xref: /linux/arch/um/os-Linux/skas/process.c (revision ad73b9a17d66366d8c9198bc90f1ea99f24a912c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
4  * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
5  */
6 
7 #include <stdlib.h>
8 #include <stdbool.h>
9 #include <unistd.h>
10 #include <sched.h>
11 #include <errno.h>
12 #include <string.h>
13 #include <fcntl.h>
14 #include <mem_user.h>
15 #include <sys/mman.h>
16 #include <sys/wait.h>
17 #include <sys/stat.h>
18 #include <asm/unistd.h>
19 #include <as-layout.h>
20 #include <init.h>
21 #include <kern_util.h>
22 #include <mem.h>
23 #include <os.h>
24 #include <ptrace_user.h>
25 #include <registers.h>
26 #include <skas.h>
27 #include <sysdep/stub.h>
28 #include <linux/threads.h>
29 #include <timetravel.h>
30 #include "../internal.h"
31 
is_skas_winch(int pid,int fd,void * data)32 int is_skas_winch(int pid, int fd, void *data)
33 {
34 	return pid == getpgrp();
35 }
36 
ptrace_reg_name(int idx)37 static const char *ptrace_reg_name(int idx)
38 {
39 #define R(n) case HOST_##n: return #n
40 
41 	switch (idx) {
42 #ifdef __x86_64__
43 	R(BX);
44 	R(CX);
45 	R(DI);
46 	R(SI);
47 	R(DX);
48 	R(BP);
49 	R(AX);
50 	R(R8);
51 	R(R9);
52 	R(R10);
53 	R(R11);
54 	R(R12);
55 	R(R13);
56 	R(R14);
57 	R(R15);
58 	R(ORIG_AX);
59 	R(CS);
60 	R(SS);
61 	R(EFLAGS);
62 #elif defined(__i386__)
63 	R(IP);
64 	R(SP);
65 	R(EFLAGS);
66 	R(AX);
67 	R(BX);
68 	R(CX);
69 	R(DX);
70 	R(SI);
71 	R(DI);
72 	R(BP);
73 	R(CS);
74 	R(SS);
75 	R(DS);
76 	R(FS);
77 	R(ES);
78 	R(GS);
79 	R(ORIG_AX);
80 #endif
81 	}
82 	return "";
83 }
84 
ptrace_dump_regs(int pid)85 static int ptrace_dump_regs(int pid)
86 {
87 	unsigned long regs[MAX_REG_NR];
88 	int i;
89 
90 	if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
91 		return -errno;
92 
93 	printk(UM_KERN_ERR "Stub registers -\n");
94 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
95 		const char *regname = ptrace_reg_name(i);
96 
97 		printk(UM_KERN_ERR "\t%s\t(%2d): %lx\n", regname, i, regs[i]);
98 	}
99 
100 	return 0;
101 }
102 
103 /*
104  * Signals that are OK to receive in the stub - we'll just continue it.
105  * SIGWINCH will happen when UML is inside a detached screen.
106  */
107 #define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH))
108 
109 /* Signals that the stub will finish with - anything else is an error */
110 #define STUB_DONE_MASK (1 << SIGTRAP)
111 
wait_stub_done(int pid)112 void wait_stub_done(int pid)
113 {
114 	int n, status, err;
115 
116 	while (1) {
117 		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
118 		if ((n < 0) || !WIFSTOPPED(status))
119 			goto bad_wait;
120 
121 		if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
122 			break;
123 
124 		err = ptrace(PTRACE_CONT, pid, 0, 0);
125 		if (err) {
126 			printk(UM_KERN_ERR "%s : continue failed, errno = %d\n",
127 			       __func__, errno);
128 			fatal_sigsegv();
129 		}
130 	}
131 
132 	if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
133 		return;
134 
135 bad_wait:
136 	err = ptrace_dump_regs(pid);
137 	if (err)
138 		printk(UM_KERN_ERR "Failed to get registers from stub, errno = %d\n",
139 		       -err);
140 	printk(UM_KERN_ERR "%s : failed to wait for SIGTRAP, pid = %d, n = %d, errno = %d, status = 0x%x\n",
141 	       __func__, pid, n, errno, status);
142 	fatal_sigsegv();
143 }
144 
145 extern unsigned long current_stub_stack(void);
146 
get_skas_faultinfo(int pid,struct faultinfo * fi)147 static void get_skas_faultinfo(int pid, struct faultinfo *fi)
148 {
149 	int err;
150 
151 	err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
152 	if (err) {
153 		printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
154 		       "errno = %d\n", pid, errno);
155 		fatal_sigsegv();
156 	}
157 	wait_stub_done(pid);
158 
159 	/*
160 	 * faultinfo is prepared by the stub_segv_handler at start of
161 	 * the stub stack page. We just have to copy it.
