1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013, 2014 by Delphix. All rights reserved.
24 */
25
26 /*
27 * The 512-byte leaf is broken into 32 16-byte chunks.
28 * chunk number n means l_chunk[n], even though the header precedes it.
29 * the names are stored null-terminated.
30 */
31
32 #include <sys/zio.h>
33 #include <sys/spa.h>
34 #include <sys/dmu.h>
35 #include <sys/zfs_context.h>
36 #include <sys/fs/zfs.h>
37 #include <sys/zap.h>
38 #include <sys/zap_impl.h>
39 #include <sys/zap_leaf.h>
40 #include <sys/arc.h>
41
42 static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry);
43
44 #define CHAIN_END 0xffff /* end of the chunk chain */
45
46 /* half the (current) minimum block size */
47 #define MAX_ARRAY_BYTES (8<<10)
48
49 #define LEAF_HASH(l, h) \
50 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
51 ((h) >> \
52 (64 - ZAP_LEAF_HASH_SHIFT(l) - zap_leaf_phys(l)->l_hdr.lh_prefix_len)))
53
54 #define LEAF_HASH_ENTPTR(l, h) (&zap_leaf_phys(l)->l_hash[LEAF_HASH(l, h)])
55
56 extern inline zap_leaf_phys_t *zap_leaf_phys(zap_leaf_t *l);
57
58 static void
zap_memset(void * a,int c,size_t n)59 zap_memset(void *a, int c, size_t n)
60 {
61 char *cp = a;
62 char *cpend = cp + n;
63
64 while (cp < cpend)
65 *cp++ = c;
66 }
67
68 static void
stv(int len,void * addr,uint64_t value)69 stv(int len, void *addr, uint64_t value)
70 {
71 switch (len) {
72 case 1:
73 *(uint8_t *)addr = value;
74 return;
75 case 2:
76 *(uint16_t *)addr = value;
77 return;
78 case 4:
79 *(uint32_t *)addr = value;
80 return;
81 case 8:
82 *(uint64_t *)addr = value;
83 return;
84 }
85 ASSERT(!"bad int len");
86 }
87
88 static uint64_t
ldv(int len,const void * addr)89 ldv(int len, const void *addr)
90 {
91 switch (len) {
92 case 1:
93 return (*(uint8_t *)addr);
94 case 2:
95 return (*(uint16_t *)addr);
96 case 4:
97 return (*(uint32_t *)addr);
98 case 8:
99 return (*(uint64_t *)addr);
100 }
101 ASSERT(!"bad int len");
102 return (0xFEEDFACEDEADBEEFULL);
103 }
104
105 void
zap_leaf_byteswap(zap_leaf_phys_t * buf,int size)106 zap_leaf_byteswap(zap_leaf_phys_t *buf, int size)
107 {
108 int i;
109 zap_leaf_t l;
110 dmu_buf_t l_dbuf;
111
112 l_dbuf.db_data = buf;
113 l.l_bs = highbit64(size) - 1;
114 l.l_dbuf = &l_dbuf;
115
116 buf->l_hdr.lh_block_type = BSWAP_64(buf->l_hdr.lh_block_type);
117 buf->l_hdr.lh_prefix = BSWAP_64(buf->l_hdr.lh_prefix);
118 buf->l_hdr.lh_magic = BSWAP_32(buf->l_hdr.lh_magic);
119 buf->l_hdr.lh_nfree = BSWAP_16(buf->l_hdr.lh_nfree);
120 buf->l_hdr.lh_nentries = BSWAP_16(buf->l_hdr.lh_nentries);
121 buf->l_hdr.lh_prefix_len = BSWAP_16(buf->l_hdr.lh_prefix_len);
122 buf->l_hdr.lh_freelist = BSWAP_16(buf->l_hdr.lh_freelist);
123
124 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++)
125 buf->l_hash[i] = BSWAP_16(buf->l_hash[i]);
126
127 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) {
128 zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i);
129 struct zap_leaf_entry *le;
130
131 switch (lc->l_free.lf_type) {
132 case ZAP_CHUNK_ENTRY:
133 le = &lc->l_entry;
