1 /*
2 * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
3 */
4
5 /*
6 * This driver was derived from the FreeBSD if_msk.c driver, which
7 * bears the following copyright attributions and licenses.
8 */
9
10 /*
11 *
12 * LICENSE:
13 * Copyright (C) Marvell International Ltd. and/or its affiliates
14 *
15 * The computer program files contained in this folder ("Files")
16 * are provided to you under the BSD-type license terms provided
17 * below, and any use of such Files and any derivative works
18 * thereof created by you shall be governed by the following terms
19 * and conditions:
20 *
21 * - Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials provided
26 * with the distribution.
27 * - Neither the name of Marvell nor the names of its contributors
28 * may be used to endorse or promote products derived from this
29 * software without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
34 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
35 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
36 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
37 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
38 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
41 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
42 * OF THE POSSIBILITY OF SUCH DAMAGE.
43 * /LICENSE
44 *
45 */
46 /*
47 * Copyright (c) 1997, 1998, 1999, 2000
48 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. All advertising materials mentioning features or use of this software
59 * must display the following acknowledgement:
60 * This product includes software developed by Bill Paul.
61 * 4. Neither the name of the author nor the names of any co-contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
69 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
76 */
77 /*
78 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
79 *
80 * Permission to use, copy, modify, and distribute this software for any
81 * purpose with or without fee is hereby granted, provided that the above
82 * copyright notice and this permission notice appear in all copies.
83 *
84 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
85 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
86 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
87 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
88 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
89 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
90 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
91 */
92
93 #include <sys/varargs.h>
94 #include <sys/types.h>
95 #include <sys/modctl.h>
96 #include <sys/conf.h>
97 #include <sys/devops.h>
98 #include <sys/stream.h>
99 #include <sys/strsun.h>
100 #include <sys/cmn_err.h>
101 #include <sys/ethernet.h>
102 #include <sys/kmem.h>
103 #include <sys/time.h>
104 #include <sys/pci.h>
105 #include <sys/mii.h>
106 #include <sys/miiregs.h>
107 #include <sys/mac.h>
108 #include <sys/mac_ether.h>
109 #include <sys/mac_provider.h>
110 #include <sys/debug.h>
111 #include <sys/note.h>
112 #include <sys/ddi.h>
113 #include <sys/sunddi.h>
114 #include <sys/vlan.h>
115
116 #include "yge.h"
117
118 static struct ddi_device_acc_attr yge_regs_attr = {
119 DDI_DEVICE_ATTR_V0,
120 DDI_STRUCTURE_LE_ACC,
121 DDI_STRICTORDER_ACC
122 };
123
124 static struct ddi_device_acc_attr yge_ring_attr = {
125 DDI_DEVICE_ATTR_V0,
126 DDI_STRUCTURE_LE_ACC,
127 DDI_STRICTORDER_ACC
128 };
129
130 static struct ddi_device_acc_attr yge_buf_attr = {
131 DDI_DEVICE_ATTR_V0,
132 DDI_NEVERSWAP_ACC,
133 DDI_STRICTORDER_ACC
134 };
135
136 #define DESC_ALIGN 0x1000
137
138 static ddi_dma_attr_t yge_ring_dma_attr = {
139 DMA_ATTR_V0, /* dma_attr_version */
140 0, /* dma_attr_addr_lo */
141 0x00000000ffffffffull, /* dma_attr_addr_hi */
142 0x00000000ffffffffull, /* dma_attr_count_max */
143 DESC_ALIGN, /* dma_attr_align */
144 0x000007fc, /* dma_attr_burstsizes */
145 1, /* dma_attr_minxfer */
146 0x00000000ffffffffull, /* dma_attr_maxxfer */
147 0x00000000ffffffffull, /* dma_attr_seg */
148 1, /* dma_attr_sgllen */
149 1, /* dma_attr_granular */
150 0 /* dma_attr_flags */
151 };
152
153 static ddi_dma_attr_t yge_buf_dma_attr = {
154 DMA_ATTR_V0, /* dma_attr_version */
155 0, /* dma_attr_addr_lo */
156 0x00000000ffffffffull, /* dma_attr_addr_hi */
157 0x00000000ffffffffull, /* dma_attr_count_max */
158 1, /* dma_attr_align */
159 0x0000fffc, /* dma_attr_burstsizes */
160 1, /* dma_attr_minxfer */
161 0x000000000000ffffull, /* dma_attr_maxxfer */
162 0x00000000ffffffffull, /* dma_attr_seg */
163 8, /* dma_attr_sgllen */
164 1, /* dma_attr_granular */
165 0 /* dma_attr_flags */
166 };
167
168
169 static int yge_attach(yge_dev_t *);
170 static void yge_detach(yge_dev_t *);
171 static int yge_suspend(yge_dev_t *);
172 static int yge_resume(yge_dev_t *);
173
174 static void yge_reset(yge_dev_t *);
175 static void yge_setup_rambuffer(yge_dev_t *);
176
177 static int yge_init_port(yge_port_t *);
178 static void yge_uninit_port(yge_port_t *);
179 static int yge_register_port(yge_port_t *);
180
181 static void yge_tick(void *);
182 static uint_t yge_intr(caddr_t, caddr_t);
183 static int yge_intr_gmac(yge_port_t *);
184 static void yge_intr_enable(yge_dev_t *);
185 static void yge_intr_disable(yge_dev_t *);
186 static boolean_t yge_handle_events(yge_dev_t *, mblk_t **, mblk_t **, int *);
187 static void yge_handle_hwerr(yge_port_t *, uint32_t);
188 static void yge_intr_hwerr(yge_dev_t *);
189 static mblk_t *yge_rxeof(yge_port_t *, uint32_t, int);
190 static void yge_txeof(yge_port_t *, int);
191 static boolean_t yge_send(yge_port_t *, mblk_t *);
192 static void yge_set_prefetch(yge_dev_t *, int, yge_ring_t *);
193 static void yge_set_rambuffer(yge_port_t *);
194 static void yge_start_port(yge_port_t *);
195 static void yge_stop_port(yge_port_t *);
196 static void yge_phy_power(yge_dev_t *, boolean_t);
197 static int yge_alloc_ring(yge_port_t *, yge_dev_t *, yge_ring_t *, uint32_t);
198 static void yge_free_ring(yge_ring_t *);
199 static uint8_t yge_find_capability(yge_dev_t *, uint8_t);
200
201 static int yge_txrx_dma_alloc(yge_port_t *);
202 static void yge_txrx_dma_free(yge_port_t *);
203 static void yge_init_rx_ring(yge_port_t *);
204 static void yge_init_tx_ring(yge_port_t *);
205
206 static uint16_t yge_mii_readreg(yge_port_t *, uint8_t, uint8_t);
207 static void yge_mii_writereg(yge_port_t *, uint8_t, uint8_t, uint16_t);
208
209 static uint16_t yge_mii_read(void *, uint8_t, uint8_t);
210 static void yge_mii_write(void *, uint8_t, uint8_t, uint16_t);
211 static void yge_mii_notify(void *, link_state_t);
212
213 static void yge_setrxfilt(yge_port_t *);
214 static void yge_restart_task(yge_dev_t *);
215 static void yge_task(void *);
216 static void yge_dispatch(yge_dev_t *, int);
217
218 static void yge_stats_clear(yge_port_t *);
219 static void yge_stats_update(yge_port_t *);
220 static uint32_t yge_hashbit(const uint8_t *);
221
222 static int yge_m_unicst(void *, const uint8_t *);
223 static int yge_m_multicst(void *, boolean_t, const uint8_t *);
224 static int yge_m_promisc(void *, boolean_t);
225 static mblk_t *yge_m_tx(void *, mblk_t *);
226 static int yge_m_stat(void *, uint_t, uint64_t *);
227 static int yge_m_start(void *);
228 static void yge_m_stop(void *);
229 static int yge_m_getprop(void *, const char *, mac_prop_id_t, uint_t, void *);
230 static void yge_m_propinfo(void *, const char *, mac_prop_id_t,
231 mac_prop_info_handle_t);
232 static int yge_m_setprop(void *, const char *, mac_prop_id_t, uint_t,
233 const void *);
234 static void yge_m_ioctl(void *, queue_t *, mblk_t *);
235
236 void yge_error(yge_dev_t *, yge_port_t *, char *, ...);
237 extern void yge_phys_update(yge_port_t *);
238 extern int yge_phys_restart(yge_port_t *, boolean_t);
239 extern int yge_phys_init(yge_port_t *, phy_readreg_t, phy_writereg_t);
240
241 static mac_callbacks_t yge_m_callbacks = {
242 MC_IOCTL | MC_SETPROP | MC_GETPROP | MC_PROPINFO,
243 yge_m_stat,
244 yge_m_start,
245 yge_m_stop,
246 yge_m_promisc,
247 yge_m_multicst,
248 yge_m_unicst,
249 yge_m_tx,
250 NULL,
251 yge_m_ioctl,
252 NULL, /* mc_getcapab */
253 NULL, /* mc_open */
254 NULL, /* mc_close */
255 yge_m_setprop,
256 yge_m_getprop,
257 yge_m_propinfo
258 };
259
260 static mii_ops_t yge_mii_ops = {
261 MII_OPS_VERSION,
262 yge_mii_read,
263 yge_mii_write,
264 yge_mii_notify,
265 NULL /* reset */
266 };
267
268 /*
269 * This is the low level interface routine to read from the PHY
270 * MII registers. There is multiple steps to these accesses. First
271 * the register number is written to an address register. Then after
272 * a specified delay status is checked until the data is present.
273 */
274 static uint16_t
yge_mii_readreg(yge_port_t * port,uint8_t phy,uint8_t reg)275 yge_mii_readreg(yge_port_t *port, uint8_t phy, uint8_t reg)
276 {
277 yge_dev_t *dev = port->p_dev;
278 int pnum = port->p_port;
279 uint16_t val;
280
281 GMAC_WRITE_2(dev, pnum, GM_SMI_CTRL,
282 GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
283
284 for (int i = 0; i < YGE_TIMEOUT; i += 10) {
285 drv_usecwait(10);
286 val = GMAC_READ_2(dev, pnum, GM_SMI_CTRL);
287 if ((val & GM_SMI_CT_RD_VAL) != 0) {
288 val = GMAC_READ_2(dev, pnum, GM_SMI_DATA);
289 return (val);
290 }
291 }
292
293 return (0xffff);
294 }
295
296 /*
297 * This is the low level interface routine to write to the PHY
298 * MII registers. There is multiple steps to these accesses. The
299 * data and the target registers address are written to the PHY.
300 * Then the PHY is polled until it is done with the write. Note
301 * that the delays are specified and required!
302 */
303 static void
yge_mii_writereg(yge_port_t * port,uint8_t phy,uint8_t reg,uint16_t val)304 yge_mii_writereg(yge_port_t *port, uint8_t phy, uint8_t reg, uint16_t val)
305 {
306 yge_dev_t *dev = port->p_dev;
307 int pnum = port->p_port;
308
309 GMAC_WRITE_2(dev, pnum, GM_SMI_DATA, val);
310 GMAC_WRITE_2(dev, pnum, GM_SMI_CTRL,
311 GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
312
313 for (int i = 0; i < YGE_TIMEOUT; i += 10) {
314 drv_usecwait(10);
315 if ((GMAC_READ_2(dev, pnum, GM_SMI_CTRL) & GM_SMI_CT_BUSY) == 0)
316 return;
317 }
318
319 yge_error(NULL, port, "phy write timeout");
320 }
321
322 static uint16_t
yge_mii_read(void * arg,uint8_t phy,uint8_t reg)323 yge_mii_read(void *arg, uint8_t phy, uint8_t reg)
324 {
325 yge_port_t *port = arg;
326 uint16_t rv;
327
328 PHY_LOCK(port->p_dev);
329 rv = yge_mii_readreg(port, phy, reg);
330 PHY_UNLOCK(port->p_dev);
331 return (rv);
332 }
333
334 static void
yge_mii_write(void * arg,uint8_t phy,uint8_t reg,uint16_t val)335 yge_mii_write(void *arg, uint8_t phy, uint8_t reg, uint16_t val)
336 {
337 yge_port_t *port = arg;
338
339 PHY_LOCK(port->p_dev);
340 yge_mii_writereg(port, phy, reg, val);
341 PHY_UNLOCK(port->p_dev);
342 }
343
344 /*
345 * The MII common code calls this function to let the MAC driver
346 * know when there has been a change in status.
347 */
348 void
yge_mii_notify(void * arg,link_state_t link)349 yge_mii_notify(void *arg, link_state_t link)
350 {
351 yge_port_t *port = arg;
352 yge_dev_t *dev = port->p_dev;
353 uint32_t gmac;
354 uint32_t gpcr;
355 link_flowctrl_t fc;
356 link_duplex_t duplex;
357 int speed;
358
359 fc = mii_get_flowctrl(port->p_mii);
360 duplex = mii_get_duplex(port->p_mii);
361 speed = mii_get_speed(port->p_mii);
362
363 DEV_LOCK(dev);
364
365 if (link == LINK_STATE_UP) {
366
367 /* Enable Tx FIFO Underrun. */
368 CSR_WRITE_1(dev, MR_ADDR(port->p_port, GMAC_IRQ_MSK),
369 GM_IS_TX_FF_UR | /* TX FIFO underflow */
370 GM_IS_RX_FF_OR); /* RX FIFO overflow */
371
372 gpcr = GM_GPCR_AU_ALL_DIS;
373
374 switch (fc) {
375 case LINK_FLOWCTRL_BI:
376 gmac = GMC_PAUSE_ON;
377 gpcr &= ~(GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS);
378 break;
379 case LINK_FLOWCTRL_TX:
380 gmac = GMC_PAUSE_ON;
381 gpcr |= GM_GPCR_FC_RX_DIS;
382 break;
383 case LINK_FLOWCTRL_RX:
384 gmac = GMC_PAUSE_ON;
385 gpcr |= GM_GPCR_FC_TX_DIS;
386 break;
387 case LINK_FLOWCTRL_NONE:
388 default:
389 gmac = GMC_PAUSE_OFF;
390 gpcr |= GM_GPCR_FC_RX_DIS;
391 gpcr |= GM_GPCR_FC_TX_DIS;
392 break;
393 }
394
395 gpcr &= ~((GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100));
396 switch (speed) {
397 case 1000:
398 gpcr |= GM_GPCR_SPEED_1000;
399 break;
400 case 100:
401 gpcr |= GM_GPCR_SPEED_100;
402 break;
403 case 10:
404 default:
405 break;
406 }
407
408 if (duplex == LINK_DUPLEX_FULL) {
409 gpcr |= GM_GPCR_DUP_FULL;
410 } else {
411 gpcr &= ~(GM_GPCR_DUP_FULL);
412 gmac = GMC_PAUSE_OFF;
413 gpcr |= GM_GPCR_FC_RX_DIS;
414 gpcr |= GM_GPCR_FC_TX_DIS;
415 }
416
417 gpcr |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
418 GMAC_WRITE_2(dev, port->p_port, GM_GP_CTRL, gpcr);
419
420 /* Read again to ensure writing. */
421 (void) GMAC_READ_2(dev, port->p_port, GM_GP_CTRL);
422
423 /* write out the flow control gmac setting */
424 CSR_WRITE_4(dev, MR_ADDR(port->p_port, GMAC_CTRL), gmac);
425
426 } else {
427 /* Disable Rx/Tx MAC. */
428 gpcr = GMAC_READ_2(dev, port->p_port, GM_GP_CTRL);
429 gpcr &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
430 GMAC_WRITE_2(dev, port->p_port, GM_GP_CTRL, gpcr);
431
432 /* Read again to ensure writing. */
433 (void) GMAC_READ_2(dev, port->p_port, GM_GP_CTRL);
434 }
435
436 DEV_UNLOCK(dev);
437
438 mac_link_update(port->p_mh, link);
439
440 if (port->p_running && (link == LINK_STATE_UP)) {
441 mac_tx_update(port->p_mh);
442 }
443 }
444
445 static void
yge_setrxfilt(yge_port_t * port)446 yge_setrxfilt(yge_port_t *port)
447 {
448 yge_dev_t *dev;
449 uint16_t mode;
450 uint8_t *ea;
451 uint32_t *mchash;
452 int pnum;
453
454 dev = port->p_dev;
455 pnum = port->p_port;
456 ea = port->p_curraddr;
457 mchash = port->p_mchash;
458
459 if (dev->d_suspended)
460 return;
461
462 /* Set station address. */
463 for (int i = 0; i < (ETHERADDRL / 2); i++) {
464 GMAC_WRITE_2(dev, pnum, GM_SRC_ADDR_1L + i * 4,
465 ((uint16_t)ea[i * 2] | ((uint16_t)ea[(i * 2) + 1] << 8)));
466 }
467 for (int i = 0; i < (ETHERADDRL / 2); i++) {
468 GMAC_WRITE_2(dev, pnum, GM_SRC_ADDR_2L + i * 4,
469 ((uint16_t)ea[i * 2] | ((uint16_t)ea[(i * 2) + 1] << 8)));
470 }
471
472 /* Figure out receive filtering mode. */
473 mode = GMAC_READ_2(dev, pnum, GM_RX_CTRL);
474 if (port->p_promisc) {
475 mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
476 } else {
477 mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
478 }
479 /* Write the multicast filter. */
480 GMAC_WRITE_2(dev, pnum, GM_MC_ADDR_H1, mchash[0] & 0xffff);
481 GMAC_WRITE_2(dev, pnum, GM_MC_ADDR_H2, (mchash[0] >> 16) & 0xffff);
482 GMAC_WRITE_2(dev, pnum, GM_MC_ADDR_H3, mchash[1] & 0xffff);
483 GMAC_WRITE_2(dev, pnum, GM_MC_ADDR_H4, (mchash[1] >> 16) & 0xffff);
484 /* Write the receive filtering mode. */
485 GMAC_WRITE_2(dev, pnum, GM_RX_CTRL, mode);
486 }
487
488 static void
yge_init_rx_ring(yge_port_t * port)489 yge_init_rx_ring(yge_port_t *port)
490 {
491 yge_buf_t *rxb;
492 yge_ring_t *ring;
493 int prod;
494
495 port->p_rx_cons = 0;
496 port->p_rx_putwm = YGE_PUT_WM;
497 ring = &port->p_rx_ring;
498
499 /* ala bzero, but uses safer acch access */
500 CLEARRING(ring);
501
502 for (prod = 0; prod < YGE_RX_RING_CNT; prod++) {
503 /* Hang out receive buffers. */
504 rxb = &port->p_rx_buf[prod];
505
506 PUTADDR(ring, prod, rxb->b_paddr);
507 PUTCTRL(ring, prod, port->p_framesize | OP_PACKET | HW_OWNER);
508 }
509
510 SYNCRING(ring, DDI_DMA_SYNC_FORDEV);
511
512 yge_set_prefetch(port->p_dev, port->p_rxq, ring);
513
514 /* Update prefetch unit. */
515 CSR_WRITE_2(port->p_dev,
516 Y2_PREF_Q_ADDR(port->p_rxq, PREF_UNIT_PUT_IDX_REG),
517 YGE_RX_RING_CNT - 1);
518 }
519
520 static void
yge_init_tx_ring(yge_port_t * port)521 yge_init_tx_ring(yge_port_t *port)
522 {
523 yge_ring_t *ring = &port->p_tx_ring;
524
525 port->p_tx_prod = 0;
526 port->p_tx_cons = 0;
527 port->p_tx_cnt = 0;
528
529 CLEARRING(ring);
530 SYNCRING(ring, DDI_DMA_SYNC_FORDEV);
531
532 yge_set_prefetch(port->p_dev, port->p_txq, ring);
533 }
534
535 static void
yge_setup_rambuffer(yge_dev_t * dev)536 yge_setup_rambuffer(yge_dev_t *dev)
537 {
538 int next;
539 int i;
540
541 /* Get adapter SRAM size. */
542 dev->d_ramsize = CSR_READ_1(dev, B2_E_0) * 4;
543 if (dev->d_ramsize == 0)
544 return;
545
546 dev->d_pflags |= PORT_FLAG_RAMBUF;
547 /*
548 * Give receiver 2/3 of memory and round down to the multiple
549 * of 1024. Tx/Rx RAM buffer size of Yukon 2 should be multiple
550 * of 1024.