162 	 */
163 	memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
164 }
165 
handle_segv(int pid,struct uml_pt_regs * regs)166 static void handle_segv(int pid, struct uml_pt_regs *regs)
167 {
168 	get_skas_faultinfo(pid, &regs->faultinfo);
169 	segv(regs->faultinfo, 0, 1, NULL);
170 }
171 
handle_trap(int pid,struct uml_pt_regs * regs)172 static void handle_trap(int pid, struct uml_pt_regs *regs)
173 {
174 	if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
175 		fatal_sigsegv();
176 
177 	handle_syscall(regs);
178 }
179 
180 extern char __syscall_stub_start[];
181 
182 static int stub_exe_fd;
183 
184 #ifndef CLOSE_RANGE_CLOEXEC
185 #define CLOSE_RANGE_CLOEXEC	(1U << 2)
186 #endif
187 
userspace_tramp(void * stack)188 static int userspace_tramp(void *stack)
189 {
190 	char *const argv[] = { "uml-userspace", NULL };
191 	int pipe_fds[2];
192 	unsigned long long offset;
193 	struct stub_init_data init_data = {
194 		.stub_start = STUB_START,
195 		.segv_handler = STUB_CODE +
196 				(unsigned long) stub_segv_handler -
197 				(unsigned long) __syscall_stub_start,
198 	};
199 	struct iomem_region *iomem;
200 	int ret;
201 
202 	init_data.stub_code_fd = phys_mapping(uml_to_phys(__syscall_stub_start),
203 					      &offset);
204 	init_data.stub_code_offset = MMAP_OFFSET(offset);
205 
206 	init_data.stub_data_fd = phys_mapping(uml_to_phys(stack), &offset);
207 	init_data.stub_data_offset = MMAP_OFFSET(offset);
208 
209 	/*
210 	 * Avoid leaking unneeded FDs to the stub by setting CLOEXEC on all FDs
211 	 * and then unsetting it on all memory related FDs.
212 	 * This is not strictly necessary from a safety perspective.
213 	 */
214 	syscall(__NR_close_range, 0, ~0U, CLOSE_RANGE_CLOEXEC);
215 
216 	fcntl(init_data.stub_data_fd, F_SETFD, 0);
217 	for (iomem = iomem_regions; iomem; iomem = iomem->next)
218 		fcntl(iomem->fd, F_SETFD, 0);
219 
220 	/* Create a pipe for init_data (no CLOEXEC) and dup2 to STDIN */
221 	if (pipe(pipe_fds))
222 		exit(2);
223 
224 	if (dup2(pipe_fds[0], 0) < 0)
225 		exit(3);
226 	close(pipe_fds[0]);
227 
228 	/* Write init_data and close write side */
229 	ret = write(pipe_fds[1], &init_data, sizeof(init_data));
230 	close(pipe_fds[1]);
231 
232 	if (ret != sizeof(init_data))
233 		exit(4);
234 
235 	/* Raw execveat for compatibility with older libc versions */
236 	syscall(__NR_execveat, stub_exe_fd, (unsigned long)"",
237 		(unsigned long)argv, NULL, AT_EMPTY_PATH);
238 
239 	exit(5);
240 }
241 
242 extern char stub_exe_start[];