134
135 le->le_type = BSWAP_8(le->le_type);
136 le->le_value_intlen = BSWAP_8(le->le_value_intlen);
137 le->le_next = BSWAP_16(le->le_next);
138 le->le_name_chunk = BSWAP_16(le->le_name_chunk);
139 le->le_name_numints = BSWAP_16(le->le_name_numints);
140 le->le_value_chunk = BSWAP_16(le->le_value_chunk);
141 le->le_value_numints = BSWAP_16(le->le_value_numints);
142 le->le_cd = BSWAP_32(le->le_cd);
143 le->le_hash = BSWAP_64(le->le_hash);
144 break;
145 case ZAP_CHUNK_FREE:
146 lc->l_free.lf_type = BSWAP_8(lc->l_free.lf_type);
147 lc->l_free.lf_next = BSWAP_16(lc->l_free.lf_next);
148 break;
149 case ZAP_CHUNK_ARRAY:
150 lc->l_array.la_type = BSWAP_8(lc->l_array.la_type);
151 lc->l_array.la_next = BSWAP_16(lc->l_array.la_next);
152 /* la_array doesn't need swapping */
153 break;
154 default:
155 ASSERT(!"bad leaf type");
156 }
157 }
158 }
159
160 void
zap_leaf_init(zap_leaf_t * l,boolean_t sort)161 zap_leaf_init(zap_leaf_t *l, boolean_t sort)
162 {
163 int i;
164
165 l->l_bs = highbit64(l->l_dbuf->db_size) - 1;
166 zap_memset(&zap_leaf_phys(l)->l_hdr, 0,
167 sizeof (struct zap_leaf_header));
168 zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
169 2*ZAP_LEAF_HASH_NUMENTRIES(l));
170 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
171 ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE;
172 ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1;
173 }
174 ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END;
175 zap_leaf_phys(l)->l_hdr.lh_block_type = ZBT_LEAF;
176 zap_leaf_phys(l)->l_hdr.lh_magic = ZAP_LEAF_MAGIC;
177 zap_leaf_phys(l)->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l);
178 if (sort)
179 zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
180 }
181
182 /*
183 * Routines which manipulate leaf chunks (l_chunk[]).
184 */
185
186 static uint16_t
zap_leaf_chunk_alloc(zap_leaf_t * l)187 zap_leaf_chunk_alloc(zap_leaf_t *l)
188 {
189 int chunk;
190
191 ASSERT(zap_leaf_phys(l)->l_hdr.lh_nfree > 0);
192
193 chunk = zap_leaf_phys(l)->l_hdr.lh_freelist;
194 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
195 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE);
196
197 zap_leaf_phys(l)->l_hdr.lh_freelist =
198 ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next;
199
200 zap_leaf_phys(l)->l_hdr.lh_nfree--;
201
202 return (chunk);
203 }
204
205 static void
zap_leaf_chunk_free(zap_leaf_t * l,uint16_t chunk)206 zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk)
207 {
208 struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free;
209 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l));
210 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
211 ASSERT(zlf->lf_type != ZAP_CHUNK_FREE);
212
213 zlf->lf_type = ZAP_CHUNK_FREE;
214 zlf->lf_next = zap_leaf_phys(l)->l_hdr.lh_freelist;
215 bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */
216 zap_leaf_phys(l)->l_hdr.lh_freelist = chunk;
217
218 zap_leaf_phys(l)->l_hdr.lh_nfree++;
219 }
220
221 /*
222 * Routines which manipulate leaf arrays (zap_leaf_array type chunks).