551 */
552 dev->d_rxqsize = (((dev->d_ramsize * 1024 * 2) / 3) & ~(1024 - 1));
553 dev->d_txqsize = (dev->d_ramsize * 1024) - dev->d_rxqsize;
554
555 for (i = 0, next = 0; i < dev->d_num_port; i++) {
556 dev->d_rxqstart[i] = next;
557 dev->d_rxqend[i] = next + dev->d_rxqsize - 1;
558 next = dev->d_rxqend[i] + 1;
559 dev->d_txqstart[i] = next;
560 dev->d_txqend[i] = next + dev->d_txqsize - 1;
561 next = dev->d_txqend[i] + 1;
562 }
563 }
564
565 static void
yge_phy_power(yge_dev_t * dev,boolean_t powerup)566 yge_phy_power(yge_dev_t *dev, boolean_t powerup)
567 {
568 uint32_t val;
569 int i;
570
571 if (powerup) {
572 /* Switch power to VCC (WA for VAUX problem). */
573 CSR_WRITE_1(dev, B0_POWER_CTRL,
574 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
575 /* Disable Core Clock Division, set Clock Select to 0. */
576 CSR_WRITE_4(dev, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
577
578 val = 0;
579 if (dev->d_hw_id == CHIP_ID_YUKON_XL &&
580 dev->d_hw_rev > CHIP_REV_YU_XL_A1) {
581 /* Enable bits are inverted. */
582 val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
583 Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
584 Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
585 }
586 /*
587 * Enable PCI & Core Clock, enable clock gating for both Links.
588 */
589 CSR_WRITE_1(dev, B2_Y2_CLK_GATE, val);
590
591 val = pci_config_get32(dev->d_pcih, PCI_OUR_REG_1);
592 val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
593 if (dev->d_hw_id == CHIP_ID_YUKON_XL &&
594 dev->d_hw_rev > CHIP_REV_YU_XL_A1) {
595 /* Deassert Low Power for 1st PHY. */
596 val |= PCI_Y2_PHY1_COMA;
597 if (dev->d_num_port > 1)
598 val |= PCI_Y2_PHY2_COMA;
599 }
600
601 /* Release PHY from PowerDown/COMA mode. */
602 pci_config_put32(dev->d_pcih, PCI_OUR_REG_1, val);
603
604 switch (dev->d_hw_id) {
605 case CHIP_ID_YUKON_EC_U:
606 case CHIP_ID_YUKON_EX:
607 case CHIP_ID_YUKON_FE_P: {
608 uint32_t our;
609
610 CSR_WRITE_2(dev, B0_CTST, Y2_HW_WOL_OFF);
611
612 /* Enable all clocks. */
613 pci_config_put32(dev->d_pcih, PCI_OUR_REG_3, 0);
614
615 our = pci_config_get32(dev->d_pcih, PCI_OUR_REG_4);
616 our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
617 PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
618 /* Set all bits to 0 except bits 15..12. */
619 pci_config_put32(dev->d_pcih, PCI_OUR_REG_4, our);
620
621 /* Set to default value. */
622 our = pci_config_get32(dev->d_pcih, PCI_OUR_REG_5);
623 our &= P_CTL_TIM_VMAIN_AV_MSK;
624 pci_config_put32(dev->d_pcih, PCI_OUR_REG_5, our);
625
626 pci_config_put32(dev->d_pcih, PCI_OUR_REG_1, 0);
627
628 /*
629 * Enable workaround for dev 4.107 on Yukon-Ultra
630 * and Extreme
631 */
632 our = CSR_READ_4(dev, B2_GP_IO);
633 our |= GLB_GPIO_STAT_RACE_DIS;
634 CSR_WRITE_4(dev, B2_GP_IO, our);
635
636 (void) CSR_READ_4(dev, B2_GP_IO);
637 break;
638 }
639 default:
640 break;
641 }
642
643 for (i = 0; i < dev->d_num_port; i++) {
644 CSR_WRITE_2(dev, MR_ADDR(i, GMAC_LINK_CTRL),
645 GMLC_RST_SET);
646 CSR_WRITE_2(dev, MR_ADDR(i, GMAC_LINK_CTRL),
647 GMLC_RST_CLR);
648 }
649 } else {
650 val = pci_config_get32(dev->d_pcih, PCI_OUR_REG_1);
651 if (dev->d_hw_id == CHIP_ID_YUKON_XL &&
652 dev->d_hw_rev > CHIP_REV_YU_XL_A1) {
653 val &= ~PCI_Y2_PHY1_COMA;
654 if (dev->d_num_port > 1)
655 val &= ~PCI_Y2_PHY2_COMA;
656 val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
657 } else {
658 val |= (PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
659 }
660 pci_config_put32(dev->d_pcih, PCI_OUR_REG_1, val);
661
662 val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
663 Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
664 Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
665 if (dev->d_hw_id == CHIP_ID_YUKON_XL &&
666 dev->d_hw_rev > CHIP_REV_YU_XL_A1) {
667 /* Enable bits are inverted. */
668 val = 0;
669 }
670 /*
671 * Disable PCI & Core Clock, disable clock gating for
672 * both Links.
673 */
674 CSR_WRITE_1(dev, B2_Y2_CLK_GATE, val);
675 CSR_WRITE_1(dev, B0_POWER_CTRL,
676 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
677 }
678 }
679
680 static void
yge_reset(yge_dev_t * dev)681 yge_reset(yge_dev_t *dev)
682 {
683 uint64_t addr;
684 uint16_t status;
685 uint32_t val;
686 int i;
687 ddi_acc_handle_t pcih = dev->d_pcih;
688
689 /* Turn off ASF */
690 if (dev->d_hw_id == CHIP_ID_YUKON_EX) {
691 status = CSR_READ_2(dev, B28_Y2_ASF_STAT_CMD);
692 /* Clear AHB bridge & microcontroller reset */
693 status &= ~Y2_ASF_CPU_MODE;
694 status &= ~Y2_ASF_AHB_RST;
695 /* Clear ASF microcontroller state */
696 status &= ~Y2_ASF_STAT_MSK;
697 CSR_WRITE_2(dev, B28_Y2_ASF_STAT_CMD, status);
698 } else {
699 CSR_WRITE_1(dev, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
700 }
701 CSR_WRITE_2(dev, B0_CTST, Y2_ASF_DISABLE);
702
703 /*
704 * Since we disabled ASF, S/W reset is required for Power Management.
705 */
706 CSR_WRITE_1(dev, B0_CTST, CS_RST_SET);
707 CSR_WRITE_1(dev, B0_CTST, CS_RST_CLR);
708
709 /* Allow writes to PCI config space */
710 CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
711
712 /* Clear all error bits in the PCI status register. */
713 status = pci_config_get16(pcih, PCI_CONF_STAT);
714 CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
715
716 status |= (PCI_STAT_S_PERROR | PCI_STAT_S_SYSERR | PCI_STAT_R_MAST_AB |
717 PCI_STAT_R_TARG_AB | PCI_STAT_PERROR);
718 pci_config_put16(pcih, PCI_CONF_STAT, status);
719
720 CSR_WRITE_1(dev, B0_CTST, CS_MRST_CLR);
721
722 switch (dev->d_bustype) {
723 case PEX_BUS:
724 /* Clear all PEX errors. */
725 CSR_PCI_WRITE_4(dev, Y2_CFG_AER + AER_UNCOR_ERR, 0xffffffff);
726
727 /* is error bit status stuck? */
728 val = CSR_PCI_READ_4(dev, PEX_UNC_ERR_STAT);
729 if ((val & PEX_RX_OV) != 0) {
730 dev->d_intrmask &= ~Y2_IS_HW_ERR;
731 dev->d_intrhwemask &= ~Y2_IS_PCI_EXP;
732 }
733 break;
734 case PCI_BUS:
735 /* Set Cache Line Size to 2 (8 bytes) if configured to 0. */
736 if (pci_config_get8(pcih, PCI_CONF_CACHE_LINESZ) == 0)
737 pci_config_put16(pcih, PCI_CONF_CACHE_LINESZ, 2);
738 break;
739 case PCIX_BUS:
740 /* Set Cache Line Size to 2 (8 bytes) if configured to 0. */
741 if (pci_config_get8(pcih, PCI_CONF_CACHE_LINESZ) == 0)
742 pci_config_put16(pcih, PCI_CONF_CACHE_LINESZ, 2);
743
744 /* Set Cache Line Size opt. */
745 val = pci_config_get32(pcih, PCI_OUR_REG_1);
746 val |= PCI_CLS_OPT;
747 pci_config_put32(pcih, PCI_OUR_REG_1, val);
748 break;
749 }
750
751 /* Set PHY power state. */
752 yge_phy_power(dev, B_TRUE);
753
754 /* Reset GPHY/GMAC Control */
755 for (i = 0; i < dev->d_num_port; i++) {
756 /* GPHY Control reset. */
757 CSR_WRITE_4(dev, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
758 CSR_WRITE_4(dev, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
759 /* GMAC Control reset. */
760 CSR_WRITE_4(dev, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
761 CSR_WRITE_4(dev, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
762 if (dev->d_hw_id == CHIP_ID_YUKON_EX ||
763 dev->d_hw_id == CHIP_ID_YUKON_SUPR) {
764 CSR_WRITE_2(dev, MR_ADDR(i, GMAC_CTRL),
765 (GMC_BYP_RETR_ON | GMC_BYP_MACSECRX_ON |
766 GMC_BYP_MACSECTX_ON));
767 }
768 CSR_WRITE_2(dev, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
769
770 }
771 CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
772
773 /* LED On. */
774 CSR_WRITE_2(dev, B0_CTST, Y2_LED_STAT_ON);
775
776 /* Clear TWSI IRQ. */
777 CSR_WRITE_4(dev, B2_I2C_IRQ, I2C_CLR_IRQ);
778
779 /* Turn off hardware timer. */
780 CSR_WRITE_1(dev, B2_TI_CTRL, TIM_STOP);
781 CSR_WRITE_1(dev, B2_TI_CTRL, TIM_CLR_IRQ);
782
783 /* Turn off descriptor polling. */
784 CSR_WRITE_1(dev, B28_DPT_CTRL, DPT_STOP);
785
786 /* Turn off time stamps. */
787 CSR_WRITE_1(dev, GMAC_TI_ST_CTRL, GMT_ST_STOP);
788 CSR_WRITE_1(dev, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
789
790 /* Don't permit config space writing */
791 CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
792
793 /* enable TX Arbiters */
794 for (i = 0; i < dev->d_num_port; i++)
795 CSR_WRITE_1(dev, MR_ADDR(i, TXA_CTRL), TXA_ENA_ARB);
796
797 /* Configure timeout values. */
798 for (i = 0; i < dev->d_num_port; i++) {
799 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
800
801 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1), RI_TO_53);
802 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1), RI_TO_53);
803 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1), RI_TO_53);
804 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1), RI_TO_53);
805 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1), RI_TO_53);
806 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1), RI_TO_53);
807 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2), RI_TO_53);
808 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2), RI_TO_53);
809 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2), RI_TO_53);
810 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2), RI_TO_53);
811 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2), RI_TO_53);
812 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2), RI_TO_53);
813 }
814
815 /* Disable all interrupts. */
816 CSR_WRITE_4(dev, B0_HWE_IMSK, 0);
817 (void) CSR_READ_4(dev, B0_HWE_IMSK);
818 CSR_WRITE_4(dev, B0_IMSK, 0);
819 (void) CSR_READ_4(dev, B0_IMSK);
820
821 /*
822 * On dual port PCI-X card, there is an problem where status
823 * can be received out of order due to split transactions.
824 */
825 if (dev->d_bustype == PCIX_BUS && dev->d_num_port > 1) {
826 int pcix;
827 uint16_t pcix_cmd;
828
829 if ((pcix = yge_find_capability(dev, PCI_CAP_ID_PCIX)) != 0) {
830 pcix_cmd = pci_config_get16(pcih, pcix + 2);
831 /* Clear Max Outstanding Split Transactions. */
832 pcix_cmd &= ~0x70;
833 CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
834 pci_config_put16(pcih, pcix + 2, pcix_cmd);
835 CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
836 }
837 }
838 if (dev->d_bustype == PEX_BUS) {
839 uint16_t v, width;
840
841 v = pci_config_get16(pcih, PEX_DEV_CTRL);
842 /* Change Max. Read Request Size to 4096 bytes. */
843 v &= ~PEX_DC_MAX_RRS_MSK;
844 v |= PEX_DC_MAX_RD_RQ_SIZE(5);
845 pci_config_put16(pcih, PEX_DEV_CTRL, v);
846 width = pci_config_get16(pcih, PEX_LNK_STAT);
847 width = (width & PEX_LS_LINK_WI_MSK) >> 4;
848 v = pci_config_get16(pcih, PEX_LNK_CAP);
849 v = (v & PEX_LS_LINK_WI_MSK) >> 4;
850 if (v != width)
851 yge_error(dev, NULL,
852 "Negotiated width of PCIe link(x%d) != "
853 "max. width of link(x%d)\n", width, v);
854 }
855
856 /* Clear status list. */
857 CLEARRING(&dev->d_status_ring);
858 SYNCRING(&dev->d_status_ring, DDI_DMA_SYNC_FORDEV);
859
860 dev->d_stat_cons = 0;
861
862 CSR_WRITE_4(dev, STAT_CTRL, SC_STAT_RST_SET);
863 CSR_WRITE_4(dev, STAT_CTRL, SC_STAT_RST_CLR);
864
865 /* Set the status list base address. */
866 addr = dev->d_status_ring.r_paddr;
867 CSR_WRITE_4(dev, STAT_LIST_ADDR_LO, YGE_ADDR_LO(addr));
868 CSR_WRITE_4(dev, STAT_LIST_ADDR_HI, YGE_ADDR_HI(addr));
869
870 /* Set the status list last index. */
871 CSR_WRITE_2(dev, STAT_LAST_IDX, YGE_STAT_RING_CNT - 1);
872 CSR_WRITE_2(dev, STAT_PUT_IDX, 0);
873
874 if (dev->d_hw_id == CHIP_ID_YUKON_EC &&
875 dev->d_hw_rev == CHIP_REV_YU_EC_A1) {
876 /* WA for dev. #4.3 */
877 CSR_WRITE_2(dev, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
878 /* WA for dev #4.18 */
879 CSR_WRITE_1(dev, STAT_FIFO_WM, 0x21);
880 CSR_WRITE_1(dev, STAT_FIFO_ISR_WM, 7);
881 } else {
882 CSR_WRITE_2(dev, STAT_TX_IDX_TH, 10);
883 CSR_WRITE_1(dev, STAT_FIFO_WM, 16);
884
885 /* ISR status FIFO watermark */
886 if (dev->d_hw_id == CHIP_ID_YUKON_XL &&
887 dev->d_hw_rev == CHIP_REV_YU_XL_A0)
888 CSR_WRITE_1(dev, STAT_FIFO_ISR_WM, 4);
889 else
890 CSR_WRITE_1(dev, STAT_FIFO_ISR_WM, 16);
891
892 CSR_WRITE_4(dev, STAT_ISR_TIMER_INI, 0x0190);
893 }
894
895 /*
896 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
897 */
898 CSR_WRITE_4(dev, STAT_TX_TIMER_INI, YGE_USECS(dev, 1000));
899
900 /* Enable status unit. */
901 CSR_WRITE_4(dev, STAT_CTRL, SC_STAT_OP_ON);
902
903 CSR_WRITE_1(dev, STAT_TX_TIMER_CTRL, TIM_START);
904 CSR_WRITE_1(dev, STAT_LEV_TIMER_CTRL, TIM_START);
905 CSR_WRITE_1(dev, STAT_ISR_TIMER_CTRL, TIM_START);
906 }
907
908 static int
yge_init_port(yge_port_t * port)909 yge_init_port(yge_port_t *port)
910 {
911 yge_dev_t *dev = port->p_dev;
912 int i;
913 mac_register_t *macp;
914
915 port->p_flags = dev->d_pflags;
916 port->p_ppa = ddi_get_instance(dev->d_dip) + (port->p_port * 100);
917
918 port->p_tx_buf = kmem_zalloc(sizeof (yge_buf_t) * YGE_TX_RING_CNT,
919 KM_SLEEP);
920 port->p_rx_buf = kmem_zalloc(sizeof (yge_buf_t) * YGE_RX_RING_CNT,
921 KM_SLEEP);
922
923 /* Setup Tx/Rx queue register offsets. */
924 if (port->p_port == YGE_PORT_A) {
925 port->p_txq = Q_XA1;
926 port->p_txsq = Q_XS1;
927 port->p_rxq = Q_R1;
928 } else {
929 port->p_txq = Q_XA2;
930 port->p_txsq = Q_XS2;
931 port->p_rxq = Q_R2;
932 }
933
934 /* Disable jumbo frame for Yukon FE. */
935 if (dev->d_hw_id == CHIP_ID_YUKON_FE)
936 port->p_flags |= PORT_FLAG_NOJUMBO;
937
938 /*
939 * Start out assuming a regular MTU. Users can change this
940 * with dladm. The dladm daemon is supposed to issue commands
941 * to change the default MTU using m_setprop during early boot
942 * (before the interface is plumbed) if the user has so
943 * requested.
