1 /*-
2 * Implementation of the Common Access Method Transport (XPT) layer.
3 *
4 * SPDX-License-Identifier: BSD-2-Clause
5 *
6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions, and the following disclaimer,
15 * without modification, immediately at the beginning of the file.
16 * 2. The name of the author may not be used to endorse or promote products
17 * derived from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include "opt_printf.h"
33
34 #include <sys/param.h>
35 #include <sys/bio.h>
36 #include <sys/bus.h>
37 #include <sys/systm.h>
38 #include <sys/types.h>
39 #include <sys/malloc.h>
40 #include <sys/kernel.h>
41 #include <sys/time.h>
42 #include <sys/conf.h>
43 #include <sys/fcntl.h>
44 #include <sys/proc.h>
45 #include <sys/sbuf.h>
46 #include <sys/smp.h>
47 #include <sys/stdarg.h>
48 #include <sys/taskqueue.h>
49
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/sysctl.h>
53 #include <sys/kthread.h>
54
55 #include <cam/cam.h>
56 #include <cam/cam_ccb.h>
57 #include <cam/cam_iosched.h>
58 #include <cam/cam_periph.h>
59 #include <cam/cam_queue.h>
60 #include <cam/cam_sim.h>
61 #include <cam/cam_xpt.h>
62 #include <cam/cam_xpt_sim.h>
63 #include <cam/cam_xpt_periph.h>
64 #include <cam/cam_xpt_internal.h>
65 #include <cam/cam_debug.h>
66 #include <cam/cam_compat.h>
67
68 #include <cam/scsi/scsi_all.h>
69 #include <cam/scsi/scsi_message.h>
70 #include <cam/scsi/scsi_pass.h>
71
72
73 /* Wild guess based on not wanting to grow the stack too much */
74 #define XPT_PRINT_MAXLEN 512
75 #ifdef PRINTF_BUFR_SIZE
76 #define XPT_PRINT_LEN PRINTF_BUFR_SIZE
77 #else
78 #define XPT_PRINT_LEN 128
79 #endif
80 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
81
82 /*
83 * This is the maximum number of high powered commands (e.g. start unit)
84 * that can be outstanding at a particular time.
85 */
86 #ifndef CAM_MAX_HIGHPOWER
87 #define CAM_MAX_HIGHPOWER 4
88 #endif
89
90 /* Datastructures internal to the xpt layer */
91 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
92 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
93 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
94 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
95
96 struct xpt_softc {
97 uint32_t xpt_generation;
98
99 /* number of high powered commands that can go through right now */
100 struct mtx xpt_highpower_lock;
101 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq;
102 int num_highpower;
103
104 /* queue for handling async rescan requests. */
105 TAILQ_HEAD(, ccb_hdr) ccb_scanq;
106 int buses_to_config;
107 int buses_config_done;
108
109 /*
110 * Registered buses
111 *
112 * N.B., "busses" is an archaic spelling of "buses". In new code
113 * "buses" is preferred.
114 */
115 TAILQ_HEAD(,cam_eb) xpt_busses;
116 u_int bus_generation;
117
118 int boot_delay;
119 struct callout boot_callout;
120 struct task boot_task;
121 struct root_hold_token xpt_rootmount;
122
123 struct mtx xpt_topo_lock;
124 struct taskqueue *xpt_taskq;
125 };
126
127 typedef enum {
128 DM_RET_COPY = 0x01,
129 DM_RET_FLAG_MASK = 0x0f,
130 DM_RET_NONE = 0x00,
131 DM_RET_STOP = 0x10,
132 DM_RET_DESCEND = 0x20,
133 DM_RET_ERROR = 0x30,
134 DM_RET_ACTION_MASK = 0xf0
135 } dev_match_ret;
136
137 typedef enum {
138 XPT_DEPTH_BUS,
139 XPT_DEPTH_TARGET,
140 XPT_DEPTH_DEVICE,
141 XPT_DEPTH_PERIPH
142 } xpt_traverse_depth;
143
144 struct xpt_traverse_config {
145 xpt_traverse_depth depth;
146 void *tr_func;
147 void *tr_arg;
148 };
149
150 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg);
151 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg);
152 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg);
153 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg);
154 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
155
156 /* Transport layer configuration information */
157 static struct xpt_softc xsoftc;
158
159 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
160
161 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
162 &xsoftc.boot_delay, 0, "Bus registration wait time");
163 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
164 &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
165
166 struct cam_doneq {
167 struct mtx_padalign cam_doneq_mtx;
168 STAILQ_HEAD(, ccb_hdr) cam_doneq;
169 int cam_doneq_sleep;
170 };
171
172 static struct cam_doneq cam_doneqs[MAXCPU];
173 static u_int __read_mostly cam_num_doneqs;
174 static struct proc *cam_proc;
175 static struct cam_doneq cam_async;
176
177 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
178 &cam_num_doneqs, 0, "Number of completion queues/threads");
179
180 struct cam_periph *xpt_periph;
181
182 static periph_init_t xpt_periph_init;
183
184 static struct periph_driver xpt_driver =
185 {
186 xpt_periph_init, "xpt",
187 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
188 CAM_PERIPH_DRV_EARLY
189 };
190
191 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
192
193 static d_open_t xptopen;
194 static d_close_t xptclose;
195 static d_ioctl_t xptioctl;
196 static d_ioctl_t xptdoioctl;
197
198 static struct cdevsw xpt_cdevsw = {
199 .d_version = D_VERSION,
200 .d_flags = 0,
201 .d_open = xptopen,
202 .d_close = xptclose,
203 .d_ioctl = xptioctl,
204 .d_name = "xpt",
205 };
206
207 /* Storage for debugging datastructures */
208 struct cam_path *cam_dpath;
209 uint32_t __read_mostly cam_dflags = CAM_DEBUG_FLAGS;
210 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
211 &cam_dflags, 0, "Enabled debug flags");
212 uint32_t cam_debug_delay = CAM_DEBUG_DELAY;
213 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
214 &cam_debug_delay, 0, "Delay in us after each debug message");
215
216 /* Our boot-time initialization hook */
217 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
218
219 static moduledata_t cam_moduledata = {
220 "cam",
221 cam_module_event_handler,
222 NULL
223 };
224
225 static int xpt_init(void *);
226
227 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
228 MODULE_VERSION(cam, 1);
229
230 static void xpt_async_bcast(struct async_list *async_head,
231 uint32_t async_code,
232 struct cam_path *path,
233 void *async_arg);
234 static path_id_t xptnextfreepathid(void);
235 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
236 static union ccb *xpt_get_ccb(struct cam_periph *periph);
237 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
238 static void xpt_run_allocq(struct cam_periph *periph, int sleep);
239 static void xpt_run_allocq_task(void *context, int pending);
240 static void xpt_run_devq(struct cam_devq *devq);
241 static callout_func_t xpt_release_devq_timeout;
242 static void xpt_acquire_bus(struct cam_eb *bus);
243 static void xpt_release_bus(struct cam_eb *bus);
244 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
245 static int xpt_release_devq_device(struct cam_ed *dev, u_int count,
246 int run_queue);
247 static struct cam_et*
248 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
249 static void xpt_acquire_target(struct cam_et *target);
250 static void xpt_release_target(struct cam_et *target);
251 static struct cam_eb*
252 xpt_find_bus(path_id_t path_id);
253 static struct cam_et*
254 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
255 static struct cam_ed*
256 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
257 static void xpt_config(void *arg);
258 static void xpt_hold_boot_locked(void);
259 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
260 uint32_t new_priority);
261 static xpt_devicefunc_t xptpassannouncefunc;
262 static void xptaction(struct cam_sim *sim, union ccb *work_ccb);
263 static void xptpoll(struct cam_sim *sim);
264 static void camisr_runqueue(void);
265 static void xpt_done_process(struct ccb_hdr *ccb_h);
266 static void xpt_done_td(void *);
267 static void xpt_async_td(void *);
268 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns,
269 u_int num_patterns, struct cam_eb *bus);
270 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns,
271 u_int num_patterns,
272 struct cam_ed *device);
273 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns,
274 u_int num_patterns,
275 struct cam_periph *periph);
276 static xpt_busfunc_t xptedtbusfunc;
277 static xpt_targetfunc_t xptedttargetfunc;
278 static xpt_devicefunc_t xptedtdevicefunc;
279 static xpt_periphfunc_t xptedtperiphfunc;
280 static xpt_pdrvfunc_t xptplistpdrvfunc;
281 static xpt_periphfunc_t xptplistperiphfunc;
282 static int xptedtmatch(struct ccb_dev_match *cdm);
283 static int xptperiphlistmatch(struct ccb_dev_match *cdm);
284 static int xptbustraverse(struct cam_eb *start_bus,
285 xpt_busfunc_t *tr_func, void *arg);
286 static int xpttargettraverse(struct cam_eb *bus,
287 struct cam_et *start_target,
288 xpt_targetfunc_t *tr_func, void *arg);
289 static int xptdevicetraverse(struct cam_et *target,
290 struct cam_ed *start_device,
291 xpt_devicefunc_t *tr_func, void *arg);
292 static int xptperiphtraverse(struct cam_ed *device,
293 struct cam_periph *start_periph,
294 xpt_periphfunc_t *tr_func, void *arg);
295 static int xptpdrvtraverse(struct periph_driver **start_pdrv,
296 xpt_pdrvfunc_t *tr_func, void *arg);
297 static int xptpdperiphtraverse(struct periph_driver **pdrv,
298 struct cam_periph *start_periph,
299 xpt_periphfunc_t *tr_func,
300 void *arg);
301 static xpt_busfunc_t xptdefbusfunc;
302 static xpt_targetfunc_t xptdeftargetfunc;
303 static xpt_devicefunc_t xptdefdevicefunc;
304 static xpt_periphfunc_t xptdefperiphfunc;
305 static void xpt_finishconfig_task(void *context, int pending);
306 static void xpt_dev_async_default(uint32_t async_code,
307 struct cam_eb *bus,
308 struct cam_et *target,
309 struct cam_ed *device,
310 void *async_arg);
311 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus,
312 struct cam_et *target,
313 lun_id_t lun_id);
314 static xpt_devicefunc_t xptsetasyncfunc;
315 static xpt_busfunc_t xptsetasyncbusfunc;
316 static cam_status xptregister(struct cam_periph *periph,
317 void *arg);
318
319 static __inline int
xpt_schedule_devq(struct cam_devq * devq,struct cam_ed * dev)320 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
321 {
322 int retval;
323
324 mtx_assert(&devq->send_mtx, MA_OWNED);
325 if ((dev->ccbq.queue.entries > 0) &&
326 (dev->ccbq.dev_openings > 0) &&
327 (dev->ccbq.queue.qfrozen_cnt == 0)) {
328 /*
329 * The priority of a device waiting for controller
330 * resources is that of the highest priority CCB
331 * enqueued.
332 */
333 retval =
334 xpt_schedule_dev(&devq->send_queue,
335 &dev->devq_entry,
336 CAMQ_GET_PRIO(&dev->ccbq.queue));
337 } else {
338 retval = 0;
339 }
340 return (retval);
341 }
342
343 static __inline int
device_is_queued(struct cam_ed * device)344 device_is_queued(struct cam_ed *device)
345 {
346 return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
347 }
348
349 static void
xpt_periph_init(void)350 xpt_periph_init(void)
351 {
352 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
353 }
354
355 static int
xptopen(struct cdev * dev,int flags,int fmt,struct thread * td)356 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
357 {
358
359 /*
360 * Only allow read-write access.
361 */
362 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
363 return(EPERM);
364
365 /*
366 * We don't allow nonblocking access.
367 */
368 if ((flags & O_NONBLOCK) != 0) {
369 printf("%s: can't do nonblocking access\n", devtoname(dev));
370 return(ENODEV);
371 }
372
373 return(0);
374 }
375
376 static int
xptclose(struct cdev * dev,int flag,int fmt,struct thread * td)377 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
378 {
379
380 return(0);
381 }
382
383 /*
384 * Don't automatically grab the xpt softc lock here even though this is going
385 * through the xpt device. The xpt device is really just a back door for
386 * accessing other devices and SIMs, so the right thing to do is to grab
387 * the appropriate SIM lock once the bus/SIM is located.
388 */
389 static int
xptioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flag,struct thread * td)390 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
391 {
392 int error;
393
394 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
395 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
396 }
397 return (error);
398 }
399
400 static int
xptdoioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flag,struct thread * td)401 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
402 {
403 int error;
404
405 error = 0;
406
407 switch(cmd) {
408 /*
409 * For the transport layer CAMIOCOMMAND ioctl, we really only want
410 * to accept CCB types that don't quite make sense to send through a
411 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
412 * in the CAM spec.
413 */
414 case CAMIOCOMMAND: {
415 union ccb *ccb;
416 union ccb *inccb;
417 struct cam_eb *bus;
418
419 inccb = (union ccb *)addr;
420 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
421 if (inccb->ccb_h.func_code == XPT_SCSI_IO)
422 inccb->csio.bio = NULL;
423 #endif
424
425 if (inccb->ccb_h.flags & CAM_UNLOCKED)
426 return (EINVAL);
427
428 bus = xpt_find_bus(inccb->ccb_h.path_id);
429 if (bus == NULL)
430 return (EINVAL);
431
432 switch (inccb->ccb_h.func_code) {
433 case XPT_SCAN_BUS:
434 case XPT_RESET_BUS:
435 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
436 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
437 xpt_release_bus(bus);
438 return (EINVAL);
439 }
440 break;
441 case XPT_SCAN_TGT:
442 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
443 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
444 xpt_release_bus(bus);
445 return (EINVAL);
446 }
447 break;
448 default:
449 break;
450 }
451
452 switch(inccb->ccb_h.func_code) {
453 case XPT_SCAN_BUS:
454 case XPT_RESET_BUS:
455 case XPT_PATH_INQ:
456 case XPT_ENG_INQ:
457 case XPT_SCAN_LUN:
458 case XPT_SCAN_TGT:
459
460 ccb = xpt_alloc_ccb();
461
462 /*
463 * Create a path using the bus, target, and lun the
464 * user passed in.
465 */
466 if (xpt_create_path(&ccb->ccb_h.path, NULL,
467 inccb->ccb_h.path_id,
468 inccb->ccb_h.target_id,
469 inccb->ccb_h.target_lun) !=
470 CAM_REQ_CMP){
471 error = EINVAL;
472 xpt_free_ccb(ccb);
473 break;
474 }
475 /* Ensure all of our fields are correct */
476 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
477 inccb->ccb_h.pinfo.priority);
478 xpt_merge_ccb(ccb, inccb);
479 xpt_path_lock(ccb->ccb_h.path);
480 cam_periph_runccb(ccb, NULL, 0, 0, NULL);
481 xpt_path_unlock(ccb->ccb_h.path);
482 bcopy(ccb, inccb, sizeof(union ccb));
483 xpt_free_path(ccb->ccb_h.path);
484 xpt_free_ccb(ccb);
485 break;
486
487 case XPT_DEBUG: {
488 union ccb ccb;
489
490 /*
491 * This is an immediate CCB, so it's okay to
492 * allocate it on the stack.
493 */
494 memset(&ccb, 0, sizeof(ccb));
495
496 /*
497 * Create a path using the bus, target, and lun the
498 * user passed in.
499 */
500 if (xpt_create_path(&ccb.ccb_h.path, NULL,
501 inccb->ccb_h.path_id,
502 inccb->ccb_h.target_id,
503 inccb->ccb_h.target_lun) !=
504 CAM_REQ_CMP){
505 error = EINVAL;
506 break;
507 }
508 /* Ensure all of our fields are correct */
509 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
510 inccb->ccb_h.pinfo.priority);
511 xpt_merge_ccb(&ccb, inccb);
512 xpt_action(&ccb);
513 bcopy(&ccb, inccb, sizeof(union ccb));
514 xpt_free_path(ccb.ccb_h.path);
515 break;
516 }
517 case XPT_DEV_MATCH: {
518 struct cam_periph_map_info mapinfo;
519 struct cam_path *old_path;
520
521 /*
522 * We can't deal with physical addresses for this
523 * type of transaction.
524 */
525 if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
526 CAM_DATA_VADDR) {
527 error = EINVAL;
528 break;
529 }
530
531 /*
532 * Save this in case the caller had it set to
533 * something in particular.
534 */
535 old_path = inccb->ccb_h.path;
536
537 /*
538 * We really don't need a path for the matching
539 * code. The path is needed because of the
540 * debugging statements in xpt_action(). They
541 * assume that the CCB has a valid path.
542 */
543 inccb->ccb_h.path = xpt_periph->path;
544
545 bzero(&mapinfo, sizeof(mapinfo));
546
547 /*
548 * Map the pattern and match buffers into kernel
549 * virtual address space.
550 */
551 error = cam_periph_mapmem(inccb, &mapinfo, maxphys);
552
553 if (error) {
554 inccb->ccb_h.path = old_path;
555 break;
556 }
557
558 /*
559 * This is an immediate CCB, we can send it on directly.
560 */
561 xpt_action(inccb);
562
563 /*
564 * Map the buffers back into user space.
565 */
566 error = cam_periph_unmapmem(inccb, &mapinfo);
567
568 inccb->ccb_h.path = old_path;
569 break;
570 }
571 default:
572 error = ENOTSUP;
573 break;
574 }
575 xpt_release_bus(bus);
576 break;
577 }
578 /*
579 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
580 * with the periphal driver name and unit name filled in. The other
581 * fields don't really matter as input. The passthrough driver name
582 * ("pass"), and unit number are passed back in the ccb. The current
583 * device generation number, and the index into the device peripheral
584 * driver list, and the status are also passed back. Note that
585 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
586 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
587 * (or rather should be) impossible for the device peripheral driver
588 * list to change since we look at the whole thing in one pass, and
589 * we do it with lock protection.
590 *
591 */
592 case CAMGETPASSTHRU: {
593 union ccb *ccb;
594 struct cam_periph *periph;
595 struct periph_driver **p_drv;
596 char *name;
597 u_int unit;
598 bool base_periph_found;
599
600 ccb = (union ccb *)addr;
601 unit = ccb->cgdl.unit_number;
602 name = ccb->cgdl.periph_name;
603 base_periph_found = false;
604 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
605 if (ccb->ccb_h.func_code == XPT_SCSI_IO)
606 ccb->csio.bio = NULL;
607 #endif
608
609 /*
610 * Sanity check -- make sure we don't get a null peripheral
611 * driver name.
612 */
613 if (*ccb->cgdl.periph_name == '\0') {
614 error = EINVAL;
615 break;
616 }
617
618 /* Keep the list from changing while we traverse it */
619 xpt_lock_buses();
620
621 /* first find our driver in the list of drivers */
622 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
623 if (strcmp((*p_drv)->driver_name, name) == 0)
624 break;
625
626 if (*p_drv == NULL) {
627 xpt_unlock_buses();
628 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
629 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
630 *ccb->cgdl.periph_name = '\0';
631 ccb->cgdl.unit_number = 0;
632 error = ENOENT;
633 break;
634 }
635
636 /*
637 * Run through every peripheral instance of this driver
638 * and check to see whether it matches the unit passed
639 * in by the user. If it does, get out of the loops and
640 * find the passthrough driver associated with that
641 * peripheral driver.
642 */
643 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
644 periph = TAILQ_NEXT(periph, unit_links)) {
645 if (periph->unit_number == unit)
646 break;
647 }
648 /*
649 * If we found the peripheral driver that the user passed
650 * in, go through all of the peripheral drivers for that
651 * particular device and look for a passthrough driver.
652 */
653 if (periph != NULL) {
654 struct cam_ed *device;
655 int i;
656
657 base_periph_found = true;
658 device = periph->path->device;
659 for (i = 0, periph = SLIST_FIRST(&device->periphs);
660 periph != NULL;
661 periph = SLIST_NEXT(periph, periph_links), i++) {
662 /*
663 * Check to see whether we have a
664 * passthrough device or not.
665 */
666 if (strcmp(periph->periph_name, "pass") == 0) {
667 /*
668 * Fill in the getdevlist fields.
669 */
670 strlcpy(ccb->cgdl.periph_name,
671 periph->periph_name,
672 sizeof(ccb->cgdl.periph_name));
673 ccb->cgdl.unit_number =
674 periph->unit_number;
675 if (SLIST_NEXT(periph, periph_links))
676 ccb->cgdl.status =
677 CAM_GDEVLIST_MORE_DEVS;
678 else
679 ccb->cgdl.status =
680 CAM_GDEVLIST_LAST_DEVICE;
681 ccb->cgdl.generation =
682 device->generation;
683 ccb->cgdl.index = i;
684 /*
685 * Fill in some CCB header fields
686 * that the user may want.
687 */
688 ccb->ccb_h.path_id =
689 periph->path->bus->path_id;
690 ccb->ccb_h.target_id =
691 periph->path->target->target_id;
692 ccb->ccb_h.target_lun =
693 periph->path->device->lun_id;
694 ccb->ccb_h.status = CAM_REQ_CMP;
695 break;
696 }
697 }
698 }
699
700 /*
701 * If the periph is null here, one of two things has
702 * happened. The first possibility is that we couldn't
703 * find the unit number of the particular peripheral driver
704 * that the user is asking about. e.g. the user asks for
705 * the passthrough driver for "da11". We find the list of
706 * "da" peripherals all right, but there is no unit 11.
707 * The other possibility is that we went through the list
708 * of peripheral drivers attached to the device structure,
709 * but didn't find one with the name "pass". Either way,
710 * we return ENOENT, since we couldn't find something.
711 */
712 if (periph == NULL) {
713 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
714 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
715 *ccb->cgdl.periph_name = '\0';
716 ccb->cgdl.unit_number = 0;
717 error = ENOENT;
718 /*
719 * It is unfortunate that this is even necessary,
720 * but there are many, many clueless users out there.
721 * If this is true, the user is looking for the
722 * passthrough driver, but doesn't have one in his
723 * kernel.
