xref: /linux/drivers/misc/sgi-xp/xpc_main.c (revision 0ea5c948cb64bab5bc7a5516774eb8536f05aa0d)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
7  * Copyright (c) 2004-2009 Silicon Graphics, Inc.  All Rights Reserved.
8  */
9 
10 /*
11  * Cross Partition Communication (XPC) support - standard version.
12  *
13  *	XPC provides a message passing capability that crosses partition
14  *	boundaries. This module is made up of two parts:
15  *
16  *	    partition	This part detects the presence/absence of other
17  *			partitions. It provides a heartbeat and monitors
18  *			the heartbeats of other partitions.
19  *
20  *	    channel	This part manages the channels and sends/receives
21  *			messages across them to/from other partitions.
22  *
23  *	There are a couple of additional functions residing in XP, which
24  *	provide an interface to XPC for its users.
25  *
26  *
27  *	Caveats:
28  *
29  *	  . Currently on sn2, we have no way to determine which nasid an IRQ
30  *	    came from. Thus, xpc_send_IRQ_sn2() does a remote amo write
31  *	    followed by an IPI. The amo indicates where data is to be pulled
32  *	    from, so after the IPI arrives, the remote partition checks the amo
33  *	    word. The IPI can actually arrive before the amo however, so other
34  *	    code must periodically check for this case. Also, remote amo
35  *	    operations do not reliably time out. Thus we do a remote PIO read
36  *	    solely to know whether the remote partition is down and whether we
37  *	    should stop sending IPIs to it. This remote PIO read operation is
38  *	    set up in a special nofault region so SAL knows to ignore (and
39  *	    cleanup) any errors due to the remote amo write, PIO read, and/or
40  *	    PIO write operations.
41  *
42  *	    If/when new hardware solves this IPI problem, we should abandon
43  *	    the current approach.
44  *
45  */
46 
47 #include <linux/module.h>
48 #include <linux/slab.h>
49 #include <linux/sysctl.h>
50 #include <linux/device.h>
51 #include <linux/delay.h>
52 #include <linux/reboot.h>
53 #include <linux/kdebug.h>
54 #include <linux/kthread.h>
55 #include "xpc.h"
56 
57 #ifdef CONFIG_X86_64
58 #include <asm/traps.h>
59 #endif
60 
61 /* define two XPC debug device structures to be used with dev_dbg() et al */
62 
63 static struct device_driver xpc_dbg_name = {
64 	.name = "xpc"
65 };
66 
67 static struct device xpc_part_dbg_subname = {
68 	.init_name = "",	/* set to "part" at xpc_init() time */
69 	.driver = &xpc_dbg_name
70 };
71 
72 static struct device xpc_chan_dbg_subname = {
73 	.init_name = "",	/* set to "chan" at xpc_init() time */
74 	.driver = &xpc_dbg_name
75 };
76 
77 struct device *xpc_part = &xpc_part_dbg_subname;
78 struct device *xpc_chan = &xpc_chan_dbg_subname;
79 
80 static int xpc_kdebug_ignore;
81 
82 /* systune related variables for /proc/sys directories */
83 
84 static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
85 static int xpc_hb_min_interval = 1;
86 static int xpc_hb_max_interval = 10;
87 
88 static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
89 static int xpc_hb_check_min_interval = 10;
90 static int xpc_hb_check_max_interval = 120;
91 
92 int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT;
93 static int xpc_disengage_min_timelimit;	/* = 0 */
94 static int xpc_disengage_max_timelimit = 120;
95 
96 static struct ctl_table xpc_sys_xpc_hb[] = {
97 	{
98 	 .procname = "hb_interval",
99 	 .data = &xpc_hb_interval,
100 	 .maxlen = sizeof(int),
101 	 .mode = 0644,
102 	 .proc_handler = proc_dointvec_minmax,
103 	 .extra1 = &xpc_hb_min_interval,
104 	 .extra2 = &xpc_hb_max_interval},
105 	{
106 	 .procname = "hb_check_interval",
107 	 .data = &xpc_hb_check_interval,
108 	 .maxlen = sizeof(int),
109 	 .mode = 0644,
110 	 .proc_handler = proc_dointvec_minmax,
111 	 .extra1 = &xpc_hb_check_min_interval,
112 	 .extra2 = &xpc_hb_check_max_interval},
113 };
114 static struct ctl_table xpc_sys_xpc[] = {
115 	{
116 	 .procname = "disengage_timelimit",
117 	 .data = &xpc_disengage_timelimit,
118 	 .maxlen = sizeof(int),
119 	 .mode = 0644,
120 	 .proc_handler = proc_dointvec_minmax,
121 	 .extra1 = &xpc_disengage_min_timelimit,
122 	 .extra2 = &xpc_disengage_max_timelimit},
123 };
124 
125 static struct ctl_table_header *xpc_sysctl;
126 static struct ctl_table_header *xpc_sysctl_hb;
127 
128 /* non-zero if any remote partition disengage was timed out */
129 int xpc_disengage_timedout;
130 
131 /* #of activate IRQs received and not yet processed */
132 int xpc_activate_IRQ_rcvd;
133 DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock);
134 
135 /* IRQ handler notifies this wait queue on receipt of an IRQ */
136 DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq);
137 
138 static unsigned long xpc_hb_check_timeout;
139 static struct timer_list xpc_hb_timer;
140 
141 /* notification that the xpc_hb_checker thread has exited */
142 static DECLARE_COMPLETION(xpc_hb_checker_exited);
143 
144 /* notification that the xpc_discovery thread has exited */
145 static DECLARE_COMPLETION(xpc_discovery_exited);
146 
147 static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
148 
149 static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
150 static struct notifier_block xpc_reboot_notifier = {
151 	.notifier_call = xpc_system_reboot,
152 };
153 
154 static int xpc_system_die(struct notifier_block *, unsigned long, void *);
155 static struct notifier_block xpc_die_notifier = {
156 	.notifier_call = xpc_system_die,
157 };
158 
159 struct xpc_arch_operations xpc_arch_ops;
160 
161 /*
162  * Timer function to enforce the timelimit on the partition disengage.
