if (zn == NULL) {
1062 zn = zap_name_alloc_str(zap,
1063 MZE_PHYS(zap, mze)->mze_name, MT_NORMALIZE);
1064 allocdzn = B_TRUE;
1065 }
1066 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
1067 if (allocdzn)
1068 zap_name_free(zn);
1069 return (B_TRUE);
1070 }
1071 }
1072
1073 for (other = zfs_btree_next(&zap->zap_m.zap_tree, idx, &oidx);
1074 other && other->mze_hash == mze->mze_hash;
1075 other = zfs_btree_next(&zap->zap_m.zap_tree, &oidx, &oidx)) {
1076
1077 if (zn == NULL) {
1078 zn = zap_name_alloc_str(zap,
1079 MZE_PHYS(zap, mze)->mze_name, MT_NORMALIZE);
1080 allocdzn = B_TRUE;
1081 }
1082 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
1083 if (allocdzn)
1084 zap_name_free(zn);
1085 return (B_TRUE);
1086 }
1087 }
1088
1089 if (allocdzn)
1090 zap_name_free(zn);
1091 return (B_FALSE);
1092 }
1093
1094 /*
1095 * Routines for manipulating attributes.
1096 */
1097
1098 int
zap_lookup(objset_t * os,uint64_t zapobj,const char * name,uint64_t integer_size,uint64_t num_integers,void * buf)1099 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
1100 uint64_t integer_size, uint64_t num_integers, void *buf)
1101 {
1102 return (zap_lookup_norm(os, zapobj, name, integer_size,
1103 num_integers, buf, 0, NULL, 0, NULL));
1104 }
1105
1106 static int
zap_lookup_impl(zap_t * zap,const char * name,uint64_t integer_size,uint64_t num_integers,void * buf,matchtype_t mt,char * realname,int rn_len,boolean_t * ncp)1107 zap_lookup_impl(zap_t *zap, const char *name,
1108 uint64_t integer_size, uint64_t num_integers, void *buf,
1109 matchtype_t mt, char *realname, int rn_len,
1110 boolean_t *ncp)
1111 {
1112 int err = 0;
1113
1114 zap_name_t *zn = zap_name_alloc_str(zap, name, mt);
1115 if (zn == NULL)
1116 return (SET_ERROR(ENOTSUP));
1117
1118 if (!zap->zap_ismicro) {
1119 err = fzap_lookup(zn, integer_size, num_integers, buf,
1120 realname, rn_len, ncp);
1121 } else {
1122 zfs_btree_index_t idx;
1123 mzap_ent_t *mze = mze_find(zn, &idx);
1124 if (mze == NULL) {
1125 err = SET_ERROR(ENOENT);
1126 } else {
1127 if (num_integers < 1) {
1128 err = SET_ERROR(EOVERFLOW);
1129 } else if (integer_size != 8) {
1130 err = SET_ERROR(EINVAL);
1131 } else {
1132 *(uint64_t *)buf =
1133 MZE_PHYS(zap, mze)->mze_value;
1134 if (realname != NULL)
1135 (void) strlcpy(realname,
1136 MZE_PHYS(zap, mze)->mze_name,
1137 rn_len);
1138 if (ncp) {
1139 *ncp = mzap_normalization_conflict(zap,
1140 zn, mze, &idx);
1141 }
1142 }
1143 }
1144 }
1145 zap_name_free(zn);
1146 return (err);
1147 }
1148
1149 int
zap_lookup_norm(objset_t * os,uint64_t zapobj,const char * name,uint64_t integer_size,uint64_t num_integers,void * buf,matchtype_t mt,char * realname,int rn_len,boolean_t * ncp)1150 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
1151 uint64_t integer_size, uint64_t num_integers, void *buf,
1152 matchtype_t mt, char *realname, int rn_len,
1153 boolean_t *ncp)
1154 {
1155 zap_t *zap;
1156
1157 int err =
1158 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1159 if (err != 0)
1160 return (err);
1161 err = zap_lookup_impl(zap, name, integer_size,
1162 num_integers, buf, mt, realname, rn_len, ncp);
1163 zap_unlockdir(zap, FTAG);
1164 return (err);
1165 }
1166
1167 int
zap_prefetch(objset_t * os,uint64_t zapobj,const char * name)1168 zap_prefetch(objset_t *os, uint64_t zapobj, const char *name)
1169 {
1170 zap_t *zap;
1171 int err;
1172 zap_name_t *zn;
1173
1174 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1175 if (err)
1176 return (err);
1177 zn = zap_name_alloc_str(zap, name, 0);
1178 if (zn == NULL) {
1179 zap_unlockdir(zap, FTAG);
1180 return (SET_ERROR(ENOTSUP));
1181 }
1182
1183 fzap_prefetch(zn);
1184 zap_name_free(zn);
1185 zap_unlockdir(zap, FTAG);
1186 return (err);
1187 }
1188
1189 int
zap_prefetch_object(objset_t * os,uint64_t zapobj)1190 zap_prefetch_object(objset_t *os, uint64_t zapobj)
1191 {
1192 int error;
1193 dmu_object_info_t doi;
1194
1195 error = dmu_object_info(os, zapobj, &doi);
1196 if (error == 0 && DMU_OT_BYTESWAP(doi.doi_type) != DMU_BSWAP_ZAP)
