1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2009-2011 Spectra Logic Corporation
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * substantially similar to the "NO WARRANTY" disclaimer below
15 * ("Disclaimer") and any redistribution must be conditioned upon
16 * including a substantially similar Disclaimer requirement for further
17 * binary redistribution.
18 *
19 * NO WARRANTY
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
28 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
29 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGES.
31 *
32 * Authors: Justin T. Gibbs (Spectra Logic Corporation)
33 * Alan Somers (Spectra Logic Corporation)
34 * John Suykerbuyk (Spectra Logic Corporation)
35 */
36
37 #include <sys/cdefs.h>
38 /**
39 * \file netback.c
40 *
41 * \brief Device driver supporting the vending of network access
42 * from this FreeBSD domain to other domains.
43 */
44 #include "opt_inet.h"
45 #include "opt_inet6.h"
46
47 #include <sys/param.h>
48 #include <sys/kernel.h>
49
50 #include <sys/bus.h>
51 #include <sys/module.h>
52 #include <sys/rman.h>
53 #include <sys/socket.h>
54 #include <sys/sockio.h>
55 #include <sys/sysctl.h>
56
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_arp.h>
60 #include <net/ethernet.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 #include <net/if_types.h>
64
65 #include <netinet/in.h>
66 #include <netinet/ip.h>
67 #include <netinet/if_ether.h>
68 #include <netinet/tcp.h>
69 #include <netinet/ip_icmp.h>
70 #include <netinet/udp.h>
71 #include <machine/in_cksum.h>
72
73 #include <vm/vm.h>
74 #include <vm/pmap.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77
78 #include <machine/_inttypes.h>
79
80 #include <xen/xen-os.h>
81 #include <xen/hypervisor.h>
82 #include <xen/xen_intr.h>
83 #include <contrib/xen/io/netif.h>
84 #include <xen/xenbus/xenbusvar.h>
85
86 /*--------------------------- Compile-time Tunables --------------------------*/
87
88 /*---------------------------------- Macros ----------------------------------*/
89 /**
90 * Custom malloc type for all driver allocations.
91 */
92 static MALLOC_DEFINE(M_XENNETBACK, "xnb", "Xen Net Back Driver Data");
93
94 #define XNB_SG 1 /* netback driver supports feature-sg */
95 #define XNB_GSO_TCPV4 0 /* netback driver supports feature-gso-tcpv4 */
96 #define XNB_RX_COPY 1 /* netback driver supports feature-rx-copy */
97 #define XNB_RX_FLIP 0 /* netback driver does not support feature-rx-flip */
98
99 #undef XNB_DEBUG
100 #define XNB_DEBUG /* hardcode on during development */
101
102 #ifdef XNB_DEBUG
103 #define DPRINTF(fmt, args...) \
104 printf("xnb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
105 #else
106 #define DPRINTF(fmt, args...) do {} while (0)
107 #endif
108
109 /* Default length for stack-allocated grant tables */
110 #define GNTTAB_LEN (64)
111
112 /* Features supported by all backends. TSO and LRO can be negotiated */
113 #define XNB_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
114
115 #define NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE)
116 #define NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE)
117
118 /**
119 * Two argument version of the standard macro. Second argument is a tentative
120 * value of req_cons
121 */
122 #define RING_HAS_UNCONSUMED_REQUESTS_2(_r, cons) ({ \
123 unsigned int req = (_r)->sring->req_prod - cons; \
124 unsigned int rsp = RING_SIZE(_r) - \
125 (cons - (_r)->rsp_prod_pvt); \
126 req < rsp ? req : rsp; \
127 })
128
129 #define virt_to_mfn(x) (vtophys(x) >> PAGE_SHIFT)
130 #define virt_to_offset(x) ((x) & (PAGE_SIZE - 1))
131
132 /**
133 * Predefined array type of grant table copy descriptors. Used to pass around
134 * statically allocated memory structures.
135 */
136 typedef struct gnttab_copy gnttab_copy_table[GNTTAB_LEN];
137
138 /*--------------------------- Forward Declarations ---------------------------*/
139 struct xnb_softc;
140 struct xnb_pkt;
141
142 static void xnb_attach_failed(struct xnb_softc *xnb,
143 int err, const char *fmt, ...)