724 */
725 if (base_periph_found) {
726 printf(
727 "xptioctl: pass driver is not in the kernel\n"
728 "xptioctl: put \"device pass\" in your kernel config file\n");
729 }
730 }
731 xpt_unlock_buses();
732 break;
733 }
734 default:
735 error = ENOTTY;
736 break;
737 }
738
739 return(error);
740 }
741
742 static int
cam_module_event_handler(module_t mod,int what,void * arg)743 cam_module_event_handler(module_t mod, int what, void *arg)
744 {
745 int error;
746
747 switch (what) {
748 case MOD_LOAD:
749 if ((error = xpt_init(NULL)) != 0)
750 return (error);
751 break;
752 case MOD_UNLOAD:
753 return EBUSY;
754 default:
755 return EOPNOTSUPP;
756 }
757
758 return 0;
759 }
760
761 static struct xpt_proto *
xpt_proto_find(cam_proto proto)762 xpt_proto_find(cam_proto proto)
763 {
764 struct xpt_proto **pp;
765
766 SET_FOREACH(pp, cam_xpt_proto_set) {
767 if ((*pp)->proto == proto)
768 return *pp;
769 }
770
771 return NULL;
772 }
773
774 static void
xpt_rescan_done(struct cam_periph * periph,union ccb * done_ccb)775 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
776 {
777
778 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
779 xpt_free_path(done_ccb->ccb_h.path);
780 xpt_free_ccb(done_ccb);
781 } else {
782 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
783 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
784 }
785 xpt_release_boot();
786 }
787
788 /* thread to handle bus rescans */
789 static void
xpt_scanner_thread(void * dummy)790 xpt_scanner_thread(void *dummy)
791 {
792 union ccb *ccb;
793 struct mtx *mtx;
794 struct cam_ed *device;
795
796 xpt_lock_buses();
797 for (;;) {
798 if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
799 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
800 "-", 0);
801 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
802 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
803 xpt_unlock_buses();
804
805 /*
806 * We need to lock the device's mutex which we use as
807 * the path mutex. We can't do it directly because the
808 * cam_path in the ccb may wind up going away because
809 * the path lock may be dropped and the path retired in
810 * the completion callback. We do this directly to keep
811 * the reference counts in cam_path sane. We also have
812 * to copy the device pointer because ccb_h.path may
813 * be freed in the callback.
814 */
815 mtx = xpt_path_mtx(ccb->ccb_h.path);
816 device = ccb->ccb_h.path->device;
817 xpt_acquire_device(device);
818 mtx_lock(mtx);
819 xpt_action(ccb);
820 mtx_unlock(mtx);
821 xpt_release_device(device);
822
823 xpt_lock_buses();
824 }
825 }
826 }
827
828 void
xpt_rescan(union ccb * ccb)829 xpt_rescan(union ccb *ccb)
830 {
831 struct ccb_hdr *hdr;
832
833 /* Prepare request */
834 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
835 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
836 ccb->ccb_h.func_code = XPT_SCAN_BUS;
837 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
838 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
839 ccb->ccb_h.func_code = XPT_SCAN_TGT;
840 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
841 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
842 ccb->ccb_h.func_code = XPT_SCAN_LUN;
843 else {
844 xpt_print(ccb->ccb_h.path, "illegal scan path\n");
845 xpt_free_path(ccb->ccb_h.path);
846 xpt_free_ccb(ccb);
847 return;
848 }
849 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
850 ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
851 xpt_action_name(ccb->ccb_h.func_code)));
852
853 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
854 ccb->ccb_h.cbfcnp = xpt_rescan_done;
855 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
856 /* Don't make duplicate entries for the same paths. */
857 xpt_lock_buses();
858 if (ccb->ccb_h.ppriv_ptr1 == NULL) {
859 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
860 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
861 wakeup(&xsoftc.ccb_scanq);
862 xpt_unlock_buses();
863 xpt_print(ccb->ccb_h.path, "rescan already queued\n");
864 xpt_free_path(ccb->ccb_h.path);
865 xpt_free_ccb(ccb);
866 return;
867 }
868 }
869 }
870 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
871 xpt_hold_boot_locked();
872 wakeup(&xsoftc.ccb_scanq);
873 xpt_unlock_buses();
874 }
875
876 /* Functions accessed by the peripheral drivers */
877 static int
xpt_init(void * dummy)878 xpt_init(void *dummy)
879 {
880 struct cam_sim *xpt_sim;
881 struct cam_path *path;
882 struct cam_devq *devq;
883 cam_status status;
884 int error, i;
885
886 TAILQ_INIT(&xsoftc.xpt_busses);
887 TAILQ_INIT(&xsoftc.ccb_scanq);
888 STAILQ_INIT(&xsoftc.highpowerq);
889 xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
890
891 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
892 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
893 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
894
895 #ifdef CAM_BOOT_DELAY
896 /*
897 * Override this value at compile time to assist our users
898 * who don't use loader to boot a kernel.
899 */
900 xsoftc.boot_delay = CAM_BOOT_DELAY;
901 #endif
902
903 /*
904 * The xpt layer is, itself, the equivalent of a SIM.
905 * Allow 16 ccbs in the ccb pool for it. This should
906 * give decent parallelism when we probe buses and
907 * perform other XPT functions.
908 */
909 devq = cam_simq_alloc(16);
910 if (devq == NULL)
911 return (ENOMEM);
912 xpt_sim = cam_sim_alloc(xptaction,
913 xptpoll,
914 "xpt",
915 /*softc*/NULL,
916 /*unit*/0,
917 /*mtx*/NULL,
918 /*max_dev_transactions*/0,
919 /*max_tagged_dev_transactions*/0,
920 devq);
921 if (xpt_sim == NULL)
922 return (ENOMEM);
923
924 if ((error = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
925 printf(
926 "xpt_init: xpt_bus_register failed with errno %d, failing attach\n",
927 error);
928 return (EINVAL);
929 }
930
931 /*
932 * Looking at the XPT from the SIM layer, the XPT is
933 * the equivalent of a peripheral driver. Allocate
934 * a peripheral driver entry for us.
935 */
936 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
937 CAM_TARGET_WILDCARD,
938 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
939 printf(
940 "xpt_init: xpt_create_path failed with status %#x, failing attach\n",
941 status);
942 return (EINVAL);
943 }
944 xpt_path_lock(path);
945 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
946 path, NULL, 0, xpt_sim);
947 xpt_path_unlock(path);
948 xpt_free_path(path);
949
950 if (cam_num_doneqs < 1)
951 cam_num_doneqs = 1 + mp_ncpus / 6;
952 else if (cam_num_doneqs > MAXCPU)
953 cam_num_doneqs = MAXCPU;
954 for (i = 0; i < cam_num_doneqs; i++) {
955 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
956 MTX_DEF);
957 STAILQ_INIT(&cam_doneqs[i].cam_doneq);
958 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
959 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
960 if (error != 0) {
961 cam_num_doneqs = i;
962 break;
963 }
964 }
965 if (cam_num_doneqs < 1) {
966 printf("xpt_init: Cannot init completion queues - failing attach\n");
967 return (ENOMEM);
968 }
969
970 mtx_init(&cam_async.cam_doneq_mtx, "CAM async", NULL, MTX_DEF);
971 STAILQ_INIT(&cam_async.cam_doneq);
972 if (kproc_kthread_add(xpt_async_td, &cam_async,
973 &cam_proc, NULL, 0, 0, "cam", "async") != 0) {
974 printf("xpt_init: Cannot init async thread - failing attach\n");
975 return (ENOMEM);
976 }
977
978 /*
979 * Register a callback for when interrupts are enabled.
980 */
981 config_intrhook_oneshot(xpt_config, NULL);
982
983 return (0);
984 }
985
986 static cam_status
xptregister(struct cam_periph * periph,void * arg)987 xptregister(struct cam_periph *periph, void *arg)
988 {
989 struct cam_sim *xpt_sim;
990
991 if (periph == NULL) {
992 printf("xptregister: periph was NULL!!\n");
993 return(CAM_REQ_CMP_ERR);
994 }
995
996 xpt_sim = (struct cam_sim *)arg;
997 xpt_sim->softc = periph;
998 xpt_periph = periph;
999 periph->softc = NULL;
1000
1001 return(CAM_REQ_CMP);
1002 }
1003
1004 int32_t
xpt_add_periph(struct cam_periph * periph)1005 xpt_add_periph(struct cam_periph *periph)
1006 {
1007 struct cam_ed *device;
1008 int32_t status;
1009
1010 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1011 device = periph->path->device;
1012 status = CAM_REQ_CMP;
1013 if (device != NULL) {
1014 mtx_lock(&device->target->bus->eb_mtx);
1015 device->generation++;
1016 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1017 mtx_unlock(&device->target->bus->eb_mtx);
1018 atomic_add_32(&xsoftc.xpt_generation, 1);
1019 }
1020
1021 return (status);
1022 }
1023
1024 void
xpt_remove_periph(struct cam_periph * periph)1025 xpt_remove_periph(struct cam_periph *periph)
1026 {
1027 struct cam_ed *device;
1028
1029 device = periph->path->device;
1030 if (device != NULL) {
1031 mtx_lock(&device->target->bus->eb_mtx);
1032 device->generation++;
1033 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1034 mtx_unlock(&device->target->bus->eb_mtx);
1035 atomic_add_32(&xsoftc.xpt_generation, 1);
1036 }
1037 }
1038
1039 void
xpt_announce_periph(struct cam_periph * periph,char * announce_string)1040 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1041 {
1042 char buf[128];
1043 struct sbuf sb;
1044
1045 (void)sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
1046 sbuf_set_drain(&sb, sbuf_printf_drain, NULL);
1047 xpt_announce_periph_sbuf(periph, &sb, announce_string);
1048 (void)sbuf_finish(&sb);
1049 (void)sbuf_delete(&sb);
1050 }
1051
1052 void
xpt_announce_periph_sbuf(struct cam_periph * periph,struct sbuf * sb,char * announce_string)1053 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb,
1054 char *announce_string)
1055 {
1056 struct cam_path *path = periph->path;
1057 struct xpt_proto *proto;
1058
1059 cam_periph_assert(periph, MA_OWNED);
1060 periph->flags |= CAM_PERIPH_ANNOUNCED;
1061
1062 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1063 periph->periph_name, periph->unit_number,
1064 path->bus->sim->sim_name,
1065 path->bus->sim->unit_number,
1066 path->bus->sim->bus_id,
1067 path->bus->path_id,
1068 path->target->target_id,
1069 (uintmax_t)path->device->lun_id);
1070 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1071 proto = xpt_proto_find(path->device->protocol);
1072 if (proto)
1073 proto->ops->announce_sbuf(path->device, sb);
1074 else
1075 sbuf_printf(sb, "Unknown protocol device %d\n",
1076 path->device->protocol);
1077 if (path->device->serial_num_len > 0) {
1078 /* Don't wrap the screen - print only the first 60 chars */
1079 sbuf_printf(sb, "%s%d: Serial Number %.60s\n",
1080 periph->periph_name, periph->unit_number,
1081 path->device->serial_num);
1082 }
1083 /* Announce transport details. */
1084 path->bus->xport->ops->announce_sbuf(periph, sb);
1085 /* Announce command queueing. */
1086 if (path->device->inq_flags & SID_CmdQue
1087 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1088 sbuf_printf(sb, "%s%d: Command Queueing enabled\n",
1089 periph->periph_name, periph->unit_number);
1090 }
1091 /* Announce caller's details if they've passed in. */
1092 if (announce_string != NULL)
1093 sbuf_printf(sb, "%s%d: %s\n", periph->periph_name,
1094 periph->unit_number, announce_string);
1095 }
1096
1097 void
xpt_announce_quirks(struct cam_periph * periph,int quirks,char * bit_string)1098 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1099 {
1100 if (quirks != 0) {
1101 printf("%s%d: quirks=0x%b\n", periph->periph_name,
1102 periph->unit_number, quirks, bit_string);
1103 }
1104 }
1105
1106 void
xpt_announce_quirks_sbuf(struct cam_periph * periph,struct sbuf * sb,int quirks,char * bit_string)1107 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb,
1108 int quirks, char *bit_string)
1109 {
1110 if (quirks != 0) {
1111 sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name,
1112 periph->unit_number, quirks, bit_string);
1113 }
1114 }
1115
1116 void
xpt_denounce_periph(struct cam_periph * periph)1117 xpt_denounce_periph(struct cam_periph *periph)
1118 {
1119 char buf[128];
1120 struct sbuf sb;
1121
1122 (void)sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
1123 sbuf_set_drain(&sb, sbuf_printf_drain, NULL);
1124 xpt_denounce_periph_sbuf(periph, &sb);
1125 (void)sbuf_finish(&sb);
1126 (void)sbuf_delete(&sb);
1127 }
1128
1129 void
xpt_denounce_periph_sbuf(struct cam_periph * periph,struct sbuf * sb)1130 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
1131 {
1132 struct cam_path *path = periph->path;
1133 struct xpt_proto *proto;
1134
1135 cam_periph_assert(periph, MA_OWNED);
1136
1137 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1138 periph->periph_name, periph->unit_number,
1139 path->bus->sim->sim_name,
1140 path->bus->sim->unit_number,
1141 path->bus->sim->bus_id,
1142 path->bus->path_id,
1143 path->target->target_id,
1144 (uintmax_t)path->device->lun_id);
1145 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1146 proto = xpt_proto_find(path->device->protocol);
1147 if (proto)
1148 proto->ops->denounce_sbuf(path->device, sb);
1149 else
1150 sbuf_printf(sb, "Unknown protocol device %d",
1151 path->device->protocol);
1152 if (path->device->serial_num_len > 0)
1153 sbuf_printf(sb, " s/n %.60s", path->device->serial_num);
1154 sbuf_cat(sb, " detached\n");
1155 }
1156
1157 int
xpt_getattr(char * buf,size_t len,const char * attr,struct cam_path * path)1158 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1159 {
1160 int ret = -1, l, o;
1161 struct ccb_dev_advinfo cdai;
1162 struct scsi_vpd_device_id *did;
1163 struct scsi_vpd_id_descriptor *idd;
1164
1165 xpt_path_assert(path, MA_OWNED);
1166
1167 memset(&cdai, 0, sizeof(cdai));
1168 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1169 cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1170 cdai.flags = CDAI_FLAG_NONE;
1171 cdai.bufsiz = len;
1172 cdai.buf = buf;
1173
1174 if (!strcmp(attr, "GEOM::ident"))
1175 cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1176 else if (!strcmp(attr, "GEOM::physpath"))
1177 cdai.buftype = CDAI_TYPE_PHYS_PATH;
1178 else if (strcmp(attr, "GEOM::lunid") == 0 ||
1179 strcmp(attr, "GEOM::lunname") == 0) {
1180 cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1181 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1182 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT);
1183 if (cdai.buf == NULL) {
1184 ret = ENOMEM;
1185 goto out;
1186 }
1187 } else
1188 goto out;
1189
1190 xpt_action((union ccb *)&cdai); /* can only be synchronous */
1191 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1192 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1193 if (cdai.provsiz == 0)
1194 goto out;
1195 switch(cdai.buftype) {
1196 case CDAI_TYPE_SCSI_DEVID:
1197 did = (struct scsi_vpd_device_id *)cdai.buf;
1198 if (strcmp(attr, "GEOM::lunid") == 0) {
1199 idd = scsi_get_devid(did, cdai.provsiz,
1200 scsi_devid_is_lun_naa);
1201 if (idd == NULL)
1202 idd = scsi_get_devid(did, cdai.provsiz,
1203 scsi_devid_is_lun_eui64);
1204 if (idd == NULL)
1205 idd = scsi_get_devid(did, cdai.provsiz,
1206 scsi_devid_is_lun_uuid);
1207 if (idd == NULL)
1208 idd = scsi_get_devid(did, cdai.provsiz,
1209 scsi_devid_is_lun_md5);
1210 } else
1211 idd = NULL;
1212
1213 if (idd == NULL)
1214 idd = scsi_get_devid(did, cdai.provsiz,
1215 scsi_devid_is_lun_t10);
1216 if (idd == NULL)
1217 idd = scsi_get_devid(did, cdai.provsiz,
1218 scsi_devid_is_lun_name);
1219 if (idd == NULL)
1220 break;
1221
1222 ret = 0;
1223 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1224 SVPD_ID_CODESET_ASCII) {
1225 if (idd->length < len) {
1226 for (l = 0; l < idd->length; l++)
1227 buf[l] = idd->identifier[l] ?
1228 idd->identifier[l] : ' ';
1229 buf[l] = 0;
1230 } else
1231 ret = EFAULT;
1232 break;
1233 }
1234 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1235 SVPD_ID_CODESET_UTF8) {
1236 l = strnlen(idd->identifier, idd->length);
1237 if (l < len) {
1238 bcopy(idd->identifier, buf, l);
1239 buf[l] = 0;
1240 } else
1241 ret = EFAULT;
1242 break;
1243 }
1244 if ((idd->id_type & SVPD_ID_TYPE_MASK) ==
1245 SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) {
1246 if ((idd->length - 2) * 2 + 4 >= len) {
1247 ret = EFAULT;
1248 break;
1249 }
1250 for (l = 2, o = 0; l < idd->length; l++) {
1251 if (l == 6 || l == 8 || l == 10 || l == 12)
1252 o += sprintf(buf + o, "-");
1253 o += sprintf(buf + o, "%02x",
1254 idd->identifier[l]);
1255 }
1256 break;
1257 }
1258 if (idd->length * 2 < len) {
1259 for (l = 0; l < idd->length; l++)
1260 sprintf(buf + l * 2, "%02x",
1261 idd->identifier[l]);
1262 } else
1263 ret = EFAULT;
1264 break;
1265 default:
1266 if (cdai.provsiz < len) {
1267 cdai.buf[cdai.provsiz] = 0;
1268 ret = 0;
1269 } else
1270 ret = EFAULT;
1271 break;
1272 }
1273
1274 out:
1275 if ((char *)cdai.buf != buf)
1276 free(cdai.buf, M_CAMXPT);
1277 return ret;
1278 }
1279
1280 static dev_match_ret
xptbusmatch(struct dev_match_pattern * patterns,u_int num_patterns,struct cam_eb * bus)1281 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1282 struct cam_eb *bus)
1283 {
1284 dev_match_ret retval;
1285 u_int i;
1286
1287 retval = DM_RET_NONE;
1288
1289 /*
1290 * If we aren't given something to match against, that's an error.
1291 */
1292 if (bus == NULL)
1293 return(DM_RET_ERROR);
1294
1295 /*
1296 * If there are no match entries, then this bus matches no
1297 * matter what.
1298 */
1299 if ((patterns == NULL) || (num_patterns == 0))
1300 return(DM_RET_DESCEND | DM_RET_COPY);
1301
1302 for (i = 0; i < num_patterns; i++) {
1303 struct bus_match_pattern *cur_pattern;
1304 struct device_match_pattern *dp = &patterns[i].pattern.device_pattern;
1305 struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern;
1306
1307 /*
1308 * If the pattern in question isn't for a bus node, we
1309 * aren't interested. However, we do indicate to the
1310 * calling routine that we should continue descending the
1311 * tree, since the user wants to match against lower-level
1312 * EDT elements.
1313 */
1314 if (patterns[i].type == DEV_MATCH_DEVICE &&
1315 (dp->flags & DEV_MATCH_PATH) != 0 &&
1316 dp->path_id != bus->path_id)
1317 continue;
1318 if (patterns[i].type == DEV_MATCH_PERIPH &&
1319 (pp->flags & PERIPH_MATCH_PATH) != 0 &&
1320 pp->path_id != bus->path_id)
1321 continue;
1322 if (patterns[i].type != DEV_MATCH_BUS) {
1323 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1324 retval |= DM_RET_DESCEND;
1325 continue;
1326 }
1327
1328 cur_pattern = &patterns[i].pattern.bus_pattern;
1329
1330 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1331 && (cur_pattern->path_id != bus->path_id))
1332 continue;
1333
1334 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1335 && (cur_pattern->bus_id != bus->sim->bus_id))
1336 continue;
1337
1338 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1339 && (cur_pattern->unit_number != bus->sim->unit_number))
1340 continue;
1341
1342 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1343 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1344 DEV_IDLEN) != 0))
1345 continue;
1346
1347 /*
1348 * If we get to this point, the user definitely wants
1349 * information on this bus. So tell the caller to copy the
1350 * data out.
1351 */
1352 retval |= DM_RET_COPY;
1353
1354 /*
1355 * If the return action has been set to descend, then we
1356 * know that we've already seen a non-bus matching
1357 * expression, therefore we need to further descend the tree.
1358 * This won't change by continuing around the loop, so we
1359 * go ahead and return. If we haven't seen a non-bus
1360 * matching expression, we keep going around the loop until
1361 * we exhaust the matching expressions. We'll set the stop
1362 * flag once we fall out of the loop.
1363 */
1364 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1365 return(retval);
1366 }
1367
1368 /*
1369 * If the return action hasn't been set to descend yet, that means
1370 * we haven't seen anything other than bus matching patterns. So
1371 * tell the caller to stop descending the tree -- the user doesn't
1372 * want to match against lower level tree elements.
1373 */
1374 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1375 retval |= DM_RET_STOP;
1376
1377 return(retval);
1378 }
1379
1380 static dev_match_ret
xptdevicematch(struct dev_match_pattern * patterns,u_int num_patterns,struct cam_ed * device)1381 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1382 struct cam_ed *device)
1383 {
1384 dev_match_ret retval;
1385 u_int i;
1386
1387 retval = DM_RET_NONE;
1388
1389 /*
1390 * If we aren't given something to match against, that's an error.
1391 */
1392 if (device == NULL)
1393 return(DM_RET_ERROR);
1394
1395 /*
1396 * If there are no match entries, then this device matches no
1397 * matter what.
1398 */
1399 if ((patterns == NULL) || (num_patterns == 0))
1400 return(DM_RET_DESCEND | DM_RET_COPY);
1401
1402 for (i = 0; i < num_patterns; i++) {
1403 struct device_match_pattern *cur_pattern;
1404 struct scsi_vpd_device_id *device_id_page;
1405 struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern;
1406
1407 /*
1408 * If the pattern in question isn't for a device node, we
1409 * aren't interested.
1410 */
1411 if (patterns[i].type == DEV_MATCH_PERIPH &&
1412 (pp->flags & PERIPH_MATCH_TARGET) != 0 &&
1413 pp->target_id != device->target->target_id)
1414 continue;
1415 if (patterns[i].type == DEV_MATCH_PERIPH &&
1416 (pp->flags & PERIPH_MATCH_LUN) != 0 &&
1417 pp->target_lun != device->lun_id)
1418 continue;
1419 if (patterns[i].type != DEV_MATCH_DEVICE) {
1420 if ((patterns[i].type == DEV_MATCH_PERIPH)
1421 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1422 retval |= DM_RET_DESCEND;
1423 continue;
1424 }
1425
1426 cur_pattern = &patterns[i].pattern.device_pattern;
1427
1428 /* Error out if mutually exclusive options are specified. */
1429 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1430 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1431 return(DM_RET_ERROR);
1432
1433 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1434 && (cur_pattern->path_id != device->target->bus->path_id))
1435 continue;
1436
1437 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1438 && (cur_pattern->target_id != device->target->target_id))
1439 continue;
1440
1441 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1442 && (cur_pattern->target_lun != device->lun_id))
1443 continue;
1444
1445 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1446 && (cam_quirkmatch((caddr_t)&device->inq_data,
1447 (caddr_t)&cur_pattern->data.inq_pat,
1448 1, sizeof(cur_pattern->data.inq_pat),
1449 scsi_static_inquiry_match) == NULL))
1450 continue;
1451
1452 device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1453 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1454 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1455 || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1456 device->device_id_len
1457 - SVPD_DEVICE_ID_HDR_LEN,
1458 cur_pattern->data.devid_pat.id,
1459 cur_pattern->data.devid_pat.id_len) != 0))
1460 continue;
1461
1462 /*
1463 * If we get to this point, the user definitely wants
1464 * information on this device. So tell the caller to copy
1465 * the data out.