1197 error = SET_ERROR(EINVAL);
1198 if (error == 0)
1199 dmu_prefetch_wait(os, zapobj, 0, doi.doi_max_offset);
1200
1201 return (error);
1202 }
1203
1204 int
zap_lookup_by_dnode(dnode_t * dn,const char * name,uint64_t integer_size,uint64_t num_integers,void * buf)1205 zap_lookup_by_dnode(dnode_t *dn, const char *name,
1206 uint64_t integer_size, uint64_t num_integers, void *buf)
1207 {
1208 return (zap_lookup_norm_by_dnode(dn, name, integer_size,
1209 num_integers, buf, 0, NULL, 0, NULL));
1210 }
1211
1212 int
zap_lookup_norm_by_dnode(dnode_t * dn,const char * name,uint64_t integer_size,uint64_t num_integers,void * buf,matchtype_t mt,char * realname,int rn_len,boolean_t * ncp)1213 zap_lookup_norm_by_dnode(dnode_t *dn, const char *name,
1214 uint64_t integer_size, uint64_t num_integers, void *buf,
1215 matchtype_t mt, char *realname, int rn_len,
1216 boolean_t *ncp)
1217 {
1218 zap_t *zap;
1219
1220 int err = zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE,
1221 FTAG, &zap);
1222 if (err != 0)
1223 return (err);
1224 err = zap_lookup_impl(zap, name, integer_size,
1225 num_integers, buf, mt, realname, rn_len, ncp);
1226 zap_unlockdir(zap, FTAG);
1227 return (err);
1228 }
1229
1230 static int
zap_prefetch_uint64_impl(zap_t * zap,const uint64_t * key,int key_numints)1231 zap_prefetch_uint64_impl(zap_t *zap, const uint64_t *key, int key_numints)
1232 {
1233 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1234 if (zn == NULL) {
1235 zap_unlockdir(zap, FTAG);
1236 return (SET_ERROR(ENOTSUP));
1237 }
1238
1239 fzap_prefetch(zn);
1240 zap_name_free(zn);
1241 zap_unlockdir(zap, FTAG);
1242 return (0);
1243 }
1244
1245 int
zap_prefetch_uint64(objset_t * os,uint64_t zapobj,const uint64_t * key,int key_numints)1246 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1247 int key_numints)
1248 {
1249 zap_t *zap;
1250
1251 int err =
1252 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1253 if (err != 0)
1254 return (err);
1255 err = zap_prefetch_uint64_impl(zap, key, key_numints);
1256 /* zap_prefetch_uint64_impl() calls zap_unlockdir() */
1257 return (err);
1258 }
1259
1260 int
zap_prefetch_uint64_by_dnode(dnode_t * dn,const uint64_t * key,int key_numints)1261 zap_prefetch_uint64_by_dnode(dnode_t *dn, const uint64_t *key, int key_numints)
1262 {
1263 zap_t *zap;
1264
1265 int err =
1266 zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1267 if (err != 0)
1268 return (err);
1269 err = zap_prefetch_uint64_impl(zap, key, key_numints);
1270 /* zap_prefetch_uint64_impl() calls zap_unlockdir() */
1271 return (err);
1272 }
1273
1274 static int
zap_lookup_uint64_impl(zap_t * zap,const uint64_t * key,int key_numints,uint64_t integer_size,uint64_t num_integers,void * buf)1275 zap_lookup_uint64_impl(zap_t *zap, const uint64_t *key,
1276 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
1277 {
1278 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1279 if (zn == NULL) {
1280 zap_unlockdir(zap, FTAG);
1281 return (SET_ERROR(ENOTSUP));
1282 }
1283
1284 int err = fzap_lookup(zn, integer_size, num_integers, buf,
1285 NULL, 0, NULL);
1286 zap_name_free(zn);
1287 zap_unlockdir(zap, FTAG);
1288 return (err);
1289 }
1290
1291 int
zap_lookup_uint64(objset_t * os,uint64_t zapobj,const uint64_t * key,int key_numints,uint64_t integer_size,uint64_t num_integers,void * buf)1292 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1293 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
1294 {
1295 zap_t *zap;
1296
1297 int err =
1298 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1299 if (err != 0)
1300 return (err);
1301 err = zap_lookup_uint64_impl(zap, key, key_numints, integer_size,
1302 num_integers, buf);
1303 /* zap_lookup_uint64_impl() calls zap_unlockdir() */
1304 return (err);
1305 }
1306
1307 int
zap_lookup_uint64_by_dnode(dnode_t * dn,const uint64_t * key,int key_numints,uint64_t integer_size,uint64_t num_integers,void * buf)1308 zap_lookup_uint64_by_dnode(dnode_t *dn, const uint64_t *key,
1309 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