144 __printflike(3,4);
145 static int xnb_shutdown(struct xnb_softc *xnb);
146 static int create_netdev(device_t dev);
147 static int xnb_detach(device_t dev);
148 static int xnb_ifmedia_upd(if_t ifp);
149 static void xnb_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr);
150 static void xnb_intr(void *arg);
151 static int xnb_send(netif_rx_back_ring_t *rxb, domid_t otherend,
152 const struct mbuf *mbufc, gnttab_copy_table gnttab);
153 static int xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend,
154 struct mbuf **mbufc, if_t ifnet,
155 gnttab_copy_table gnttab);
156 static int xnb_ring2pkt(struct xnb_pkt *pkt,
157 const netif_tx_back_ring_t *tx_ring,
158 RING_IDX start);
159 static void xnb_txpkt2rsp(const struct xnb_pkt *pkt,
160 netif_tx_back_ring_t *ring, int error);
161 static struct mbuf *xnb_pkt2mbufc(const struct xnb_pkt *pkt, if_t ifp);
162 static int xnb_txpkt2gnttab(const struct xnb_pkt *pkt,
163 struct mbuf *mbufc,
164 gnttab_copy_table gnttab,
165 const netif_tx_back_ring_t *txb,
166 domid_t otherend_id);
167 static void xnb_update_mbufc(struct mbuf *mbufc,
168 const gnttab_copy_table gnttab, int n_entries);
169 static int xnb_mbufc2pkt(const struct mbuf *mbufc,
170 struct xnb_pkt *pkt,
171 RING_IDX start, int space);
172 static int xnb_rxpkt2gnttab(const struct xnb_pkt *pkt,
173 const struct mbuf *mbufc,
174 gnttab_copy_table gnttab,
175 const netif_rx_back_ring_t *rxb,
176 domid_t otherend_id);
177 static int xnb_rxpkt2rsp(const struct xnb_pkt *pkt,
178 const gnttab_copy_table gnttab, int n_entries,
179 netif_rx_back_ring_t *ring);
180 static void xnb_stop(struct xnb_softc*);
181 static int xnb_ioctl(if_t, u_long, caddr_t);
182 static void xnb_start_locked(if_t);
183 static void xnb_start(if_t);
184 static void xnb_ifinit_locked(struct xnb_softc*);
185 static void xnb_ifinit(void*);
186 #ifdef XNB_DEBUG
187 static int xnb_unit_test_main(SYSCTL_HANDLER_ARGS);
188 static int xnb_dump_rings(SYSCTL_HANDLER_ARGS);
189 #endif
190 #if defined(INET) || defined(INET6)
191 static void xnb_add_mbuf_cksum(struct mbuf *mbufc);
192 #endif
193 /*------------------------------ Data Structures -----------------------------*/
194
195 /**
196 * Representation of a xennet packet. Simplified version of a packet as
197 * stored in the Xen tx ring. Applicable to both RX and TX packets
198 */
199 struct xnb_pkt{
200 /**
201 * Array index of the first data-bearing (eg, not extra info) entry
202 * for this packet
203 */
204 RING_IDX car;
205
206 /**
207 * Array index of the second data-bearing entry for this packet.
208 * Invalid if the packet has only one data-bearing entry. If the
209 * packet has more than two data-bearing entries, then the second
210 * through the last will be sequential modulo the ring size
211 */
212 RING_IDX cdr;
213
214 /**
215 * Optional extra info. Only valid if flags contains
216 * NETTXF_extra_info. Note that extra.type will always be
217 * XEN_NETIF_EXTRA_TYPE_GSO. Currently, no known netfront or netback
218 * driver will ever set XEN_NETIF_EXTRA_TYPE_MCAST_*
219 */
220 netif_extra_info_t extra;
221
222 /** Size of entire packet in bytes. */
223 uint16_t size;
224
225 /** The size of the first entry's data in bytes */
226 uint16_t car_size;
227
228 /**
229 * Either NETTXF_ or NETRXF_ flags. Note that the flag values are
230 * not the same for TX and RX packets
231 */
232 uint16_t flags;
233
234 /**
235 * The number of valid data-bearing entries (either netif_tx_request's
236 * or netif_rx_response's) in the packet. If this is 0, it means the
237 * entire packet is invalid.