163  */
164 static void
xpc_timeout_partition_disengage(struct timer_list * t)165 xpc_timeout_partition_disengage(struct timer_list *t)
166 {
167 	struct xpc_partition *part = from_timer(part, t, disengage_timer);
168 
169 	DBUG_ON(time_is_after_jiffies(part->disengage_timeout));
170 
171 	xpc_partition_disengaged_from_timer(part);
172 
173 	DBUG_ON(part->disengage_timeout != 0);
174 	DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part)));
175 }
176 
177 /*
178  * Timer to produce the heartbeat.  The timer structures function is
179  * already set when this is initially called.  A tunable is used to
180  * specify when the next timeout should occur.
181  */
182 static void
xpc_hb_beater(struct timer_list * unused)183 xpc_hb_beater(struct timer_list *unused)
184 {
185 	xpc_arch_ops.increment_heartbeat();
186 
187 	if (time_is_before_eq_jiffies(xpc_hb_check_timeout))
188 		wake_up_interruptible(&xpc_activate_IRQ_wq);
189 
190 	xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
191 	add_timer(&xpc_hb_timer);
192 }
193 
194 static void
xpc_start_hb_beater(void)195 xpc_start_hb_beater(void)
196 {
197 	xpc_arch_ops.heartbeat_init();
198 	timer_setup(&xpc_hb_timer, xpc_hb_beater, 0);
199 	xpc_hb_beater(NULL);
200 }
201 
202 static void
xpc_stop_hb_beater(void)203 xpc_stop_hb_beater(void)
204 {
205 	del_timer_sync(&xpc_hb_timer);
206 	xpc_arch_ops.heartbeat_exit();
207 }
208 
209 /*
210  * At periodic intervals, scan through all active partitions and ensure
211  * their heartbeat is still active.  If not, the partition is deactivated.
212  */
213 static void
xpc_check_remote_hb(void)214 xpc_check_remote_hb(void)
215 {
216 	struct xpc_partition *part;
217 	short partid;
218 	enum xp_retval ret;
219 
220 	for (partid = 0; partid < xp_max_npartitions; partid++) {
221 
222 		if (xpc_exiting)
223 			break;
224 
225 		if (partid == xp_partition_id)
226 			continue;
227 
228 		part = &xpc_partitions[partid];
229 
230 		if (part->act_state == XPC_P_AS_INACTIVE ||
231 		    part->act_state == XPC_P_AS_DEACTIVATING) {
232 			continue;
233 		}
234 
235 		ret = xpc_arch_ops.get_remote_heartbeat(part);
236 		if (ret != xpSuccess)
237 			XPC_DEACTIVATE_PARTITION(part, ret);
238 	}
239 }
240 
241 /*
242  * This thread is responsible for nearly all of the partition
243  * activation/deactivation.
244  */
245 static int
xpc_hb_checker(void * ignore)246 xpc_hb_checker(void *ignore)
247 {
248 	int force_IRQ = 0;
249 
250 	/* this thread was marked active by xpc_hb_init() */
251 
252 	set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU));
253 
254 	/* set our heartbeating to other partitions into motion */
255 	xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
256 	xpc_start_hb_beater();
257 
258 	while (!xpc_exiting) {
259 
260 		dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
261 			"been received\n",
262 			(int)(xpc_hb_check_timeout - jiffies),
263 			xpc_activate_IRQ_rcvd);
264 
265 		/* checking of remote heartbeats is skewed by IRQ handling */
266 		if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) {
267 			xpc_hb_check_timeout = jiffies +
268 			    (xpc_hb_check_interval * HZ);
269 
270 			dev_dbg(xpc_part, "checking remote heartbeats\n");
271 			xpc_check_remote_hb();
272 		}
273 
274 		/* check for outstanding IRQs */
275 		if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) {
276 			force_IRQ = 0;
277 			dev_dbg(xpc_part, "processing activate IRQs "
278 				"received\n");
279 			xpc_arch_ops.process_activate_IRQ_rcvd();
280 		}
281 
282 		/* wait for IRQ or timeout */
283 		(void)wait_event_interruptible(xpc_activate_IRQ_wq,
284 					       (time_is_before_eq_jiffies(
285 						xpc_hb_check_timeout) ||
286 						xpc_activate_IRQ_rcvd > 0 ||
287 						xpc_exiting));
288 	}
289 
290 	xpc_stop_hb_beater();
291 
292 	dev_dbg(xpc_part, "heartbeat checker is exiting\n");
293 
294 	/* mark this thread as having exited */
295 	complete(&xpc_hb_checker_exited);
296 	return 0;
297 }
298 
299 /*
300  * This thread will attempt to discover other partitions to activate
301  * based on info provided by SAL. This new thread is short lived and
302  * will exit once discovery is complete.
303  */
304 static int
xpc_initiate_discovery(void * ignore)305 xpc_initiate_discovery(void *ignore)
306 {
307 	xpc_discovery();
308 
309 	dev_dbg(xpc_part, "discovery thread is exiting\n");
310 
311 	/* mark this thread as having exited */
312 	complete(&xpc_discovery_exited);
313 	return 0;
314 }
315 
316 /*
317  * The first kthread assigned to a newly activated partition is the one
318  * created by XPC HB with which it calls xpc_activating(). XPC hangs on to
319  * that kthread until the partition is brought down, at which time that kthread
320  * returns back to XPC HB. (The return of that kthread will signify to XPC HB
321  * that XPC has dismantled all communication infrastructure for the associated
322  * partition.) This kthread becomes the channel manager for that partition.
323  *
324  * Each active partition has a channel manager, who, besides connecting and
325  * disconnecting channels, will ensure that each of the partition's connected
326  * channels has the required number of assigned kthreads to get the work done.
