1 /*-
2 * Implementation of the Common Access Method Transport (XPT) layer.
3 *
4 * SPDX-License-Identifier: BSD-2-Clause
5 *
6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions, and the following disclaimer,
15 * without modification, immediately at the beginning of the file.
16 * 2. The name of the author may not be used to endorse or promote products
17 * derived from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include "opt_printf.h"
33
34 #include <sys/param.h>
35 #include <sys/bio.h>
36 #include <sys/bus.h>
37 #include <sys/systm.h>
38 #include <sys/types.h>
39 #include <sys/malloc.h>
40 #include <sys/kernel.h>
41 #include <sys/time.h>
42 #include <sys/conf.h>
43 #include <sys/fcntl.h>
44 #include <sys/proc.h>
45 #include <sys/sbuf.h>
46 #include <sys/smp.h>
47 #include <sys/stdarg.h>
48 #include <sys/taskqueue.h>
49
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/sysctl.h>
53 #include <sys/kthread.h>
54
55 #include <cam/cam.h>
56 #include <cam/cam_ccb.h>
57 #include <cam/cam_iosched.h>
58 #include <cam/cam_periph.h>
59 #include <cam/cam_queue.h>
60 #include <cam/cam_sim.h>
61 #include <cam/cam_xpt.h>
62 #include <cam/cam_xpt_sim.h>
63 #include <cam/cam_xpt_periph.h>
64 #include <cam/cam_xpt_internal.h>
65 #include <cam/cam_debug.h>
66 #include <cam/cam_compat.h>
67
68 #include <cam/scsi/scsi_all.h>
69 #include <cam/scsi/scsi_message.h>
70 #include <cam/scsi/scsi_pass.h>
71
72
73 /* Wild guess based on not wanting to grow the stack too much */
74 #define XPT_PRINT_MAXLEN 512
75 #ifdef PRINTF_BUFR_SIZE
76 #define XPT_PRINT_LEN PRINTF_BUFR_SIZE
77 #else
78 #define XPT_PRINT_LEN 128
79 #endif
80 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
81
82 /*
83 * This is the maximum number of high powered commands (e.g. start unit)
84 * that can be outstanding at a particular time.
85 */
86 #ifndef CAM_MAX_HIGHPOWER
87 #define CAM_MAX_HIGHPOWER 4
88 #endif
89
90 /* Datastructures internal to the xpt layer */
91 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
92 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
93 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
94 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
95
96 struct xpt_softc {
97 uint32_t xpt_generation;
98
99 /* number of high powered commands that can go through right now */
100 struct mtx xpt_highpower_lock;
101 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq;
102 int num_highpower;
103
104 /* queue for handling async rescan requests. */
105 TAILQ_HEAD(, ccb_hdr) ccb_scanq;
106 int buses_to_config;
107 int buses_config_done;
108
109 /*
110 * Registered buses
111 *
112 * N.B., "busses" is an archaic spelling of "buses". In new code
113 * "buses" is preferred.
114 */
115 TAILQ_HEAD(,cam_eb) xpt_busses;
116 u_int bus_generation;
117
118 int boot_delay;
119 struct callout boot_callout;
120 struct task boot_task;
121 struct root_hold_token xpt_rootmount;
122
123 struct mtx xpt_topo_lock;
124 struct taskqueue *xpt_taskq;
125 };
126
127 typedef enum {
128 DM_RET_COPY = 0x01,
129 DM_RET_FLAG_MASK = 0x0f,
130 DM_RET_NONE = 0x00,
131 DM_RET_STOP = 0x10,
132 DM_RET_DESCEND = 0x20,
133 DM_RET_ERROR = 0x30,
134 DM_RET_ACTION_MASK = 0xf0
135 } dev_match_ret;
136
137 typedef enum {
138 XPT_DEPTH_BUS,
139 XPT_DEPTH_TARGET,
140 XPT_DEPTH_DEVICE,
141 XPT_DEPTH_PERIPH
142 } xpt_traverse_depth;
143
144 struct xpt_traverse_config {
145 xpt_traverse_depth depth;
146 void *tr_func;
147 void *tr_arg;
148 };
149
150 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg);
151 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg);
152 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg);
153 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg);
154 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
155
156 /* Transport layer configuration information */
157 static struct xpt_softc xsoftc;
158
159 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
160
161 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
162 &xsoftc.boot_delay, 0, "Bus registration wait time");
163 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
164 &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
165
166 struct cam_doneq {
167 struct mtx_padalign cam_doneq_mtx;
168 STAILQ_HEAD(, ccb_hdr) cam_doneq;
169 int cam_doneq_sleep;
170 };
171
172 static struct cam_doneq cam_doneqs[MAXCPU];
173 static u_int __read_mostly cam_num_doneqs;
174 static struct proc *cam_proc;
175 static struct cam_doneq cam_async;
176
177 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
178 &cam_num_doneqs, 0, "Number of completion queues/threads");
179
180 struct cam_periph *xpt_periph;
181
182 static periph_init_t xpt_periph_init;
183
184 static struct periph_driver xpt_driver =
185 {
186 xpt_periph_init, "xpt",
187 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
188 CAM_PERIPH_DRV_EARLY
189 };
190
191 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
192
193 static d_open_t xptopen;
194 static d_close_t xptclose;
195 static d_ioctl_t xptioctl;
196 static d_ioctl_t xptdoioctl;
197
198 static struct cdevsw xpt_cdevsw = {
199 .d_version = D_VERSION,
200 .d_flags = 0,
201 .d_open = xptopen,
202 .d_close = xptclose,
203 .d_ioctl = xptioctl,
204 .d_name = "xpt",
205 };
206
207 /* Storage for debugging datastructures */
208 struct cam_path *cam_dpath;
209 uint32_t __read_mostly cam_dflags = CAM_DEBUG_FLAGS;
210 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
211 &cam_dflags, 0, "Enabled debug flags");
212 uint32_t cam_debug_delay = CAM_DEBUG_DELAY;
213 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
214 &cam_debug_delay, 0, "Delay in us after each debug message");
215
216 /* Our boot-time initialization hook */
217 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
218
219 static moduledata_t cam_moduledata = {
220 "cam",
221 cam_module_event_handler,
222 NULL
223 };
224
225 static int xpt_init(void *);
226
227 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
228 MODULE_VERSION(cam, 1);
229
230 static void xpt_async_bcast(struct async_list *async_head,
231 uint32_t async_code,
232 struct cam_path *path,
233 void *async_arg);
234 static path_id_t xptnextfreepathid(void);
235 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
236 static union ccb *xpt_get_ccb(struct cam_periph *periph);
237 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
238 static void xpt_run_allocq(struct cam_periph *periph, int sleep);
239 static void xpt_run_allocq_task(void *context, int pending);
240 static void xpt_run_devq(struct cam_devq *devq);
241 static callout_func_t xpt_release_devq_timeout;
242 static void xpt_acquire_bus(struct cam_eb *bus);
243 static void xpt_release_bus(struct cam_eb *bus);
244 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
245 static int xpt_release_devq_device(struct cam_ed *dev, u_int count,
246 int run_queue);
247 static struct cam_et*
248 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
249 static void xpt_acquire_target(struct cam_et *target);
250 static void xpt_release_target(struct cam_et *target);
251 static struct cam_eb*
252 xpt_find_bus(path_id_t path_id);
253 static struct cam_et*
254 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
255 static struct cam_ed*
256 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
257 static void xpt_config(void *arg);
258 static void xpt_hold_boot_locked(void);
259 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
260 uint32_t new_priority);
261 static xpt_devicefunc_t xptpassannouncefunc;
262 static void xptaction(struct cam_sim *sim, union ccb *work_ccb);
263 static void xptpoll(struct cam_sim *sim);
264 static void camisr_runqueue(void);
265 static void xpt_done_process(struct ccb_hdr *ccb_h);
266 static void xpt_done_td(void *);
267 static void xpt_async_td(void *);
268 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns,
269 u_int num_patterns, struct cam_eb *bus);
270 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns,
271 u_int num_patterns,
272 struct cam_ed *device);
273 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns,
274 u_int num_patterns,
275 struct cam_periph *periph);
276 static xpt_busfunc_t xptedtbusfunc;
277 static xpt_targetfunc_t xptedttargetfunc;
278 static xpt_devicefunc_t xptedtdevicefunc;
279 static xpt_periphfunc_t xptedtperiphfunc;
280 static xpt_pdrvfunc_t xptplistpdrvfunc;
281 static xpt_periphfunc_t xptplistperiphfunc;
282 static int xptedtmatch(struct ccb_dev_match *cdm);
283 static int xptperiphlistmatch(struct ccb_dev_match *cdm);
284 static int xptbustraverse(struct cam_eb *start_bus,
285 xpt_busfunc_t *tr_func, void *arg);
286 static int xpttargettraverse(struct cam_eb *bus,
287 struct cam_et *start_target,
288 xpt_targetfunc_t *tr_func, void *arg);
289 static int xptdevicetraverse(struct cam_et *target,
290 struct cam_ed *start_device,
291 xpt_devicefunc_t *tr_func, void *arg);
292 static int xptperiphtraverse(struct cam_ed *device,
293 struct cam_periph *start_periph,
294 xpt_periphfunc_t *tr_func, void *arg);
295 static int xptpdrvtraverse(struct periph_driver **start_pdrv,
296 xpt_pdrvfunc_t *tr_func, void *arg);
297 static int xptpdperiphtraverse(struct periph_driver **pdrv,
298 struct cam_periph *start_periph,
299 xpt_periphfunc_t *tr_func,
300 void *arg);
301 static xpt_busfunc_t xptdefbusfunc;
302 static xpt_targetfunc_t xptdeftargetfunc;
303 static xpt_devicefunc_t xptdefdevicefunc;
304 static xpt_periphfunc_t xptdefperiphfunc;
305 static void xpt_finishconfig_task(void *context, int pending);
306 static void xpt_dev_async_default(uint32_t async_code,
307 struct cam_eb *bus,
308 struct cam_et *target,
309 struct cam_ed *device,
310 void *async_arg);
311 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus,
312 struct cam_et *target,
313 lun_id_t lun_id);
314 static xpt_devicefunc_t xptsetasyncfunc;
315 static xpt_busfunc_t xptsetasyncbusfunc;
316 static cam_status xptregister(struct cam_periph *periph,
317 void *arg);
318
319 static __inline int
xpt_schedule_devq(struct cam_devq * devq,struct cam_ed * dev)320 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
321 {
322 int retval;
323
324 mtx_assert(&devq->send_mtx, MA_OWNED);
325 if ((dev->ccbq.queue.entries > 0) &&
326 (dev->ccbq.dev_openings > 0) &&
327 (dev->ccbq.queue.qfrozen_cnt == 0)) {
328 /*
329 * The priority of a device waiting for controller
330 * resources is that of the highest priority CCB
331 * enqueued.
332 */
333 retval =
334 xpt_schedule_dev(&devq->send_queue,
335 &dev->devq_entry,
336 CAMQ_GET_PRIO(&dev->ccbq.queue));
337 } else {
338 retval = 0;
339 }
340 return (retval);
341 }
342
343 static __inline int
device_is_queued(struct cam_ed * device)344 device_is_queued(struct cam_ed *device)
345 {
346 return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
347 }
348
349 static void
xpt_periph_init(void)350 xpt_periph_init(void)
351 {
352 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
353 }
354
355 static int
xptopen(struct cdev * dev,int flags,int fmt,struct thread * td)356 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
357 {
358
359 /*
360 * Only allow read-write access.
361 */
362 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
363 return(EPERM);
364
365 /*
366 * We don't allow nonblocking access.
367 */
368 if ((flags & O_NONBLOCK) != 0) {
369 printf("%s: can't do nonblocking access\n", devtoname(dev));
370 return(ENODEV);
371 }
372
373 return(0);
374 }
375
376 static int
xptclose(struct cdev * dev,int flag,int fmt,struct thread * td)377 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
378 {
379
380 return(0);
381 }
382
383 /*
384 * Don't automatically grab the xpt softc lock here even though this is going
385 * through the xpt device. The xpt device is really just a back door for
386 * accessing other devices and SIMs, so the right thing to do is to grab
387 * the appropriate SIM lock once the bus/SIM is located.
388 */
389 static int
xptioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flag,struct thread * td)390 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
391 {
392 int error;
393
394 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
395 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
396 }
397 return (error);
398 }
399
400 static int
xptdoioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flag,struct thread * td)401 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
402 {
403 int error;
404
405 error = 0;
406
407 switch(cmd) {
408 /*
409 * For the transport layer CAMIOCOMMAND ioctl, we really only want
410 * to accept CCB types that don't quite make sense to send through a
411 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
412 * in the CAM spec.
413 */
414 case CAMIOCOMMAND: {
415 union ccb *ccb;
416 union ccb *inccb;
417 struct cam_eb *bus;
418
419 inccb = (union ccb *)addr;
420 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
421 if (inccb->ccb_h.func_code == XPT_SCSI_IO)
422 inccb->csio.bio = NULL;
423 #endif
424
425 if (inccb->ccb_h.flags & CAM_UNLOCKED)
426 return (EINVAL);
427
428 bus = xpt_find_bus(inccb->ccb_h.path_id);
429 if (bus == NULL)
430 return (EINVAL);
431
432 switch (inccb->ccb_h.func_code) {
433 case XPT_SCAN_BUS:
434 case XPT_RESET_BUS:
435 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
436 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
437 xpt_release_bus(bus);
438 return (EINVAL);
439 }
440 break;
441 case XPT_SCAN_TGT:
442 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
443 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
444 xpt_release_bus(bus);
445 return (EINVAL);
446 }
447 break;
448 default:
449 break;
450 }
451
452 switch(inccb->ccb_h.func_code) {
453 case XPT_SCAN_BUS:
454 case XPT_RESET_BUS:
455 case XPT_PATH_INQ:
456 case XPT_ENG_INQ:
457 case XPT_SCAN_LUN:
458 case XPT_SCAN_TGT:
459
460 ccb = xpt_alloc_ccb();
461
462 /*
463 * Create a path using the bus, target, and lun the
464 * user passed in.
465 */
466 if (xpt_create_path(&ccb->ccb_h.path, NULL,
467 inccb->ccb_h.path_id,
468 inccb->ccb_h.target_id,
469 inccb->ccb_h.target_lun) !=
470 CAM_REQ_CMP){
471 error = EINVAL;
472 xpt_free_ccb(ccb);
473 break;
474 }
475 /* Ensure all of our fields are correct */
476 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
477 inccb->ccb_h.pinfo.priority);
478 xpt_merge_ccb(ccb, inccb);
479 xpt_path_lock(ccb->ccb_h.path);
480 cam_periph_runccb(ccb, NULL, 0, 0, NULL);
481 xpt_path_unlock(ccb->ccb_h.path);
482 bcopy(ccb, inccb, sizeof(union ccb));
483 xpt_free_path(ccb->ccb_h.path);
484 xpt_free_ccb(ccb);
485 break;
486
487 case XPT_DEBUG: {
488 union ccb ccb;
489
490 /*
491 * This is an immediate CCB, so it's okay to
492 * allocate it on the stack.
493 */
494 memset(&ccb, 0, sizeof(ccb));
495
496 /*
497 * Create a path using the bus, target, and lun the
498 * user passed in.
499 */
500 if (xpt_create_path(&ccb.ccb_h.path, NULL,
501 inccb->ccb_h.path_id,
502 inccb->ccb_h.target_id,
503 inccb->ccb_h.target_lun) !=
504 CAM_REQ_CMP){
505 error = EINVAL;
506 break;
507 }
508 /* Ensure all of our fields are correct */
509 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
510 inccb->ccb_h.pinfo.priority);
511 xpt_merge_ccb(&ccb, inccb);
512 xpt_action(&ccb);
513 bcopy(&ccb, inccb, sizeof(union ccb));
514 xpt_free_path(ccb.ccb_h.path);
515 break;
516 }
517 case XPT_DEV_MATCH: {
518 struct cam_periph_map_info mapinfo;
519 struct cam_path *old_path;
520
521 /*
522 * We can't deal with physical addresses for this
523 * type of transaction.
524 */
525 if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
526 CAM_DATA_VADDR) {
527 error = EINVAL;
528 break;
529 }
530
531 /*
532 * Save this in case the caller had it set to
533 * something in particular.
534 */
535 old_path = inccb->ccb_h.path;
536
537 /*
538 * We really don't need a path for the matching
539 * code. The path is needed because of the
540 * debugging statements in xpt_action(). They
541 * assume that the CCB has a valid path.
542 */
543 inccb->ccb_h.path = xpt_periph->path;
544
545 bzero(&mapinfo, sizeof(mapinfo));
546
547 /*
548 * Map the pattern and match buffers into kernel
549 * virtual address space.
550 */
551 error = cam_periph_mapmem(inccb, &mapinfo, maxphys);
552
553 if (error) {
554 inccb->ccb_h.path = old_path;
555 break;
556 }
557
558 /*
559 * This is an immediate CCB, we can send it on directly.
560 */
561 xpt_action(inccb);
562
563 /*
564 * Map the buffers back into user space.
565 */
566 error = cam_periph_unmapmem(inccb, &mapinfo);
567
568 inccb->ccb_h.path = old_path;
569 break;
570 }
571 default:
572 error = ENOTSUP;
573 break;
574 }
575 xpt_release_bus(bus);
576 break;
577 }
578 /*
579 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
580 * with the periphal driver name and unit name filled in. The other
581 * fields don't really matter as input. The passthrough driver name
582 * ("pass"), and unit number are passed back in the ccb. The current
583 * device generation number, and the index into the device peripheral
584 * driver list, and the status are also passed back. Note that
585 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
586 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
587 * (or rather should be) impossible for the device peripheral driver
588 * list to change since we look at the whole thing in one pass, and
589 * we do it with lock protection.
590 *
591 */
592 case CAMGETPASSTHRU: {
593 union ccb *ccb;
594 struct cam_periph *periph;
595 struct periph_driver **p_drv;
596 char *name;
597 u_int unit;
598 bool base_periph_found;
599
600 ccb = (union ccb *)addr;
601 unit = ccb->cgdl.unit_number;
602 name = ccb->cgdl.periph_name;
603 base_periph_found = false;
604 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
605 if (ccb->ccb_h.func_code == XPT_SCSI_IO)
606 ccb->csio.bio = NULL;
607 #endif
608
609 /*
610 * Sanity check -- make sure we don't get a null peripheral
611 * driver name.
612 */
613 if (*ccb->cgdl.periph_name == '\0') {
614 error = EINVAL;
615 break;
616 }
617
618 /* Keep the list from changing while we traverse it */
619 xpt_lock_buses();
620
621 /* first find our driver in the list of drivers */
622 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
623 if (strcmp((*p_drv)->driver_name, name) == 0)
624 break;
625
626 if (*p_drv == NULL) {
627 xpt_unlock_buses();
628 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
629 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
630 *ccb->cgdl.periph_name = '\0';
631 ccb->cgdl.unit_number = 0;
632 error = ENOENT;
633 break;
634 }
635
636 /*
637 * Run through every peripheral instance of this driver
638 * and check to see whether it matches the unit passed
639 * in by the user. If it does, get out of the loops and
640 * find the passthrough driver associated with that
641 * peripheral driver.
642 */
643 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
644 periph = TAILQ_NEXT(periph, unit_links)) {
645 if (periph->unit_number == unit)
646 break;
647 }
648 /*
649 * If we found the peripheral driver that the user passed
650 * in, go through all of the peripheral drivers for that
651 * particular device and look for a passthrough driver.
652 */
653 if (periph != NULL) {
654 struct cam_ed *device;
655 int i;
656
657 base_periph_found = true;
658 device = periph->path->device;
659 for (i = 0, periph = SLIST_FIRST(&device->periphs);
660 periph != NULL;
661 periph = SLIST_NEXT(periph, periph_links), i++) {
662 /*
663 * Check to see whether we have a
664 * passthrough device or not.
665 */
666 if (strcmp(periph->periph_name, "pass") == 0) {
667 /*
668 * Fill in the getdevlist fields.
669 */
670 strlcpy(ccb->cgdl.periph_name,
671 periph->periph_name,
672 sizeof(ccb->cgdl.periph_name));
673 ccb->cgdl.unit_number =
674 periph->unit_number;
675 if (SLIST_NEXT(periph, periph_links))
676 ccb->cgdl.status =
677 CAM_GDEVLIST_MORE_DEVS;
678 else
679 ccb->cgdl.status =
680 CAM_GDEVLIST_LAST_DEVICE;
681 ccb->cgdl.generation =
682 device->generation;
683 ccb->cgdl.index = i;
684 /*
685 * Fill in some CCB header fields
686 * that the user may want.
687 */
688 ccb->ccb_h.path_id =
689 periph->path->bus->path_id;
690 ccb->ccb_h.target_id =
691 periph->path->target->target_id;
692 ccb->ccb_h.target_lun =
693 periph->path->device->lun_id;
694 ccb->ccb_h.status = CAM_REQ_CMP;
695 break;
696 }
697 }
698 }
699
700 /*
701 * If the periph is null here, one of two things has
702 * happened. The first possibility is that we couldn't
703 * find the unit number of the particular peripheral driver
704 * that the user is asking about. e.g. the user asks for
705 * the passthrough driver for "da11". We find the list of
706 * "da" peripherals all right, but there is no unit 11.
707 * The other possibility is that we went through the list
708 * of peripheral drivers attached to the device structure,
709 * but didn't find one with the name "pass". Either way,
710 * we return ENOENT, since we couldn't find something.
711 */
712 if (periph == NULL) {
713 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
714 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
715 *ccb->cgdl.periph_name = '\0';
716 ccb->cgdl.unit_number = 0;
717 error = ENOENT;
718 /*
719 * It is unfortunate that this is even necessary,
720 * but there are many, many clueless users out there.
721 * If this is true, the user is looking for the
722 * passthrough driver, but doesn't have one in his
723 * kernel.