238 */
239 uint16_t list_len;
240
241 /** There was an error processing the packet */
242 uint8_t error;
243 };
244
245 /** xnb_pkt method: initialize it */
246 static inline void
xnb_pkt_initialize(struct xnb_pkt * pxnb)247 xnb_pkt_initialize(struct xnb_pkt *pxnb)
248 {
249 bzero(pxnb, sizeof(*pxnb));
250 }
251
252 /** xnb_pkt method: mark the packet as valid */
253 static inline void
xnb_pkt_validate(struct xnb_pkt * pxnb)254 xnb_pkt_validate(struct xnb_pkt *pxnb)
255 {
256 pxnb->error = 0;
257 };
258
259 /** xnb_pkt method: mark the packet as invalid */
260 static inline void
xnb_pkt_invalidate(struct xnb_pkt * pxnb)261 xnb_pkt_invalidate(struct xnb_pkt *pxnb)
262 {
263 pxnb->error = 1;
264 };
265
266 /** xnb_pkt method: Check whether the packet is valid */
267 static inline int
xnb_pkt_is_valid(const struct xnb_pkt * pxnb)268 xnb_pkt_is_valid(const struct xnb_pkt *pxnb)
269 {
270 return (! pxnb->error);
271 }
272
273 #ifdef XNB_DEBUG
274 /** xnb_pkt method: print the packet's contents in human-readable format*/
275 static void __unused
xnb_dump_pkt(const struct xnb_pkt * pkt)276 xnb_dump_pkt(const struct xnb_pkt *pkt) {
277 if (pkt == NULL) {
278 DPRINTF("Was passed a null pointer.\n");
279 return;
280 }
281 DPRINTF("pkt address= %p\n", pkt);
282 DPRINTF("pkt->size=%d\n", pkt->size);
283 DPRINTF("pkt->car_size=%d\n", pkt->car_size);
284 DPRINTF("pkt->flags=0x%04x\n", pkt->flags);
285 DPRINTF("pkt->list_len=%d\n", pkt->list_len);
286 /* DPRINTF("pkt->extra"); TODO */
287 DPRINTF("pkt->car=%d\n", pkt->car);
288 DPRINTF("pkt->cdr=%d\n", pkt->cdr);
289 DPRINTF("pkt->error=%d\n", pkt->error);
290 }
291 #endif /* XNB_DEBUG */
292
293 static void
xnb_dump_txreq(RING_IDX idx,const struct netif_tx_request * txreq)294 xnb_dump_txreq(RING_IDX idx, const struct netif_tx_request *txreq)
295 {
296 if (txreq != NULL) {
297 DPRINTF("netif_tx_request index =%u\n", idx);
298 DPRINTF("netif_tx_request.gref =%u\n", txreq->gref);
299 DPRINTF("netif_tx_request.offset=%hu\n", txreq->offset);
300 DPRINTF("netif_tx_request.flags =%hu\n", txreq->flags);
301 DPRINTF("netif_tx_request.id =%hu\n", txreq->id);
302 DPRINTF("netif_tx_request.size =%hu\n", txreq->size);
303 }
304 }
305
306 /**
307 * \brief Configuration data for a shared memory request ring
308 * used to communicate with the front-end client of this
309 * this driver.
310 */
311 struct xnb_ring_config {
312 /**
313 * Runtime structures for ring access. Unfortunately, TX and RX rings
314 * use different data structures, and that cannot be changed since it
315 * is part of the interdomain protocol.
316 */
317 union{
318 netif_rx_back_ring_t rx_ring;
319 netif_tx_back_ring_t tx_ring;
320 } back_ring;
321
322 /**
323 * The device bus address returned by the hypervisor when
324 * mapping the ring and required to unmap it when a connection
325 * is torn down.