223 */
224
225 static uint16_t
zap_leaf_array_create(zap_leaf_t * l,const char * buf,int integer_size,int num_integers)226 zap_leaf_array_create(zap_leaf_t *l, const char *buf,
227 int integer_size, int num_integers)
228 {
229 uint16_t chunk_head;
230 uint16_t *chunkp = &chunk_head;
231 int byten = 0;
232 uint64_t value = 0;
233 int shift = (integer_size-1)*8;
234 int len = num_integers;
235
236 ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES);
237
238 while (len > 0) {
239 uint16_t chunk = zap_leaf_chunk_alloc(l);
240 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
241 int i;
242
243 la->la_type = ZAP_CHUNK_ARRAY;
244 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) {
245 if (byten == 0)
246 value = ldv(integer_size, buf);
247 la->la_array[i] = value >> shift;
248 value <<= 8;
249 if (++byten == integer_size) {
250 byten = 0;
251 buf += integer_size;
252 if (--len == 0)
253 break;
254 }
255 }
256
257 *chunkp = chunk;
258 chunkp = &la->la_next;
259 }
260 *chunkp = CHAIN_END;
261
262 return (chunk_head);
263 }
264
265 static void
zap_leaf_array_free(zap_leaf_t * l,uint16_t * chunkp)266 zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp)
267 {
268 uint16_t chunk = *chunkp;
269
270 *chunkp = CHAIN_END;
271
272 while (chunk != CHAIN_END) {
273 int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next;
274 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==,
275 ZAP_CHUNK_ARRAY);
276 zap_leaf_chunk_free(l, chunk);
277 chunk = nextchunk;
278 }
279 }
280
281 /* array_len and buf_len are in integers, not bytes */
282 static void
zap_leaf_array_read(zap_leaf_t * l,uint16_t chunk,int array_int_len,int array_len,int buf_int_len,uint64_t buf_len,void * buf)283 zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk,
284 int array_int_len, int array_len, int buf_int_len, uint64_t buf_len,
285 void *buf)
286 {
287 int len = MIN(array_len, buf_len);
288 int byten = 0;
289 uint64_t value = 0;
290 char *p = buf;
291
292 ASSERT3U(array_int_len, <=, buf_int_len);
293
294 /* Fast path for one 8-byte integer */
295 if (array_int_len == 8 && buf_int_len == 8 && len == 1) {
296 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
297 uint8_t *ip = la->la_array;
298 uint64_t *buf64 = buf;
299
300 *buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 |
301 (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 |
302 (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 |
303 (uint64_t)ip[6] << 8 | (uint64_t)ip[7];
304 return;
305 }
306
307 /* Fast path for an array of 1-byte integers (eg. the entry name) */
308 if (array_int_len == 1 && buf_int_len == 1 &&
309 buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) {
310 while (chunk != CHAIN_END) {
311 struct zap_leaf_array *la =
312 &ZAP_LEAF_CHUNK(l, chunk).l_array;
313 bcopy(la->la_array, p, ZAP_LEAF_ARRAY_BYTES);
314 p += ZAP_LEAF_ARRAY_BYTES;
315 chunk = la->la_next;
316 }
317 return;
318 }
319
320 while (len > 0) {
321 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
322 int i;
323
324 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
325 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
326 value = (value << 8) | la->la_array[i];
327 byten++;
328 if (byten == array_int_len) {
329 stv(buf_int_len, p, value);
330 byten = 0;
331 len--;
332 if (len == 0)
333 return;
334 p += buf_int_len;
335 }
336 }
337 chunk = la->la_next;
338 }
339 }
340
341 static boolean_t
zap_leaf_array_match(zap_leaf_t * l,zap_name_t * zn,int chunk,int array_numints)342 zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn,
343 int chunk, int array_numints)
344 {
345 int bseen = 0;
346
347 if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) {
348 uint64_t *thiskey;
349 boolean_t match;
350
351 ASSERT(zn->zn_key_intlen == sizeof (*thiskey));
352 thiskey = kmem_alloc(array_numints * sizeof (*thiskey),
353 KM_SLEEP);
354
355 zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints,
356 sizeof (*thiskey), array_numints, thiskey);
357 match = bcmp(thiskey, zn->zn_key_orig,
358 array_numints * sizeof (*thiskey)) == 0;
359 kmem_free(thiskey, array_numints * sizeof (*thiskey));
360 return (match);
361 }
362
363 ASSERT(zn->zn_key_intlen == 1);
364 if (zn->zn_matchtype == MT_FIRST) {
365 char *thisname = kmem_alloc(array_numints, KM_SLEEP);
366 boolean_t match;
367
368 zap_leaf_array_read(l, chunk, sizeof (char), array_numints,
369 sizeof (char), array_numints, thisname);
370 match = zap_match(zn, thisname);
371 kmem_free(thisname, array_numints);
372 return (match);
373 }
374
375 /*
376 * Fast path for exact matching.
377 * First check that the lengths match, so that we don't read
378 * past the end of the zn_key_orig array.
379 */
380 if (array_numints != zn->zn_key_orig_numints)
381 return (B_FALSE);
382 while (bseen < array_numints) {
383 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
384 int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES);
385 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
386 if (bcmp(la->la_array, (char *)zn->zn_key_orig + bseen, toread))
387 break;
388 chunk = la->la_next;
389 bseen += toread;
390 }
391 return (bseen == array_numints);
392 }
393
394 /*
395 * Routines which manipulate leaf entries.