724 */
725 if (base_periph_found) {
726 printf(
727 "xptioctl: pass driver is not in the kernel\n"
728 "xptioctl: put \"device pass\" in your kernel config file\n");
729 }
730 }
731 xpt_unlock_buses();
732 break;
733 }
734 default:
735 error = ENOTTY;
736 break;
737 }
738
739 return(error);
740 }
741
742 static int
cam_module_event_handler(module_t mod,int what,void * arg)743 cam_module_event_handler(module_t mod, int what, void *arg)
744 {
745 int error;
746
747 switch (what) {
748 case MOD_LOAD:
749 if ((error = xpt_init(NULL)) != 0)
750 return (error);
751 break;
752 case MOD_UNLOAD:
753 return EBUSY;
754 default:
755 return EOPNOTSUPP;
756 }
757
758 return 0;
759 }
760
761 static struct xpt_proto *
xpt_proto_find(cam_proto proto)762 xpt_proto_find(cam_proto proto)
763 {
764 struct xpt_proto **pp;
765
766 SET_FOREACH(pp, cam_xpt_proto_set) {
767 if ((*pp)->proto == proto)
768 return *pp;
769 }
770
771 return NULL;
772 }
773
774 static void
xpt_rescan_done(struct cam_periph * periph,union ccb * done_ccb)775 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
776 {
777
778 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
779 xpt_free_path(done_ccb->ccb_h.path);
780 xpt_free_ccb(done_ccb);
781 } else {
782 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
783 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
784 }
785 xpt_release_boot();
786 }
787
788 /* thread to handle bus rescans */
789 static void
xpt_scanner_thread(void * dummy)790 xpt_scanner_thread(void *dummy)
791 {
792 union ccb *ccb;
793 struct mtx *mtx;
794 struct cam_ed *device;
795
796 xpt_lock_buses();
797 for (;;) {
798 if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
799 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
800 "-", 0);
801 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
802 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
803 xpt_unlock_buses();
804
805 /*
806 * We need to lock the device's mutex which we use as
807 * the path mutex. We can't do it directly because the
808 * cam_path in the ccb may wind up going away because
809 * the path lock may be dropped and the path retired in
810 * the completion callback. We do this directly to keep
811 * the reference counts in cam_path sane. We also have
812 * to copy the device pointer because ccb_h.path may
813 * be freed in the callback.
814 */
815 mtx = xpt_path_mtx(ccb->ccb_h.path);
816 device = ccb->ccb_h.path->device;
817 xpt_acquire_device(device);
818 mtx_lock(mtx);
819 xpt_action(ccb);
820 mtx_unlock(mtx);
821 xpt_release_device(device);
822
823 xpt_lock_buses();
824 }
825 }
826 }
827
828 void
xpt_rescan(union ccb * ccb)829 xpt_rescan(union ccb *ccb)
830 {
831 struct ccb_hdr *hdr;
832
833 /* Prepare request */
834 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
835 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
836 ccb->ccb_h.func_code = XPT_SCAN_BUS;
837 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
838 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
839 ccb->ccb_h.func_code = XPT_SCAN_TGT;
840 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
841 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
842 ccb->ccb_h.func_code = XPT_SCAN_LUN;
843 else {
844 xpt_print(ccb->ccb_h.path, "illegal scan path\n");
845 xpt_free_path(ccb->ccb_h.path);
846 xpt_free_ccb(ccb);
847 return;
848 }
849 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
850 ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
851 xpt_action_name(ccb->ccb_h.func_code)));
852
853 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
854 ccb->ccb_h.cbfcnp = xpt_rescan_done;
855 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
856 /* Don't make duplicate entries for the same paths. */
857 xpt_lock_buses();
858 if (ccb->ccb_h.ppriv_ptr1 == NULL) {
859 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
860 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
861 wakeup(&xsoftc.ccb_scanq);
862 xpt_unlock_buses();
863 xpt_print(ccb->ccb_h.path, "rescan already queued\n");
864 xpt_free_path(ccb->ccb_h.path);
865 xpt_free_ccb(ccb);
866 return;
867 }
868 }
869 }
870 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
871 xpt_hold_boot_locked();
872 wakeup(&xsoftc.ccb_scanq);
873 xpt_unlock_buses();
874 }
875
876 /* Functions accessed by the peripheral drivers */
877 static int
xpt_init(void * dummy)878 xpt_init(void *dummy)
879 {
880 struct cam_sim *xpt_sim;
881 struct cam_path *path;
882 struct cam_devq *devq;
883 cam_status status;
884 int error, i;
885
886 TAILQ_INIT(&xsoftc.xpt_busses);
887 TAILQ_INIT(&xsoftc.ccb_scanq);
888 STAILQ_INIT(&xsoftc.highpowerq);
889 xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
890
891 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
892 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
893 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
894
895 #ifdef CAM_BOOT_DELAY
896 /*
897 * Override this value at compile time to assist our users
898 * who don't use loader to boot a kernel.
899 */
900 xsoftc.boot_delay = CAM_BOOT_DELAY;
901 #endif
902
903 /*
904 * The xpt layer is, itself, the equivalent of a SIM.
905 * Allow 16 ccbs in the ccb pool for it. This should
906 * give decent parallelism when we probe buses and
907 * perform other XPT functions.
908 */
909 devq = cam_simq_alloc(16);
910 if (devq == NULL)
911 return (ENOMEM);
912 xpt_sim = cam_sim_alloc(xptaction,
913 xptpoll,
914 "xpt",
915 /*softc*/NULL,
916 /*unit*/0,
917 /*mtx*/NULL,
918 /*max_dev_transactions*/0,
919 /*max_tagged_dev_transactions*/0,
920 devq);
921 if (xpt_sim == NULL)
922 return (ENOMEM);
923
924 if ((error = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
925 printf(
926 "xpt_init: xpt_bus_register failed with errno %d, failing attach\n",
927 error);
928 return (EINVAL);
929 }
930
931 /*
932 * Looking at the XPT from the SIM layer, the XPT is
933 * the equivalent of a peripheral driver. Allocate
934 * a peripheral driver entry for us.
935 */
936 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
937 CAM_TARGET_WILDCARD,
938 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
939 printf(
940 "xpt_init: xpt_create_path failed with status %#x, failing attach\n",
941 status);
942 return (EINVAL);
943 }
944 xpt_path_lock(path);
945 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
946 path, NULL, 0, xpt_sim);
947 xpt_path_unlock(path);
948 xpt_free_path(path);
949
950 if (cam_num_doneqs < 1)
951 cam_num_doneqs = 1 + mp_ncpus / 6;
952 else if (cam_num_doneqs > MAXCPU)
953 cam_num_doneqs = MAXCPU;
954 for (i = 0; i < cam_num_doneqs; i++) {
955 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
956 MTX_DEF);
957 STAILQ_INIT(&cam_doneqs[i].cam_doneq);
958 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
959 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
960 if (error != 0) {
961 cam_num_doneqs = i;
962 break;
963 }
964 }
965 if (cam_num_doneqs < 1) {
966 printf("xpt_init: Cannot init completion queues - failing attach\n");
967 return (ENOMEM);
968 }
969
970 mtx_init(&cam_async.cam_doneq_mtx, "CAM async", NULL, MTX_DEF);
971 STAILQ_INIT(&cam_async.cam_doneq);
972 if (kproc_kthread_add(xpt_async_td, &cam_async,
973 &cam_proc, NULL, 0, 0, "cam", "async") != 0) {
974 printf("xpt_init: Cannot init async thread - failing attach\n");
975 return (ENOMEM);
976 }
977
978 /*
979 * Register a callback for when interrupts are enabled.
980 */
981 config_intrhook_oneshot(xpt_config, NULL);
982
983 return (0);
984 }
985
986 static cam_status
xptregister(struct cam_periph * periph,void * arg)987 xptregister(struct cam_periph *periph, void *arg)
988 {
989 struct cam_sim *xpt_sim;
990
991 if (periph == NULL) {
992 printf("xptregister: periph was NULL!!\n");
993 return(CAM_REQ_CMP_ERR);
994 }
995
996 xpt_sim = (struct cam_sim *)arg;
997 xpt_sim->softc = periph;
998 xpt_periph = periph;
999 periph->softc = NULL;
1000
1001 return(CAM_REQ_CMP);
1002 }
1003
1004 int32_t
xpt_add_periph(struct cam_periph * periph)1005 xpt_add_periph(struct cam_periph *periph)
1006 {
1007 struct cam_ed *device;
1008 int32_t status;
1009
1010 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1011 device = periph->path->device;
1012 status = CAM_REQ_CMP;
1013 if (device != NULL) {
1014 mtx_lock(&device->target->bus->eb_mtx);
1015 device->generation++;
1016 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1017 mtx_unlock(&device->target->bus->eb_mtx);
1018 atomic_add_32(&xsoftc.xpt_generation, 1);
1019 }
1020
1021 return (status);
1022 }
1023
1024 void
xpt_remove_periph(struct cam_periph * periph)1025 xpt_remove_periph(struct cam_periph *periph)
1026 {
1027 struct cam_ed *device;
1028
1029 device = periph->path->device;
1030 if (device != NULL) {
1031 mtx_lock(&device->target->bus->eb_mtx);
1032 device->generation++;
1033 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1034 mtx_unlock(&device->target->bus->eb_mtx);
1035 atomic_add_32(&xsoftc.xpt_generation, 1);
1036 }
1037 }
1038
1039 void
xpt_announce_periph(struct cam_periph * periph,char * announce_string)1040 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1041 {
1042 char buf[128];
1043 struct sbuf sb;
1044
1045 (void)sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
1046 sbuf_set_drain(&sb, sbuf_printf_drain, NULL);
1047 xpt_announce_periph_sbuf(periph, &sb, announce_string);
1048 (void)sbuf_finish(&sb);
1049 }
1050
1051 void
xpt_announce_periph_sbuf(struct cam_periph * periph,struct sbuf * sb,char * announce_string)1052 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb,
1053 char *announce_string)
1054 {
1055 struct cam_path *path = periph->path;
1056 struct xpt_proto *proto;
1057
1058 cam_periph_assert(periph, MA_OWNED);
1059 periph->flags |= CAM_PERIPH_ANNOUNCED;
1060
1061 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1062 periph->periph_name, periph->unit_number,
1063 path->bus->sim->sim_name,
1064 path->bus->sim->unit_number,
1065 path->bus->sim->bus_id,
1066 path->bus->path_id,
1067 path->target->target_id,
1068 (uintmax_t)path->device->lun_id);
1069 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1070 proto = xpt_proto_find(path->device->protocol);
1071 if (proto)
1072 proto->ops->announce_sbuf(path->device, sb);
1073 else
1074 sbuf_printf(sb, "Unknown protocol device %d\n",
1075 path->device->protocol);
1076 if (path->device->serial_num_len > 0) {
1077 /* Don't wrap the screen - print only the first 60 chars */
1078 sbuf_printf(sb, "%s%d: Serial Number %.60s\n",
1079 periph->periph_name, periph->unit_number,
1080 path->device->serial_num);
1081 }
1082 /* Announce transport details. */
1083 path->bus->xport->ops->announce_sbuf(periph, sb);
1084 /* Announce command queueing. */
1085 if (path->device->inq_flags & SID_CmdQue
1086 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1087 sbuf_printf(sb, "%s%d: Command Queueing enabled\n",
1088 periph->periph_name, periph->unit_number);
1089 }
1090 /* Announce caller's details if they've passed in. */
1091 if (announce_string != NULL)
1092 sbuf_printf(sb, "%s%d: %s\n", periph->periph_name,
1093 periph->unit_number, announce_string);
1094 }
1095
1096 void
xpt_announce_quirks(struct cam_periph * periph,int quirks,char * bit_string)1097 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1098 {
1099 if (quirks != 0) {
1100 printf("%s%d: quirks=0x%b\n", periph->periph_name,
1101 periph->unit_number, quirks, bit_string);
1102 }
1103 }
1104
1105 void
xpt_announce_quirks_sbuf(struct cam_periph * periph,struct sbuf * sb,int quirks,char * bit_string)1106 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb,
1107 int quirks, char *bit_string)
1108 {
1109 if (quirks != 0) {
1110 sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name,
1111 periph->unit_number, quirks, bit_string);
1112 }
1113 }
1114
1115 void
xpt_denounce_periph(struct cam_periph * periph)1116 xpt_denounce_periph(struct cam_periph *periph)
1117 {
1118 char buf[128];
1119 struct sbuf sb;
1120
1121 (void)sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
1122 sbuf_set_drain(&sb, sbuf_printf_drain, NULL);
1123 xpt_denounce_periph_sbuf(periph, &sb);
1124 (void)sbuf_finish(&sb);
1125 }
1126
1127 void
xpt_denounce_periph_sbuf(struct cam_periph * periph,struct sbuf * sb)1128 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
1129 {
1130 struct cam_path *path = periph->path;
1131 struct xpt_proto *proto;
1132
1133 cam_periph_assert(periph, MA_OWNED);
1134
1135 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1136 periph->periph_name, periph->unit_number,
1137 path->bus->sim->sim_name,
1138 path->bus->sim->unit_number,
1139 path->bus->sim->bus_id,
1140 path->bus->path_id,
1141 path->target->target_id,
1142 (uintmax_t)path->device->lun_id);
1143 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1144 proto = xpt_proto_find(path->device->protocol);
1145 if (proto)
1146 proto->ops->denounce_sbuf(path->device, sb);
1147 else
1148 sbuf_printf(sb, "Unknown protocol device %d",
1149 path->device->protocol);
1150 if (path->device->serial_num_len > 0)
1151 sbuf_printf(sb, " s/n %.60s", path->device->serial_num);
1152 sbuf_cat(sb, " detached\n");
1153 }
1154
1155 int
xpt_getattr(char * buf,size_t len,const char * attr,struct cam_path * path)1156 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1157 {
1158 int ret = -1, l, o;
1159 struct ccb_dev_advinfo cdai;
1160 struct scsi_vpd_device_id *did;
1161 struct scsi_vpd_id_descriptor *idd;
1162
1163 xpt_path_assert(path, MA_OWNED);
1164
1165 memset(&cdai, 0, sizeof(cdai));
1166 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1167 cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1168 cdai.flags = CDAI_FLAG_NONE;
1169 cdai.bufsiz = len;
1170 cdai.buf = buf;
1171
1172 if (!strcmp(attr, "GEOM::ident"))
1173 cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1174 else if (!strcmp(attr, "GEOM::physpath"))
1175 cdai.buftype = CDAI_TYPE_PHYS_PATH;
1176 else if (strcmp(attr, "GEOM::lunid") == 0 ||
1177 strcmp(attr, "GEOM::lunname") == 0) {
1178 cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1179 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1180 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT);
1181 if (cdai.buf == NULL) {
1182 ret = ENOMEM;
1183 goto out;
1184 }
1185 } else
1186 goto out;
1187
1188 xpt_action((union ccb *)&cdai); /* can only be synchronous */
1189 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1190 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1191 if (cdai.provsiz == 0)
1192 goto out;
1193 switch(cdai.buftype) {
1194 case CDAI_TYPE_SCSI_DEVID:
1195 did = (struct scsi_vpd_device_id *)cdai.buf;
1196 if (strcmp(attr, "GEOM::lunid") == 0) {
1197 idd = scsi_get_devid(did, cdai.provsiz,
1198 scsi_devid_is_lun_naa);
1199 if (idd == NULL)
1200 idd = scsi_get_devid(did, cdai.provsiz,
1201 scsi_devid_is_lun_eui64);
1202 if (idd == NULL)
1203 idd = scsi_get_devid(did, cdai.provsiz,
1204 scsi_devid_is_lun_uuid);
1205 if (idd == NULL)
1206 idd = scsi_get_devid(did, cdai.provsiz,
1207 scsi_devid_is_lun_md5);
1208 } else
1209 idd = NULL;
1210
1211 if (idd == NULL)
1212 idd = scsi_get_devid(did, cdai.provsiz,
1213 scsi_devid_is_lun_t10);
1214 if (idd == NULL)
1215 idd = scsi_get_devid(did, cdai.provsiz,
1216 scsi_devid_is_lun_name);
1217 if (idd == NULL)
1218 break;
1219
1220 ret = 0;
1221 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1222 SVPD_ID_CODESET_ASCII) {
1223 if (idd->length < len) {
1224 for (l = 0; l < idd->length; l++)
1225 buf[l] = idd->identifier[l] ?
1226 idd->identifier[l] : ' ';
1227 buf[l] = 0;
1228 } else
1229 ret = EFAULT;
1230 break;
1231 }
1232 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1233 SVPD_ID_CODESET_UTF8) {
1234 l = strnlen(idd->identifier, idd->length);
1235 if (l < len) {
1236 bcopy(idd->identifier, buf, l);
1237 buf[l] = 0;
1238 } else
1239 ret = EFAULT;
1240 break;
1241 }
1242 if ((idd->id_type & SVPD_ID_TYPE_MASK) ==
1243 SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) {
1244 if ((idd->length - 2) * 2 + 4 >= len) {
1245 ret = EFAULT;
1246 break;
1247 }
1248 for (l = 2, o = 0; l < idd->length; l++) {
1249 if (l == 6 || l == 8 || l == 10 || l == 12)
1250 o += sprintf(buf + o, "-");
1251 o += sprintf(buf + o, "%02x",
1252 idd->identifier[l]);
1253 }
1254 break;
1255 }
1256 if (idd->length * 2 < len) {
1257 for (l = 0; l < idd->length; l++)
1258 sprintf(buf + l * 2, "%02x",
1259 idd->identifier[l]);
1260 } else
1261 ret = EFAULT;
1262 break;
1263 default:
1264 if (cdai.provsiz < len) {
1265 cdai.buf[cdai.provsiz] = 0;
1266 ret = 0;
1267 } else
1268 ret = EFAULT;
1269 break;
1270 }
1271
1272 out:
1273 if ((char *)cdai.buf != buf)
1274 free(cdai.buf, M_CAMXPT);
1275 return ret;
1276 }
1277
1278 static dev_match_ret
xptbusmatch(struct dev_match_pattern * patterns,u_int num_patterns,struct cam_eb * bus)1279 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1280 struct cam_eb *bus)
1281 {
1282 dev_match_ret retval;
1283 u_int i;
1284
1285 retval = DM_RET_NONE;
1286
1287 /*
1288 * If we aren't given something to match against, that's an error.
1289 */
1290 if (bus == NULL)
1291 return(DM_RET_ERROR);
1292
1293 /*
1294 * If there are no match entries, then this bus matches no
1295 * matter what.
1296 */
1297 if ((patterns == NULL) || (num_patterns == 0))
1298 return(DM_RET_DESCEND | DM_RET_COPY);
1299
1300 for (i = 0; i < num_patterns; i++) {
1301 struct bus_match_pattern *cur_pattern;
1302 struct device_match_pattern *dp = &patterns[i].pattern.device_pattern;
1303 struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern;
1304
1305 /*
1306 * If the pattern in question isn't for a bus node, we
1307 * aren't interested. However, we do indicate to the
1308 * calling routine that we should continue descending the
1309 * tree, since the user wants to match against lower-level
1310 * EDT elements.
1311 */
1312 if (patterns[i].type == DEV_MATCH_DEVICE &&
1313 (dp->flags & DEV_MATCH_PATH) != 0 &&
1314 dp->path_id != bus->path_id)
1315 continue;
1316 if (patterns[i].type == DEV_MATCH_PERIPH &&
1317 (pp->flags & PERIPH_MATCH_PATH) != 0 &&
1318 pp->path_id != bus->path_id)
1319 continue;
1320 if (patterns[i].type != DEV_MATCH_BUS) {
1321 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1322 retval |= DM_RET_DESCEND;
1323 continue;
1324 }
1325
1326 cur_pattern = &patterns[i].pattern.bus_pattern;
1327
1328 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1329 && (cur_pattern->path_id != bus->path_id))
1330 continue;
1331
1332 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1333 && (cur_pattern->bus_id != bus->sim->bus_id))
1334 continue;
1335
1336 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1337 && (cur_pattern->unit_number != bus->sim->unit_number))
1338 continue;
1339
1340 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1341 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1342 DEV_IDLEN) != 0))
1343 continue;
1344
1345 /*
1346 * If we get to this point, the user definitely wants
1347 * information on this bus. So tell the caller to copy the
1348 * data out.
1349 */
1350 retval |= DM_RET_COPY;
1351
1352 /*
1353 * If the return action has been set to descend, then we
1354 * know that we've already seen a non-bus matching
1355 * expression, therefore we need to further descend the tree.
1356 * This won't change by continuing around the loop, so we
1357 * go ahead and return. If we haven't seen a non-bus
1358 * matching expression, we keep going around the loop until
1359 * we exhaust the matching expressions. We'll set the stop
1360 * flag once we fall out of the loop.
1361 */
1362 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1363 return(retval);
1364 }
1365
1366 /*
1367 * If the return action hasn't been set to descend yet, that means
1368 * we haven't seen anything other than bus matching patterns. So
1369 * tell the caller to stop descending the tree -- the user doesn't
1370 * want to match against lower level tree elements.
1371 */
1372 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1373 retval |= DM_RET_STOP;
1374
1375 return(retval);
1376 }
1377
1378 static dev_match_ret
xptdevicematch(struct dev_match_pattern * patterns,u_int num_patterns,struct cam_ed * device)1379 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1380 struct cam_ed *device)
1381 {
1382 dev_match_ret retval;
1383 u_int i;
1384
1385 retval = DM_RET_NONE;
1386
1387 /*
1388 * If we aren't given something to match against, that's an error.
1389 */
1390 if (device == NULL)
1391 return(DM_RET_ERROR);
1392
1393 /*
1394 * If there are no match entries, then this device matches no
1395 * matter what.
1396 */
1397 if ((patterns == NULL) || (num_patterns == 0))
1398 return(DM_RET_DESCEND | DM_RET_COPY);
1399
1400 for (i = 0; i < num_patterns; i++) {
1401 struct device_match_pattern *cur_pattern;
1402 struct scsi_vpd_device_id *device_id_page;
1403 struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern;
1404
1405 /*
1406 * If the pattern in question isn't for a device node, we
1407 * aren't interested.
1408 */
1409 if (patterns[i].type == DEV_MATCH_PERIPH &&
1410 (pp->flags & PERIPH_MATCH_TARGET) != 0 &&
1411 pp->target_id != device->target->target_id)
1412 continue;
1413 if (patterns[i].type == DEV_MATCH_PERIPH &&
1414 (pp->flags & PERIPH_MATCH_LUN) != 0 &&
1415 pp->target_lun != device->lun_id)
1416 continue;
1417 if (patterns[i].type != DEV_MATCH_DEVICE) {
1418 if ((patterns[i].type == DEV_MATCH_PERIPH)
1419 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1420 retval |= DM_RET_DESCEND;
1421 continue;
1422 }
1423
1424 cur_pattern = &patterns[i].pattern.device_pattern;
1425
1426 /* Error out if mutually exclusive options are specified. */
1427 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1428 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1429 return(DM_RET_ERROR);
1430
1431 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1432 && (cur_pattern->path_id != device->target->bus->path_id))
1433 continue;
1434
1435 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1436 && (cur_pattern->target_id != device->target->target_id))
1437 continue;
1438
1439 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1440 && (cur_pattern->target_lun != device->lun_id))
1441 continue;
1442
1443 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1444 && (cam_quirkmatch((caddr_t)&device->inq_data,
1445 (caddr_t)&cur_pattern->data.inq_pat,
1446 1, sizeof(cur_pattern->data.inq_pat),
1447 scsi_static_inquiry_match) == NULL))
1448 continue;
1449
1450 device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1451 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1452 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1453 || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1454 device->device_id_len
1455 - SVPD_DEVICE_ID_HDR_LEN,
1456 cur_pattern->data.devid_pat.id,
1457 cur_pattern->data.devid_pat.id_len) != 0))
1458 continue;
1459
1460 /*
1461 * If we get to this point, the user definitely wants
1462 * information on this device. So tell the caller to copy
1463 * the data out.
