xref: /freebsd/sys/contrib/openzfs/include/sys/zap.h (revision 61145dc2b94f12f6a47344fb9aac702321880e43)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  */
28 
29 #ifndef	_SYS_ZAP_H
30 #define	_SYS_ZAP_H
31 
32 /*
33  * ZAP - ZFS Attribute Processor
34  *
35  * The ZAP is a module which sits on top of the DMU (Data Management
36  * Unit) and implements a higher-level storage primitive using DMU
37  * objects.  Its primary consumer is the ZPL (ZFS Posix Layer).
38  *
39  * A "zapobj" is a DMU object which the ZAP uses to stores attributes.
40  * Users should use only zap routines to access a zapobj - they should
41  * not access the DMU object directly using DMU routines.
42  *
43  * The attributes stored in a zapobj are name-value pairs.  The name is
44  * a zero-terminated string of up to ZAP_MAXNAMELEN bytes (including
45  * terminating NULL).  The value is an array of integers, which may be
46  * 1, 2, 4, or 8 bytes long.  The total space used by the array (number
47  * of integers * integer length) can be up to ZAP_MAXVALUELEN bytes.
48  * Note that an 8-byte integer value can be used to store the location
49  * (object number) of another dmu object (which may be itself a zapobj).
50  * Note that you can use a zero-length attribute to store a single bit
51  * of information - the attribute is present or not.
52  *
53  * The ZAP routines are thread-safe.  However, you must observe the
54  * DMU's restriction that a transaction may not be operated on
55  * concurrently.
56  *
57  * Any of the routines that return an int may return an I/O error (EIO
58  * or ECHECKSUM).
59  *
60  *
61  * Implementation / Performance Notes:
62  *
63  * The ZAP is intended to operate most efficiently on attributes with
64  * short (49 bytes or less) names and single 8-byte values, for which
65  * the microzap will be used.  The ZAP should be efficient enough so
66  * that the user does not need to cache these attributes.
67  *
68  * The ZAP's locking scheme makes its routines thread-safe.  Operations
69  * on different zapobjs will be processed concurrently.  Operations on
70  * the same zapobj which only read data will be processed concurrently.
71  * Operations on the same zapobj which modify data will be processed
72  * concurrently when there are many attributes in the zapobj (because
73  * the ZAP uses per-block locking - more than 128 * (number of cpus)
74  * small attributes will suffice).
75  */
76 
77 /*
78  * We're using zero-terminated byte strings (ie. ASCII or UTF-8 C
79  * strings) for the names of attributes, rather than a byte string
80  * bounded by an explicit length.  If some day we want to support names
81  * in character sets which have embedded zeros (eg. UTF-16, UTF-32),
82  * we'll have to add routines for using length-bounded strings.
83  */
84 
85 #include <sys/dmu.h>
86 
87 #ifdef	__cplusplus
88 extern "C" {
89 #endif
90 
91 /*
92  * Specifies matching criteria for ZAP lookups.
93  * MT_NORMALIZE		Use ZAP normalization flags, which can include both
94  *			unicode normalization and case-insensitivity.
95  * MT_MATCH_CASE	Do case-sensitive lookups even if MT_NORMALIZE is
96  *			specified and ZAP normalization flags include
97  *			U8_TEXTPREP_TOUPPER.
98  */
99 typedef enum matchtype {
100 	MT_NORMALIZE = 1 << 0,
101 	MT_MATCH_CASE = 1 << 1,
102 } matchtype_t;
103 
104 typedef enum zap_flags {
105 	/* Use 64-bit hash value (serialized cursors will always use 64-bits) */
106 	ZAP_FLAG_HASH64 = 1 << 0,
107 	/* Key is binary, not string (zap_add_uint64() can be used) */
108 	ZAP_FLAG_UINT64_KEY = 1 << 1,
109 	/*
110 	 * First word of key (which must be an array of uint64) is
111 	 * already randomly distributed.
112 	 */
113 	ZAP_FLAG_PRE_HASHED_KEY = 1 << 2,
114 #if defined(__linux__) && defined(_KERNEL)
115 } zfs_zap_flags_t;
116 #define	zap_flags_t	zfs_zap_flags_t
117 #else
118 } zap_flags_t;
119 #endif
120 
121 /*
122  * Create a new zapobj with no attributes and return its object number.