396 */
397
398 int
zap_leaf_lookup(zap_leaf_t * l,zap_name_t * zn,zap_entry_handle_t * zeh)399 zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh)
400 {
401 uint16_t *chunkp;
402 struct zap_leaf_entry *le;
403
404 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
405
406 again:
407 for (chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash);
408 *chunkp != CHAIN_END; chunkp = &le->le_next) {
409 uint16_t chunk = *chunkp;
410 le = ZAP_LEAF_ENTRY(l, chunk);
411
412 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
413 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
414
415 if (le->le_hash != zn->zn_hash)
416 continue;
417
418 /*
419 * NB: the entry chain is always sorted by cd on
420 * normalized zap objects, so this will find the
421 * lowest-cd match for MT_FIRST.
422 */
423 ASSERT(zn->zn_matchtype == MT_EXACT ||
424 (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED));
425 if (zap_leaf_array_match(l, zn, le->le_name_chunk,
426 le->le_name_numints)) {
427 zeh->zeh_num_integers = le->le_value_numints;
428 zeh->zeh_integer_size = le->le_value_intlen;
429 zeh->zeh_cd = le->le_cd;
430 zeh->zeh_hash = le->le_hash;
431 zeh->zeh_chunkp = chunkp;
432 zeh->zeh_leaf = l;
433 return (0);
434 }
435 }
436
437 /*
438 * NB: we could of course do this in one pass, but that would be
439 * a pain. We'll see if MT_BEST is even used much.
440 */
441 if (zn->zn_matchtype == MT_BEST) {
442 zn->zn_matchtype = MT_FIRST;
443 goto again;
444 }
445
446 return (SET_ERROR(ENOENT));
447 }
448
449 /* Return (h1,cd1 >= h2,cd2) */
450 #define HCD_GTEQ(h1, cd1, h2, cd2) \
451 ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE))
452
453 int
zap_leaf_lookup_closest(zap_leaf_t * l,uint64_t h,uint32_t cd,zap_entry_handle_t * zeh)454 zap_leaf_lookup_closest(zap_leaf_t *l,
455 uint64_t h, uint32_t cd, zap_entry_handle_t *zeh)
456 {
457 uint16_t chunk;
458 uint64_t besth = -1ULL;
459 uint32_t bestcd = -1U;
460 uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1;
461 uint16_t lh;
462 struct zap_leaf_entry *le;
463
464 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
465
466 for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) {
467 for (chunk = zap_leaf_phys(l)->l_hash[lh];
468 chunk != CHAIN_END; chunk = le->le_next) {
469 le = ZAP_LEAF_ENTRY(l, chunk);
470
471 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
472 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
473
474 if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) &&
475 HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) {
476 ASSERT3U(bestlh, >=, lh);
477 bestlh = lh;
478 besth = le->le_hash;
479 bestcd = le->le_cd;
480
481 zeh->zeh_num_integers = le->le_value_numints;
482 zeh->zeh_integer_size = le->le_value_intlen;
483 zeh->zeh_cd = le->le_cd;
484 zeh->zeh_hash = le->le_hash;
485 zeh->zeh_fakechunk = chunk;
486 zeh->zeh_chunkp = &zeh->zeh_fakechunk;
487 zeh->zeh_leaf = l;
488 }
489 }
490 }
491
492 return (bestcd == -1U ? ENOENT : 0);
493 }
494
495 int
zap_entry_read(const zap_entry_handle_t * zeh,uint8_t integer_size,uint64_t num_integers,void * buf)496 zap_entry_read(const zap_entry_handle_t *zeh,
497 uint8_t integer_size, uint64_t num_integers, void *buf)
498 {
499 struct zap_leaf_entry *le =
500 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
501 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
502
503 if (le->le_value_intlen > integer_size)
504 return (SET_ERROR(EINVAL));
505
506 zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk,
507 le->le_value_intlen, le->le_value_numints,
508 integer_size, num_integers, buf);
509
510 if (zeh->zeh_num_integers > num_integers)
511 return (SET_ERROR(EOVERFLOW));
512 return (0);
513
514 }
515
516 int