243 extern char stub_exe_end[];
244 
245 extern char *tempdir;
246 
247 #define STUB_EXE_NAME_TEMPLATE "/uml-userspace-XXXXXX"
248 
249 #ifndef MFD_EXEC
250 #define MFD_EXEC 0x0010U
251 #endif
252 
init_stub_exe_fd(void)253 static int __init init_stub_exe_fd(void)
254 {
255 	size_t written = 0;
256 	char *tmpfile = NULL;
257 
258 	stub_exe_fd = memfd_create("uml-userspace",
259 				   MFD_EXEC | MFD_CLOEXEC | MFD_ALLOW_SEALING);
260 
261 	if (stub_exe_fd < 0) {
262 		printk(UM_KERN_INFO "Could not create executable memfd, using temporary file!");
263 
264 		tmpfile = malloc(strlen(tempdir) +
265 				  strlen(STUB_EXE_NAME_TEMPLATE) + 1);
266 		if (tmpfile == NULL)
267 			panic("Failed to allocate memory for stub binary name");
268 
269 		strcpy(tmpfile, tempdir);
270 		strcat(tmpfile, STUB_EXE_NAME_TEMPLATE);
271 
272 		stub_exe_fd = mkstemp(tmpfile);
273 		if (stub_exe_fd < 0)
274 			panic("Could not create temporary file for stub binary: %d",
275 			      -errno);
276 	}
277 
278 	while (written < stub_exe_end - stub_exe_start) {
279 		ssize_t res = write(stub_exe_fd, stub_exe_start + written,
280 				    stub_exe_end - stub_exe_start - written);
281 		if (res < 0) {
282 			if (errno == EINTR)
283 				continue;
284 
285 			if (tmpfile)
286 				unlink(tmpfile);
287 			panic("Failed write stub binary: %d", -errno);
288 		}
289 
290 		written += res;
291 	}
292 
293 	if (!tmpfile) {
294 		fcntl(stub_exe_fd, F_ADD_SEALS,
295 		      F_SEAL_WRITE | F_SEAL_SHRINK | F_SEAL_GROW | F_SEAL_SEAL);
296 	} else {
297 		if (fchmod(stub_exe_fd, 00500) < 0) {
298 			unlink(tmpfile);
299 			panic("Could not make stub binary executable: %d",
300 			      -errno);
301 		}
302 
303 		close(stub_exe_fd);
304 		stub_exe_fd = open(tmpfile, O_RDONLY | O_CLOEXEC | O_NOFOLLOW);
305 		if (stub_exe_fd < 0) {
306 			unlink(tmpfile);
307 			panic("Could not reopen stub binary: %d", -errno);
308 		}
309 
310 		unlink(tmpfile);
311 		free(tmpfile);
312 	}
313 
314 	return 0;
315 }
316 __initcall(init_stub_exe_fd);
317 
318 int userspace_pid[NR_CPUS];
319 
320 /**
321  * start_userspace() - prepare a new userspace process
322  * @stub_stack:	pointer to the stub stack.
323  *
324  * Setups a new temporary stack page that is used while userspace_tramp() runs
325  * Clones the kernel process into a new userspace process, with FDs only.
326  *
327  * Return: When positive: the process id of the new userspace process,
328  *         when negative: an error number.
329  * FIXME: can PIDs become negative?!