1464 */
1465 retval |= DM_RET_COPY;
1466
1467 /*
1468 * If the return action has been set to descend, then we
1469 * know that we've already seen a peripheral matching
1470 * expression, therefore we need to further descend the tree.
1471 * This won't change by continuing around the loop, so we
1472 * go ahead and return. If we haven't seen a peripheral
1473 * matching expression, we keep going around the loop until
1474 * we exhaust the matching expressions. We'll set the stop
1475 * flag once we fall out of the loop.
1476 */
1477 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1478 return(retval);
1479 }
1480
1481 /*
1482 * If the return action hasn't been set to descend yet, that means
1483 * we haven't seen any peripheral matching patterns. So tell the
1484 * caller to stop descending the tree -- the user doesn't want to
1485 * match against lower level tree elements.
1486 */
1487 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1488 retval |= DM_RET_STOP;
1489
1490 return(retval);
1491 }
1492
1493 /*
1494 * Match a single peripheral against any number of match patterns.
1495 */
1496 static dev_match_ret
xptperiphmatch(struct dev_match_pattern * patterns,u_int num_patterns,struct cam_periph * periph)1497 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1498 struct cam_periph *periph)
1499 {
1500 dev_match_ret retval;
1501 u_int i;
1502
1503 /*
1504 * If we aren't given something to match against, that's an error.
1505 */
1506 if (periph == NULL)
1507 return(DM_RET_ERROR);
1508
1509 /*
1510 * If there are no match entries, then this peripheral matches no
1511 * matter what.
1512 */
1513 if ((patterns == NULL) || (num_patterns == 0))
1514 return(DM_RET_STOP | DM_RET_COPY);
1515
1516 /*
1517 * There aren't any nodes below a peripheral node, so there's no
1518 * reason to descend the tree any further.
1519 */
1520 retval = DM_RET_STOP;
1521
1522 for (i = 0; i < num_patterns; i++) {
1523 struct periph_match_pattern *cur_pattern;
1524
1525 /*
1526 * If the pattern in question isn't for a peripheral, we
1527 * aren't interested.
1528 */
1529 if (patterns[i].type != DEV_MATCH_PERIPH)
1530 continue;
1531
1532 cur_pattern = &patterns[i].pattern.periph_pattern;
1533
1534 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1535 && (cur_pattern->path_id != periph->path->bus->path_id))
1536 continue;
1537
1538 /*
1539 * For the target and lun id's, we have to make sure the
1540 * target and lun pointers aren't NULL. The xpt peripheral
1541 * has a wildcard target and device.
1542 */
1543 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1544 && ((periph->path->target == NULL)
1545 ||(cur_pattern->target_id != periph->path->target->target_id)))
1546 continue;
1547
1548 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1549 && ((periph->path->device == NULL)
1550 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1551 continue;
1552
1553 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1554 && (cur_pattern->unit_number != periph->unit_number))
1555 continue;
1556
1557 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1558 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1559 DEV_IDLEN) != 0))
1560 continue;
1561
1562 /*
1563 * If we get to this point, the user definitely wants
1564 * information on this peripheral. So tell the caller to
1565 * copy the data out.
1566 */
1567 retval |= DM_RET_COPY;
1568
1569 /*
1570 * The return action has already been set to stop, since
1571 * peripherals don't have any nodes below them in the EDT.
1572 */
1573 return(retval);
1574 }
1575
1576 /*
1577 * If we get to this point, the peripheral that was passed in
1578 * doesn't match any of the patterns.
1579 */
1580 return(retval);
1581 }
1582
1583 static int
xptedtbusfunc(struct cam_eb * bus,void * arg)1584 xptedtbusfunc(struct cam_eb *bus, void *arg)
1585 {
1586 struct ccb_dev_match *cdm;
1587 struct cam_et *target;
1588 dev_match_ret retval;
1589
1590 cdm = (struct ccb_dev_match *)arg;
1591
1592 /*
1593 * If our position is for something deeper in the tree, that means
1594 * that we've already seen this node. So, we keep going down.
1595 */
1596 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1597 && (cdm->pos.cookie.bus == bus)
1598 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1599 && (cdm->pos.cookie.target != NULL))
1600 retval = DM_RET_DESCEND;
1601 else
1602 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1603
1604 /*
1605 * If we got an error, bail out of the search.
1606 */
1607 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1608 cdm->status = CAM_DEV_MATCH_ERROR;
1609 return(0);
1610 }
1611
1612 /*
1613 * If the copy flag is set, copy this bus out.
1614 */
1615 if (retval & DM_RET_COPY) {
1616 int spaceleft, j;
1617
1618 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1619 sizeof(struct dev_match_result));
1620
1621 /*
1622 * If we don't have enough space to put in another
1623 * match result, save our position and tell the
1624 * user there are more devices to check.
1625 */
1626 if (spaceleft < sizeof(struct dev_match_result)) {
1627 bzero(&cdm->pos, sizeof(cdm->pos));
1628 cdm->pos.position_type =
1629 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1630
1631 cdm->pos.cookie.bus = bus;
1632 cdm->pos.generations[CAM_BUS_GENERATION]=
1633 xsoftc.bus_generation;
1634 cdm->status = CAM_DEV_MATCH_MORE;
1635 return(0);
1636 }
1637 j = cdm->num_matches;
1638 cdm->num_matches++;
1639 cdm->matches[j].type = DEV_MATCH_BUS;
1640 cdm->matches[j].result.bus_result.path_id = bus->path_id;
1641 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1642 cdm->matches[j].result.bus_result.unit_number =
1643 bus->sim->unit_number;
1644 strlcpy(cdm->matches[j].result.bus_result.dev_name,
1645 bus->sim->sim_name,
1646 sizeof(cdm->matches[j].result.bus_result.dev_name));
1647 }
1648
1649 /*
1650 * If the user is only interested in buses, there's no
1651 * reason to descend to the next level in the tree.
1652 */
1653 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1654 return(1);
1655
1656 /*
1657 * If there is a target generation recorded, check it to
1658 * make sure the target list hasn't changed.
1659 */
1660 mtx_lock(&bus->eb_mtx);
1661 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1662 && (cdm->pos.cookie.bus == bus)
1663 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1664 && (cdm->pos.cookie.target != NULL)) {
1665 if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1666 bus->generation)) {
1667 mtx_unlock(&bus->eb_mtx);
1668 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1669 return (0);
1670 }
1671 target = (struct cam_et *)cdm->pos.cookie.target;
1672 target->refcount++;
1673 } else
1674 target = NULL;
1675 mtx_unlock(&bus->eb_mtx);
1676
1677 return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1678 }
1679
1680 static int
xptedttargetfunc(struct cam_et * target,void * arg)1681 xptedttargetfunc(struct cam_et *target, void *arg)
1682 {
1683 struct ccb_dev_match *cdm;
1684 struct cam_eb *bus;
1685 struct cam_ed *device;
1686
1687 cdm = (struct ccb_dev_match *)arg;
1688 bus = target->bus;
1689
1690 /*
1691 * If there is a device list generation recorded, check it to
1692 * make sure the device list hasn't changed.
1693 */
1694 mtx_lock(&bus->eb_mtx);
1695 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1696 && (cdm->pos.cookie.bus == bus)
1697 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1698 && (cdm->pos.cookie.target == target)
1699 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1700 && (cdm->pos.cookie.device != NULL)) {
1701 if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1702 target->generation) {
1703 mtx_unlock(&bus->eb_mtx);
1704 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1705 return(0);
1706 }
1707 device = (struct cam_ed *)cdm->pos.cookie.device;
1708 device->refcount++;
1709 } else
1710 device = NULL;
1711 mtx_unlock(&bus->eb_mtx);
1712
1713 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1714 }
1715
1716 static int
xptedtdevicefunc(struct cam_ed * device,void * arg)1717 xptedtdevicefunc(struct cam_ed *device, void *arg)
1718 {
1719 struct cam_eb *bus;
1720 struct cam_periph *periph;
1721 struct ccb_dev_match *cdm;
1722 dev_match_ret retval;
1723
1724 cdm = (struct ccb_dev_match *)arg;
1725 bus = device->target->bus;
1726
1727 /*
1728 * If our position is for something deeper in the tree, that means
1729 * that we've already seen this node. So, we keep going down.
1730 */
1731 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1732 && (cdm->pos.cookie.device == device)
1733 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1734 && (cdm->pos.cookie.periph != NULL))
1735 retval = DM_RET_DESCEND;
1736 else
1737 retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1738 device);
1739
1740 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1741 cdm->status = CAM_DEV_MATCH_ERROR;
1742 return(0);
1743 }
1744
1745 /*
1746 * If the copy flag is set, copy this device out.
1747 */
1748 if (retval & DM_RET_COPY) {
1749 int spaceleft, j;
1750
1751 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1752 sizeof(struct dev_match_result));
1753
1754 /*
1755 * If we don't have enough space to put in another
1756 * match result, save our position and tell the
1757 * user there are more devices to check.
1758 */
1759 if (spaceleft < sizeof(struct dev_match_result)) {
1760 bzero(&cdm->pos, sizeof(cdm->pos));
1761 cdm->pos.position_type =
1762 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1763 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1764
1765 cdm->pos.cookie.bus = device->target->bus;
1766 cdm->pos.generations[CAM_BUS_GENERATION]=
1767 xsoftc.bus_generation;
1768 cdm->pos.cookie.target = device->target;
1769 cdm->pos.generations[CAM_TARGET_GENERATION] =
1770 device->target->bus->generation;
1771 cdm->pos.cookie.device = device;
1772 cdm->pos.generations[CAM_DEV_GENERATION] =
1773 device->target->generation;
1774 cdm->status = CAM_DEV_MATCH_MORE;
1775 return(0);
1776 }
1777 j = cdm->num_matches;
1778 cdm->num_matches++;
1779 cdm->matches[j].type = DEV_MATCH_DEVICE;
1780 cdm->matches[j].result.device_result.path_id =
1781 device->target->bus->path_id;
1782 cdm->matches[j].result.device_result.target_id =
1783 device->target->target_id;
1784 cdm->matches[j].result.device_result.target_lun =
1785 device->lun_id;
1786 cdm->matches[j].result.device_result.protocol =
1787 device->protocol;
1788 bcopy(&device->inq_data,
1789 &cdm->matches[j].result.device_result.inq_data,
1790 sizeof(struct scsi_inquiry_data));
1791 bcopy(&device->ident_data,
1792 &cdm->matches[j].result.device_result.ident_data,
1793 sizeof(struct ata_params));
1794
1795 /* Let the user know whether this device is unconfigured */
1796 if (device->flags & CAM_DEV_UNCONFIGURED)
1797 cdm->matches[j].result.device_result.flags =
1798 DEV_RESULT_UNCONFIGURED;
1799 else
1800 cdm->matches[j].result.device_result.flags =
1801 DEV_RESULT_NOFLAG;
1802 }
1803
1804 /*
1805 * If the user isn't interested in peripherals, don't descend
1806 * the tree any further.
1807 */
1808 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1809 return(1);
1810
1811 /*
1812 * If there is a peripheral list generation recorded, make sure
1813 * it hasn't changed.
1814 */
1815 xpt_lock_buses();
1816 mtx_lock(&bus->eb_mtx);
1817 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1818 && (cdm->pos.cookie.bus == bus)
1819 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1820 && (cdm->pos.cookie.target == device->target)
1821 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1822 && (cdm->pos.cookie.device == device)
1823 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1824 && (cdm->pos.cookie.periph != NULL)) {
1825 if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1826 device->generation) {
1827 mtx_unlock(&bus->eb_mtx);
1828 xpt_unlock_buses();
1829 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1830 return(0);
1831 }
1832 periph = (struct cam_periph *)cdm->pos.cookie.periph;
1833 periph->refcount++;
1834 } else
1835 periph = NULL;
1836 mtx_unlock(&bus->eb_mtx);
1837 xpt_unlock_buses();
1838
1839 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1840 }
1841
1842 static int
xptedtperiphfunc(struct cam_periph * periph,void * arg)1843 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1844 {
1845 struct ccb_dev_match *cdm;
1846 dev_match_ret retval;
1847
1848 cdm = (struct ccb_dev_match *)arg;
1849
1850 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1851
1852 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1853 cdm->status = CAM_DEV_MATCH_ERROR;
1854 return(0);
1855 }
1856
1857 /*
1858 * If the copy flag is set, copy this peripheral out.
1859 */
1860 if (retval & DM_RET_COPY) {
1861 int spaceleft, j;
1862 size_t l;
1863
1864 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1865 sizeof(struct dev_match_result));
1866
1867 /*
1868 * If we don't have enough space to put in another
1869 * match result, save our position and tell the
1870 * user there are more devices to check.
1871 */
1872 if (spaceleft < sizeof(struct dev_match_result)) {
1873 bzero(&cdm->pos, sizeof(cdm->pos));
1874 cdm->pos.position_type =
1875 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1876 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1877 CAM_DEV_POS_PERIPH;
1878
1879 cdm->pos.cookie.bus = periph->path->bus;
1880 cdm->pos.generations[CAM_BUS_GENERATION]=
1881 xsoftc.bus_generation;
1882 cdm->pos.cookie.target = periph->path->target;
1883 cdm->pos.generations[CAM_TARGET_GENERATION] =
1884 periph->path->bus->generation;
1885 cdm->pos.cookie.device = periph->path->device;
1886 cdm->pos.generations[CAM_DEV_GENERATION] =
1887 periph->path->target->generation;
1888 cdm->pos.cookie.periph = periph;
1889 cdm->pos.generations[CAM_PERIPH_GENERATION] =
1890 periph->path->device->generation;
1891 cdm->status = CAM_DEV_MATCH_MORE;
1892 return(0);
1893 }
1894
1895 j = cdm->num_matches;
1896 cdm->num_matches++;
1897 cdm->matches[j].type = DEV_MATCH_PERIPH;
1898 cdm->matches[j].result.periph_result.path_id =
1899 periph->path->bus->path_id;
1900 cdm->matches[j].result.periph_result.target_id =
1901 periph->path->target->target_id;
1902 cdm->matches[j].result.periph_result.target_lun =
1903 periph->path->device->lun_id;
1904 cdm->matches[j].result.periph_result.unit_number =
1905 periph->unit_number;
1906 l = sizeof(cdm->matches[j].result.periph_result.periph_name);
1907 strlcpy(cdm->matches[j].result.periph_result.periph_name,
1908 periph->periph_name, l);
1909 }
1910
1911 return(1);
1912 }
1913
1914 static int
xptedtmatch(struct ccb_dev_match * cdm)1915 xptedtmatch(struct ccb_dev_match *cdm)
1916 {
1917 struct cam_eb *bus;
1918 int ret;
1919
1920 cdm->num_matches = 0;
1921
1922 /*
1923 * Check the bus list generation. If it has changed, the user
1924 * needs to reset everything and start over.
1925 */
1926 xpt_lock_buses();
1927 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1928 && (cdm->pos.cookie.bus != NULL)) {
1929 if (cdm->pos.generations[CAM_BUS_GENERATION] !=
1930 xsoftc.bus_generation) {
1931 xpt_unlock_buses();
1932 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1933 return(0);
1934 }
1935 bus = (struct cam_eb *)cdm->pos.cookie.bus;
1936 bus->refcount++;
1937 } else
1938 bus = NULL;
1939 xpt_unlock_buses();
1940
1941 ret = xptbustraverse(bus, xptedtbusfunc, cdm);
1942
1943 /*
1944 * If we get back 0, that means that we had to stop before fully
1945 * traversing the EDT. It also means that one of the subroutines
1946 * has set the status field to the proper value. If we get back 1,
1947 * we've fully traversed the EDT and copied out any matching entries.
1948 */
1949 if (ret == 1)
1950 cdm->status = CAM_DEV_MATCH_LAST;
1951
1952 return(ret);
1953 }
1954
1955 static int
xptplistpdrvfunc(struct periph_driver ** pdrv,void * arg)1956 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1957 {
1958 struct cam_periph *periph;
1959 struct ccb_dev_match *cdm;
1960
1961 cdm = (struct ccb_dev_match *)arg;
1962
1963 xpt_lock_buses();
1964 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1965 && (cdm->pos.cookie.pdrv == pdrv)
1966 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1967 && (cdm->pos.cookie.periph != NULL)) {
1968 if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1969 (*pdrv)->generation) {
1970 xpt_unlock_buses();
1971 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1972 return(0);
1973 }
1974 periph = (struct cam_periph *)cdm->pos.cookie.periph;
1975 periph->refcount++;
1976 } else
1977 periph = NULL;
1978 xpt_unlock_buses();
1979
1980 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
1981 }
1982
1983 static int
xptplistperiphfunc(struct cam_periph * periph,void * arg)1984 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1985 {
1986 struct ccb_dev_match *cdm;
1987 dev_match_ret retval;
1988
1989 cdm = (struct ccb_dev_match *)arg;
1990
1991 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1992
1993 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1994 cdm->status = CAM_DEV_MATCH_ERROR;
1995 return(0);
1996 }
1997
1998 /*
1999 * If the copy flag is set, copy this peripheral out.
2000 */
2001 if (retval & DM_RET_COPY) {
2002 int spaceleft, j;
2003 size_t l;
2004
2005 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2006 sizeof(struct dev_match_result));
2007
2008 /*
2009 * If we don't have enough space to put in another
2010 * match result, save our position and tell the
2011 * user there are more devices to check.
2012 */
2013 if (spaceleft < sizeof(struct dev_match_result)) {
2014 struct periph_driver **pdrv;
2015
2016 pdrv = NULL;
2017 bzero(&cdm->pos, sizeof(cdm->pos));
2018 cdm->pos.position_type =
2019 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2020 CAM_DEV_POS_PERIPH;
2021
2022 /*
2023 * This may look a bit non-sensical, but it is
2024 * actually quite logical. There are very few
2025 * peripheral drivers, and bloating every peripheral
2026 * structure with a pointer back to its parent
2027 * peripheral driver linker set entry would cost
2028 * more in the long run than doing this quick lookup.
2029 */
2030 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2031 if (strcmp((*pdrv)->driver_name,
2032 periph->periph_name) == 0)
2033 break;
2034 }
2035
2036 if (*pdrv == NULL) {
2037 cdm->status = CAM_DEV_MATCH_ERROR;
2038 return(0);
2039 }
2040
2041 cdm->pos.cookie.pdrv = pdrv;
2042 /*
2043 * The periph generation slot does double duty, as
2044 * does the periph pointer slot. They are used for
2045 * both edt and pdrv lookups and positioning.
2046 */
2047 cdm->pos.cookie.periph = periph;
2048 cdm->pos.generations[CAM_PERIPH_GENERATION] =
2049 (*pdrv)->generation;
2050 cdm->status = CAM_DEV_MATCH_MORE;
2051 return(0);
2052 }
2053
2054 j = cdm->num_matches;
2055 cdm->num_matches++;
2056 cdm->matches[j].type = DEV_MATCH_PERIPH;
2057 cdm->matches[j].result.periph_result.path_id =
2058 periph->path->bus->path_id;
2059
2060 /*
2061 * The transport layer peripheral doesn't have a target or
2062 * lun.
2063 */
2064 if (periph->path->target)
2065 cdm->matches[j].result.periph_result.target_id =
2066 periph->path->target->target_id;
2067 else
2068 cdm->matches[j].result.periph_result.target_id =
2069 CAM_TARGET_WILDCARD;
2070
2071 if (periph->path->device)
2072 cdm->matches[j].result.periph_result.target_lun =
2073 periph->path->device->lun_id;
2074 else
2075 cdm->matches[j].result.periph_result.target_lun =
2076 CAM_LUN_WILDCARD;
2077
2078 cdm->matches[j].result.periph_result.unit_number =
2079 periph->unit_number;
2080 l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2081 strlcpy(cdm->matches[j].result.periph_result.periph_name,
2082 periph->periph_name, l);
2083 }
2084
2085 return(1);
2086 }
2087
2088 static int
xptperiphlistmatch(struct ccb_dev_match * cdm)2089 xptperiphlistmatch(struct ccb_dev_match *cdm)
2090 {
2091 int ret;
2092
2093 cdm->num_matches = 0;
2094
2095 /*
2096 * At this point in the edt traversal function, we check the bus
2097 * list generation to make sure that no buses have been added or
2098 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2099 * For the peripheral driver list traversal function, however, we
2100 * don't have to worry about new peripheral driver types coming or
2101 * going; they're in a linker set, and therefore can't change
2102 * without a recompile.
2103 */
2104
2105 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2106 && (cdm->pos.cookie.pdrv != NULL))
2107 ret = xptpdrvtraverse(
2108 (struct periph_driver **)cdm->pos.cookie.pdrv,
2109 xptplistpdrvfunc, cdm);
2110 else
2111 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2112
2113 /*
2114 * If we get back 0, that means that we had to stop before fully
2115 * traversing the peripheral driver tree. It also means that one of
2116 * the subroutines has set the status field to the proper value. If
2117 * we get back 1, we've fully traversed the EDT and copied out any
2118 * matching entries.