zap_entry_read_name(zap_t * zap,const zap_entry_handle_t * zeh,uint16_t buflen,char * buf)517 zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen,
518 char *buf)
519 {
520 struct zap_leaf_entry *le =
521 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
522 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
523
524 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
525 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8,
526 le->le_name_numints, 8, buflen / 8, buf);
527 } else {
528 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1,
529 le->le_name_numints, 1, buflen, buf);
530 }
531 if (le->le_name_numints > buflen)
532 return (SET_ERROR(EOVERFLOW));
533 return (0);
534 }
535
536 int
zap_entry_update(zap_entry_handle_t * zeh,uint8_t integer_size,uint64_t num_integers,const void * buf)537 zap_entry_update(zap_entry_handle_t *zeh,
538 uint8_t integer_size, uint64_t num_integers, const void *buf)
539 {
540 int delta_chunks;
541 zap_leaf_t *l = zeh->zeh_leaf;
542 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp);
543
544 delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) -
545 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen);
546
547 if ((int)zap_leaf_phys(l)->l_hdr.lh_nfree < delta_chunks)
548 return (SET_ERROR(EAGAIN));
549
550 zap_leaf_array_free(l, &le->le_value_chunk);
551 le->le_value_chunk =
552 zap_leaf_array_create(l, buf, integer_size, num_integers);
553 le->le_value_numints = num_integers;
554 le->le_value_intlen = integer_size;
555 return (0);
556 }
557
558 void
zap_entry_remove(zap_entry_handle_t * zeh)559 zap_entry_remove(zap_entry_handle_t *zeh)
560 {
561 uint16_t entry_chunk;
562 struct zap_leaf_entry *le;
563 zap_leaf_t *l = zeh->zeh_leaf;
564
565 ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk);
566
567 entry_chunk = *zeh->zeh_chunkp;
568 le = ZAP_LEAF_ENTRY(l, entry_chunk);
569 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
570
571 zap_leaf_array_free(l, &le->le_name_chunk);
572 zap_leaf_array_free(l, &le->le_value_chunk);
573
574 *zeh->zeh_chunkp = le->le_next;
575 zap_leaf_chunk_free(l, entry_chunk);
576
577 zap_leaf_phys(l)->l_hdr.lh_nentries--;
578 }
579
580 int
zap_entry_create(zap_leaf_t * l,zap_name_t * zn,uint32_t cd,uint8_t integer_size,uint64_t num_integers,const void * buf,zap_entry_handle_t * zeh)581 zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd,
582 uint8_t integer_size, uint64_t num_integers, const void *buf,
583 zap_entry_handle_t *zeh)
584 {
585 uint16_t chunk;
586 uint16_t *chunkp;
587 struct zap_leaf_entry *le;
588 uint64_t valuelen;
589 int numchunks;
590 uint64_t h = zn->zn_hash;
591
592 valuelen = integer_size * num_integers;
593
594 numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints *
595 zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen);
596 if (numchunks > ZAP_LEAF_NUMCHUNKS(l))
597 return (E2BIG);
598
599 if (cd == ZAP_NEED_CD) {
600 /* find the lowest unused cd */
601 if (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) {
602 cd = 0;
603
604 for (chunk = *LEAF_HASH_ENTPTR(l, h);
605 chunk != CHAIN_END; chunk = le->le_next) {
606 le = ZAP_LEAF_ENTRY(l, chunk);
607 if (le->le_cd > cd)
608 break;
609 if (le->le_hash == h) {
610 ASSERT3U(cd, ==, le->le_cd);
611 cd++;
612 }
613 }
614 } else {
615 /* old unsorted format; do it the O(n^2) way */
616 for (cd = 0; ; cd++) {
617 for (chunk = *LEAF_HASH_ENTPTR(l, h);
618 chunk != CHAIN_END; chunk = le->le_next) {
619 le = ZAP_LEAF_ENTRY(l, chunk);
620 if (le->le_hash == h &&
621 le->le_cd == cd) {
622 break;
623 }
624 }
625 /* If this cd is not in use, we are good. */
626 if (chunk == CHAIN_END)
627 break;
628 }
629 }
630 /*
631 * We would run out of space in a block before we could
632 * store enough entries to run out of CD values.