327  */
328 static void
xpc_channel_mgr(struct xpc_partition * part)329 xpc_channel_mgr(struct xpc_partition *part)
330 {
331 	while (part->act_state != XPC_P_AS_DEACTIVATING ||
332 	       atomic_read(&part->nchannels_active) > 0 ||
333 	       !xpc_partition_disengaged(part)) {
334 
335 		xpc_process_sent_chctl_flags(part);
336 
337 		/*
338 		 * Wait until we've been requested to activate kthreads or
339 		 * all of the channel's message queues have been torn down or
340 		 * a signal is pending.
341 		 *
342 		 * The channel_mgr_requests is set to 1 after being awakened,
343 		 * This is done to prevent the channel mgr from making one pass
344 		 * through the loop for each request, since he will
345 		 * be servicing all the requests in one pass. The reason it's
346 		 * set to 1 instead of 0 is so that other kthreads will know
347 		 * that the channel mgr is running and won't bother trying to
348 		 * wake him up.
349 		 */
350 		atomic_dec(&part->channel_mgr_requests);
351 		(void)wait_event_interruptible(part->channel_mgr_wq,
352 				(atomic_read(&part->channel_mgr_requests) > 0 ||
353 				 part->chctl.all_flags != 0 ||
354 				 (part->act_state == XPC_P_AS_DEACTIVATING &&
355 				 atomic_read(&part->nchannels_active) == 0 &&
356 				 xpc_partition_disengaged(part))));
357 		atomic_set(&part->channel_mgr_requests, 1);
358 	}
359 }
360 
361 /*
362  * Guarantee that the kzalloc'd memory is cacheline aligned.
363  */
364 void *
xpc_kzalloc_cacheline_aligned(size_t size,gfp_t flags,void ** base)365 xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
366 {
367 	/* see if kzalloc will give us cachline aligned memory by default */
368 	*base = kzalloc(size, flags);
369 	if (*base == NULL)
370 		return NULL;
371 
372 	if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
373 		return *base;
374 
375 	kfree(*base);
376 
377 	/* nope, we'll have to do it ourselves */
378 	*base = kzalloc(size + L1_CACHE_BYTES, flags);
379 	if (*base == NULL)
380 		return NULL;
381 
382 	return (void *)L1_CACHE_ALIGN((u64)*base);
383 }
384 
385 /*
386  * Setup the channel structures necessary to support XPartition Communication
387  * between the specified remote partition and the local one.
388  */
389 static enum xp_retval
xpc_setup_ch_structures(struct xpc_partition * part)390 xpc_setup_ch_structures(struct xpc_partition *part)
391 {
392 	enum xp_retval ret;
393 	int ch_number;
394 	struct xpc_channel *ch;
395 	short partid = XPC_PARTID(part);
396 
397 	/*
398 	 * Allocate all of the channel structures as a contiguous chunk of
399 	 * memory.
400 	 */
401 	DBUG_ON(part->channels != NULL);
402 	part->channels = kcalloc(XPC_MAX_NCHANNELS,
403 				 sizeof(struct xpc_channel),
404 				 GFP_KERNEL);
405 	if (part->channels == NULL) {
406 		dev_err(xpc_chan, "can't get memory for channels\n");
407 		return xpNoMemory;
408 	}
409 
410 	/* allocate the remote open and close args */
411 
412 	part->remote_openclose_args =
413 	    xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
414 					  GFP_KERNEL, &part->
415 					  remote_openclose_args_base);
416 	if (part->remote_openclose_args == NULL) {
417 		dev_err(xpc_chan, "can't get memory for remote connect args\n");
418 		ret = xpNoMemory;
419 		goto out_1;
420 	}
421 
422 	part->chctl.all_flags = 0;
423 	spin_lock_init(&part->chctl_lock);
424 
425 	atomic_set(&part->channel_mgr_requests, 1);
426 	init_waitqueue_head(&part->channel_mgr_wq);
427 
428 	part->nchannels = XPC_MAX_NCHANNELS;
429 
430 	atomic_set(&part->nchannels_active, 0);
431 	atomic_set(&part->nchannels_engaged, 0);
432 
433 	for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
434 		ch = &part->channels[ch_number];
435 
436 		ch->partid = partid;
437 		ch->number = ch_number;
438 		ch->flags = XPC_C_DISCONNECTED;
439 
440 		atomic_set(&ch->kthreads_assigned, 0);
441 		atomic_set(&ch->kthreads_idle, 0);
442 		atomic_set(&ch->kthreads_active, 0);
443 
444 		atomic_set(&ch->references, 0);
445 		atomic_set(&ch->n_to_notify, 0);
446 
447 		spin_lock_init(&ch->lock);
448 		init_completion(&ch->wdisconnect_wait);
449 
450 		atomic_set(&ch->n_on_msg_allocate_wq, 0);
451 		init_waitqueue_head(&ch->msg_allocate_wq);
452 		init_waitqueue_head(&ch->idle_wq);
453 	}
454 
455 	ret = xpc_arch_ops.setup_ch_structures(part);
456 	if (ret != xpSuccess)
457 		goto out_2;
458 
459 	/*
460 	 * With the setting of the partition setup_state to XPC_P_SS_SETUP,
461 	 * we're declaring that this partition is ready to go.
462 	 */
463 	part->setup_state = XPC_P_SS_SETUP;
464 
465 	return xpSuccess;
466 
467 	/* setup of ch structures failed */
468 out_2:
469 	kfree(part->remote_openclose_args_base);
470 	part->remote_openclose_args = NULL;
471 out_1:
472 	kfree(part->channels);
473 	part->channels = NULL;
474 	return ret;
475 }
476 
477 /*
478  * Teardown the channel structures necessary to support XPartition Communication
479  * between the specified remote partition and the local one.
480  */
481 static void
xpc_teardown_ch_structures(struct xpc_partition * part)482 xpc_teardown_ch_structures(struct xpc_partition *part)
483 {
484 	DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
485 	DBUG_ON(atomic_read(&part->nchannels_active) != 0);
486 
487 	/*
488 	 * Make this partition inaccessible to local processes by marking it
489 	 * as no longer setup. Then wait before proceeding with the teardown
490 	 * until all existing references cease.