2119 */
2120 if (ret == 1)
2121 cdm->status = CAM_DEV_MATCH_LAST;
2122
2123 return(ret);
2124 }
2125
2126 static int
xptbustraverse(struct cam_eb * start_bus,xpt_busfunc_t * tr_func,void * arg)2127 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2128 {
2129 struct cam_eb *bus, *next_bus;
2130 int retval;
2131
2132 retval = 1;
2133 if (start_bus)
2134 bus = start_bus;
2135 else {
2136 xpt_lock_buses();
2137 bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2138 if (bus == NULL) {
2139 xpt_unlock_buses();
2140 return (retval);
2141 }
2142 bus->refcount++;
2143 xpt_unlock_buses();
2144 }
2145 for (; bus != NULL; bus = next_bus) {
2146 retval = tr_func(bus, arg);
2147 if (retval == 0) {
2148 xpt_release_bus(bus);
2149 break;
2150 }
2151 xpt_lock_buses();
2152 next_bus = TAILQ_NEXT(bus, links);
2153 if (next_bus)
2154 next_bus->refcount++;
2155 xpt_unlock_buses();
2156 xpt_release_bus(bus);
2157 }
2158 return(retval);
2159 }
2160
2161 static int
xpttargettraverse(struct cam_eb * bus,struct cam_et * start_target,xpt_targetfunc_t * tr_func,void * arg)2162 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2163 xpt_targetfunc_t *tr_func, void *arg)
2164 {
2165 struct cam_et *target, *next_target;
2166 int retval;
2167
2168 retval = 1;
2169 if (start_target)
2170 target = start_target;
2171 else {
2172 mtx_lock(&bus->eb_mtx);
2173 target = TAILQ_FIRST(&bus->et_entries);
2174 if (target == NULL) {
2175 mtx_unlock(&bus->eb_mtx);
2176 return (retval);
2177 }
2178 target->refcount++;
2179 mtx_unlock(&bus->eb_mtx);
2180 }
2181 for (; target != NULL; target = next_target) {
2182 retval = tr_func(target, arg);
2183 if (retval == 0) {
2184 xpt_release_target(target);
2185 break;
2186 }
2187 mtx_lock(&bus->eb_mtx);
2188 next_target = TAILQ_NEXT(target, links);
2189 if (next_target)
2190 next_target->refcount++;
2191 mtx_unlock(&bus->eb_mtx);
2192 xpt_release_target(target);
2193 }
2194 return(retval);
2195 }
2196
2197 static int
xptdevicetraverse(struct cam_et * target,struct cam_ed * start_device,xpt_devicefunc_t * tr_func,void * arg)2198 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2199 xpt_devicefunc_t *tr_func, void *arg)
2200 {
2201 struct cam_eb *bus;
2202 struct cam_ed *device, *next_device;
2203 int retval;
2204
2205 retval = 1;
2206 bus = target->bus;
2207 if (start_device)
2208 device = start_device;
2209 else {
2210 mtx_lock(&bus->eb_mtx);
2211 device = TAILQ_FIRST(&target->ed_entries);
2212 if (device == NULL) {
2213 mtx_unlock(&bus->eb_mtx);
2214 return (retval);
2215 }
2216 device->refcount++;
2217 mtx_unlock(&bus->eb_mtx);
2218 }
2219 for (; device != NULL; device = next_device) {
2220 mtx_lock(&device->device_mtx);
2221 retval = tr_func(device, arg);
2222 mtx_unlock(&device->device_mtx);
2223 if (retval == 0) {
2224 xpt_release_device(device);
2225 break;
2226 }
2227 mtx_lock(&bus->eb_mtx);
2228 next_device = TAILQ_NEXT(device, links);
2229 if (next_device)
2230 next_device->refcount++;
2231 mtx_unlock(&bus->eb_mtx);
2232 xpt_release_device(device);
2233 }
2234 return(retval);
2235 }
2236
2237 static int
xptperiphtraverse(struct cam_ed * device,struct cam_periph * start_periph,xpt_periphfunc_t * tr_func,void * arg)2238 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2239 xpt_periphfunc_t *tr_func, void *arg)
2240 {
2241 struct cam_eb *bus;
2242 struct cam_periph *periph, *next_periph;
2243 int retval;
2244
2245 retval = 1;
2246
2247 bus = device->target->bus;
2248 if (start_periph)
2249 periph = start_periph;
2250 else {
2251 xpt_lock_buses();
2252 mtx_lock(&bus->eb_mtx);
2253 periph = SLIST_FIRST(&device->periphs);
2254 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2255 periph = SLIST_NEXT(periph, periph_links);
2256 if (periph == NULL) {
2257 mtx_unlock(&bus->eb_mtx);
2258 xpt_unlock_buses();
2259 return (retval);
2260 }
2261 periph->refcount++;
2262 mtx_unlock(&bus->eb_mtx);
2263 xpt_unlock_buses();
2264 }
2265 for (; periph != NULL; periph = next_periph) {
2266 retval = tr_func(periph, arg);
2267 if (retval == 0) {
2268 cam_periph_release_locked(periph);
2269 break;
2270 }
2271 xpt_lock_buses();
2272 mtx_lock(&bus->eb_mtx);
2273 next_periph = SLIST_NEXT(periph, periph_links);
2274 while (next_periph != NULL &&
2275 (next_periph->flags & CAM_PERIPH_FREE) != 0)
2276 next_periph = SLIST_NEXT(next_periph, periph_links);
2277 if (next_periph)
2278 next_periph->refcount++;
2279 mtx_unlock(&bus->eb_mtx);
2280 xpt_unlock_buses();
2281 cam_periph_release_locked(periph);
2282 }
2283 return(retval);
2284 }
2285
2286 static int
xptpdrvtraverse(struct periph_driver ** start_pdrv,xpt_pdrvfunc_t * tr_func,void * arg)2287 xptpdrvtraverse(struct periph_driver **start_pdrv,
2288 xpt_pdrvfunc_t *tr_func, void *arg)
2289 {
2290 struct periph_driver **pdrv;
2291 int retval;
2292
2293 retval = 1;
2294
2295 /*
2296 * We don't traverse the peripheral driver list like we do the
2297 * other lists, because it is a linker set, and therefore cannot be
2298 * changed during runtime. If the peripheral driver list is ever
2299 * re-done to be something other than a linker set (i.e. it can
2300 * change while the system is running), the list traversal should
2301 * be modified to work like the other traversal functions.
2302 */
2303 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2304 *pdrv != NULL; pdrv++) {
2305 retval = tr_func(pdrv, arg);
2306
2307 if (retval == 0)
2308 return(retval);
2309 }
2310
2311 return(retval);
2312 }
2313
2314 static int
xptpdperiphtraverse(struct periph_driver ** pdrv,struct cam_periph * start_periph,xpt_periphfunc_t * tr_func,void * arg)2315 xptpdperiphtraverse(struct periph_driver **pdrv,
2316 struct cam_periph *start_periph,
2317 xpt_periphfunc_t *tr_func, void *arg)
2318 {
2319 struct cam_periph *periph, *next_periph;
2320 int retval;
2321
2322 retval = 1;
2323
2324 if (start_periph)
2325 periph = start_periph;
2326 else {
2327 xpt_lock_buses();
2328 periph = TAILQ_FIRST(&(*pdrv)->units);
2329 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2330 periph = TAILQ_NEXT(periph, unit_links);
2331 if (periph == NULL) {
2332 xpt_unlock_buses();
2333 return (retval);
2334 }
2335 periph->refcount++;
2336 xpt_unlock_buses();
2337 }
2338 for (; periph != NULL; periph = next_periph) {
2339 cam_periph_lock(periph);
2340 retval = tr_func(periph, arg);
2341 cam_periph_unlock(periph);
2342 if (retval == 0) {
2343 cam_periph_release(periph);
2344 break;
2345 }
2346 xpt_lock_buses();
2347 next_periph = TAILQ_NEXT(periph, unit_links);
2348 while (next_periph != NULL &&
2349 (next_periph->flags & CAM_PERIPH_FREE) != 0)
2350 next_periph = TAILQ_NEXT(next_periph, unit_links);
2351 if (next_periph)
2352 next_periph->refcount++;
2353 xpt_unlock_buses();
2354 cam_periph_release(periph);
2355 }
2356 return(retval);
2357 }
2358
2359 static int
xptdefbusfunc(struct cam_eb * bus,void * arg)2360 xptdefbusfunc(struct cam_eb *bus, void *arg)
2361 {
2362 struct xpt_traverse_config *tr_config;
2363
2364 tr_config = (struct xpt_traverse_config *)arg;
2365
2366 if (tr_config->depth == XPT_DEPTH_BUS) {
2367 xpt_busfunc_t *tr_func;
2368
2369 tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2370
2371 return(tr_func(bus, tr_config->tr_arg));
2372 } else
2373 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2374 }
2375
2376 static int
xptdeftargetfunc(struct cam_et * target,void * arg)2377 xptdeftargetfunc(struct cam_et *target, void *arg)
2378 {
2379 struct xpt_traverse_config *tr_config;
2380
2381 tr_config = (struct xpt_traverse_config *)arg;
2382
2383 if (tr_config->depth == XPT_DEPTH_TARGET) {
2384 xpt_targetfunc_t *tr_func;
2385
2386 tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2387
2388 return(tr_func(target, tr_config->tr_arg));
2389 } else
2390 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2391 }
2392
2393 static int
xptdefdevicefunc(struct cam_ed * device,void * arg)2394 xptdefdevicefunc(struct cam_ed *device, void *arg)
2395 {
2396 struct xpt_traverse_config *tr_config;
2397
2398 tr_config = (struct xpt_traverse_config *)arg;
2399
2400 if (tr_config->depth == XPT_DEPTH_DEVICE) {
2401 xpt_devicefunc_t *tr_func;
2402
2403 tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2404
2405 return(tr_func(device, tr_config->tr_arg));
2406 } else
2407 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2408 }
2409
2410 static int
xptdefperiphfunc(struct cam_periph * periph,void * arg)2411 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2412 {
2413 struct xpt_traverse_config *tr_config;
2414 xpt_periphfunc_t *tr_func;
2415
2416 tr_config = (struct xpt_traverse_config *)arg;
2417
2418 tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2419
2420 /*
2421 * Unlike the other default functions, we don't check for depth
2422 * here. The peripheral driver level is the last level in the EDT,
2423 * so if we're here, we should execute the function in question.
2424 */
2425 return(tr_func(periph, tr_config->tr_arg));
2426 }
2427
2428 /*
2429 * Execute the given function for every bus in the EDT.
2430 */
2431 static int
xpt_for_all_busses(xpt_busfunc_t * tr_func,void * arg)2432 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2433 {
2434 struct xpt_traverse_config tr_config;
2435
2436 tr_config.depth = XPT_DEPTH_BUS;
2437 tr_config.tr_func = tr_func;
2438 tr_config.tr_arg = arg;
2439
2440 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2441 }
2442
2443 /*
2444 * Execute the given function for every device in the EDT.
2445 */
2446 static int
xpt_for_all_devices(xpt_devicefunc_t * tr_func,void * arg)2447 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2448 {
2449 struct xpt_traverse_config tr_config;
2450
2451 tr_config.depth = XPT_DEPTH_DEVICE;
2452 tr_config.tr_func = tr_func;
2453 tr_config.tr_arg = arg;
2454
2455 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2456 }
2457
2458 static int
xptsetasyncfunc(struct cam_ed * device,void * arg)2459 xptsetasyncfunc(struct cam_ed *device, void *arg)
2460 {
2461 struct cam_path path;
2462 struct ccb_getdev cgd;
2463 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2464
2465 /*
2466 * Don't report unconfigured devices (Wildcard devs,
2467 * devices only for target mode, device instances
2468 * that have been invalidated but are waiting for
2469 * their last reference count to be released).
2470 */
2471 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2472 return (1);
2473
2474 xpt_compile_path(&path,
2475 NULL,
2476 device->target->bus->path_id,
2477 device->target->target_id,
2478 device->lun_id);
2479 xpt_gdev_type(&cgd, &path);
2480 csa->callback(csa->callback_arg,
2481 AC_FOUND_DEVICE,
2482 &path, &cgd);
2483 xpt_release_path(&path);
2484
2485 return(1);
2486 }
2487
2488 static int
xptsetasyncbusfunc(struct cam_eb * bus,void * arg)2489 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2490 {
2491 struct cam_path path;
2492 struct ccb_pathinq cpi;
2493 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2494
2495 xpt_compile_path(&path, /*periph*/NULL,
2496 bus->path_id,
2497 CAM_TARGET_WILDCARD,
2498 CAM_LUN_WILDCARD);
2499 xpt_path_lock(&path);
2500 xpt_path_inq(&cpi, &path);
2501 csa->callback(csa->callback_arg,
2502 AC_PATH_REGISTERED,
2503 &path, &cpi);
2504 xpt_path_unlock(&path);
2505 xpt_release_path(&path);
2506
2507 return(1);
2508 }
2509
2510 void
xpt_action(union ccb * start_ccb)2511 xpt_action(union ccb *start_ccb)
2512 {
2513
2514 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2515 ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2516 xpt_action_name(start_ccb->ccb_h.func_code)));
2517
2518 start_ccb->ccb_h.status = CAM_REQ_INPROG;
2519 (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2520 }
2521
2522 void
xpt_action_default(union ccb * start_ccb)2523 xpt_action_default(union ccb *start_ccb)
2524 {
2525 struct cam_path *path;
2526 struct cam_sim *sim;
2527 struct mtx *mtx;
2528
2529 path = start_ccb->ccb_h.path;
2530 CAM_DEBUG(path, CAM_DEBUG_TRACE,
2531 ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2532 xpt_action_name(start_ccb->ccb_h.func_code)));
2533
2534 switch (start_ccb->ccb_h.func_code) {
2535 case XPT_SCSI_IO:
2536 {
2537 struct cam_ed *device;
2538
2539 /*
2540 * For the sake of compatibility with SCSI-1
2541 * devices that may not understand the identify
2542 * message, we include lun information in the
2543 * second byte of all commands. SCSI-1 specifies
2544 * that luns are a 3 bit value and reserves only 3
2545 * bits for lun information in the CDB. Later
2546 * revisions of the SCSI spec allow for more than 8
2547 * luns, but have deprecated lun information in the
2548 * CDB. So, if the lun won't fit, we must omit.
2549 *
2550 * Also be aware that during initial probing for devices,
2551 * the inquiry information is unknown but initialized to 0.
2552 * This means that this code will be exercised while probing
2553 * devices with an ANSI revision greater than 2.
2554 */
2555 device = path->device;
2556 if (device->protocol_version <= SCSI_REV_2
2557 && start_ccb->ccb_h.target_lun < 8
2558 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2559 start_ccb->csio.cdb_io.cdb_bytes[1] |=
2560 start_ccb->ccb_h.target_lun << 5;
2561 }
2562 start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2563 }
2564 /* FALLTHROUGH */
2565 case XPT_TARGET_IO:
2566 case XPT_CONT_TARGET_IO:
2567 start_ccb->csio.sense_resid = 0;
2568 start_ccb->csio.resid = 0;
2569 /* FALLTHROUGH */
2570 case XPT_ATA_IO:
2571 if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2572 start_ccb->ataio.resid = 0;
2573 /* FALLTHROUGH */
2574 case XPT_NVME_IO:
2575 case XPT_NVME_ADMIN:
2576 case XPT_MMC_IO:
2577 case XPT_MMC_GET_TRAN_SETTINGS:
2578 case XPT_MMC_SET_TRAN_SETTINGS:
2579 case XPT_RESET_DEV:
2580 case XPT_ENG_EXEC:
2581 case XPT_SMP_IO:
2582 {
2583 struct cam_devq *devq;
2584
2585 devq = path->bus->sim->devq;
2586 mtx_lock(&devq->send_mtx);
2587 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2588 if (xpt_schedule_devq(devq, path->device) != 0)
2589 xpt_run_devq(devq);
2590 mtx_unlock(&devq->send_mtx);
2591 break;
2592 }
2593 case XPT_CALC_GEOMETRY:
2594 /* Filter out garbage */
2595 if (start_ccb->ccg.block_size == 0
2596 || start_ccb->ccg.volume_size == 0) {
2597 start_ccb->ccg.cylinders = 0;
2598 start_ccb->ccg.heads = 0;
2599 start_ccb->ccg.secs_per_track = 0;
2600 start_ccb->ccb_h.status = CAM_REQ_CMP;
2601 break;
2602 }
2603 goto call_sim;
2604 case XPT_ABORT:
2605 {
2606 union ccb* abort_ccb;
2607
2608 abort_ccb = start_ccb->cab.abort_ccb;
2609 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2610 struct cam_ed *device;
2611 struct cam_devq *devq;
2612
2613 device = abort_ccb->ccb_h.path->device;
2614 devq = device->sim->devq;
2615
2616 mtx_lock(&devq->send_mtx);
2617 if (abort_ccb->ccb_h.pinfo.index > 0) {
2618 cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2619 abort_ccb->ccb_h.status =
2620 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2621 xpt_freeze_devq_device(device, 1);
2622 mtx_unlock(&devq->send_mtx);
2623 xpt_done(abort_ccb);
2624 start_ccb->ccb_h.status = CAM_REQ_CMP;
2625 break;
2626 }
2627 mtx_unlock(&devq->send_mtx);
2628
2629 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2630 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2631 /*
2632 * We've caught this ccb en route to
2633 * the SIM. Flag it for abort and the
2634 * SIM will do so just before starting
2635 * real work on the CCB.
2636 */
2637 abort_ccb->ccb_h.status =
2638 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2639 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2640 start_ccb->ccb_h.status = CAM_REQ_CMP;
2641 break;
2642 }
2643 }
2644 if (XPT_FC_IS_QUEUED(abort_ccb)
2645 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2646 /*
2647 * It's already completed but waiting
2648 * for our SWI to get to it.
2649 */
2650 start_ccb->ccb_h.status = CAM_UA_ABORT;
2651 break;
2652 }
2653 /*
2654 * If we weren't able to take care of the abort request
2655 * in the XPT, pass the request down to the SIM for processing.
2656 */
2657 }
2658 /* FALLTHROUGH */
2659 case XPT_ACCEPT_TARGET_IO:
2660 case XPT_EN_LUN:
2661 case XPT_IMMED_NOTIFY:
2662 case XPT_NOTIFY_ACK:
2663 case XPT_RESET_BUS:
2664 case XPT_IMMEDIATE_NOTIFY:
2665 case XPT_NOTIFY_ACKNOWLEDGE:
2666 case XPT_GET_SIM_KNOB_OLD:
2667 case XPT_GET_SIM_KNOB:
2668 case XPT_SET_SIM_KNOB:
2669 case XPT_GET_TRAN_SETTINGS:
2670 case XPT_SET_TRAN_SETTINGS:
2671 case XPT_PATH_INQ:
2672 call_sim:
2673 sim = path->bus->sim;
2674 mtx = sim->mtx;
2675 if (mtx && !mtx_owned(mtx))
2676 mtx_lock(mtx);
2677 else
2678 mtx = NULL;
2679
2680 CAM_DEBUG(path, CAM_DEBUG_TRACE,
2681 ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code));
2682 (*(sim->sim_action))(sim, start_ccb);
2683 CAM_DEBUG(path, CAM_DEBUG_TRACE,
2684 ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status));
2685 if (mtx)
2686 mtx_unlock(mtx);
2687 break;
2688 case XPT_PATH_STATS:
2689 start_ccb->cpis.last_reset = path->bus->last_reset;
2690 start_ccb->ccb_h.status = CAM_REQ_CMP;
2691 break;
2692 case XPT_GDEV_TYPE:
2693 {
2694 struct cam_ed *dev;
2695
2696 dev = path->device;
2697 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2698 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2699 } else {
2700 struct ccb_getdev *cgd;
2701
2702 cgd = &start_ccb->cgd;
2703 cgd->protocol = dev->protocol;
2704 cgd->inq_data = dev->inq_data;
2705 cgd->ident_data = dev->ident_data;
2706 cgd->inq_flags = dev->inq_flags;
2707 cgd->ccb_h.status = CAM_REQ_CMP;
2708 cgd->serial_num_len = dev->serial_num_len;
2709 if ((dev->serial_num_len > 0)
2710 && (dev->serial_num != NULL))
2711 bcopy(dev->serial_num, cgd->serial_num,
2712 dev->serial_num_len);
2713 }
2714 break;
2715 }
2716 case XPT_GDEV_STATS:
2717 {
2718 struct ccb_getdevstats *cgds = &start_ccb->cgds;
2719 struct cam_ed *dev = path->device;
2720 struct cam_eb *bus = path->bus;
2721 struct cam_et *tar = path->target;
2722 struct cam_devq *devq = bus->sim->devq;
2723
2724 mtx_lock(&devq->send_mtx);
2725 cgds->dev_openings = dev->ccbq.dev_openings;
2726 cgds->dev_active = dev->ccbq.dev_active;
2727 cgds->allocated = dev->ccbq.allocated;
2728 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2729 cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
2730 cgds->last_reset = tar->last_reset;
2731 cgds->maxtags = dev->maxtags;
2732 cgds->mintags = dev->mintags;
2733 if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2734 cgds->last_reset = bus->last_reset;
2735 mtx_unlock(&devq->send_mtx);
2736 cgds->ccb_h.status = CAM_REQ_CMP;
2737 break;
2738 }
2739 case XPT_GDEVLIST:
2740 {
2741 struct cam_periph *nperiph;
2742 struct periph_list *periph_head;
2743 struct ccb_getdevlist *cgdl;
2744 u_int i;
2745 struct cam_ed *device;
2746 bool found;
2747
2748 found = false;
2749
2750 /*
2751 * Don't want anyone mucking with our data.
2752 */
2753 device = path->device;
2754 periph_head = &device->periphs;
2755 cgdl = &start_ccb->cgdl;
2756
2757 /*
2758 * Check and see if the list has changed since the user
2759 * last requested a list member. If so, tell them that the
2760 * list has changed, and therefore they need to start over
2761 * from the beginning.
2762 */
2763 if ((cgdl->index != 0) &&
2764 (cgdl->generation != device->generation)) {
2765 cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2766 break;
2767 }
2768
2769 /*
2770 * Traverse the list of peripherals and attempt to find
2771 * the requested peripheral.
2772 */
2773 for (nperiph = SLIST_FIRST(periph_head), i = 0;
2774 (nperiph != NULL) && (i <= cgdl->index);
2775 nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2776 if (i == cgdl->index) {
2777 strlcpy(cgdl->periph_name,
2778 nperiph->periph_name,
2779 sizeof(cgdl->periph_name));
2780 cgdl->unit_number = nperiph->unit_number;
2781 found = true;
2782 }
2783 }
2784 if (!found) {
2785 cgdl->status = CAM_GDEVLIST_ERROR;
2786 break;
2787 }
2788
2789 if (nperiph == NULL)
2790 cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2791 else
2792 cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2793
2794 cgdl->index++;
2795 cgdl->generation = device->generation;
2796
2797 cgdl->ccb_h.status = CAM_REQ_CMP;
2798 break;
2799 }
2800 case XPT_DEV_MATCH:
2801 {
2802 dev_pos_type position_type;
2803 struct ccb_dev_match *cdm;
2804
2805 cdm = &start_ccb->cdm;
2806
2807 /*
2808 * There are two ways of getting at information in the EDT.
2809 * The first way is via the primary EDT tree. It starts
2810 * with a list of buses, then a list of targets on a bus,
2811 * then devices/luns on a target, and then peripherals on a
2812 * device/lun. The "other" way is by the peripheral driver
2813 * lists. The peripheral driver lists are organized by
2814 * peripheral driver. (obviously) So it makes sense to
2815 * use the peripheral driver list if the user is looking
2816 * for something like "da1", or all "da" devices. If the
2817 * user is looking for something on a particular bus/target
2818 * or lun, it's generally better to go through the EDT tree.