123  */
124 uint64_t zap_create(objset_t *ds, dmu_object_type_t ot,
125     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
126 uint64_t zap_create_dnsize(objset_t *ds, dmu_object_type_t ot,
127     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx);
128 uint64_t zap_create_norm(objset_t *ds, int normflags, dmu_object_type_t ot,
129     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
130 uint64_t zap_create_norm_dnsize(objset_t *ds, int normflags,
131     dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen,
132     int dnodesize, dmu_tx_t *tx);
133 uint64_t zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
134     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
135     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
136 uint64_t zap_create_flags_dnsize(objset_t *os, int normflags,
137     zap_flags_t flags, dmu_object_type_t ot, int leaf_blockshift,
138     int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen,
139     int dnodesize, dmu_tx_t *tx);
140 uint64_t zap_create_hold(objset_t *os, int normflags, zap_flags_t flags,
141     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
142     dmu_object_type_t bonustype, int bonuslen, int dnodesize,
143     dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx);
144 
145 uint64_t zap_create_link(objset_t *os, dmu_object_type_t ot,
146     uint64_t parent_obj, const char *name, dmu_tx_t *tx);
147 uint64_t zap_create_link_dnsize(objset_t *os, dmu_object_type_t ot,
148     uint64_t parent_obj, const char *name, int dnodesize, dmu_tx_t *tx);
149 
150 /*
151  * Initialize an already-allocated object.
152  */
153 void mzap_create_impl(dnode_t *dn, int normflags, zap_flags_t flags,
154     dmu_tx_t *tx);
155 
156 /*
157  * Create a new zapobj with no attributes from the given (unallocated)
158  * object number.
159  */
160 int zap_create_claim(objset_t *ds, uint64_t obj, dmu_object_type_t ot,
161     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
162 int zap_create_claim_dnsize(objset_t *ds, uint64_t obj, dmu_object_type_t ot,
163     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx);
164 int zap_create_claim_norm(objset_t *ds, uint64_t obj,
165     int normflags, dmu_object_type_t ot,
166     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
167 int zap_create_claim_norm_dnsize(objset_t *ds, uint64_t obj,
168     int normflags, dmu_object_type_t ot,
169     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx);
170 
171 /*
172  * The zapobj passed in must be a valid ZAP object for all of the
173  * following routines.
174  */
175 
176 /*
177  * Destroy this zapobj and all its attributes.
178  *
179  * Frees the object number using dmu_object_free.
180  */
181 int zap_destroy(objset_t *ds, uint64_t zapobj, dmu_tx_t *tx);
182 
183 /*
184  * Manipulate attributes.
185  *
186  * 'integer_size' is in bytes, and must be 1, 2, 4, or 8.
187  */
188 
189 /*
190  * Retrieve the contents of the attribute with the given name.
191  *
192  * If the requested attribute does not exist, the call will fail and
193  * return ENOENT.
194  *
195  * If 'integer_size' is smaller than the attribute's integer size, the
196  * call will fail and return EINVAL.
197  *
198  * If 'integer_size' is equal to or larger than the attribute's integer
199  * size, the call will succeed and return 0.
200  *
201  * When converting to a larger integer size, the integers will be treated as
202  * unsigned (ie. no sign-extension will be performed).
203  *
204  * 'num_integers' is the length (in integers) of 'buf'.
205  *
206  * If the attribute is longer than the buffer, as many integers as will
207  * fit will be transferred to 'buf'.  If the entire attribute was not
208  * transferred, the call will return EOVERFLOW.
209  */
210 int zap_lookup(objset_t *ds, uint64_t zapobj, const char *name,
211     uint64_t integer_size, uint64_t num_integers, void *buf);
212 
213 /*
214  * If rn_len is nonzero, realname will be set to the name of the found
215  * entry (which may be different from the requested name if matchtype is
216  * not MT_EXACT).
217  *
218  * If normalization_conflictp is not NULL, it will be set if there is
219  * another name with the same case/unicode normalized form.