1310 {
1311 zap_t *zap;
1312
1313 int err =
1314 zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1315 if (err != 0)
1316 return (err);
1317 err = zap_lookup_uint64_impl(zap, key, key_numints, integer_size,
1318 num_integers, buf);
1319 /* zap_lookup_uint64_impl() calls zap_unlockdir() */
1320 return (err);
1321 }
1322
1323 int
zap_contains(objset_t * os,uint64_t zapobj,const char * name)1324 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
1325 {
1326 int err = zap_lookup_norm(os, zapobj, name, 0,
1327 0, NULL, 0, NULL, 0, NULL);
1328 if (err == EOVERFLOW || err == EINVAL)
1329 err = 0; /* found, but skipped reading the value */
1330 return (err);
1331 }
1332
1333 int
zap_length(objset_t * os,uint64_t zapobj,const char * name,uint64_t * integer_size,uint64_t * num_integers)1334 zap_length(objset_t *os, uint64_t zapobj, const char *name,
1335 uint64_t *integer_size, uint64_t *num_integers)
1336 {
1337 zap_t *zap;
1338
1339 int err =
1340 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1341 if (err != 0)
1342 return (err);
1343 zap_name_t *zn = zap_name_alloc_str(zap, name, 0);
1344 if (zn == NULL) {
1345 zap_unlockdir(zap, FTAG);
1346 return (SET_ERROR(ENOTSUP));
1347 }
1348 if (!zap->zap_ismicro) {
1349 err = fzap_length(zn, integer_size, num_integers);
1350 } else {
1351 zfs_btree_index_t idx;
1352 mzap_ent_t *mze = mze_find(zn, &idx);
1353 if (mze == NULL) {
1354 err = SET_ERROR(ENOENT);
1355 } else {
1356 if (integer_size)
1357 *integer_size = 8;
1358 if (num_integers)
1359 *num_integers = 1;
1360 }
1361 }
1362 zap_name_free(zn);
1363 zap_unlockdir(zap, FTAG);
1364 return (err);
1365 }
1366
1367 int
zap_length_uint64(objset_t * os,uint64_t zapobj,const uint64_t * key,int key_numints,uint64_t * integer_size,uint64_t * num_integers)1368 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1369 int key_numints, uint64_t *integer_size, uint64_t *num_integers)
1370 {
1371 zap_t *zap;
1372
1373 int err =
1374 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1375 if (err != 0)
1376 return (err);
1377 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1378 if (zn == NULL) {
1379 zap_unlockdir(zap, FTAG);
1380 return (SET_ERROR(ENOTSUP));
1381 }
1382 err = fzap_length(zn, integer_size, num_integers);
1383 zap_name_free(zn);
1384 zap_unlockdir(zap, FTAG);
1385 return (err);
1386 }
1387
1388 static void
mzap_addent(zap_name_t * zn,uint64_t value)1389 mzap_addent(zap_name_t *zn, uint64_t value)
1390 {
1391 zap_t *zap = zn->zn_zap;
1392 uint16_t start = zap->zap_m.zap_alloc_next;
1393
1394 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
1395
1396 #ifdef ZFS_DEBUG
1397 for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) {
1398 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1399 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
1400 }
1401 #endif
1402
1403 uint32_t cd = mze_find_unused_cd(zap, zn->zn_hash);
1404 /* given the limited size of the microzap, this can't happen */
1405 ASSERT(cd < zap_maxcd(zap));
1406
1407 again:
1408 for (uint16_t i = start; i < zap->zap_m.zap_num_chunks; i++) {
1409 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1410 if (mze->mze_name[0] == 0) {
1411 mze->mze_value = value;
1412 mze->mze_cd = cd;
1413 (void) strlcpy(mze->mze_name, zn->zn_key_orig,
1414 sizeof (mze->mze_name));
1415 zap->zap_m.zap_num_entries++;
1416 zap->zap_m.zap_alloc_next = i+1;
1417 if (zap->zap_m.zap_alloc_next ==
1418 zap->zap_m.zap_num_chunks)
1419 zap->zap_m.zap_alloc_next = 0;
1420 mze_insert(zap, i, zn->zn_hash);
1421 return;
1422 }
1423 }
1424 if (start != 0) {
1425 start = 0;
1426 goto again;
1427 }
1428 cmn_err(CE_PANIC, "out of entries!");
1429 }
1430
1431 static int
zap_add_impl(zap_t * zap,const char * key,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx,const void * tag)1432 zap_add_impl(zap_t *zap, const char *key,
1433 int integer_size, uint64_t num_integers,
1434 const void *val, dmu_tx_t *tx, const void *tag)
1435 {
1436 const uint64_t *intval = val;
1437 int err = 0;