330  */
start_userspace(unsigned long stub_stack)331 int start_userspace(unsigned long stub_stack)
332 {
333 	void *stack;
334 	unsigned long sp;
335 	int pid, status, n, err;
336 
337 	/* setup a temporary stack page */
338 	stack = mmap(NULL, UM_KERN_PAGE_SIZE,
339 		     PROT_READ | PROT_WRITE | PROT_EXEC,
340 		     MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
341 	if (stack == MAP_FAILED) {
342 		err = -errno;
343 		printk(UM_KERN_ERR "%s : mmap failed, errno = %d\n",
344 		       __func__, errno);
345 		return err;
346 	}
347 
348 	/* set stack pointer to the end of the stack page, so it can grow downwards */
349 	sp = (unsigned long)stack + UM_KERN_PAGE_SIZE;
350 
351 	/* clone into new userspace process */
352 	pid = clone(userspace_tramp, (void *) sp,
353 		    CLONE_VFORK | CLONE_VM | SIGCHLD,
354 		    (void *)stub_stack);
355 	if (pid < 0) {
356 		err = -errno;
357 		printk(UM_KERN_ERR "%s : clone failed, errno = %d\n",
358 		       __func__, errno);
359 		return err;
360 	}
361 
362 	do {
363 		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
364 		if (n < 0) {
365 			err = -errno;
366 			printk(UM_KERN_ERR "%s : wait failed, errno = %d\n",
367 			       __func__, errno);
368 			goto out_kill;
369 		}
370 	} while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM));
371 
372 	if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
373 		err = -EINVAL;
374 		printk(UM_KERN_ERR "%s : expected SIGSTOP, got status = %d\n",
375 		       __func__, status);
376 		goto out_kill;
377 	}
378 
379 	if (ptrace(PTRACE_SETOPTIONS, pid, NULL,
380 		   (void *) PTRACE_O_TRACESYSGOOD) < 0) {
381 		err = -errno;
382 		printk(UM_KERN_ERR "%s : PTRACE_SETOPTIONS failed, errno = %d\n",
383 		       __func__, errno);
384 		goto out_kill;
385 	}
386 
387 	if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
388 		err = -errno;
389 		printk(UM_KERN_ERR "%s : munmap failed, errno = %d\n",
390 		       __func__, errno);
391 		goto out_kill;
392 	}
393 
394 	return pid;
395 
396  out_kill:
397 	os_kill_ptraced_process(pid, 1);
398 	return err;
399 }
400 
401 int unscheduled_userspace_iterations;
402 extern unsigned long tt_extra_sched_jiffies;
403 
userspace(struct uml_pt_regs * regs)404 void userspace(struct uml_pt_regs *regs)
405 {
406 	int err, status, op, pid = userspace_pid[0];
407 	siginfo_t si;
408 
409 	/* Handle any immediate reschedules or signals */
410 	interrupt_end();
411 
412 	while (1) {
413 		/*
414 		 * When we are in time-travel mode, userspace can theoretically
415 		 * do a *lot* of work without being scheduled. The problem with
416 		 * this is that it will prevent kernel bookkeeping (primarily
417 		 * the RCU) from running and this can for example cause OOM
418 		 * situations.
419 		 *
420 		 * This code accounts a jiffie against the scheduling clock
421 		 * after the defined userspace iterations in the same thread.
422 		 * By doing so the situation is effectively prevented.
423 		 */
424 		if (time_travel_mode == TT_MODE_INFCPU ||
425 		    time_travel_mode == TT_MODE_EXTERNAL) {
426 #ifdef CONFIG_UML_MAX_USERSPACE_ITERATIONS
427 			if (CONFIG_UML_MAX_USERSPACE_ITERATIONS &&
428 			    unscheduled_userspace_iterations++ >
429 			    CONFIG_UML_MAX_USERSPACE_ITERATIONS) {
430 				tt_extra_sched_jiffies += 1;
431 				unscheduled_userspace_iterations = 0;
432 			}
433 #endif
434 		}
435 
436 		time_travel_print_bc_msg();
437 
438 		current_mm_sync();
439 
440 		/* Flush out any pending syscalls */
441 		err = syscall_stub_flush(current_mm_id());
442 		if (err) {
443 			if (err == -ENOMEM)
444 				report_enomem();
445 
446 			printk(UM_KERN_ERR "%s - Error flushing stub syscalls: %d",
447 				__func__, -err);
448 			fatal_sigsegv();
449 		}
450 
451 		/*
452 		 * This can legitimately fail if the process loads a
453 		 * bogus value into a segment register.  It will
454 		 * segfault and PTRACE_GETREGS will read that value
455 		 * out of the process.  However, PTRACE_SETREGS will
456 		 * fail.  In this case, there is nothing to do but
457 		 * just kill the process.