2819 */
2820
2821 if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2822 position_type = cdm->pos.position_type;
2823 else {
2824 u_int i;
2825
2826 position_type = CAM_DEV_POS_NONE;
2827
2828 for (i = 0; i < cdm->num_patterns; i++) {
2829 if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2830 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2831 position_type = CAM_DEV_POS_EDT;
2832 break;
2833 }
2834 }
2835
2836 if (cdm->num_patterns == 0)
2837 position_type = CAM_DEV_POS_EDT;
2838 else if (position_type == CAM_DEV_POS_NONE)
2839 position_type = CAM_DEV_POS_PDRV;
2840 }
2841
2842 switch(position_type & CAM_DEV_POS_TYPEMASK) {
2843 case CAM_DEV_POS_EDT:
2844 xptedtmatch(cdm);
2845 break;
2846 case CAM_DEV_POS_PDRV:
2847 xptperiphlistmatch(cdm);
2848 break;
2849 default:
2850 cdm->status = CAM_DEV_MATCH_ERROR;
2851 break;
2852 }
2853
2854 if (cdm->status == CAM_DEV_MATCH_ERROR)
2855 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2856 else
2857 start_ccb->ccb_h.status = CAM_REQ_CMP;
2858
2859 break;
2860 }
2861 case XPT_SASYNC_CB:
2862 {
2863 struct ccb_setasync *csa;
2864 struct async_node *cur_entry;
2865 struct async_list *async_head;
2866 uint32_t added;
2867
2868 csa = &start_ccb->csa;
2869 added = csa->event_enable;
2870 async_head = &path->device->asyncs;
2871
2872 /*
2873 * If there is already an entry for us, simply
2874 * update it.
2875 */
2876 cur_entry = SLIST_FIRST(async_head);
2877 while (cur_entry != NULL) {
2878 if ((cur_entry->callback_arg == csa->callback_arg)
2879 && (cur_entry->callback == csa->callback))
2880 break;
2881 cur_entry = SLIST_NEXT(cur_entry, links);
2882 }
2883
2884 if (cur_entry != NULL) {
2885 /*
2886 * If the request has no flags set,
2887 * remove the entry.
2888 */
2889 added &= ~cur_entry->event_enable;
2890 if (csa->event_enable == 0) {
2891 SLIST_REMOVE(async_head, cur_entry,
2892 async_node, links);
2893 xpt_release_device(path->device);
2894 free(cur_entry, M_CAMXPT);
2895 } else {
2896 cur_entry->event_enable = csa->event_enable;
2897 }
2898 csa->event_enable = added;
2899 } else {
2900 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2901 M_NOWAIT);
2902 if (cur_entry == NULL) {
2903 csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2904 break;
2905 }
2906 cur_entry->event_enable = csa->event_enable;
2907 cur_entry->event_lock = (path->bus->sim->mtx &&
2908 mtx_owned(path->bus->sim->mtx)) ? 1 : 0;
2909 cur_entry->callback_arg = csa->callback_arg;
2910 cur_entry->callback = csa->callback;
2911 SLIST_INSERT_HEAD(async_head, cur_entry, links);
2912 xpt_acquire_device(path->device);
2913 }
2914 start_ccb->ccb_h.status = CAM_REQ_CMP;
2915 break;
2916 }
2917 case XPT_REL_SIMQ:
2918 {
2919 struct ccb_relsim *crs;
2920 struct cam_ed *dev;
2921
2922 crs = &start_ccb->crs;
2923 dev = path->device;
2924 if (dev == NULL) {
2925 crs->ccb_h.status = CAM_DEV_NOT_THERE;
2926 break;
2927 }
2928
2929 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2930 /* Don't ever go below one opening */
2931 if (crs->openings > 0) {
2932 xpt_dev_ccbq_resize(path, crs->openings);
2933 if (bootverbose) {
2934 xpt_print(path,
2935 "number of openings is now %d\n",
2936 crs->openings);
2937 }
2938 }
2939 }
2940
2941 mtx_lock(&dev->sim->devq->send_mtx);
2942 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2943 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2944 /*
2945 * Just extend the old timeout and decrement
2946 * the freeze count so that a single timeout
2947 * is sufficient for releasing the queue.
2948 */
2949 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2950 callout_stop(&dev->callout);
2951 } else {
2952 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2953 }
2954
2955 callout_reset_sbt(&dev->callout,
2956 SBT_1MS * crs->release_timeout, SBT_1MS,
2957 xpt_release_devq_timeout, dev, 0);
2958
2959 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2960 }
2961
2962 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2963 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2964 /*
2965 * Decrement the freeze count so that a single
2966 * completion is still sufficient to unfreeze
2967 * the queue.
2968 */
2969 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2970 } else {
2971 dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2972 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2973 }
2974 }
2975
2976 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2977 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2978 || (dev->ccbq.dev_active == 0)) {
2979 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2980 } else {
2981 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2982 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2983 }
2984 }
2985 mtx_unlock(&dev->sim->devq->send_mtx);
2986
2987 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2988 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
2989 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
2990 start_ccb->ccb_h.status = CAM_REQ_CMP;
2991 break;
2992 }
2993 case XPT_DEBUG: {
2994 struct cam_path *oldpath;
2995
2996 /* Check that all request bits are supported. */
2997 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
2998 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2999 break;
3000 }
3001
3002 cam_dflags = CAM_DEBUG_NONE;
3003 if (cam_dpath != NULL) {
3004 oldpath = cam_dpath;
3005 cam_dpath = NULL;
3006 xpt_free_path(oldpath);
3007 }
3008 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3009 if (xpt_create_path(&cam_dpath, NULL,
3010 start_ccb->ccb_h.path_id,
3011 start_ccb->ccb_h.target_id,
3012 start_ccb->ccb_h.target_lun) !=
3013 CAM_REQ_CMP) {
3014 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3015 } else {
3016 cam_dflags = start_ccb->cdbg.flags;
3017 start_ccb->ccb_h.status = CAM_REQ_CMP;
3018 xpt_print(cam_dpath, "debugging flags now %x\n",
3019 cam_dflags);
3020 }
3021 } else
3022 start_ccb->ccb_h.status = CAM_REQ_CMP;
3023 break;
3024 }
3025 case XPT_NOOP:
3026 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3027 xpt_freeze_devq(path, 1);
3028 start_ccb->ccb_h.status = CAM_REQ_CMP;
3029 break;
3030 case XPT_REPROBE_LUN:
3031 xpt_async(AC_INQ_CHANGED, path, NULL);
3032 start_ccb->ccb_h.status = CAM_REQ_CMP;
3033 xpt_done(start_ccb);
3034 break;
3035 case XPT_ASYNC:
3036 /*
3037 * Queue the async operation so it can be run from a sleepable
3038 * context.
3039 */
3040 start_ccb->ccb_h.status = CAM_REQ_CMP;
3041 mtx_lock(&cam_async.cam_doneq_mtx);
3042 STAILQ_INSERT_TAIL(&cam_async.cam_doneq, &start_ccb->ccb_h, sim_links.stqe);
3043 start_ccb->ccb_h.pinfo.index = CAM_ASYNC_INDEX;
3044 mtx_unlock(&cam_async.cam_doneq_mtx);
3045 wakeup(&cam_async.cam_doneq);
3046 break;
3047 default:
3048 case XPT_SDEV_TYPE:
3049 case XPT_TERM_IO:
3050 case XPT_ENG_INQ:
3051 /* XXX Implement */
3052 xpt_print(start_ccb->ccb_h.path,
3053 "%s: CCB type %#x %s not supported\n", __func__,
3054 start_ccb->ccb_h.func_code,
3055 xpt_action_name(start_ccb->ccb_h.func_code));
3056 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3057 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3058 xpt_done(start_ccb);
3059 }
3060 break;
3061 }
3062 CAM_DEBUG(path, CAM_DEBUG_TRACE,
3063 ("xpt_action_default: func= %#x %s status %#x\n",
3064 start_ccb->ccb_h.func_code,
3065 xpt_action_name(start_ccb->ccb_h.func_code),
3066 start_ccb->ccb_h.status));
3067 }
3068
3069 /*
3070 * Call the sim poll routine to allow the sim to complete
3071 * any inflight requests, then call camisr_runqueue to
3072 * complete any CCB that the polling completed.
3073 */
3074 void
xpt_sim_poll(struct cam_sim * sim)3075 xpt_sim_poll(struct cam_sim *sim)
3076 {
3077 struct mtx *mtx;
3078
3079 KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__));
3080 mtx = sim->mtx;
3081 if (mtx)
3082 mtx_lock(mtx);
3083 (*(sim->sim_poll))(sim);
3084 if (mtx)
3085 mtx_unlock(mtx);
3086 camisr_runqueue();
3087 }
3088
3089 uint32_t
xpt_poll_setup(union ccb * start_ccb)3090 xpt_poll_setup(union ccb *start_ccb)
3091 {
3092 uint32_t timeout;
3093 struct cam_sim *sim;
3094 struct cam_devq *devq;
3095 struct cam_ed *dev;
3096
3097 timeout = start_ccb->ccb_h.timeout * 10;
3098 sim = start_ccb->ccb_h.path->bus->sim;
3099 devq = sim->devq;
3100 dev = start_ccb->ccb_h.path->device;
3101
3102 KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__));
3103
3104 /*
3105 * Steal an opening so that no other queued requests
3106 * can get it before us while we simulate interrupts.
3107 */
3108 mtx_lock(&devq->send_mtx);
3109 dev->ccbq.dev_openings--;
3110 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3111 (--timeout > 0)) {
3112 mtx_unlock(&devq->send_mtx);
3113 DELAY(100);
3114 xpt_sim_poll(sim);
3115 mtx_lock(&devq->send_mtx);
3116 }
3117 dev->ccbq.dev_openings++;
3118 mtx_unlock(&devq->send_mtx);
3119
3120 return (timeout);
3121 }
3122
3123 void
xpt_pollwait(union ccb * start_ccb,uint32_t timeout)3124 xpt_pollwait(union ccb *start_ccb, uint32_t timeout)
3125 {
3126
3127 KASSERT(cam_sim_pollable(start_ccb->ccb_h.path->bus->sim),
3128 ("%s: non-pollable sim", __func__));
3129 while (--timeout > 0) {
3130 xpt_sim_poll(start_ccb->ccb_h.path->bus->sim);
3131 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3132 != CAM_REQ_INPROG)
3133 break;
3134 DELAY(100);
3135 }
3136
3137 if (timeout == 0) {
3138 /*
3139 * XXX Is it worth adding a sim_timeout entry
3140 * point so we can attempt recovery? If
3141 * this is only used for dumps, I don't think
3142 * it is.
3143 */
3144 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3145 }
3146 }
3147
3148 /*
3149 * Schedule a peripheral driver to receive a ccb when its
3150 * target device has space for more transactions.
3151 */
3152 void
xpt_schedule(struct cam_periph * periph,uint32_t new_priority)3153 xpt_schedule(struct cam_periph *periph, uint32_t new_priority)
3154 {
3155
3156 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3157 cam_periph_assert(periph, MA_OWNED);
3158 if (new_priority < periph->scheduled_priority) {
3159 periph->scheduled_priority = new_priority;
3160 xpt_run_allocq(periph, 0);
3161 }
3162 }
3163
3164 /*
3165 * Schedule a device to run on a given queue.
3166 * If the device was inserted as a new entry on the queue,
3167 * return 1 meaning the device queue should be run. If we
3168 * were already queued, implying someone else has already
3169 * started the queue, return 0 so the caller doesn't attempt
3170 * to run the queue.
3171 */
3172 static int
xpt_schedule_dev(struct camq * queue,cam_pinfo * pinfo,uint32_t new_priority)3173 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3174 uint32_t new_priority)
3175 {
3176 int retval;
3177 uint32_t old_priority;
3178
3179 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3180
3181 old_priority = pinfo->priority;
3182
3183 /*
3184 * Are we already queued?
3185 */
3186 if (pinfo->index != CAM_UNQUEUED_INDEX) {
3187 /* Simply reorder based on new priority */
3188 if (new_priority < old_priority) {
3189 camq_change_priority(queue, pinfo->index,
3190 new_priority);
3191 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3192 ("changed priority to %d\n",
3193 new_priority));
3194 retval = 1;
3195 } else
3196 retval = 0;
3197 } else {
3198 /* New entry on the queue */
3199 if (new_priority < old_priority)
3200 pinfo->priority = new_priority;
3201
3202 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3203 ("Inserting onto queue\n"));
3204 pinfo->generation = ++queue->generation;
3205 camq_insert(queue, pinfo);
3206 retval = 1;
3207 }
3208 return (retval);
3209 }
3210
3211 static void
xpt_run_allocq_task(void * context,int pending)3212 xpt_run_allocq_task(void *context, int pending)
3213 {
3214 struct cam_periph *periph = context;
3215
3216 cam_periph_lock(periph);
3217 periph->flags &= ~CAM_PERIPH_RUN_TASK;
3218 xpt_run_allocq(periph, 1);
3219 cam_periph_unlock(periph);
3220 cam_periph_release(periph);
3221 }
3222
3223 static void
xpt_run_allocq(struct cam_periph * periph,int sleep)3224 xpt_run_allocq(struct cam_periph *periph, int sleep)
3225 {
3226 struct cam_ed *device;
3227 union ccb *ccb;
3228 uint32_t prio;
3229
3230 cam_periph_assert(periph, MA_OWNED);
3231 if (periph->periph_allocating)
3232 return;
3233 cam_periph_doacquire(periph);
3234 periph->periph_allocating = 1;
3235 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3236 device = periph->path->device;
3237 ccb = NULL;
3238 restart:
3239 while ((prio = min(periph->scheduled_priority,
3240 periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3241 (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3242 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3243 if (ccb == NULL &&
3244 (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3245 if (sleep) {
3246 ccb = xpt_get_ccb(periph);
3247 goto restart;
3248 }
3249 if (periph->flags & CAM_PERIPH_RUN_TASK)
3250 break;
3251 cam_periph_doacquire(periph);
3252 periph->flags |= CAM_PERIPH_RUN_TASK;
3253 taskqueue_enqueue(xsoftc.xpt_taskq,
3254 &periph->periph_run_task);
3255 break;
3256 }
3257 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3258 if (prio == periph->immediate_priority) {
3259 periph->immediate_priority = CAM_PRIORITY_NONE;
3260 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3261 ("waking cam_periph_getccb()\n"));
3262 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3263 periph_links.sle);
3264 wakeup(&periph->ccb_list);
3265 } else {
3266 periph->scheduled_priority = CAM_PRIORITY_NONE;
3267 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3268 ("calling periph_start()\n"));
3269 periph->periph_start(periph, ccb);
3270 }
3271 ccb = NULL;
3272 }
3273 if (ccb != NULL)
3274 xpt_release_ccb(ccb);
3275 periph->periph_allocating = 0;
3276 cam_periph_release_locked(periph);
3277 }
3278
3279 static void
xpt_run_devq(struct cam_devq * devq)3280 xpt_run_devq(struct cam_devq *devq)
3281 {
3282 struct mtx *mtx;
3283
3284 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3285
3286 devq->send_queue.qfrozen_cnt++;
3287 while ((devq->send_queue.entries > 0)
3288 && (devq->send_openings > 0)
3289 && (devq->send_queue.qfrozen_cnt <= 1)) {
3290 struct cam_ed *device;
3291 union ccb *work_ccb;
3292 struct cam_sim *sim;
3293 struct xpt_proto *proto;
3294
3295 device = (struct cam_ed *)camq_remove(&devq->send_queue,
3296 CAMQ_HEAD);
3297 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3298 ("running device %p\n", device));
3299
3300 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3301 if (work_ccb == NULL) {
3302 printf("device on run queue with no ccbs???\n");
3303 continue;
3304 }
3305
3306 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3307 mtx_lock(&xsoftc.xpt_highpower_lock);
3308 if (xsoftc.num_highpower <= 0) {
3309 /*
3310 * We got a high power command, but we
3311 * don't have any available slots. Freeze
3312 * the device queue until we have a slot
3313 * available.
3314 */
3315 xpt_freeze_devq_device(device, 1);
3316 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3317 highpowerq_entry);
3318
3319 mtx_unlock(&xsoftc.xpt_highpower_lock);
3320 continue;
3321 } else {
3322 /*
3323 * Consume a high power slot while
3324 * this ccb runs.
3325 */
3326 xsoftc.num_highpower--;
3327 }
3328 mtx_unlock(&xsoftc.xpt_highpower_lock);
3329 }
3330 cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3331 cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3332 devq->send_openings--;
3333 devq->send_active++;
3334 xpt_schedule_devq(devq, device);
3335 mtx_unlock(&devq->send_mtx);
3336
3337 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3338 /*
3339 * The client wants to freeze the queue
3340 * after this CCB is sent.
3341 */
3342 xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3343 }
3344
3345 /* In Target mode, the peripheral driver knows best... */
3346 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3347 if ((device->inq_flags & SID_CmdQue) != 0
3348 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3349 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3350 else
3351 /*
3352 * Clear this in case of a retried CCB that
3353 * failed due to a rejected tag.
3354 */
3355 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3356 }
3357
3358 KASSERT(device == work_ccb->ccb_h.path->device,
3359 ("device (%p) / path->device (%p) mismatch",
3360 device, work_ccb->ccb_h.path->device));
3361 proto = xpt_proto_find(device->protocol);
3362 if (proto && proto->ops->debug_out)
3363 proto->ops->debug_out(work_ccb);
3364
3365 /*
3366 * Device queues can be shared among multiple SIM instances
3367 * that reside on different buses. Use the SIM from the
3368 * queued device, rather than the one from the calling bus.
3369 */
3370 sim = device->sim;
3371 mtx = sim->mtx;
3372 if (mtx && !mtx_owned(mtx))
3373 mtx_lock(mtx);
3374 else
3375 mtx = NULL;
3376 work_ccb->ccb_h.qos.periph_data = cam_iosched_now();
3377 (*(sim->sim_action))(sim, work_ccb);
3378 if (mtx)
3379 mtx_unlock(mtx);
3380 mtx_lock(&devq->send_mtx);
3381 }
3382 devq->send_queue.qfrozen_cnt--;
3383 }
3384
3385 /*
3386 * This function merges stuff from the src ccb into the dst ccb, while keeping
3387 * important fields in the dst ccb constant.
3388 */
3389 void
xpt_merge_ccb(union ccb * dst_ccb,union ccb * src_ccb)3390 xpt_merge_ccb(union ccb *dst_ccb, union ccb *src_ccb)
3391 {
3392
3393 /*
3394 * Pull fields that are valid for peripheral drivers to set
3395 * into the dst CCB along with the CCB "payload".
3396 */
3397 dst_ccb->ccb_h.retry_count = src_ccb->ccb_h.retry_count;
3398 dst_ccb->ccb_h.func_code = src_ccb->ccb_h.func_code;
3399 dst_ccb->ccb_h.timeout = src_ccb->ccb_h.timeout;
3400 dst_ccb->ccb_h.flags = src_ccb->ccb_h.flags;
3401 bcopy(&(&src_ccb->ccb_h)[1], &(&dst_ccb->ccb_h)[1],
3402 sizeof(union ccb) - sizeof(struct ccb_hdr));
3403 }
3404
3405 void
xpt_setup_ccb_flags(struct ccb_hdr * ccb_h,struct cam_path * path,uint32_t priority,uint32_t flags)3406 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3407 uint32_t priority, uint32_t flags)
3408 {
3409
3410 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3411 ccb_h->pinfo.priority = priority;
3412 ccb_h->path = path;
3413 ccb_h->path_id = path->bus->path_id;
3414 if (path->target)
3415 ccb_h->target_id = path->target->target_id;
3416 else
3417 ccb_h->target_id = CAM_TARGET_WILDCARD;
3418 if (path->device) {
3419 ccb_h->target_lun = path->device->lun_id;
3420 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3421 } else {
3422 ccb_h->target_lun = CAM_TARGET_WILDCARD;
3423 }
3424 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3425 ccb_h->flags = flags;
3426 ccb_h->xflags = 0;
3427 }
3428
3429 void
xpt_setup_ccb(struct ccb_hdr * ccb_h,struct cam_path * path,uint32_t priority)3430 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, uint32_t priority)
3431 {
3432 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3433 }
3434
3435 /* Path manipulation functions */
3436 cam_status
xpt_create_path(struct cam_path ** new_path_ptr,struct cam_periph * perph,path_id_t path_id,target_id_t target_id,lun_id_t lun_id)3437 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3438 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3439 {
3440 struct cam_path *path;
3441 cam_status status;
3442
3443 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3444
3445 if (path == NULL) {
3446 status = CAM_RESRC_UNAVAIL;
3447 return(status);
3448 }
3449 status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3450 if (status != CAM_REQ_CMP) {
3451 free(path, M_CAMPATH);
3452 path = NULL;
3453 }
3454 *new_path_ptr = path;
3455 return (status);
3456 }
3457
3458 cam_status
xpt_create_path_unlocked(struct cam_path ** new_path_ptr,struct cam_periph * periph,path_id_t path_id,target_id_t target_id,lun_id_t lun_id)3459 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3460 struct cam_periph *periph, path_id_t path_id,
3461 target_id_t target_id, lun_id_t lun_id)
3462 {
3463
3464 return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3465 lun_id));
3466 }
3467
3468 cam_status
xpt_compile_path(struct cam_path * new_path,struct cam_periph * perph,path_id_t path_id,target_id_t target_id,lun_id_t lun_id)3469 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3470 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3471 {
3472 struct cam_eb *bus;
3473 struct cam_et *target;
3474 struct cam_ed *device;
3475 cam_status status;
3476
3477 status = CAM_REQ_CMP; /* Completed without error */
3478 target = NULL; /* Wildcarded */
3479 device = NULL; /* Wildcarded */
3480
3481 /*
3482 * We will potentially modify the EDT, so block interrupts
3483 * that may attempt to create cam paths.
3484 */
3485 bus = xpt_find_bus(path_id);
3486 if (bus == NULL) {
3487 status = CAM_PATH_INVALID;
3488 } else {
3489 xpt_lock_buses();
3490 mtx_lock(&bus->eb_mtx);
3491 target = xpt_find_target(bus, target_id);
3492 if (target == NULL) {
3493 /* Create one */
3494 struct cam_et *new_target;
3495
3496 new_target = xpt_alloc_target(bus, target_id);
3497 if (new_target == NULL) {
3498 status = CAM_RESRC_UNAVAIL;
3499 } else {
3500 target = new_target;
3501 }
3502 }
3503 xpt_unlock_buses();
3504 if (target != NULL) {
3505 device = xpt_find_device(target, lun_id);
3506 if (device == NULL) {
3507 /* Create one */
3508 struct cam_ed *new_device;
3509
3510 new_device =
3511 (*(bus->xport->ops->alloc_device))(bus,
3512 target,
3513 lun_id);
3514 if (new_device == NULL) {
3515 status = CAM_RESRC_UNAVAIL;
3516 } else {
3517 device = new_device;
3518 }
3519 }
3520 }
3521 mtx_unlock(&bus->eb_mtx);
3522 }
3523
3524 /*
3525 * Only touch the user's data if we are successful.
