xref: /freebsd/usr.sbin/makefs/zfs/zap.c (revision da1255560f36d6cacda82fa94c3ba94c12d25050)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2022 The FreeBSD Foundation
5  *
6  * This software was developed by Mark Johnston under sponsorship from
7  * the FreeBSD Foundation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions are
11  * met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/endian.h>
33 
34 #include <assert.h>
35 #include <stddef.h>
36 #include <stdint.h>
37 #include <stdlib.h>
38 #include <string.h>
39 
40 #include <util.h>
41 
42 #include "makefs.h"
43 #include "zfs.h"
44 
45 typedef struct zfs_zap_entry {
46 	char		*name;		/* entry key, private copy */
47 	uint64_t	hash;		/* key hash */
48 	union {
49 		uint8_t	 *valp;
50 		uint16_t *val16p;
51 		uint32_t *val32p;
52 		uint64_t *val64p;
53 	};				/* entry value, an integer array */
54 	uint64_t	val64;		/* embedded value for a common case */
55 	size_t		intsz;		/* array element size; 1, 2, 4 or 8 */
56 	size_t		intcnt;		/* array size */
57 	STAILQ_ENTRY(zfs_zap_entry) next;
58 } zfs_zap_entry_t;
59 
60 struct zfs_zap {
61 	STAILQ_HEAD(, zfs_zap_entry) kvps;
62 	uint64_t	hashsalt;	/* key hash input */
63 	unsigned long	kvpcnt;		/* number of key-value pairs */
64 	unsigned long	chunks;		/* count of chunks needed for fat ZAP */
65 	bool		micro;		/* can this be a micro ZAP? */
66 
67 	dnode_phys_t	*dnode;		/* backpointer */
68 	zfs_objset_t	*os;		/* backpointer */
69 };
70 
71 static uint16_t
zap_entry_chunks(zfs_zap_entry_t * ent)72 zap_entry_chunks(zfs_zap_entry_t *ent)
73 {
74 	return (1 + howmany(strlen(ent->name) + 1, ZAP_LEAF_ARRAY_BYTES) +
75 	    howmany(ent->intsz * ent->intcnt, ZAP_LEAF_ARRAY_BYTES));
76 }
77 
78 static uint64_t
zap_hash(uint64_t salt,const char * name)79 zap_hash(uint64_t salt, const char *name)
80 {
81 	static uint64_t crc64_table[256];
82 	const uint64_t crc64_poly = 0xC96C5795D7870F42UL;
83 	const uint8_t *cp;
84 	uint64_t crc;
85 	uint8_t c;
86 
87 	assert(salt != 0);
88 	if (crc64_table[128] == 0) {
89 		for (int i = 0; i < 256; i++) {
90 			uint64_t *t;
91 
92 			t = crc64_table + i;
93 			*t = i;
94 			for (int j = 8; j > 0; j--)
95 				*t = (*t >> 1) ^ (-(*t & 1) & crc64_poly);
96 		}
97 	}
98 	assert(crc64_table[128] == crc64_poly);
99 
100 	for (cp = (const uint8_t *)name, crc = salt; (c = *cp) != '\0'; cp++)
101 		crc = (crc >> 8) ^ crc64_table[(crc ^ c) & 0xFF];
102 
103 	/*
104 	 * Only use 28 bits, since we need 4 bits in the cookie for the
105 	 * collision differentiator.  We MUST use the high bits, since
106 	 * those are the ones that we first pay attention to when
107 	 * choosing the bucket.