220  */
221 int zap_lookup_norm(objset_t *ds, uint64_t zapobj, const char *name,
222     uint64_t integer_size, uint64_t num_integers, void *buf,
223     matchtype_t mt, char *realname, int rn_len,
224     boolean_t *normalization_conflictp);
225 int zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
226     int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf);
227 int zap_lookup_uint64_by_dnode(dnode_t *dn, const uint64_t *key,
228     int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf);
229 int zap_contains(objset_t *ds, uint64_t zapobj, const char *name);
230 int zap_prefetch(objset_t *os, uint64_t zapobj, const char *name);
231 int zap_prefetch_object(objset_t *os, uint64_t zapobj);
232 int zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
233     int key_numints);
234 int zap_prefetch_uint64_by_dnode(dnode_t *dn, const uint64_t *key,
235     int key_numints);
236 
237 int zap_lookup_by_dnode(dnode_t *dn, const char *name,
238     uint64_t integer_size, uint64_t num_integers, void *buf);
239 int zap_lookup_norm_by_dnode(dnode_t *dn, const char *name,
240     uint64_t integer_size, uint64_t num_integers, void *buf,
241     matchtype_t mt, char *realname, int rn_len,
242     boolean_t *ncp);
243 
244 /*
245  * Create an attribute with the given name and value.
246  *
247  * If an attribute with the given name already exists, the call will
248  * fail and return EEXIST.
249  */
250 int zap_add(objset_t *ds, uint64_t zapobj, const char *key,
251     int integer_size, uint64_t num_integers,
252     const void *val, dmu_tx_t *tx);
253 int zap_add_by_dnode(dnode_t *dn, const char *key,
254     int integer_size, uint64_t num_integers,
255     const void *val, dmu_tx_t *tx);
256 int zap_add_uint64(objset_t *ds, uint64_t zapobj, const uint64_t *key,
257     int key_numints, int integer_size, uint64_t num_integers,
258     const void *val, dmu_tx_t *tx);
259 int zap_add_uint64_by_dnode(dnode_t *dn, const uint64_t *key,
260     int key_numints, int integer_size, uint64_t num_integers,
261     const void *val, dmu_tx_t *tx);
262 
263 /*
264  * Set the attribute with the given name to the given value.  If an
265  * attribute with the given name does not exist, it will be created.  If
266  * an attribute with the given name already exists, the previous value
267  * will be overwritten.  The integer_size may be different from the
268  * existing attribute's integer size, in which case the attribute's
269  * integer size will be updated to the new value.
270  */
271 int zap_update(objset_t *ds, uint64_t zapobj, const char *name,
272     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
273 int zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
274     int key_numints,
275     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
276 int zap_update_uint64_by_dnode(dnode_t *dn, const uint64_t *key,
277     int key_numints,
278     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
279 
280 /*
281  * Get the length (in integers) and the integer size of the specified
282  * attribute.
283  *
284  * If the requested attribute does not exist, the call will fail and
285  * return ENOENT.
286  */
287 int zap_length(objset_t *ds, uint64_t zapobj, const char *name,
288     uint64_t *integer_size, uint64_t *num_integers);
289 int zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
290     int key_numints, uint64_t *integer_size, uint64_t *num_integers);
291 
292 /*
293  * Remove the specified attribute.
294  *
295  * If the specified attribute does not exist, the call will fail and
296  * return ENOENT.
297  */
298 int zap_remove(objset_t *ds, uint64_t zapobj, const char *name, dmu_tx_t *tx);
299 int zap_remove_norm(objset_t *ds, uint64_t zapobj, const char *name,
300     matchtype_t mt, dmu_tx_t *tx);
301 int zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx);
302 int zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
303     int key_numints, dmu_tx_t *tx);
304 int zap_remove_uint64_by_dnode(dnode_t *dn, const uint64_t *key,
305     int key_numints, dmu_tx_t *tx);
306 
307 /*
308  * Returns (in *count) the number of attributes in the specified zap
309  * object.
310  */
311 int zap_count(objset_t *ds, uint64_t zapobj, uint64_t *count);
312 
313 /*
314  * Returns (in name) the name of the entry whose (value & mask)
315  * (za_first_integer) is value, or ENOENT if not found.  The string
316  * pointed to by name must be at least 256 bytes long.  If mask==0, the
317  * match must be exact (ie, same as mask=-1ULL).
318  */
319 int zap_value_search(objset_t *os, uint64_t zapobj,
320     uint64_t value, uint64_t mask, char *name, uint64_t namelen);
321 
322 /*
323  * Transfer all the entries from fromobj into intoobj.  Only works on
324  * int_size=8 num_integers=1 values.  Fails if there are any duplicated
325  * entries.