944 */
945 port->p_mtu = ETHERMTU;
946
947 port->p_mii = mii_alloc(port, dev->d_dip, &yge_mii_ops);
948 if (port->p_mii == NULL) {
949 yge_error(NULL, port, "MII handle allocation failed");
950 return (DDI_FAILURE);
951 }
952 /* We assume all parts support asymmetric pause */
953 mii_set_pauseable(port->p_mii, B_TRUE, B_TRUE);
954
955 /*
956 * Get station address for this interface. Note that
957 * dual port cards actually come with three station
958 * addresses: one for each port, plus an extra. The
959 * extra one is used by the SysKonnect driver software
960 * as a 'virtual' station address for when both ports
961 * are operating in failover mode. Currently we don't
962 * use this extra address.
963 */
964 for (i = 0; i < ETHERADDRL; i++) {
965 port->p_curraddr[i] =
966 CSR_READ_1(dev, B2_MAC_1 + (port->p_port * 8) + i);
967 }
968
969 /* Register with Nemo. */
970 if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
971 yge_error(NULL, port, "MAC handle allocation failed");
972 return (DDI_FAILURE);
973 }
974 macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
975 macp->m_driver = port;
976 macp->m_dip = dev->d_dip;
977 macp->m_src_addr = port->p_curraddr;
978 macp->m_callbacks = &yge_m_callbacks;
979 macp->m_min_sdu = 0;
980 macp->m_max_sdu = port->p_mtu;
981 macp->m_instance = port->p_ppa;
982 macp->m_margin = VLAN_TAGSZ;
983
984 port->p_mreg = macp;
985
986 return (DDI_SUCCESS);
987 }
988
989 static int
yge_add_intr(yge_dev_t * dev,int intr_type)990 yge_add_intr(yge_dev_t *dev, int intr_type)
991 {
992 dev_info_t *dip;
993 int count;
994 int actual;
995 int rv;
996 int i, j;
997
998 dip = dev->d_dip;
999
1000 rv = ddi_intr_get_nintrs(dip, intr_type, &count);
1001 if ((rv != DDI_SUCCESS) || (count == 0)) {
1002 yge_error(dev, NULL,
1003 "ddi_intr_get_nintrs failed, rv %d, count %d", rv, count);
1004 return (DDI_FAILURE);
1005 }
1006
1007 /*
1008 * Allocate the interrupt. Note that we only bother with a single
1009 * interrupt. One could argue that for MSI devices with dual ports,
1010 * it would be nice to have a separate interrupt per port. But right
1011 * now I don't know how to configure that, so we'll just settle for
1012 * a single interrupt.
1013 */
1014 dev->d_intrcnt = 1;
1015
1016 dev->d_intrsize = count * sizeof (ddi_intr_handle_t);
1017 dev->d_intrh = kmem_zalloc(dev->d_intrsize, KM_SLEEP);
1018 if (dev->d_intrh == NULL) {
1019 yge_error(dev, NULL, "Unable to allocate interrupt handle");
1020 return (DDI_FAILURE);
1021 }
1022
1023 rv = ddi_intr_alloc(dip, dev->d_intrh, intr_type, 0, dev->d_intrcnt,
1024 &actual, DDI_INTR_ALLOC_STRICT);
1025 if ((rv != DDI_SUCCESS) || (actual == 0)) {
1026 yge_error(dev, NULL,
1027 "Unable to allocate interrupt, %d, count %d",
1028 rv, actual);
1029 kmem_free(dev->d_intrh, dev->d_intrsize);
1030 return (DDI_FAILURE);
1031 }
1032
1033 if ((rv = ddi_intr_get_pri(dev->d_intrh[0], &dev->d_intrpri)) !=
1034 DDI_SUCCESS) {
1035 for (i = 0; i < dev->d_intrcnt; i++)
1036 (void) ddi_intr_free(dev->d_intrh[i]);
1037 yge_error(dev, NULL,
1038 "Unable to get interrupt priority, %d", rv);
1039 kmem_free(dev->d_intrh, dev->d_intrsize);
1040 return (DDI_FAILURE);
1041 }
1042
1043 if ((rv = ddi_intr_get_cap(dev->d_intrh[0], &dev->d_intrcap)) !=
1044 DDI_SUCCESS) {
1045 yge_error(dev, NULL,
1046 "Unable to get interrupt capabilities, %d", rv);
1047 for (i = 0; i < dev->d_intrcnt; i++)
1048 (void) ddi_intr_free(dev->d_intrh[i]);
1049 kmem_free(dev->d_intrh, dev->d_intrsize);
1050 return (DDI_FAILURE);
1051 }
1052
1053 /* register interrupt handler to kernel */
1054 for (i = 0; i < dev->d_intrcnt; i++) {
1055 if ((rv = ddi_intr_add_handler(dev->d_intrh[i], yge_intr,
1056 dev, NULL)) != DDI_SUCCESS) {
1057 yge_error(dev, NULL,
1058 "Unable to add interrupt handler, %d", rv);
1059 for (j = 0; j < i; j++)
1060 (void) ddi_intr_remove_handler(dev->d_intrh[j]);
1061 for (i = 0; i < dev->d_intrcnt; i++)
1062 (void) ddi_intr_free(dev->d_intrh[i]);
1063 kmem_free(dev->d_intrh, dev->d_intrsize);
1064 return (DDI_FAILURE);
1065 }
1066 }
1067
1068 mutex_init(&dev->d_rxlock, NULL, MUTEX_DRIVER,
1069 DDI_INTR_PRI(dev->d_intrpri));
1070 mutex_init(&dev->d_txlock, NULL, MUTEX_DRIVER,
1071 DDI_INTR_PRI(dev->d_intrpri));
1072 mutex_init(&dev->d_phylock, NULL, MUTEX_DRIVER,
1073 DDI_INTR_PRI(dev->d_intrpri));
1074 mutex_init(&dev->d_task_mtx, NULL, MUTEX_DRIVER,
1075 DDI_INTR_PRI(dev->d_intrpri));
1076
1077 return (DDI_SUCCESS);
1078 }
1079
1080 static int
yge_attach_intr(yge_dev_t * dev)1081 yge_attach_intr(yge_dev_t *dev)
1082 {
1083 dev_info_t *dip = dev->d_dip;
1084 int intr_types;
1085 int rv;
1086
1087 /* Allocate IRQ resources. */
1088 rv = ddi_intr_get_supported_types(dip, &intr_types);
1089 if (rv != DDI_SUCCESS) {
1090 yge_error(dev, NULL,
1091 "Unable to determine supported interrupt types, %d", rv);
1092 return (DDI_FAILURE);
1093 }
1094
1095 /*
1096 * We default to not supporting MSI. We've found some device
1097 * and motherboard combinations don't always work well with
1098 * MSI interrupts. Users may override this if they choose.
1099 */
1100 if (ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, "msi_enable", 0) == 0) {
1101 /* If msi disable property present, disable both msix/msi. */
1102 if (intr_types & DDI_INTR_TYPE_FIXED) {
1103 intr_types &= ~(DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX);
1104 }
1105 }
1106
1107 if (intr_types & DDI_INTR_TYPE_MSIX) {
1108 if ((rv = yge_add_intr(dev, DDI_INTR_TYPE_MSIX)) ==
1109 DDI_SUCCESS)
1110 return (DDI_SUCCESS);
1111 }
1112
1113 if (intr_types & DDI_INTR_TYPE_MSI) {
1114 if ((rv = yge_add_intr(dev, DDI_INTR_TYPE_MSI)) ==
1115 DDI_SUCCESS)
1116 return (DDI_SUCCESS);
1117 }
1118
1119 if (intr_types & DDI_INTR_TYPE_FIXED) {
1120 if ((rv = yge_add_intr(dev, DDI_INTR_TYPE_FIXED)) ==
1121 DDI_SUCCESS)
1122 return (DDI_SUCCESS);
1123 }
1124
1125 yge_error(dev, NULL, "Unable to configure any interrupts");
1126 return (DDI_FAILURE);
1127 }
1128
1129 static void
yge_intr_enable(yge_dev_t * dev)1130 yge_intr_enable(yge_dev_t *dev)
1131 {
1132 int i;
1133 if (dev->d_intrcap & DDI_INTR_FLAG_BLOCK) {
1134 /* Call ddi_intr_block_enable() for MSI interrupts */
1135 (void) ddi_intr_block_enable(dev->d_intrh, dev->d_intrcnt);
1136 } else {
1137 /* Call ddi_intr_enable for FIXED interrupts */
1138 for (i = 0; i < dev->d_intrcnt; i++)
1139 (void) ddi_intr_enable(dev->d_intrh[i]);
1140 }
1141 }
1142
1143 void
yge_intr_disable(yge_dev_t * dev)1144 yge_intr_disable(yge_dev_t *dev)
1145 {
1146 int i;
1147
1148 if (dev->d_intrcap & DDI_INTR_FLAG_BLOCK) {
1149 (void) ddi_intr_block_disable(dev->d_intrh, dev->d_intrcnt);
1150 } else {
1151 for (i = 0; i < dev->d_intrcnt; i++)
1152 (void) ddi_intr_disable(dev->d_intrh[i]);
1153 }
1154 }
1155
1156 static uint8_t
yge_find_capability(yge_dev_t * dev,uint8_t cap)1157 yge_find_capability(yge_dev_t *dev, uint8_t cap)
1158 {
1159 uint8_t ptr;
1160 uint16_t capit;
1161 ddi_acc_handle_t pcih = dev->d_pcih;
1162
1163 if ((pci_config_get16(pcih, PCI_CONF_STAT) & PCI_STAT_CAP) == 0) {
1164 return (0);
1165 }
1166 /* This assumes PCI, and not CardBus. */
1167 ptr = pci_config_get8(pcih, PCI_CONF_CAP_PTR);
1168 while (ptr != 0) {
1169 capit = pci_config_get8(pcih, ptr + PCI_CAP_ID);
1170 if (capit == cap) {
1171 return (ptr);
1172 }
1173 ptr = pci_config_get8(pcih, ptr + PCI_CAP_NEXT_PTR);
1174 }
1175 return (0);
1176 }
1177
1178 static int
yge_attach(yge_dev_t * dev)1179 yge_attach(yge_dev_t *dev)
1180 {
1181 dev_info_t *dip = dev->d_dip;
1182 int rv;
1183 int nattached;
1184 uint8_t pm_cap;
1185
1186 if (pci_config_setup(dip, &dev->d_pcih) != DDI_SUCCESS) {
1187 yge_error(dev, NULL, "Unable to map PCI configuration space");
1188 goto fail;
1189 }
1190
1191 /*
1192 * Map control/status registers.
1193 */
1194
1195 /* ensure the pmcsr status is D0 state */
1196 pm_cap = yge_find_capability(dev, PCI_CAP_ID_PM);
1197 if (pm_cap != 0) {
1198 uint16_t pmcsr;
1199 pmcsr = pci_config_get16(dev->d_pcih, pm_cap + PCI_PMCSR);
1200 pmcsr &= ~PCI_PMCSR_STATE_MASK;
1201 pci_config_put16(dev->d_pcih, pm_cap + PCI_PMCSR,
1202 pmcsr | PCI_PMCSR_D0);
1203 }
1204
1205 /* Enable PCI access and bus master. */
1206 pci_config_put16(dev->d_pcih, PCI_CONF_COMM,
1207 pci_config_get16(dev->d_pcih, PCI_CONF_COMM) |
1208 PCI_COMM_IO | PCI_COMM_MAE | PCI_COMM_ME);
1209
1210
1211 /* Allocate I/O resource */
1212 rv = ddi_regs_map_setup(dip, 1, &dev->d_regs, 0, 0, &yge_regs_attr,
1213 &dev->d_regsh);
1214 if (rv != DDI_SUCCESS) {
1215 yge_error(dev, NULL, "Unable to map device registers");
1216 goto fail;
1217 }
1218
1219
1220 /* Enable all clocks. */
1221 CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1222 pci_config_put32(dev->d_pcih, PCI_OUR_REG_3, 0);
1223 CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1224
1225 CSR_WRITE_2(dev, B0_CTST, CS_RST_CLR);
1226 dev->d_hw_id = CSR_READ_1(dev, B2_CHIP_ID);
1227 dev->d_hw_rev = (CSR_READ_1(dev, B2_MAC_CFG) >> 4) & 0x0f;
1228
1229
1230 /*
1231 * Bail out if chip is not recognized. Note that we only enforce
1232 * this in production builds. The Ultra-2 (88e8057) has a problem
1233 * right now where TX works fine, but RX seems not to. So we've
1234 * disabled that for now.
1235 */
1236 if (dev->d_hw_id < CHIP_ID_YUKON_XL ||
1237 dev->d_hw_id >= CHIP_ID_YUKON_UL_2) {
1238 yge_error(dev, NULL, "Unknown device: id=0x%02x, rev=0x%02x",
1239 dev->d_hw_id, dev->d_hw_rev);
1240 #ifndef DEBUG
1241 goto fail;
1242 #endif
1243 }
1244
1245 /* Soft reset. */
1246 CSR_WRITE_2(dev, B0_CTST, CS_RST_SET);
1247 CSR_WRITE_2(dev, B0_CTST, CS_RST_CLR);
1248 dev->d_pmd = CSR_READ_1(dev, B2_PMD_TYP);
1249 if (dev->d_pmd == 'L' || dev->d_pmd == 'S' || dev->d_pmd == 'P')
1250 dev->d_coppertype = 0;
1251 else
1252 dev->d_coppertype = 1;
1253 /* Check number of MACs. */
1254 dev->d_num_port = 1;
1255 if ((CSR_READ_1(dev, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1256 CFG_DUAL_MAC_MSK) {
1257 if (!(CSR_READ_1(dev, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1258 dev->d_num_port++;
1259 }
1260
1261 /* Check bus type. */
1262 if (yge_find_capability(dev, PCI_CAP_ID_PCI_E) != 0) {
1263 dev->d_bustype = PEX_BUS;
1264 } else if (yge_find_capability(dev, PCI_CAP_ID_PCIX) != 0) {
1265 dev->d_bustype = PCIX_BUS;
1266 } else {
1267 dev->d_bustype = PCI_BUS;
1268 }
1269
1270 switch (dev->d_hw_id) {
1271 case CHIP_ID_YUKON_EC:
1272 dev->d_clock = 125; /* 125 Mhz */
1273 break;
1274 case CHIP_ID_YUKON_UL_2:
1275 dev->d_clock = 125; /* 125 Mhz */
1276 break;
1277 case CHIP_ID_YUKON_SUPR:
1278 dev->d_clock = 125; /* 125 Mhz */
1279 break;
1280 case CHIP_ID_YUKON_EC_U:
1281 dev->d_clock = 125; /* 125 Mhz */
1282 break;
1283 case CHIP_ID_YUKON_EX:
1284 dev->d_clock = 125; /* 125 Mhz */
1285 break;
1286 case CHIP_ID_YUKON_FE:
1287 dev->d_clock = 100; /* 100 Mhz */
1288 break;
1289 case CHIP_ID_YUKON_FE_P:
1290 dev->d_clock = 50; /* 50 Mhz */
1291 break;
1292 case CHIP_ID_YUKON_XL:
1293 dev->d_clock = 156; /* 156 Mhz */
1294 break;
1295 default:
1296 dev->d_clock = 156; /* 156 Mhz */
1297 break;
1298 }
1299
1300 dev->d_process_limit = YGE_RX_RING_CNT/2;
1301
1302 rv = yge_alloc_ring(NULL, dev, &dev->d_status_ring, YGE_STAT_RING_CNT);
1303 if (rv != DDI_SUCCESS)
1304 goto fail;
1305
1306 /* Setup event taskq. */
1307 dev->d_task_q = ddi_taskq_create(dip, "tq", 1, TASKQ_DEFAULTPRI, 0);
1308 if (dev->d_task_q == NULL) {
1309 yge_error(dev, NULL, "failed to create taskq");
1310 goto fail;
1311 }
1312
1313 /* Init the condition variable */
1314 cv_init(&dev->d_task_cv, NULL, CV_DRIVER, NULL);
1315
1316 /* Allocate IRQ resources. */
1317 if ((rv = yge_attach_intr(dev)) != DDI_SUCCESS) {
1318 goto fail;
1319 }
1320
1321 /* Set base interrupt mask. */
1322 dev->d_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1323 dev->d_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1324 Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1325
1326 /* Reset the adapter. */
1327 yge_reset(dev);
1328
1329 yge_setup_rambuffer(dev);
1330
1331 nattached = 0;
1332 for (int i = 0; i < dev->d_num_port; i++) {
1333 yge_port_t *port = dev->d_port[i];
1334 if (yge_init_port(port) != DDI_SUCCESS) {
1335 goto fail;
1336 }
1337 }
1338
1339 yge_intr_enable(dev);
1340
1341 /* set up the periodic to run once per second */
1342 dev->d_periodic = ddi_periodic_add(yge_tick, dev, 1000000000, 0);
1343
1344 for (int i = 0; i < dev->d_num_port; i++) {
1345 yge_port_t *port = dev->d_port[i];
1346 if (yge_register_port(port) == DDI_SUCCESS) {
1347 nattached++;
1348 }
1349 }
1350
1351 if (nattached == 0) {
1352 goto fail;
1353 }
1354
1355 /* Dispatch the taskq */
1356 if (ddi_taskq_dispatch(dev->d_task_q, yge_task, dev, DDI_SLEEP) !=
1357 DDI_SUCCESS) {
1358 yge_error(dev, NULL, "failed to start taskq");
1359 goto fail;
1360 }
1361
1362 ddi_report_dev(dip);
1363
1364 return (DDI_SUCCESS);
1365
1366 fail:
1367 yge_detach(dev);
1368 return (DDI_FAILURE);
1369 }
1370
1371 static int
yge_register_port(yge_port_t * port)1372 yge_register_port(yge_port_t *port)
1373 {
1374 if (mac_register(port->p_mreg, &port->p_mh) != DDI_SUCCESS) {
1375 yge_error(NULL, port, "MAC registration failed");
1376 return (DDI_FAILURE);
1377 }
1378
1379 return (DDI_SUCCESS);
1380 }
1381
1382 /*
1383 * Free up port specific resources. This is called only when the
1384 * port is not registered (and hence not running).