1466 */
1467 retval |= DM_RET_COPY;
1468
1469 /*
1470 * If the return action has been set to descend, then we
1471 * know that we've already seen a peripheral matching
1472 * expression, therefore we need to further descend the tree.
1473 * This won't change by continuing around the loop, so we
1474 * go ahead and return. If we haven't seen a peripheral
1475 * matching expression, we keep going around the loop until
1476 * we exhaust the matching expressions. We'll set the stop
1477 * flag once we fall out of the loop.
1478 */
1479 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1480 return(retval);
1481 }
1482
1483 /*
1484 * If the return action hasn't been set to descend yet, that means
1485 * we haven't seen any peripheral matching patterns. So tell the
1486 * caller to stop descending the tree -- the user doesn't want to
1487 * match against lower level tree elements.
1488 */
1489 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1490 retval |= DM_RET_STOP;
1491
1492 return(retval);
1493 }
1494
1495 /*
1496 * Match a single peripheral against any number of match patterns.
1497 */
1498 static dev_match_ret
xptperiphmatch(struct dev_match_pattern * patterns,u_int num_patterns,struct cam_periph * periph)1499 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1500 struct cam_periph *periph)
1501 {
1502 dev_match_ret retval;
1503 u_int i;
1504
1505 /*
1506 * If we aren't given something to match against, that's an error.
1507 */
1508 if (periph == NULL)
1509 return(DM_RET_ERROR);
1510
1511 /*
1512 * If there are no match entries, then this peripheral matches no
1513 * matter what.
1514 */
1515 if ((patterns == NULL) || (num_patterns == 0))
1516 return(DM_RET_STOP | DM_RET_COPY);
1517
1518 /*
1519 * There aren't any nodes below a peripheral node, so there's no
1520 * reason to descend the tree any further.
1521 */
1522 retval = DM_RET_STOP;
1523
1524 for (i = 0; i < num_patterns; i++) {
1525 struct periph_match_pattern *cur_pattern;
1526
1527 /*
1528 * If the pattern in question isn't for a peripheral, we
1529 * aren't interested.
1530 */
1531 if (patterns[i].type != DEV_MATCH_PERIPH)
1532 continue;
1533
1534 cur_pattern = &patterns[i].pattern.periph_pattern;
1535
1536 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1537 && (cur_pattern->path_id != periph->path->bus->path_id))
1538 continue;
1539
1540 /*
1541 * For the target and lun id's, we have to make sure the
1542 * target and lun pointers aren't NULL. The xpt peripheral
1543 * has a wildcard target and device.
1544 */
1545 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1546 && ((periph->path->target == NULL)
1547 ||(cur_pattern->target_id != periph->path->target->target_id)))
1548 continue;
1549
1550 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1551 && ((periph->path->device == NULL)
1552 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1553 continue;
1554
1555 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1556 && (cur_pattern->unit_number != periph->unit_number))
1557 continue;
1558
1559 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1560 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1561 DEV_IDLEN) != 0))
1562 continue;
1563
1564 /*
1565 * If we get to this point, the user definitely wants
1566 * information on this peripheral. So tell the caller to
1567 * copy the data out.
1568 */
1569 retval |= DM_RET_COPY;
1570
1571 /*
1572 * The return action has already been set to stop, since
1573 * peripherals don't have any nodes below them in the EDT.
1574 */
1575 return(retval);
1576 }
1577
1578 /*
1579 * If we get to this point, the peripheral that was passed in
1580 * doesn't match any of the patterns.
1581 */
1582 return(retval);
1583 }
1584
1585 static int
xptedtbusfunc(struct cam_eb * bus,void * arg)1586 xptedtbusfunc(struct cam_eb *bus, void *arg)
1587 {
1588 struct ccb_dev_match *cdm;
1589 struct cam_et *target;
1590 dev_match_ret retval;
1591
1592 cdm = (struct ccb_dev_match *)arg;
1593
1594 /*
1595 * If our position is for something deeper in the tree, that means
1596 * that we've already seen this node. So, we keep going down.
1597 */
1598 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1599 && (cdm->pos.cookie.bus == bus)
1600 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1601 && (cdm->pos.cookie.target != NULL))
1602 retval = DM_RET_DESCEND;
1603 else
1604 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1605
1606 /*
1607 * If we got an error, bail out of the search.
1608 */
1609 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1610 cdm->status = CAM_DEV_MATCH_ERROR;
1611 return(0);
1612 }
1613
1614 /*
1615 * If the copy flag is set, copy this bus out.
1616 */
1617 if (retval & DM_RET_COPY) {
1618 int spaceleft, j;
1619
1620 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1621 sizeof(struct dev_match_result));
1622
1623 /*
1624 * If we don't have enough space to put in another
1625 * match result, save our position and tell the
1626 * user there are more devices to check.
1627 */
1628 if (spaceleft < sizeof(struct dev_match_result)) {
1629 bzero(&cdm->pos, sizeof(cdm->pos));
1630 cdm->pos.position_type =
1631 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1632
1633 cdm->pos.cookie.bus = bus;
1634 cdm->pos.generations[CAM_BUS_GENERATION]=
1635 xsoftc.bus_generation;
1636 cdm->status = CAM_DEV_MATCH_MORE;
1637 return(0);
1638 }
1639 j = cdm->num_matches;
1640 cdm->num_matches++;
1641 cdm->matches[j].type = DEV_MATCH_BUS;
1642 cdm->matches[j].result.bus_result.path_id = bus->path_id;
1643 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1644 cdm->matches[j].result.bus_result.unit_number =
1645 bus->sim->unit_number;
1646 strlcpy(cdm->matches[j].result.bus_result.dev_name,
1647 bus->sim->sim_name,
1648 sizeof(cdm->matches[j].result.bus_result.dev_name));
1649 }
1650
1651 /*
1652 * If the user is only interested in buses, there's no
1653 * reason to descend to the next level in the tree.
1654 */
1655 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1656 return(1);
1657
1658 /*
1659 * If there is a target generation recorded, check it to
1660 * make sure the target list hasn't changed.
1661 */
1662 mtx_lock(&bus->eb_mtx);
1663 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1664 && (cdm->pos.cookie.bus == bus)
1665 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1666 && (cdm->pos.cookie.target != NULL)) {
1667 if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1668 bus->generation)) {
1669 mtx_unlock(&bus->eb_mtx);
1670 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1671 return (0);
1672 }
1673 target = (struct cam_et *)cdm->pos.cookie.target;
1674 target->refcount++;
1675 } else
1676 target = NULL;
1677 mtx_unlock(&bus->eb_mtx);
1678
1679 return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1680 }
1681
1682 static int
xptedttargetfunc(struct cam_et * target,void * arg)1683 xptedttargetfunc(struct cam_et *target, void *arg)
1684 {
1685 struct ccb_dev_match *cdm;
1686 struct cam_eb *bus;
1687 struct cam_ed *device;
1688
1689 cdm = (struct ccb_dev_match *)arg;
1690 bus = target->bus;
1691
1692 /*
1693 * If there is a device list generation recorded, check it to
1694 * make sure the device list hasn't changed.
1695 */
1696 mtx_lock(&bus->eb_mtx);
1697 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1698 && (cdm->pos.cookie.bus == bus)
1699 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1700 && (cdm->pos.cookie.target == target)
1701 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1702 && (cdm->pos.cookie.device != NULL)) {
1703 if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1704 target->generation) {
1705 mtx_unlock(&bus->eb_mtx);
1706 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1707 return(0);
1708 }
1709 device = (struct cam_ed *)cdm->pos.cookie.device;
1710 device->refcount++;
1711 } else
1712 device = NULL;
1713 mtx_unlock(&bus->eb_mtx);
1714
1715 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1716 }
1717
1718 static int
xptedtdevicefunc(struct cam_ed * device,void * arg)1719 xptedtdevicefunc(struct cam_ed *device, void *arg)
1720 {
1721 struct cam_eb *bus;
1722 struct cam_periph *periph;
1723 struct ccb_dev_match *cdm;
1724 dev_match_ret retval;
1725
1726 cdm = (struct ccb_dev_match *)arg;
1727 bus = device->target->bus;
1728
1729 /*
1730 * If our position is for something deeper in the tree, that means
1731 * that we've already seen this node. So, we keep going down.
1732 */
1733 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1734 && (cdm->pos.cookie.device == device)
1735 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1736 && (cdm->pos.cookie.periph != NULL))
1737 retval = DM_RET_DESCEND;
1738 else
1739 retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1740 device);
1741
1742 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1743 cdm->status = CAM_DEV_MATCH_ERROR;
1744 return(0);
1745 }
1746
1747 /*
1748 * If the copy flag is set, copy this device out.
1749 */
1750 if (retval & DM_RET_COPY) {
1751 int spaceleft, j;
1752
1753 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1754 sizeof(struct dev_match_result));
1755
1756 /*
1757 * If we don't have enough space to put in another
1758 * match result, save our position and tell the
1759 * user there are more devices to check.
1760 */
1761 if (spaceleft < sizeof(struct dev_match_result)) {
1762 bzero(&cdm->pos, sizeof(cdm->pos));
1763 cdm->pos.position_type =
1764 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1765 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1766
1767 cdm->pos.cookie.bus = device->target->bus;
1768 cdm->pos.generations[CAM_BUS_GENERATION]=
1769 xsoftc.bus_generation;
1770 cdm->pos.cookie.target = device->target;
1771 cdm->pos.generations[CAM_TARGET_GENERATION] =
1772 device->target->bus->generation;
1773 cdm->pos.cookie.device = device;
1774 cdm->pos.generations[CAM_DEV_GENERATION] =
1775 device->target->generation;
1776 cdm->status = CAM_DEV_MATCH_MORE;
1777 return(0);
1778 }
1779 j = cdm->num_matches;
1780 cdm->num_matches++;
1781 cdm->matches[j].type = DEV_MATCH_DEVICE;
1782 cdm->matches[j].result.device_result.path_id =
1783 device->target->bus->path_id;
1784 cdm->matches[j].result.device_result.target_id =
1785 device->target->target_id;
1786 cdm->matches[j].result.device_result.target_lun =
1787 device->lun_id;
1788 cdm->matches[j].result.device_result.protocol =
1789 device->protocol;
1790 bcopy(&device->inq_data,
1791 &cdm->matches[j].result.device_result.inq_data,
1792 sizeof(struct scsi_inquiry_data));
1793 bcopy(&device->ident_data,
1794 &cdm->matches[j].result.device_result.ident_data,
1795 sizeof(struct ata_params));
1796
1797 /* Let the user know whether this device is unconfigured */
1798 if (device->flags & CAM_DEV_UNCONFIGURED)
1799 cdm->matches[j].result.device_result.flags =
1800 DEV_RESULT_UNCONFIGURED;
1801 else
1802 cdm->matches[j].result.device_result.flags =
1803 DEV_RESULT_NOFLAG;
1804 }
1805
1806 /*
1807 * If the user isn't interested in peripherals, don't descend
1808 * the tree any further.
1809 */
1810 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1811 return(1);
1812
1813 /*
1814 * If there is a peripheral list generation recorded, make sure
1815 * it hasn't changed.
1816 */
1817 xpt_lock_buses();
1818 mtx_lock(&bus->eb_mtx);
1819 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1820 && (cdm->pos.cookie.bus == bus)
1821 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1822 && (cdm->pos.cookie.target == device->target)
1823 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1824 && (cdm->pos.cookie.device == device)
1825 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1826 && (cdm->pos.cookie.periph != NULL)) {
1827 if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1828 device->generation) {
1829 mtx_unlock(&bus->eb_mtx);
1830 xpt_unlock_buses();
1831 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1832 return(0);
1833 }
1834 periph = (struct cam_periph *)cdm->pos.cookie.periph;
1835 periph->refcount++;
1836 } else
1837 periph = NULL;
1838 mtx_unlock(&bus->eb_mtx);
1839 xpt_unlock_buses();
1840
1841 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1842 }
1843
1844 static int
xptedtperiphfunc(struct cam_periph * periph,void * arg)1845 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1846 {
1847 struct ccb_dev_match *cdm;
1848 dev_match_ret retval;
1849
1850 cdm = (struct ccb_dev_match *)arg;
1851
1852 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1853
1854 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1855 cdm->status = CAM_DEV_MATCH_ERROR;
1856 return(0);
1857 }
1858
1859 /*
1860 * If the copy flag is set, copy this peripheral out.
1861 */
1862 if (retval & DM_RET_COPY) {
1863 int spaceleft, j;
1864 size_t l;
1865
1866 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1867 sizeof(struct dev_match_result));
1868
1869 /*
1870 * If we don't have enough space to put in another
1871 * match result, save our position and tell the
1872 * user there are more devices to check.
1873 */
1874 if (spaceleft < sizeof(struct dev_match_result)) {
1875 bzero(&cdm->pos, sizeof(cdm->pos));
1876 cdm->pos.position_type =
1877 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1878 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1879 CAM_DEV_POS_PERIPH;
1880
1881 cdm->pos.cookie.bus = periph->path->bus;
1882 cdm->pos.generations[CAM_BUS_GENERATION]=
1883 xsoftc.bus_generation;
1884 cdm->pos.cookie.target = periph->path->target;
1885 cdm->pos.generations[CAM_TARGET_GENERATION] =
1886 periph->path->bus->generation;
1887 cdm->pos.cookie.device = periph->path->device;
1888 cdm->pos.generations[CAM_DEV_GENERATION] =
1889 periph->path->target->generation;
1890 cdm->pos.cookie.periph = periph;
1891 cdm->pos.generations[CAM_PERIPH_GENERATION] =
1892 periph->path->device->generation;
1893 cdm->status = CAM_DEV_MATCH_MORE;
1894 return(0);
1895 }
1896
1897 j = cdm->num_matches;
1898 cdm->num_matches++;
1899 cdm->matches[j].type = DEV_MATCH_PERIPH;
1900 cdm->matches[j].result.periph_result.path_id =
1901 periph->path->bus->path_id;
1902 cdm->matches[j].result.periph_result.target_id =
1903 periph->path->target->target_id;
1904 cdm->matches[j].result.periph_result.target_lun =
1905 periph->path->device->lun_id;
1906 cdm->matches[j].result.periph_result.unit_number =
1907 periph->unit_number;
1908 l = sizeof(cdm->matches[j].result.periph_result.periph_name);
1909 strlcpy(cdm->matches[j].result.periph_result.periph_name,
1910 periph->periph_name, l);
1911 }
1912
1913 return(1);
1914 }
1915
1916 static int
xptedtmatch(struct ccb_dev_match * cdm)1917 xptedtmatch(struct ccb_dev_match *cdm)
1918 {
1919 struct cam_eb *bus;
1920 int ret;
1921
1922 cdm->num_matches = 0;
1923
1924 /*
1925 * Check the bus list generation. If it has changed, the user
1926 * needs to reset everything and start over.
1927 */
1928 xpt_lock_buses();
1929 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1930 && (cdm->pos.cookie.bus != NULL)) {
1931 if (cdm->pos.generations[CAM_BUS_GENERATION] !=
1932 xsoftc.bus_generation) {
1933 xpt_unlock_buses();
1934 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1935 return(0);
1936 }
1937 bus = (struct cam_eb *)cdm->pos.cookie.bus;
1938 bus->refcount++;
1939 } else
1940 bus = NULL;
1941 xpt_unlock_buses();
1942
1943 ret = xptbustraverse(bus, xptedtbusfunc, cdm);
1944
1945 /*
1946 * If we get back 0, that means that we had to stop before fully
1947 * traversing the EDT. It also means that one of the subroutines
1948 * has set the status field to the proper value. If we get back 1,
1949 * we've fully traversed the EDT and copied out any matching entries.
1950 */
1951 if (ret == 1)
1952 cdm->status = CAM_DEV_MATCH_LAST;
1953
1954 return(ret);
1955 }
1956
1957 static int
xptplistpdrvfunc(struct periph_driver ** pdrv,void * arg)1958 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1959 {
1960 struct cam_periph *periph;
1961 struct ccb_dev_match *cdm;
1962
1963 cdm = (struct ccb_dev_match *)arg;
1964
1965 xpt_lock_buses();
1966 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1967 && (cdm->pos.cookie.pdrv == pdrv)
1968 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1969 && (cdm->pos.cookie.periph != NULL)) {
1970 if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1971 (*pdrv)->generation) {
1972 xpt_unlock_buses();
1973 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1974 return(0);
1975 }
1976 periph = (struct cam_periph *)cdm->pos.cookie.periph;
1977 periph->refcount++;
1978 } else
1979 periph = NULL;
1980 xpt_unlock_buses();
1981
1982 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
1983 }
1984
1985 static int
xptplistperiphfunc(struct cam_periph * periph,void * arg)1986 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1987 {
1988 struct ccb_dev_match *cdm;
1989 dev_match_ret retval;
1990
1991 cdm = (struct ccb_dev_match *)arg;
1992
1993 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1994
1995 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1996 cdm->status = CAM_DEV_MATCH_ERROR;
1997 return(0);
1998 }
1999
2000 /*
2001 * If the copy flag is set, copy this peripheral out.
2002 */
2003 if (retval & DM_RET_COPY) {
2004 int spaceleft, j;
2005 size_t l;
2006
2007 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2008 sizeof(struct dev_match_result));
2009
2010 /*
2011 * If we don't have enough space to put in another
2012 * match result, save our position and tell the
2013 * user there are more devices to check.
2014 */
2015 if (spaceleft < sizeof(struct dev_match_result)) {
2016 struct periph_driver **pdrv;
2017
2018 pdrv = NULL;
2019 bzero(&cdm->pos, sizeof(cdm->pos));
2020 cdm->pos.position_type =
2021 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2022 CAM_DEV_POS_PERIPH;
2023
2024 /*
2025 * This may look a bit non-sensical, but it is
2026 * actually quite logical. There are very few
2027 * peripheral drivers, and bloating every peripheral
2028 * structure with a pointer back to its parent
2029 * peripheral driver linker set entry would cost
2030 * more in the long run than doing this quick lookup.
2031 */
2032 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2033 if (strcmp((*pdrv)->driver_name,
2034 periph->periph_name) == 0)
2035 break;
2036 }
2037
2038 if (*pdrv == NULL) {
2039 cdm->status = CAM_DEV_MATCH_ERROR;
2040 return(0);
2041 }
2042
2043 cdm->pos.cookie.pdrv = pdrv;
2044 /*
2045 * The periph generation slot does double duty, as
2046 * does the periph pointer slot. They are used for
2047 * both edt and pdrv lookups and positioning.
2048 */
2049 cdm->pos.cookie.periph = periph;
2050 cdm->pos.generations[CAM_PERIPH_GENERATION] =
2051 (*pdrv)->generation;
2052 cdm->status = CAM_DEV_MATCH_MORE;
2053 return(0);
2054 }
2055
2056 j = cdm->num_matches;
2057 cdm->num_matches++;
2058 cdm->matches[j].type = DEV_MATCH_PERIPH;
2059 cdm->matches[j].result.periph_result.path_id =
2060 periph->path->bus->path_id;
2061
2062 /*
2063 * The transport layer peripheral doesn't have a target or
2064 * lun.
2065 */
2066 if (periph->path->target)
2067 cdm->matches[j].result.periph_result.target_id =
2068 periph->path->target->target_id;
2069 else
2070 cdm->matches[j].result.periph_result.target_id =
2071 CAM_TARGET_WILDCARD;
2072
2073 if (periph->path->device)
2074 cdm->matches[j].result.periph_result.target_lun =
2075 periph->path->device->lun_id;
2076 else
2077 cdm->matches[j].result.periph_result.target_lun =
2078 CAM_LUN_WILDCARD;
2079
2080 cdm->matches[j].result.periph_result.unit_number =
2081 periph->unit_number;
2082 l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2083 strlcpy(cdm->matches[j].result.periph_result.periph_name,
2084 periph->periph_name, l);
2085 }
2086
2087 return(1);
2088 }
2089
2090 static int
xptperiphlistmatch(struct ccb_dev_match * cdm)2091 xptperiphlistmatch(struct ccb_dev_match *cdm)
2092 {
2093 int ret;
2094
2095 cdm->num_matches = 0;
2096
2097 /*
2098 * At this point in the edt traversal function, we check the bus
2099 * list generation to make sure that no buses have been added or
2100 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2101 * For the peripheral driver list traversal function, however, we
2102 * don't have to worry about new peripheral driver types coming or
2103 * going; they're in a linker set, and therefore can't change
2104 * without a recompile.
2105 */
2106
2107 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2108 && (cdm->pos.cookie.pdrv != NULL))
2109 ret = xptpdrvtraverse(
2110 (struct periph_driver **)cdm->pos.cookie.pdrv,
2111 xptplistpdrvfunc, cdm);
2112 else
2113 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2114
2115 /*
2116 * If we get back 0, that means that we had to stop before fully
2117 * traversing the peripheral driver tree. It also means that one of
2118 * the subroutines has set the status field to the proper value. If
2119 * we get back 1, we've fully traversed the EDT and copied out any
2120 * matching entries.