108 	 */
109 	crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1);
110 
111 	return (crc);
112 }
113 
114 zfs_zap_t *
zap_alloc(zfs_objset_t * os,dnode_phys_t * dnode)115 zap_alloc(zfs_objset_t *os, dnode_phys_t *dnode)
116 {
117 	zfs_zap_t *zap;
118 
119 	zap = ecalloc(1, sizeof(*zap));
120 	STAILQ_INIT(&zap->kvps);
121 	zap->hashsalt = ((uint64_t)random() << 32) | random();
122 	zap->micro = true;
123 	zap->kvpcnt = 0;
124 	zap->chunks = 0;
125 	zap->dnode = dnode;
126 	zap->os = os;
127 	return (zap);
128 }
129 
130 void
zap_add(zfs_zap_t * zap,const char * name,size_t intsz,size_t intcnt,const uint8_t * val)131 zap_add(zfs_zap_t *zap, const char *name, size_t intsz, size_t intcnt,
132     const uint8_t *val)
133 {
134 	zfs_zap_entry_t *ent;
135 
136 	assert(intsz == 1 || intsz == 2 || intsz == 4 || intsz == 8);
137 	assert(strlen(name) + 1 <= ZAP_MAXNAMELEN);
138 	assert(intcnt <= ZAP_MAXVALUELEN && intcnt * intsz <= ZAP_MAXVALUELEN);
139 
140 	ent = ecalloc(1, sizeof(*ent));
141 	ent->name = estrdup(name);
142 	ent->hash = zap_hash(zap->hashsalt, ent->name);
143 	ent->intsz = intsz;
144 	ent->intcnt = intcnt;
145 	if (intsz == sizeof(uint64_t) && intcnt == 1) {
146 		/*
147 		 * Micro-optimization to elide a memory allocation in that most
148 		 * common case where this is a directory entry.
149 		 */
150 		ent->val64p = &ent->val64;
151 	} else {
152 		ent->valp = ecalloc(intcnt, intsz);
153 	}
154 	memcpy(ent->valp, val, intcnt * intsz);
155 	zap->kvpcnt++;
156 	zap->chunks += zap_entry_chunks(ent);
157 	STAILQ_INSERT_TAIL(&zap->kvps, ent, next);
158 
159 	if (zap->micro && (intcnt != 1 || intsz != sizeof(uint64_t) ||
160 	    strlen(name) + 1 > MZAP_NAME_LEN || zap->kvpcnt > MZAP_ENT_MAX))
161 		zap->micro = false;
162 }
163 
164 void
zap_add_uint64(zfs_zap_t * zap,const char * name,uint64_t val)165 zap_add_uint64(zfs_zap_t *zap, const char *name, uint64_t val)
166 {
167 	zap_add(zap, name, sizeof(uint64_t), 1, (uint8_t *)&val);
168 }
169 
170 void
zap_add_uint64_self(zfs_zap_t * zap,uint64_t val)171 zap_add_uint64_self(zfs_zap_t *zap, uint64_t val)
172 {
173 	char name[32];
174 
175 	(void)snprintf(name, sizeof(name), "%jx", (uintmax_t)val);
176 	zap_add(zap, name, sizeof(uint64_t), 1, (uint8_t *)&val);
177 }
178 
179 void
zap_add_string(zfs_zap_t * zap,const char * name,const char * val)180 zap_add_string(zfs_zap_t *zap, const char *name, const char *val)
181 {
182 	zap_add(zap, name, 1, strlen(val) + 1, (const uint8_t *)val);
183 }
184 
185 bool
zap_entry_exists(zfs_zap_t * zap,const char * name)186 zap_entry_exists(zfs_zap_t *zap, const char *name)
187 {
188 	zfs_zap_entry_t *ent;
189 
190 	STAILQ_FOREACH(ent, &zap->kvps, next) {
191 		if (strcmp(ent->name, name) == 0)
192 			return (true);
193 	}
194 	return (false);
195 }
196 
197 static void
zap_micro_write(zfs_opt_t * zfs,zfs_zap_t * zap)198 zap_micro_write(zfs_opt_t *zfs, zfs_zap_t *zap)
199 {
200 	dnode_phys_t *dnode;
201 	zfs_zap_entry_t *ent;
202 	mzap_phys_t *mzap;