1438
1439 zap_name_t *zn = zap_name_alloc_str(zap, key, 0);
1440 if (zn == NULL) {
1441 zap_unlockdir(zap, tag);
1442 return (SET_ERROR(ENOTSUP));
1443 }
1444 if (!zap->zap_ismicro) {
1445 err = fzap_add(zn, integer_size, num_integers, val, tag, tx);
1446 zap = zn->zn_zap; /* fzap_add() may change zap */
1447 } else if (integer_size != 8 || num_integers != 1 ||
1448 strlen(key) >= MZAP_NAME_LEN ||
1449 !mze_canfit_fzap_leaf(zn, zn->zn_hash)) {
1450 err = mzap_upgrade(&zn->zn_zap, tag, tx, 0);
1451 if (err == 0) {
1452 err = fzap_add(zn, integer_size, num_integers, val,
1453 tag, tx);
1454 }
1455 zap = zn->zn_zap; /* fzap_add() may change zap */
1456 } else {
1457 zfs_btree_index_t idx;
1458 if (mze_find(zn, &idx) != NULL) {
1459 err = SET_ERROR(EEXIST);
1460 } else {
1461 mzap_addent(zn, *intval);
1462 }
1463 }
1464 ASSERT(zap == zn->zn_zap);
1465 zap_name_free(zn);
1466 if (zap != NULL) /* may be NULL if fzap_add() failed */
1467 zap_unlockdir(zap, tag);
1468 return (err);
1469 }
1470
1471 int
zap_add(objset_t * os,uint64_t zapobj,const char * key,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx)1472 zap_add(objset_t *os, uint64_t zapobj, const char *key,
1473 int integer_size, uint64_t num_integers,
1474 const void *val, dmu_tx_t *tx)
1475 {
1476 zap_t *zap;
1477 int err;
1478
1479 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1480 if (err != 0)
1481 return (err);
1482 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1483 /* zap_add_impl() calls zap_unlockdir() */
1484 return (err);
1485 }
1486
1487 int
zap_add_by_dnode(dnode_t * dn,const char * key,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx)1488 zap_add_by_dnode(dnode_t *dn, const char *key,
1489 int integer_size, uint64_t num_integers,
1490 const void *val, dmu_tx_t *tx)
1491 {
1492 zap_t *zap;
1493 int err;
1494
1495 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1496 if (err != 0)
1497 return (err);
1498 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1499 /* zap_add_impl() calls zap_unlockdir() */
1500 return (err);
1501 }
1502
1503 static int
zap_add_uint64_impl(zap_t * zap,const uint64_t * key,int key_numints,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx,const void * tag)1504 zap_add_uint64_impl(zap_t *zap, const uint64_t *key,
1505 int key_numints, int integer_size, uint64_t num_integers,
1506 const void *val, dmu_tx_t *tx, const void *tag)
1507 {
1508 int err;
1509
1510 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1511 if (zn == NULL) {
1512 zap_unlockdir(zap, tag);
1513 return (SET_ERROR(ENOTSUP));
1514 }
1515 err = fzap_add(zn, integer_size, num_integers, val, tag, tx);
1516 zap = zn->zn_zap; /* fzap_add() may change zap */
1517 zap_name_free(zn);
1518 if (zap != NULL) /* may be NULL if fzap_add() failed */
1519 zap_unlockdir(zap, tag);
1520 return (err);
1521 }
1522
1523 int
zap_add_uint64(objset_t * os,uint64_t zapobj,const uint64_t * key,int key_numints,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx)1524 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1525 int key_numints, int integer_size, uint64_t num_integers,
1526 const void *val, dmu_tx_t *tx)
1527 {
1528 zap_t *zap;
1529
1530 int err =
1531 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1532 if (err != 0)
1533 return (err);
1534 err = zap_add_uint64_impl(zap, key, key_numints,
1535 integer_size, num_integers, val, tx, FTAG);
1536 /* zap_add_uint64_impl() calls zap_unlockdir() */
1537 return (err);
1538 }
1539
1540 int
zap_add_uint64_by_dnode(dnode_t * dn,const uint64_t * key,int key_numints,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx)1541 zap_add_uint64_by_dnode(dnode_t *dn, const uint64_t *key,
1542 int key_numints, int integer_size, uint64_t num_integers,
1543 const void *val, dmu_tx_t *tx)
1544 {
1545 zap_t *zap;
1546
1547 int err =
1548 zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1549 if (err != 0)
1550 return (err);
1551 err = zap_add_uint64_impl(zap, key, key_numints,
1552 integer_size, num_integers, val, tx, FTAG);