3526 */
3527 if (status == CAM_REQ_CMP) {
3528 new_path->periph = perph;
3529 new_path->bus = bus;
3530 new_path->target = target;
3531 new_path->device = device;
3532 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3533 } else {
3534 if (device != NULL)
3535 xpt_release_device(device);
3536 if (target != NULL)
3537 xpt_release_target(target);
3538 if (bus != NULL)
3539 xpt_release_bus(bus);
3540 }
3541 return (status);
3542 }
3543
3544 int
xpt_clone_path(struct cam_path ** new_path_ptr,struct cam_path * path)3545 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3546 {
3547 struct cam_path *new_path;
3548
3549 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3550 if (new_path == NULL)
3551 return (ENOMEM);
3552 *new_path = *path;
3553 if (path->bus != NULL)
3554 xpt_acquire_bus(path->bus);
3555 if (path->target != NULL)
3556 xpt_acquire_target(path->target);
3557 if (path->device != NULL)
3558 xpt_acquire_device(path->device);
3559 *new_path_ptr = new_path;
3560 return (0);
3561 }
3562
3563 void
xpt_release_path(struct cam_path * path)3564 xpt_release_path(struct cam_path *path)
3565 {
3566 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3567 if (path->device != NULL) {
3568 xpt_release_device(path->device);
3569 path->device = NULL;
3570 }
3571 if (path->target != NULL) {
3572 xpt_release_target(path->target);
3573 path->target = NULL;
3574 }
3575 if (path->bus != NULL) {
3576 xpt_release_bus(path->bus);
3577 path->bus = NULL;
3578 }
3579 }
3580
3581 void
xpt_free_path(struct cam_path * path)3582 xpt_free_path(struct cam_path *path)
3583 {
3584
3585 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3586 xpt_release_path(path);
3587 free(path, M_CAMPATH);
3588 }
3589
3590 void
xpt_path_counts(struct cam_path * path,uint32_t * bus_ref,uint32_t * periph_ref,uint32_t * target_ref,uint32_t * device_ref)3591 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3592 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3593 {
3594
3595 xpt_lock_buses();
3596 if (bus_ref) {
3597 if (path->bus)
3598 *bus_ref = path->bus->refcount;
3599 else
3600 *bus_ref = 0;
3601 }
3602 if (periph_ref) {
3603 if (path->periph)
3604 *periph_ref = path->periph->refcount;
3605 else
3606 *periph_ref = 0;
3607 }
3608 xpt_unlock_buses();
3609 if (target_ref) {
3610 if (path->target)
3611 *target_ref = path->target->refcount;
3612 else
3613 *target_ref = 0;
3614 }
3615 if (device_ref) {
3616 if (path->device)
3617 *device_ref = path->device->refcount;
3618 else
3619 *device_ref = 0;
3620 }
3621 }
3622
3623 /*
3624 * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3625 * in path1, 2 for match with wildcards in path2.
3626 */
3627 int
xpt_path_comp(struct cam_path * path1,struct cam_path * path2)3628 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3629 {
3630 int retval = 0;
3631
3632 if (path1->bus != path2->bus) {
3633 if (path1->bus->path_id == CAM_BUS_WILDCARD)
3634 retval = 1;
3635 else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3636 retval = 2;
3637 else
3638 return (-1);
3639 }
3640 if (path1->target != path2->target) {
3641 if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3642 if (retval == 0)
3643 retval = 1;
3644 } else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3645 retval = 2;
3646 else
3647 return (-1);
3648 }
3649 if (path1->device != path2->device) {
3650 if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3651 if (retval == 0)
3652 retval = 1;
3653 } else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3654 retval = 2;
3655 else
3656 return (-1);
3657 }
3658 return (retval);
3659 }
3660
3661 int
xpt_path_comp_dev(struct cam_path * path,struct cam_ed * dev)3662 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3663 {
3664 int retval = 0;
3665
3666 if (path->bus != dev->target->bus) {
3667 if (path->bus->path_id == CAM_BUS_WILDCARD)
3668 retval = 1;
3669 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3670 retval = 2;
3671 else
3672 return (-1);
3673 }
3674 if (path->target != dev->target) {
3675 if (path->target->target_id == CAM_TARGET_WILDCARD) {
3676 if (retval == 0)
3677 retval = 1;
3678 } else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3679 retval = 2;
3680 else
3681 return (-1);
3682 }
3683 if (path->device != dev) {
3684 if (path->device->lun_id == CAM_LUN_WILDCARD) {
3685 if (retval == 0)
3686 retval = 1;
3687 } else if (dev->lun_id == CAM_LUN_WILDCARD)
3688 retval = 2;
3689 else
3690 return (-1);
3691 }
3692 return (retval);
3693 }
3694
3695 void
xpt_print_path(struct cam_path * path)3696 xpt_print_path(struct cam_path *path)
3697 {
3698 struct sbuf sb;
3699 char buffer[XPT_PRINT_LEN];
3700
3701 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3702 xpt_path_sbuf(path, &sb);
3703 sbuf_finish(&sb);
3704 printf("%s", sbuf_data(&sb));
3705 sbuf_delete(&sb);
3706 }
3707
3708 static void
xpt_device_sbuf(struct cam_ed * device,struct sbuf * sb)3709 xpt_device_sbuf(struct cam_ed *device, struct sbuf *sb)
3710 {
3711 if (device == NULL)
3712 sbuf_cat(sb, "(nopath): ");
3713 else {
3714 sbuf_printf(sb, "(noperiph:%s%d:%d:%d:%jx): ",
3715 device->sim->sim_name,
3716 device->sim->unit_number,
3717 device->sim->bus_id,
3718 device->target->target_id,
3719 (uintmax_t)device->lun_id);
3720 }
3721 }
3722
3723 void
xpt_print(struct cam_path * path,const char * fmt,...)3724 xpt_print(struct cam_path *path, const char *fmt, ...)
3725 {
3726 va_list ap;
3727 struct sbuf sb;
3728 char buffer[XPT_PRINT_LEN];
3729
3730 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3731
3732 xpt_path_sbuf(path, &sb);
3733 va_start(ap, fmt);
3734 sbuf_vprintf(&sb, fmt, ap);
3735 va_end(ap);
3736
3737 sbuf_finish(&sb);
3738 printf("%s", sbuf_data(&sb));
3739 sbuf_delete(&sb);
3740 }
3741
3742 char *
xpt_path_string(struct cam_path * path,char * str,size_t str_len)3743 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3744 {
3745 struct sbuf sb;
3746
3747 sbuf_new(&sb, str, str_len, 0);
3748 xpt_path_sbuf(path, &sb);
3749 sbuf_finish(&sb);
3750 return (str);
3751 }
3752
3753 void
xpt_path_sbuf(struct cam_path * path,struct sbuf * sb)3754 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3755 {
3756
3757 if (path == NULL)
3758 sbuf_cat(sb, "(nopath): ");
3759 else {
3760 if (path->periph != NULL)
3761 sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3762 path->periph->unit_number);
3763 else
3764 sbuf_cat(sb, "(noperiph:");
3765
3766 if (path->bus != NULL)
3767 sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3768 path->bus->sim->unit_number,
3769 path->bus->sim->bus_id);
3770 else
3771 sbuf_cat(sb, "nobus:");
3772
3773 if (path->target != NULL)
3774 sbuf_printf(sb, "%d:", path->target->target_id);
3775 else
3776 sbuf_cat(sb, "X:");
3777
3778 if (path->device != NULL)
3779 sbuf_printf(sb, "%jx): ",
3780 (uintmax_t)path->device->lun_id);
3781 else
3782 sbuf_cat(sb, "X): ");
3783 }
3784 }
3785
3786 path_id_t
xpt_path_path_id(struct cam_path * path)3787 xpt_path_path_id(struct cam_path *path)
3788 {
3789 return(path->bus->path_id);
3790 }
3791
3792 target_id_t
xpt_path_target_id(struct cam_path * path)3793 xpt_path_target_id(struct cam_path *path)
3794 {
3795 if (path->target != NULL)
3796 return (path->target->target_id);
3797 else
3798 return (CAM_TARGET_WILDCARD);
3799 }
3800
3801 lun_id_t
xpt_path_lun_id(struct cam_path * path)3802 xpt_path_lun_id(struct cam_path *path)
3803 {
3804 if (path->device != NULL)
3805 return (path->device->lun_id);
3806 else
3807 return (CAM_LUN_WILDCARD);
3808 }
3809
3810 struct cam_sim *
xpt_path_sim(struct cam_path * path)3811 xpt_path_sim(struct cam_path *path)
3812 {
3813
3814 return (path->bus->sim);
3815 }
3816
3817 struct cam_periph*
xpt_path_periph(struct cam_path * path)3818 xpt_path_periph(struct cam_path *path)
3819 {
3820
3821 return (path->periph);
3822 }
3823
3824 /*
3825 * Release a CAM control block for the caller. Remit the cost of the structure
3826 * to the device referenced by the path. If the this device had no 'credits'
3827 * and peripheral drivers have registered async callbacks for this notification
3828 * call them now.
3829 */
3830 void
xpt_release_ccb(union ccb * free_ccb)3831 xpt_release_ccb(union ccb *free_ccb)
3832 {
3833 struct cam_ed *device;
3834 struct cam_periph *periph;
3835
3836 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3837 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3838 device = free_ccb->ccb_h.path->device;
3839 periph = free_ccb->ccb_h.path->periph;
3840
3841 xpt_free_ccb(free_ccb);
3842 periph->periph_allocated--;
3843 cam_ccbq_release_opening(&device->ccbq);
3844 xpt_run_allocq(periph, 0);
3845 }
3846
3847 /* Functions accessed by SIM drivers */
3848
3849 static struct xpt_xport_ops xport_default_ops = {
3850 .alloc_device = xpt_alloc_device_default,
3851 .action = xpt_action_default,
3852 .async = xpt_dev_async_default,
3853 };
3854 static struct xpt_xport xport_default = {
3855 .xport = XPORT_UNKNOWN,
3856 .name = "unknown",
3857 .ops = &xport_default_ops,
3858 };
3859
3860 CAM_XPT_XPORT(xport_default);
3861
3862 /*
3863 * A sim structure, listing the SIM entry points and instance
3864 * identification info is passed to xpt_bus_register to hook the SIM
3865 * into the CAM framework. xpt_bus_register creates a cam_eb entry
3866 * for this new bus and places it in the array of buses and assigns
3867 * it a path_id. The path_id may be influenced by "hard wiring"
3868 * information specified by the user. Once interrupt services are
3869 * available, the bus will be probed.
3870 */
3871 int
xpt_bus_register(struct cam_sim * sim,device_t parent,uint32_t bus)3872 xpt_bus_register(struct cam_sim *sim, device_t parent, uint32_t bus)
3873 {
3874 struct cam_eb *new_bus;
3875 struct cam_eb *old_bus;
3876 struct ccb_pathinq cpi;
3877 struct cam_path *path;
3878 cam_status status;
3879
3880 sim->bus_id = bus;
3881 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3882 M_CAMXPT, M_NOWAIT|M_ZERO);
3883 if (new_bus == NULL) {
3884 /* Couldn't satisfy request */
3885 return (ENOMEM);
3886 }
3887
3888 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
3889 TAILQ_INIT(&new_bus->et_entries);
3890 cam_sim_hold(sim);
3891 new_bus->sim = sim;
3892 timevalclear(&new_bus->last_reset);
3893 new_bus->flags = 0;
3894 new_bus->refcount = 1; /* Held until a bus_deregister event */
3895 new_bus->generation = 0;
3896 new_bus->parent_dev = parent;
3897
3898 xpt_lock_buses();
3899 sim->path_id = new_bus->path_id =
3900 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3901 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3902 while (old_bus != NULL
3903 && old_bus->path_id < new_bus->path_id)
3904 old_bus = TAILQ_NEXT(old_bus, links);
3905 if (old_bus != NULL)
3906 TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3907 else
3908 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3909 xsoftc.bus_generation++;
3910 xpt_unlock_buses();
3911
3912 /*
3913 * Set a default transport so that a PATH_INQ can be issued to
3914 * the SIM. This will then allow for probing and attaching of
3915 * a more appropriate transport.
3916 */
3917 new_bus->xport = &xport_default;
3918
3919 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3920 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3921 if (status != CAM_REQ_CMP) {
3922 xpt_release_bus(new_bus);
3923 return (ENOMEM);
3924 }
3925
3926 xpt_path_inq(&cpi, path);
3927
3928 /*
3929 * Use the results of PATH_INQ to pick a transport. Note that
3930 * the xpt bus (which uses XPORT_UNSPECIFIED) always uses
3931 * xport_default instead of a transport from
3932 * cam_xpt_port_set.
3933 */
3934 if (cam_ccb_success((union ccb *)&cpi) &&
3935 cpi.transport != XPORT_UNSPECIFIED) {
3936 struct xpt_xport **xpt;
3937
3938 SET_FOREACH(xpt, cam_xpt_xport_set) {
3939 if ((*xpt)->xport == cpi.transport) {
3940 new_bus->xport = *xpt;
3941 break;
3942 }
3943 }
3944 if (new_bus->xport == &xport_default) {
3945 xpt_print(path,
3946 "No transport found for %d\n", cpi.transport);
3947 xpt_release_bus(new_bus);
3948 xpt_free_path(path);
3949 return (EINVAL);
3950 }
3951 }
3952
3953 /* Notify interested parties */
3954 if (sim->path_id != CAM_XPT_PATH_ID) {
3955 xpt_async(AC_PATH_REGISTERED, path, &cpi);
3956 if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3957 union ccb *scan_ccb;
3958
3959 /* Initiate bus rescan. */
3960 scan_ccb = xpt_alloc_ccb_nowait();
3961 if (scan_ccb != NULL) {
3962 scan_ccb->ccb_h.path = path;
3963 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3964 scan_ccb->crcn.flags = 0;
3965 xpt_rescan(scan_ccb);
3966 } else {
3967 xpt_print(path,
3968 "Can't allocate CCB to scan bus\n");
3969 xpt_free_path(path);
3970 }
3971 } else
3972 xpt_free_path(path);
3973 } else
3974 xpt_free_path(path);
3975 return (CAM_SUCCESS);
3976 }
3977
3978 int
xpt_bus_deregister(path_id_t pathid)3979 xpt_bus_deregister(path_id_t pathid)
3980 {
3981 struct cam_path bus_path;
3982 cam_status status;
3983
3984 status = xpt_compile_path(&bus_path, NULL, pathid,
3985 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3986 if (status != CAM_REQ_CMP)
3987 return (ENOMEM);
3988
3989 xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3990 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3991
3992 /* Release the reference count held while registered. */
3993 xpt_release_bus(bus_path.bus);
3994 xpt_release_path(&bus_path);
3995
3996 return (CAM_SUCCESS);
3997 }
3998
3999 static path_id_t
xptnextfreepathid(void)4000 xptnextfreepathid(void)
4001 {
4002 struct cam_eb *bus;
4003 path_id_t pathid;
4004 const char *strval;
4005
4006 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4007 pathid = 0;
4008 bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4009 retry:
4010 /* Find an unoccupied pathid */
4011 while (bus != NULL && bus->path_id <= pathid) {
4012 if (bus->path_id == pathid)
4013 pathid++;
4014 bus = TAILQ_NEXT(bus, links);
4015 }
4016
4017 /*
4018 * Ensure that this pathid is not reserved for
4019 * a bus that may be registered in the future.
4020 */
4021 if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4022 ++pathid;
4023 /* Start the search over */
4024 goto retry;
4025 }
4026 return (pathid);
4027 }
4028
4029 static path_id_t
xptpathid(const char * sim_name,int sim_unit,int sim_bus)4030 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4031 {
4032 path_id_t pathid;
4033 int i, dunit, val;
4034 char buf[32];
4035 const char *dname;
4036
4037 pathid = CAM_XPT_PATH_ID;
4038 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4039 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4040 return (pathid);
4041 i = 0;
4042 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4043 if (strcmp(dname, "scbus")) {
4044 /* Avoid a bit of foot shooting. */
4045 continue;
4046 }
4047 if (dunit < 0) /* unwired?! */
4048 continue;
4049 if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4050 if (sim_bus == val) {
4051 pathid = dunit;
4052 break;
4053 }
4054 } else if (sim_bus == 0) {
4055 /* Unspecified matches bus 0 */
4056 pathid = dunit;
4057 break;
4058 } else {
4059 printf(
4060 "Ambiguous scbus configuration for %s%d bus %d, cannot wire down. The kernel\n"
4061 "config entry for scbus%d should specify a controller bus.\n"
4062 "Scbus will be assigned dynamically.\n",
4063 sim_name, sim_unit, sim_bus, dunit);
4064 break;
4065 }
4066 }
4067
4068 if (pathid == CAM_XPT_PATH_ID)
4069 pathid = xptnextfreepathid();
4070 return (pathid);
4071 }
4072
4073 static const char *
xpt_async_string(uint32_t async_code)4074 xpt_async_string(uint32_t async_code)
4075 {
4076
4077 switch (async_code) {
4078 case AC_BUS_RESET: return ("AC_BUS_RESET");
4079 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4080 case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4081 case AC_SENT_BDR: return ("AC_SENT_BDR");
4082 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4083 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4084 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4085 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4086 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4087 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4088 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4089 case AC_CONTRACT: return ("AC_CONTRACT");
4090 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4091 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4092 }
4093 return ("AC_UNKNOWN");
4094 }
4095
4096 static int
xpt_async_size(uint32_t async_code)4097 xpt_async_size(uint32_t async_code)
4098 {
4099
4100 switch (async_code) {
4101 case AC_BUS_RESET: return (0);
4102 case AC_UNSOL_RESEL: return (0);
4103 case AC_SCSI_AEN: return (0);
4104 case AC_SENT_BDR: return (0);
4105 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4106 case AC_PATH_DEREGISTERED: return (0);
4107 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4108 case AC_LOST_DEVICE: return (0);
4109 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4110 case AC_INQ_CHANGED: return (0);
4111 case AC_GETDEV_CHANGED: return (0);
4112 case AC_CONTRACT: return (sizeof(struct ac_contract));
4113 case AC_ADVINFO_CHANGED: return (-1);
4114 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4115 }
4116 return (0);
4117 }
4118
4119 static int
xpt_async_process_dev(struct cam_ed * device,void * arg)4120 xpt_async_process_dev(struct cam_ed *device, void *arg)
4121 {
4122 union ccb *ccb = arg;
4123 struct cam_path *path = ccb->ccb_h.path;
4124 void *async_arg = ccb->casync.async_arg_ptr;
4125 uint32_t async_code = ccb->casync.async_code;
4126 bool relock;
4127
4128 if (path->device != device
4129 && path->device->lun_id != CAM_LUN_WILDCARD
4130 && device->lun_id != CAM_LUN_WILDCARD)
4131 return (1);
4132
4133 /*
4134 * The async callback could free the device.
4135 * If it is a broadcast async, it doesn't hold
4136 * device reference, so take our own reference.
4137 */
4138 xpt_acquire_device(device);
4139
4140 /*
4141 * If async for specific device is to be delivered to
4142 * the wildcard client, take the specific device lock.
4143 * XXX: We may need a way for client to specify it.
4144 */
4145 if ((device->lun_id == CAM_LUN_WILDCARD &&
4146 path->device->lun_id != CAM_LUN_WILDCARD) ||
4147 (device->target->target_id == CAM_TARGET_WILDCARD &&
4148 path->target->target_id != CAM_TARGET_WILDCARD) ||
4149 (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4150 path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4151 mtx_unlock(&device->device_mtx);
4152 xpt_path_lock(path);
4153 relock = true;
4154 } else
4155 relock = false;
4156
4157 (*(device->target->bus->xport->ops->async))(async_code,
4158 device->target->bus, device->target, device, async_arg);
4159 xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4160
4161 if (relock) {
4162 xpt_path_unlock(path);
4163 mtx_lock(&device->device_mtx);
4164 }
4165 xpt_release_device(device);
4166 return (1);
4167 }
4168
4169 static int
xpt_async_process_tgt(struct cam_et * target,void * arg)4170 xpt_async_process_tgt(struct cam_et *target, void *arg)
4171 {
4172 union ccb *ccb = arg;
4173 struct cam_path *path = ccb->ccb_h.path;
4174
4175 if (path->target != target
4176 && path->target->target_id != CAM_TARGET_WILDCARD
4177 && target->target_id != CAM_TARGET_WILDCARD)
4178 return (1);
4179
4180 if (ccb->casync.async_code == AC_SENT_BDR) {
4181 /* Update our notion of when the last reset occurred */
4182 microtime(&target->last_reset);
4183 }
4184
4185 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4186 }
4187
4188 static void
xpt_async_process(struct cam_periph * periph,union ccb * ccb)4189 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4190 {
4191 struct cam_eb *bus;
4192 struct cam_path *path;
4193 void *async_arg;
4194 uint32_t async_code;
4195
4196 path = ccb->ccb_h.path;
4197 async_code = ccb->casync.async_code;
4198 async_arg = ccb->casync.async_arg_ptr;
4199 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4200 ("xpt_async(%s)\n", xpt_async_string(async_code)));
4201 bus = path->bus;
4202
4203 if (async_code == AC_BUS_RESET) {
4204 /* Update our notion of when the last reset occurred */
4205 microtime(&bus->last_reset);
4206 }
4207
4208 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4209
4210 /*
4211 * If this wasn't a fully wildcarded async, tell all
4212 * clients that want all async events.
4213 */
4214 if (bus != xpt_periph->path->bus) {
4215 xpt_path_lock(xpt_periph->path);
4216 xpt_async_process_dev(xpt_periph->path->device, ccb);
4217 xpt_path_unlock(xpt_periph->path);
4218 }
4219
4220 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4221 xpt_release_devq(path, 1, TRUE);
4222 else
4223 xpt_release_simq(path->bus->sim, TRUE);
4224 if (ccb->casync.async_arg_size > 0)
4225 free(async_arg, M_CAMXPT);
4226 xpt_free_path(path);
4227 xpt_free_ccb(ccb);
4228 }
4229
4230 static void
xpt_async_bcast(struct async_list * async_head,uint32_t async_code,struct cam_path * path,void * async_arg)4231 xpt_async_bcast(struct async_list *async_head,
4232 uint32_t async_code,
4233 struct cam_path *path, void *async_arg)
4234 {
4235 struct async_node *cur_entry;
4236 struct mtx *mtx;
4237
4238 cur_entry = SLIST_FIRST(async_head);
4239 while (cur_entry != NULL) {
4240 struct async_node *next_entry;
4241 /*
4242 * Grab the next list entry before we call the current
4243 * entry's callback. This is because the callback function
4244 * can delete its async callback entry.