203 	mzap_ent_phys_t *ment;
204 	off_t bytes, loc;
205 	uint16_t cd;
206 
207 	_Static_assert(MZAP_ENT_MAX <= UINT16_MAX,
208 	    "micro ZAP collision differentiator must fit in 16 bits");
209 
210 	memset(zfs->filebuf, 0, sizeof(zfs->filebuf));
211 	mzap = (mzap_phys_t *)&zfs->filebuf[0];
212 	mzap->mz_block_type = ZBT_MICRO;
213 	mzap->mz_salt = zap->hashsalt;
214 	mzap->mz_normflags = 0;
215 
216 	bytes = sizeof(*mzap) + (zap->kvpcnt - 1) * sizeof(*ment);
217 	assert(bytes <= (off_t)MZAP_MAX_BLKSZ);
218 
219 	cd = 0;
220 	ment = &mzap->mz_chunk[0];
221 	STAILQ_FOREACH(ent, &zap->kvps, next) {
222 		memcpy(&ment->mze_value, ent->valp, ent->intsz * ent->intcnt);
223 		ment->mze_cd = cd++;
224 		(void)strlcpy(ment->mze_name, ent->name,
225 		    sizeof(ment->mze_name));
226 		ment++;
227 	}
228 
229 	loc = objset_space_alloc(zfs, zap->os, &bytes);
230 
231 	dnode = zap->dnode;
232 	dnode->dn_maxblkid = 0;
233 	dnode->dn_datablkszsec = bytes >> MINBLOCKSHIFT;
234 
235 	vdev_pwrite_dnode_data(zfs, dnode, zfs->filebuf, bytes, loc);
236 }
237 
238 /*
239  * Write some data to the fat ZAP leaf chunk starting at index "li".
240  *
241  * Note that individual integers in the value may be split among consecutive
242  * leaves.
243  */
244 static void
zap_fat_write_array_chunk(zap_leaf_t * l,uint16_t li,size_t sz,const uint8_t * val)245 zap_fat_write_array_chunk(zap_leaf_t *l, uint16_t li, size_t sz,
246     const uint8_t *val)
247 {
248 	struct zap_leaf_array *la;
249 
250 	assert(sz <= ZAP_MAXVALUELEN);
251 	assert(sz > 0);
252 
253 	for (uint16_t n, resid = sz; resid > 0; resid -= n, val += n, li++) {
254 		n = MIN(resid, ZAP_LEAF_ARRAY_BYTES);
255 
256 		la = &ZAP_LEAF_CHUNK(l, li).l_array;
257 		assert(la->la_type == ZAP_CHUNK_FREE);
258 		la->la_type = ZAP_CHUNK_ARRAY;
259 		memcpy(la->la_array, val, n);
260 		la->la_next = li + 1;
261 	}
262 	la->la_next = 0xffff;
263 }
264 
265 /*
266  * Find the shortest hash prefix length which lets us distribute keys without
267  * overflowing a leaf block.  This is not (space) optimal, but is simple, and
268  * directories large enough to overflow a single 128KB leaf block are uncommon.
269  */
270 static unsigned int
zap_fat_write_prefixlen(zfs_zap_t * zap,zap_leaf_t * l)271 zap_fat_write_prefixlen(zfs_zap_t *zap, zap_leaf_t *l)
272 {
273 	zfs_zap_entry_t *ent;
274 	unsigned int prefixlen;
275 
276 	if (zap->chunks <= ZAP_LEAF_NUMCHUNKS(l)) {
277 		/*
278 		 * All chunks will fit in a single leaf block.
279 		 */
280 		return (0);
281 	}
282 
283 	for (prefixlen = 1; prefixlen < (unsigned int)l->l_bs; prefixlen++) {
284 		uint32_t *leafchunks;
285 
286 		leafchunks = ecalloc(1u << prefixlen, sizeof(*leafchunks));
287 		STAILQ_FOREACH(ent, &zap->kvps, next) {
288 			uint64_t li;
289 			uint16_t chunks;
290 
291 			li = ZAP_HASH_IDX(ent->hash, prefixlen);
292 
293 			chunks = zap_entry_chunks(ent);
294 			if (ZAP_LEAF_NUMCHUNKS(l) - leafchunks[li] < chunks) {
295 				/*
296 				 * Not enough space, grow the prefix and retry.