633 */
634 ASSERT3U(cd, <, zap_maxcd(zn->zn_zap));
635 }
636
637 if (zap_leaf_phys(l)->l_hdr.lh_nfree < numchunks)
638 return (SET_ERROR(EAGAIN));
639
640 /* make the entry */
641 chunk = zap_leaf_chunk_alloc(l);
642 le = ZAP_LEAF_ENTRY(l, chunk);
643 le->le_type = ZAP_CHUNK_ENTRY;
644 le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig,
645 zn->zn_key_intlen, zn->zn_key_orig_numints);
646 le->le_name_numints = zn->zn_key_orig_numints;
647 le->le_value_chunk =
648 zap_leaf_array_create(l, buf, integer_size, num_integers);
649 le->le_value_numints = num_integers;
650 le->le_value_intlen = integer_size;
651 le->le_hash = h;
652 le->le_cd = cd;
653
654 /* link it into the hash chain */
655 /* XXX if we did the search above, we could just use that */
656 chunkp = zap_leaf_rehash_entry(l, chunk);
657
658 zap_leaf_phys(l)->l_hdr.lh_nentries++;
659
660 zeh->zeh_leaf = l;
661 zeh->zeh_num_integers = num_integers;
662 zeh->zeh_integer_size = le->le_value_intlen;
663 zeh->zeh_cd = le->le_cd;
664 zeh->zeh_hash = le->le_hash;
665 zeh->zeh_chunkp = chunkp;
666
667 return (0);
668 }
669
670 /*
671 * Determine if there is another entry with the same normalized form.
672 * For performance purposes, either zn or name must be provided (the
673 * other can be NULL). Note, there usually won't be any hash
674 * conflicts, in which case we don't need the concatenated/normalized
675 * form of the name. But all callers have one of these on hand anyway,
676 * so might as well take advantage. A cleaner but slower interface
677 * would accept neither argument, and compute the normalized name as
678 * needed (using zap_name_alloc(zap_entry_read_name(zeh))).
679 */
680 boolean_t
zap_entry_normalization_conflict(zap_entry_handle_t * zeh,zap_name_t * zn,const char * name,zap_t * zap)681 zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn,
682 const char *name, zap_t *zap)
683 {
684 uint64_t chunk;
685 struct zap_leaf_entry *le;
686 boolean_t allocdzn = B_FALSE;
687
688 if (zap->zap_normflags == 0)
689 return (B_FALSE);
690
691 for (chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash);
692 chunk != CHAIN_END; chunk = le->le_next) {
693 le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk);
694 if (le->le_hash != zeh->zeh_hash)
695 continue;
696 if (le->le_cd == zeh->zeh_cd)
697 continue;
698
699 if (zn == NULL) {
700 zn = zap_name_alloc(zap, name, MT_FIRST);
701 allocdzn = B_TRUE;
702 }
703 if (zap_leaf_array_match(zeh->zeh_leaf, zn,
704 le->le_name_chunk, le->le_name_numints)) {
705 if (allocdzn)
706 zap_name_free(zn);
707 return (B_TRUE);
708 }
709 }
710 if (allocdzn)
711 zap_name_free(zn);
712 return (B_FALSE);
713 }
714
715 /*
716 * Routines for transferring entries between leafs.
717 */
718
719 static uint16_t *
zap_leaf_rehash_entry(zap_leaf_t * l,uint16_t entry)720 zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry)
721 {
722 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry);
723 struct zap_leaf_entry *le2;
724 uint16_t *chunkp;
725
726 /*
727 * keep the entry chain sorted by cd
728 * NB: this will not cause problems for unsorted leafs, though
729 * it is unnecessary there.