326  */
327 int zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx);
328 
329 /* Same as zap_join, but set the values to 'value'. */
330 int zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj,
331     uint64_t value, dmu_tx_t *tx);
332 
333 /* Same as zap_join, but add together any duplicated entries. */
334 int zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj,
335     dmu_tx_t *tx);
336 
337 /*
338  * Manipulate entries where the name + value are the "same" (the name is
339  * a stringified version of the value).
340  */
341 int zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
342 int zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
343 int zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value);
344 int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
345     dmu_tx_t *tx);
346 
347 /* Here the key is an int and the value is a different int. */
348 int zap_add_int_key(objset_t *os, uint64_t obj,
349     uint64_t key, uint64_t value, dmu_tx_t *tx);
350 int zap_update_int_key(objset_t *os, uint64_t obj,
351     uint64_t key, uint64_t value, dmu_tx_t *tx);
352 int zap_lookup_int_key(objset_t *os, uint64_t obj,
353     uint64_t key, uint64_t *valuep);
354 
355 int zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta,
356     dmu_tx_t *tx);
357 
358 struct zap;
359 struct zap_leaf;
360 typedef struct zap_cursor {
361 	/* This structure is opaque! */
362 	objset_t *zc_objset;
363 	struct zap *zc_zap;
364 	struct zap_leaf *zc_leaf;
365 	uint64_t zc_zapobj;
366 	uint64_t zc_serialized;
367 	uint64_t zc_hash;
368 	uint32_t zc_cd;
369 	boolean_t zc_prefetch;
370 } zap_cursor_t;
371 
372 typedef struct {
373 	int za_integer_length;
374 	/*
375 	 * za_normalization_conflict will be set if there are additional
376 	 * entries with this normalized form (eg, "foo" and "Foo").
377 	 */
378 	boolean_t za_normalization_conflict;
379 	uint64_t za_num_integers;
380 	uint64_t za_first_integer;	/* no sign extension for <8byte ints */
381 	uint32_t za_name_len;
382 	uint32_t za_pad;	/* We want za_name aligned to uint64_t. */
383 	char za_name[];
384 } zap_attribute_t;
385 
386 void zap_init(void);
387 void zap_fini(void);
388 
389 /*
390  * Alloc and free zap_attribute_t.
391  */
392 zap_attribute_t *zap_attribute_alloc(void);
393 zap_attribute_t *zap_attribute_long_alloc(void);
394 void zap_attribute_free(zap_attribute_t *attrp);
395 
396 /*
397  * The interface for listing all the attributes of a zapobj can be
398  * thought of as cursor moving down a list of the attributes one by
399  * one.  The cookie returned by the zap_cursor_serialize routine is
400  * persistent across system calls (and across reboot, even).
401  */
402 
403 /*
404  * Initialize a zap cursor, pointing to the "first" attribute of the
405  * zapobj.  You must _fini the cursor when you are done with it.
406  */
407 void zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj);
408 void zap_cursor_init_noprefetch(zap_cursor_t *zc, objset_t *os,
409     uint64_t zapobj);
410 void zap_cursor_fini(zap_cursor_t *zc);
411 
412 /*
413  * Get the attribute currently pointed to by the cursor.  Returns
414  * ENOENT if at the end of the attributes.
415  */
416 int zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za);
417 
418 /*
419  * Advance the cursor to the next attribute.
420  */
421 void zap_cursor_advance(zap_cursor_t *zc);
422 
423 /*
424  * Get a persistent cookie pointing to the current position of the zap
425  * cursor.  The low 4 bits in the cookie are always zero, and thus can
426  * be used as to differentiate a serialized cookie from a different type
427  * of value.  The cookie will be less than 2^32 as long as there are
428  * fewer than 2^22 (4.2 million) entries in the zap object.
429  */
430 uint64_t zap_cursor_serialize(zap_cursor_t *zc);
431 
432 /*
433  * Initialize a zap cursor pointing to the position recorded by
434  * zap_cursor_serialize (in the "serialized" argument).  You can also
435  * use a "serialized" argument of 0 to start at the beginning of the
436  * zapobj (ie.  zap_cursor_init_serialized(..., 0) is equivalent to
437  * zap_cursor_init(...).)
438  */
439 void zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *ds,
440     uint64_t zapobj, uint64_t serialized);
441 
442 
443 #define	ZAP_HISTOGRAM_SIZE 10
444 
445 typedef struct zap_stats {
446 	/*
447 	 * Size of the pointer table (in number of entries).