297 				 */
298 				break;
299 			}
300 			leafchunks[li] += chunks;
301 		}
302 		free(leafchunks);
303 
304 		if (ent == NULL) {
305 			/*
306 			 * Everything fits, we're done.
307 			 */
308 			break;
309 		}
310 	}
311 
312 	/*
313 	 * If this fails, then we need to expand the pointer table.  For now
314 	 * this situation is unhandled since it is hard to trigger.
315 	 */
316 	assert(prefixlen < (unsigned int)l->l_bs);
317 
318 	return (prefixlen);
319 }
320 
321 /*
322  * Initialize a fat ZAP leaf block.
323  */
324 static void
zap_fat_write_leaf_init(zap_leaf_t * l,uint64_t prefix,int prefixlen)325 zap_fat_write_leaf_init(zap_leaf_t *l, uint64_t prefix, int prefixlen)
326 {
327 	zap_leaf_phys_t *leaf;
328 
329 	leaf = l->l_phys;
330 
331 	leaf->l_hdr.lh_block_type = ZBT_LEAF;
332 	leaf->l_hdr.lh_magic = ZAP_LEAF_MAGIC;
333 	leaf->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l);
334 	leaf->l_hdr.lh_prefix = prefix;
335 	leaf->l_hdr.lh_prefix_len = prefixlen;
336 
337 	/* Initialize the leaf hash table. */
338 	assert(leaf->l_hdr.lh_nfree < 0xffff);
339 	memset(leaf->l_hash, 0xff,
340 	    ZAP_LEAF_HASH_NUMENTRIES(l) * sizeof(*leaf->l_hash));
341 
342 	/* Initialize the leaf chunks. */
343 	for (uint16_t i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
344 		struct zap_leaf_free *lf;
345 
346 		lf = &ZAP_LEAF_CHUNK(l, i).l_free;
347 		lf->lf_type = ZAP_CHUNK_FREE;
348 		if (i + 1 == ZAP_LEAF_NUMCHUNKS(l))
349 			lf->lf_next = 0xffff;
350 		else
351 			lf->lf_next = i + 1;
352 	}
353 }
354 
355 static void
zap_fat_write(zfs_opt_t * zfs,zfs_zap_t * zap)356 zap_fat_write(zfs_opt_t *zfs, zfs_zap_t *zap)
357 {
358 	struct dnode_cursor *c;
359 	zap_leaf_t l;
360 	zap_phys_t *zaphdr;
361 	struct zap_table_phys *zt;
362 	zfs_zap_entry_t *ent;
363 	dnode_phys_t *dnode;
364 	uint8_t *leafblks;
365 	uint64_t lblkcnt, *ptrhasht;
366 	off_t loc, blksz;
367 	size_t blkshift;
368 	unsigned int prefixlen;
369 	int ptrcnt;
370 
371 	/*
372 	 * For simplicity, always use the largest block size.  This should be ok
373 	 * since most directories will be micro ZAPs, but it's space inefficient
374 	 * for small ZAPs and might need to be revisited.
375 	 */
376 	blkshift = MAXBLOCKSHIFT;
377 	blksz = (off_t)1 << blkshift;
378 
379 	/*
380 	 * Embedded pointer tables give up to 8192 entries.  This ought to be
381 	 * enough for anything except massive directories.
382 	 */
383 	ptrcnt = (blksz / 2) / sizeof(uint64_t);
384 
385 	memset(zfs->filebuf, 0, sizeof(zfs->filebuf));
386 	zaphdr = (zap_phys_t *)&zfs->filebuf[0];
387 	zaphdr->zap_block_type = ZBT_HEADER;
388 	zaphdr->zap_magic = ZAP_MAGIC;
389 	zaphdr->zap_num_entries = zap->kvpcnt;
390 	zaphdr->zap_salt = zap->hashsalt;
391 
392 	l.l_bs = blkshift;
393 	l.l_phys = NULL;
394 
395 	zt = &zaphdr->zap_ptrtbl;
396 	zt->zt_blk = 0;
397 	zt->zt_numblks = 0;
398 	zt->zt_shift = flsll(ptrcnt) - 1;
399 	zt->zt_nextblk = 0;
400 	zt->zt_blks_copied = 0;
401 
402 	/*
403 	 * How many leaf blocks do we need?  Initialize them and update the
404 	 * header.