491 	 */
492 	DBUG_ON(part->setup_state != XPC_P_SS_SETUP);
493 	part->setup_state = XPC_P_SS_WTEARDOWN;
494 
495 	wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
496 
497 	/* now we can begin tearing down the infrastructure */
498 
499 	xpc_arch_ops.teardown_ch_structures(part);
500 
501 	kfree(part->remote_openclose_args_base);
502 	part->remote_openclose_args = NULL;
503 	kfree(part->channels);
504 	part->channels = NULL;
505 
506 	part->setup_state = XPC_P_SS_TORNDOWN;
507 }
508 
509 /*
510  * When XPC HB determines that a partition has come up, it will create a new
511  * kthread and that kthread will call this function to attempt to set up the
512  * basic infrastructure used for Cross Partition Communication with the newly
513  * upped partition.
514  *
515  * The kthread that was created by XPC HB and which setup the XPC
516  * infrastructure will remain assigned to the partition becoming the channel
517  * manager for that partition until the partition is deactivating, at which
518  * time the kthread will teardown the XPC infrastructure and then exit.
519  */
520 static int
xpc_activating(void * __partid)521 xpc_activating(void *__partid)
522 {
523 	short partid = (u64)__partid;
524 	struct xpc_partition *part = &xpc_partitions[partid];
525 	unsigned long irq_flags;
526 
527 	DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
528 
529 	spin_lock_irqsave(&part->act_lock, irq_flags);
530 
531 	if (part->act_state == XPC_P_AS_DEACTIVATING) {
532 		part->act_state = XPC_P_AS_INACTIVE;
533 		spin_unlock_irqrestore(&part->act_lock, irq_flags);
534 		part->remote_rp_pa = 0;
535 		return 0;
536 	}
537 
538 	/* indicate the thread is activating */
539 	DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ);
540 	part->act_state = XPC_P_AS_ACTIVATING;
541 
542 	XPC_SET_REASON(part, 0, 0);
543 	spin_unlock_irqrestore(&part->act_lock, irq_flags);
544 
545 	dev_dbg(xpc_part, "activating partition %d\n", partid);
546 
547 	xpc_arch_ops.allow_hb(partid);
548 
549 	if (xpc_setup_ch_structures(part) == xpSuccess) {
550 		(void)xpc_part_ref(part);	/* this will always succeed */
551 
552 		if (xpc_arch_ops.make_first_contact(part) == xpSuccess) {
553 			xpc_mark_partition_active(part);
554 			xpc_channel_mgr(part);
555 			/* won't return until partition is deactivating */
556 		}
557 
558 		xpc_part_deref(part);
559 		xpc_teardown_ch_structures(part);
560 	}
561 
562 	xpc_arch_ops.disallow_hb(partid);
563 	xpc_mark_partition_inactive(part);
564 
565 	if (part->reason == xpReactivating) {
566 		/* interrupting ourselves results in activating partition */
567 		xpc_arch_ops.request_partition_reactivation(part);
568 	}
569 
570 	return 0;
571 }
572 
573 void
xpc_activate_partition(struct xpc_partition * part)574 xpc_activate_partition(struct xpc_partition *part)
575 {
576 	short partid = XPC_PARTID(part);
577 	unsigned long irq_flags;
578 	struct task_struct *kthread;
579 
580 	spin_lock_irqsave(&part->act_lock, irq_flags);
581 
582 	DBUG_ON(part->act_state != XPC_P_AS_INACTIVE);
583 
584 	part->act_state = XPC_P_AS_ACTIVATION_REQ;
585 	XPC_SET_REASON(part, xpCloneKThread, __LINE__);
586 
587 	spin_unlock_irqrestore(&part->act_lock, irq_flags);
588 
589 	kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d",
590 			      partid);
591 	if (IS_ERR(kthread)) {
592 		spin_lock_irqsave(&part->act_lock, irq_flags);
593 		part->act_state = XPC_P_AS_INACTIVE;
594 		XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__);
595 		spin_unlock_irqrestore(&part->act_lock, irq_flags);
596 	}
597 }
598 
599 void
xpc_activate_kthreads(struct xpc_channel * ch,int needed)600 xpc_activate_kthreads(struct xpc_channel *ch, int needed)
601 {
602 	int idle = atomic_read(&ch->kthreads_idle);
603 	int assigned = atomic_read(&ch->kthreads_assigned);
604 	int wakeup;
605 
606 	DBUG_ON(needed <= 0);
607 
608 	if (idle > 0) {
609 		wakeup = (needed > idle) ? idle : needed;
610 		needed -= wakeup;
611 
612 		dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
613 			"channel=%d\n", wakeup, ch->partid, ch->number);
614 
615 		/* only wakeup the requested number of kthreads */
616 		wake_up_nr(&ch->idle_wq, wakeup);
617 	}
618 
619 	if (needed <= 0)
620 		return;
621 
622 	if (needed + assigned > ch->kthreads_assigned_limit) {
623 		needed = ch->kthreads_assigned_limit - assigned;
624 		if (needed <= 0)
625 			return;
626 	}
627 
628 	dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
629 		needed, ch->partid, ch->number);
630 
631 	xpc_create_kthreads(ch, needed, 0);
632 }
633 
634 /*
635  * This function is where XPC's kthreads wait for messages to deliver.