4245 */
4246 next_entry = SLIST_NEXT(cur_entry, links);
4247 if ((cur_entry->event_enable & async_code) != 0) {
4248 mtx = cur_entry->event_lock ?
4249 path->device->sim->mtx : NULL;
4250 if (mtx)
4251 mtx_lock(mtx);
4252 cur_entry->callback(cur_entry->callback_arg,
4253 async_code, path,
4254 async_arg);
4255 if (mtx)
4256 mtx_unlock(mtx);
4257 }
4258 cur_entry = next_entry;
4259 }
4260 }
4261
4262 void
xpt_async(uint32_t async_code,struct cam_path * path,void * async_arg)4263 xpt_async(uint32_t async_code, struct cam_path *path, void *async_arg)
4264 {
4265 union ccb *ccb;
4266 int size;
4267
4268 ccb = xpt_alloc_ccb_nowait();
4269 if (ccb == NULL) {
4270 xpt_print(path, "Can't allocate CCB to send %s\n",
4271 xpt_async_string(async_code));
4272 return;
4273 }
4274
4275 if (xpt_clone_path(&ccb->ccb_h.path, path) != 0) {
4276 xpt_print(path, "Can't allocate path to send %s\n",
4277 xpt_async_string(async_code));
4278 xpt_free_ccb(ccb);
4279 return;
4280 }
4281 ccb->ccb_h.path->periph = NULL;
4282 ccb->ccb_h.func_code = XPT_ASYNC;
4283 ccb->ccb_h.cbfcnp = xpt_async_process;
4284 ccb->ccb_h.flags |= CAM_UNLOCKED;
4285 ccb->casync.async_code = async_code;
4286 ccb->casync.async_arg_size = 0;
4287 size = xpt_async_size(async_code);
4288 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4289 ("xpt_async: func %#x %s aync_code %d %s\n",
4290 ccb->ccb_h.func_code,
4291 xpt_action_name(ccb->ccb_h.func_code),
4292 async_code,
4293 xpt_async_string(async_code)));
4294 if (size > 0 && async_arg != NULL) {
4295 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4296 if (ccb->casync.async_arg_ptr == NULL) {
4297 xpt_print(path, "Can't allocate argument to send %s\n",
4298 xpt_async_string(async_code));
4299 xpt_free_path(ccb->ccb_h.path);
4300 xpt_free_ccb(ccb);
4301 return;
4302 }
4303 memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4304 ccb->casync.async_arg_size = size;
4305 } else if (size < 0) {
4306 ccb->casync.async_arg_ptr = async_arg;
4307 ccb->casync.async_arg_size = size;
4308 }
4309 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4310 xpt_freeze_devq(path, 1);
4311 else
4312 xpt_freeze_simq(path->bus->sim, 1);
4313 xpt_action(ccb);
4314 }
4315
4316 static void
xpt_dev_async_default(uint32_t async_code,struct cam_eb * bus,struct cam_et * target,struct cam_ed * device,void * async_arg)4317 xpt_dev_async_default(uint32_t async_code, struct cam_eb *bus,
4318 struct cam_et *target, struct cam_ed *device,
4319 void *async_arg)
4320 {
4321
4322 /*
4323 * We only need to handle events for real devices.
4324 */
4325 if (target->target_id == CAM_TARGET_WILDCARD
4326 || device->lun_id == CAM_LUN_WILDCARD)
4327 return;
4328
4329 printf("%s called\n", __func__);
4330 }
4331
4332 static uint32_t
xpt_freeze_devq_device(struct cam_ed * dev,u_int count)4333 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4334 {
4335 struct cam_devq *devq;
4336 uint32_t freeze;
4337
4338 devq = dev->sim->devq;
4339 mtx_assert(&devq->send_mtx, MA_OWNED);
4340 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4341 ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4342 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4343 freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4344 /* Remove frozen device from sendq. */
4345 if (device_is_queued(dev))
4346 camq_remove(&devq->send_queue, dev->devq_entry.index);
4347 return (freeze);
4348 }
4349
4350 uint32_t
xpt_freeze_devq(struct cam_path * path,u_int count)4351 xpt_freeze_devq(struct cam_path *path, u_int count)
4352 {
4353 struct cam_ed *dev = path->device;
4354 struct cam_devq *devq;
4355 uint32_t freeze;
4356
4357 devq = dev->sim->devq;
4358 mtx_lock(&devq->send_mtx);
4359 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4360 freeze = xpt_freeze_devq_device(dev, count);
4361 mtx_unlock(&devq->send_mtx);
4362 return (freeze);
4363 }
4364
4365 uint32_t
xpt_freeze_simq(struct cam_sim * sim,u_int count)4366 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4367 {
4368 struct cam_devq *devq;
4369 uint32_t freeze;
4370
4371 devq = sim->devq;
4372 mtx_lock(&devq->send_mtx);
4373 freeze = (devq->send_queue.qfrozen_cnt += count);
4374 mtx_unlock(&devq->send_mtx);
4375 return (freeze);
4376 }
4377
4378 static void
xpt_release_devq_timeout(void * arg)4379 xpt_release_devq_timeout(void *arg)
4380 {
4381 struct cam_ed *dev;
4382 struct cam_devq *devq;
4383
4384 dev = (struct cam_ed *)arg;
4385 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4386 devq = dev->sim->devq;
4387 mtx_assert(&devq->send_mtx, MA_OWNED);
4388 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4389 xpt_run_devq(devq);
4390 }
4391
4392 void
xpt_release_devq(struct cam_path * path,u_int count,int run_queue)4393 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4394 {
4395 struct cam_ed *dev;
4396 struct cam_devq *devq;
4397
4398 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4399 count, run_queue));
4400 dev = path->device;
4401 devq = dev->sim->devq;
4402 mtx_lock(&devq->send_mtx);
4403 if (xpt_release_devq_device(dev, count, run_queue))
4404 xpt_run_devq(dev->sim->devq);
4405 mtx_unlock(&devq->send_mtx);
4406 }
4407
4408 static int
xpt_release_devq_device(struct cam_ed * dev,u_int count,int run_queue)4409 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4410 {
4411
4412 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4413 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4414 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4415 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4416 if (count > dev->ccbq.queue.qfrozen_cnt) {
4417 #ifdef INVARIANTS
4418 printf("xpt_release_devq(): requested %u > present %u\n",
4419 count, dev->ccbq.queue.qfrozen_cnt);
4420 #endif
4421 count = dev->ccbq.queue.qfrozen_cnt;
4422 }
4423 dev->ccbq.queue.qfrozen_cnt -= count;
4424 if (dev->ccbq.queue.qfrozen_cnt == 0) {
4425 /*
4426 * No longer need to wait for a successful
4427 * command completion.
4428 */
4429 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4430 /*
4431 * Remove any timeouts that might be scheduled
4432 * to release this queue.
4433 */
4434 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4435 callout_stop(&dev->callout);
4436 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4437 }
4438 /*
4439 * Now that we are unfrozen schedule the
4440 * device so any pending transactions are
4441 * run.
4442 */
4443 xpt_schedule_devq(dev->sim->devq, dev);
4444 } else
4445 run_queue = 0;
4446 return (run_queue);
4447 }
4448
4449 void
xpt_release_simq(struct cam_sim * sim,int run_queue)4450 xpt_release_simq(struct cam_sim *sim, int run_queue)
4451 {
4452 struct cam_devq *devq;
4453
4454 devq = sim->devq;
4455 mtx_lock(&devq->send_mtx);
4456 if (devq->send_queue.qfrozen_cnt <= 0) {
4457 #ifdef INVARIANTS
4458 printf("xpt_release_simq: requested 1 > present %u\n",
4459 devq->send_queue.qfrozen_cnt);
4460 #endif
4461 } else
4462 devq->send_queue.qfrozen_cnt--;
4463 if (devq->send_queue.qfrozen_cnt == 0) {
4464 if (run_queue) {
4465 /*
4466 * Now that we are unfrozen run the send queue.
4467 */
4468 xpt_run_devq(sim->devq);
4469 }
4470 }
4471 mtx_unlock(&devq->send_mtx);
4472 }
4473
4474 void
xpt_done(union ccb * done_ccb)4475 xpt_done(union ccb *done_ccb)
4476 {
4477 struct cam_doneq *queue;
4478 int run, hash;
4479
4480 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4481 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4482 done_ccb->csio.bio != NULL)
4483 biotrack(done_ccb->csio.bio, __func__);
4484 #endif
4485
4486 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4487 ("xpt_done: func= %#x %s status %#x\n",
4488 done_ccb->ccb_h.func_code,
4489 xpt_action_name(done_ccb->ccb_h.func_code),
4490 done_ccb->ccb_h.status));
4491 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4492 return;
4493
4494 /* Store the time the ccb was in the sim */
4495 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4496 done_ccb->ccb_h.status |= CAM_QOS_VALID;
4497 hash = (u_int)(done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4498 done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4499 queue = &cam_doneqs[hash];
4500 mtx_lock(&queue->cam_doneq_mtx);
4501 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4502 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4503 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4504 mtx_unlock(&queue->cam_doneq_mtx);
4505 if (run && !dumping)
4506 wakeup(&queue->cam_doneq);
4507 }
4508
4509 void
xpt_done_direct(union ccb * done_ccb)4510 xpt_done_direct(union ccb *done_ccb)
4511 {
4512
4513 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4514 ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4515 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4516 return;
4517
4518 /* Store the time the ccb was in the sim */
4519 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4520 done_ccb->ccb_h.status |= CAM_QOS_VALID;
4521 xpt_done_process(&done_ccb->ccb_h);
4522 }
4523
4524 union ccb *
xpt_alloc_ccb(void)4525 xpt_alloc_ccb(void)
4526 {
4527 union ccb *new_ccb;
4528
4529 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4530 return (new_ccb);
4531 }
4532
4533 union ccb *
xpt_alloc_ccb_nowait(void)4534 xpt_alloc_ccb_nowait(void)
4535 {
4536 union ccb *new_ccb;
4537
4538 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4539 return (new_ccb);
4540 }
4541
4542 void
xpt_free_ccb(union ccb * free_ccb)4543 xpt_free_ccb(union ccb *free_ccb)
4544 {
4545 struct cam_periph *periph;
4546
4547 if (free_ccb->ccb_h.alloc_flags & CAM_CCB_FROM_UMA) {
4548 /*
4549 * Looks like a CCB allocated from a periph UMA zone.
4550 */
4551 periph = free_ccb->ccb_h.path->periph;
4552 uma_zfree(periph->ccb_zone, free_ccb);
4553 } else {
4554 free(free_ccb, M_CAMCCB);
4555 }
4556 }
4557
4558 /* Private XPT functions */
4559
4560 /*
4561 * Get a CAM control block for the caller. Charge the structure to the device
4562 * referenced by the path. If we don't have sufficient resources to allocate
4563 * more ccbs, we return NULL.
4564 */
4565 static union ccb *
xpt_get_ccb_nowait(struct cam_periph * periph)4566 xpt_get_ccb_nowait(struct cam_periph *periph)
4567 {
4568 union ccb *new_ccb;
4569 int alloc_flags;
4570
4571 if (periph->ccb_zone != NULL) {
4572 alloc_flags = CAM_CCB_FROM_UMA;
4573 new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_NOWAIT);
4574 } else {
4575 alloc_flags = 0;
4576 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4577 }
4578 if (new_ccb == NULL)
4579 return (NULL);
4580 new_ccb->ccb_h.alloc_flags = alloc_flags;
4581 periph->periph_allocated++;
4582 cam_ccbq_take_opening(&periph->path->device->ccbq);
4583 return (new_ccb);
4584 }
4585
4586 static union ccb *
xpt_get_ccb(struct cam_periph * periph)4587 xpt_get_ccb(struct cam_periph *periph)
4588 {
4589 union ccb *new_ccb;
4590 int alloc_flags;
4591
4592 cam_periph_unlock(periph);
4593 if (periph->ccb_zone != NULL) {
4594 alloc_flags = CAM_CCB_FROM_UMA;
4595 new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_WAITOK);
4596 } else {
4597 alloc_flags = 0;
4598 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4599 }
4600 new_ccb->ccb_h.alloc_flags = alloc_flags;
4601 cam_periph_lock(periph);
4602 periph->periph_allocated++;
4603 cam_ccbq_take_opening(&periph->path->device->ccbq);
4604 return (new_ccb);
4605 }
4606
4607 union ccb *
cam_periph_getccb(struct cam_periph * periph,uint32_t priority)4608 cam_periph_getccb(struct cam_periph *periph, uint32_t priority)
4609 {
4610 struct ccb_hdr *ccb_h;
4611
4612 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4613 cam_periph_assert(periph, MA_OWNED);
4614 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4615 ccb_h->pinfo.priority != priority) {
4616 if (priority < periph->immediate_priority) {
4617 periph->immediate_priority = priority;
4618 xpt_run_allocq(periph, 0);
4619 } else
4620 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4621 "cgticb", 0);
4622 }
4623 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4624 return ((union ccb *)ccb_h);
4625 }
4626
4627 static void
xpt_acquire_bus(struct cam_eb * bus)4628 xpt_acquire_bus(struct cam_eb *bus)
4629 {
4630
4631 xpt_lock_buses();
4632 bus->refcount++;
4633 xpt_unlock_buses();
4634 }
4635
4636 static void
xpt_release_bus(struct cam_eb * bus)4637 xpt_release_bus(struct cam_eb *bus)
4638 {
4639
4640 xpt_lock_buses();
4641 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4642 if (--bus->refcount > 0) {
4643 xpt_unlock_buses();
4644 return;
4645 }
4646 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4647 xsoftc.bus_generation++;
4648 xpt_unlock_buses();
4649 KASSERT(TAILQ_EMPTY(&bus->et_entries),
4650 ("destroying bus, but target list is not empty"));
4651 cam_sim_release(bus->sim);
4652 mtx_destroy(&bus->eb_mtx);
4653 free(bus, M_CAMXPT);
4654 }
4655
4656 static struct cam_et *
xpt_alloc_target(struct cam_eb * bus,target_id_t target_id)4657 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4658 {
4659 struct cam_et *cur_target, *target;
4660
4661 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4662 mtx_assert(&bus->eb_mtx, MA_OWNED);
4663 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4664 M_NOWAIT|M_ZERO);
4665 if (target == NULL)
4666 return (NULL);
4667
4668 TAILQ_INIT(&target->ed_entries);
4669 target->bus = bus;
4670 target->target_id = target_id;
4671 target->refcount = 1;
4672 target->generation = 0;
4673 target->luns = NULL;
4674 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4675 timevalclear(&target->last_reset);
4676 /*
4677 * Hold a reference to our parent bus so it
4678 * will not go away before we do.
4679 */
4680 bus->refcount++;
4681
4682 /* Insertion sort into our bus's target list */
4683 cur_target = TAILQ_FIRST(&bus->et_entries);
4684 while (cur_target != NULL && cur_target->target_id < target_id)
4685 cur_target = TAILQ_NEXT(cur_target, links);
4686 if (cur_target != NULL) {
4687 TAILQ_INSERT_BEFORE(cur_target, target, links);
4688 } else {
4689 TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4690 }
4691 bus->generation++;
4692 return (target);
4693 }
4694
4695 static void
xpt_acquire_target(struct cam_et * target)4696 xpt_acquire_target(struct cam_et *target)
4697 {
4698 struct cam_eb *bus = target->bus;
4699
4700 mtx_lock(&bus->eb_mtx);
4701 target->refcount++;
4702 mtx_unlock(&bus->eb_mtx);
4703 }
4704
4705 static void
xpt_release_target(struct cam_et * target)4706 xpt_release_target(struct cam_et *target)
4707 {
4708 struct cam_eb *bus = target->bus;
4709
4710 mtx_lock(&bus->eb_mtx);
4711 if (--target->refcount > 0) {
4712 mtx_unlock(&bus->eb_mtx);
4713 return;
4714 }
4715 TAILQ_REMOVE(&bus->et_entries, target, links);
4716 bus->generation++;
4717 mtx_unlock(&bus->eb_mtx);
4718 KASSERT(TAILQ_EMPTY(&target->ed_entries),
4719 ("destroying target, but device list is not empty"));
4720 xpt_release_bus(bus);
4721 mtx_destroy(&target->luns_mtx);
4722 if (target->luns)
4723 free(target->luns, M_CAMXPT);
4724 free(target, M_CAMXPT);
4725 }
4726
4727 static struct cam_ed *
xpt_alloc_device_default(struct cam_eb * bus,struct cam_et * target,lun_id_t lun_id)4728 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4729 lun_id_t lun_id)
4730 {
4731 struct cam_ed *device;
4732
4733 device = xpt_alloc_device(bus, target, lun_id);
4734 if (device == NULL)
4735 return (NULL);
4736
4737 device->mintags = 1;
4738 device->maxtags = 1;
4739 return (device);
4740 }
4741
4742 static void
xpt_destroy_device(void * context,int pending)4743 xpt_destroy_device(void *context, int pending)
4744 {
4745 struct cam_ed *device = context;
4746
4747 mtx_lock(&device->device_mtx);
4748 mtx_destroy(&device->device_mtx);
4749 free(device, M_CAMDEV);
4750 }
4751
4752 struct cam_ed *
xpt_alloc_device(struct cam_eb * bus,struct cam_et * target,lun_id_t lun_id)4753 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4754 {
4755 struct cam_ed *cur_device, *device;
4756 struct cam_devq *devq;
4757 cam_status status;
4758
4759 mtx_assert(&bus->eb_mtx, MA_OWNED);
4760 /* Make space for us in the device queue on our bus */
4761 devq = bus->sim->devq;
4762 mtx_lock(&devq->send_mtx);
4763 status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4764 mtx_unlock(&devq->send_mtx);
4765 if (status != CAM_REQ_CMP)
4766 return (NULL);
4767
4768 device = (struct cam_ed *)malloc(sizeof(*device),
4769 M_CAMDEV, M_NOWAIT|M_ZERO);
4770 if (device == NULL)
4771 return (NULL);
4772
4773 cam_init_pinfo(&device->devq_entry);
4774 device->target = target;
4775 device->lun_id = lun_id;
4776 device->sim = bus->sim;
4777 if (cam_ccbq_init(&device->ccbq,
4778 bus->sim->max_dev_openings) != 0) {
4779 free(device, M_CAMDEV);
4780 return (NULL);
4781 }
4782 SLIST_INIT(&device->asyncs);
4783 SLIST_INIT(&device->periphs);
4784 device->generation = 0;
4785 device->flags = CAM_DEV_UNCONFIGURED;
4786 device->tag_delay_count = 0;
4787 device->tag_saved_openings = 0;
4788 device->refcount = 1;
4789 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4790 callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4791 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4792 /*
4793 * Hold a reference to our parent bus so it
4794 * will not go away before we do.
4795 */
4796 target->refcount++;
4797
4798 cur_device = TAILQ_FIRST(&target->ed_entries);
4799 while (cur_device != NULL && cur_device->lun_id < lun_id)
4800 cur_device = TAILQ_NEXT(cur_device, links);
4801 if (cur_device != NULL)
4802 TAILQ_INSERT_BEFORE(cur_device, device, links);
4803 else
4804 TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4805 target->generation++;
4806 return (device);
4807 }
4808
4809 void
xpt_acquire_device(struct cam_ed * device)4810 xpt_acquire_device(struct cam_ed *device)
4811 {
4812 struct cam_eb *bus = device->target->bus;
4813
4814 mtx_lock(&bus->eb_mtx);
4815 device->refcount++;
4816 mtx_unlock(&bus->eb_mtx);
4817 }
4818
4819 void
xpt_release_device(struct cam_ed * device)4820 xpt_release_device(struct cam_ed *device)
4821 {
4822 struct cam_eb *bus = device->target->bus;
4823 struct cam_devq *devq;
4824
4825 mtx_lock(&bus->eb_mtx);
4826 if (--device->refcount > 0) {
4827 mtx_unlock(&bus->eb_mtx);
4828 return;
4829 }
4830
4831 TAILQ_REMOVE(&device->target->ed_entries, device,links);
4832 device->target->generation++;
4833 mtx_unlock(&bus->eb_mtx);
4834
4835 /* Release our slot in the devq */
4836 devq = bus->sim->devq;
4837 mtx_lock(&devq->send_mtx);
4838 cam_devq_resize(devq, devq->send_queue.array_size - 1);
4839
4840 KASSERT(SLIST_EMPTY(&device->periphs),
4841 ("destroying device, but periphs list is not empty"));
4842 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4843 ("destroying device while still queued for ccbs"));
4844
4845 /* The send_mtx must be held when accessing the callout */
4846 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4847 callout_stop(&device->callout);
4848
4849 mtx_unlock(&devq->send_mtx);
4850
4851 xpt_release_target(device->target);
4852
4853 cam_ccbq_fini(&device->ccbq);
4854 /*
4855 * Free allocated memory. free(9) does nothing if the
4856 * supplied pointer is NULL, so it is safe to call without
4857 * checking.