2121 */
2122 if (ret == 1)
2123 cdm->status = CAM_DEV_MATCH_LAST;
2124
2125 return(ret);
2126 }
2127
2128 static int
xptbustraverse(struct cam_eb * start_bus,xpt_busfunc_t * tr_func,void * arg)2129 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2130 {
2131 struct cam_eb *bus, *next_bus;
2132 int retval;
2133
2134 retval = 1;
2135 if (start_bus)
2136 bus = start_bus;
2137 else {
2138 xpt_lock_buses();
2139 bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2140 if (bus == NULL) {
2141 xpt_unlock_buses();
2142 return (retval);
2143 }
2144 bus->refcount++;
2145 xpt_unlock_buses();
2146 }
2147 for (; bus != NULL; bus = next_bus) {
2148 retval = tr_func(bus, arg);
2149 if (retval == 0) {
2150 xpt_release_bus(bus);
2151 break;
2152 }
2153 xpt_lock_buses();
2154 next_bus = TAILQ_NEXT(bus, links);
2155 if (next_bus)
2156 next_bus->refcount++;
2157 xpt_unlock_buses();
2158 xpt_release_bus(bus);
2159 }
2160 return(retval);
2161 }
2162
2163 static int
xpttargettraverse(struct cam_eb * bus,struct cam_et * start_target,xpt_targetfunc_t * tr_func,void * arg)2164 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2165 xpt_targetfunc_t *tr_func, void *arg)
2166 {
2167 struct cam_et *target, *next_target;
2168 int retval;
2169
2170 retval = 1;
2171 if (start_target)
2172 target = start_target;
2173 else {
2174 mtx_lock(&bus->eb_mtx);
2175 target = TAILQ_FIRST(&bus->et_entries);
2176 if (target == NULL) {
2177 mtx_unlock(&bus->eb_mtx);
2178 return (retval);
2179 }
2180 target->refcount++;
2181 mtx_unlock(&bus->eb_mtx);
2182 }
2183 for (; target != NULL; target = next_target) {
2184 retval = tr_func(target, arg);
2185 if (retval == 0) {
2186 xpt_release_target(target);
2187 break;
2188 }
2189 mtx_lock(&bus->eb_mtx);
2190 next_target = TAILQ_NEXT(target, links);
2191 if (next_target)
2192 next_target->refcount++;
2193 mtx_unlock(&bus->eb_mtx);
2194 xpt_release_target(target);
2195 }
2196 return(retval);
2197 }
2198
2199 static int
xptdevicetraverse(struct cam_et * target,struct cam_ed * start_device,xpt_devicefunc_t * tr_func,void * arg)2200 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2201 xpt_devicefunc_t *tr_func, void *arg)
2202 {
2203 struct cam_eb *bus;
2204 struct cam_ed *device, *next_device;
2205 int retval;
2206
2207 retval = 1;
2208 bus = target->bus;
2209 if (start_device)
2210 device = start_device;
2211 else {
2212 mtx_lock(&bus->eb_mtx);
2213 device = TAILQ_FIRST(&target->ed_entries);
2214 if (device == NULL) {
2215 mtx_unlock(&bus->eb_mtx);
2216 return (retval);
2217 }
2218 device->refcount++;
2219 mtx_unlock(&bus->eb_mtx);
2220 }
2221 for (; device != NULL; device = next_device) {
2222 mtx_lock(&device->device_mtx);
2223 retval = tr_func(device, arg);
2224 mtx_unlock(&device->device_mtx);
2225 if (retval == 0) {
2226 xpt_release_device(device);
2227 break;
2228 }
2229 mtx_lock(&bus->eb_mtx);
2230 next_device = TAILQ_NEXT(device, links);
2231 if (next_device)
2232 next_device->refcount++;
2233 mtx_unlock(&bus->eb_mtx);
2234 xpt_release_device(device);
2235 }
2236 return(retval);
2237 }
2238
2239 static int
xptperiphtraverse(struct cam_ed * device,struct cam_periph * start_periph,xpt_periphfunc_t * tr_func,void * arg)2240 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2241 xpt_periphfunc_t *tr_func, void *arg)
2242 {
2243 struct cam_eb *bus;
2244 struct cam_periph *periph, *next_periph;
2245 int retval;
2246
2247 retval = 1;
2248
2249 bus = device->target->bus;
2250 if (start_periph)
2251 periph = start_periph;
2252 else {
2253 xpt_lock_buses();
2254 mtx_lock(&bus->eb_mtx);
2255 periph = SLIST_FIRST(&device->periphs);
2256 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2257 periph = SLIST_NEXT(periph, periph_links);
2258 if (periph == NULL) {
2259 mtx_unlock(&bus->eb_mtx);
2260 xpt_unlock_buses();
2261 return (retval);
2262 }
2263 periph->refcount++;
2264 mtx_unlock(&bus->eb_mtx);
2265 xpt_unlock_buses();
2266 }
2267 for (; periph != NULL; periph = next_periph) {
2268 retval = tr_func(periph, arg);
2269 if (retval == 0) {
2270 cam_periph_release_locked(periph);
2271 break;
2272 }
2273 xpt_lock_buses();
2274 mtx_lock(&bus->eb_mtx);
2275 next_periph = SLIST_NEXT(periph, periph_links);
2276 while (next_periph != NULL &&
2277 (next_periph->flags & CAM_PERIPH_FREE) != 0)
2278 next_periph = SLIST_NEXT(next_periph, periph_links);
2279 if (next_periph)
2280 next_periph->refcount++;
2281 mtx_unlock(&bus->eb_mtx);
2282 xpt_unlock_buses();
2283 cam_periph_release_locked(periph);
2284 }
2285 return(retval);
2286 }
2287
2288 static int
xptpdrvtraverse(struct periph_driver ** start_pdrv,xpt_pdrvfunc_t * tr_func,void * arg)2289 xptpdrvtraverse(struct periph_driver **start_pdrv,
2290 xpt_pdrvfunc_t *tr_func, void *arg)
2291 {
2292 struct periph_driver **pdrv;
2293 int retval;
2294
2295 retval = 1;
2296
2297 /*
2298 * We don't traverse the peripheral driver list like we do the
2299 * other lists, because it is a linker set, and therefore cannot be
2300 * changed during runtime. If the peripheral driver list is ever
2301 * re-done to be something other than a linker set (i.e. it can
2302 * change while the system is running), the list traversal should
2303 * be modified to work like the other traversal functions.
2304 */
2305 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2306 *pdrv != NULL; pdrv++) {
2307 retval = tr_func(pdrv, arg);
2308
2309 if (retval == 0)
2310 return(retval);
2311 }
2312
2313 return(retval);
2314 }
2315
2316 static int
xptpdperiphtraverse(struct periph_driver ** pdrv,struct cam_periph * start_periph,xpt_periphfunc_t * tr_func,void * arg)2317 xptpdperiphtraverse(struct periph_driver **pdrv,
2318 struct cam_periph *start_periph,
2319 xpt_periphfunc_t *tr_func, void *arg)
2320 {
2321 struct cam_periph *periph, *next_periph;
2322 int retval;
2323
2324 retval = 1;
2325
2326 if (start_periph)
2327 periph = start_periph;
2328 else {
2329 xpt_lock_buses();
2330 periph = TAILQ_FIRST(&(*pdrv)->units);
2331 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2332 periph = TAILQ_NEXT(periph, unit_links);
2333 if (periph == NULL) {
2334 xpt_unlock_buses();
2335 return (retval);
2336 }
2337 periph->refcount++;
2338 xpt_unlock_buses();
2339 }
2340 for (; periph != NULL; periph = next_periph) {
2341 cam_periph_lock(periph);
2342 retval = tr_func(periph, arg);
2343 cam_periph_unlock(periph);
2344 if (retval == 0) {
2345 cam_periph_release(periph);
2346 break;
2347 }
2348 xpt_lock_buses();
2349 next_periph = TAILQ_NEXT(periph, unit_links);
2350 while (next_periph != NULL &&
2351 (next_periph->flags & CAM_PERIPH_FREE) != 0)
2352 next_periph = TAILQ_NEXT(next_periph, unit_links);
2353 if (next_periph)
2354 next_periph->refcount++;
2355 xpt_unlock_buses();
2356 cam_periph_release(periph);
2357 }
2358 return(retval);
2359 }
2360
2361 static int
xptdefbusfunc(struct cam_eb * bus,void * arg)2362 xptdefbusfunc(struct cam_eb *bus, void *arg)
2363 {
2364 struct xpt_traverse_config *tr_config;
2365
2366 tr_config = (struct xpt_traverse_config *)arg;
2367
2368 if (tr_config->depth == XPT_DEPTH_BUS) {
2369 xpt_busfunc_t *tr_func;
2370
2371 tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2372
2373 return(tr_func(bus, tr_config->tr_arg));
2374 } else
2375 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2376 }
2377
2378 static int
xptdeftargetfunc(struct cam_et * target,void * arg)2379 xptdeftargetfunc(struct cam_et *target, void *arg)
2380 {
2381 struct xpt_traverse_config *tr_config;
2382
2383 tr_config = (struct xpt_traverse_config *)arg;
2384
2385 if (tr_config->depth == XPT_DEPTH_TARGET) {
2386 xpt_targetfunc_t *tr_func;
2387
2388 tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2389
2390 return(tr_func(target, tr_config->tr_arg));
2391 } else
2392 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2393 }
2394
2395 static int
xptdefdevicefunc(struct cam_ed * device,void * arg)2396 xptdefdevicefunc(struct cam_ed *device, void *arg)
2397 {
2398 struct xpt_traverse_config *tr_config;
2399
2400 tr_config = (struct xpt_traverse_config *)arg;
2401
2402 if (tr_config->depth == XPT_DEPTH_DEVICE) {
2403 xpt_devicefunc_t *tr_func;
2404
2405 tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2406
2407 return(tr_func(device, tr_config->tr_arg));
2408 } else
2409 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2410 }
2411
2412 static int
xptdefperiphfunc(struct cam_periph * periph,void * arg)2413 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2414 {
2415 struct xpt_traverse_config *tr_config;
2416 xpt_periphfunc_t *tr_func;
2417
2418 tr_config = (struct xpt_traverse_config *)arg;
2419
2420 tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2421
2422 /*
2423 * Unlike the other default functions, we don't check for depth
2424 * here. The peripheral driver level is the last level in the EDT,
2425 * so if we're here, we should execute the function in question.
2426 */
2427 return(tr_func(periph, tr_config->tr_arg));
2428 }
2429
2430 /*
2431 * Execute the given function for every bus in the EDT.
2432 */
2433 static int
xpt_for_all_busses(xpt_busfunc_t * tr_func,void * arg)2434 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2435 {
2436 struct xpt_traverse_config tr_config;
2437
2438 tr_config.depth = XPT_DEPTH_BUS;
2439 tr_config.tr_func = tr_func;
2440 tr_config.tr_arg = arg;
2441
2442 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2443 }
2444
2445 /*
2446 * Execute the given function for every device in the EDT.
2447 */
2448 static int
xpt_for_all_devices(xpt_devicefunc_t * tr_func,void * arg)2449 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2450 {
2451 struct xpt_traverse_config tr_config;
2452
2453 tr_config.depth = XPT_DEPTH_DEVICE;
2454 tr_config.tr_func = tr_func;
2455 tr_config.tr_arg = arg;
2456
2457 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2458 }
2459
2460 static int
xptsetasyncfunc(struct cam_ed * device,void * arg)2461 xptsetasyncfunc(struct cam_ed *device, void *arg)
2462 {
2463 struct cam_path path;
2464 struct ccb_getdev cgd;
2465 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2466
2467 /*
2468 * Don't report unconfigured devices (Wildcard devs,
2469 * devices only for target mode, device instances
2470 * that have been invalidated but are waiting for
2471 * their last reference count to be released).
2472 */
2473 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2474 return (1);
2475
2476 xpt_compile_path(&path,
2477 NULL,
2478 device->target->bus->path_id,
2479 device->target->target_id,
2480 device->lun_id);
2481 xpt_gdev_type(&cgd, &path);
2482 csa->callback(csa->callback_arg,
2483 AC_FOUND_DEVICE,
2484 &path, &cgd);
2485 xpt_release_path(&path);
2486
2487 return(1);
2488 }
2489
2490 static int
xptsetasyncbusfunc(struct cam_eb * bus,void * arg)2491 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2492 {
2493 struct cam_path path;
2494 struct ccb_pathinq cpi;
2495 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2496
2497 xpt_compile_path(&path, /*periph*/NULL,
2498 bus->path_id,
2499 CAM_TARGET_WILDCARD,
2500 CAM_LUN_WILDCARD);
2501 xpt_path_lock(&path);
2502 xpt_path_inq(&cpi, &path);
2503 csa->callback(csa->callback_arg,
2504 AC_PATH_REGISTERED,
2505 &path, &cpi);
2506 xpt_path_unlock(&path);
2507 xpt_release_path(&path);
2508
2509 return(1);
2510 }
2511
2512 void
xpt_action(union ccb * start_ccb)2513 xpt_action(union ccb *start_ccb)
2514 {
2515
2516 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2517 ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2518 xpt_action_name(start_ccb->ccb_h.func_code)));
2519
2520 /*
2521 * Either it isn't queued, or it has a real priority. There still too
2522 * many places that reuse CCBs with a real priority to do immediate
2523 * queries to do the other side of this assert.
2524 */
2525 KASSERT((start_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0 ||
2526 start_ccb->ccb_h.pinfo.priority != CAM_PRIORITY_NONE,
2527 ("%s: queued ccb and CAM_PRIORITY_NONE illegal.", __func__));
2528
2529 start_ccb->ccb_h.status = CAM_REQ_INPROG;
2530 (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2531 }
2532
2533 void
xpt_action_default(union ccb * start_ccb)2534 xpt_action_default(union ccb *start_ccb)
2535 {
2536 struct cam_path *path;
2537 struct cam_sim *sim;
2538 struct mtx *mtx;
2539
2540 path = start_ccb->ccb_h.path;
2541 CAM_DEBUG(path, CAM_DEBUG_TRACE,
2542 ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2543 xpt_action_name(start_ccb->ccb_h.func_code)));
2544
2545 switch (start_ccb->ccb_h.func_code) {
2546 case XPT_SCSI_IO:
2547 {
2548 struct cam_ed *device;
2549
2550 /*
2551 * For the sake of compatibility with SCSI-1
2552 * devices that may not understand the identify
2553 * message, we include lun information in the
2554 * second byte of all commands. SCSI-1 specifies
2555 * that luns are a 3 bit value and reserves only 3
2556 * bits for lun information in the CDB. Later
2557 * revisions of the SCSI spec allow for more than 8
2558 * luns, but have deprecated lun information in the
2559 * CDB. So, if the lun won't fit, we must omit.
2560 *
2561 * Also be aware that during initial probing for devices,
2562 * the inquiry information is unknown but initialized to 0.
2563 * This means that this code will be exercised while probing
2564 * devices with an ANSI revision greater than 2.
2565 */
2566 device = path->device;
2567 if (device->protocol_version <= SCSI_REV_2
2568 && start_ccb->ccb_h.target_lun < 8
2569 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2570 start_ccb->csio.cdb_io.cdb_bytes[1] |=
2571 start_ccb->ccb_h.target_lun << 5;
2572 }
2573 start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2574 }
2575 /* FALLTHROUGH */
2576 case XPT_TARGET_IO:
2577 case XPT_CONT_TARGET_IO:
2578 start_ccb->csio.sense_resid = 0;
2579 start_ccb->csio.resid = 0;
2580 /* FALLTHROUGH */
2581 case XPT_ATA_IO:
2582 if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2583 start_ccb->ataio.resid = 0;
2584 /* FALLTHROUGH */
2585 case XPT_NVME_IO:
2586 case XPT_NVME_ADMIN:
2587 case XPT_MMC_IO:
2588 case XPT_MMC_GET_TRAN_SETTINGS:
2589 case XPT_MMC_SET_TRAN_SETTINGS:
2590 case XPT_RESET_DEV:
2591 case XPT_ENG_EXEC:
2592 case XPT_SMP_IO:
2593 {
2594 struct cam_devq *devq;
2595
2596 devq = path->bus->sim->devq;
2597 mtx_lock(&devq->send_mtx);
2598 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2599 if (xpt_schedule_devq(devq, path->device) != 0)
2600 xpt_run_devq(devq);
2601 mtx_unlock(&devq->send_mtx);
2602 break;
2603 }
2604 case XPT_CALC_GEOMETRY:
2605 /* Filter out garbage */
2606 if (start_ccb->ccg.block_size == 0
2607 || start_ccb->ccg.volume_size == 0) {
2608 start_ccb->ccg.cylinders = 0;
2609 start_ccb->ccg.heads = 0;
2610 start_ccb->ccg.secs_per_track = 0;
2611 start_ccb->ccb_h.status = CAM_REQ_CMP;
2612 break;
2613 }
2614 goto call_sim;
2615 case XPT_ABORT:
2616 {
2617 union ccb* abort_ccb;
2618
2619 abort_ccb = start_ccb->cab.abort_ccb;
2620 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2621 struct cam_ed *device;
2622 struct cam_devq *devq;
2623
2624 device = abort_ccb->ccb_h.path->device;
2625 devq = device->sim->devq;
2626
2627 mtx_lock(&devq->send_mtx);
2628 if (abort_ccb->ccb_h.pinfo.index > 0) {
2629 cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2630 abort_ccb->ccb_h.status =
2631 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2632 xpt_freeze_devq_device(device, 1);
2633 mtx_unlock(&devq->send_mtx);
2634 xpt_done(abort_ccb);
2635 start_ccb->ccb_h.status = CAM_REQ_CMP;
2636 break;
2637 }
2638 mtx_unlock(&devq->send_mtx);
2639
2640 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2641 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2642 /*
2643 * We've caught this ccb en route to
2644 * the SIM. Flag it for abort and the
2645 * SIM will do so just before starting
2646 * real work on the CCB.
2647 */
2648 abort_ccb->ccb_h.status =
2649 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2650 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2651 start_ccb->ccb_h.status = CAM_REQ_CMP;
2652 break;
2653 }
2654 }
2655 if (XPT_FC_IS_QUEUED(abort_ccb)
2656 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2657 /*
2658 * It's already completed but waiting
2659 * for our SWI to get to it.
2660 */
2661 start_ccb->ccb_h.status = CAM_UA_ABORT;
2662 break;
2663 }
2664 /*
2665 * If we weren't able to take care of the abort request
2666 * in the XPT, pass the request down to the SIM for processing.
2667 */
2668 }
2669 /* FALLTHROUGH */
2670 case XPT_ACCEPT_TARGET_IO:
2671 case XPT_EN_LUN:
2672 case XPT_IMMED_NOTIFY:
2673 case XPT_NOTIFY_ACK:
2674 case XPT_RESET_BUS:
2675 case XPT_IMMEDIATE_NOTIFY:
2676 case XPT_NOTIFY_ACKNOWLEDGE:
2677 case XPT_GET_SIM_KNOB_OLD:
2678 case XPT_GET_SIM_KNOB:
2679 case XPT_SET_SIM_KNOB:
2680 case XPT_GET_TRAN_SETTINGS:
2681 case XPT_SET_TRAN_SETTINGS:
2682 case XPT_PATH_INQ:
2683 call_sim:
2684 sim = path->bus->sim;
2685 mtx = sim->mtx;
2686 if (mtx && !mtx_owned(mtx))
2687 mtx_lock(mtx);
2688 else
2689 mtx = NULL;
2690
2691 CAM_DEBUG(path, CAM_DEBUG_TRACE,
2692 ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code));
2693 (*(sim->sim_action))(sim, start_ccb);
2694 CAM_DEBUG(path, CAM_DEBUG_TRACE,
2695 ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status));
2696 if (mtx)
2697 mtx_unlock(mtx);
2698 break;
2699 case XPT_PATH_STATS:
2700 start_ccb->cpis.last_reset = path->bus->last_reset;
2701 start_ccb->ccb_h.status = CAM_REQ_CMP;
2702 break;
2703 case XPT_GDEV_TYPE:
2704 {
2705 struct cam_ed *dev;
2706
2707 dev = path->device;
2708 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2709 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2710 } else {
2711 struct ccb_getdev *cgd;
2712
2713 cgd = &start_ccb->cgd;
2714 cgd->protocol = dev->protocol;
2715 cgd->inq_data = dev->inq_data;
2716 cgd->ident_data = dev->ident_data;
2717 cgd->inq_flags = dev->inq_flags;
2718 cgd->ccb_h.status = CAM_REQ_CMP;
2719 cgd->serial_num_len = dev->serial_num_len;
2720 if ((dev->serial_num_len > 0)
2721 && (dev->serial_num != NULL))
2722 bcopy(dev->serial_num, cgd->serial_num,
2723 dev->serial_num_len);
2724 }
2725 break;
2726 }
2727 case XPT_GDEV_STATS:
2728 {
2729 struct ccb_getdevstats *cgds = &start_ccb->cgds;
2730 struct cam_ed *dev = path->device;
2731 struct cam_eb *bus = path->bus;
2732 struct cam_et *tar = path->target;
2733 struct cam_devq *devq = bus->sim->devq;
2734
2735 mtx_lock(&devq->send_mtx);
2736 cgds->dev_openings = dev->ccbq.dev_openings;
2737 cgds->dev_active = dev->ccbq.dev_active;
2738 cgds->allocated = dev->ccbq.allocated;
2739 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2740 cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
2741 cgds->last_reset = tar->last_reset;
2742 cgds->maxtags = dev->maxtags;
2743 cgds->mintags = dev->mintags;
2744 if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2745 cgds->last_reset = bus->last_reset;
2746 mtx_unlock(&devq->send_mtx);
2747 cgds->ccb_h.status = CAM_REQ_CMP;
2748 break;
2749 }
2750 case XPT_GDEVLIST:
2751 {
2752 struct cam_periph *nperiph;
2753 struct periph_list *periph_head;
2754 struct ccb_getdevlist *cgdl;
2755 u_int i;
2756 struct cam_ed *device;
2757 bool found;
2758
2759 found = false;
2760
2761 /*
2762 * Don't want anyone mucking with our data.
2763 */
2764 device = path->device;
2765 periph_head = &device->periphs;
2766 cgdl = &start_ccb->cgdl;
2767
2768 /*
2769 * Check and see if the list has changed since the user
2770 * last requested a list member. If so, tell them that the
2771 * list has changed, and therefore they need to start over
2772 * from the beginning.
2773 */
2774 if ((cgdl->index != 0) &&
2775 (cgdl->generation != device->generation)) {
2776 cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2777 break;
2778 }
2779
2780 /*
2781 * Traverse the list of peripherals and attempt to find
2782 * the requested peripheral.
2783 */
2784 for (nperiph = SLIST_FIRST(periph_head), i = 0;
2785 (nperiph != NULL) && (i <= cgdl->index);
2786 nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2787 if (i == cgdl->index) {
2788 strlcpy(cgdl->periph_name,
2789 nperiph->periph_name,
2790 sizeof(cgdl->periph_name));
2791 cgdl->unit_number = nperiph->unit_number;
2792 found = true;
2793 }
2794 }
2795 if (!found) {
2796 cgdl->status = CAM_GDEVLIST_ERROR;
2797 break;
2798 }
2799
2800 if (nperiph == NULL)
2801 cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2802 else
2803 cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2804
2805 cgdl->index++;
2806 cgdl->generation = device->generation;
2807
2808 cgdl->ccb_h.status = CAM_REQ_CMP;
2809 break;
2810 }
2811 case XPT_DEV_MATCH:
2812 {
2813 dev_pos_type position_type;
2814 struct ccb_dev_match *cdm;
2815
2816 cdm = &start_ccb->cdm;
2817
2818 /*
2819 * There are two ways of getting at information in the EDT.
2820 * The first way is via the primary EDT tree. It starts
2821 * with a list of buses, then a list of targets on a bus,
2822 * then devices/luns on a target, and then peripherals on a
2823 * device/lun. The "other" way is by the peripheral driver
2824 * lists. The peripheral driver lists are organized by
2825 * peripheral driver. (obviously) So it makes sense to
2826 * use the peripheral driver list if the user is looking
2827 * for something like "da1", or all "da" devices. If the
2828 * user is looking for something on a particular bus/target
2829 * or lun, it's generally better to go through the EDT tree.