326 */
327 uint64_t bus_addr;
328
329 /** The pseudo-physical address where ring memory is mapped.*/
330 uint64_t gnt_addr;
331
332 /** KVA address where ring memory is mapped. */
333 vm_offset_t va;
334
335 /**
336 * Grant table handles, one per-ring page, returned by the
337 * hyperpervisor upon mapping of the ring and required to
338 * unmap it when a connection is torn down.
339 */
340 grant_handle_t handle;
341
342 /** The number of ring pages mapped for the current connection. */
343 unsigned ring_pages;
344
345 /**
346 * The grant references, one per-ring page, supplied by the
347 * front-end, allowing us to reference the ring pages in the
348 * front-end's domain and to map these pages into our own domain.
349 */
350 grant_ref_t ring_ref;
351 };
352
353 /**
354 * Per-instance connection state flags.
355 */
356 typedef enum
357 {
358 /** Communication with the front-end has been established. */
359 XNBF_RING_CONNECTED = 0x01,
360
361 /**
362 * Front-end requests exist in the ring and are waiting for
363 * xnb_xen_req objects to free up.
364 */
365 XNBF_RESOURCE_SHORTAGE = 0x02,
366
367 /** Connection teardown has started. */
368 XNBF_SHUTDOWN = 0x04,
369
370 /** A thread is already performing shutdown processing. */
371 XNBF_IN_SHUTDOWN = 0x08
372 } xnb_flag_t;
373
374 /**
375 * Types of rings. Used for array indices and to identify a ring's control
376 * data structure type
377 */
378 typedef enum{
379 XNB_RING_TYPE_TX = 0, /* ID of TX rings, used for array indices */
380 XNB_RING_TYPE_RX = 1, /* ID of RX rings, used for array indices */
381 XNB_NUM_RING_TYPES
382 } xnb_ring_type_t;
383
384 /**
385 * Per-instance configuration data.
386 */
387 struct xnb_softc {
388 /** NewBus device corresponding to this instance. */
389 device_t dev;
390
391 /* Media related fields */
392
393 /** Generic network media state */
394 struct ifmedia sc_media;
395
396 /** Media carrier info */
397 if_t xnb_ifp;
398
399 /** Our own private carrier state */
400 unsigned carrier;
401
402 /** Device MAC Address */
403 uint8_t mac[ETHER_ADDR_LEN];
404
405 /* Xen related fields */
406
407 /**
408 * \brief The netif protocol abi in effect.
409 *
410 * There are situations where the back and front ends can
411 * have a different, native abi (e.g. intel x86_64 and
412 * 32bit x86 domains on the same machine). The back-end
413 * always accommodates the front-end's native abi. That
414 * value is pulled from the XenStore and recorded here.
415 */
416 int abi;
417
418 /**
419 * Name of the bridge to which this VIF is connected, if any
420 * This field is dynamically allocated by xenbus and must be free()ed
421 * when no longer needed
422 */
423 char *bridge;
424
425 /** The interrupt driven even channel used to signal ring events. */
426 evtchn_port_t evtchn;
427
428 /** Xen device handle.*/
429 long handle;
430
431 /** Handle to the communication ring event channel. */
432 xen_intr_handle_t xen_intr_handle;
433
434 /**
435 * \brief Cached value of the front-end's domain id.
436 *
437 * This value is used at once for each mapped page in
438 * a transaction. We cache it to avoid incuring the
439 * cost of an ivar access every time this is needed.
440 */
441 domid_t otherend_id;
442
443 /**
444 * Undocumented frontend feature. Has something to do with
445 * scatter/gather IO
446 */
447 uint8_t can_sg;
448 /** Undocumented frontend feature */
449 uint8_t gso;
450 /** Undocumented frontend feature */
451 uint8_t gso_prefix;
452 /** Can checksum TCP/UDP over IPv4 */
453 uint8_t ip_csum;
454
455 /* Implementation related fields */
456 /**
457 * Preallocated grant table copy descriptor for RX operations.