1553 /* zap_add_uint64_impl() calls zap_unlockdir() */
1554 return (err);
1555 }
1556
1557 int
zap_update(objset_t * os,uint64_t zapobj,const char * name,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx)1558 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1559 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1560 {
1561 zap_t *zap;
1562 const uint64_t *intval = val;
1563
1564 int err =
1565 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1566 if (err != 0)
1567 return (err);
1568 zap_name_t *zn = zap_name_alloc_str(zap, name, 0);
1569 if (zn == NULL) {
1570 zap_unlockdir(zap, FTAG);
1571 return (SET_ERROR(ENOTSUP));
1572 }
1573 if (!zap->zap_ismicro) {
1574 err = fzap_update(zn, integer_size, num_integers, val,
1575 FTAG, tx);
1576 zap = zn->zn_zap; /* fzap_update() may change zap */
1577 } else if (integer_size != 8 || num_integers != 1 ||
1578 strlen(name) >= MZAP_NAME_LEN) {
1579 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1580 (u_longlong_t)zapobj, integer_size,
1581 (u_longlong_t)num_integers, name);
1582 err = mzap_upgrade(&zn->zn_zap, FTAG, tx, 0);
1583 if (err == 0) {
1584 err = fzap_update(zn, integer_size, num_integers,
1585 val, FTAG, tx);
1586 }
1587 zap = zn->zn_zap; /* fzap_update() may change zap */
1588 } else {
1589 zfs_btree_index_t idx;
1590 mzap_ent_t *mze = mze_find(zn, &idx);
1591 if (mze != NULL) {
1592 MZE_PHYS(zap, mze)->mze_value = *intval;
1593 } else {
1594 mzap_addent(zn, *intval);
1595 }
1596 }
1597 ASSERT(zap == zn->zn_zap);
1598 zap_name_free(zn);
1599 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1600 zap_unlockdir(zap, FTAG);
1601 return (err);
1602 }
1603
1604 static int
zap_update_uint64_impl(zap_t * zap,const uint64_t * key,int key_numints,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx,const void * tag)1605 zap_update_uint64_impl(zap_t *zap, const uint64_t *key, int key_numints,
1606 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx,
1607 const void *tag)
1608 {
1609 int err;
1610
1611 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1612 if (zn == NULL) {
1613 zap_unlockdir(zap, tag);
1614 return (SET_ERROR(ENOTSUP));
1615 }
1616 err = fzap_update(zn, integer_size, num_integers, val, tag, tx);
1617 zap = zn->zn_zap; /* fzap_update() may change zap */
1618 zap_name_free(zn);
1619 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1620 zap_unlockdir(zap, tag);
1621 return (err);
1622 }
1623
1624 int
zap_update_uint64(objset_t * os,uint64_t zapobj,const uint64_t * key,int key_numints,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx)1625 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1626 int key_numints, int integer_size, uint64_t num_integers, const void *val,
1627 dmu_tx_t *tx)
1628 {
1629 zap_t *zap;
1630
1631 int err =
1632 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1633 if (err != 0)
1634 return (err);
1635 err = zap_update_uint64_impl(zap, key, key_numints,
1636 integer_size, num_integers, val, tx, FTAG);
1637 /* zap_update_uint64_impl() calls zap_unlockdir() */
1638 return (err);
1639 }
1640
1641 int
zap_update_uint64_by_dnode(dnode_t * dn,const uint64_t * key,int key_numints,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx)1642 zap_update_uint64_by_dnode(dnode_t *dn, const uint64_t *key, int key_numints,
1643 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1644 {
1645 zap_t *zap;
1646
1647 int err =
1648 zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1649 if (err != 0)
1650 return (err);
1651 err = zap_update_uint64_impl(zap, key, key_numints,
1652 integer_size, num_integers, val, tx, FTAG);
1653 /* zap_update_uint64_impl() calls zap_unlockdir() */
1654 return (err);
1655 }
1656
1657 int
zap_remove(objset_t * os,uint64_t zapobj,const char * name,dmu_tx_t * tx)1658 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1659 {
1660 return (zap_remove_norm(os, zapobj, name, 0, tx));
1661 }
1662
1663 static int
zap_remove_impl(zap_t * zap,const char * name,matchtype_t mt,dmu_tx_t * tx)1664 zap_remove_impl(zap_t *zap, const char *name,