730 */
731 for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash);
732 *chunkp != CHAIN_END; chunkp = &le2->le_next) {
733 le2 = ZAP_LEAF_ENTRY(l, *chunkp);
734 if (le2->le_cd > le->le_cd)
735 break;
736 }
737
738 le->le_next = *chunkp;
739 *chunkp = entry;
740 return (chunkp);
741 }
742
743 static uint16_t
zap_leaf_transfer_array(zap_leaf_t * l,uint16_t chunk,zap_leaf_t * nl)744 zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl)
745 {
746 uint16_t new_chunk;
747 uint16_t *nchunkp = &new_chunk;
748
749 while (chunk != CHAIN_END) {
750 uint16_t nchunk = zap_leaf_chunk_alloc(nl);
751 struct zap_leaf_array *nla =
752 &ZAP_LEAF_CHUNK(nl, nchunk).l_array;
753 struct zap_leaf_array *la =
754 &ZAP_LEAF_CHUNK(l, chunk).l_array;
755 int nextchunk = la->la_next;
756
757 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
758 ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l));
759
760 *nla = *la; /* structure assignment */
761
762 zap_leaf_chunk_free(l, chunk);
763 chunk = nextchunk;
764 *nchunkp = nchunk;
765 nchunkp = &nla->la_next;
766 }
767 *nchunkp = CHAIN_END;
768 return (new_chunk);
769 }
770
771 static void
zap_leaf_transfer_entry(zap_leaf_t * l,int entry,zap_leaf_t * nl)772 zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl)
773 {
774 struct zap_leaf_entry *le, *nle;
775 uint16_t chunk;
776
777 le = ZAP_LEAF_ENTRY(l, entry);
778 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
779
780 chunk = zap_leaf_chunk_alloc(nl);
781 nle = ZAP_LEAF_ENTRY(nl, chunk);
782 *nle = *le; /* structure assignment */
783
784 (void) zap_leaf_rehash_entry(nl, chunk);
785
786 nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl);
787 nle->le_value_chunk =
788 zap_leaf_transfer_array(l, le->le_value_chunk, nl);
789
790 zap_leaf_chunk_free(l, entry);
791
792 zap_leaf_phys(l)->l_hdr.lh_nentries--;
793 zap_leaf_phys(nl)->l_hdr.lh_nentries++;
794 }
795
796 /*
797 * Transfer the entries whose hash prefix ends in 1 to the new leaf.
798 */
799 void
zap_leaf_split(zap_leaf_t * l,zap_leaf_t * nl,boolean_t sort)800 zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort)
801 {
802 int i;
803 int bit = 64 - 1 - zap_leaf_phys(l)->l_hdr.lh_prefix_len;
804
805 /* set new prefix and prefix_len */
806 zap_leaf_phys(l)->l_hdr.lh_prefix <<= 1;
807 zap_leaf_phys(l)->l_hdr.lh_prefix_len++;
808 zap_leaf_phys(nl)->l_hdr.lh_prefix =
809 zap_leaf_phys(l)->l_hdr.lh_prefix | 1;
810 zap_leaf_phys(nl)->l_hdr.lh_prefix_len =
811 zap_leaf_phys(l)->l_hdr.lh_prefix_len;
812
813 /* break existing hash chains */
814 zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
815 2*ZAP_LEAF_HASH_NUMENTRIES(l));
816
817 if (sort)
818 zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
819
820 /*
821 * Transfer entries whose hash bit 'bit' is set to nl; rehash
822 * the remaining entries
823 *
824 * NB: We could find entries via the hashtable instead. That
825 * would be O(hashents+numents) rather than O(numblks+numents),
826 * but this accesses memory more sequentially, and when we're
827 * called, the block is usually pretty full.
828 */
829 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
830 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i);
831 if (le->le_type != ZAP_CHUNK_ENTRY)
832 continue;
833
834 if (le->le_hash & (1ULL << bit))
835 zap_leaf_transfer_entry(l, i, nl);
836 else
837 (void) zap_leaf_rehash_entry(l, i);
838 }
839 }
840
841 void
zap_leaf_stats(zap_t * zap,zap_leaf_t * l,zap_stats_t * zs)842 zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs)
843 {
844 int i, n;
845
846 n = zap_f_phys(zap)->zap_ptrtbl.zt_shift -
847 zap_leaf_phys(l)->l_hdr.lh_prefix_len;
848 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
849 zs->zs_leafs_with_2n_pointers[n]++;
850
851
852 n = zap_leaf_phys(l)->l_hdr.lh_nentries/5;
853 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
854 zs->zs_blocks_with_n5_entries[n]++;
855
856 n = ((1<<FZAP_BLOCK_SHIFT(zap)) -
857 zap_leaf_phys(l)->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 /
858 (1<<FZAP_BLOCK_SHIFT(zap));
859 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
860 zs->zs_blocks_n_tenths_full[n]++;
861
862 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) {
863 int nentries = 0;
864 int chunk = zap_leaf_phys(l)->l_hash[i];
865
866 while (chunk != CHAIN_END) {
867 struct zap_leaf_entry *le =
868 ZAP_LEAF_ENTRY(l, chunk);
869
870 n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) +
871 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints *
872 le->le_value_intlen);
873 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
874 zs->zs_entries_using_n_chunks[n]++;
875
876 chunk = le->le_next;
877 nentries++;
878 }
879
880 n = nentries;
881 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
882 zs->zs_buckets_with_n_entries[n]++;
883 }
884 }
885