448 	 * This is always a power of 2, or zero if it's a microzap.
449 	 * In general, it should be considerably greater than zs_num_leafs.
450 	 */
451 	uint64_t zs_ptrtbl_len;
452 
453 	uint64_t zs_blocksize;		/* size of zap blocks */
454 
455 	/*
456 	 * The number of blocks used.  Note that some blocks may be
457 	 * wasted because old ptrtbl's and large name/value blocks are
458 	 * not reused.  (Although their space is reclaimed, we don't
459 	 * reuse those offsets in the object.)
460 	 */
461 	uint64_t zs_num_blocks;
462 
463 	/*
464 	 * Pointer table values from zap_ptrtbl in the zap_phys_t
465 	 */
466 	uint64_t zs_ptrtbl_nextblk;	  /* next (larger) copy start block */
467 	uint64_t zs_ptrtbl_blks_copied;   /* number source blocks copied */
468 	uint64_t zs_ptrtbl_zt_blk;	  /* starting block number */
469 	uint64_t zs_ptrtbl_zt_numblks;    /* number of blocks */
470 	uint64_t zs_ptrtbl_zt_shift;	  /* bits to index it */
471 
472 	/*
473 	 * Values of the other members of the zap_phys_t
474 	 */
475 	uint64_t zs_block_type;		/* ZBT_HEADER */
476 	uint64_t zs_magic;		/* ZAP_MAGIC */
477 	uint64_t zs_num_leafs;		/* The number of leaf blocks */
478 	uint64_t zs_num_entries;	/* The number of zap entries */
479 	uint64_t zs_salt;		/* salt to stir into hash function */
480 
481 	/*
482 	 * Histograms.  For all histograms, the last index
483 	 * (ZAP_HISTOGRAM_SIZE-1) includes any values which are greater
484 	 * than what can be represented.  For example
485 	 * zs_leafs_with_n5_entries[ZAP_HISTOGRAM_SIZE-1] is the number
486 	 * of leafs with more than 45 entries.
487 	 */
488 
489 	/*
490 	 * zs_leafs_with_n_pointers[n] is the number of leafs with
491 	 * 2^n pointers to it.
492 	 */
493 	uint64_t zs_leafs_with_2n_pointers[ZAP_HISTOGRAM_SIZE];
494 
495 	/*
496 	 * zs_leafs_with_n_entries[n] is the number of leafs with
497 	 * [n*5, (n+1)*5) entries.  In the current implementation, there
498 	 * can be at most 55 entries in any block, but there may be
499 	 * fewer if the name or value is large, or the block is not
500 	 * completely full.
501 	 */
502 	uint64_t zs_blocks_with_n5_entries[ZAP_HISTOGRAM_SIZE];
503 
504 	/*
505 	 * zs_leafs_n_tenths_full[n] is the number of leafs whose
506 	 * fullness is in the range [n/10, (n+1)/10).
507 	 */
508 	uint64_t zs_blocks_n_tenths_full[ZAP_HISTOGRAM_SIZE];
509 
510 	/*
511 	 * zs_entries_using_n_chunks[n] is the number of entries which
512 	 * consume n 24-byte chunks.  (Note, large names/values only use
513 	 * one chunk, but contribute to zs_num_blocks_large.)
514 	 */
515 	uint64_t zs_entries_using_n_chunks[ZAP_HISTOGRAM_SIZE];
516 
517 	/*
518 	 * zs_buckets_with_n_entries[n] is the number of buckets (each
519 	 * leaf has 64 buckets) with n entries.
520 	 * zs_buckets_with_n_entries[1] should be very close to
521 	 * zs_num_entries.
522 	 */
523 	uint64_t zs_buckets_with_n_entries[ZAP_HISTOGRAM_SIZE];
524 } zap_stats_t;
525 
526 /*
527  * Get statistics about a ZAP object.  Note: you need to be aware of the
528  * internal implementation of the ZAP to correctly interpret some of the
529  * statistics.  This interface shouldn't be relied on unless you really
530  * know what you're doing.
531  */
532 int zap_get_stats(objset_t *ds, uint64_t zapobj, zap_stats_t *zs);
533 
534 #ifdef	__cplusplus
535 }
536 #endif
537 
538 #endif	/* _SYS_ZAP_H */
539