1665 matchtype_t mt, dmu_tx_t *tx)
1666 {
1667 int err = 0;
1668
1669 zap_name_t *zn = zap_name_alloc_str(zap, name, mt);
1670 if (zn == NULL)
1671 return (SET_ERROR(ENOTSUP));
1672 if (!zap->zap_ismicro) {
1673 err = fzap_remove(zn, tx);
1674 } else {
1675 zfs_btree_index_t idx;
1676 mzap_ent_t *mze = mze_find(zn, &idx);
1677 if (mze == NULL) {
1678 err = SET_ERROR(ENOENT);
1679 } else {
1680 zap->zap_m.zap_num_entries--;
1681 memset(MZE_PHYS(zap, mze), 0, sizeof (mzap_ent_phys_t));
1682 zfs_btree_remove_idx(&zap->zap_m.zap_tree, &idx);
1683 }
1684 }
1685 zap_name_free(zn);
1686 return (err);
1687 }
1688
1689 int
zap_remove_norm(objset_t * os,uint64_t zapobj,const char * name,matchtype_t mt,dmu_tx_t * tx)1690 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1691 matchtype_t mt, dmu_tx_t *tx)
1692 {
1693 zap_t *zap;
1694 int err;
1695
1696 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1697 if (err)
1698 return (err);
1699 err = zap_remove_impl(zap, name, mt, tx);
1700 zap_unlockdir(zap, FTAG);
1701 return (err);
1702 }
1703
1704 int
zap_remove_by_dnode(dnode_t * dn,const char * name,dmu_tx_t * tx)1705 zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx)
1706 {
1707 zap_t *zap;
1708 int err;
1709
1710 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1711 if (err)
1712 return (err);
1713 err = zap_remove_impl(zap, name, 0, tx);
1714 zap_unlockdir(zap, FTAG);
1715 return (err);
1716 }
1717
1718 static int
zap_remove_uint64_impl(zap_t * zap,const uint64_t * key,int key_numints,dmu_tx_t * tx,const void * tag)1719 zap_remove_uint64_impl(zap_t *zap, const uint64_t *key, int key_numints,
1720 dmu_tx_t *tx, const void *tag)
1721 {
1722 int err;
1723
1724 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1725 if (zn == NULL) {
1726 zap_unlockdir(zap, tag);
1727 return (SET_ERROR(ENOTSUP));
1728 }
1729 err = fzap_remove(zn, tx);
1730 zap_name_free(zn);
1731 zap_unlockdir(zap, tag);
1732 return (err);
1733 }
1734
1735 int
zap_remove_uint64(objset_t * os,uint64_t zapobj,const uint64_t * key,int key_numints,dmu_tx_t * tx)1736 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1737 int key_numints, dmu_tx_t *tx)
1738 {
1739 zap_t *zap;
1740
1741 int err =
1742 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1743 if (err != 0)
1744 return (err);
1745 err = zap_remove_uint64_impl(zap, key, key_numints, tx, FTAG);
1746 /* zap_remove_uint64_impl() calls zap_unlockdir() */
1747 return (err);
1748 }
1749
1750 int
zap_remove_uint64_by_dnode(dnode_t * dn,const uint64_t * key,int key_numints,dmu_tx_t * tx)1751 zap_remove_uint64_by_dnode(dnode_t *dn, const uint64_t *key, int key_numints,
1752 dmu_tx_t *tx)
1753 {
1754 zap_t *zap;
1755
1756 int err =
1757 zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1758 if (err != 0)
1759 return (err);
1760 err = zap_remove_uint64_impl(zap, key, key_numints, tx, FTAG);
1761 /* zap_remove_uint64_impl() calls zap_unlockdir() */
1762 return (err);
1763 }
1764
1765
1766 static zap_attribute_t *
zap_attribute_alloc_impl(boolean_t longname)1767 zap_attribute_alloc_impl(boolean_t longname)
1768 {
1769 zap_attribute_t *za;
1770
1771 za = kmem_cache_alloc((longname)? zap_attr_long_cache : zap_attr_cache,
1772 KM_SLEEP);
1773 za->za_name_len = (longname)? ZAP_MAXNAMELEN_NEW : ZAP_MAXNAMELEN;
1774 return (za);
1775 }
1776
1777 zap_attribute_t *
zap_attribute_alloc(void)1778 zap_attribute_alloc(void)
1779 {
1780 return (zap_attribute_alloc_impl(B_FALSE));
1781 }
1782
1783 zap_attribute_t *
zap_attribute_long_alloc(void)1784 zap_attribute_long_alloc(void)
1785 {
1786 return (zap_attribute_alloc_impl(B_TRUE));
1787 }
1788
1789 void
zap_attribute_free(zap_attribute_t * za)1790 zap_attribute_free(zap_attribute_t *za)
1791 {
1792 if (za->za_name_len == ZAP_MAXNAMELEN) {
1793 kmem_cache_free(zap_attr_cache, za);
1794 } else {
1795 ASSERT3U(za->za_name_len, ==, ZAP_MAXNAMELEN_NEW);
1796 kmem_cache_free(zap_attr_long_cache, za);
1797 }
1798 }
1799
1800 /*
1801 * Routines for iterating over the attributes.