405 	 */
406 	prefixlen = zap_fat_write_prefixlen(zap, &l);
407 	lblkcnt = (uint64_t)1 << prefixlen;
408 	leafblks = ecalloc(lblkcnt, blksz);
409 	for (unsigned int li = 0; li < lblkcnt; li++) {
410 		l.l_phys = (zap_leaf_phys_t *)(leafblks + li * blksz);
411 		zap_fat_write_leaf_init(&l, li, prefixlen);
412 	}
413 	zaphdr->zap_num_leafs = lblkcnt;
414 	zaphdr->zap_freeblk = lblkcnt + 1;
415 
416 	/*
417 	 * For each entry, figure out which leaf block it belongs to based on
418 	 * the upper bits of its hash, allocate chunks from that leaf, and fill
419 	 * them out.
420 	 */
421 	ptrhasht = (uint64_t *)(&zfs->filebuf[0] + blksz / 2);
422 	STAILQ_FOREACH(ent, &zap->kvps, next) {
423 		struct zap_leaf_entry *le;
424 		uint16_t *lptr;
425 		uint64_t hi, li;
426 		uint16_t namelen, nchunks, nnamechunks, nvalchunks;
427 
428 		hi = ZAP_HASH_IDX(ent->hash, zt->zt_shift);
429 		li = ZAP_HASH_IDX(ent->hash, prefixlen);
430 		assert(ptrhasht[hi] == 0 || ptrhasht[hi] == li + 1);
431 		ptrhasht[hi] = li + 1;
432 		l.l_phys = (zap_leaf_phys_t *)(leafblks + li * blksz);
433 
434 		namelen = strlen(ent->name) + 1;
435 
436 		/*
437 		 * How many leaf chunks do we need for this entry?
438 		 */
439 		nnamechunks = howmany(namelen, ZAP_LEAF_ARRAY_BYTES);
440 		nvalchunks = howmany(ent->intcnt,
441 		    ZAP_LEAF_ARRAY_BYTES / ent->intsz);
442 		nchunks = 1 + nnamechunks + nvalchunks;
443 
444 		/*
445 		 * Allocate a run of free leaf chunks for this entry,
446 		 * potentially extending a hash chain.
447 		 */
448 		assert(l.l_phys->l_hdr.lh_nfree >= nchunks);
449 		l.l_phys->l_hdr.lh_nfree -= nchunks;
450 		l.l_phys->l_hdr.lh_nentries++;
451 		lptr = ZAP_LEAF_HASH_ENTPTR(&l, ent->hash);
452 		while (*lptr != 0xffff) {
453 			assert(*lptr < ZAP_LEAF_NUMCHUNKS(&l));
454 			le = ZAP_LEAF_ENTRY(&l, *lptr);
455 			assert(le->le_type == ZAP_CHUNK_ENTRY);
456 			le->le_cd++;
457 			lptr = &le->le_next;
458 		}
459 		*lptr = l.l_phys->l_hdr.lh_freelist;
460 		l.l_phys->l_hdr.lh_freelist += nchunks;
461 		assert(l.l_phys->l_hdr.lh_freelist <=
462 		    ZAP_LEAF_NUMCHUNKS(&l));
463 		if (l.l_phys->l_hdr.lh_freelist ==
464 		    ZAP_LEAF_NUMCHUNKS(&l))
465 			l.l_phys->l_hdr.lh_freelist = 0xffff;
466 
467 		/*
468 		 * Integer values must be stored in big-endian format.