458 * Access must be protected by rx_lock
459 */
460 gnttab_copy_table rx_gnttab;
461
462 /**
463 * Preallocated grant table copy descriptor for TX operations.
464 * Access must be protected by tx_lock
465 */
466 gnttab_copy_table tx_gnttab;
467
468 /**
469 * Resource representing allocated physical address space
470 * associated with our per-instance kva region.
471 */
472 struct resource *pseudo_phys_res;
473
474 /** Resource id for allocated physical address space. */
475 int pseudo_phys_res_id;
476
477 /** Ring mapping and interrupt configuration data. */
478 struct xnb_ring_config ring_configs[XNB_NUM_RING_TYPES];
479
480 /**
481 * Global pool of kva used for mapping remote domain ring
482 * and I/O transaction data.
483 */
484 vm_offset_t kva;
485
486 /** Pseudo-physical address corresponding to kva. */
487 uint64_t gnt_base_addr;
488
489 /** Various configuration and state bit flags. */
490 xnb_flag_t flags;
491
492 /** Mutex protecting per-instance data in the receive path. */
493 struct mtx rx_lock;
494
495 /** Mutex protecting per-instance data in the softc structure. */
496 struct mtx sc_lock;
497
498 /** Mutex protecting per-instance data in the transmit path. */
499 struct mtx tx_lock;
500
501 /** The size of the global kva pool. */
502 int kva_size;
503
504 /** Name of the interface */
505 char if_name[IFNAMSIZ];
506 };
507
508 /*---------------------------- Debugging functions ---------------------------*/
509 #ifdef XNB_DEBUG
510 static void __unused
xnb_dump_gnttab_copy(const struct gnttab_copy * entry)511 xnb_dump_gnttab_copy(const struct gnttab_copy *entry)
512 {
513 if (entry == NULL) {
514 printf("NULL grant table pointer\n");
515 return;
516 }
517
518 if (entry->flags & GNTCOPY_dest_gref)
519 printf("gnttab dest ref=\t%u\n", entry->dest.u.ref);
520 else
521 printf("gnttab dest gmfn=\t%"PRI_xen_pfn"\n",
522 entry->dest.u.gmfn);
523 printf("gnttab dest offset=\t%hu\n", entry->dest.offset);
524 printf("gnttab dest domid=\t%hu\n", entry->dest.domid);
525 if (entry->flags & GNTCOPY_source_gref)
526 printf("gnttab source ref=\t%u\n", entry->source.u.ref);
527 else
528 printf("gnttab source gmfn=\t%"PRI_xen_pfn"\n",
529 entry->source.u.gmfn);
530 printf("gnttab source offset=\t%hu\n", entry->source.offset);
531 printf("gnttab source domid=\t%hu\n", entry->source.domid);
532 printf("gnttab len=\t%hu\n", entry->len);
533 printf("gnttab flags=\t%hu\n", entry->flags);
534 printf("gnttab status=\t%hd\n", entry->status);
535 }
536
537 static int
xnb_dump_rings(SYSCTL_HANDLER_ARGS)538 xnb_dump_rings(SYSCTL_HANDLER_ARGS)
539 {
540 static char results[720];
541 struct xnb_softc const* xnb = (struct xnb_softc*)arg1;
542 netif_rx_back_ring_t const* rxb =
543 &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
544 netif_tx_back_ring_t const* txb =
545 &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
546
547 /* empty the result strings */
548 results[0] = 0;
549
550 if ( !txb || !txb->sring || !rxb || !rxb->sring )
551 return (SYSCTL_OUT(req, results, strnlen(results, 720)));
552
553 snprintf(results, 720,
554 "\n\t%35s %18s\n" /* TX, RX */