458 		 */
459 		if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) {
460 			printk(UM_KERN_ERR "%s - ptrace set regs failed, errno = %d\n",
461 			       __func__, errno);
462 			fatal_sigsegv();
463 		}
464 
465 		if (put_fp_registers(pid, regs->fp)) {
466 			printk(UM_KERN_ERR "%s - ptrace set fp regs failed, errno = %d\n",
467 			       __func__, errno);
468 			fatal_sigsegv();
469 		}
470 
471 		if (singlestepping())
472 			op = PTRACE_SYSEMU_SINGLESTEP;
473 		else
474 			op = PTRACE_SYSEMU;
475 
476 		if (ptrace(op, pid, 0, 0)) {
477 			printk(UM_KERN_ERR "%s - ptrace continue failed, op = %d, errno = %d\n",
478 			       __func__, op, errno);
479 			fatal_sigsegv();
480 		}
481 
482 		CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
483 		if (err < 0) {
484 			printk(UM_KERN_ERR "%s - wait failed, errno = %d\n",
485 			       __func__, errno);
486 			fatal_sigsegv();
487 		}
488 
489 		regs->is_user = 1;
490 		if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
491 			printk(UM_KERN_ERR "%s - PTRACE_GETREGS failed, errno = %d\n",
492 			       __func__, errno);
493 			fatal_sigsegv();
494 		}
495 
496 		if (get_fp_registers(pid, regs->fp)) {
497 			printk(UM_KERN_ERR "%s -  get_fp_registers failed, errno = %d\n",
498 			       __func__, errno);
499 			fatal_sigsegv();
500 		}
501 
502 		UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
503 
504 		if (WIFSTOPPED(status)) {
505 			int sig = WSTOPSIG(status);
506 
507 			/* These signal handlers need the si argument.
508 			 * The SIGIO and SIGALARM handlers which constitute the
509 			 * majority of invocations, do not use it.
510 			 */
511 			switch (sig) {
512 			case SIGSEGV:
513 			case SIGTRAP:
514 			case SIGILL:
515 			case SIGBUS:
516 			case SIGFPE:
517 			case SIGWINCH:
518 				ptrace(PTRACE_GETSIGINFO, pid, 0, (struct siginfo *)&si);
519 				break;
520 			}
521 
522 			switch (sig) {
523 			case SIGSEGV:
524 				if (PTRACE_FULL_FAULTINFO) {
525 					get_skas_faultinfo(pid,
526 							   &regs->faultinfo);
527 					(*sig_info[SIGSEGV])(SIGSEGV, (struct siginfo *)&si,
528 							     regs);
529 				}
530 				else handle_segv(pid, regs);
531 				break;
532 			case SIGTRAP + 0x80:
533 				handle_trap(pid, regs);
534 				break;
535 			case SIGTRAP:
536 				relay_signal(SIGTRAP, (struct siginfo *)&si, regs);
537 				break;
538 			case SIGALRM:
539 				break;
540 			case SIGIO:
541 			case SIGILL:
542 			case SIGBUS:
543 			case SIGFPE:
544 			case SIGWINCH:
545 				block_signals_trace();
546 				(*sig_info[sig])(sig, (struct siginfo *)&si, regs);
547 				unblock_signals_trace();
548 				break;
549 			default:
550 				printk(UM_KERN_ERR "%s - child stopped with signal %d\n",
551 				       __func__, sig);
552 				fatal_sigsegv();
553 			}
554 			pid = userspace_pid[0];
555 			interrupt_end();
556 
557 			/* Avoid -ERESTARTSYS handling in host */
558 			if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
559 				PT_SYSCALL_NR(regs->gp) = -1;
560 		}
561 	}
562 }
563 
new_thread(void * stack,jmp_buf * buf,void (* handler)(void))564 void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
565 {
566 	(*buf)[0].JB_IP = (unsigned long) handler;
567 	(*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
568 		sizeof(void *);
569 }
570 
571 #define INIT_JMP_NEW_THREAD 0
572 #define INIT_JMP_CALLBACK 1
573 #define INIT_JMP_HALT 2
574 #define INIT_JMP_REBOOT 3
575 
switch_threads(jmp_buf * me,jmp_buf * you)576 void switch_threads(jmp_buf *me, jmp_buf *you)
577 {
578 	unscheduled_userspace_iterations = 0;
579 
580 	if (UML_SETJMP(me) == 0)
581 		UML_LONGJMP(you, 1);
582 }
583 
584 static jmp_buf initial_jmpbuf;
585 
586 /* XXX Make these percpu */
587 static void (*cb_proc)(void *arg);
588 static void *cb_arg;
589 static jmp_buf *cb_back;
590 
start_idle_thread(void * stack,jmp_buf * switch_buf)591 int start_idle_thread(void *stack, jmp_buf *switch_buf)
592 {
593 	int n;
594 
595 	set_handler(SIGWINCH);
596 
597 	/*
598 	 * Can't use UML_SETJMP or UML_LONGJMP here because they save
599 	 * and restore signals, with the possible side-effect of
600 	 * trying to handle any signals which came when they were
601 	 * blocked, which can't be done on this stack.