1385 */
1386 static void
yge_uninit_port(yge_port_t * port)1387 yge_uninit_port(yge_port_t *port)
1388 {
1389 ASSERT(!port->p_running);
1390
1391 if (port->p_mreg)
1392 mac_free(port->p_mreg);
1393
1394 if (port->p_mii)
1395 mii_free(port->p_mii);
1396
1397 yge_txrx_dma_free(port);
1398
1399 if (port->p_tx_buf)
1400 kmem_free(port->p_tx_buf,
1401 sizeof (yge_buf_t) * YGE_TX_RING_CNT);
1402 if (port->p_rx_buf)
1403 kmem_free(port->p_rx_buf,
1404 sizeof (yge_buf_t) * YGE_RX_RING_CNT);
1405 }
1406
1407 static void
yge_detach(yge_dev_t * dev)1408 yge_detach(yge_dev_t *dev)
1409 {
1410 /*
1411 * Turn off the periodic.
1412 */
1413 if (dev->d_periodic)
1414 ddi_periodic_delete(dev->d_periodic);
1415
1416 for (int i = 0; i < dev->d_num_port; i++) {
1417 yge_uninit_port(dev->d_port[i]);
1418 }
1419
1420 /*
1421 * Make sure all interrupts are disabled.
1422 */
1423 CSR_WRITE_4(dev, B0_IMSK, 0);
1424 (void) CSR_READ_4(dev, B0_IMSK);
1425 CSR_WRITE_4(dev, B0_HWE_IMSK, 0);
1426 (void) CSR_READ_4(dev, B0_HWE_IMSK);
1427
1428 /* LED Off. */
1429 CSR_WRITE_2(dev, B0_CTST, Y2_LED_STAT_OFF);
1430
1431 /* Put hardware reset. */
1432 CSR_WRITE_2(dev, B0_CTST, CS_RST_SET);
1433
1434 yge_free_ring(&dev->d_status_ring);
1435
1436 if (dev->d_task_q != NULL) {
1437 yge_dispatch(dev, YGE_TASK_EXIT);
1438 ddi_taskq_destroy(dev->d_task_q);
1439 dev->d_task_q = NULL;
1440 }
1441
1442 cv_destroy(&dev->d_task_cv);
1443
1444 yge_intr_disable(dev);
1445
1446 if (dev->d_intrh != NULL) {
1447 for (int i = 0; i < dev->d_intrcnt; i++) {
1448 (void) ddi_intr_remove_handler(dev->d_intrh[i]);
1449 (void) ddi_intr_free(dev->d_intrh[i]);
1450 }
1451 kmem_free(dev->d_intrh, dev->d_intrsize);
1452 mutex_destroy(&dev->d_phylock);
1453 mutex_destroy(&dev->d_txlock);
1454 mutex_destroy(&dev->d_rxlock);
1455 mutex_destroy(&dev->d_task_mtx);
1456 }
1457 if (dev->d_regsh != NULL)
1458 ddi_regs_map_free(&dev->d_regsh);
1459
1460 if (dev->d_pcih != NULL)
1461 pci_config_teardown(&dev->d_pcih);
1462 }
1463
1464 static int
yge_alloc_ring(yge_port_t * port,yge_dev_t * dev,yge_ring_t * ring,uint32_t num)1465 yge_alloc_ring(yge_port_t *port, yge_dev_t *dev, yge_ring_t *ring, uint32_t num)
1466 {
1467 dev_info_t *dip;
1468 caddr_t kaddr;
1469 size_t len;
1470 int rv;
1471 ddi_dma_cookie_t dmac;
1472 unsigned ndmac;
1473
1474 if (port && !dev)
1475 dev = port->p_dev;
1476 dip = dev->d_dip;
1477
1478 ring->r_num = num;
1479
1480 rv = ddi_dma_alloc_handle(dip, &yge_ring_dma_attr, DDI_DMA_DONTWAIT,
1481 NULL, &ring->r_dmah);
1482 if (rv != DDI_SUCCESS) {
1483 yge_error(dev, port, "Unable to allocate ring DMA handle");
1484 return (DDI_FAILURE);
1485 }
1486
1487 rv = ddi_dma_mem_alloc(ring->r_dmah, num * sizeof (yge_desc_t),
1488 &yge_ring_attr, DDI_DMA_CONSISTENT, DDI_DMA_DONTWAIT, NULL,
1489 &kaddr, &len, &ring->r_acch);
1490 if (rv != DDI_SUCCESS) {
1491 yge_error(dev, port, "Unable to allocate ring DMA memory");
1492 return (DDI_FAILURE);
1493 }
1494 ring->r_size = len;
1495 ring->r_kaddr = (void *)kaddr;
1496
1497 bzero(kaddr, len);
1498
1499 rv = ddi_dma_addr_bind_handle(ring->r_dmah, NULL, kaddr,
1500 len, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
1501 &dmac, &ndmac);
1502 if (rv != DDI_DMA_MAPPED) {
1503 yge_error(dev, port, "Unable to bind ring DMA handle");
1504 return (DDI_FAILURE);
1505 }
1506 ASSERT(ndmac == 1);
1507 ring->r_paddr = dmac.dmac_address;
1508
1509 return (DDI_SUCCESS);
1510 }
1511
1512 static void
yge_free_ring(yge_ring_t * ring)1513 yge_free_ring(yge_ring_t *ring)
1514 {
1515 if (ring->r_paddr)
1516 (void) ddi_dma_unbind_handle(ring->r_dmah);
1517 ring->r_paddr = 0;
1518 if (ring->r_acch)
1519 ddi_dma_mem_free(&ring->r_acch);
1520 ring->r_kaddr = NULL;
1521 ring->r_acch = NULL;
1522 if (ring->r_dmah)
1523 ddi_dma_free_handle(&ring->r_dmah);
1524 ring->r_dmah = NULL;
1525 }
1526
1527 static int
yge_alloc_buf(yge_port_t * port,yge_buf_t * b,size_t bufsz,int flag)1528 yge_alloc_buf(yge_port_t *port, yge_buf_t *b, size_t bufsz, int flag)
1529 {
1530 yge_dev_t *dev = port->p_dev;
1531 size_t l;
1532 int sflag;
1533 int rv;
1534 ddi_dma_cookie_t dmac;
1535 unsigned ndmac;
1536
1537 sflag = flag & (DDI_DMA_STREAMING | DDI_DMA_CONSISTENT);
1538
1539 /* Now allocate Tx buffers. */
1540 rv = ddi_dma_alloc_handle(dev->d_dip, &yge_buf_dma_attr,
1541 DDI_DMA_DONTWAIT, NULL, &b->b_dmah);
1542 if (rv != DDI_SUCCESS) {
1543 yge_error(NULL, port, "Unable to alloc DMA handle for buffer");
1544 return (DDI_FAILURE);
1545 }
1546
1547 rv = ddi_dma_mem_alloc(b->b_dmah, bufsz, &yge_buf_attr,
1548 sflag, DDI_DMA_DONTWAIT, NULL, &b->b_buf, &l, &b->b_acch);
1549 if (rv != DDI_SUCCESS) {
1550 yge_error(NULL, port, "Unable to alloc DMA memory for buffer");
1551 return (DDI_FAILURE);
1552 }
1553
1554 rv = ddi_dma_addr_bind_handle(b->b_dmah, NULL, b->b_buf, l, flag,
1555 DDI_DMA_DONTWAIT, NULL, &dmac, &ndmac);
1556 if (rv != DDI_DMA_MAPPED) {
1557 yge_error(NULL, port, "Unable to bind DMA handle for buffer");
1558 return (DDI_FAILURE);
1559 }
1560 ASSERT(ndmac == 1);
1561 b->b_paddr = dmac.dmac_address;
1562 return (DDI_SUCCESS);
1563 }
1564
1565 static void
yge_free_buf(yge_buf_t * b)1566 yge_free_buf(yge_buf_t *b)
1567 {
1568 if (b->b_paddr)
1569 (void) ddi_dma_unbind_handle(b->b_dmah);
1570 b->b_paddr = 0;
1571 if (b->b_acch)
1572 ddi_dma_mem_free(&b->b_acch);
1573 b->b_buf = NULL;
1574 b->b_acch = NULL;
1575 if (b->b_dmah)
1576 ddi_dma_free_handle(&b->b_dmah);
1577 b->b_dmah = NULL;
1578 }
1579
1580 static int
yge_txrx_dma_alloc(yge_port_t * port)1581 yge_txrx_dma_alloc(yge_port_t *port)
1582 {
1583 uint32_t bufsz;
1584 int rv;
1585 int i;
1586 yge_buf_t *b;
1587
1588 /*
1589 * It seems that Yukon II supports full 64 bit DMA operations.
1590 * But we limit it to 32 bits only for now. The 64 bit
1591 * operation would require substantially more complex
1592 * descriptor handling, since in such a case we would need two
1593 * LEs to represent a single physical address.
1594 *
1595 * If we find that this is limiting us, then we should go back
1596 * and re-examine it.
1597 */
1598
1599 /* Note our preferred buffer size. */
1600 bufsz = port->p_mtu;
1601
1602 /* Allocate Tx ring. */
1603 rv = yge_alloc_ring(port, NULL, &port->p_tx_ring, YGE_TX_RING_CNT);
1604 if (rv != DDI_SUCCESS) {
1605 return (DDI_FAILURE);
1606 }
1607
1608 /* Now allocate Tx buffers. */
1609 b = port->p_tx_buf;
1610 for (i = 0; i < YGE_TX_RING_CNT; i++) {
1611 rv = yge_alloc_buf(port, b, bufsz,
1612 DDI_DMA_STREAMING | DDI_DMA_WRITE);
1613 if (rv != DDI_SUCCESS) {
1614 return (DDI_FAILURE);
1615 }
1616 b++;
1617 }
1618
1619 /* Allocate Rx ring. */
1620 rv = yge_alloc_ring(port, NULL, &port->p_rx_ring, YGE_RX_RING_CNT);
1621 if (rv != DDI_SUCCESS) {
1622 return (DDI_FAILURE);
1623 }
1624
1625 /* Now allocate Rx buffers. */
1626 b = port->p_rx_buf;
1627 for (i = 0; i < YGE_RX_RING_CNT; i++) {
1628 rv = yge_alloc_buf(port, b, bufsz,
1629 DDI_DMA_STREAMING | DDI_DMA_READ);
1630 if (rv != DDI_SUCCESS) {
1631 return (DDI_FAILURE);
1632 }
1633 b++;
1634 }
1635
1636 return (DDI_SUCCESS);
1637 }
1638
1639 static void
yge_txrx_dma_free(yge_port_t * port)1640 yge_txrx_dma_free(yge_port_t *port)
1641 {
1642 yge_buf_t *b;
1643
1644 /* Tx ring. */
1645 yge_free_ring(&port->p_tx_ring);
1646
1647 /* Rx ring. */
1648 yge_free_ring(&port->p_rx_ring);
1649
1650 /* Tx buffers. */
1651 b = port->p_tx_buf;
1652 for (int i = 0; i < YGE_TX_RING_CNT; i++, b++) {
1653 yge_free_buf(b);
1654 }
1655 /* Rx buffers. */
1656 b = port->p_rx_buf;
1657 for (int i = 0; i < YGE_RX_RING_CNT; i++, b++) {
1658 yge_free_buf(b);
1659 }
1660 }
1661
1662 boolean_t
yge_send(yge_port_t * port,mblk_t * mp)1663 yge_send(yge_port_t *port, mblk_t *mp)
1664 {
1665 yge_ring_t *ring = &port->p_tx_ring;
1666 yge_buf_t *txb;
1667 int16_t prod;
1668 size_t len;
1669
1670 /*
1671 * For now we're not going to support checksum offload or LSO.
1672 */
1673
1674 len = msgsize(mp);
1675 if (len > port->p_framesize) {
1676 /* too big! */
1677 freemsg(mp);
1678 return (B_TRUE);
1679 }
1680
1681 /* Check number of available descriptors. */
1682 if (port->p_tx_cnt + 1 >=
1683 (YGE_TX_RING_CNT - YGE_RESERVED_TX_DESC_CNT)) {
1684 port->p_wantw = B_TRUE;
1685 return (B_FALSE);
1686 }
1687
1688 prod = port->p_tx_prod;
1689
1690 txb = &port->p_tx_buf[prod];
1691 mcopymsg(mp, txb->b_buf);
1692 SYNCBUF(txb, DDI_DMA_SYNC_FORDEV);
1693
1694 PUTADDR(ring, prod, txb->b_paddr);
1695 PUTCTRL(ring, prod, len | OP_PACKET | HW_OWNER | EOP);
1696 SYNCENTRY(ring, prod, DDI_DMA_SYNC_FORDEV);
1697 port->p_tx_cnt++;
1698
1699 YGE_INC(prod, YGE_TX_RING_CNT);
1700
1701 /* Update producer index. */
1702 port->p_tx_prod = prod;
1703
1704 return (B_TRUE);
1705 }
1706
1707 static int
yge_suspend(yge_dev_t * dev)1708 yge_suspend(yge_dev_t *dev)
1709 {
1710 for (int i = 0; i < dev->d_num_port; i++) {
1711 yge_port_t *port = dev->d_port[i];
1712 mii_suspend(port->p_mii);
1713 }
1714
1715
1716 DEV_LOCK(dev);
1717
1718 for (int i = 0; i < dev->d_num_port; i++) {
1719 yge_port_t *port = dev->d_port[i];
1720
1721 if (port->p_running) {
1722 yge_stop_port(port);
1723 }
1724 }
1725
1726 /* Disable all interrupts. */
1727 CSR_WRITE_4(dev, B0_IMSK, 0);
1728 (void) CSR_READ_4(dev, B0_IMSK);
1729 CSR_WRITE_4(dev, B0_HWE_IMSK, 0);
1730 (void) CSR_READ_4(dev, B0_HWE_IMSK);
1731
1732 yge_phy_power(dev, B_FALSE);
1733
1734 /* Put hardware reset. */
1735 CSR_WRITE_2(dev, B0_CTST, CS_RST_SET);
1736 dev->d_suspended = B_TRUE;
1737
1738 DEV_UNLOCK(dev);
1739
1740 return (DDI_SUCCESS);
1741 }
1742
1743 static int
yge_resume(yge_dev_t * dev)1744 yge_resume(yge_dev_t *dev)
1745 {
1746 uint8_t pm_cap;
1747
1748 DEV_LOCK(dev);
1749
1750 /* ensure the pmcsr status is D0 state */
1751 CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1752
1753 if ((pm_cap = yge_find_capability(dev, PCI_CAP_ID_PM)) != 0) {
1754 uint16_t pmcsr;
1755 pmcsr = pci_config_get16(dev->d_pcih, pm_cap + PCI_PMCSR);
1756 pmcsr &= ~PCI_PMCSR_STATE_MASK;
1757 pci_config_put16(dev->d_pcih, pm_cap + PCI_PMCSR,
1758 pmcsr | PCI_PMCSR_D0);
1759 }
1760
1761 /* Enable PCI access and bus master. */
1762 pci_config_put16(dev->d_pcih, PCI_CONF_COMM,
1763 pci_config_get16(dev->d_pcih, PCI_CONF_COMM) |
1764 PCI_COMM_IO | PCI_COMM_MAE | PCI_COMM_ME);
1765
1766 /* Enable all clocks. */
1767 switch (dev->d_hw_id) {
1768 case CHIP_ID_YUKON_EX:
1769 case CHIP_ID_YUKON_EC_U:
1770 case CHIP_ID_YUKON_FE_P:
1771 pci_config_put32(dev->d_pcih, PCI_OUR_REG_3, 0);
1772 break;
1773 }
1774
1775 CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1776
1777 yge_reset(dev);
1778
1779 /* Make sure interrupts are reenabled */
1780 CSR_WRITE_4(dev, B0_IMSK, 0);
1781 CSR_WRITE_4(dev, B0_IMSK, Y2_IS_HW_ERR | Y2_IS_STAT_BMU);
1782 CSR_WRITE_4(dev, B0_HWE_IMSK,
1783 Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1784 Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP);
1785
1786 for (int i = 0; i < dev->d_num_port; i++) {
1787 yge_port_t *port = dev->d_port[i];
1788
1789 if (port != NULL && port->p_running) {
1790 yge_start_port(port);
1791 }
1792 }
1793 dev->d_suspended = B_FALSE;
1794
1795 DEV_UNLOCK(dev);
1796
1797 /* Reset MII layer */
1798 for (int i = 0; i < dev->d_num_port; i++) {
1799 yge_port_t *port = dev->d_port[i];
1800
1801 if (port->p_running) {
1802 mii_resume(port->p_mii);
1803 mac_tx_update(port->p_mh);
1804 }
1805 }
1806
1807 return (DDI_SUCCESS);
1808 }
1809
1810 static mblk_t *
yge_rxeof(yge_port_t * port,uint32_t status,int len)1811 yge_rxeof(yge_port_t *port, uint32_t status, int len)
1812 {
1813 yge_dev_t *dev = port->p_dev;
1814 mblk_t *mp;
1815 int cons, rxlen;
1816 yge_buf_t *rxb;
1817 yge_ring_t *ring;
1818
1819 ASSERT(mutex_owned(&dev->d_rxlock));
1820
1821 if (!port->p_running)
1822 return (NULL);
1823
1824 ring = &port->p_rx_ring;
1825 cons = port->p_rx_cons;
1826 rxlen = status >> 16;
1827 rxb = &port->p_rx_buf[cons];
1828 mp = NULL;
1829
1830
1831 if ((dev->d_hw_id == CHIP_ID_YUKON_FE_P) &&
1832 (dev->d_hw_rev == CHIP_REV_YU_FE2_A0)) {
1833 /*
1834 * Apparently the status for this chip is not reliable.