555 "\t%16s %18d %18d\n" /* req_cons */
556 "\t%16s %18d %18d\n" /* nr_ents */
557 "\t%16s %18d %18d\n" /* rsp_prod_pvt */
558 "\t%16s %18p %18p\n" /* sring */
559 "\t%16s %18d %18d\n" /* req_prod */
560 "\t%16s %18d %18d\n" /* req_event */
561 "\t%16s %18d %18d\n" /* rsp_prod */
562 "\t%16s %18d %18d\n", /* rsp_event */
563 "TX", "RX",
564 "req_cons", txb->req_cons, rxb->req_cons,
565 "nr_ents", txb->nr_ents, rxb->nr_ents,
566 "rsp_prod_pvt", txb->rsp_prod_pvt, rxb->rsp_prod_pvt,
567 "sring", txb->sring, rxb->sring,
568 "sring->req_prod", txb->sring->req_prod, rxb->sring->req_prod,
569 "sring->req_event", txb->sring->req_event, rxb->sring->req_event,
570 "sring->rsp_prod", txb->sring->rsp_prod, rxb->sring->rsp_prod,
571 "sring->rsp_event", txb->sring->rsp_event, rxb->sring->rsp_event);
572
573 return (SYSCTL_OUT(req, results, strnlen(results, 720)));
574 }
575
576 static void __unused
xnb_dump_mbuf(const struct mbuf * m)577 xnb_dump_mbuf(const struct mbuf *m)
578 {
579 int len;
580 uint8_t *d;
581 if (m == NULL)
582 return;
583
584 printf("xnb_dump_mbuf:\n");
585 if (m->m_flags & M_PKTHDR) {
586 printf(" flowid=%10d, csum_flags=%#8x, csum_data=%#8x, "
587 "tso_segsz=%5hd\n",
588 m->m_pkthdr.flowid, (int)m->m_pkthdr.csum_flags,
589 m->m_pkthdr.csum_data, m->m_pkthdr.tso_segsz);
590 printf(" rcvif=%16p, len=%19d\n",
591 m->m_pkthdr.rcvif, m->m_pkthdr.len);
592 }
593 printf(" m_next=%16p, m_nextpk=%16p, m_data=%16p\n",
594 m->m_next, m->m_nextpkt, m->m_data);
595 printf(" m_len=%17d, m_flags=%#15x, m_type=%18u\n",
596 m->m_len, m->m_flags, m->m_type);
597
598 len = m->m_len;
599 d = mtod(m, uint8_t*);
600 while (len > 0) {
601 int i;
602 printf(" ");
603 for (i = 0; (i < 16) && (len > 0); i++, len--) {
604 printf("%02hhx ", *(d++));
605 }
606 printf("\n");
607 }
608 }
609 #endif /* XNB_DEBUG */
610
611 /*------------------------ Inter-Domain Communication ------------------------*/
612 /**
613 * Free dynamically allocated KVA or pseudo-physical address allocations.
614 *
615 * \param xnb Per-instance xnb configuration structure.
616 */
617 static void
xnb_free_communication_mem(struct xnb_softc * xnb)618 xnb_free_communication_mem(struct xnb_softc *xnb)
619 {
620 if (xnb->kva != 0) {
621 if (xnb->pseudo_phys_res != NULL) {
622 xenmem_free(xnb->dev, xnb->pseudo_phys_res_id,
623 xnb->pseudo_phys_res);
624 xnb->pseudo_phys_res = NULL;
625 }
626 }
627 xnb->kva = 0;
628 xnb->gnt_base_addr = 0;
629 }
630
631 /**
632 * Cleanup all inter-domain communication mechanisms.
633 *
634 * \param xnb Per-instance xnb configuration structure.
635 */
636 static int
xnb_disconnect(struct xnb_softc * xnb)637 xnb_disconnect(struct xnb_softc *xnb)
638 {
639 struct gnttab_unmap_grant_ref gnts[XNB_NUM_RING_TYPES];
640 int error __diagused;
641 int i;
642
643 if (xnb->xen_intr_handle != NULL)
644 xen_intr_unbind(&xnb->xen_intr_handle);
645
646 /*
647 * We may still have another thread currently processing requests. We
648 * must acquire the rx and tx locks to make sure those threads are done,
649 * but we can release those locks as soon as we acquire them, because no
650 * more interrupts will be arriving.