4858 */
4859 free(device->supported_vpds, M_CAMXPT);
4860 free(device->device_id, M_CAMXPT);
4861 free(device->ext_inq, M_CAMXPT);
4862 free(device->physpath, M_CAMXPT);
4863 free(device->rcap_buf, M_CAMXPT);
4864 free(device->serial_num, M_CAMXPT);
4865 free(device->nvme_data, M_CAMXPT);
4866 free(device->nvme_cdata, M_CAMXPT);
4867 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4868 }
4869
4870 uint32_t
xpt_dev_ccbq_resize(struct cam_path * path,int newopenings)4871 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4872 {
4873 int result;
4874 struct cam_ed *dev;
4875
4876 dev = path->device;
4877 mtx_lock(&dev->sim->devq->send_mtx);
4878 result = cam_ccbq_resize(&dev->ccbq, newopenings);
4879 mtx_unlock(&dev->sim->devq->send_mtx);
4880 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4881 || (dev->inq_flags & SID_CmdQue) != 0)
4882 dev->tag_saved_openings = newopenings;
4883 return (result);
4884 }
4885
4886 static struct cam_eb *
xpt_find_bus(path_id_t path_id)4887 xpt_find_bus(path_id_t path_id)
4888 {
4889 struct cam_eb *bus;
4890
4891 xpt_lock_buses();
4892 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4893 bus != NULL;
4894 bus = TAILQ_NEXT(bus, links)) {
4895 if (bus->path_id == path_id) {
4896 bus->refcount++;
4897 break;
4898 }
4899 }
4900 xpt_unlock_buses();
4901 return (bus);
4902 }
4903
4904 static struct cam_et *
xpt_find_target(struct cam_eb * bus,target_id_t target_id)4905 xpt_find_target(struct cam_eb *bus, target_id_t target_id)
4906 {
4907 struct cam_et *target;
4908
4909 mtx_assert(&bus->eb_mtx, MA_OWNED);
4910 for (target = TAILQ_FIRST(&bus->et_entries);
4911 target != NULL;
4912 target = TAILQ_NEXT(target, links)) {
4913 if (target->target_id == target_id) {
4914 target->refcount++;
4915 break;
4916 }
4917 }
4918 return (target);
4919 }
4920
4921 static struct cam_ed *
xpt_find_device(struct cam_et * target,lun_id_t lun_id)4922 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4923 {
4924 struct cam_ed *device;
4925
4926 mtx_assert(&target->bus->eb_mtx, MA_OWNED);
4927 for (device = TAILQ_FIRST(&target->ed_entries);
4928 device != NULL;
4929 device = TAILQ_NEXT(device, links)) {
4930 if (device->lun_id == lun_id) {
4931 device->refcount++;
4932 break;
4933 }
4934 }
4935 return (device);
4936 }
4937
4938 void
xpt_start_tags(struct cam_path * path)4939 xpt_start_tags(struct cam_path *path)
4940 {
4941 struct ccb_relsim crs;
4942 struct cam_ed *device;
4943 struct cam_sim *sim;
4944 int newopenings;
4945
4946 device = path->device;
4947 sim = path->bus->sim;
4948 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4949 xpt_freeze_devq(path, /*count*/1);
4950 device->inq_flags |= SID_CmdQue;
4951 if (device->tag_saved_openings != 0)
4952 newopenings = device->tag_saved_openings;
4953 else
4954 newopenings = min(device->maxtags,
4955 sim->max_tagged_dev_openings);
4956 xpt_dev_ccbq_resize(path, newopenings);
4957 xpt_async(AC_GETDEV_CHANGED, path, NULL);
4958 memset(&crs, 0, sizeof(crs));
4959 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4960 crs.ccb_h.func_code = XPT_REL_SIMQ;
4961 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4962 crs.openings
4963 = crs.release_timeout
4964 = crs.qfrozen_cnt
4965 = 0;
4966 xpt_action((union ccb *)&crs);
4967 }
4968
4969 void
xpt_stop_tags(struct cam_path * path)4970 xpt_stop_tags(struct cam_path *path)
4971 {
4972 struct ccb_relsim crs;
4973 struct cam_ed *device;
4974 struct cam_sim *sim;
4975
4976 device = path->device;
4977 sim = path->bus->sim;
4978 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4979 device->tag_delay_count = 0;
4980 xpt_freeze_devq(path, /*count*/1);
4981 device->inq_flags &= ~SID_CmdQue;
4982 xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4983 xpt_async(AC_GETDEV_CHANGED, path, NULL);
4984 memset(&crs, 0, sizeof(crs));
4985 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4986 crs.ccb_h.func_code = XPT_REL_SIMQ;
4987 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4988 crs.openings
4989 = crs.release_timeout
4990 = crs.qfrozen_cnt
4991 = 0;
4992 xpt_action((union ccb *)&crs);
4993 }
4994
4995 /*
4996 * Assume all possible buses are detected by this time, so allow boot
4997 * as soon as they all are scanned.
4998 */
4999 static void
xpt_boot_delay(void * arg)5000 xpt_boot_delay(void *arg)
5001 {
5002
5003 xpt_release_boot();
5004 }
5005
5006 /*
5007 * Now that all config hooks have completed, start boot_delay timer,
5008 * waiting for possibly still undetected buses (USB) to appear.
5009 */
5010 static void
xpt_ch_done(void * arg)5011 xpt_ch_done(void *arg)
5012 {
5013
5014 callout_init(&xsoftc.boot_callout, 1);
5015 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay,
5016 SBT_1MS, xpt_boot_delay, NULL, 0);
5017 }
5018 SYSINIT(xpt_hw_delay, SI_SUB_INT_CONFIG_HOOKS, SI_ORDER_ANY, xpt_ch_done, NULL);
5019
5020 /*
5021 * Now that interrupts are enabled, go find our devices
5022 */
5023 static void
xpt_config(void * arg)5024 xpt_config(void *arg)
5025 {
5026 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5027 printf("xpt_config: failed to create taskqueue thread.\n");
5028
5029 /* Setup debugging path */
5030 if (cam_dflags != CAM_DEBUG_NONE) {
5031 if (xpt_create_path(&cam_dpath, NULL,
5032 CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5033 CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5034 printf(
5035 "xpt_config: xpt_create_path() failed for debug target %d:%d:%d, debugging disabled\n",
5036 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5037 cam_dflags = CAM_DEBUG_NONE;
5038 }
5039 } else
5040 cam_dpath = NULL;
5041
5042 periphdriver_init(1);
5043 xpt_hold_boot();
5044
5045 /* Fire up rescan thread. */
5046 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5047 "cam", "scanner")) {
5048 printf("xpt_config: failed to create rescan thread.\n");
5049 }
5050 }
5051
5052 void
xpt_hold_boot_locked(void)5053 xpt_hold_boot_locked(void)
5054 {
5055
5056 if (xsoftc.buses_to_config++ == 0)
5057 root_mount_hold_token("CAM", &xsoftc.xpt_rootmount);
5058 }
5059
5060 void
xpt_hold_boot(void)5061 xpt_hold_boot(void)
5062 {
5063
5064 xpt_lock_buses();
5065 xpt_hold_boot_locked();
5066 xpt_unlock_buses();
5067 }
5068
5069 void
xpt_release_boot(void)5070 xpt_release_boot(void)
5071 {
5072
5073 xpt_lock_buses();
5074 if (--xsoftc.buses_to_config == 0) {
5075 if (xsoftc.buses_config_done == 0) {
5076 xsoftc.buses_config_done = 1;
5077 xsoftc.buses_to_config++;
5078 TASK_INIT(&xsoftc.boot_task, 0, xpt_finishconfig_task,
5079 NULL);
5080 taskqueue_enqueue(taskqueue_thread, &xsoftc.boot_task);
5081 } else
5082 root_mount_rel(&xsoftc.xpt_rootmount);
5083 }
5084 xpt_unlock_buses();
5085 }
5086
5087 /*
5088 * If the given device only has one peripheral attached to it, and if that
5089 * peripheral is the passthrough driver, announce it. This insures that the
5090 * user sees some sort of announcement for every peripheral in their system.
5091 */
5092 static int
xptpassannouncefunc(struct cam_ed * device,void * arg)5093 xptpassannouncefunc(struct cam_ed *device, void *arg)
5094 {
5095 struct cam_periph *periph;
5096 int i;
5097
5098 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5099 periph = SLIST_NEXT(periph, periph_links), i++);
5100
5101 periph = SLIST_FIRST(&device->periphs);
5102 if ((i == 1)
5103 && (strncmp(periph->periph_name, "pass", 4) == 0))
5104 xpt_announce_periph(periph, NULL);
5105
5106 return(1);
5107 }
5108
5109 static void
xpt_finishconfig_task(void * context,int pending)5110 xpt_finishconfig_task(void *context, int pending)
5111 {
5112
5113 periphdriver_init(2);
5114 /*
5115 * Check for devices with no "standard" peripheral driver
5116 * attached. For any devices like that, announce the
5117 * passthrough driver so the user will see something.
5118 */
5119 if (!bootverbose)
5120 xpt_for_all_devices(xptpassannouncefunc, NULL);
5121
5122 xpt_release_boot();
5123 }
5124
5125 cam_status
xpt_register_async(int event,ac_callback_t * cbfunc,void * cbarg,struct cam_path * path)5126 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5127 struct cam_path *path)
5128 {
5129 struct ccb_setasync csa;
5130 cam_status status;
5131 bool xptpath = false;
5132
5133 if (path == NULL) {
5134 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5135 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5136 if (status != CAM_REQ_CMP)
5137 return (status);
5138 xpt_path_lock(path);
5139 xptpath = true;
5140 }
5141
5142 memset(&csa, 0, sizeof(csa));
5143 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5144 csa.ccb_h.func_code = XPT_SASYNC_CB;
5145 csa.event_enable = event;
5146 csa.callback = cbfunc;
5147 csa.callback_arg = cbarg;
5148 xpt_action((union ccb *)&csa);
5149 status = csa.ccb_h.status;
5150
5151 CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5152 ("xpt_register_async: func %p\n", cbfunc));
5153
5154 if (xptpath) {
5155 xpt_path_unlock(path);
5156 xpt_free_path(path);
5157 }
5158
5159 if ((status == CAM_REQ_CMP) &&
5160 (csa.event_enable & AC_FOUND_DEVICE)) {
5161 /*
5162 * Get this peripheral up to date with all
5163 * the currently existing devices.
5164 */
5165 xpt_for_all_devices(xptsetasyncfunc, &csa);
5166 }
5167 if ((status == CAM_REQ_CMP) &&
5168 (csa.event_enable & AC_PATH_REGISTERED)) {
5169 /*
5170 * Get this peripheral up to date with all
5171 * the currently existing buses.
5172 */
5173 xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5174 }
5175
5176 return (status);
5177 }
5178
5179 static void
xptaction(struct cam_sim * sim,union ccb * work_ccb)5180 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5181 {
5182 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5183
5184 switch (work_ccb->ccb_h.func_code) {
5185 /* Common cases first */
5186 case XPT_PATH_INQ: /* Path routing inquiry */
5187 {
5188 struct ccb_pathinq *cpi;
5189
5190 cpi = &work_ccb->cpi;
5191 cpi->version_num = 1; /* XXX??? */
5192 cpi->hba_inquiry = 0;
5193 cpi->target_sprt = 0;
5194 cpi->hba_misc = 0;
5195 cpi->hba_eng_cnt = 0;
5196 cpi->max_target = 0;
5197 cpi->max_lun = 0;
5198 cpi->initiator_id = 0;
5199 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5200 strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5201 strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5202 cpi->unit_number = sim->unit_number;
5203 cpi->bus_id = sim->bus_id;
5204 cpi->base_transfer_speed = 0;
5205 cpi->protocol = PROTO_UNSPECIFIED;
5206 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5207 cpi->transport = XPORT_UNSPECIFIED;
5208 cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5209 cpi->ccb_h.status = CAM_REQ_CMP;
5210 break;
5211 }
5212 default:
5213 work_ccb->ccb_h.status = CAM_REQ_INVALID;
5214 break;
5215 }
5216 xpt_done(work_ccb);
5217 }
5218
5219 /*
5220 * The xpt as a "controller" has no interrupt sources, so polling
5221 * is a no-op.
5222 */
5223 static void
xptpoll(struct cam_sim * sim)5224 xptpoll(struct cam_sim *sim)
5225 {
5226 }
5227
5228 void
xpt_lock_buses(void)5229 xpt_lock_buses(void)
5230 {
5231 mtx_lock(&xsoftc.xpt_topo_lock);
5232 }
5233
5234 void
xpt_unlock_buses(void)5235 xpt_unlock_buses(void)
5236 {
5237 mtx_unlock(&xsoftc.xpt_topo_lock);
5238 }
5239
5240 struct mtx *
xpt_path_mtx(struct cam_path * path)5241 xpt_path_mtx(struct cam_path *path)
5242 {
5243
5244 return (&path->device->device_mtx);
5245 }
5246
5247 static void
xpt_done_process(struct ccb_hdr * ccb_h)5248 xpt_done_process(struct ccb_hdr *ccb_h)
5249 {
5250 struct cam_sim *sim = NULL;
5251 struct cam_devq *devq = NULL;
5252 struct mtx *mtx = NULL;
5253
5254 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5255 struct ccb_scsiio *csio;
5256
5257 if (ccb_h->func_code == XPT_SCSI_IO) {
5258 csio = &((union ccb *)ccb_h)->csio;
5259 if (csio->bio != NULL)
5260 biotrack(csio->bio, __func__);
5261 }
5262 #endif
5263
5264 if (ccb_h->flags & CAM_HIGH_POWER) {
5265 struct highpowerlist *hphead;
5266 struct cam_ed *device;
5267
5268 mtx_lock(&xsoftc.xpt_highpower_lock);
5269 hphead = &xsoftc.highpowerq;
5270
5271 device = STAILQ_FIRST(hphead);
5272
5273 /*
5274 * Increment the count since this command is done.
5275 */
5276 xsoftc.num_highpower++;
5277
5278 /*
5279 * Any high powered commands queued up?
5280 */
5281 if (device != NULL) {
5282 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5283 mtx_unlock(&xsoftc.xpt_highpower_lock);
5284
5285 mtx_lock(&device->sim->devq->send_mtx);
5286 xpt_release_devq_device(device,
5287 /*count*/1, /*runqueue*/TRUE);
5288 mtx_unlock(&device->sim->devq->send_mtx);
5289 } else
5290 mtx_unlock(&xsoftc.xpt_highpower_lock);
5291 }
5292
5293 /*
5294 * Insulate against a race where the periph is destroyed but CCBs are
5295 * still not all processed. This shouldn't happen, but allows us better
5296 * bug diagnostic when it does.
5297 */
5298 if (ccb_h->path->bus)
5299 sim = ccb_h->path->bus->sim;
5300
5301 if (ccb_h->status & CAM_RELEASE_SIMQ) {
5302 KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request"));
5303 xpt_release_simq(sim, /*run_queue*/FALSE);
5304 ccb_h->status &= ~CAM_RELEASE_SIMQ;
5305 }
5306
5307 if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5308 && (ccb_h->status & CAM_DEV_QFRZN)) {
5309 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5310 ccb_h->status &= ~CAM_DEV_QFRZN;
5311 }
5312
5313 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5314 struct cam_ed *dev = ccb_h->path->device;
5315
5316 if (sim)
5317 devq = sim->devq;
5318 KASSERT(devq, ("Periph disappeared with CCB %p %s request pending.",
5319 ccb_h, xpt_action_name(ccb_h->func_code)));
5320
5321 mtx_lock(&devq->send_mtx);
5322 devq->send_active--;
5323 devq->send_openings++;
5324 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5325
5326 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5327 && (dev->ccbq.dev_active == 0))) {
5328 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5329 xpt_release_devq_device(dev, /*count*/1,
5330 /*run_queue*/FALSE);
5331 }
5332
5333 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5334 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5335 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5336 xpt_release_devq_device(dev, /*count*/1,
5337 /*run_queue*/FALSE);
5338 }
5339
5340 if (!device_is_queued(dev))
5341 (void)xpt_schedule_devq(devq, dev);
5342 xpt_run_devq(devq);
5343 mtx_unlock(&devq->send_mtx);
5344
5345 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5346 mtx = xpt_path_mtx(ccb_h->path);
5347 mtx_lock(mtx);
5348
5349 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5350 && (--dev->tag_delay_count == 0))
5351 xpt_start_tags(ccb_h->path);
5352 }
5353 }
5354
5355 if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5356 if (mtx == NULL) {
5357 mtx = xpt_path_mtx(ccb_h->path);
5358 mtx_lock(mtx);
5359 }
5360 } else {
5361 if (mtx != NULL) {
5362 mtx_unlock(mtx);
5363 mtx = NULL;
5364 }
5365 }
5366
5367 /* Call the peripheral driver's callback */
5368 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5369 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5370 if (mtx != NULL)
5371 mtx_unlock(mtx);
5372 }
5373
5374 /*
5375 * Parameterize instead and use xpt_done_td?
5376 */
5377 static void
xpt_async_td(void * arg)5378 xpt_async_td(void *arg)
5379 {
5380 struct cam_doneq *queue = arg;
5381 struct ccb_hdr *ccb_h;
5382 STAILQ_HEAD(, ccb_hdr) doneq;
5383
5384 STAILQ_INIT(&doneq);
5385 mtx_lock(&queue->cam_doneq_mtx);
5386 while (1) {
5387 while (STAILQ_EMPTY(&queue->cam_doneq))
5388 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5389 PRIBIO, "-", 0);
5390 STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5391 mtx_unlock(&queue->cam_doneq_mtx);
5392
5393 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5394 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5395 xpt_done_process(ccb_h);
5396 }
5397
5398 mtx_lock(&queue->cam_doneq_mtx);
5399 }
5400 }
5401
5402 void
xpt_done_td(void * arg)5403 xpt_done_td(void *arg)
5404 {
5405 struct cam_doneq *queue = arg;
5406 struct ccb_hdr *ccb_h;
5407 STAILQ_HEAD(, ccb_hdr) doneq;
5408
5409 STAILQ_INIT(&doneq);
5410 mtx_lock(&queue->cam_doneq_mtx);
5411 while (1) {
5412 while (STAILQ_EMPTY(&queue->cam_doneq)) {
5413 queue->cam_doneq_sleep = 1;
5414 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5415 PRIBIO, "-", 0);
5416 queue->cam_doneq_sleep = 0;
5417 }
5418 STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5419 mtx_unlock(&queue->cam_doneq_mtx);
5420
5421 THREAD_NO_SLEEPING();
5422 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5423 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5424 xpt_done_process(ccb_h);
5425 }
5426 THREAD_SLEEPING_OK();
5427
5428 mtx_lock(&queue->cam_doneq_mtx);
5429 }
5430 }
5431
5432 static void
camisr_runqueue(void)5433 camisr_runqueue(void)
5434 {
5435 struct ccb_hdr *ccb_h;
5436 struct cam_doneq *queue;
5437 int i;
5438
5439 /* Process global queues. */
5440 for (i = 0; i < cam_num_doneqs; i++) {
5441 queue = &cam_doneqs[i];
5442 mtx_lock(&queue->cam_doneq_mtx);
5443 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5444 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5445 mtx_unlock(&queue->cam_doneq_mtx);
5446 xpt_done_process(ccb_h);
5447 mtx_lock(&queue->cam_doneq_mtx);
5448 }
5449 mtx_unlock(&queue->cam_doneq_mtx);
5450 }
5451 }
5452
5453 /**
5454 * @brief Return the device_t associated with the path
5455 *
5456 * When a SIM is created, it registers a bus with a NEWBUS device_t. This is
5457 * stored in the internal cam_eb bus structure. There is no guarnatee any given
5458 * path will have a @c device_t associated with it (it's legal to call @c
5459 * xpt_bus_register with a @c NULL @c device_t.
5460 *
5461 * @param path Path to return the device_t for.
5462 */
5463 device_t
xpt_path_sim_device(const struct cam_path * path)5464 xpt_path_sim_device(const struct cam_path *path)
5465 {
5466 return (path->bus->parent_dev);
5467 }
5468
5469 struct kv
5470 {
5471 uint32_t v;
5472 const char *name;
5473 };
5474
5475 static struct kv map[] = {
5476 { XPT_NOOP, "XPT_NOOP" },
5477 { XPT_SCSI_IO, "XPT_SCSI_IO" },
5478 { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5479 { XPT_GDEVLIST, "XPT_GDEVLIST" },
5480 { XPT_PATH_INQ, "XPT_PATH_INQ" },
5481 { XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5482 { XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5483 { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5484 { XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5485 { XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5486 { XPT_DEBUG, "XPT_DEBUG" },
5487 { XPT_PATH_STATS, "XPT_PATH_STATS" },
5488 { XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5489 { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5490 { XPT_ASYNC, "XPT_ASYNC" },
5491 { XPT_ABORT, "XPT_ABORT" },
5492 { XPT_RESET_BUS, "XPT_RESET_BUS" },
5493 { XPT_RESET_DEV, "XPT_RESET_DEV" },
5494 { XPT_TERM_IO, "XPT_TERM_IO" },
5495 { XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5496 { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5497 { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5498 { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5499 { XPT_ATA_IO, "XPT_ATA_IO" },
5500 { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5501 { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5502 { XPT_NVME_IO, "XPT_NVME_IO" },
5503 { XPT_MMC_IO, "XPT_MMC_IO" },
5504 { XPT_SMP_IO, "XPT_SMP_IO" },
5505 { XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5506 { XPT_NVME_ADMIN, "XPT_NVME_ADMIN" },
5507 { XPT_ENG_INQ, "XPT_ENG_INQ" },
5508 { XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5509 { XPT_EN_LUN, "XPT_EN_LUN" },
5510 { XPT_TARGET_IO, "XPT_TARGET_IO" },
5511 { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5512 { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5513 { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5514 { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5515 { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5516 { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5517 { 0, 0 }
5518 };
5519
5520 const char *
xpt_action_name(uint32_t action)5521 xpt_action_name(uint32_t action)
5522 {
5523 static char buffer[32]; /* Only for unknown messages -- racy */
5524 struct kv *walker = map;
5525
5526 while (walker->name != NULL) {
5527 if (walker->v == action)
5528 return (walker->name);
5529 walker++;
5530 }
5531
5532 snprintf(buffer, sizeof(buffer), "%#x", action);
5533 return (buffer);
5534 }
5535
5536 void
xpt_cam_path_debug(struct cam_path * path,const char * fmt,...)5537 xpt_cam_path_debug(struct cam_path *path, const char *fmt, ...)
5538 {
5539 struct sbuf sbuf;
5540 char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */
5541 struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN);
5542 va_list ap;
5543
5544 sbuf_set_drain(sb, sbuf_printf_drain, NULL);
5545 xpt_path_sbuf(path, sb);
5546 va_start(ap, fmt);
5547 sbuf_vprintf(sb, fmt, ap);
5548 va_end(ap);
5549 sbuf_finish(sb);
5550 sbuf_delete(sb);
5551 if (cam_debug_delay != 0)
5552 DELAY(cam_debug_delay);
5553 }
5554
5555 void
xpt_cam_dev_debug(struct cam_ed * dev,const char * fmt,...)5556 xpt_cam_dev_debug(struct cam_ed *dev, const char *fmt, ...)
5557 {
5558 struct sbuf sbuf;
5559 char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */
5560 struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN);
5561 va_list ap;
5562
5563 sbuf_set_drain(sb, sbuf_printf_drain, NULL);
5564 xpt_device_sbuf(dev, sb);
5565 va_start(ap, fmt);
5566 sbuf_vprintf(sb, fmt, ap);
5567 va_end(ap);
5568 sbuf_finish(sb);
5569 sbuf_delete(sb);
5570 if (cam_debug_delay != 0)
5571 DELAY(cam_debug_delay);
5572 }
5573
5574 void
xpt_cam_debug(const char * fmt,...)5575 xpt_cam_debug(const char *fmt, ...)
5576 {
5577 struct sbuf sbuf;
5578 char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */
5579 struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN);
5580 va_list ap;
5581
5582 sbuf_set_drain(sb, sbuf_printf_drain, NULL);
5583 sbuf_cat(sb, "cam_debug: ");
5584 va_start(ap, fmt);
5585 sbuf_vprintf(sb, fmt, ap);
5586 va_end(ap);
5587 sbuf_finish(sb);
5588 sbuf_delete(sb);
5589 if (cam_debug_delay != 0)
5590 DELAY(cam_debug_delay);
5591 }
5592