636  */
637 static void
xpc_kthread_waitmsgs(struct xpc_partition * part,struct xpc_channel * ch)638 xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
639 {
640 	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
641 		xpc_arch_ops.n_of_deliverable_payloads;
642 
643 	do {
644 		/* deliver messages to their intended recipients */
645 
646 		while (n_of_deliverable_payloads(ch) > 0 &&
647 		       !(ch->flags & XPC_C_DISCONNECTING)) {
648 			xpc_deliver_payload(ch);
649 		}
650 
651 		if (atomic_inc_return(&ch->kthreads_idle) >
652 		    ch->kthreads_idle_limit) {
653 			/* too many idle kthreads on this channel */
654 			atomic_dec(&ch->kthreads_idle);
655 			break;
656 		}
657 
658 		dev_dbg(xpc_chan, "idle kthread calling "
659 			"wait_event_interruptible_exclusive()\n");
660 
661 		(void)wait_event_interruptible_exclusive(ch->idle_wq,
662 				(n_of_deliverable_payloads(ch) > 0 ||
663 				 (ch->flags & XPC_C_DISCONNECTING)));
664 
665 		atomic_dec(&ch->kthreads_idle);
666 
667 	} while (!(ch->flags & XPC_C_DISCONNECTING));
668 }
669 
670 static int
xpc_kthread_start(void * args)671 xpc_kthread_start(void *args)
672 {
673 	short partid = XPC_UNPACK_ARG1(args);
674 	u16 ch_number = XPC_UNPACK_ARG2(args);
675 	struct xpc_partition *part = &xpc_partitions[partid];
676 	struct xpc_channel *ch;
677 	int n_needed;
678 	unsigned long irq_flags;
679 	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
680 		xpc_arch_ops.n_of_deliverable_payloads;
681 
682 	dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
683 		partid, ch_number);
684 
685 	ch = &part->channels[ch_number];
686 
687 	if (!(ch->flags & XPC_C_DISCONNECTING)) {
688 
689 		/* let registerer know that connection has been established */
690 
691 		spin_lock_irqsave(&ch->lock, irq_flags);
692 		if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
693 			ch->flags |= XPC_C_CONNECTEDCALLOUT;
694 			spin_unlock_irqrestore(&ch->lock, irq_flags);
695 
696 			xpc_connected_callout(ch);
697 
698 			spin_lock_irqsave(&ch->lock, irq_flags);
699 			ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE;
700 			spin_unlock_irqrestore(&ch->lock, irq_flags);
701 
702 			/*
703 			 * It is possible that while the callout was being
704 			 * made that the remote partition sent some messages.
705 			 * If that is the case, we may need to activate
706 			 * additional kthreads to help deliver them. We only
707 			 * need one less than total #of messages to deliver.
708 			 */
709 			n_needed = n_of_deliverable_payloads(ch) - 1;
710 			if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING))
711 				xpc_activate_kthreads(ch, n_needed);
712 
713 		} else {
714 			spin_unlock_irqrestore(&ch->lock, irq_flags);
715 		}
716 
717 		xpc_kthread_waitmsgs(part, ch);
718 	}
719 
720 	/* let registerer know that connection is disconnecting */
721 
722 	spin_lock_irqsave(&ch->lock, irq_flags);
723 	if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
724 	    !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) {
725 		ch->flags |= XPC_C_DISCONNECTINGCALLOUT;
726 		spin_unlock_irqrestore(&ch->lock, irq_flags);
727 
728 		xpc_disconnect_callout(ch, xpDisconnecting);
729 
730 		spin_lock_irqsave(&ch->lock, irq_flags);
731 		ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE;
732 	}
733 	spin_unlock_irqrestore(&ch->lock, irq_flags);
734 
735 	if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
736 	    atomic_dec_return(&part->nchannels_engaged) == 0) {
737 		xpc_arch_ops.indicate_partition_disengaged(part);
738 	}
739 
740 	xpc_msgqueue_deref(ch);
741 
742 	dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
743 		partid, ch_number);
744 
745 	xpc_part_deref(part);
746 	return 0;
747 }
748 
749 /*
750  * For each partition that XPC has established communications with, there is
751  * a minimum of one kernel thread assigned to perform any operation that
752  * may potentially sleep or block (basically the callouts to the asynchronous
753  * functions registered via xpc_connect()).
754  *
755  * Additional kthreads are created and destroyed by XPC as the workload
756  * demands.
757  *
758  * A kthread is assigned to one of the active channels that exists for a given
759  * partition.
760  */
761 void
xpc_create_kthreads(struct xpc_channel * ch,int needed,int ignore_disconnecting)762 xpc_create_kthreads(struct xpc_channel *ch, int needed,
763 		    int ignore_disconnecting)
764 {
765 	unsigned long irq_flags;
766 	u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
767 	struct xpc_partition *part = &xpc_partitions[ch->partid];
768 	struct task_struct *kthread;
769 	void (*indicate_partition_disengaged) (struct xpc_partition *) =
770 		xpc_arch_ops.indicate_partition_disengaged;
771 
772 	while (needed-- > 0) {
773 
774 		/*
775 		 * The following is done on behalf of the newly created
776 		 * kthread. That kthread is responsible for doing the
777 		 * counterpart to the following before it exits.
778 		 */
779 		if (ignore_disconnecting) {
780 			if (!atomic_inc_not_zero(&ch->kthreads_assigned)) {
781 				/* kthreads assigned had gone to zero */
782 				BUG_ON(!(ch->flags &
783 					 XPC_C_DISCONNECTINGCALLOUT_MADE));
784 				break;
785 			}
786 
787 		} else if (ch->flags & XPC_C_DISCONNECTING) {
788 			break;
789 
790 		} else if (atomic_inc_return(&ch->kthreads_assigned) == 1 &&
791 			   atomic_inc_return(&part->nchannels_engaged) == 1) {
792 			xpc_arch_ops.indicate_partition_engaged(part);
793 		}
794 		(void)xpc_part_ref(part);
795 		xpc_msgqueue_ref(ch);
796 
797 		kthread = kthread_run(xpc_kthread_start, (void *)args,
798 				      "xpc%02dc%d", ch->partid, ch->number);
799 		if (IS_ERR(kthread)) {
800 			/* the fork failed */
801 
802 			/*
803 			 * NOTE: if (ignore_disconnecting &&
804 			 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
805 			 * then we'll deadlock if all other kthreads assigned
806 			 * to this channel are blocked in the channel's
807 			 * registerer, because the only thing that will unblock
808 			 * them is the xpDisconnecting callout that this
809 			 * failed kthread_run() would have made.