1835 * Only perform minimal consistency checking; the MAC
1836 * and upper protocols will have to filter any garbage.
1837 */
1838 if ((len > port->p_framesize) || (rxlen != len)) {
1839 goto bad;
1840 }
1841 } else {
1842 if ((len > port->p_framesize) || (rxlen != len) ||
1843 ((status & GMR_FS_ANY_ERR) != 0) ||
1844 ((status & GMR_FS_RX_OK) == 0)) {
1845 goto bad;
1846 }
1847 }
1848
1849 if ((mp = allocb(len + YGE_HEADROOM, BPRI_HI)) != NULL) {
1850
1851 /* good packet - yay */
1852 mp->b_rptr += YGE_HEADROOM;
1853 SYNCBUF(rxb, DDI_DMA_SYNC_FORKERNEL);
1854 bcopy(rxb->b_buf, mp->b_rptr, len);
1855 mp->b_wptr = mp->b_rptr + len;
1856 } else {
1857 port->p_stats.rx_nobuf++;
1858 }
1859
1860 bad:
1861
1862 PUTCTRL(ring, cons, port->p_framesize | OP_PACKET | HW_OWNER);
1863 SYNCENTRY(ring, cons, DDI_DMA_SYNC_FORDEV);
1864
1865 CSR_WRITE_2(dev,
1866 Y2_PREF_Q_ADDR(port->p_rxq, PREF_UNIT_PUT_IDX_REG),
1867 cons);
1868
1869 YGE_INC(port->p_rx_cons, YGE_RX_RING_CNT);
1870
1871 return (mp);
1872 }
1873
1874 static boolean_t
yge_txeof_locked(yge_port_t * port,int idx)1875 yge_txeof_locked(yge_port_t *port, int idx)
1876 {
1877 int prog;
1878 int16_t cons;
1879 boolean_t resched;
1880
1881 if (!port->p_running) {
1882 return (B_FALSE);
1883 }
1884
1885 cons = port->p_tx_cons;
1886 prog = 0;
1887 for (; cons != idx; YGE_INC(cons, YGE_TX_RING_CNT)) {
1888 if (port->p_tx_cnt <= 0)
1889 break;
1890 prog++;
1891 port->p_tx_cnt--;
1892 /* No need to sync LEs as we didn't update LEs. */
1893 }
1894
1895 port->p_tx_cons = cons;
1896
1897 if (prog > 0) {
1898 resched = port->p_wantw;
1899 port->p_tx_wdog = 0;
1900 port->p_wantw = B_FALSE;
1901 return (resched);
1902 } else {
1903 return (B_FALSE);
1904 }
1905 }
1906
1907 static void
yge_txeof(yge_port_t * port,int idx)1908 yge_txeof(yge_port_t *port, int idx)
1909 {
1910 boolean_t resched;
1911
1912 TX_LOCK(port->p_dev);
1913
1914 resched = yge_txeof_locked(port, idx);
1915
1916 TX_UNLOCK(port->p_dev);
1917
1918 if (resched && port->p_running) {
1919 mac_tx_update(port->p_mh);
1920 }
1921 }
1922
1923 static void
yge_restart_task(yge_dev_t * dev)1924 yge_restart_task(yge_dev_t *dev)
1925 {
1926 yge_port_t *port;
1927
1928 DEV_LOCK(dev);
1929
1930 /* Cancel pending I/O and free all Rx/Tx buffers. */
1931 for (int i = 0; i < dev->d_num_port; i++) {
1932 port = dev->d_port[i];
1933 if (port->p_running)
1934 yge_stop_port(dev->d_port[i]);
1935 }
1936 yge_reset(dev);
1937 for (int i = 0; i < dev->d_num_port; i++) {
1938 port = dev->d_port[i];
1939
1940 if (port->p_running)
1941 yge_start_port(port);
1942 }
1943
1944 DEV_UNLOCK(dev);
1945
1946 for (int i = 0; i < dev->d_num_port; i++) {
1947 port = dev->d_port[i];
1948
1949 mii_reset(port->p_mii);
1950 if (port->p_running)
1951 mac_tx_update(port->p_mh);
1952 }
1953 }
1954
1955 static void
yge_tick(void * arg)1956 yge_tick(void *arg)
1957 {
1958 yge_dev_t *dev = arg;
1959 yge_port_t *port;
1960 boolean_t restart = B_FALSE;
1961 boolean_t resched = B_FALSE;
1962 int idx;
1963
1964 DEV_LOCK(dev);
1965
1966 if (dev->d_suspended) {
1967 DEV_UNLOCK(dev);
1968 return;
1969 }
1970
1971 for (int i = 0; i < dev->d_num_port; i++) {
1972 port = dev->d_port[i];
1973
1974 if (!port->p_running)
1975 continue;
1976
1977 if (port->p_tx_cnt) {
1978 uint32_t ridx;
1979
1980 /*
1981 * Reclaim first as there is a possibility of losing
1982 * Tx completion interrupts.
1983 */
1984 ridx = port->p_port == YGE_PORT_A ?
1985 STAT_TXA1_RIDX : STAT_TXA2_RIDX;
1986 idx = CSR_READ_2(dev, ridx);
1987 if (port->p_tx_cons != idx) {
1988 resched = yge_txeof_locked(port, idx);
1989
1990 } else {
1991
1992 /* detect TX hang */
1993 port->p_tx_wdog++;
1994 if (port->p_tx_wdog > YGE_TX_TIMEOUT) {
1995 port->p_tx_wdog = 0;
1996 yge_error(NULL, port,
1997 "TX hang detected!");
1998 restart = B_TRUE;
1999 }
2000 }
2001 }
2002 }
2003
2004 DEV_UNLOCK(dev);
2005 if (restart) {
2006 yge_dispatch(dev, YGE_TASK_RESTART);
2007 } else {
2008 if (resched) {
2009 for (int i = 0; i < dev->d_num_port; i++) {
2010 port = dev->d_port[i];
2011
2012 if (port->p_running)
2013 mac_tx_update(port->p_mh);
2014 }
2015 }
2016 }
2017 }
2018
2019 static int
yge_intr_gmac(yge_port_t * port)2020 yge_intr_gmac(yge_port_t *port)
2021 {
2022 yge_dev_t *dev = port->p_dev;
2023 int pnum = port->p_port;
2024 uint8_t status;
2025 int dispatch_wrk = 0;
2026
2027 status = CSR_READ_1(dev, MR_ADDR(pnum, GMAC_IRQ_SRC));
2028
2029 /* GMAC Rx FIFO overrun. */
2030 if ((status & GM_IS_RX_FF_OR) != 0) {
2031 CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2032 yge_error(NULL, port, "Rx FIFO overrun!");
2033 dispatch_wrk |= YGE_TASK_RESTART;
2034 }
2035 /* GMAC Tx FIFO underrun. */
2036 if ((status & GM_IS_TX_FF_UR) != 0) {
2037 CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2038 yge_error(NULL, port, "Tx FIFO underrun!");
2039 /*
2040 * In case of Tx underrun, we may need to flush/reset
2041 * Tx MAC but that would also require
2042 * resynchronization with status LEs. Reinitializing
2043 * status LEs would affect the other port in dual MAC
2044 * configuration so it should be avoided if we can.
2045 * Due to lack of documentation it's all vague guess
2046 * but it needs more investigation.
2047 */
2048 }
2049 return (dispatch_wrk);
2050 }
2051
2052 static void
yge_handle_hwerr(yge_port_t * port,uint32_t status)2053 yge_handle_hwerr(yge_port_t *port, uint32_t status)
2054 {
2055 yge_dev_t *dev = port->p_dev;
2056
2057 if ((status & Y2_IS_PAR_RD1) != 0) {
2058 yge_error(NULL, port, "RAM buffer read parity error");
2059 /* Clear IRQ. */
2060 CSR_WRITE_2(dev, SELECT_RAM_BUFFER(port->p_port, B3_RI_CTRL),
2061 RI_CLR_RD_PERR);
2062 }
2063 if ((status & Y2_IS_PAR_WR1) != 0) {
2064 yge_error(NULL, port, "RAM buffer write parity error");
2065 /* Clear IRQ. */
2066 CSR_WRITE_2(dev, SELECT_RAM_BUFFER(port->p_port, B3_RI_CTRL),
2067 RI_CLR_WR_PERR);
2068 }
2069 if ((status & Y2_IS_PAR_MAC1) != 0) {
2070 yge_error(NULL, port, "Tx MAC parity error");
2071 /* Clear IRQ. */
2072 CSR_WRITE_4(dev, MR_ADDR(port->p_port, TX_GMF_CTRL_T),
2073 GMF_CLI_TX_PE);
2074 }
2075 if ((status & Y2_IS_PAR_RX1) != 0) {
2076 yge_error(NULL, port, "Rx parity error");
2077 /* Clear IRQ. */
2078 CSR_WRITE_4(dev, Q_ADDR(port->p_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
2079 }
2080 if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
2081 yge_error(NULL, port, "TCP segmentation error");
2082 /* Clear IRQ. */
2083 CSR_WRITE_4(dev, Q_ADDR(port->p_txq, Q_CSR), BMU_CLR_IRQ_TCP);
2084 }
2085 }
2086
2087 static void
yge_intr_hwerr(yge_dev_t * dev)2088 yge_intr_hwerr(yge_dev_t *dev)
2089 {
2090 uint32_t status;
2091 uint32_t tlphead[4];
2092
2093 status = CSR_READ_4(dev, B0_HWE_ISRC);
2094 /* Time Stamp timer overflow. */
2095 if ((status & Y2_IS_TIST_OV) != 0)
2096 CSR_WRITE_1(dev, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
2097 if ((status & Y2_IS_PCI_NEXP) != 0) {
2098 /*
2099 * PCI Express Error occurred which is not described in PEX
2100 * spec.
2101 * This error is also mapped either to Master Abort(
2102 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
2103 * can only be cleared there.
2104 */
2105 yge_error(dev, NULL, "PCI Express protocol violation error");
2106 }
2107
2108 if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
2109 uint16_t v16;
2110
2111 if ((status & Y2_IS_IRQ_STAT) != 0)
2112 yge_error(dev, NULL, "Unexpected IRQ Status error");
2113 if ((status & Y2_IS_MST_ERR) != 0)
2114 yge_error(dev, NULL, "Unexpected IRQ Master error");
2115 /* Reset all bits in the PCI status register. */
2116 v16 = pci_config_get16(dev->d_pcih, PCI_CONF_STAT);
2117 CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
2118 pci_config_put16(dev->d_pcih, PCI_CONF_STAT, v16 |
2119 PCI_STAT_S_PERROR | PCI_STAT_S_SYSERR | PCI_STAT_R_MAST_AB |
2120 PCI_STAT_R_TARG_AB | PCI_STAT_PERROR);
2121 CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
2122 }
2123
2124 /* Check for PCI Express Uncorrectable Error. */
2125 if ((status & Y2_IS_PCI_EXP) != 0) {
2126 uint32_t v32;
2127
2128 /*
2129 * On PCI Express bus bridges are called root complexes (RC).
2130 * PCI Express errors are recognized by the root complex too,
2131 * which requests the system to handle the problem. After
2132 * error occurrence it may be that no access to the adapter
2133 * may be performed any longer.
2134 */
2135
2136 v32 = CSR_PCI_READ_4(dev, PEX_UNC_ERR_STAT);
2137 if ((v32 & PEX_UNSUP_REQ) != 0) {
2138 /* Ignore unsupported request error. */
2139 yge_error(dev, NULL,
2140 "Uncorrectable PCI Express error");
2141 }
2142 if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
2143 int i;
2144
2145 /* Get TLP header form Log Registers. */
2146 for (i = 0; i < 4; i++)
2147 tlphead[i] = CSR_PCI_READ_4(dev,
2148 PEX_HEADER_LOG + i * 4);
2149 /* Check for vendor defined broadcast message. */
2150 if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
2151 dev->d_intrhwemask &= ~Y2_IS_PCI_EXP;
2152 CSR_WRITE_4(dev, B0_HWE_IMSK,
2153 dev->d_intrhwemask);
2154 (void) CSR_READ_4(dev, B0_HWE_IMSK);
2155 }
2156 }
2157 /* Clear the interrupt. */
2158 CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
2159 CSR_PCI_WRITE_4(dev, PEX_UNC_ERR_STAT, 0xffffffff);
2160 CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
2161 }
2162
2163 if ((status & Y2_HWE_L1_MASK) != 0 && dev->d_port[YGE_PORT_A] != NULL)
2164 yge_handle_hwerr(dev->d_port[YGE_PORT_A], status);
2165 if ((status & Y2_HWE_L2_MASK) != 0 && dev->d_port[YGE_PORT_B] != NULL)
2166 yge_handle_hwerr(dev->d_port[YGE_PORT_B], status >> 8);
2167 }
2168
2169 /*
2170 * Returns B_TRUE if there is potentially more work to do.