2830 */
2831
2832 if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2833 position_type = cdm->pos.position_type;
2834 else {
2835 u_int i;
2836
2837 position_type = CAM_DEV_POS_NONE;
2838
2839 for (i = 0; i < cdm->num_patterns; i++) {
2840 if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2841 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2842 position_type = CAM_DEV_POS_EDT;
2843 break;
2844 }
2845 }
2846
2847 if (cdm->num_patterns == 0)
2848 position_type = CAM_DEV_POS_EDT;
2849 else if (position_type == CAM_DEV_POS_NONE)
2850 position_type = CAM_DEV_POS_PDRV;
2851 }
2852
2853 switch(position_type & CAM_DEV_POS_TYPEMASK) {
2854 case CAM_DEV_POS_EDT:
2855 xptedtmatch(cdm);
2856 break;
2857 case CAM_DEV_POS_PDRV:
2858 xptperiphlistmatch(cdm);
2859 break;
2860 default:
2861 cdm->status = CAM_DEV_MATCH_ERROR;
2862 break;
2863 }
2864
2865 if (cdm->status == CAM_DEV_MATCH_ERROR)
2866 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2867 else
2868 start_ccb->ccb_h.status = CAM_REQ_CMP;
2869
2870 break;
2871 }
2872 case XPT_SASYNC_CB:
2873 {
2874 struct ccb_setasync *csa;
2875 struct async_node *cur_entry;
2876 struct async_list *async_head;
2877 uint32_t added;
2878
2879 csa = &start_ccb->csa;
2880 added = csa->event_enable;
2881 async_head = &path->device->asyncs;
2882
2883 /*
2884 * If there is already an entry for us, simply
2885 * update it.
2886 */
2887 cur_entry = SLIST_FIRST(async_head);
2888 while (cur_entry != NULL) {
2889 if ((cur_entry->callback_arg == csa->callback_arg)
2890 && (cur_entry->callback == csa->callback))
2891 break;
2892 cur_entry = SLIST_NEXT(cur_entry, links);
2893 }
2894
2895 if (cur_entry != NULL) {
2896 /*
2897 * If the request has no flags set,
2898 * remove the entry.
2899 */
2900 added &= ~cur_entry->event_enable;
2901 if (csa->event_enable == 0) {
2902 SLIST_REMOVE(async_head, cur_entry,
2903 async_node, links);
2904 xpt_release_device(path->device);
2905 free(cur_entry, M_CAMXPT);
2906 } else {
2907 cur_entry->event_enable = csa->event_enable;
2908 }
2909 csa->event_enable = added;
2910 } else {
2911 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2912 M_NOWAIT);
2913 if (cur_entry == NULL) {
2914 csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2915 break;
2916 }
2917 cur_entry->event_enable = csa->event_enable;
2918 cur_entry->event_lock = (path->bus->sim->mtx &&
2919 mtx_owned(path->bus->sim->mtx)) ? 1 : 0;
2920 cur_entry->callback_arg = csa->callback_arg;
2921 cur_entry->callback = csa->callback;
2922 SLIST_INSERT_HEAD(async_head, cur_entry, links);
2923 xpt_acquire_device(path->device);
2924 }
2925 start_ccb->ccb_h.status = CAM_REQ_CMP;
2926 break;
2927 }
2928 case XPT_REL_SIMQ:
2929 {
2930 struct ccb_relsim *crs;
2931 struct cam_ed *dev;
2932
2933 crs = &start_ccb->crs;
2934 dev = path->device;
2935 if (dev == NULL) {
2936 crs->ccb_h.status = CAM_DEV_NOT_THERE;
2937 break;
2938 }
2939
2940 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2941 /* Don't ever go below one opening */
2942 if (crs->openings > 0) {
2943 xpt_dev_ccbq_resize(path, crs->openings);
2944 if (bootverbose) {
2945 xpt_print(path,
2946 "number of openings is now %d\n",
2947 crs->openings);
2948 }
2949 }
2950 }
2951
2952 mtx_lock(&dev->sim->devq->send_mtx);
2953 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2954 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2955 /*
2956 * Just extend the old timeout and decrement
2957 * the freeze count so that a single timeout
2958 * is sufficient for releasing the queue.
2959 */
2960 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2961 callout_stop(&dev->callout);
2962 } else {
2963 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2964 }
2965
2966 callout_reset_sbt(&dev->callout,
2967 SBT_1MS * crs->release_timeout, SBT_1MS,
2968 xpt_release_devq_timeout, dev, 0);
2969
2970 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2971 }
2972
2973 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2974 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2975 /*
2976 * Decrement the freeze count so that a single
2977 * completion is still sufficient to unfreeze
2978 * the queue.
2979 */
2980 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2981 } else {
2982 dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2983 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2984 }
2985 }
2986
2987 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2988 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2989 || (dev->ccbq.dev_active == 0)) {
2990 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2991 } else {
2992 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2993 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2994 }
2995 }
2996 mtx_unlock(&dev->sim->devq->send_mtx);
2997
2998 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2999 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
3000 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
3001 start_ccb->ccb_h.status = CAM_REQ_CMP;
3002 break;
3003 }
3004 case XPT_DEBUG: {
3005 struct cam_path *oldpath;
3006
3007 /* Check that all request bits are supported. */
3008 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3009 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3010 break;
3011 }
3012
3013 cam_dflags = CAM_DEBUG_NONE;
3014 if (cam_dpath != NULL) {
3015 oldpath = cam_dpath;
3016 cam_dpath = NULL;
3017 xpt_free_path(oldpath);
3018 }
3019 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3020 if (xpt_create_path(&cam_dpath, NULL,
3021 start_ccb->ccb_h.path_id,
3022 start_ccb->ccb_h.target_id,
3023 start_ccb->ccb_h.target_lun) !=
3024 CAM_REQ_CMP) {
3025 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3026 } else {
3027 cam_dflags = start_ccb->cdbg.flags;
3028 start_ccb->ccb_h.status = CAM_REQ_CMP;
3029 xpt_print(cam_dpath, "debugging flags now %x\n",
3030 cam_dflags);
3031 }
3032 } else
3033 start_ccb->ccb_h.status = CAM_REQ_CMP;
3034 break;
3035 }
3036 case XPT_NOOP:
3037 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3038 xpt_freeze_devq(path, 1);
3039 start_ccb->ccb_h.status = CAM_REQ_CMP;
3040 break;
3041 case XPT_REPROBE_LUN:
3042 xpt_async(AC_INQ_CHANGED, path, NULL);
3043 start_ccb->ccb_h.status = CAM_REQ_CMP;
3044 xpt_done(start_ccb);
3045 break;
3046 case XPT_ASYNC:
3047 /*
3048 * Queue the async operation so it can be run from a sleepable
3049 * context.
3050 */
3051 start_ccb->ccb_h.status = CAM_REQ_CMP;
3052 mtx_lock(&cam_async.cam_doneq_mtx);
3053 STAILQ_INSERT_TAIL(&cam_async.cam_doneq, &start_ccb->ccb_h, sim_links.stqe);
3054 start_ccb->ccb_h.pinfo.index = CAM_ASYNC_INDEX;
3055 mtx_unlock(&cam_async.cam_doneq_mtx);
3056 wakeup(&cam_async.cam_doneq);
3057 break;
3058 default:
3059 case XPT_SDEV_TYPE:
3060 case XPT_TERM_IO:
3061 case XPT_ENG_INQ:
3062 /* XXX Implement */
3063 xpt_print(start_ccb->ccb_h.path,
3064 "%s: CCB type %#x %s not supported\n", __func__,
3065 start_ccb->ccb_h.func_code,
3066 xpt_action_name(start_ccb->ccb_h.func_code));
3067 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3068 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3069 xpt_done(start_ccb);
3070 }
3071 break;
3072 }
3073 CAM_DEBUG(path, CAM_DEBUG_TRACE,
3074 ("xpt_action_default: func= %#x %s status %#x\n",
3075 start_ccb->ccb_h.func_code,
3076 xpt_action_name(start_ccb->ccb_h.func_code),
3077 start_ccb->ccb_h.status));
3078 }
3079
3080 /*
3081 * Call the sim poll routine to allow the sim to complete
3082 * any inflight requests, then call camisr_runqueue to
3083 * complete any CCB that the polling completed.
3084 */
3085 void
xpt_sim_poll(struct cam_sim * sim)3086 xpt_sim_poll(struct cam_sim *sim)
3087 {
3088 struct mtx *mtx;
3089
3090 KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__));
3091 mtx = sim->mtx;
3092 if (mtx)
3093 mtx_lock(mtx);
3094 (*(sim->sim_poll))(sim);
3095 if (mtx)
3096 mtx_unlock(mtx);
3097 camisr_runqueue();
3098 }
3099
3100 uint32_t
xpt_poll_setup(union ccb * start_ccb)3101 xpt_poll_setup(union ccb *start_ccb)
3102 {
3103 uint32_t timeout;
3104 struct cam_sim *sim;
3105 struct cam_devq *devq;
3106 struct cam_ed *dev;
3107
3108 timeout = start_ccb->ccb_h.timeout * 10;
3109 sim = start_ccb->ccb_h.path->bus->sim;
3110 devq = sim->devq;
3111 dev = start_ccb->ccb_h.path->device;
3112
3113 KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__));
3114
3115 /*
3116 * Steal an opening so that no other queued requests
3117 * can get it before us while we simulate interrupts.
3118 */
3119 mtx_lock(&devq->send_mtx);
3120 dev->ccbq.dev_openings--;
3121 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3122 (--timeout > 0)) {
3123 mtx_unlock(&devq->send_mtx);
3124 DELAY(100);
3125 xpt_sim_poll(sim);
3126 mtx_lock(&devq->send_mtx);
3127 }
3128 dev->ccbq.dev_openings++;
3129 mtx_unlock(&devq->send_mtx);
3130
3131 return (timeout);
3132 }
3133
3134 void
xpt_pollwait(union ccb * start_ccb,uint32_t timeout)3135 xpt_pollwait(union ccb *start_ccb, uint32_t timeout)
3136 {
3137
3138 KASSERT(cam_sim_pollable(start_ccb->ccb_h.path->bus->sim),
3139 ("%s: non-pollable sim", __func__));
3140 while (--timeout > 0) {
3141 xpt_sim_poll(start_ccb->ccb_h.path->bus->sim);
3142 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3143 != CAM_REQ_INPROG)
3144 break;
3145 DELAY(100);
3146 }
3147
3148 if (timeout == 0) {
3149 /*
3150 * XXX Is it worth adding a sim_timeout entry
3151 * point so we can attempt recovery? If
3152 * this is only used for dumps, I don't think
3153 * it is.
3154 */
3155 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3156 }
3157 }
3158
3159 /*
3160 * Schedule a peripheral driver to receive a ccb when its
3161 * target device has space for more transactions.
3162 */
3163 void
xpt_schedule(struct cam_periph * periph,uint32_t new_priority)3164 xpt_schedule(struct cam_periph *periph, uint32_t new_priority)
3165 {
3166
3167 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3168 cam_periph_assert(periph, MA_OWNED);
3169 if (new_priority < periph->scheduled_priority) {
3170 periph->scheduled_priority = new_priority;
3171 xpt_run_allocq(periph, 0);
3172 }
3173 }
3174
3175 /*
3176 * Schedule a device to run on a given queue.
3177 * If the device was inserted as a new entry on the queue,
3178 * return 1 meaning the device queue should be run. If we
3179 * were already queued, implying someone else has already
3180 * started the queue, return 0 so the caller doesn't attempt
3181 * to run the queue.
3182 */
3183 static int
xpt_schedule_dev(struct camq * queue,cam_pinfo * pinfo,uint32_t new_priority)3184 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3185 uint32_t new_priority)
3186 {
3187 int retval;
3188 uint32_t old_priority;
3189
3190 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3191
3192 old_priority = pinfo->priority;
3193
3194 /*
3195 * Are we already queued?
3196 */
3197 if (pinfo->index != CAM_UNQUEUED_INDEX) {
3198 /* Simply reorder based on new priority */
3199 if (new_priority < old_priority) {
3200 camq_change_priority(queue, pinfo->index,
3201 new_priority);
3202 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3203 ("changed priority to %d\n",
3204 new_priority));
3205 retval = 1;
3206 } else
3207 retval = 0;
3208 } else {
3209 /* New entry on the queue */
3210 if (new_priority < old_priority)
3211 pinfo->priority = new_priority;
3212
3213 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3214 ("Inserting onto queue\n"));
3215 pinfo->generation = ++queue->generation;
3216 camq_insert(queue, pinfo);
3217 retval = 1;
3218 }
3219 return (retval);
3220 }
3221
3222 static void
xpt_run_allocq_task(void * context,int pending)3223 xpt_run_allocq_task(void *context, int pending)
3224 {
3225 struct cam_periph *periph = context;
3226
3227 cam_periph_lock(periph);
3228 periph->flags &= ~CAM_PERIPH_RUN_TASK;
3229 xpt_run_allocq(periph, 1);
3230 cam_periph_unlock(periph);
3231 cam_periph_release(periph);
3232 }
3233
3234 static void
xpt_run_allocq(struct cam_periph * periph,int sleep)3235 xpt_run_allocq(struct cam_periph *periph, int sleep)
3236 {
3237 struct cam_ed *device;
3238 union ccb *ccb;
3239 uint32_t prio;
3240
3241 cam_periph_assert(periph, MA_OWNED);
3242 if (periph->periph_allocating)
3243 return;
3244 cam_periph_doacquire(periph);
3245 periph->periph_allocating = 1;
3246 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3247 device = periph->path->device;
3248 ccb = NULL;
3249 restart:
3250 while ((prio = min(periph->scheduled_priority,
3251 periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3252 (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3253 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3254 if (ccb == NULL &&
3255 (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3256 if (sleep) {
3257 ccb = xpt_get_ccb(periph);
3258 goto restart;
3259 }
3260 if (periph->flags & CAM_PERIPH_RUN_TASK)
3261 break;
3262 cam_periph_doacquire(periph);
3263 periph->flags |= CAM_PERIPH_RUN_TASK;
3264 taskqueue_enqueue(xsoftc.xpt_taskq,
3265 &periph->periph_run_task);
3266 break;
3267 }
3268 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3269 if (prio == periph->immediate_priority) {
3270 periph->immediate_priority = CAM_PRIORITY_NONE;
3271 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3272 ("waking cam_periph_getccb()\n"));
3273 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3274 periph_links.sle);
3275 wakeup(&periph->ccb_list);
3276 } else {
3277 periph->scheduled_priority = CAM_PRIORITY_NONE;
3278 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3279 ("calling periph_start()\n"));
3280 periph->periph_start(periph, ccb);
3281 }
3282 ccb = NULL;
3283 }
3284 if (ccb != NULL)
3285 xpt_release_ccb(ccb);
3286 periph->periph_allocating = 0;
3287 cam_periph_release_locked(periph);
3288 }
3289
3290 static void
xpt_run_devq(struct cam_devq * devq)3291 xpt_run_devq(struct cam_devq *devq)
3292 {
3293 struct mtx *mtx;
3294
3295 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3296
3297 devq->send_queue.qfrozen_cnt++;
3298 while ((devq->send_queue.entries > 0)
3299 && (devq->send_openings > 0)
3300 && (devq->send_queue.qfrozen_cnt <= 1)) {
3301 struct cam_ed *device;
3302 union ccb *work_ccb;
3303 struct cam_sim *sim;
3304 struct xpt_proto *proto;
3305
3306 device = (struct cam_ed *)camq_remove(&devq->send_queue,
3307 CAMQ_HEAD);
3308 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3309 ("running device %p\n", device));
3310
3311 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3312 if (work_ccb == NULL) {
3313 printf("device on run queue with no ccbs???\n");
3314 continue;
3315 }
3316
3317 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3318 mtx_lock(&xsoftc.xpt_highpower_lock);
3319 if (xsoftc.num_highpower <= 0) {
3320 /*
3321 * We got a high power command, but we
3322 * don't have any available slots. Freeze
3323 * the device queue until we have a slot
3324 * available.
3325 */
3326 xpt_freeze_devq_device(device, 1);
3327 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3328 highpowerq_entry);
3329
3330 mtx_unlock(&xsoftc.xpt_highpower_lock);
3331 continue;
3332 } else {
3333 /*
3334 * Consume a high power slot while
3335 * this ccb runs.
3336 */
3337 xsoftc.num_highpower--;
3338 }
3339 mtx_unlock(&xsoftc.xpt_highpower_lock);
3340 }
3341 cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3342 cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3343 devq->send_openings--;
3344 devq->send_active++;
3345 xpt_schedule_devq(devq, device);
3346 mtx_unlock(&devq->send_mtx);
3347
3348 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3349 /*
3350 * The client wants to freeze the queue
3351 * after this CCB is sent.
3352 */
3353 xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3354 }
3355
3356 /* In Target mode, the peripheral driver knows best... */
3357 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3358 if ((device->inq_flags & SID_CmdQue) != 0
3359 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3360 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3361 else
3362 /*
3363 * Clear this in case of a retried CCB that
3364 * failed due to a rejected tag.
3365 */
3366 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3367 }
3368
3369 KASSERT(device == work_ccb->ccb_h.path->device,
3370 ("device (%p) / path->device (%p) mismatch",
3371 device, work_ccb->ccb_h.path->device));
3372 proto = xpt_proto_find(device->protocol);
3373 if (proto && proto->ops->debug_out)
3374 proto->ops->debug_out(work_ccb);
3375
3376 /*
3377 * Device queues can be shared among multiple SIM instances
3378 * that reside on different buses. Use the SIM from the
3379 * queued device, rather than the one from the calling bus.
3380 */
3381 sim = device->sim;
3382 mtx = sim->mtx;
3383 if (mtx && !mtx_owned(mtx))
3384 mtx_lock(mtx);
3385 else
3386 mtx = NULL;
3387 work_ccb->ccb_h.qos.periph_data = cam_iosched_now();
3388 (*(sim->sim_action))(sim, work_ccb);
3389 if (mtx)
3390 mtx_unlock(mtx);
3391 mtx_lock(&devq->send_mtx);
3392 }
3393 devq->send_queue.qfrozen_cnt--;
3394 }
3395
3396 /*
3397 * This function merges stuff from the src ccb into the dst ccb, while keeping
3398 * important fields in the dst ccb constant.
3399 */
3400 void
xpt_merge_ccb(union ccb * dst_ccb,union ccb * src_ccb)3401 xpt_merge_ccb(union ccb *dst_ccb, union ccb *src_ccb)
3402 {
3403
3404 /*
3405 * Pull fields that are valid for peripheral drivers to set
3406 * into the dst CCB along with the CCB "payload".
3407 */
3408 dst_ccb->ccb_h.retry_count = src_ccb->ccb_h.retry_count;
3409 dst_ccb->ccb_h.func_code = src_ccb->ccb_h.func_code;
3410 dst_ccb->ccb_h.timeout = src_ccb->ccb_h.timeout;
3411 dst_ccb->ccb_h.flags = src_ccb->ccb_h.flags;
3412 bcopy(&(&src_ccb->ccb_h)[1], &(&dst_ccb->ccb_h)[1],
3413 sizeof(union ccb) - sizeof(struct ccb_hdr));
3414 }
3415
3416 void
xpt_setup_ccb_flags(struct ccb_hdr * ccb_h,struct cam_path * path,uint32_t priority,uint32_t flags)3417 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3418 uint32_t priority, uint32_t flags)
3419 {
3420
3421 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3422 ccb_h->pinfo.priority = priority;
3423 ccb_h->path = path;
3424 ccb_h->path_id = path->bus->path_id;
3425 if (path->target)
3426 ccb_h->target_id = path->target->target_id;
3427 else
3428 ccb_h->target_id = CAM_TARGET_WILDCARD;
3429 if (path->device) {
3430 ccb_h->target_lun = path->device->lun_id;
3431 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3432 } else {
3433 ccb_h->target_lun = CAM_TARGET_WILDCARD;
3434 }
3435 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3436 ccb_h->flags = flags;
3437 ccb_h->xflags = 0;
3438 }
3439
3440 void
xpt_setup_ccb(struct ccb_hdr * ccb_h,struct cam_path * path,uint32_t priority)3441 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, uint32_t priority)
3442 {
3443 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3444 }
3445
3446 /* Path manipulation functions */
3447 cam_status
xpt_create_path(struct cam_path ** new_path_ptr,struct cam_periph * perph,path_id_t path_id,target_id_t target_id,lun_id_t lun_id)3448 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3449 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3450 {
3451 struct cam_path *path;
3452 cam_status status;
3453
3454 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3455
3456 if (path == NULL) {
3457 status = CAM_RESRC_UNAVAIL;
3458 return(status);
3459 }
3460 status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3461 if (status != CAM_REQ_CMP) {
3462 free(path, M_CAMPATH);
3463 path = NULL;
3464 }
3465 *new_path_ptr = path;
3466 return (status);
3467 }
3468
3469 cam_status
xpt_create_path_unlocked(struct cam_path ** new_path_ptr,struct cam_periph * periph,path_id_t path_id,target_id_t target_id,lun_id_t lun_id)3470 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3471 struct cam_periph *periph, path_id_t path_id,
3472 target_id_t target_id, lun_id_t lun_id)
3473 {
3474
3475 return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3476 lun_id));
3477 }
3478
3479 cam_status
xpt_compile_path(struct cam_path * new_path,struct cam_periph * perph,path_id_t path_id,target_id_t target_id,lun_id_t lun_id)3480 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3481 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3482 {
3483 struct cam_eb *bus;
3484 struct cam_et *target;
3485 struct cam_ed *device;
3486 cam_status status;
3487
3488 status = CAM_REQ_CMP; /* Completed without error */
3489 target = NULL; /* Wildcarded */
3490 device = NULL; /* Wildcarded */
3491
3492 /*
3493 * We will potentially modify the EDT, so block interrupts
3494 * that may attempt to create cam paths.
3495 */
3496 bus = xpt_find_bus(path_id);
3497 if (bus == NULL) {
3498 status = CAM_PATH_INVALID;
3499 } else {
3500 xpt_lock_buses();
3501 mtx_lock(&bus->eb_mtx);
3502 target = xpt_find_target(bus, target_id);
3503 if (target == NULL) {
3504 /* Create one */
3505 struct cam_et *new_target;
3506
3507 new_target = xpt_alloc_target(bus, target_id);
3508 if (new_target == NULL) {
3509 status = CAM_RESRC_UNAVAIL;
3510 } else {
3511 target = new_target;
3512 }
3513 }
3514 xpt_unlock_buses();
3515 if (target != NULL) {
3516 device = xpt_find_device(target, lun_id);
3517 if (device == NULL) {
3518 /* Create one */
3519 struct cam_ed *new_device;
3520
3521 new_device =
3522 (*(bus->xport->ops->alloc_device))(bus,
3523 target,
3524 lun_id);
3525 if (new_device == NULL) {
3526 status = CAM_RESRC_UNAVAIL;
3527 } else {
3528 device = new_device;
3529 }
3530 }
3531 }
3532 mtx_unlock(&bus->eb_mtx);
3533 }
3534
3535 /*
3536 * Only touch the user's data if we are successful.