1802 */
1803
1804 static void
zap_cursor_init_impl(zap_cursor_t * zc,objset_t * os,uint64_t zapobj,uint64_t serialized,boolean_t prefetch)1805 zap_cursor_init_impl(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1806 uint64_t serialized, boolean_t prefetch)
1807 {
1808 zc->zc_objset = os;
1809 zc->zc_zap = NULL;
1810 zc->zc_leaf = NULL;
1811 zc->zc_zapobj = zapobj;
1812 zc->zc_serialized = serialized;
1813 zc->zc_hash = 0;
1814 zc->zc_cd = 0;
1815 zc->zc_prefetch = prefetch;
1816 }
1817 void
zap_cursor_init_serialized(zap_cursor_t * zc,objset_t * os,uint64_t zapobj,uint64_t serialized)1818 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1819 uint64_t serialized)
1820 {
1821 zap_cursor_init_impl(zc, os, zapobj, serialized, B_TRUE);
1822 }
1823
1824 /*
1825 * Initialize a cursor at the beginning of the ZAP object. The entire
1826 * ZAP object will be prefetched.
1827 */
1828 void
zap_cursor_init(zap_cursor_t * zc,objset_t * os,uint64_t zapobj)1829 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1830 {
1831 zap_cursor_init_impl(zc, os, zapobj, 0, B_TRUE);
1832 }
1833
1834 /*
1835 * Initialize a cursor at the beginning, but request that we not prefetch
1836 * the entire ZAP object.
1837 */
1838 void
zap_cursor_init_noprefetch(zap_cursor_t * zc,objset_t * os,uint64_t zapobj)1839 zap_cursor_init_noprefetch(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1840 {
1841 zap_cursor_init_impl(zc, os, zapobj, 0, B_FALSE);
1842 }
1843
1844 void
zap_cursor_fini(zap_cursor_t * zc)1845 zap_cursor_fini(zap_cursor_t *zc)
1846 {
1847 if (zc->zc_zap) {
1848 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1849 zap_unlockdir(zc->zc_zap, NULL);
1850 zc->zc_zap = NULL;
1851 }
1852 if (zc->zc_leaf) {
1853 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1854 zap_put_leaf(zc->zc_leaf);
1855 zc->zc_leaf = NULL;
1856 }
1857 zc->zc_objset = NULL;
1858 }
1859
1860 uint64_t
zap_cursor_serialize(zap_cursor_t * zc)1861 zap_cursor_serialize(zap_cursor_t *zc)
1862 {
1863 if (zc->zc_hash == -1ULL)
1864 return (-1ULL);
1865 if (zc->zc_zap == NULL)
1866 return (zc->zc_serialized);
1867 ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1868 ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1869
1870 /*
1871 * We want to keep the high 32 bits of the cursor zero if we can, so
1872 * that 32-bit programs can access this. So usually use a small
1873 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1874 * of the cursor.
1875 *
1876 * [ collision differentiator | zap_hashbits()-bit hash value ]
1877 */
1878 return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1879 ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1880 }
1881
1882 int
zap_cursor_retrieve(zap_cursor_t * zc,zap_attribute_t * za)1883 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1884 {
1885 int err;
1886
1887 if (zc->zc_hash == -1ULL)
1888 return (SET_ERROR(ENOENT));
1889
1890 if (zc->zc_zap == NULL) {
1891 int hb;
1892 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1893 RW_READER, TRUE, FALSE, NULL, &zc->zc_zap);
1894 if (err != 0)
1895 return (err);
1896
1897 /*
1898 * To support zap_cursor_init_serialized, advance, retrieve,
1899 * we must add to the existing zc_cd, which may already
1900 * be 1 due to the zap_cursor_advance.
1901 */
1902 ASSERT(zc->zc_hash == 0);
1903 hb = zap_hashbits(zc->zc_zap);
1904 zc->zc_hash = zc->zc_serialized << (64 - hb);
1905 zc->zc_cd += zc->zc_serialized >> hb;
1906 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1907 zc->zc_cd = 0;
1908 } else {
1909 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1910 }
1911 if (!zc->zc_zap->zap_ismicro) {
1912 err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1913 } else {
1914 zfs_btree_index_t idx;
1915 mzap_ent_t mze_tofind;
1916
1917 mze_tofind.mze_hash = zc->zc_hash >> 32;