2171 */
2172 static boolean_t
yge_handle_events(yge_dev_t * dev,mblk_t ** heads,mblk_t ** tails,int * txindex)2173 yge_handle_events(yge_dev_t *dev, mblk_t **heads, mblk_t **tails, int *txindex)
2174 {
2175 yge_port_t *port;
2176 yge_ring_t *ring;
2177 uint32_t control, status;
2178 int cons, idx, len, pnum;
2179 mblk_t *mp;
2180 uint32_t rxprogs[2];
2181
2182 rxprogs[0] = rxprogs[1] = 0;
2183
2184 idx = CSR_READ_2(dev, STAT_PUT_IDX);
2185 if (idx == dev->d_stat_cons) {
2186 return (B_FALSE);
2187 }
2188
2189 ring = &dev->d_status_ring;
2190
2191 for (cons = dev->d_stat_cons; cons != idx; ) {
2192 /* Sync status LE. */
2193 SYNCENTRY(ring, cons, DDI_DMA_SYNC_FORKERNEL);
2194 control = GETCTRL(ring, cons);
2195 if ((control & HW_OWNER) == 0) {
2196 yge_error(dev, NULL, "Status descriptor error: "
2197 "index %d, control %x", cons, control);
2198 break;
2199 }
2200
2201 status = GETSTAT(ring, cons);
2202
2203 control &= ~HW_OWNER;
2204 len = control & STLE_LEN_MASK;
2205 pnum = ((control >> 16) & 0x01);
2206 port = dev->d_port[pnum];
2207 if (port == NULL) {
2208 yge_error(dev, NULL, "Invalid port opcode: 0x%08x",
2209 control & STLE_OP_MASK);
2210 goto finish;
2211 }
2212
2213 switch (control & STLE_OP_MASK) {
2214 case OP_RXSTAT:
2215 mp = yge_rxeof(port, status, len);
2216 if (mp != NULL) {
2217 if (heads[pnum] == NULL)
2218 heads[pnum] = mp;
2219 else
2220 tails[pnum]->b_next = mp;
2221 tails[pnum] = mp;
2222 }
2223
2224 rxprogs[pnum]++;
2225 break;
2226
2227 case OP_TXINDEXLE:
2228 txindex[0] = status & STLE_TXA1_MSKL;
2229 txindex[1] =
2230 ((status & STLE_TXA2_MSKL) >> STLE_TXA2_SHIFTL) |
2231 ((len & STLE_TXA2_MSKH) << STLE_TXA2_SHIFTH);
2232 break;
2233 default:
2234 yge_error(dev, NULL, "Unhandled opcode: 0x%08x",
2235 control & STLE_OP_MASK);
2236 break;
2237 }
2238 finish:
2239
2240 /* Give it back to HW. */
2241 PUTCTRL(ring, cons, control);
2242 SYNCENTRY(ring, cons, DDI_DMA_SYNC_FORDEV);
2243
2244 YGE_INC(cons, YGE_STAT_RING_CNT);
2245 if (rxprogs[pnum] > dev->d_process_limit) {
2246 break;
2247 }
2248 }
2249
2250 dev->d_stat_cons = cons;
2251 if (dev->d_stat_cons != CSR_READ_2(dev, STAT_PUT_IDX))
2252 return (B_TRUE);
2253 else
2254 return (B_FALSE);
2255 }
2256
2257 /*ARGSUSED1*/
2258 static uint_t
yge_intr(caddr_t arg1,caddr_t arg2)2259 yge_intr(caddr_t arg1, caddr_t arg2)
2260 {
2261 yge_dev_t *dev;
2262 yge_port_t *port1;
2263 yge_port_t *port2;
2264 uint32_t status;
2265 mblk_t *heads[2], *tails[2];
2266 int txindex[2];
2267 int dispatch_wrk;
2268
2269 dev = (void *)arg1;
2270
2271 heads[0] = heads[1] = NULL;
2272 tails[0] = tails[1] = NULL;
2273 txindex[0] = txindex[1] = -1;
2274 dispatch_wrk = 0;
2275
2276 port1 = dev->d_port[YGE_PORT_A];
2277 port2 = dev->d_port[YGE_PORT_B];
2278
2279 RX_LOCK(dev);
2280
2281 if (dev->d_suspended) {
2282 RX_UNLOCK(dev);
2283 return (DDI_INTR_UNCLAIMED);
2284 }
2285
2286 /* Get interrupt source. */
2287 status = CSR_READ_4(dev, B0_Y2_SP_ISRC2);
2288 if (status == 0 || status == 0xffffffff ||
2289 (status & dev->d_intrmask) == 0) { /* Stray interrupt ? */
2290 /* Reenable interrupts. */
2291 CSR_WRITE_4(dev, B0_Y2_SP_ICR, 2);
2292 RX_UNLOCK(dev);
2293 return (DDI_INTR_UNCLAIMED);
2294 }
2295
2296 if ((status & Y2_IS_HW_ERR) != 0) {
2297 yge_intr_hwerr(dev);
2298 }
2299
2300 if (status & Y2_IS_IRQ_MAC1) {
2301 dispatch_wrk |= yge_intr_gmac(port1);
2302 }
2303 if (status & Y2_IS_IRQ_MAC2) {
2304 dispatch_wrk |= yge_intr_gmac(port2);
2305 }
2306
2307 if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
2308 yge_error(NULL, status & Y2_IS_CHK_RX1 ? port1 : port2,
2309 "Rx descriptor error");
2310 dev->d_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
2311 CSR_WRITE_4(dev, B0_IMSK, dev->d_intrmask);
2312 (void) CSR_READ_4(dev, B0_IMSK);
2313 }
2314 if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
2315 yge_error(NULL, status & Y2_IS_CHK_TXA1 ? port1 : port2,
2316 "Tx descriptor error");
2317 dev->d_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
2318 CSR_WRITE_4(dev, B0_IMSK, dev->d_intrmask);
2319 (void) CSR_READ_4(dev, B0_IMSK);
2320 }
2321
2322 /* handle events until it returns false */
2323 while (yge_handle_events(dev, heads, tails, txindex))
2324 /* NOP */;
2325
2326 /* Do receive/transmit events */
2327 if ((status & Y2_IS_STAT_BMU)) {
2328 CSR_WRITE_4(dev, STAT_CTRL, SC_STAT_CLR_IRQ);
2329 }
2330
2331 /* Reenable interrupts. */
2332 CSR_WRITE_4(dev, B0_Y2_SP_ICR, 2);
2333
2334 RX_UNLOCK(dev);
2335
2336 if (dispatch_wrk) {
2337 yge_dispatch(dev, dispatch_wrk);
2338 }
2339
2340 if (port1->p_running) {
2341 if (txindex[0] >= 0) {
2342 yge_txeof(port1, txindex[0]);
2343 }
2344 if (heads[0])
2345 mac_rx(port1->p_mh, NULL, heads[0]);
2346 } else {
2347 if (heads[0]) {
2348 mblk_t *mp;
2349 while ((mp = heads[0]) != NULL) {
2350 heads[0] = mp->b_next;
2351 freemsg(mp);
2352 }
2353 }
2354 }
2355
2356 if (port2->p_running) {
2357 if (txindex[1] >= 0) {
2358 yge_txeof(port2, txindex[1]);
2359 }
2360 if (heads[1])
2361 mac_rx(port2->p_mh, NULL, heads[1]);
2362 } else {
2363 if (heads[1]) {
2364 mblk_t *mp;
2365 while ((mp = heads[1]) != NULL) {
2366 heads[1] = mp->b_next;
2367 freemsg(mp);
2368 }
2369 }
2370 }
2371
2372 return (DDI_INTR_CLAIMED);
2373 }
2374
2375 static void
yge_set_tx_stfwd(yge_port_t * port)2376 yge_set_tx_stfwd(yge_port_t *port)
2377 {
2378 yge_dev_t *dev = port->p_dev;
2379 int pnum = port->p_port;
2380
2381 switch (dev->d_hw_id) {
2382 case CHIP_ID_YUKON_EX:
2383 if (dev->d_hw_rev == CHIP_REV_YU_EX_A0)
2384 goto yukon_ex_workaround;
2385
2386 if (port->p_mtu > ETHERMTU)
2387 CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T),
2388 TX_JUMBO_ENA | TX_STFW_ENA);
2389 else
2390 CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T),
2391 TX_JUMBO_DIS | TX_STFW_ENA);
2392 break;
2393 default:
2394 yukon_ex_workaround:
2395 if (port->p_mtu > ETHERMTU) {
2396 /* Set Tx GMAC FIFO Almost Empty Threshold. */
2397 CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_AE_THR),
2398 MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
2399 /* Disable Store & Forward mode for Tx. */
2400 CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T),
2401 TX_JUMBO_ENA | TX_STFW_DIS);
2402 } else {
2403 /* Enable Store & Forward mode for Tx. */
2404 CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T),
2405 TX_JUMBO_DIS | TX_STFW_ENA);
2406 }
2407 break;
2408 }
2409 }
2410
2411 static void
yge_start_port(yge_port_t * port)2412 yge_start_port(yge_port_t *port)
2413 {
2414 yge_dev_t *dev = port->p_dev;
2415 uint16_t gmac;
2416 int32_t pnum;
2417 int32_t rxq;
2418 int32_t txq;
2419 uint32_t reg;
2420
2421 pnum = port->p_port;
2422 txq = port->p_txq;
2423 rxq = port->p_rxq;
2424
2425 if (port->p_mtu < ETHERMTU)
2426 port->p_framesize = ETHERMTU;
2427 else
2428 port->p_framesize = port->p_mtu;
2429 port->p_framesize += sizeof (struct ether_vlan_header);
2430
2431 /*
2432 * Note for the future, if we enable offloads:
2433 * In Yukon EC Ultra, TSO & checksum offload is not
2434 * supported for jumbo frame.
2435 */
2436
2437 /* GMAC Control reset */
2438 CSR_WRITE_4(dev, MR_ADDR(pnum, GMAC_CTRL), GMC_RST_SET);
2439 CSR_WRITE_4(dev, MR_ADDR(pnum, GMAC_CTRL), GMC_RST_CLR);
2440 CSR_WRITE_4(dev, MR_ADDR(pnum, GMAC_CTRL), GMC_F_LOOPB_OFF);
2441 if (dev->d_hw_id == CHIP_ID_YUKON_EX)
2442 CSR_WRITE_4(dev, MR_ADDR(pnum, GMAC_CTRL),
2443 GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
2444 GMC_BYP_RETR_ON);
2445 /*
2446 * Initialize GMAC first such that speed/duplex/flow-control
2447 * parameters are renegotiated with the interface is brought up.
2448 */
2449 GMAC_WRITE_2(dev, pnum, GM_GP_CTRL, 0);
2450
2451 /* Dummy read the Interrupt Source Register. */
2452 (void) CSR_READ_1(dev, MR_ADDR(pnum, GMAC_IRQ_SRC));
2453
2454 /* Clear MIB stats. */
2455 yge_stats_clear(port);
2456
2457 /* Disable FCS. */
2458 GMAC_WRITE_2(dev, pnum, GM_RX_CTRL, GM_RXCR_CRC_DIS);
2459
2460 /* Setup Transmit Control Register. */
2461 GMAC_WRITE_2(dev, pnum, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2462
2463 /* Setup Transmit Flow Control Register. */
2464 GMAC_WRITE_2(dev, pnum, GM_TX_FLOW_CTRL, 0xffff);
2465
2466 /* Setup Transmit Parameter Register. */
2467 GMAC_WRITE_2(dev, pnum, GM_TX_PARAM,
2468 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2469 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
2470
2471 gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
2472 GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
2473
2474 if (port->p_mtu > ETHERMTU)
2475 gmac |= GM_SMOD_JUMBO_ENA;
2476 GMAC_WRITE_2(dev, pnum, GM_SERIAL_MODE, gmac);
2477
2478 /* Disable interrupts for counter overflows. */
2479 GMAC_WRITE_2(dev, pnum, GM_TX_IRQ_MSK, 0);
2480 GMAC_WRITE_2(dev, pnum, GM_RX_IRQ_MSK, 0);
2481 GMAC_WRITE_2(dev, pnum, GM_TR_IRQ_MSK, 0);
2482
2483 /* Configure Rx MAC FIFO. */
2484 CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_CTRL_T), GMF_RST_SET);
2485 CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_CTRL_T), GMF_RST_CLR);
2486 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2487 if (dev->d_hw_id == CHIP_ID_YUKON_FE_P ||
2488 dev->d_hw_id == CHIP_ID_YUKON_EX)
2489 reg |= GMF_RX_OVER_ON;
2490 CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_CTRL_T), reg);
2491
2492 /* Set receive filter. */
2493 yge_setrxfilt(port);
2494
2495 /* Flush Rx MAC FIFO on any flow control or error. */
2496 CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_FL_MSK), GMR_FS_ANY_ERR);
2497
2498 /*
2499 * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
2500 * due to hardware hang on receipt of pause frames.
2501 */
2502 reg = RX_GMF_FL_THR_DEF + 1;
2503 /* FE+ magic */
2504 if ((dev->d_hw_id == CHIP_ID_YUKON_FE_P) &&
2505 (dev->d_hw_rev == CHIP_REV_YU_FE2_A0))
2506 reg = 0x178;
2507
2508 CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_FL_THR), reg);
2509
2510 /* Configure Tx MAC FIFO. */
2511 CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T), GMF_RST_SET);
2512 CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T), GMF_RST_CLR);
2513 CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T), GMF_OPER_ON);
2514
2515 /* Disable hardware VLAN tag insertion/stripping. */
2516 CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_CTRL_T), RX_VLAN_STRIP_OFF);
2517 CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T), TX_VLAN_TAG_OFF);
2518
2519 if ((port->p_flags & PORT_FLAG_RAMBUF) == 0) {
2520 /* Set Rx Pause threshold. */
2521 if ((dev->d_hw_id == CHIP_ID_YUKON_FE_P) &&
2522 (dev->d_hw_rev == CHIP_REV_YU_FE2_A0)) {
2523 CSR_WRITE_1(dev, MR_ADDR(pnum, RX_GMF_LP_THR),
2524 MSK_ECU_LLPP);
2525 CSR_WRITE_1(dev, MR_ADDR(pnum, RX_GMF_UP_THR),
2526 MSK_FEP_ULPP);
2527 } else {
2528 CSR_WRITE_1(dev, MR_ADDR(pnum, RX_GMF_LP_THR),
2529 MSK_ECU_LLPP);
2530 CSR_WRITE_1(dev, MR_ADDR(pnum, RX_GMF_UP_THR),
2531 MSK_ECU_ULPP);
2532 }
2533 /* Configure store-and-forward for TX */
2534 yge_set_tx_stfwd(port);
2535 }
2536
2537 if ((dev->d_hw_id == CHIP_ID_YUKON_FE_P) &&
2538 (dev->d_hw_rev == CHIP_REV_YU_FE2_A0)) {
2539 /* Disable dynamic watermark */
2540 reg = CSR_READ_4(dev, MR_ADDR(pnum, TX_GMF_EA));
2541 reg &= ~TX_DYN_WM_ENA;
2542 CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_EA), reg);
2543 }
2544
2545 /*
2546 * Disable Force Sync bit and Alloc bit in Tx RAM interface
2547 * arbiter as we don't use Sync Tx queue.
2548 */
2549 CSR_WRITE_1(dev, MR_ADDR(pnum, TXA_CTRL),
2550 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2551 /* Enable the RAM Interface Arbiter. */
2552 CSR_WRITE_1(dev, MR_ADDR(pnum, TXA_CTRL), TXA_ENA_ARB);
2553
2554 /* Setup RAM buffer. */
2555 yge_set_rambuffer(port);
2556
2557 /* Disable Tx sync Queue. */
2558 CSR_WRITE_1(dev, RB_ADDR(port->p_txsq, RB_CTRL), RB_RST_SET);
2559
2560 /* Setup Tx Queue Bus Memory Interface. */
2561 CSR_WRITE_4(dev, Q_ADDR(txq, Q_CSR), BMU_CLR_RESET);
2562 CSR_WRITE_4(dev, Q_ADDR(txq, Q_CSR), BMU_OPER_INIT);
2563 CSR_WRITE_4(dev, Q_ADDR(txq, Q_CSR), BMU_FIFO_OP_ON);
2564 CSR_WRITE_2(dev, Q_ADDR(txq, Q_WM), MSK_BMU_TX_WM);
2565
2566 switch (dev->d_hw_id) {
2567 case CHIP_ID_YUKON_EC_U:
2568 if (dev->d_hw_rev == CHIP_REV_YU_EC_U_A0) {
2569 /* Fix for Yukon-EC Ultra: set BMU FIFO level */
2570 CSR_WRITE_2(dev, Q_ADDR(txq, Q_AL), MSK_ECU_TXFF_LEV);
2571 }
2572 break;
2573 case CHIP_ID_YUKON_EX:
2574 /*
2575 * Yukon Extreme seems to have silicon bug for
2576 * automatic Tx checksum calculation capability.
2577 */
2578 if (dev->d_hw_rev == CHIP_REV_YU_EX_B0)
2579 CSR_WRITE_4(dev, Q_ADDR(txq, Q_F), F_TX_CHK_AUTO_OFF);
2580 break;
2581 }
2582
2583 /* Setup Rx Queue Bus Memory Interface. */
2584 CSR_WRITE_4(dev, Q_ADDR(rxq, Q_CSR), BMU_CLR_RESET);
2585 CSR_WRITE_4(dev, Q_ADDR(rxq, Q_CSR), BMU_OPER_INIT);
2586 CSR_WRITE_4(dev, Q_ADDR(rxq, Q_CSR), BMU_FIFO_OP_ON);
2587 if (dev->d_bustype == PEX_BUS) {
2588 CSR_WRITE_2(dev, Q_ADDR(rxq, Q_WM), 0x80);
2589 } else {
2590 CSR_WRITE_2(dev, Q_ADDR(rxq, Q_WM), MSK_BMU_RX_WM);
2591 }
2592 if (dev->d_hw_id == CHIP_ID_YUKON_EC_U &&
2593 dev->d_hw_rev >= CHIP_REV_YU_EC_U_A1) {
2594 /* MAC Rx RAM Read is controlled by hardware. */
2595 CSR_WRITE_4(dev, Q_ADDR(rxq, Q_F), F_M_RX_RAM_DIS);
2596 }
2597
2598 yge_init_tx_ring(port);
2599
2600 /* Disable Rx checksum offload and RSS hash. */
2601 CSR_WRITE_4(dev, Q_ADDR(rxq, Q_CSR),
2602 BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
2603
2604 yge_init_rx_ring(port);
2605
2606 /* Configure interrupt handling. */
2607 if (port == dev->d_port[YGE_PORT_A]) {
2608 dev->d_intrmask |= Y2_IS_PORT_A;
2609 dev->d_intrhwemask |= Y2_HWE_L1_MASK;
2610 } else if (port == dev->d_port[YGE_PORT_B]) {
2611 dev->d_intrmask |= Y2_IS_PORT_B;
2612 dev->d_intrhwemask |= Y2_HWE_L2_MASK;
2613 }
2614 CSR_WRITE_4(dev, B0_HWE_IMSK, dev->d_intrhwemask);
2615 (void) CSR_READ_4(dev, B0_HWE_IMSK);
2616 CSR_WRITE_4(dev, B0_IMSK, dev->d_intrmask);
2617 (void) CSR_READ_4(dev, B0_IMSK);
2618
2619 /* Enable RX/TX GMAC */
2620 gmac = GMAC_READ_2(dev, pnum, GM_GP_CTRL);
2621 gmac |= (GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2622 GMAC_WRITE_2(port->p_dev, port->p_port, GM_GP_CTRL, gmac);
2623 /* Read again to ensure writing. */
2624 (void) GMAC_READ_2(dev, pnum, GM_GP_CTRL);
2625
2626 /* Reset TX timer */
2627 port->p_tx_wdog = 0;
2628 }
2629
2630 static void
yge_set_rambuffer(yge_port_t * port)2631 yge_set_rambuffer(yge_port_t *port)
2632 {
2633 yge_dev_t *dev;
2634 int ltpp, utpp;
2635 int pnum;
2636 uint32_t rxq;
2637 uint32_t txq;
2638
2639 dev = port->p_dev;