3537 */
3538 if (status == CAM_REQ_CMP) {
3539 new_path->periph = perph;
3540 new_path->bus = bus;
3541 new_path->target = target;
3542 new_path->device = device;
3543 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3544 } else {
3545 if (device != NULL)
3546 xpt_release_device(device);
3547 if (target != NULL)
3548 xpt_release_target(target);
3549 if (bus != NULL)
3550 xpt_release_bus(bus);
3551 }
3552 return (status);
3553 }
3554
3555 int
xpt_clone_path(struct cam_path ** new_path_ptr,struct cam_path * path)3556 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3557 {
3558 struct cam_path *new_path;
3559
3560 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3561 if (new_path == NULL)
3562 return (ENOMEM);
3563 *new_path = *path;
3564 if (path->bus != NULL)
3565 xpt_acquire_bus(path->bus);
3566 if (path->target != NULL)
3567 xpt_acquire_target(path->target);
3568 if (path->device != NULL)
3569 xpt_acquire_device(path->device);
3570 *new_path_ptr = new_path;
3571 return (0);
3572 }
3573
3574 void
xpt_release_path(struct cam_path * path)3575 xpt_release_path(struct cam_path *path)
3576 {
3577 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3578 if (path->device != NULL) {
3579 xpt_release_device(path->device);
3580 path->device = NULL;
3581 }
3582 if (path->target != NULL) {
3583 xpt_release_target(path->target);
3584 path->target = NULL;
3585 }
3586 if (path->bus != NULL) {
3587 xpt_release_bus(path->bus);
3588 path->bus = NULL;
3589 }
3590 }
3591
3592 void
xpt_free_path(struct cam_path * path)3593 xpt_free_path(struct cam_path *path)
3594 {
3595
3596 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3597 xpt_release_path(path);
3598 free(path, M_CAMPATH);
3599 }
3600
3601 void
xpt_path_counts(struct cam_path * path,uint32_t * bus_ref,uint32_t * periph_ref,uint32_t * target_ref,uint32_t * device_ref)3602 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3603 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3604 {
3605
3606 xpt_lock_buses();
3607 if (bus_ref) {
3608 if (path->bus)
3609 *bus_ref = path->bus->refcount;
3610 else
3611 *bus_ref = 0;
3612 }
3613 if (periph_ref) {
3614 if (path->periph)
3615 *periph_ref = path->periph->refcount;
3616 else
3617 *periph_ref = 0;
3618 }
3619 xpt_unlock_buses();
3620 if (target_ref) {
3621 if (path->target)
3622 *target_ref = path->target->refcount;
3623 else
3624 *target_ref = 0;
3625 }
3626 if (device_ref) {
3627 if (path->device)
3628 *device_ref = path->device->refcount;
3629 else
3630 *device_ref = 0;
3631 }
3632 }
3633
3634 /*
3635 * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3636 * in path1, 2 for match with wildcards in path2.
3637 */
3638 int
xpt_path_comp(struct cam_path * path1,struct cam_path * path2)3639 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3640 {
3641 int retval = 0;
3642
3643 if (path1->bus != path2->bus) {
3644 if (path1->bus->path_id == CAM_BUS_WILDCARD)
3645 retval = 1;
3646 else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3647 retval = 2;
3648 else
3649 return (-1);
3650 }
3651 if (path1->target != path2->target) {
3652 if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3653 if (retval == 0)
3654 retval = 1;
3655 } else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3656 retval = 2;
3657 else
3658 return (-1);
3659 }
3660 if (path1->device != path2->device) {
3661 if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3662 if (retval == 0)
3663 retval = 1;
3664 } else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3665 retval = 2;
3666 else
3667 return (-1);
3668 }
3669 return (retval);
3670 }
3671
3672 int
xpt_path_comp_dev(struct cam_path * path,struct cam_ed * dev)3673 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3674 {
3675 int retval = 0;
3676
3677 if (path->bus != dev->target->bus) {
3678 if (path->bus->path_id == CAM_BUS_WILDCARD)
3679 retval = 1;
3680 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3681 retval = 2;
3682 else
3683 return (-1);
3684 }
3685 if (path->target != dev->target) {
3686 if (path->target->target_id == CAM_TARGET_WILDCARD) {
3687 if (retval == 0)
3688 retval = 1;
3689 } else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3690 retval = 2;
3691 else
3692 return (-1);
3693 }
3694 if (path->device != dev) {
3695 if (path->device->lun_id == CAM_LUN_WILDCARD) {
3696 if (retval == 0)
3697 retval = 1;
3698 } else if (dev->lun_id == CAM_LUN_WILDCARD)
3699 retval = 2;
3700 else
3701 return (-1);
3702 }
3703 return (retval);
3704 }
3705
3706 void
xpt_print_path(struct cam_path * path)3707 xpt_print_path(struct cam_path *path)
3708 {
3709 struct sbuf sb;
3710 char buffer[XPT_PRINT_LEN];
3711
3712 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3713 xpt_path_sbuf(path, &sb);
3714 sbuf_finish(&sb);
3715 printf("%s", sbuf_data(&sb));
3716 sbuf_delete(&sb);
3717 }
3718
3719 static void
xpt_device_sbuf(struct cam_ed * device,struct sbuf * sb)3720 xpt_device_sbuf(struct cam_ed *device, struct sbuf *sb)
3721 {
3722 if (device == NULL)
3723 sbuf_cat(sb, "(nopath): ");
3724 else {
3725 sbuf_printf(sb, "(noperiph:%s%d:%d:%d:%jx): ",
3726 device->sim->sim_name,
3727 device->sim->unit_number,
3728 device->sim->bus_id,
3729 device->target->target_id,
3730 (uintmax_t)device->lun_id);
3731 }
3732 }
3733
3734 void
xpt_print(struct cam_path * path,const char * fmt,...)3735 xpt_print(struct cam_path *path, const char *fmt, ...)
3736 {
3737 va_list ap;
3738 struct sbuf sb;
3739 char buffer[XPT_PRINT_LEN];
3740
3741 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3742
3743 xpt_path_sbuf(path, &sb);
3744 va_start(ap, fmt);
3745 sbuf_vprintf(&sb, fmt, ap);
3746 va_end(ap);
3747
3748 sbuf_finish(&sb);
3749 printf("%s", sbuf_data(&sb));
3750 sbuf_delete(&sb);
3751 }
3752
3753 char *
xpt_path_string(struct cam_path * path,char * str,size_t str_len)3754 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3755 {
3756 struct sbuf sb;
3757
3758 sbuf_new(&sb, str, str_len, 0);
3759 xpt_path_sbuf(path, &sb);
3760 sbuf_finish(&sb);
3761 return (str);
3762 }
3763
3764 void
xpt_path_sbuf(struct cam_path * path,struct sbuf * sb)3765 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3766 {
3767
3768 if (path == NULL)
3769 sbuf_cat(sb, "(nopath): ");
3770 else {
3771 if (path->periph != NULL)
3772 sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3773 path->periph->unit_number);
3774 else
3775 sbuf_cat(sb, "(noperiph:");
3776
3777 if (path->bus != NULL)
3778 sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3779 path->bus->sim->unit_number,
3780 path->bus->sim->bus_id);
3781 else
3782 sbuf_cat(sb, "nobus:");
3783
3784 if (path->target != NULL)
3785 sbuf_printf(sb, "%d:", path->target->target_id);
3786 else
3787 sbuf_cat(sb, "X:");
3788
3789 if (path->device != NULL)
3790 sbuf_printf(sb, "%jx): ",
3791 (uintmax_t)path->device->lun_id);
3792 else
3793 sbuf_cat(sb, "X): ");
3794 }
3795 }
3796
3797 path_id_t
xpt_path_path_id(struct cam_path * path)3798 xpt_path_path_id(struct cam_path *path)
3799 {
3800 return(path->bus->path_id);
3801 }
3802
3803 target_id_t
xpt_path_target_id(struct cam_path * path)3804 xpt_path_target_id(struct cam_path *path)
3805 {
3806 if (path->target != NULL)
3807 return (path->target->target_id);
3808 else
3809 return (CAM_TARGET_WILDCARD);
3810 }
3811
3812 lun_id_t
xpt_path_lun_id(struct cam_path * path)3813 xpt_path_lun_id(struct cam_path *path)
3814 {
3815 if (path->device != NULL)
3816 return (path->device->lun_id);
3817 else
3818 return (CAM_LUN_WILDCARD);
3819 }
3820
3821 struct cam_sim *
xpt_path_sim(struct cam_path * path)3822 xpt_path_sim(struct cam_path *path)
3823 {
3824
3825 return (path->bus->sim);
3826 }
3827
3828 struct cam_periph*
xpt_path_periph(struct cam_path * path)3829 xpt_path_periph(struct cam_path *path)
3830 {
3831
3832 return (path->periph);
3833 }
3834
3835 /*
3836 * Release a CAM control block for the caller. Remit the cost of the structure
3837 * to the device referenced by the path. If the this device had no 'credits'
3838 * and peripheral drivers have registered async callbacks for this notification
3839 * call them now.
3840 */
3841 void
xpt_release_ccb(union ccb * free_ccb)3842 xpt_release_ccb(union ccb *free_ccb)
3843 {
3844 struct cam_ed *device;
3845 struct cam_periph *periph;
3846
3847 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3848 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3849 device = free_ccb->ccb_h.path->device;
3850 periph = free_ccb->ccb_h.path->periph;
3851
3852 xpt_free_ccb(free_ccb);
3853 periph->periph_allocated--;
3854 cam_ccbq_release_opening(&device->ccbq);
3855 xpt_run_allocq(periph, 0);
3856 }
3857
3858 /* Functions accessed by SIM drivers */
3859
3860 static struct xpt_xport_ops xport_default_ops = {
3861 .alloc_device = xpt_alloc_device_default,
3862 .action = xpt_action_default,
3863 .async = xpt_dev_async_default,
3864 };
3865 static struct xpt_xport xport_default = {
3866 .xport = XPORT_UNKNOWN,
3867 .name = "unknown",
3868 .ops = &xport_default_ops,
3869 };
3870
3871 CAM_XPT_XPORT(xport_default);
3872
3873 /*
3874 * A sim structure, listing the SIM entry points and instance
3875 * identification info is passed to xpt_bus_register to hook the SIM
3876 * into the CAM framework. xpt_bus_register creates a cam_eb entry
3877 * for this new bus and places it in the array of buses and assigns
3878 * it a path_id. The path_id may be influenced by "hard wiring"
3879 * information specified by the user. Once interrupt services are
3880 * available, the bus will be probed.
3881 */
3882 int
xpt_bus_register(struct cam_sim * sim,device_t parent,uint32_t bus)3883 xpt_bus_register(struct cam_sim *sim, device_t parent, uint32_t bus)
3884 {
3885 struct cam_eb *new_bus;
3886 struct cam_eb *old_bus;
3887 struct ccb_pathinq cpi;
3888 struct cam_path *path;
3889 cam_status status;
3890
3891 sim->bus_id = bus;
3892 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3893 M_CAMXPT, M_NOWAIT|M_ZERO);
3894 if (new_bus == NULL) {
3895 /* Couldn't satisfy request */
3896 return (ENOMEM);
3897 }
3898
3899 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
3900 TAILQ_INIT(&new_bus->et_entries);
3901 cam_sim_hold(sim);
3902 new_bus->sim = sim;
3903 timevalclear(&new_bus->last_reset);
3904 new_bus->flags = 0;
3905 new_bus->refcount = 1; /* Held until a bus_deregister event */
3906 new_bus->generation = 0;
3907 new_bus->parent_dev = parent;
3908
3909 xpt_lock_buses();
3910 sim->path_id = new_bus->path_id =
3911 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3912 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3913 while (old_bus != NULL
3914 && old_bus->path_id < new_bus->path_id)
3915 old_bus = TAILQ_NEXT(old_bus, links);
3916 if (old_bus != NULL)
3917 TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3918 else
3919 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3920 xsoftc.bus_generation++;
3921 xpt_unlock_buses();
3922
3923 /*
3924 * Set a default transport so that a PATH_INQ can be issued to
3925 * the SIM. This will then allow for probing and attaching of
3926 * a more appropriate transport.
3927 */
3928 new_bus->xport = &xport_default;
3929
3930 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3931 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3932 if (status != CAM_REQ_CMP) {
3933 xpt_release_bus(new_bus);
3934 return (ENOMEM);
3935 }
3936
3937 xpt_path_inq(&cpi, path);
3938
3939 /*
3940 * Use the results of PATH_INQ to pick a transport. Note that
3941 * the xpt bus (which uses XPORT_UNSPECIFIED) always uses
3942 * xport_default instead of a transport from
3943 * cam_xpt_port_set.
3944 */
3945 if (cam_ccb_success((union ccb *)&cpi) &&
3946 cpi.transport != XPORT_UNSPECIFIED) {
3947 struct xpt_xport **xpt;
3948
3949 SET_FOREACH(xpt, cam_xpt_xport_set) {
3950 if ((*xpt)->xport == cpi.transport) {
3951 new_bus->xport = *xpt;
3952 break;
3953 }
3954 }
3955 if (new_bus->xport == &xport_default) {
3956 xpt_print(path,
3957 "No transport found for %d\n", cpi.transport);
3958 xpt_release_bus(new_bus);
3959 xpt_free_path(path);
3960 return (EINVAL);
3961 }
3962 }
3963
3964 /* Notify interested parties */
3965 if (sim->path_id != CAM_XPT_PATH_ID) {
3966 xpt_async(AC_PATH_REGISTERED, path, &cpi);
3967 if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3968 union ccb *scan_ccb;
3969
3970 /* Initiate bus rescan. */
3971 scan_ccb = xpt_alloc_ccb_nowait();
3972 if (scan_ccb != NULL) {
3973 scan_ccb->ccb_h.path = path;
3974 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3975 scan_ccb->crcn.flags = 0;
3976 xpt_rescan(scan_ccb);
3977 } else {
3978 xpt_print(path,
3979 "Can't allocate CCB to scan bus\n");
3980 xpt_free_path(path);
3981 }
3982 } else
3983 xpt_free_path(path);
3984 } else
3985 xpt_free_path(path);
3986 return (CAM_SUCCESS);
3987 }
3988
3989 int
xpt_bus_deregister(path_id_t pathid)3990 xpt_bus_deregister(path_id_t pathid)
3991 {
3992 struct cam_path bus_path;
3993 cam_status status;
3994
3995 status = xpt_compile_path(&bus_path, NULL, pathid,
3996 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3997 if (status != CAM_REQ_CMP)
3998 return (ENOMEM);
3999
4000 xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4001 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4002
4003 /* Release the reference count held while registered. */
4004 xpt_release_bus(bus_path.bus);
4005 xpt_release_path(&bus_path);
4006
4007 return (CAM_SUCCESS);
4008 }
4009
4010 static path_id_t
xptnextfreepathid(void)4011 xptnextfreepathid(void)
4012 {
4013 struct cam_eb *bus;
4014 path_id_t pathid;
4015 const char *strval;
4016
4017 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4018 pathid = 0;
4019 bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4020 retry:
4021 /* Find an unoccupied pathid */
4022 while (bus != NULL && bus->path_id <= pathid) {
4023 if (bus->path_id == pathid)
4024 pathid++;
4025 bus = TAILQ_NEXT(bus, links);
4026 }
4027
4028 /*
4029 * Ensure that this pathid is not reserved for
4030 * a bus that may be registered in the future.
4031 */
4032 if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4033 ++pathid;
4034 /* Start the search over */
4035 goto retry;
4036 }
4037 return (pathid);
4038 }
4039
4040 static path_id_t
xptpathid(const char * sim_name,int sim_unit,int sim_bus)4041 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4042 {
4043 path_id_t pathid;
4044 int i, dunit, val;
4045 char buf[32];
4046 const char *dname;
4047
4048 pathid = CAM_XPT_PATH_ID;
4049 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4050 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4051 return (pathid);
4052 i = 0;
4053 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4054 if (strcmp(dname, "scbus")) {
4055 /* Avoid a bit of foot shooting. */
4056 continue;
4057 }
4058 if (dunit < 0) /* unwired?! */
4059 continue;
4060 if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4061 if (sim_bus == val) {
4062 pathid = dunit;
4063 break;
4064 }
4065 } else if (sim_bus == 0) {
4066 /* Unspecified matches bus 0 */
4067 pathid = dunit;
4068 break;
4069 } else {
4070 printf(
4071 "Ambiguous scbus configuration for %s%d bus %d, cannot wire down. The kernel\n"
4072 "config entry for scbus%d should specify a controller bus.\n"
4073 "Scbus will be assigned dynamically.\n",
4074 sim_name, sim_unit, sim_bus, dunit);
4075 break;
4076 }
4077 }
4078
4079 if (pathid == CAM_XPT_PATH_ID)
4080 pathid = xptnextfreepathid();
4081 return (pathid);
4082 }
4083
4084 static const char *
xpt_async_string(uint32_t async_code)4085 xpt_async_string(uint32_t async_code)
4086 {
4087
4088 switch (async_code) {
4089 case AC_BUS_RESET: return ("AC_BUS_RESET");
4090 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4091 case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4092 case AC_SENT_BDR: return ("AC_SENT_BDR");
4093 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4094 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4095 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4096 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4097 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4098 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4099 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4100 case AC_CONTRACT: return ("AC_CONTRACT");
4101 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4102 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4103 }
4104 return ("AC_UNKNOWN");
4105 }
4106
4107 static int
xpt_async_size(uint32_t async_code)4108 xpt_async_size(uint32_t async_code)
4109 {
4110
4111 switch (async_code) {
4112 case AC_BUS_RESET: return (0);
4113 case AC_UNSOL_RESEL: return (0);
4114 case AC_SCSI_AEN: return (0);
4115 case AC_SENT_BDR: return (0);
4116 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4117 case AC_PATH_DEREGISTERED: return (0);
4118 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4119 case AC_LOST_DEVICE: return (0);
4120 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4121 case AC_INQ_CHANGED: return (0);
4122 case AC_GETDEV_CHANGED: return (0);
4123 case AC_CONTRACT: return (sizeof(struct ac_contract));
4124 case AC_ADVINFO_CHANGED: return (-1);
4125 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4126 }
4127 return (0);
4128 }
4129
4130 static int
xpt_async_process_dev(struct cam_ed * device,void * arg)4131 xpt_async_process_dev(struct cam_ed *device, void *arg)
4132 {
4133 union ccb *ccb = arg;
4134 struct cam_path *path = ccb->ccb_h.path;
4135 void *async_arg = ccb->casync.async_arg_ptr;
4136 uint32_t async_code = ccb->casync.async_code;
4137 bool relock;
4138
4139 if (path->device != device
4140 && path->device->lun_id != CAM_LUN_WILDCARD
4141 && device->lun_id != CAM_LUN_WILDCARD)
4142 return (1);
4143
4144 /*
4145 * The async callback could free the device.
4146 * If it is a broadcast async, it doesn't hold
4147 * device reference, so take our own reference.
4148 */
4149 xpt_acquire_device(device);
4150
4151 /*
4152 * If async for specific device is to be delivered to
4153 * the wildcard client, take the specific device lock.
4154 * XXX: We may need a way for client to specify it.
4155 */
4156 if ((device->lun_id == CAM_LUN_WILDCARD &&
4157 path->device->lun_id != CAM_LUN_WILDCARD) ||
4158 (device->target->target_id == CAM_TARGET_WILDCARD &&
4159 path->target->target_id != CAM_TARGET_WILDCARD) ||
4160 (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4161 path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4162 mtx_unlock(&device->device_mtx);
4163 xpt_path_lock(path);
4164 relock = true;
4165 } else
4166 relock = false;
4167
4168 (*(device->target->bus->xport->ops->async))(async_code,
4169 device->target->bus, device->target, device, async_arg);
4170 xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4171
4172 if (relock) {
4173 xpt_path_unlock(path);
4174 mtx_lock(&device->device_mtx);
4175 }
4176 xpt_release_device(device);
4177 return (1);
4178 }
4179
4180 static int
xpt_async_process_tgt(struct cam_et * target,void * arg)4181 xpt_async_process_tgt(struct cam_et *target, void *arg)
4182 {
4183 union ccb *ccb = arg;
4184 struct cam_path *path = ccb->ccb_h.path;
4185
4186 if (path->target != target
4187 && path->target->target_id != CAM_TARGET_WILDCARD
4188 && target->target_id != CAM_TARGET_WILDCARD)
4189 return (1);
4190
4191 if (ccb->casync.async_code == AC_SENT_BDR) {
4192 /* Update our notion of when the last reset occurred */
4193 microtime(&target->last_reset);
4194 }
4195
4196 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4197 }
4198
4199 static void
xpt_async_process(struct cam_periph * periph,union ccb * ccb)4200 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4201 {
4202 struct cam_eb *bus;
4203 struct cam_path *path;
4204 void *async_arg;
4205 uint32_t async_code;
4206
4207 path = ccb->ccb_h.path;
4208 async_code = ccb->casync.async_code;
4209 async_arg = ccb->casync.async_arg_ptr;
4210 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4211 ("xpt_async(%s)\n", xpt_async_string(async_code)));
4212 bus = path->bus;
4213
4214 if (async_code == AC_BUS_RESET) {
4215 /* Update our notion of when the last reset occurred */
4216 microtime(&bus->last_reset);
4217 }
4218
4219 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4220
4221 /*
4222 * If this wasn't a fully wildcarded async, tell all
4223 * clients that want all async events.
4224 */
4225 if (bus != xpt_periph->path->bus) {
4226 xpt_path_lock(xpt_periph->path);
4227 xpt_async_process_dev(xpt_periph->path->device, ccb);
4228 xpt_path_unlock(xpt_periph->path);
4229 }
4230
4231 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4232 xpt_release_devq(path, 1, TRUE);
4233 else
4234 xpt_release_simq(path->bus->sim, TRUE);
4235 if (ccb->casync.async_arg_size > 0)
4236 free(async_arg, M_CAMXPT);
4237 xpt_free_path(path);
4238 xpt_free_ccb(ccb);
4239 }
4240
4241 static void
xpt_async_bcast(struct async_list * async_head,uint32_t async_code,struct cam_path * path,void * async_arg)4242 xpt_async_bcast(struct async_list *async_head,
4243 uint32_t async_code,
4244 struct cam_path *path, void *async_arg)
4245 {
4246 struct async_node *cur_entry;
4247 struct mtx *mtx;
4248
4249 cur_entry = SLIST_FIRST(async_head);
4250 while (cur_entry != NULL) {
4251 struct async_node *next_entry;
4252 /*
4253 * Grab the next list entry before we call the current
4254 * entry's callback. This is because the callback function
4255 * can delete its async callback entry.