810 			 */
811 
812 			if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
813 			    atomic_dec_return(&part->nchannels_engaged) == 0) {
814 				indicate_partition_disengaged(part);
815 			}
816 			xpc_msgqueue_deref(ch);
817 			xpc_part_deref(part);
818 
819 			if (atomic_read(&ch->kthreads_assigned) <
820 			    ch->kthreads_idle_limit) {
821 				/*
822 				 * Flag this as an error only if we have an
823 				 * insufficient #of kthreads for the channel
824 				 * to function.
825 				 */
826 				spin_lock_irqsave(&ch->lock, irq_flags);
827 				XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources,
828 						       &irq_flags);
829 				spin_unlock_irqrestore(&ch->lock, irq_flags);
830 			}
831 			break;
832 		}
833 	}
834 }
835 
836 void
xpc_disconnect_wait(int ch_number)837 xpc_disconnect_wait(int ch_number)
838 {
839 	unsigned long irq_flags;
840 	short partid;
841 	struct xpc_partition *part;
842 	struct xpc_channel *ch;
843 	int wakeup_channel_mgr;
844 
845 	/* now wait for all callouts to the caller's function to cease */
846 	for (partid = 0; partid < xp_max_npartitions; partid++) {
847 		part = &xpc_partitions[partid];
848 
849 		if (!xpc_part_ref(part))
850 			continue;
851 
852 		ch = &part->channels[ch_number];
853 
854 		if (!(ch->flags & XPC_C_WDISCONNECT)) {
855 			xpc_part_deref(part);
856 			continue;
857 		}
858 
859 		wait_for_completion(&ch->wdisconnect_wait);
860 
861 		spin_lock_irqsave(&ch->lock, irq_flags);
862 		DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
863 		wakeup_channel_mgr = 0;
864 
865 		if (ch->delayed_chctl_flags) {
866 			if (part->act_state != XPC_P_AS_DEACTIVATING) {
867 				spin_lock(&part->chctl_lock);
868 				part->chctl.flags[ch->number] |=
869 				    ch->delayed_chctl_flags;
870 				spin_unlock(&part->chctl_lock);
871 				wakeup_channel_mgr = 1;
872 			}
873 			ch->delayed_chctl_flags = 0;
874 		}
875 
876 		ch->flags &= ~XPC_C_WDISCONNECT;
877 		spin_unlock_irqrestore(&ch->lock, irq_flags);
878 
879 		if (wakeup_channel_mgr)
880 			xpc_wakeup_channel_mgr(part);
881 
882 		xpc_part_deref(part);
883 	}
884 }
885 
886 static int
xpc_setup_partitions(void)887 xpc_setup_partitions(void)
888 {
889 	short partid;
890 	struct xpc_partition *part;
891 
892 	xpc_partitions = kcalloc(xp_max_npartitions,
893 				 sizeof(struct xpc_partition),
894 				 GFP_KERNEL);
895 	if (xpc_partitions == NULL) {
896 		dev_err(xpc_part, "can't get memory for partition structure\n");
897 		return -ENOMEM;
898 	}
899 
900 	/*
901 	 * The first few fields of each entry of xpc_partitions[] need to
902 	 * be initialized now so that calls to xpc_connect() and
903 	 * xpc_disconnect() can be made prior to the activation of any remote
904 	 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
905 	 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
906 	 * PARTITION HAS BEEN ACTIVATED.
907 	 */
908 	for (partid = 0; partid < xp_max_npartitions; partid++) {
909 		part = &xpc_partitions[partid];
910 
911 		DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
912 
913 		part->activate_IRQ_rcvd = 0;
914 		spin_lock_init(&part->act_lock);
915 		part->act_state = XPC_P_AS_INACTIVE;
916 		XPC_SET_REASON(part, 0, 0);
917 
918 		timer_setup(&part->disengage_timer,
919 			    xpc_timeout_partition_disengage, 0);
920 
921 		part->setup_state = XPC_P_SS_UNSET;
922 		init_waitqueue_head(&part->teardown_wq);
923 		atomic_set(&part->references, 0);
924 	}
925 
926 	return xpc_arch_ops.setup_partitions();
927 }
928 
929 static void
xpc_teardown_partitions(void)930 xpc_teardown_partitions(void)
931 {
932 	xpc_arch_ops.teardown_partitions();
933 	kfree(xpc_partitions);
934 }
935 
936 static void
xpc_do_exit(enum xp_retval reason)937 xpc_do_exit(enum xp_retval reason)
938 {
939 	short partid;
940 	int active_part_count, printed_waiting_msg = 0;
941 	struct xpc_partition *part;
942 	unsigned long printmsg_time, disengage_timeout = 0;
943 
944 	/* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
945 	DBUG_ON(xpc_exiting == 1);
946 
947 	/*
948 	 * Let the heartbeat checker thread and the discovery thread
949 	 * (if one is running) know that they should exit. Also wake up
950 	 * the heartbeat checker thread in case it's sleeping.