1918 mze_tofind.mze_cd = zc->zc_cd;
1919
1920 mzap_ent_t *mze = zfs_btree_find(&zc->zc_zap->zap_m.zap_tree,
1921 &mze_tofind, &idx);
1922 if (mze == NULL) {
1923 mze = zfs_btree_next(&zc->zc_zap->zap_m.zap_tree,
1924 &idx, &idx);
1925 }
1926 if (mze) {
1927 mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1928 ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1929 za->za_normalization_conflict =
1930 mzap_normalization_conflict(zc->zc_zap, NULL,
1931 mze, &idx);
1932 za->za_integer_length = 8;
1933 za->za_num_integers = 1;
1934 za->za_first_integer = mzep->mze_value;
1935 (void) strlcpy(za->za_name, mzep->mze_name,
1936 za->za_name_len);
1937 zc->zc_hash = (uint64_t)mze->mze_hash << 32;
1938 zc->zc_cd = mze->mze_cd;
1939 err = 0;
1940 } else {
1941 zc->zc_hash = -1ULL;
1942 err = SET_ERROR(ENOENT);
1943 }
1944 }
1945 rw_exit(&zc->zc_zap->zap_rwlock);
1946 return (err);
1947 }
1948
1949 void
zap_cursor_advance(zap_cursor_t * zc)1950 zap_cursor_advance(zap_cursor_t *zc)
1951 {
1952 if (zc->zc_hash == -1ULL)
1953 return;
1954 zc->zc_cd++;
1955 }
1956
1957 int
zap_get_stats(objset_t * os,uint64_t zapobj,zap_stats_t * zs)1958 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1959 {
1960 zap_t *zap;
1961
1962 int err =
1963 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1964 if (err != 0)
1965 return (err);
1966
1967 memset(zs, 0, sizeof (zap_stats_t));
1968
1969 if (zap->zap_ismicro) {
1970 zs->zs_blocksize = zap->zap_dbuf->db_size;
1971 zs->zs_num_entries = zap->zap_m.zap_num_entries;
1972 zs->zs_num_blocks = 1;
1973 } else {
1974 fzap_get_stats(zap, zs);
1975 }
1976 zap_unlockdir(zap, FTAG);
1977 return (0);
1978 }
1979
1980 #if defined(_KERNEL)
1981 EXPORT_SYMBOL(zap_create);
1982 EXPORT_SYMBOL(zap_create_dnsize);
1983 EXPORT_SYMBOL(zap_create_norm);
1984 EXPORT_SYMBOL(zap_create_norm_dnsize);
1985 EXPORT_SYMBOL(zap_create_flags);
1986 EXPORT_SYMBOL(zap_create_flags_dnsize);
1987 EXPORT_SYMBOL(zap_create_claim);
1988 EXPORT_SYMBOL(zap_create_claim_norm);
1989 EXPORT_SYMBOL(zap_create_claim_norm_dnsize);
1990 EXPORT_SYMBOL(zap_create_hold);
1991 EXPORT_SYMBOL(zap_destroy);
1992 EXPORT_SYMBOL(zap_lookup);
1993 EXPORT_SYMBOL(zap_lookup_by_dnode);
1994 EXPORT_SYMBOL(zap_lookup_norm);
1995 EXPORT_SYMBOL(zap_lookup_uint64);
1996 EXPORT_SYMBOL(zap_contains);
1997 EXPORT_SYMBOL(zap_prefetch);
1998 EXPORT_SYMBOL(zap_prefetch_uint64);
1999 EXPORT_SYMBOL(zap_prefetch_object);
2000 EXPORT_SYMBOL(zap_add);
2001 EXPORT_SYMBOL(zap_add_by_dnode);
2002 EXPORT_SYMBOL(zap_add_uint64);
2003 EXPORT_SYMBOL(zap_add_uint64_by_dnode);
2004 EXPORT_SYMBOL(zap_update);
2005 EXPORT_SYMBOL(zap_update_uint64);
2006 EXPORT_SYMBOL(zap_update_uint64_by_dnode);
2007 EXPORT_SYMBOL(zap_length);
2008 EXPORT_SYMBOL(zap_length_uint64);
2009 EXPORT_SYMBOL(zap_remove);
2010 EXPORT_SYMBOL(zap_remove_by_dnode);
2011 EXPORT_SYMBOL(zap_remove_norm);
2012 EXPORT_SYMBOL(zap_remove_uint64);
2013 EXPORT_SYMBOL(zap_remove_uint64_by_dnode);
2014 EXPORT_SYMBOL(zap_count);
2015 EXPORT_SYMBOL(zap_value_search);
2016 EXPORT_SYMBOL(zap_join);
2017 EXPORT_SYMBOL(zap_join_increment);
2018 EXPORT_SYMBOL(zap_add_int);
2019 EXPORT_SYMBOL(zap_remove_int);
2020 EXPORT_SYMBOL(zap_lookup_int);
2021 EXPORT_SYMBOL(zap_increment_int);
2022 EXPORT_SYMBOL(zap_add_int_key);
2023 EXPORT_SYMBOL(zap_lookup_int_key);
2024 EXPORT_SYMBOL(zap_increment);
2025 EXPORT_SYMBOL(zap_cursor_init);
2026 EXPORT_SYMBOL(zap_cursor_fini);
2027 EXPORT_SYMBOL(zap_cursor_retrieve);
2028 EXPORT_SYMBOL(zap_cursor_advance);
2029 EXPORT_SYMBOL(zap_cursor_serialize);
2030 EXPORT_SYMBOL(zap_cursor_init_serialized);
2031 EXPORT_SYMBOL(zap_get_stats);
2032
2033 ZFS_MODULE_PARAM(zfs, , zap_micro_max_size, INT, ZMOD_RW,
2034 "Maximum micro ZAP size, before converting to a fat ZAP, in bytes");
2035 #endif
2036