4256 */
4257 next_entry = SLIST_NEXT(cur_entry, links);
4258 if ((cur_entry->event_enable & async_code) != 0) {
4259 mtx = cur_entry->event_lock ?
4260 path->device->sim->mtx : NULL;
4261 if (mtx)
4262 mtx_lock(mtx);
4263 cur_entry->callback(cur_entry->callback_arg,
4264 async_code, path,
4265 async_arg);
4266 if (mtx)
4267 mtx_unlock(mtx);
4268 }
4269 cur_entry = next_entry;
4270 }
4271 }
4272
4273 void
xpt_async(uint32_t async_code,struct cam_path * path,void * async_arg)4274 xpt_async(uint32_t async_code, struct cam_path *path, void *async_arg)
4275 {
4276 union ccb *ccb;
4277 int size;
4278
4279 ccb = xpt_alloc_ccb_nowait();
4280 if (ccb == NULL) {
4281 xpt_print(path, "Can't allocate CCB to send %s\n",
4282 xpt_async_string(async_code));
4283 return;
4284 }
4285
4286 if (xpt_clone_path(&ccb->ccb_h.path, path) != 0) {
4287 xpt_print(path, "Can't allocate path to send %s\n",
4288 xpt_async_string(async_code));
4289 xpt_free_ccb(ccb);
4290 return;
4291 }
4292 ccb->ccb_h.path->periph = NULL;
4293 ccb->ccb_h.func_code = XPT_ASYNC;
4294 ccb->ccb_h.cbfcnp = xpt_async_process;
4295 ccb->ccb_h.flags |= CAM_UNLOCKED;
4296 ccb->casync.async_code = async_code;
4297 ccb->casync.async_arg_size = 0;
4298 size = xpt_async_size(async_code);
4299 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4300 ("xpt_async: func %#x %s aync_code %d %s\n",
4301 ccb->ccb_h.func_code,
4302 xpt_action_name(ccb->ccb_h.func_code),
4303 async_code,
4304 xpt_async_string(async_code)));
4305 if (size > 0 && async_arg != NULL) {
4306 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4307 if (ccb->casync.async_arg_ptr == NULL) {
4308 xpt_print(path, "Can't allocate argument to send %s\n",
4309 xpt_async_string(async_code));
4310 xpt_free_path(ccb->ccb_h.path);
4311 xpt_free_ccb(ccb);
4312 return;
4313 }
4314 memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4315 ccb->casync.async_arg_size = size;
4316 } else if (size < 0) {
4317 ccb->casync.async_arg_ptr = async_arg;
4318 ccb->casync.async_arg_size = size;
4319 }
4320 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4321 xpt_freeze_devq(path, 1);
4322 else
4323 xpt_freeze_simq(path->bus->sim, 1);
4324 xpt_action(ccb);
4325 }
4326
4327 static void
xpt_dev_async_default(uint32_t async_code,struct cam_eb * bus,struct cam_et * target,struct cam_ed * device,void * async_arg)4328 xpt_dev_async_default(uint32_t async_code, struct cam_eb *bus,
4329 struct cam_et *target, struct cam_ed *device,
4330 void *async_arg)
4331 {
4332
4333 /*
4334 * We only need to handle events for real devices.
4335 */
4336 if (target->target_id == CAM_TARGET_WILDCARD
4337 || device->lun_id == CAM_LUN_WILDCARD)
4338 return;
4339
4340 printf("%s called\n", __func__);
4341 }
4342
4343 static uint32_t
xpt_freeze_devq_device(struct cam_ed * dev,u_int count)4344 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4345 {
4346 struct cam_devq *devq;
4347 uint32_t freeze;
4348
4349 devq = dev->sim->devq;
4350 mtx_assert(&devq->send_mtx, MA_OWNED);
4351 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4352 ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4353 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4354 freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4355 /* Remove frozen device from sendq. */
4356 if (device_is_queued(dev))
4357 camq_remove(&devq->send_queue, dev->devq_entry.index);
4358 return (freeze);
4359 }
4360
4361 uint32_t
xpt_freeze_devq(struct cam_path * path,u_int count)4362 xpt_freeze_devq(struct cam_path *path, u_int count)
4363 {
4364 struct cam_ed *dev = path->device;
4365 struct cam_devq *devq;
4366 uint32_t freeze;
4367
4368 devq = dev->sim->devq;
4369 mtx_lock(&devq->send_mtx);
4370 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4371 freeze = xpt_freeze_devq_device(dev, count);
4372 mtx_unlock(&devq->send_mtx);
4373 return (freeze);
4374 }
4375
4376 uint32_t
xpt_freeze_simq(struct cam_sim * sim,u_int count)4377 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4378 {
4379 struct cam_devq *devq;
4380 uint32_t freeze;
4381
4382 devq = sim->devq;
4383 mtx_lock(&devq->send_mtx);
4384 freeze = (devq->send_queue.qfrozen_cnt += count);
4385 mtx_unlock(&devq->send_mtx);
4386 return (freeze);
4387 }
4388
4389 static void
xpt_release_devq_timeout(void * arg)4390 xpt_release_devq_timeout(void *arg)
4391 {
4392 struct cam_ed *dev;
4393 struct cam_devq *devq;
4394
4395 dev = (struct cam_ed *)arg;
4396 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4397 devq = dev->sim->devq;
4398 mtx_assert(&devq->send_mtx, MA_OWNED);
4399 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4400 xpt_run_devq(devq);
4401 }
4402
4403 void
xpt_release_devq(struct cam_path * path,u_int count,int run_queue)4404 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4405 {
4406 struct cam_ed *dev;
4407 struct cam_devq *devq;
4408
4409 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4410 count, run_queue));
4411 dev = path->device;
4412 devq = dev->sim->devq;
4413 mtx_lock(&devq->send_mtx);
4414 if (xpt_release_devq_device(dev, count, run_queue))
4415 xpt_run_devq(dev->sim->devq);
4416 mtx_unlock(&devq->send_mtx);
4417 }
4418
4419 static int
xpt_release_devq_device(struct cam_ed * dev,u_int count,int run_queue)4420 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4421 {
4422
4423 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4424 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4425 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4426 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4427 if (count > dev->ccbq.queue.qfrozen_cnt) {
4428 #ifdef INVARIANTS
4429 printf("xpt_release_devq(): requested %u > present %u\n",
4430 count, dev->ccbq.queue.qfrozen_cnt);
4431 #endif
4432 count = dev->ccbq.queue.qfrozen_cnt;
4433 }
4434 dev->ccbq.queue.qfrozen_cnt -= count;
4435 if (dev->ccbq.queue.qfrozen_cnt == 0) {
4436 /*
4437 * No longer need to wait for a successful
4438 * command completion.
4439 */
4440 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4441 /*
4442 * Remove any timeouts that might be scheduled
4443 * to release this queue.
4444 */
4445 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4446 callout_stop(&dev->callout);
4447 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4448 }
4449 /*
4450 * Now that we are unfrozen schedule the
4451 * device so any pending transactions are
4452 * run.
4453 */
4454 xpt_schedule_devq(dev->sim->devq, dev);
4455 } else
4456 run_queue = 0;
4457 return (run_queue);
4458 }
4459
4460 void
xpt_release_simq(struct cam_sim * sim,int run_queue)4461 xpt_release_simq(struct cam_sim *sim, int run_queue)
4462 {
4463 struct cam_devq *devq;
4464
4465 devq = sim->devq;
4466 mtx_lock(&devq->send_mtx);
4467 if (devq->send_queue.qfrozen_cnt <= 0) {
4468 #ifdef INVARIANTS
4469 printf("xpt_release_simq: requested 1 > present %u\n",
4470 devq->send_queue.qfrozen_cnt);
4471 #endif
4472 } else
4473 devq->send_queue.qfrozen_cnt--;
4474 if (devq->send_queue.qfrozen_cnt == 0) {
4475 if (run_queue) {
4476 /*
4477 * Now that we are unfrozen run the send queue.
4478 */
4479 xpt_run_devq(sim->devq);
4480 }
4481 }
4482 mtx_unlock(&devq->send_mtx);
4483 }
4484
4485 void
xpt_done(union ccb * done_ccb)4486 xpt_done(union ccb *done_ccb)
4487 {
4488 struct cam_doneq *queue;
4489 int run, hash;
4490
4491 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4492 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4493 done_ccb->csio.bio != NULL)
4494 biotrack(done_ccb->csio.bio, __func__);
4495 #endif
4496
4497 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4498 ("xpt_done: func= %#x %s status %#x\n",
4499 done_ccb->ccb_h.func_code,
4500 xpt_action_name(done_ccb->ccb_h.func_code),
4501 done_ccb->ccb_h.status));
4502 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4503 return;
4504
4505 /* Store the time the ccb was in the sim */
4506 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4507 done_ccb->ccb_h.status |= CAM_QOS_VALID;
4508 hash = (u_int)(done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4509 done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4510 queue = &cam_doneqs[hash];
4511 mtx_lock(&queue->cam_doneq_mtx);
4512 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4513 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4514 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4515 mtx_unlock(&queue->cam_doneq_mtx);
4516 if (run && !dumping)
4517 wakeup(&queue->cam_doneq);
4518 }
4519
4520 void
xpt_done_direct(union ccb * done_ccb)4521 xpt_done_direct(union ccb *done_ccb)
4522 {
4523
4524 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4525 ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4526 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4527 return;
4528
4529 /* Store the time the ccb was in the sim */
4530 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4531 done_ccb->ccb_h.status |= CAM_QOS_VALID;
4532 xpt_done_process(&done_ccb->ccb_h);
4533 }
4534
4535 union ccb *
xpt_alloc_ccb(void)4536 xpt_alloc_ccb(void)
4537 {
4538 union ccb *new_ccb;
4539
4540 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4541 return (new_ccb);
4542 }
4543
4544 union ccb *
xpt_alloc_ccb_nowait(void)4545 xpt_alloc_ccb_nowait(void)
4546 {
4547 union ccb *new_ccb;
4548
4549 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4550 return (new_ccb);
4551 }
4552
4553 void
xpt_free_ccb(union ccb * free_ccb)4554 xpt_free_ccb(union ccb *free_ccb)
4555 {
4556 struct cam_periph *periph;
4557
4558 if (free_ccb->ccb_h.alloc_flags & CAM_CCB_FROM_UMA) {
4559 /*
4560 * Looks like a CCB allocated from a periph UMA zone.
4561 */
4562 periph = free_ccb->ccb_h.path->periph;
4563 uma_zfree(periph->ccb_zone, free_ccb);
4564 } else {
4565 free(free_ccb, M_CAMCCB);
4566 }
4567 }
4568
4569 /* Private XPT functions */
4570
4571 /*
4572 * Get a CAM control block for the caller. Charge the structure to the device
4573 * referenced by the path. If we don't have sufficient resources to allocate
4574 * more ccbs, we return NULL.
4575 */
4576 static union ccb *
xpt_get_ccb_nowait(struct cam_periph * periph)4577 xpt_get_ccb_nowait(struct cam_periph *periph)
4578 {
4579 union ccb *new_ccb;
4580 int alloc_flags;
4581
4582 if (periph->ccb_zone != NULL) {
4583 alloc_flags = CAM_CCB_FROM_UMA;
4584 new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_NOWAIT);
4585 } else {
4586 alloc_flags = 0;
4587 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4588 }
4589 if (new_ccb == NULL)
4590 return (NULL);
4591 new_ccb->ccb_h.alloc_flags = alloc_flags;
4592 periph->periph_allocated++;
4593 cam_ccbq_take_opening(&periph->path->device->ccbq);
4594 return (new_ccb);
4595 }
4596
4597 static union ccb *
xpt_get_ccb(struct cam_periph * periph)4598 xpt_get_ccb(struct cam_periph *periph)
4599 {
4600 union ccb *new_ccb;
4601 int alloc_flags;
4602
4603 cam_periph_unlock(periph);
4604 if (periph->ccb_zone != NULL) {
4605 alloc_flags = CAM_CCB_FROM_UMA;
4606 new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_WAITOK);
4607 } else {
4608 alloc_flags = 0;
4609 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4610 }
4611 new_ccb->ccb_h.alloc_flags = alloc_flags;
4612 cam_periph_lock(periph);
4613 periph->periph_allocated++;
4614 cam_ccbq_take_opening(&periph->path->device->ccbq);
4615 return (new_ccb);
4616 }
4617
4618 union ccb *
cam_periph_getccb(struct cam_periph * periph,uint32_t priority)4619 cam_periph_getccb(struct cam_periph *periph, uint32_t priority)
4620 {
4621 struct ccb_hdr *ccb_h;
4622
4623 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4624 cam_periph_assert(periph, MA_OWNED);
4625 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4626 ccb_h->pinfo.priority != priority) {
4627 if (priority < periph->immediate_priority) {
4628 periph->immediate_priority = priority;
4629 xpt_run_allocq(periph, 0);
4630 } else
4631 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4632 "cgticb", 0);
4633 }
4634 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4635 return ((union ccb *)ccb_h);
4636 }
4637
4638 static void
xpt_acquire_bus(struct cam_eb * bus)4639 xpt_acquire_bus(struct cam_eb *bus)
4640 {
4641
4642 xpt_lock_buses();
4643 bus->refcount++;
4644 xpt_unlock_buses();
4645 }
4646
4647 static void
xpt_release_bus(struct cam_eb * bus)4648 xpt_release_bus(struct cam_eb *bus)
4649 {
4650
4651 xpt_lock_buses();
4652 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4653 if (--bus->refcount > 0) {
4654 xpt_unlock_buses();
4655 return;
4656 }
4657 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4658 xsoftc.bus_generation++;
4659 xpt_unlock_buses();
4660 KASSERT(TAILQ_EMPTY(&bus->et_entries),
4661 ("destroying bus, but target list is not empty"));
4662 cam_sim_release(bus->sim);
4663 mtx_destroy(&bus->eb_mtx);
4664 free(bus, M_CAMXPT);
4665 }
4666
4667 static struct cam_et *
xpt_alloc_target(struct cam_eb * bus,target_id_t target_id)4668 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4669 {
4670 struct cam_et *cur_target, *target;
4671
4672 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4673 mtx_assert(&bus->eb_mtx, MA_OWNED);
4674 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4675 M_NOWAIT|M_ZERO);
4676 if (target == NULL)
4677 return (NULL);
4678
4679 TAILQ_INIT(&target->ed_entries);
4680 target->bus = bus;
4681 target->target_id = target_id;
4682 target->refcount = 1;
4683 target->generation = 0;
4684 target->luns = NULL;
4685 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4686 timevalclear(&target->last_reset);
4687 /*
4688 * Hold a reference to our parent bus so it
4689 * will not go away before we do.
4690 */
4691 bus->refcount++;
4692
4693 /* Insertion sort into our bus's target list */
4694 cur_target = TAILQ_FIRST(&bus->et_entries);
4695 while (cur_target != NULL && cur_target->target_id < target_id)
4696 cur_target = TAILQ_NEXT(cur_target, links);
4697 if (cur_target != NULL) {
4698 TAILQ_INSERT_BEFORE(cur_target, target, links);
4699 } else {
4700 TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4701 }
4702 bus->generation++;
4703 return (target);
4704 }
4705
4706 static void
xpt_acquire_target(struct cam_et * target)4707 xpt_acquire_target(struct cam_et *target)
4708 {
4709 struct cam_eb *bus = target->bus;
4710
4711 mtx_lock(&bus->eb_mtx);
4712 target->refcount++;
4713 mtx_unlock(&bus->eb_mtx);
4714 }
4715
4716 static void
xpt_release_target(struct cam_et * target)4717 xpt_release_target(struct cam_et *target)
4718 {
4719 struct cam_eb *bus = target->bus;
4720
4721 mtx_lock(&bus->eb_mtx);
4722 if (--target->refcount > 0) {
4723 mtx_unlock(&bus->eb_mtx);
4724 return;
4725 }
4726 TAILQ_REMOVE(&bus->et_entries, target, links);
4727 bus->generation++;
4728 mtx_unlock(&bus->eb_mtx);
4729 KASSERT(TAILQ_EMPTY(&target->ed_entries),
4730 ("destroying target, but device list is not empty"));
4731 xpt_release_bus(bus);
4732 mtx_destroy(&target->luns_mtx);
4733 if (target->luns)
4734 free(target->luns, M_CAMXPT);
4735 free(target, M_CAMXPT);
4736 }
4737
4738 static struct cam_ed *
xpt_alloc_device_default(struct cam_eb * bus,struct cam_et * target,lun_id_t lun_id)4739 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4740 lun_id_t lun_id)
4741 {
4742 struct cam_ed *device;
4743
4744 device = xpt_alloc_device(bus, target, lun_id);
4745 if (device == NULL)
4746 return (NULL);
4747
4748 device->mintags = 1;
4749 device->maxtags = 1;
4750 return (device);
4751 }
4752
4753 static void
xpt_destroy_device(void * context,int pending)4754 xpt_destroy_device(void *context, int pending)
4755 {
4756 struct cam_ed *device = context;
4757
4758 mtx_lock(&device->device_mtx);
4759 mtx_destroy(&device->device_mtx);
4760 free(device, M_CAMDEV);
4761 }
4762
4763 struct cam_ed *
xpt_alloc_device(struct cam_eb * bus,struct cam_et * target,lun_id_t lun_id)4764 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4765 {
4766 struct cam_ed *cur_device, *device;
4767 struct cam_devq *devq;
4768 cam_status status;
4769
4770 mtx_assert(&bus->eb_mtx, MA_OWNED);
4771 /* Make space for us in the device queue on our bus */
4772 devq = bus->sim->devq;
4773 mtx_lock(&devq->send_mtx);
4774 status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4775 mtx_unlock(&devq->send_mtx);
4776 if (status != CAM_REQ_CMP)
4777 return (NULL);
4778
4779 device = (struct cam_ed *)malloc(sizeof(*device),
4780 M_CAMDEV, M_NOWAIT|M_ZERO);
4781 if (device == NULL)
4782 return (NULL);
4783
4784 cam_init_pinfo(&device->devq_entry);
4785 device->target = target;
4786 device->lun_id = lun_id;
4787 device->sim = bus->sim;
4788 if (cam_ccbq_init(&device->ccbq,
4789 bus->sim->max_dev_openings) != 0) {
4790 free(device, M_CAMDEV);
4791 return (NULL);
4792 }
4793 SLIST_INIT(&device->asyncs);
4794 SLIST_INIT(&device->periphs);
4795 device->generation = 0;
4796 device->flags = CAM_DEV_UNCONFIGURED;
4797 device->tag_delay_count = 0;
4798 device->tag_saved_openings = 0;
4799 device->refcount = 1;
4800 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4801 callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4802 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4803 /*
4804 * Hold a reference to our parent bus so it
4805 * will not go away before we do.
4806 */
4807 target->refcount++;
4808
4809 cur_device = TAILQ_FIRST(&target->ed_entries);
4810 while (cur_device != NULL && cur_device->lun_id < lun_id)
4811 cur_device = TAILQ_NEXT(cur_device, links);
4812 if (cur_device != NULL)
4813 TAILQ_INSERT_BEFORE(cur_device, device, links);
4814 else
4815 TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4816 target->generation++;
4817 return (device);
4818 }
4819
4820 void
xpt_acquire_device(struct cam_ed * device)4821 xpt_acquire_device(struct cam_ed *device)
4822 {
4823 struct cam_eb *bus = device->target->bus;
4824
4825 mtx_lock(&bus->eb_mtx);
4826 device->refcount++;
4827 mtx_unlock(&bus->eb_mtx);
4828 }
4829
4830 void
xpt_release_device(struct cam_ed * device)4831 xpt_release_device(struct cam_ed *device)
4832 {
4833 struct cam_eb *bus = device->target->bus;
4834 struct cam_devq *devq;
4835
4836 mtx_lock(&bus->eb_mtx);
4837 if (--device->refcount > 0) {
4838 mtx_unlock(&bus->eb_mtx);
4839 return;
4840 }
4841
4842 TAILQ_REMOVE(&device->target->ed_entries, device,links);
4843 device->target->generation++;
4844 mtx_unlock(&bus->eb_mtx);
4845
4846 /* Release our slot in the devq */
4847 devq = bus->sim->devq;
4848 mtx_lock(&devq->send_mtx);
4849 cam_devq_resize(devq, devq->send_queue.array_size - 1);
4850
4851 KASSERT(SLIST_EMPTY(&device->periphs),
4852 ("destroying device, but periphs list is not empty"));
4853 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4854 ("destroying device while still queued for ccbs"));
4855
4856 /* The send_mtx must be held when accessing the callout */
4857 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4858 callout_stop(&device->callout);
4859
4860 mtx_unlock(&devq->send_mtx);
4861
4862 xpt_release_target(device->target);
4863
4864 cam_ccbq_fini(&device->ccbq);
4865 /*
4866 * Free allocated memory. free(9) does nothing if the
4867 * supplied pointer is NULL, so it is safe to call without
4868 * checking.
