1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23 /*
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
27 * Copyright 2017 Nexenta Systems, Inc.
28 * Copyright (c) 2024, Klara, Inc.
29 */
30
31 #ifndef _SYS_ZAP_IMPL_H
32 #define _SYS_ZAP_IMPL_H
33
34 #include <sys/zap.h>
35 #include <sys/zfs_context.h>
36 #include <sys/avl.h>
37
38 #ifdef __cplusplus
39 extern "C" {
40 #endif
41
42 extern int fzap_default_block_shift;
43
44 #define ZAP_MAGIC 0x2F52AB2ABULL
45
46 #define FZAP_BLOCK_SHIFT(zap) ((zap)->zap_f.zap_block_shift)
47
48 #define MZAP_ENT_LEN 64
49 #define MZAP_NAME_LEN (MZAP_ENT_LEN - 8 - 4 - 2)
50
51 #define ZAP_NEED_CD (-1U)
52
53 typedef struct mzap_ent_phys {
54 uint64_t mze_value;
55 uint32_t mze_cd;
56 uint16_t mze_pad; /* in case we want to chain them someday */
57 char mze_name[MZAP_NAME_LEN];
58 } mzap_ent_phys_t;
59
60 typedef struct mzap_phys {
61 uint64_t mz_block_type; /* ZBT_MICRO */
62 uint64_t mz_salt;
63 uint64_t mz_normflags;
64 uint64_t mz_pad[5];
65 mzap_ent_phys_t mz_chunk[1];
66 /* actually variable size depending on block size */
67 } mzap_phys_t;
68
69 typedef struct mzap_ent {
70 uint32_t mze_hash;
71 uint16_t mze_cd; /* copy from mze_phys->mze_cd */
72 uint16_t mze_chunkid;
73 } mzap_ent_t;
74
75 #define MZE_PHYS(zap, mze) \
76 (&zap_m_phys(zap)->mz_chunk[(mze)->mze_chunkid])
77
78 /*
79 * The (fat) zap is stored in one object. It is an array of
80 * 1<<FZAP_BLOCK_SHIFT byte blocks. The layout looks like one of:
81 *
82 * ptrtbl fits in first block:
83 * [zap_phys_t zap_ptrtbl_shift < 6] [zap_leaf_t] ...
84 *
85 * ptrtbl too big for first block:
86 * [zap_phys_t zap_ptrtbl_shift >= 6] [zap_leaf_t] [ptrtbl] ...
87 *
88 */
89
90 struct dmu_buf;
91 struct zap_leaf;
92
93 #define ZBT_LEAF ((1ULL << 63) + 0)
94 #define ZBT_HEADER ((1ULL << 63) + 1)
95 #define ZBT_MICRO ((1ULL << 63) + 3)
96 /* any other values are ptrtbl blocks */
97
98 /*
99 * the embedded pointer table takes up half a block:
100 * block size / entry size (2^3) / 2
101 */
102 #define ZAP_EMBEDDED_PTRTBL_SHIFT(zap) (FZAP_BLOCK_SHIFT(zap) - 3 - 1)
103
104 /*
105 * The embedded pointer table starts half-way through the block. Since
106 * the pointer table itself is half the block, it starts at (64-bit)
107 * word number (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)).
108 */
109 #define ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) \
110 ((uint64_t *)zap_f_phys(zap)) \
111 [(idx) + (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap))]
112
113 /*
114 * TAKE NOTE:
115 * If zap_phys_t is modified, zap_byteswap() must be modified.
116 */
117 typedef struct zap_phys {
118 uint64_t zap_block_type; /* ZBT_HEADER */
119 uint64_t zap_magic; /* ZAP_MAGIC */
120
121 struct zap_table_phys {
122 uint64_t zt_blk; /* starting block number */
123 uint64_t zt_numblks; /* number of blocks */
124 uint64_t zt_shift; /* bits to index it */
125 uint64_t zt_nextblk; /* next (larger) copy start block */
126 uint64_t zt_blks_copied; /* number source blocks copied */
127 } zap_ptrtbl;
128
129 uint64_t zap_freeblk; /* the next free block */
130 uint64_t zap_num_leafs; /* number of leafs */
131 uint64_t zap_num_entries; /* number of entries */
132 uint64_t zap_salt; /* salt to stir into hash function */
133 uint64_t zap_normflags; /* flags for u8_textprep_str() */
134 uint64_t zap_flags; /* zap_flags_t */
135 /*
136 * This structure is followed by padding, and then the embedded
137 * pointer table. The embedded pointer table takes up second
138 * half of the block. It is accessed using the
139 * ZAP_EMBEDDED_PTRTBL_ENT() macro.