951 	 */
952 	xpc_exiting = 1;
953 	wake_up_interruptible(&xpc_activate_IRQ_wq);
954 
955 	/* wait for the discovery thread to exit */
956 	wait_for_completion(&xpc_discovery_exited);
957 
958 	/* wait for the heartbeat checker thread to exit */
959 	wait_for_completion(&xpc_hb_checker_exited);
960 
961 	/* sleep for a 1/3 of a second or so */
962 	(void)msleep_interruptible(300);
963 
964 	/* wait for all partitions to become inactive */
965 
966 	printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
967 	xpc_disengage_timedout = 0;
968 
969 	do {
970 		active_part_count = 0;
971 
972 		for (partid = 0; partid < xp_max_npartitions; partid++) {
973 			part = &xpc_partitions[partid];
974 
975 			if (xpc_partition_disengaged(part) &&
976 			    part->act_state == XPC_P_AS_INACTIVE) {
977 				continue;
978 			}
979 
980 			active_part_count++;
981 
982 			XPC_DEACTIVATE_PARTITION(part, reason);
983 
984 			if (part->disengage_timeout > disengage_timeout)
985 				disengage_timeout = part->disengage_timeout;
986 		}
987 
988 		if (xpc_arch_ops.any_partition_engaged()) {
989 			if (time_is_before_jiffies(printmsg_time)) {
990 				dev_info(xpc_part, "waiting for remote "
991 					 "partitions to deactivate, timeout in "
992 					 "%ld seconds\n", (disengage_timeout -
993 					 jiffies) / HZ);
994 				printmsg_time = jiffies +
995 				    (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
996 				printed_waiting_msg = 1;
997 			}
998 
999 		} else if (active_part_count > 0) {
1000 			if (printed_waiting_msg) {
1001 				dev_info(xpc_part, "waiting for local partition"
1002 					 " to deactivate\n");
1003 				printed_waiting_msg = 0;
1004 			}
1005 
1006 		} else {
1007 			if (!xpc_disengage_timedout) {
1008 				dev_info(xpc_part, "all partitions have "
1009 					 "deactivated\n");
1010 			}
1011 			break;
1012 		}
1013 
1014 		/* sleep for a 1/3 of a second or so */
1015 		(void)msleep_interruptible(300);
1016 
1017 	} while (1);
1018 
1019 	DBUG_ON(xpc_arch_ops.any_partition_engaged());
1020 
1021 	xpc_teardown_rsvd_page();
1022 
1023 	if (reason == xpUnloading) {
1024 		(void)unregister_die_notifier(&xpc_die_notifier);
1025 		(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1026 	}
1027 
1028 	/* clear the interface to XPC's functions */
1029 	xpc_clear_interface();
1030 
1031 	if (xpc_sysctl)
1032 		unregister_sysctl_table(xpc_sysctl);
1033 	if (xpc_sysctl_hb)
1034 		unregister_sysctl_table(xpc_sysctl_hb);
1035 
1036 	xpc_teardown_partitions();
1037 
1038 	if (is_uv_system())
1039 		xpc_exit_uv();
1040 }
1041 
1042 /*
1043  * This function is called when the system is being rebooted.
1044  */
1045 static int
xpc_system_reboot(struct notifier_block * nb,unsigned long event,void * unused)1046 xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused)
1047 {
1048 	enum xp_retval reason;
1049 
1050 	switch (event) {
1051 	case SYS_RESTART:
1052 		reason = xpSystemReboot;
1053 		break;
1054 	case SYS_HALT:
1055 		reason = xpSystemHalt;
1056 		break;
1057 	case SYS_POWER_OFF:
1058 		reason = xpSystemPoweroff;
1059 		break;
1060 	default:
1061 		reason = xpSystemGoingDown;
1062 	}
1063 
1064 	xpc_do_exit(reason);
1065 	return NOTIFY_DONE;
1066 }
1067 
1068 /* Used to only allow one cpu to complete disconnect */
1069 static unsigned int xpc_die_disconnecting;
1070 
1071 /*
1072  * Notify other partitions to deactivate from us by first disengaging from all
1073  * references to our memory.
1074  */
1075 static void
xpc_die_deactivate(void)1076 xpc_die_deactivate(void)
1077 {
1078 	struct xpc_partition *part;
1079 	short partid;
1080 	int any_engaged;
1081 	long keep_waiting;
1082 	long wait_to_print;
1083 
1084 	if (cmpxchg(&xpc_die_disconnecting, 0, 1))
1085 		return;
1086 
1087 	/* keep xpc_hb_checker thread from doing anything (just in case) */
1088 	xpc_exiting = 1;
1089 
1090 	xpc_arch_ops.disallow_all_hbs();   /*indicate we're deactivated */
1091 
1092 	for (partid = 0; partid < xp_max_npartitions; partid++) {
1093 		part = &xpc_partitions[partid];
1094 
1095 		if (xpc_arch_ops.partition_engaged(partid) ||
1096 		    part->act_state != XPC_P_AS_INACTIVE) {
1097 			xpc_arch_ops.request_partition_deactivation(part);
1098 			xpc_arch_ops.indicate_partition_disengaged(part);
1099 		}
1100 	}
1101 
1102 	/*
1103 	 * Though we requested that all other partitions deactivate from us,
1104 	 * we only wait until they've all disengaged or we've reached the
1105 	 * defined timelimit.
1106 	 *
1107 	 * Given that one iteration through the following while-loop takes
1108 	 * approximately 200 microseconds, calculate the #of loops to take
1109 	 * before bailing and the #of loops before printing a waiting message.
1110 	 */
1111 	keep_waiting = xpc_disengage_timelimit * 1000 * 5;
1112 	wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5;
1113 
1114 	while (1) {
1115 		any_engaged = xpc_arch_ops.any_partition_engaged();
1116 		if (!any_engaged) {
1117 			dev_info(xpc_part, "all partitions have deactivated\n");
1118 			break;
1119 		}
1120 
1121 		if (!keep_waiting--) {
1122 			for (partid = 0; partid < xp_max_npartitions;
1123 			     partid++) {
1124 				if (xpc_arch_ops.partition_engaged(partid)) {
1125 					dev_info(xpc_part, "deactivate from "
1126 						 "remote partition %d timed "
1127 						 "out\n", partid);
1128 				}
1129 			}
1130 			break;
1131 		}
1132 
1133 		if (!wait_to_print--) {
1134 			dev_info(xpc_part, "waiting for remote partitions to "
1135 				 "deactivate, timeout in %ld seconds\n",
1136 				 keep_waiting / (1000 * 5));
1137 			wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL *
1138 			    1000 * 5;
1139 		}
1140 
1141 		udelay(200);
1142 	}
1143 }
1144 
1145 /*
1146  * This function is called when the system is being restarted or halted due
1147  * to some sort of system failure. If this is the case we need to notify the
1148  * other partitions to disengage from all references to our memory.