4869 */
4870 free(device->supported_vpds, M_CAMXPT);
4871 free(device->device_id, M_CAMXPT);
4872 free(device->ext_inq, M_CAMXPT);
4873 free(device->physpath, M_CAMXPT);
4874 free(device->rcap_buf, M_CAMXPT);
4875 free(device->serial_num, M_CAMXPT);
4876 free(device->nvme_data, M_CAMXPT);
4877 free(device->nvme_cdata, M_CAMXPT);
4878 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4879 }
4880
4881 uint32_t
xpt_dev_ccbq_resize(struct cam_path * path,int newopenings)4882 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4883 {
4884 int result;
4885 struct cam_ed *dev;
4886
4887 dev = path->device;
4888 mtx_lock(&dev->sim->devq->send_mtx);
4889 result = cam_ccbq_resize(&dev->ccbq, newopenings);
4890 mtx_unlock(&dev->sim->devq->send_mtx);
4891 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4892 || (dev->inq_flags & SID_CmdQue) != 0)
4893 dev->tag_saved_openings = newopenings;
4894 return (result);
4895 }
4896
4897 static struct cam_eb *
xpt_find_bus(path_id_t path_id)4898 xpt_find_bus(path_id_t path_id)
4899 {
4900 struct cam_eb *bus;
4901
4902 xpt_lock_buses();
4903 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4904 bus != NULL;
4905 bus = TAILQ_NEXT(bus, links)) {
4906 if (bus->path_id == path_id) {
4907 bus->refcount++;
4908 break;
4909 }
4910 }
4911 xpt_unlock_buses();
4912 return (bus);
4913 }
4914
4915 static struct cam_et *
xpt_find_target(struct cam_eb * bus,target_id_t target_id)4916 xpt_find_target(struct cam_eb *bus, target_id_t target_id)
4917 {
4918 struct cam_et *target;
4919
4920 mtx_assert(&bus->eb_mtx, MA_OWNED);
4921 for (target = TAILQ_FIRST(&bus->et_entries);
4922 target != NULL;
4923 target = TAILQ_NEXT(target, links)) {
4924 if (target->target_id == target_id) {
4925 target->refcount++;
4926 break;
4927 }
4928 }
4929 return (target);
4930 }
4931
4932 static struct cam_ed *
xpt_find_device(struct cam_et * target,lun_id_t lun_id)4933 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4934 {
4935 struct cam_ed *device;
4936
4937 mtx_assert(&target->bus->eb_mtx, MA_OWNED);
4938 for (device = TAILQ_FIRST(&target->ed_entries);
4939 device != NULL;
4940 device = TAILQ_NEXT(device, links)) {
4941 if (device->lun_id == lun_id) {
4942 device->refcount++;
4943 break;
4944 }
4945 }
4946 return (device);
4947 }
4948
4949 void
xpt_start_tags(struct cam_path * path)4950 xpt_start_tags(struct cam_path *path)
4951 {
4952 struct ccb_relsim crs;
4953 struct cam_ed *device;
4954 struct cam_sim *sim;
4955 int newopenings;
4956
4957 device = path->device;
4958 sim = path->bus->sim;
4959 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4960 xpt_freeze_devq(path, /*count*/1);
4961 device->inq_flags |= SID_CmdQue;
4962 if (device->tag_saved_openings != 0)
4963 newopenings = device->tag_saved_openings;
4964 else
4965 newopenings = min(device->maxtags,
4966 sim->max_tagged_dev_openings);
4967 xpt_dev_ccbq_resize(path, newopenings);
4968 xpt_async(AC_GETDEV_CHANGED, path, NULL);
4969 memset(&crs, 0, sizeof(crs));
4970 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4971 crs.ccb_h.func_code = XPT_REL_SIMQ;
4972 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4973 crs.openings
4974 = crs.release_timeout
4975 = crs.qfrozen_cnt
4976 = 0;
4977 xpt_action((union ccb *)&crs);
4978 }
4979
4980 void
xpt_stop_tags(struct cam_path * path)4981 xpt_stop_tags(struct cam_path *path)
4982 {
4983 struct ccb_relsim crs;
4984 struct cam_ed *device;
4985 struct cam_sim *sim;
4986
4987 device = path->device;
4988 sim = path->bus->sim;
4989 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4990 device->tag_delay_count = 0;
4991 xpt_freeze_devq(path, /*count*/1);
4992 device->inq_flags &= ~SID_CmdQue;
4993 xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4994 xpt_async(AC_GETDEV_CHANGED, path, NULL);
4995 memset(&crs, 0, sizeof(crs));
4996 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4997 crs.ccb_h.func_code = XPT_REL_SIMQ;
4998 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4999 crs.openings
5000 = crs.release_timeout
5001 = crs.qfrozen_cnt
5002 = 0;
5003 xpt_action((union ccb *)&crs);
5004 }
5005
5006 /*
5007 * Assume all possible buses are detected by this time, so allow boot
5008 * as soon as they all are scanned.
5009 */
5010 static void
xpt_boot_delay(void * arg)5011 xpt_boot_delay(void *arg)
5012 {
5013
5014 xpt_release_boot();
5015 }
5016
5017 /*
5018 * Now that all config hooks have completed, start boot_delay timer,
5019 * waiting for possibly still undetected buses (USB) to appear.
5020 */
5021 static void
xpt_ch_done(void * arg)5022 xpt_ch_done(void *arg)
5023 {
5024
5025 callout_init(&xsoftc.boot_callout, 1);
5026 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay,
5027 SBT_1MS, xpt_boot_delay, NULL, 0);
5028 }
5029 SYSINIT(xpt_hw_delay, SI_SUB_INT_CONFIG_HOOKS, SI_ORDER_ANY, xpt_ch_done, NULL);
5030
5031 /*
5032 * Now that interrupts are enabled, go find our devices
5033 */
5034 static void
xpt_config(void * arg)5035 xpt_config(void *arg)
5036 {
5037 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5038 printf("xpt_config: failed to create taskqueue thread.\n");
5039
5040 /* Setup debugging path */
5041 if (cam_dflags != CAM_DEBUG_NONE) {
5042 if (xpt_create_path(&cam_dpath, NULL,
5043 CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5044 CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5045 printf(
5046 "xpt_config: xpt_create_path() failed for debug target %d:%d:%d, debugging disabled\n",
5047 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5048 cam_dflags = CAM_DEBUG_NONE;
5049 }
5050 } else
5051 cam_dpath = NULL;
5052
5053 periphdriver_init(1);
5054 xpt_hold_boot();
5055
5056 /* Fire up rescan thread. */
5057 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5058 "cam", "scanner")) {
5059 printf("xpt_config: failed to create rescan thread.\n");
5060 }
5061 }
5062
5063 void
xpt_hold_boot_locked(void)5064 xpt_hold_boot_locked(void)
5065 {
5066
5067 if (xsoftc.buses_to_config++ == 0)
5068 root_mount_hold_token("CAM", &xsoftc.xpt_rootmount);
5069 }
5070
5071 void
xpt_hold_boot(void)5072 xpt_hold_boot(void)
5073 {
5074
5075 xpt_lock_buses();
5076 xpt_hold_boot_locked();
5077 xpt_unlock_buses();
5078 }
5079
5080 void
xpt_release_boot(void)5081 xpt_release_boot(void)
5082 {
5083
5084 xpt_lock_buses();
5085 if (--xsoftc.buses_to_config == 0) {
5086 if (xsoftc.buses_config_done == 0) {
5087 xsoftc.buses_config_done = 1;
5088 xsoftc.buses_to_config++;
5089 TASK_INIT(&xsoftc.boot_task, 0, xpt_finishconfig_task,
5090 NULL);
5091 taskqueue_enqueue(taskqueue_thread, &xsoftc.boot_task);
5092 } else
5093 root_mount_rel(&xsoftc.xpt_rootmount);
5094 }
5095 xpt_unlock_buses();
5096 }
5097
5098 /*
5099 * If the given device only has one peripheral attached to it, and if that
5100 * peripheral is the passthrough driver, announce it. This insures that the
5101 * user sees some sort of announcement for every peripheral in their system.
5102 */
5103 static int
xptpassannouncefunc(struct cam_ed * device,void * arg)5104 xptpassannouncefunc(struct cam_ed *device, void *arg)
5105 {
5106 struct cam_periph *periph;
5107 int i;
5108
5109 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5110 periph = SLIST_NEXT(periph, periph_links), i++);
5111
5112 periph = SLIST_FIRST(&device->periphs);
5113 if ((i == 1)
5114 && (strncmp(periph->periph_name, "pass", 4) == 0))
5115 xpt_announce_periph(periph, NULL);
5116
5117 return(1);
5118 }
5119
5120 static void
xpt_finishconfig_task(void * context,int pending)5121 xpt_finishconfig_task(void *context, int pending)
5122 {
5123
5124 periphdriver_init(2);
5125 /*
5126 * Check for devices with no "standard" peripheral driver
5127 * attached. For any devices like that, announce the
5128 * passthrough driver so the user will see something.
5129 */
5130 if (!bootverbose)
5131 xpt_for_all_devices(xptpassannouncefunc, NULL);
5132
5133 xpt_release_boot();
5134 }
5135
5136 cam_status
xpt_register_async(int event,ac_callback_t * cbfunc,void * cbarg,struct cam_path * path)5137 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5138 struct cam_path *path)
5139 {
5140 struct ccb_setasync csa;
5141 cam_status status;
5142 bool xptpath = false;
5143
5144 if (path == NULL) {
5145 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5146 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5147 if (status != CAM_REQ_CMP)
5148 return (status);
5149 xpt_path_lock(path);
5150 xptpath = true;
5151 }
5152
5153 memset(&csa, 0, sizeof(csa));
5154 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5155 csa.ccb_h.func_code = XPT_SASYNC_CB;
5156 csa.event_enable = event;
5157 csa.callback = cbfunc;
5158 csa.callback_arg = cbarg;
5159 xpt_action((union ccb *)&csa);
5160 status = csa.ccb_h.status;
5161
5162 CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5163 ("xpt_register_async: func %p\n", cbfunc));
5164
5165 if (xptpath) {
5166 xpt_path_unlock(path);
5167 xpt_free_path(path);
5168 }
5169
5170 if ((status == CAM_REQ_CMP) &&
5171 (csa.event_enable & AC_FOUND_DEVICE)) {
5172 /*
5173 * Get this peripheral up to date with all
5174 * the currently existing devices.
5175 */
5176 xpt_for_all_devices(xptsetasyncfunc, &csa);
5177 }
5178 if ((status == CAM_REQ_CMP) &&
5179 (csa.event_enable & AC_PATH_REGISTERED)) {
5180 /*
5181 * Get this peripheral up to date with all
5182 * the currently existing buses.
5183 */
5184 xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5185 }
5186
5187 return (status);
5188 }
5189
5190 static void
xptaction(struct cam_sim * sim,union ccb * work_ccb)5191 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5192 {
5193 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5194
5195 switch (work_ccb->ccb_h.func_code) {
5196 /* Common cases first */
5197 case XPT_PATH_INQ: /* Path routing inquiry */
5198 {
5199 struct ccb_pathinq *cpi;
5200
5201 cpi = &work_ccb->cpi;
5202 cpi->version_num = 1; /* XXX??? */
5203 cpi->hba_inquiry = 0;
5204 cpi->target_sprt = 0;
5205 cpi->hba_misc = 0;
5206 cpi->hba_eng_cnt = 0;
5207 cpi->max_target = 0;
5208 cpi->max_lun = 0;
5209 cpi->initiator_id = 0;
5210 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5211 strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5212 strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5213 cpi->unit_number = sim->unit_number;
5214 cpi->bus_id = sim->bus_id;
5215 cpi->base_transfer_speed = 0;
5216 cpi->protocol = PROTO_UNSPECIFIED;
5217 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5218 cpi->transport = XPORT_UNSPECIFIED;
5219 cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5220 cpi->ccb_h.status = CAM_REQ_CMP;
5221 break;
5222 }
5223 default:
5224 work_ccb->ccb_h.status = CAM_REQ_INVALID;
5225 break;
5226 }
5227 xpt_done(work_ccb);
5228 }
5229
5230 /*
5231 * The xpt as a "controller" has no interrupt sources, so polling
5232 * is a no-op.
5233 */
5234 static void
xptpoll(struct cam_sim * sim)5235 xptpoll(struct cam_sim *sim)
5236 {
5237 }
5238
5239 void
xpt_lock_buses(void)5240 xpt_lock_buses(void)
5241 {
5242 mtx_lock(&xsoftc.xpt_topo_lock);
5243 }
5244
5245 void
xpt_unlock_buses(void)5246 xpt_unlock_buses(void)
5247 {
5248 mtx_unlock(&xsoftc.xpt_topo_lock);
5249 }
5250
5251 struct mtx *
xpt_path_mtx(struct cam_path * path)5252 xpt_path_mtx(struct cam_path *path)
5253 {
5254
5255 return (&path->device->device_mtx);
5256 }
5257
5258 static void
xpt_done_process(struct ccb_hdr * ccb_h)5259 xpt_done_process(struct ccb_hdr *ccb_h)
5260 {
5261 struct cam_sim *sim = NULL;
5262 struct cam_devq *devq = NULL;
5263 struct mtx *mtx = NULL;
5264
5265 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5266 struct ccb_scsiio *csio;
5267
5268 if (ccb_h->func_code == XPT_SCSI_IO) {
5269 csio = &((union ccb *)ccb_h)->csio;
5270 if (csio->bio != NULL)
5271 biotrack(csio->bio, __func__);
5272 }
5273 #endif
5274
5275 if (ccb_h->flags & CAM_HIGH_POWER) {
5276 struct highpowerlist *hphead;
5277 struct cam_ed *device;
5278
5279 mtx_lock(&xsoftc.xpt_highpower_lock);
5280 hphead = &xsoftc.highpowerq;
5281
5282 device = STAILQ_FIRST(hphead);
5283
5284 /*
5285 * Increment the count since this command is done.
5286 */
5287 xsoftc.num_highpower++;
5288
5289 /*
5290 * Any high powered commands queued up?
5291 */
5292 if (device != NULL) {
5293 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5294 mtx_unlock(&xsoftc.xpt_highpower_lock);
5295
5296 mtx_lock(&device->sim->devq->send_mtx);
5297 xpt_release_devq_device(device,
5298 /*count*/1, /*runqueue*/TRUE);
5299 mtx_unlock(&device->sim->devq->send_mtx);
5300 } else
5301 mtx_unlock(&xsoftc.xpt_highpower_lock);
5302 }
5303
5304 /*
5305 * Insulate against a race where the periph is destroyed but CCBs are
5306 * still not all processed. This shouldn't happen, but allows us better
5307 * bug diagnostic when it does.
5308 */
5309 if (ccb_h->path->bus)
5310 sim = ccb_h->path->bus->sim;
5311
5312 if (ccb_h->status & CAM_RELEASE_SIMQ) {
5313 KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request"));
5314 xpt_release_simq(sim, /*run_queue*/FALSE);
5315 ccb_h->status &= ~CAM_RELEASE_SIMQ;
5316 }
5317
5318 if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5319 && (ccb_h->status & CAM_DEV_QFRZN)) {
5320 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5321 ccb_h->status &= ~CAM_DEV_QFRZN;
5322 }
5323
5324 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5325 struct cam_ed *dev = ccb_h->path->device;
5326
5327 if (sim)
5328 devq = sim->devq;
5329 KASSERT(devq, ("Periph disappeared with CCB %p %s request pending.",
5330 ccb_h, xpt_action_name(ccb_h->func_code)));
5331
5332 mtx_lock(&devq->send_mtx);
5333 devq->send_active--;
5334 devq->send_openings++;
5335 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5336
5337 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5338 && (dev->ccbq.dev_active == 0))) {
5339 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5340 xpt_release_devq_device(dev, /*count*/1,
5341 /*run_queue*/FALSE);
5342 }
5343
5344 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5345 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5346 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5347 xpt_release_devq_device(dev, /*count*/1,
5348 /*run_queue*/FALSE);
5349 }
5350
5351 if (!device_is_queued(dev))
5352 (void)xpt_schedule_devq(devq, dev);
5353 xpt_run_devq(devq);
5354 mtx_unlock(&devq->send_mtx);
5355
5356 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5357 mtx = xpt_path_mtx(ccb_h->path);
5358 mtx_lock(mtx);
5359
5360 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5361 && (--dev->tag_delay_count == 0))
5362 xpt_start_tags(ccb_h->path);
5363 }
5364 }
5365
5366 if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5367 if (mtx == NULL) {
5368 mtx = xpt_path_mtx(ccb_h->path);
5369 mtx_lock(mtx);
5370 }
5371 } else {
5372 if (mtx != NULL) {
5373 mtx_unlock(mtx);
5374 mtx = NULL;
5375 }
5376 }
5377
5378 /* Call the peripheral driver's callback */
5379 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5380 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5381 if (mtx != NULL)
5382 mtx_unlock(mtx);
5383 }
5384
5385 /*
5386 * Parameterize instead and use xpt_done_td?
5387 */
5388 static void
xpt_async_td(void * arg)5389 xpt_async_td(void *arg)
5390 {
5391 struct cam_doneq *queue = arg;
5392 struct ccb_hdr *ccb_h;
5393 STAILQ_HEAD(, ccb_hdr) doneq;
5394
5395 STAILQ_INIT(&doneq);
5396 mtx_lock(&queue->cam_doneq_mtx);
5397 while (1) {
5398 while (STAILQ_EMPTY(&queue->cam_doneq))
5399 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5400 PRIBIO, "-", 0);
5401 STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5402 mtx_unlock(&queue->cam_doneq_mtx);
5403
5404 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5405 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5406 xpt_done_process(ccb_h);
5407 }
5408
5409 mtx_lock(&queue->cam_doneq_mtx);
5410 }
5411 }
5412
5413 void
xpt_done_td(void * arg)5414 xpt_done_td(void *arg)
5415 {
5416 struct cam_doneq *queue = arg;
5417 struct ccb_hdr *ccb_h;
5418 STAILQ_HEAD(, ccb_hdr) doneq;
5419
5420 STAILQ_INIT(&doneq);
5421 mtx_lock(&queue->cam_doneq_mtx);
5422 while (1) {
5423 while (STAILQ_EMPTY(&queue->cam_doneq)) {
5424 queue->cam_doneq_sleep = 1;
5425 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5426 PRIBIO, "-", 0);
5427 queue->cam_doneq_sleep = 0;
5428 }
5429 STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5430 mtx_unlock(&queue->cam_doneq_mtx);
5431
5432 THREAD_NO_SLEEPING();
5433 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5434 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5435 xpt_done_process(ccb_h);
5436 }
5437 THREAD_SLEEPING_OK();
5438
5439 mtx_lock(&queue->cam_doneq_mtx);
5440 }
5441 }
5442
5443 static void
camisr_runqueue(void)5444 camisr_runqueue(void)
5445 {
5446 struct ccb_hdr *ccb_h;
5447 struct cam_doneq *queue;
5448 int i;
5449
5450 /* Process global queues. */
5451 for (i = 0; i < cam_num_doneqs; i++) {
5452 queue = &cam_doneqs[i];
5453 mtx_lock(&queue->cam_doneq_mtx);
5454 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5455 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5456 mtx_unlock(&queue->cam_doneq_mtx);
5457 xpt_done_process(ccb_h);
5458 mtx_lock(&queue->cam_doneq_mtx);
5459 }
5460 mtx_unlock(&queue->cam_doneq_mtx);
5461 }
5462 }
5463
5464 /**
5465 * @brief Return the device_t associated with the path
5466 *
5467 * When a SIM is created, it registers a bus with a NEWBUS device_t. This is
5468 * stored in the internal cam_eb bus structure. There is no guarnatee any given
5469 * path will have a @c device_t associated with it (it's legal to call @c
5470 * xpt_bus_register with a @c NULL @c device_t.
5471 *
5472 * @param path Path to return the device_t for.
5473 */
5474 device_t
xpt_path_sim_device(const struct cam_path * path)5475 xpt_path_sim_device(const struct cam_path *path)
5476 {
5477 return (path->bus->parent_dev);
5478 }
5479
5480 struct kv
5481 {
5482 uint32_t v;
5483 const char *name;
5484 };
5485
5486 static struct kv map[] = {
5487 { XPT_NOOP, "XPT_NOOP" },
5488 { XPT_SCSI_IO, "XPT_SCSI_IO" },
5489 { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5490 { XPT_GDEVLIST, "XPT_GDEVLIST" },
5491 { XPT_PATH_INQ, "XPT_PATH_INQ" },
5492 { XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5493 { XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5494 { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5495 { XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5496 { XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5497 { XPT_DEBUG, "XPT_DEBUG" },
5498 { XPT_PATH_STATS, "XPT_PATH_STATS" },
5499 { XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5500 { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5501 { XPT_ASYNC, "XPT_ASYNC" },
5502 { XPT_ABORT, "XPT_ABORT" },
5503 { XPT_RESET_BUS, "XPT_RESET_BUS" },
5504 { XPT_RESET_DEV, "XPT_RESET_DEV" },
5505 { XPT_TERM_IO, "XPT_TERM_IO" },
5506 { XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5507 { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5508 { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5509 { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5510 { XPT_ATA_IO, "XPT_ATA_IO" },
5511 { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5512 { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5513 { XPT_NVME_IO, "XPT_NVME_IO" },
5514 { XPT_MMC_IO, "XPT_MMC_IO" },
5515 { XPT_SMP_IO, "XPT_SMP_IO" },
5516 { XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5517 { XPT_NVME_ADMIN, "XPT_NVME_ADMIN" },
5518 { XPT_ENG_INQ, "XPT_ENG_INQ" },
5519 { XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5520 { XPT_EN_LUN, "XPT_EN_LUN" },
5521 { XPT_TARGET_IO, "XPT_TARGET_IO" },
5522 { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5523 { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5524 { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5525 { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5526 { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5527 { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5528 { 0, 0 }
5529 };
5530
5531 const char *
xpt_action_name(uint32_t action)5532 xpt_action_name(uint32_t action)
5533 {
5534 static char buffer[32]; /* Only for unknown messages -- racy */
5535 struct kv *walker = map;
5536
5537 while (walker->name != NULL) {
5538 if (walker->v == action)
5539 return (walker->name);
5540 walker++;
5541 }
5542
5543 snprintf(buffer, sizeof(buffer), "%#x", action);
5544 return (buffer);
5545 }
5546
5547 void
xpt_cam_path_debug(struct cam_path * path,const char * fmt,...)5548 xpt_cam_path_debug(struct cam_path *path, const char *fmt, ...)
5549 {
5550 struct sbuf sbuf;
5551 char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */
5552 struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
5553 va_list ap;
5554
5555 sbuf_set_drain(sb, sbuf_printf_drain, NULL);
5556 xpt_path_sbuf(path, sb);
5557 va_start(ap, fmt);
5558 sbuf_vprintf(sb, fmt, ap);
5559 va_end(ap);
5560 sbuf_finish(sb);
5561 sbuf_delete(sb);
5562 if (cam_debug_delay != 0)
5563 DELAY(cam_debug_delay);
5564 }
5565
5566 void
xpt_cam_dev_debug(struct cam_ed * dev,const char * fmt,...)5567 xpt_cam_dev_debug(struct cam_ed *dev, const char *fmt, ...)
5568 {
5569 struct sbuf sbuf;
5570 char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */
5571 struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
5572 va_list ap;
5573
5574 sbuf_set_drain(sb, sbuf_printf_drain, NULL);
5575 xpt_device_sbuf(dev, sb);
5576 va_start(ap, fmt);
5577 sbuf_vprintf(sb, fmt, ap);
5578 va_end(ap);
5579 sbuf_finish(sb);
5580 sbuf_delete(sb);
5581 if (cam_debug_delay != 0)
5582 DELAY(cam_debug_delay);
5583 }
5584
5585 void
xpt_cam_debug(const char * fmt,...)5586 xpt_cam_debug(const char *fmt, ...)
5587 {
5588 struct sbuf sbuf;
5589 char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */
5590 struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
5591 va_list ap;
5592
5593 sbuf_set_drain(sb, sbuf_printf_drain, NULL);
5594 sbuf_cat(sb, "cam_debug: ");
5595 va_start(ap, fmt);
5596 sbuf_vprintf(sb, fmt, ap);
5597 va_end(ap);
5598 sbuf_finish(sb);
5599 sbuf_delete(sb);
5600 if (cam_debug_delay != 0)
5601 DELAY(cam_debug_delay);
5602 }
5603