2640 pnum = port->p_port;
2641 rxq = port->p_rxq;
2642 txq = port->p_txq;
2643
2644 if ((port->p_flags & PORT_FLAG_RAMBUF) == 0)
2645 return;
2646
2647 /* Setup Rx Queue. */
2648 CSR_WRITE_1(dev, RB_ADDR(rxq, RB_CTRL), RB_RST_CLR);
2649 CSR_WRITE_4(dev, RB_ADDR(rxq, RB_START), dev->d_rxqstart[pnum] / 8);
2650 CSR_WRITE_4(dev, RB_ADDR(rxq, RB_END), dev->d_rxqend[pnum] / 8);
2651 CSR_WRITE_4(dev, RB_ADDR(rxq, RB_WP), dev->d_rxqstart[pnum] / 8);
2652 CSR_WRITE_4(dev, RB_ADDR(rxq, RB_RP), dev->d_rxqstart[pnum] / 8);
2653
2654 utpp =
2655 (dev->d_rxqend[pnum] + 1 - dev->d_rxqstart[pnum] - RB_ULPP) / 8;
2656 ltpp =
2657 (dev->d_rxqend[pnum] + 1 - dev->d_rxqstart[pnum] - RB_LLPP_B) / 8;
2658
2659 if (dev->d_rxqsize < MSK_MIN_RXQ_SIZE)
2660 ltpp += (RB_LLPP_B - RB_LLPP_S) / 8;
2661
2662 CSR_WRITE_4(dev, RB_ADDR(rxq, RB_RX_UTPP), utpp);
2663 CSR_WRITE_4(dev, RB_ADDR(rxq, RB_RX_LTPP), ltpp);
2664 /* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
2665
2666 CSR_WRITE_1(dev, RB_ADDR(rxq, RB_CTRL), RB_ENA_OP_MD);
2667 (void) CSR_READ_1(dev, RB_ADDR(rxq, RB_CTRL));
2668
2669 /* Setup Tx Queue. */
2670 CSR_WRITE_1(dev, RB_ADDR(txq, RB_CTRL), RB_RST_CLR);
2671 CSR_WRITE_4(dev, RB_ADDR(txq, RB_START), dev->d_txqstart[pnum] / 8);
2672 CSR_WRITE_4(dev, RB_ADDR(txq, RB_END), dev->d_txqend[pnum] / 8);
2673 CSR_WRITE_4(dev, RB_ADDR(txq, RB_WP), dev->d_txqstart[pnum] / 8);
2674 CSR_WRITE_4(dev, RB_ADDR(txq, RB_RP), dev->d_txqstart[pnum] / 8);
2675 /* Enable Store & Forward for Tx side. */
2676 CSR_WRITE_1(dev, RB_ADDR(txq, RB_CTRL), RB_ENA_STFWD);
2677 CSR_WRITE_1(dev, RB_ADDR(txq, RB_CTRL), RB_ENA_OP_MD);
2678 (void) CSR_READ_1(dev, RB_ADDR(txq, RB_CTRL));
2679 }
2680
2681 static void
yge_set_prefetch(yge_dev_t * dev,int qaddr,yge_ring_t * ring)2682 yge_set_prefetch(yge_dev_t *dev, int qaddr, yge_ring_t *ring)
2683 {
2684 /* Reset the prefetch unit. */
2685 CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
2686 PREF_UNIT_RST_SET);
2687 CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
2688 PREF_UNIT_RST_CLR);
2689 /* Set LE base address. */
2690 CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
2691 YGE_ADDR_LO(ring->r_paddr));
2692 CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
2693 YGE_ADDR_HI(ring->r_paddr));
2694 /* Set the list last index. */
2695 CSR_WRITE_2(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
2696 ring->r_num - 1);
2697 /* Turn on prefetch unit. */
2698 CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
2699 PREF_UNIT_OP_ON);
2700 /* Dummy read to ensure write. */
2701 (void) CSR_READ_4(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
2702 }
2703
2704 static void
yge_stop_port(yge_port_t * port)2705 yge_stop_port(yge_port_t *port)
2706 {
2707 yge_dev_t *dev = port->p_dev;
2708 int pnum = port->p_port;
2709 uint32_t txq = port->p_txq;
2710 uint32_t rxq = port->p_rxq;
2711 uint32_t val;
2712 int i;
2713
2714 dev = port->p_dev;
2715
2716 /*
2717 * shutdown timeout
2718 */
2719 port->p_tx_wdog = 0;
2720
2721 /* Disable interrupts. */
2722 if (pnum == YGE_PORT_A) {
2723 dev->d_intrmask &= ~Y2_IS_PORT_A;
2724 dev->d_intrhwemask &= ~Y2_HWE_L1_MASK;
2725 } else {
2726 dev->d_intrmask &= ~Y2_IS_PORT_B;
2727 dev->d_intrhwemask &= ~Y2_HWE_L2_MASK;
2728 }
2729 CSR_WRITE_4(dev, B0_HWE_IMSK, dev->d_intrhwemask);
2730 (void) CSR_READ_4(dev, B0_HWE_IMSK);
2731 CSR_WRITE_4(dev, B0_IMSK, dev->d_intrmask);
2732 (void) CSR_READ_4(dev, B0_IMSK);
2733
2734 /* Disable Tx/Rx MAC. */
2735 val = GMAC_READ_2(dev, pnum, GM_GP_CTRL);
2736 val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2737 GMAC_WRITE_2(dev, pnum, GM_GP_CTRL, val);
2738 /* Read again to ensure writing. */
2739 (void) GMAC_READ_2(dev, pnum, GM_GP_CTRL);
2740
2741 /* Update stats and clear counters. */
2742 yge_stats_update(port);
2743
2744 /* Stop Tx BMU. */
2745 CSR_WRITE_4(dev, Q_ADDR(txq, Q_CSR), BMU_STOP);
2746 val = CSR_READ_4(dev, Q_ADDR(txq, Q_CSR));
2747 for (i = 0; i < YGE_TIMEOUT; i += 10) {
2748 if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
2749 CSR_WRITE_4(dev, Q_ADDR(txq, Q_CSR), BMU_STOP);
2750 val = CSR_READ_4(dev, Q_ADDR(txq, Q_CSR));
2751 } else
2752 break;
2753 drv_usecwait(10);
2754 }
2755 /* This is probably fairly catastrophic. */
2756 if ((val & (BMU_STOP | BMU_IDLE)) == 0)
2757 yge_error(NULL, port, "Tx BMU stop failed");
2758
2759 CSR_WRITE_1(dev, RB_ADDR(txq, RB_CTRL), RB_RST_SET | RB_DIS_OP_MD);
2760
2761 /* Disable all GMAC interrupt. */
2762 CSR_WRITE_1(dev, MR_ADDR(pnum, GMAC_IRQ_MSK), 0);
2763
2764 /* Disable the RAM Interface Arbiter. */
2765 CSR_WRITE_1(dev, MR_ADDR(pnum, TXA_CTRL), TXA_DIS_ARB);
2766
2767 /* Reset the PCI FIFO of the async Tx queue */
2768 CSR_WRITE_4(dev, Q_ADDR(txq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST);
2769
2770 /* Reset the Tx prefetch units. */
2771 CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(txq, PREF_UNIT_CTRL_REG),
2772 PREF_UNIT_RST_SET);
2773
2774 /* Reset the RAM Buffer async Tx queue. */
2775 CSR_WRITE_1(dev, RB_ADDR(txq, RB_CTRL), RB_RST_SET);
2776
2777 /* Reset Tx MAC FIFO. */
2778 CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T), GMF_RST_SET);
2779 /* Set Pause Off. */
2780 CSR_WRITE_4(dev, MR_ADDR(pnum, GMAC_CTRL), GMC_PAUSE_OFF);
2781
2782 /*
2783 * The Rx Stop command will not work for Yukon-2 if the BMU does not
2784 * reach the end of packet and since we can't make sure that we have
2785 * incoming data, we must reset the BMU while it is not during a DMA
2786 * transfer. Since it is possible that the Rx path is still active,
2787 * the Rx RAM buffer will be stopped first, so any possible incoming
2788 * data will not trigger a DMA. After the RAM buffer is stopped, the
2789 * BMU is polled until any DMA in progress is ended and only then it
2790 * will be reset.
2791 */
2792
2793 /* Disable the RAM Buffer receive queue. */
2794 CSR_WRITE_1(dev, RB_ADDR(rxq, RB_CTRL), RB_DIS_OP_MD);
2795 for (i = 0; i < YGE_TIMEOUT; i += 10) {
2796 if (CSR_READ_1(dev, RB_ADDR(rxq, Q_RSL)) ==
2797 CSR_READ_1(dev, RB_ADDR(rxq, Q_RL)))
2798 break;
2799 drv_usecwait(10);
2800 }
2801 /* This is probably nearly a fatal error. */
2802 if (i == YGE_TIMEOUT)
2803 yge_error(NULL, port, "Rx BMU stop failed");
2804
2805 CSR_WRITE_4(dev, Q_ADDR(rxq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST);
2806 /* Reset the Rx prefetch unit. */
2807 CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(rxq, PREF_UNIT_CTRL_REG),
2808 PREF_UNIT_RST_SET);
2809 /* Reset the RAM Buffer receive queue. */
2810 CSR_WRITE_1(dev, RB_ADDR(rxq, RB_CTRL), RB_RST_SET);
2811 /* Reset Rx MAC FIFO. */
2812 CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_CTRL_T), GMF_RST_SET);
2813 }
2814
2815 /*
2816 * When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower
2817 * counter clears high 16 bits of the counter such that accessing
2818 * lower 16 bits should be the last operation.
2819 */
2820 #define YGE_READ_MIB32(x, y) \
2821 GMAC_READ_4(dev, x, y)
2822
2823 #define YGE_READ_MIB64(x, y) \
2824 ((((uint64_t)YGE_READ_MIB32(x, (y) + 8)) << 32) + \
2825 (uint64_t)YGE_READ_MIB32(x, y))
2826
2827 static void
yge_stats_clear(yge_port_t * port)2828 yge_stats_clear(yge_port_t *port)
2829 {
2830 yge_dev_t *dev;
2831 uint16_t gmac;
2832 int32_t pnum;
2833
2834 pnum = port->p_port;
2835 dev = port->p_dev;
2836
2837 /* Set MIB Clear Counter Mode. */
2838 gmac = GMAC_READ_2(dev, pnum, GM_PHY_ADDR);
2839 GMAC_WRITE_2(dev, pnum, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
2840 /* Read all MIB Counters with Clear Mode set. */
2841 for (int i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i += 4)
2842 (void) YGE_READ_MIB32(pnum, i);
2843 /* Clear MIB Clear Counter Mode. */
2844 gmac &= ~GM_PAR_MIB_CLR;
2845 GMAC_WRITE_2(dev, pnum, GM_PHY_ADDR, gmac);
2846 }
2847
2848 static void
yge_stats_update(yge_port_t * port)2849 yge_stats_update(yge_port_t *port)
2850 {
2851 yge_dev_t *dev;
2852 struct yge_hw_stats *stats;
2853 uint16_t gmac;
2854 int32_t pnum;
2855
2856 dev = port->p_dev;
2857 pnum = port->p_port;
2858
2859 if (dev->d_suspended || !port->p_running) {
2860 return;
2861 }
2862 stats = &port->p_stats;
2863 /* Set MIB Clear Counter Mode. */
2864 gmac = GMAC_READ_2(dev, pnum, GM_PHY_ADDR);
2865 GMAC_WRITE_2(dev, pnum, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
2866
2867 /* Rx stats. */
2868 stats->rx_ucast_frames += YGE_READ_MIB32(pnum, GM_RXF_UC_OK);
2869 stats->rx_bcast_frames += YGE_READ_MIB32(pnum, GM_RXF_BC_OK);
2870 stats->rx_pause_frames += YGE_READ_MIB32(pnum, GM_RXF_MPAUSE);
2871 stats->rx_mcast_frames += YGE_READ_MIB32(pnum, GM_RXF_MC_OK);
2872 stats->rx_crc_errs += YGE_READ_MIB32(pnum, GM_RXF_FCS_ERR);
2873 (void) YGE_READ_MIB32(pnum, GM_RXF_SPARE1);
2874 stats->rx_good_octets += YGE_READ_MIB64(pnum, GM_RXO_OK_LO);
2875 stats->rx_bad_octets += YGE_READ_MIB64(pnum, GM_RXO_ERR_LO);
2876 stats->rx_runts += YGE_READ_MIB32(pnum, GM_RXF_SHT);
2877 stats->rx_runt_errs += YGE_READ_MIB32(pnum, GM_RXE_FRAG);
2878 stats->rx_pkts_64 += YGE_READ_MIB32(pnum, GM_RXF_64B);
2879 stats->rx_pkts_65_127 += YGE_READ_MIB32(pnum, GM_RXF_127B);
2880 stats->rx_pkts_128_255 += YGE_READ_MIB32(pnum, GM_RXF_255B);
2881 stats->rx_pkts_256_511 += YGE_READ_MIB32(pnum, GM_RXF_511B);
2882 stats->rx_pkts_512_1023 += YGE_READ_MIB32(pnum, GM_RXF_1023B);
2883 stats->rx_pkts_1024_1518 += YGE_READ_MIB32(pnum, GM_RXF_1518B);
2884 stats->rx_pkts_1519_max += YGE_READ_MIB32(pnum, GM_RXF_MAX_SZ);
2885 stats->rx_pkts_too_long += YGE_READ_MIB32(pnum, GM_RXF_LNG_ERR);
2886 stats->rx_pkts_jabbers += YGE_READ_MIB32(pnum, GM_RXF_JAB_PKT);
2887 (void) YGE_READ_MIB32(pnum, GM_RXF_SPARE2);
2888 stats->rx_fifo_oflows += YGE_READ_MIB32(pnum, GM_RXE_FIFO_OV);
2889 (void) YGE_READ_MIB32(pnum, GM_RXF_SPARE3);
2890
2891 /* Tx stats. */
2892 stats->tx_ucast_frames += YGE_READ_MIB32(pnum, GM_TXF_UC_OK);
2893 stats->tx_bcast_frames += YGE_READ_MIB32(pnum, GM_TXF_BC_OK);
2894 stats->tx_pause_frames += YGE_READ_MIB32(pnum, GM_TXF_MPAUSE);
2895 stats->tx_mcast_frames += YGE_READ_MIB32(pnum, GM_TXF_MC_OK);
2896 stats->tx_octets += YGE_READ_MIB64(pnum, GM_TXO_OK_LO);
2897 stats->tx_pkts_64 += YGE_READ_MIB32(pnum, GM_TXF_64B);
2898 stats->tx_pkts_65_127 += YGE_READ_MIB32(pnum, GM_TXF_127B);
2899 stats->tx_pkts_128_255 += YGE_READ_MIB32(pnum, GM_TXF_255B);
2900 stats->tx_pkts_256_511 += YGE_READ_MIB32(pnum, GM_TXF_511B);
2901 stats->tx_pkts_512_1023 += YGE_READ_MIB32(pnum, GM_TXF_1023B);
2902 stats->tx_pkts_1024_1518 += YGE_READ_MIB32(pnum, GM_TXF_1518B);
2903 stats->tx_pkts_1519_max += YGE_READ_MIB32(pnum, GM_TXF_MAX_SZ);
2904 (void) YGE_READ_MIB32(pnum, GM_TXF_SPARE1);
2905 stats->tx_colls += YGE_READ_MIB32(pnum, GM_TXF_COL);
2906 stats->tx_late_colls += YGE_READ_MIB32(pnum, GM_TXF_LAT_COL);
2907 stats->tx_excess_colls += YGE_READ_MIB32(pnum, GM_TXF_ABO_COL);
2908 stats->tx_multi_colls += YGE_READ_MIB32(pnum, GM_TXF_MUL_COL);
2909 stats->tx_single_colls += YGE_READ_MIB32(pnum, GM_TXF_SNG_COL);
2910 stats->tx_underflows += YGE_READ_MIB32(pnum, GM_TXE_FIFO_UR);
2911 /* Clear MIB Clear Counter Mode. */
2912 gmac &= ~GM_PAR_MIB_CLR;
2913 GMAC_WRITE_2(dev, pnum, GM_PHY_ADDR, gmac);
2914 }
2915
2916 #undef YGE_READ_MIB32
2917 #undef YGE_READ_MIB64
2918
2919 uint32_t
yge_hashbit(const uint8_t * addr)2920 yge_hashbit(const uint8_t *addr)
2921 {
2922 int idx;
2923 int bit;
2924 uint_t data;
2925 uint32_t crc;
2926 #define POLY_BE 0x04c11db7
2927
2928 crc = 0xffffffff;
2929 for (idx = 0; idx < 6; idx++) {
2930 for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
2931 crc = (crc << 1)
2932 ^ ((((crc >> 31) ^ data) & 1) ? POLY_BE : 0);
2933 }
2934 }
2935 #undef POLY_BE
2936
2937 return (crc % 64);
2938 }
2939
2940 int
yge_m_stat(void * arg,uint_t stat,uint64_t * val)2941 yge_m_stat(void *arg, uint_t stat, uint64_t *val)
2942 {
2943 yge_port_t *port = arg;
2944 struct yge_hw_stats *stats = &port->p_stats;
2945
2946 if (stat == MAC_STAT_IFSPEED) {
2947 /*
2948 * This is the first stat we are asked about. We update only
2949 * for this stat, to avoid paying the hefty cost of the update
2950 * once for each stat.
2951 */
2952 DEV_LOCK(port->p_dev);
2953 yge_stats_update(port);
2954 DEV_UNLOCK(port->p_dev);
2955 }
2956
2957 if (mii_m_getstat(port->p_mii, stat, val) == 0) {
2958 return (0);
2959 }
2960
2961 switch (stat) {
2962 case MAC_STAT_MULTIRCV:
2963 *val = stats->rx_mcast_frames;
2964 break;
2965
2966 case MAC_STAT_BRDCSTRCV:
2967 *val = stats->rx_bcast_frames;
2968 break;
2969
2970 case MAC_STAT_MULTIXMT:
2971 *val = stats->tx_mcast_frames;
2972 break;
2973
2974 case MAC_STAT_BRDCSTXMT:
2975 *val = stats->tx_bcast_frames;
2976 break;
2977
2978 case MAC_STAT_IPACKETS:
2979 *val = stats->rx_ucast_frames;
2980 break;
2981
2982 case MAC_STAT_RBYTES:
2983 *val = stats->rx_good_octets;
2984 break;
2985
2986 case MAC_STAT_OPACKETS:
2987 *val = stats->tx_ucast_frames;
2988 break;
2989
2990 case MAC_STAT_OBYTES:
2991 *val = stats->tx_octets;
2992 break;
2993
2994 case MAC_STAT_NORCVBUF:
2995 *val = stats->rx_nobuf;
2996 break;
2997
2998 case MAC_STAT_COLLISIONS:
2999 *val = stats->tx_colls;
3000 break;
3001
3002 case ETHER_STAT_ALIGN_ERRORS:
3003 *val = stats->rx_runt_errs;
3004 break;
3005
3006 case ETHER_STAT_FCS_ERRORS:
3007 *val = stats->rx_crc_errs;
3008 break;
3009
3010 case ETHER_STAT_FIRST_COLLISIONS:
3011 *val = stats->tx_single_colls;
3012 break;
3013
3014 case ETHER_STAT_MULTI_COLLISIONS:
3015 *val = stats->tx_multi_colls;
3016 break;
3017
3018 case ETHER_STAT_TX_LATE_COLLISIONS:
3019 *val = stats->tx_late_colls;
3020 break;
3021
3022 case ETHER_STAT_EX_COLLISIONS:
3023 *val = stats->tx_excess_colls;
3024 break;
3025
3026 case ETHER_STAT_TOOLONG_ERRORS:
3027 *val = stats->rx_pkts_too_long;
3028 break;
3029
3030 case MAC_STAT_OVERFLOWS:
3031 *val = stats->rx_fifo_oflows;
3032 break;
3033
3034 case MAC_STAT_UNDERFLOWS:
3035 *val = stats->tx_underflows;
3036 break;
3037
3038 case ETHER_STAT_TOOSHORT_ERRORS:
3039 *val = stats->rx_runts;
3040 break;
3041
3042 case ETHER_STAT_JABBER_ERRORS:
3043 *val = stats->rx_pkts_jabbers;
3044 break;
3045
3046 default:
3047 return (ENOTSUP);
3048 }
3049 return (0);
3050 }
3051
3052 int
yge_m_start(void * arg)3053 yge_m_start(void *arg)
3054 {
3055 yge_port_t *port = arg;
3056
3057 DEV_LOCK(port->p_dev);
3058
3059 /*
3060 * We defer resource allocation to this point, because we
3061 * don't want to waste DMA resources that might better be used
3062 * elsewhere, if the port is not actually being used.