1149  * This function can also be called when our heartbeater could be offlined
1150  * for a time. In this case we need to notify other partitions to not worry
1151  * about the lack of a heartbeat.
1152  */
1153 static int
xpc_system_die(struct notifier_block * nb,unsigned long event,void * _die_args)1154 xpc_system_die(struct notifier_block *nb, unsigned long event, void *_die_args)
1155 {
1156 	struct die_args *die_args = _die_args;
1157 
1158 	switch (event) {
1159 	case DIE_TRAP:
1160 		if (die_args->trapnr == X86_TRAP_DF)
1161 			xpc_die_deactivate();
1162 
1163 		if (((die_args->trapnr == X86_TRAP_MF) ||
1164 		     (die_args->trapnr == X86_TRAP_XF)) &&
1165 		    !user_mode(die_args->regs))
1166 			xpc_die_deactivate();
1167 
1168 		break;
1169 	case DIE_INT3:
1170 	case DIE_DEBUG:
1171 		break;
1172 	case DIE_OOPS:
1173 	case DIE_GPF:
1174 	default:
1175 		xpc_die_deactivate();
1176 	}
1177 
1178 	return NOTIFY_DONE;
1179 }
1180 
1181 static int __init
xpc_init(void)1182 xpc_init(void)
1183 {
1184 	int ret;
1185 	struct task_struct *kthread;
1186 
1187 	dev_set_name(xpc_part, "part");
1188 	dev_set_name(xpc_chan, "chan");
1189 
1190 	if (is_uv_system()) {
1191 		ret = xpc_init_uv();
1192 
1193 	} else {
1194 		ret = -ENODEV;
1195 	}
1196 
1197 	if (ret != 0)
1198 		return ret;
1199 
1200 	ret = xpc_setup_partitions();
1201 	if (ret != 0) {
1202 		dev_err(xpc_part, "can't get memory for partition structure\n");
1203 		goto out_1;
1204 	}
1205 
1206 	xpc_sysctl = register_sysctl("xpc", xpc_sys_xpc);
1207 	xpc_sysctl_hb = register_sysctl("xpc/hb", xpc_sys_xpc_hb);
1208 
1209 	/*
1210 	 * Fill the partition reserved page with the information needed by
1211 	 * other partitions to discover we are alive and establish initial
1212 	 * communications.
1213 	 */
1214 	ret = xpc_setup_rsvd_page();
1215 	if (ret != 0) {
1216 		dev_err(xpc_part, "can't setup our reserved page\n");
1217 		goto out_2;
1218 	}
1219 
1220 	/* add ourselves to the reboot_notifier_list */
1221 	ret = register_reboot_notifier(&xpc_reboot_notifier);
1222 	if (ret != 0)
1223 		dev_warn(xpc_part, "can't register reboot notifier\n");
1224 
1225 	/* add ourselves to the die_notifier list */
1226 	ret = register_die_notifier(&xpc_die_notifier);
1227 	if (ret != 0)
1228 		dev_warn(xpc_part, "can't register die notifier\n");
1229 
1230 	/*
1231 	 * The real work-horse behind xpc.  This processes incoming
1232 	 * interrupts and monitors remote heartbeats.
1233 	 */
1234 	kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME);
1235 	if (IS_ERR(kthread)) {
1236 		dev_err(xpc_part, "failed while forking hb check thread\n");
1237 		ret = -EBUSY;
1238 		goto out_3;
1239 	}
1240 
1241 	/*
1242 	 * Startup a thread that will attempt to discover other partitions to
1243 	 * activate based on info provided by SAL. This new thread is short
1244 	 * lived and will exit once discovery is complete.
1245 	 */
1246 	kthread = kthread_run(xpc_initiate_discovery, NULL,
1247 			      XPC_DISCOVERY_THREAD_NAME);
1248 	if (IS_ERR(kthread)) {
1249 		dev_err(xpc_part, "failed while forking discovery thread\n");
1250 
1251 		/* mark this new thread as a non-starter */
1252 		complete(&xpc_discovery_exited);
1253 
1254 		xpc_do_exit(xpUnloading);
1255 		return -EBUSY;
1256 	}
1257 
1258 	/* set the interface to point at XPC's functions */
1259 	xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect,
1260 			  xpc_initiate_send, xpc_initiate_send_notify,
1261 			  xpc_initiate_received, xpc_initiate_partid_to_nasids);
1262 
1263 	return 0;
1264 
1265 	/* initialization was not successful */
1266 out_3:
1267 	xpc_teardown_rsvd_page();
1268 
1269 	(void)unregister_die_notifier(&xpc_die_notifier);
1270 	(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1271 out_2:
1272 	if (xpc_sysctl_hb)
1273 		unregister_sysctl_table(xpc_sysctl_hb);
1274 	if (xpc_sysctl)
1275 		unregister_sysctl_table(xpc_sysctl);
1276 
1277 	xpc_teardown_partitions();
1278 out_1:
1279 	if (is_uv_system())
1280 		xpc_exit_uv();
1281 	return ret;
1282 }
1283 
1284 module_init(xpc_init);
1285 
1286 static void __exit
xpc_exit(void)1287 xpc_exit(void)
1288 {
1289 	xpc_do_exit(xpUnloading);
1290 }
1291 
1292 module_exit(xpc_exit);
1293 
1294 MODULE_AUTHOR("Silicon Graphics, Inc.");
1295 MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
1296 MODULE_LICENSE("GPL");
1297 
1298 module_param(xpc_hb_interval, int, 0);
1299 MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
1300 		 "heartbeat increments.");
1301 
1302 module_param(xpc_hb_check_interval, int, 0);
1303 MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
1304 		 "heartbeat checks.");
1305 
1306 module_param(xpc_disengage_timelimit, int, 0);
1307 MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait "
1308 		 "for disengage to complete.");
1309 
1310 module_param(xpc_kdebug_ignore, int, 0);
1311 MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by "
1312 		 "other partitions when dropping into kdebug.");
1313