602 	 * Signals must be blocked when jumping back here and restored
603 	 * after returning to the jumper.
604 	 */
605 	n = setjmp(initial_jmpbuf);
606 	switch (n) {
607 	case INIT_JMP_NEW_THREAD:
608 		(*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup;
609 		(*switch_buf)[0].JB_SP = (unsigned long) stack +
610 			UM_THREAD_SIZE - sizeof(void *);
611 		break;
612 	case INIT_JMP_CALLBACK:
613 		(*cb_proc)(cb_arg);
614 		longjmp(*cb_back, 1);
615 		break;
616 	case INIT_JMP_HALT:
617 		kmalloc_ok = 0;
618 		return 0;
619 	case INIT_JMP_REBOOT:
620 		kmalloc_ok = 0;
621 		return 1;
622 	default:
623 		printk(UM_KERN_ERR "Bad sigsetjmp return in %s - %d\n",
624 		       __func__, n);
625 		fatal_sigsegv();
626 	}
627 	longjmp(*switch_buf, 1);
628 
629 	/* unreachable */
630 	printk(UM_KERN_ERR "impossible long jump!");
631 	fatal_sigsegv();
632 	return 0;
633 }
634 
initial_thread_cb_skas(void (* proc)(void *),void * arg)635 void initial_thread_cb_skas(void (*proc)(void *), void *arg)
636 {
637 	jmp_buf here;
638 
639 	cb_proc = proc;
640 	cb_arg = arg;
641 	cb_back = &here;
642 
643 	block_signals_trace();
644 	if (UML_SETJMP(&here) == 0)
645 		UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
646 	unblock_signals_trace();
647 
648 	cb_proc = NULL;
649 	cb_arg = NULL;
650 	cb_back = NULL;
651 }
652 
halt_skas(void)653 void halt_skas(void)
654 {
655 	block_signals_trace();
656 	UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
657 }
658 
659 static bool noreboot;
660 
noreboot_cmd_param(char * str,int * add)661 static int __init noreboot_cmd_param(char *str, int *add)
662 {
663 	*add = 0;
664 	noreboot = true;
665 	return 0;
666 }
667 
668 __uml_setup("noreboot", noreboot_cmd_param,
669 "noreboot\n"
670 "    Rather than rebooting, exit always, akin to QEMU's -no-reboot option.\n"
671 "    This is useful if you're using CONFIG_PANIC_TIMEOUT in order to catch\n"
672 "    crashes in CI\n");
673 
reboot_skas(void)674 void reboot_skas(void)
675 {
676 	block_signals_trace();
677 	UML_LONGJMP(&initial_jmpbuf, noreboot ? INIT_JMP_HALT : INIT_JMP_REBOOT);
678 }
679 
__switch_mm(struct mm_id * mm_idp)680 void __switch_mm(struct mm_id *mm_idp)
681 {
682 	userspace_pid[0] = mm_idp->pid;
683 }
684