3063 *
3064 * Furthermore, this gives us a more graceful handling of dynamic
3065 * MTU modification.
3066 */
3067 if (yge_txrx_dma_alloc(port) != DDI_SUCCESS) {
3068 /* Make sure we free up partially allocated resources. */
3069 yge_txrx_dma_free(port);
3070 DEV_UNLOCK(port->p_dev);
3071 return (ENOMEM);
3072 }
3073
3074 if (!port->p_dev->d_suspended)
3075 yge_start_port(port);
3076 port->p_running = B_TRUE;
3077 DEV_UNLOCK(port->p_dev);
3078
3079 mii_start(port->p_mii);
3080
3081 return (0);
3082 }
3083
3084 void
yge_m_stop(void * arg)3085 yge_m_stop(void *arg)
3086 {
3087 yge_port_t *port = arg;
3088 yge_dev_t *dev = port->p_dev;
3089
3090 DEV_LOCK(dev);
3091 if (!dev->d_suspended)
3092 yge_stop_port(port);
3093
3094 port->p_running = B_FALSE;
3095
3096 /* Release resources we don't need */
3097 yge_txrx_dma_free(port);
3098 DEV_UNLOCK(dev);
3099 }
3100
3101 int
yge_m_promisc(void * arg,boolean_t on)3102 yge_m_promisc(void *arg, boolean_t on)
3103 {
3104 yge_port_t *port = arg;
3105
3106 DEV_LOCK(port->p_dev);
3107
3108 /* Save current promiscuous mode. */
3109 port->p_promisc = on;
3110 yge_setrxfilt(port);
3111
3112 DEV_UNLOCK(port->p_dev);
3113
3114 return (0);
3115 }
3116
3117 int
yge_m_multicst(void * arg,boolean_t add,const uint8_t * addr)3118 yge_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
3119 {
3120 yge_port_t *port = arg;
3121 int bit;
3122 boolean_t update;
3123
3124 bit = yge_hashbit(addr);
3125 ASSERT(bit < 64);
3126
3127 DEV_LOCK(port->p_dev);
3128 if (add) {
3129 if (port->p_mccount[bit] == 0) {
3130 /* Set the corresponding bit in the hash table. */
3131 port->p_mchash[bit / 32] |= (1 << (bit % 32));
3132 update = B_TRUE;
3133 }
3134 port->p_mccount[bit]++;
3135 } else {
3136 ASSERT(port->p_mccount[bit] > 0);
3137 port->p_mccount[bit]--;
3138 if (port->p_mccount[bit] == 0) {
3139 port->p_mchash[bit / 32] &= ~(1 << (bit % 32));
3140 update = B_TRUE;
3141 }
3142 }
3143
3144 if (update) {
3145 yge_setrxfilt(port);
3146 }
3147 DEV_UNLOCK(port->p_dev);
3148 return (0);
3149 }
3150
3151 int
yge_m_unicst(void * arg,const uint8_t * macaddr)3152 yge_m_unicst(void *arg, const uint8_t *macaddr)
3153 {
3154 yge_port_t *port = arg;
3155
3156 DEV_LOCK(port->p_dev);
3157
3158 bcopy(macaddr, port->p_curraddr, ETHERADDRL);
3159 yge_setrxfilt(port);
3160
3161 DEV_UNLOCK(port->p_dev);
3162
3163 return (0);
3164 }
3165
3166 mblk_t *
yge_m_tx(void * arg,mblk_t * mp)3167 yge_m_tx(void *arg, mblk_t *mp)
3168 {
3169 yge_port_t *port = arg;
3170 mblk_t *nmp;
3171 int enq = 0;
3172 uint32_t ridx;
3173 int idx;
3174 boolean_t resched = B_FALSE;
3175
3176 TX_LOCK(port->p_dev);
3177
3178 if (port->p_dev->d_suspended) {
3179
3180 TX_UNLOCK(port->p_dev);
3181
3182 while ((nmp = mp) != NULL) {
3183 /* carrier_errors++; */
3184 mp = mp->b_next;
3185 freemsg(nmp);
3186 }
3187 return (NULL);
3188 }
3189
3190 /* attempt a reclaim */
3191 ridx = port->p_port == YGE_PORT_A ?
3192 STAT_TXA1_RIDX : STAT_TXA2_RIDX;
3193 idx = CSR_READ_2(port->p_dev, ridx);
3194 if (port->p_tx_cons != idx)
3195 resched = yge_txeof_locked(port, idx);
3196
3197 while (mp != NULL) {
3198 nmp = mp->b_next;
3199 mp->b_next = NULL;
3200
3201 if (!yge_send(port, mp)) {
3202 mp->b_next = nmp;
3203 break;
3204 }
3205 enq++;
3206 mp = nmp;
3207
3208 }
3209 if (enq > 0) {
3210 /* Transmit */
3211 CSR_WRITE_2(port->p_dev,
3212 Y2_PREF_Q_ADDR(port->p_txq, PREF_UNIT_PUT_IDX_REG),
3213 port->p_tx_prod);
3214 }
3215
3216 TX_UNLOCK(port->p_dev);
3217
3218 if (resched)
3219 mac_tx_update(port->p_mh);
3220
3221 return (mp);
3222 }
3223
3224 void
yge_m_ioctl(void * arg,queue_t * wq,mblk_t * mp)3225 yge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
3226 {
3227 #ifdef YGE_MII_LOOPBACK
3228 /* LINTED E_FUNC_SET_NOT_USED */
3229 yge_port_t *port = arg;
3230
3231 /*
3232 * Right now, the MII common layer does not properly handle
3233 * loopback on these PHYs. Fixing this should be done at some
3234 * point in the future.
3235 */
3236 if (mii_m_loop_ioctl(port->p_mii, wq, mp))
3237 return;
3238 #else
3239 _NOTE(ARGUNUSED(arg));
3240 #endif
3241
3242 miocnak(wq, mp, 0, EINVAL);
3243 }
3244
3245 int
yge_m_setprop(void * arg,const char * pr_name,mac_prop_id_t pr_num,uint_t pr_valsize,const void * pr_val)3246 yge_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3247 uint_t pr_valsize, const void *pr_val)
3248 {
3249 yge_port_t *port = arg;
3250 uint32_t new_mtu;
3251 int err = 0;
3252
3253 err = mii_m_setprop(port->p_mii, pr_name, pr_num, pr_valsize, pr_val);
3254 if (err != ENOTSUP) {
3255 return (err);
3256 }
3257
3258 DEV_LOCK(port->p_dev);
3259
3260 switch (pr_num) {
3261 case MAC_PROP_MTU:
3262 if (pr_valsize < sizeof (new_mtu)) {
3263 err = EINVAL;
3264 break;
3265 }
3266 bcopy(pr_val, &new_mtu, sizeof (new_mtu));
3267 if (new_mtu == port->p_mtu) {
3268 /* no change */
3269 err = 0;
3270 break;
3271 }
3272 if (new_mtu < ETHERMTU) {
3273 yge_error(NULL, port,
3274 "Maximum MTU size too small: %d", new_mtu);
3275 err = EINVAL;
3276 break;
3277 }
3278 if (new_mtu > (port->p_flags & PORT_FLAG_NOJUMBO ?
3279 ETHERMTU : YGE_JUMBO_MTU)) {
3280 yge_error(NULL, port,
3281 "Maximum MTU size too big: %d", new_mtu);
3282 err = EINVAL;
3283 break;
3284 }
3285 if (port->p_running) {
3286 yge_error(NULL, port,
3287 "Unable to change maximum MTU while running");
3288 err = EBUSY;
3289 break;
3290 }
3291
3292
3293 /*
3294 * NB: It would probably be better not to hold the
3295 * DEVLOCK, but releasing it creates a potential race
3296 * if m_start is called concurrently.
3297 *
3298 * It turns out that the MAC layer guarantees safety
3299 * for us here by using a cut out for this kind of
3300 * notification call back anyway.
3301 *
3302 * See R8. and R14. in mac.c locking comments, which read
3303 * as follows:
3304 *
3305 * R8. Since it is not guaranteed (see R14) that
3306 * drivers won't hold locks across mac driver
3307 * interfaces, the MAC layer must provide a cut out
3308 * for control interfaces like upcall notifications
3309 * and start them in a separate thread.
3310 *
3311 * R14. It would be preferable if MAC drivers don't
3312 * hold any locks across any mac call. However at a
3313 * minimum they must not hold any locks across data
3314 * upcalls. They must also make sure that all
3315 * references to mac data structures are cleaned up
3316 * and that it is single threaded at mac_unregister
3317 * time.
3318 */
3319 err = mac_maxsdu_update(port->p_mh, new_mtu);
3320 if (err != 0) {
3321 /* This should never occur! */
3322 yge_error(NULL, port,
3323 "Failed notifying GLDv3 of new maximum MTU");
3324 } else {
3325 port->p_mtu = new_mtu;
3326 }
3327 break;
3328
3329 default:
3330 err = ENOTSUP;
3331 break;
3332 }
3333
3334 err:
3335 DEV_UNLOCK(port->p_dev);
3336
3337 return (err);
3338 }
3339
3340 int
yge_m_getprop(void * arg,const char * pr_name,mac_prop_id_t pr_num,uint_t pr_valsize,void * pr_val)3341 yge_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3342 uint_t pr_valsize, void *pr_val)
3343 {
3344 yge_port_t *port = arg;
3345
3346 return (mii_m_getprop(port->p_mii, pr_name, pr_num, pr_valsize,
3347 pr_val));
3348 }
3349
3350 static void
yge_m_propinfo(void * arg,const char * pr_name,mac_prop_id_t pr_num,mac_prop_info_handle_t prh)3351 yge_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3352 mac_prop_info_handle_t prh)
3353 {
3354 yge_port_t *port = arg;
3355
3356 switch (pr_num) {
3357 case MAC_PROP_MTU:
3358 mac_prop_info_set_range_uint32(prh, ETHERMTU,
3359 port->p_flags & PORT_FLAG_NOJUMBO ?
3360 ETHERMTU : YGE_JUMBO_MTU);
3361 break;
3362 default:
3363 mii_m_propinfo(port->p_mii, pr_name, pr_num, prh);
3364 break;
3365 }
3366 }
3367
3368 void
yge_dispatch(yge_dev_t * dev,int flag)3369 yge_dispatch(yge_dev_t *dev, int flag)
3370 {
3371 TASK_LOCK(dev);
3372 dev->d_task_flags |= flag;
3373 TASK_SIGNAL(dev);
3374 TASK_UNLOCK(dev);
3375 }
3376
3377 void
yge_task(void * arg)3378 yge_task(void *arg)
3379 {
3380 yge_dev_t *dev = arg;
3381 int flags;
3382
3383 for (;;) {
3384
3385 TASK_LOCK(dev);
3386 while ((flags = dev->d_task_flags) == 0)
3387 TASK_WAIT(dev);
3388
3389 dev->d_task_flags = 0;
3390 TASK_UNLOCK(dev);
3391
3392 /*
3393 * This should be the first thing after the sleep so if we are
3394 * requested to exit we do that and not waste time doing work
3395 * we will then abandone.
3396 */
3397 if (flags & YGE_TASK_EXIT)
3398 break;
3399
3400 /* all processing done without holding locks */
3401 if (flags & YGE_TASK_RESTART)
3402 yge_restart_task(dev);
3403 }
3404 }
3405
3406 void
yge_error(yge_dev_t * dev,yge_port_t * port,char * fmt,...)3407 yge_error(yge_dev_t *dev, yge_port_t *port, char *fmt, ...)
3408 {
3409 va_list ap;
3410 char buf[256];
3411 int ppa;
3412
3413 va_start(ap, fmt);
3414 (void) vsnprintf(buf, sizeof (buf), fmt, ap);
3415 va_end(ap);
3416
3417 if (dev == NULL && port == NULL) {
3418 cmn_err(CE_WARN, "yge: %s", buf);
3419 } else {
3420 if (port != NULL)
3421 ppa = port->p_ppa;
3422 else
3423 ppa = ddi_get_instance(dev->d_dip);
3424 cmn_err(CE_WARN, "yge%d: %s", ppa, buf);
3425 }
3426 }
3427
3428 static int
yge_ddi_attach(dev_info_t * dip,ddi_attach_cmd_t cmd)3429 yge_ddi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
3430 {
3431 yge_dev_t *dev;
3432 int rv;
3433
3434 switch (cmd) {
3435 case DDI_ATTACH:
3436 dev = kmem_zalloc(sizeof (*dev), KM_SLEEP);
3437 dev->d_port[0] = kmem_zalloc(sizeof (yge_port_t), KM_SLEEP);
3438 dev->d_port[1] = kmem_zalloc(sizeof (yge_port_t), KM_SLEEP);
3439 dev->d_dip = dip;
3440 ddi_set_driver_private(dip, dev);
3441
3442 dev->d_port[0]->p_port = 0;
3443 dev->d_port[0]->p_dev = dev;
3444 dev->d_port[1]->p_port = 0;
3445 dev->d_port[1]->p_dev = dev;
3446
3447 rv = yge_attach(dev);
3448 if (rv != DDI_SUCCESS) {
3449 ddi_set_driver_private(dip, 0);
3450 kmem_free(dev->d_port[1], sizeof (yge_port_t));
3451 kmem_free(dev->d_port[0], sizeof (yge_port_t));
3452 kmem_free(dev, sizeof (*dev));
3453 }
3454 return (rv);
3455
3456 case DDI_RESUME:
3457 dev = ddi_get_driver_private(dip);
3458 ASSERT(dev != NULL);
3459 return (yge_resume(dev));
3460
3461 default:
3462 return (DDI_FAILURE);
3463 }
3464 }
3465
3466 static int
yge_ddi_detach(dev_info_t * dip,ddi_detach_cmd_t cmd)3467 yge_ddi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3468 {
3469 yge_dev_t *dev;
3470 mac_handle_t mh;
3471
3472 switch (cmd) {
3473 case DDI_DETACH:
3474
3475 dev = ddi_get_driver_private(dip);
3476
3477 /* attempt to unregister MACs from Nemo */
3478 for (int i = 0; i < dev->d_num_port; i++) {
3479
3480 if (((mh = dev->d_port[i]->p_mh) != NULL) &&
3481 (mac_disable(mh) != 0)) {
3482 /*
3483 * We'd really like a mac_enable to reenable
3484 * any MACs that we previously disabled. Too
3485 * bad GLDv3 doesn't have one.
3486 */
3487 return (DDI_FAILURE);
3488 }
3489 }
3490
3491 ASSERT(dip == dev->d_dip);
3492 yge_detach(dev);
3493 ddi_set_driver_private(dip, 0);
3494 for (int i = 0; i < dev->d_num_port; i++) {
3495 if ((mh = dev->d_port[i]->p_mh) != NULL) {
3496 /* This can't fail after mac_disable above. */
3497 (void) mac_unregister(mh);
3498 }
3499 }
3500 kmem_free(dev->d_port[1], sizeof (yge_port_t));
3501 kmem_free(dev->d_port[0], sizeof (yge_port_t));
3502 kmem_free(dev, sizeof (*dev));
3503 return (DDI_SUCCESS);
3504
3505 case DDI_SUSPEND:
3506 dev = ddi_get_driver_private(dip);
3507 ASSERT(dev != NULL);
3508 return (yge_suspend(dev));
3509
3510 default:
3511 return (DDI_FAILURE);
3512 }
3513 }
3514
3515 static int
yge_quiesce(dev_info_t * dip)3516 yge_quiesce(dev_info_t *dip)
3517 {
3518 yge_dev_t *dev;
3519
3520 dev = ddi_get_driver_private(dip);
3521 ASSERT(dev != NULL);
3522
3523 /* NB: No locking! We are called in single threaded context */
3524 for (int i = 0; i < dev->d_num_port; i++) {
3525 yge_port_t *port = dev->d_port[i];
3526 if (port->p_running)
3527 yge_stop_port(port);
3528 }
3529
3530 /* Disable all interrupts. */
3531 CSR_WRITE_4(dev, B0_IMSK, 0);
3532 (void) CSR_READ_4(dev, B0_IMSK);
3533 CSR_WRITE_4(dev, B0_HWE_IMSK, 0);
3534 (void) CSR_READ_4(dev, B0_HWE_IMSK);
3535
3536 /* Put hardware into reset. */
3537 CSR_WRITE_2(dev, B0_CTST, CS_RST_SET);
3538
3539 return (DDI_SUCCESS);
3540 }
3541
3542 /*
3543 * Stream information
3544 */
3545 DDI_DEFINE_STREAM_OPS(yge_devops, nulldev, nulldev, yge_ddi_attach,
3546 yge_ddi_detach, nodev, NULL, D_MP, NULL, yge_quiesce);
3547
3548 /*
3549 * Module linkage information.
3550 */
3551
3552 static struct modldrv yge_modldrv = {
3553 &mod_driverops, /* drv_modops */
3554 "Yukon 2 Ethernet", /* drv_linkinfo */
3555 &yge_devops /* drv_dev_ops */
3556 };
3557
3558 static struct modlinkage yge_modlinkage = {
3559 MODREV_1, /* ml_rev */
3560 &yge_modldrv, /* ml_linkage */
3561 NULL
3562 };
3563
3564 /*
3565 * DDI entry points.
3566 */
3567 int
_init(void)3568 _init(void)
3569 {
3570 int rv;
3571 mac_init_ops(&yge_devops, "yge");
3572 if ((rv = mod_install(&yge_modlinkage)) != DDI_SUCCESS) {
3573 mac_fini_ops(&yge_devops);
3574 }
3575 return (rv);
3576 }
3577
3578 int
_fini(void)3579 _fini(void)
3580 {
3581 int rv;
3582 if ((rv = mod_remove(&yge_modlinkage)) == DDI_SUCCESS) {
3583 mac_fini_ops(&yge_devops);
3584 }
3585 return (rv);
3586 }
3587
3588 int
_info(struct modinfo * modinfop)3589 _info(struct modinfo *modinfop)
3590 {
3591 return (mod_info(&yge_modlinkage, modinfop));
3592 }
3593