140 */
141 } zap_phys_t;
142
143 typedef struct zap_table_phys zap_table_phys_t;
144
145 typedef struct zap {
146 dmu_buf_user_t zap_dbu;
147 objset_t *zap_objset;
148 uint64_t zap_object;
149 dnode_t *zap_dnode;
150 struct dmu_buf *zap_dbuf;
151 krwlock_t zap_rwlock;
152 boolean_t zap_ismicro;
153 int zap_normflags;
154 uint64_t zap_salt;
155 union {
156 struct {
157 /*
158 * zap_num_entries_mtx protects
159 * zap_num_entries
160 */
161 kmutex_t zap_num_entries_mtx;
162 int zap_block_shift;
163 } zap_fat;
164 struct {
165 int16_t zap_num_entries;
166 int16_t zap_num_chunks;
167 int16_t zap_alloc_next;
168 zfs_btree_t zap_tree;
169 } zap_micro;
170 } zap_u;
171 } zap_t;
172
173 static inline zap_phys_t *
zap_f_phys(zap_t * zap)174 zap_f_phys(zap_t *zap)
175 {
176 return (zap->zap_dbuf->db_data);
177 }
178
179 static inline mzap_phys_t *
zap_m_phys(zap_t * zap)180 zap_m_phys(zap_t *zap)
181 {
182 return (zap->zap_dbuf->db_data);
183 }
184
185 typedef struct zap_name {
186 zap_t *zn_zap;
187 int zn_key_intlen;
188 const void *zn_key_orig;
189 int zn_key_orig_numints;
190 const void *zn_key_norm;
191 int zn_key_norm_numints;
192 uint64_t zn_hash;
193 matchtype_t zn_matchtype;
194 int zn_normflags;
195 int zn_normbuf_len;
196 char zn_normbuf[];
197 } zap_name_t;
198
199 #define zap_f zap_u.zap_fat
200 #define zap_m zap_u.zap_micro
201
202 boolean_t zap_match(zap_name_t *zn, const char *matchname);
203 int zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
204 krw_t lti, boolean_t fatreader, boolean_t adding, const void *tag,
205 zap_t **zapp);
206 void zap_unlockdir(zap_t *zap, const void *tag);
207 void zap_evict_sync(void *dbu);
208 zap_name_t *zap_name_alloc_str(zap_t *zap, const char *key, matchtype_t mt);
209 void zap_name_free(zap_name_t *zn);
210 int zap_hashbits(zap_t *zap);
211 uint32_t zap_maxcd(zap_t *zap);
212 uint64_t zap_getflags(zap_t *zap);
213
214 uint64_t zap_get_micro_max_size(spa_t *spa);
215
216 #define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n))))
217
218 void fzap_byteswap(void *buf, size_t size);
219 int fzap_count(zap_t *zap, uint64_t *count);
220 int fzap_lookup(zap_name_t *zn,
221 uint64_t integer_size, uint64_t num_integers, void *buf,
222 char *realname, int rn_len, boolean_t *normalization_conflictp);
223 void fzap_prefetch(zap_name_t *zn);
224 int fzap_add(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers,
225 const void *val, const void *tag, dmu_tx_t *tx);
226 int fzap_update(zap_name_t *zn,
227 int integer_size, uint64_t num_integers, const void *val,
228 const void *tag, dmu_tx_t *tx);
229 int fzap_length(zap_name_t *zn,
230 uint64_t *integer_size, uint64_t *num_integers);
231 int fzap_remove(zap_name_t *zn, dmu_tx_t *tx);
232 int fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za);
233 void fzap_get_stats(zap_t *zap, zap_stats_t *zs);
234 void zap_put_leaf(struct zap_leaf *l);
235
236 int fzap_add_cd(zap_name_t *zn,
237 uint64_t integer_size, uint64_t num_integers,
238 const void *val, uint32_t cd, const void *tag, dmu_tx_t *tx);
239 void fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags);
240
241 #ifdef __cplusplus
242 }
243 #endif
244
245 #endif /* _SYS_ZAP_IMPL_H */
246