469 		 */
470 		switch (ent->intsz) {
471 		case 1:
472 			break;
473 		case 2:
474 			for (uint16_t *v = ent->val16p;
475 			    v - ent->val16p < (ptrdiff_t)ent->intcnt;
476 			    v++)
477 				*v = htobe16(*v);
478 			break;
479 		case 4:
480 			for (uint32_t *v = ent->val32p;
481 			    v - ent->val32p < (ptrdiff_t)ent->intcnt;
482 			    v++)
483 				*v = htobe32(*v);
484 			break;
485 		case 8:
486 			for (uint64_t *v = ent->val64p;
487 			    v - ent->val64p < (ptrdiff_t)ent->intcnt;
488 			    v++)
489 				*v = htobe64(*v);
490 			break;
491 		default:
492 			assert(0);
493 		}
494 
495 		/*
496 		 * Finally, write out the leaf chunks for this entry.
497 		 */
498 		le = ZAP_LEAF_ENTRY(&l, *lptr);
499 		assert(le->le_type == ZAP_CHUNK_FREE);
500 		le->le_type = ZAP_CHUNK_ENTRY;
501 		le->le_next = 0xffff;
502 		le->le_name_chunk = *lptr + 1;
503 		le->le_name_numints = namelen;
504 		le->le_value_chunk = *lptr + 1 + nnamechunks;
505 		le->le_value_intlen = ent->intsz;
506 		le->le_value_numints = ent->intcnt;
507 		le->le_hash = ent->hash;
508 		zap_fat_write_array_chunk(&l, *lptr + 1, namelen,
509 		    (uint8_t *)ent->name);
510 		zap_fat_write_array_chunk(&l, *lptr + 1 + nnamechunks,
511 		    ent->intcnt * ent->intsz, ent->valp);
512 	}
513 
514 	/*
515 	 * Initialize unused slots of the pointer table.
516 	 */
517 	for (int i = 0; i < ptrcnt; i++)
518 		if (ptrhasht[i] == 0)
519 			ptrhasht[i] = (i >> (zt->zt_shift - prefixlen)) + 1;
520 
521 	/*
522 	 * Write the whole thing to disk.
523 	 */
524 	dnode = zap->dnode;
525 	dnode->dn_datablkszsec = blksz >> MINBLOCKSHIFT;
526 	dnode->dn_maxblkid = lblkcnt + 1;
527 
528 	c = dnode_cursor_init(zfs, zap->os, zap->dnode,
529 	    (lblkcnt + 1) * blksz, blksz);
530 
531 	loc = objset_space_alloc(zfs, zap->os, &blksz);
532 	vdev_pwrite_dnode_indir(zfs, dnode, 0, 1, zfs->filebuf, blksz, loc,
533 	    dnode_cursor_next(zfs, c, 0));
534 
535 	for (uint64_t i = 0; i < lblkcnt; i++) {
536 		loc = objset_space_alloc(zfs, zap->os, &blksz);
537 		vdev_pwrite_dnode_indir(zfs, dnode, 0, 1, leafblks + i * blksz,
538 		    blksz, loc, dnode_cursor_next(zfs, c, (i + 1) * blksz));
539 	}
540 
541 	dnode_cursor_finish(zfs, c);
542 
543 	free(leafblks);
544 }
545 
546 void
zap_write(zfs_opt_t * zfs,zfs_zap_t * zap)547 zap_write(zfs_opt_t *zfs, zfs_zap_t *zap)
548 {
549 	zfs_zap_entry_t *ent;
550 
551 	if (zap->micro) {
552 		zap_micro_write(zfs, zap);
553 	} else {
554 		assert(!STAILQ_EMPTY(&zap->kvps));
555 		assert(zap->kvpcnt > 0);
556 		zap_fat_write(zfs, zap);
557 	}
558 
559 	while ((ent = STAILQ_FIRST(&zap->kvps)) != NULL) {
560 		STAILQ_REMOVE_HEAD(&zap->kvps, next);
561 		if (ent->val64p != &ent->val64)
562 			free(ent->valp);
563 		free(ent->name);
564 		free(ent);
565 	}
566 	free(zap);
567 }
568