651 */
652 mtx_lock(&xnb->tx_lock);
653 mtx_unlock(&xnb->tx_lock);
654 mtx_lock(&xnb->rx_lock);
655 mtx_unlock(&xnb->rx_lock);
656
657 mtx_lock(&xnb->sc_lock);
658 /* Free malloc'd softc member variables */
659 if (xnb->bridge != NULL) {
660 free(xnb->bridge, M_XENSTORE);
661 xnb->bridge = NULL;
662 }
663
664 /* All request processing has stopped, so unmap the rings */
665 for (i=0; i < XNB_NUM_RING_TYPES; i++) {
666 gnts[i].host_addr = xnb->ring_configs[i].gnt_addr;
667 gnts[i].dev_bus_addr = xnb->ring_configs[i].bus_addr;
668 gnts[i].handle = xnb->ring_configs[i].handle;
669 }
670 error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, gnts,
671 XNB_NUM_RING_TYPES);
672 KASSERT(error == 0, ("Grant table unmap op failed (%d)", error));
673
674 xnb_free_communication_mem(xnb);
675 /*
676 * Zero the ring config structs because the pointers, handles, and
677 * grant refs contained therein are no longer valid.
678 */
679 bzero(&xnb->ring_configs[XNB_RING_TYPE_TX],
680 sizeof(struct xnb_ring_config));
681 bzero(&xnb->ring_configs[XNB_RING_TYPE_RX],
682 sizeof(struct xnb_ring_config));
683
684 xnb->flags &= ~XNBF_RING_CONNECTED;
685 mtx_unlock(&xnb->sc_lock);
686
687 return (0);
688 }
689
690 /**
691 * Map a single shared memory ring into domain local address space and
692 * initialize its control structure
693 *
694 * \param xnb Per-instance xnb configuration structure
695 * \param ring_type Array index of this ring in the xnb's array of rings
696 * \return An errno
697 */
698 static int
xnb_connect_ring(struct xnb_softc * xnb,xnb_ring_type_t ring_type)699 xnb_connect_ring(struct xnb_softc *xnb, xnb_ring_type_t ring_type)
700 {
701 struct gnttab_map_grant_ref gnt;
702 struct xnb_ring_config *ring = &xnb->ring_configs[ring_type];
703 int error;
704
705 /* TX ring type = 0, RX =1 */
706 ring->va = xnb->kva + ring_type * PAGE_SIZE;
707 ring->gnt_addr = xnb->gnt_base_addr + ring_type * PAGE_SIZE;
708
709 gnt.host_addr = ring->gnt_addr;
710 gnt.flags = GNTMAP_host_map;
711 gnt.ref = ring->ring_ref;
712 gnt.dom = xnb->otherend_id;
713
714 error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, &gnt, 1);
715 if (error != 0)
716 panic("netback: Ring page grant table op failed (%d)", error);
717
718 if (gnt.status != 0) {
719 ring->va = 0;
720 error = EACCES;
721 xenbus_dev_fatal(xnb->dev, error,
722 "Ring shared page mapping failed. "
723 "Status %d.", gnt.status);
724 } else {
725 ring->handle = gnt.handle;
726 ring->bus_addr = gnt.dev_bus_addr;
727
728 if (ring_type == XNB_RING_TYPE_TX) {
729 BACK_RING_INIT(&ring->back_ring.tx_ring,
730 (netif_tx_sring_t*)ring->va,
731 ring->ring_pages * PAGE_SIZE);
732 } else if (ring_type == XNB_RING_TYPE_RX) {
733 BACK_RING_INIT(&ring->back_ring.rx_ring,
734 (netif_rx_sring_t*)ring->va,
735 ring->ring_pages * PAGE_SIZE);
736 } else {
737 xenbus_dev_fatal(xnb->dev, error,
738 "Unknown ring type %d", ring_type);
739 }
740 }
741
742 return error;
743 }
744
745 /**
746 * Setup the shared memory rings and bind an interrupt to the event channel
747 * used to notify us of ring changes.
748 *
749 * \param xnb Per-instance xnb configuration structure.
750 */
751 static int
xnb_connect_comms(struct xnb_softc * xnb)752 xnb_connect_comms(struct xnb_softc *xnb)
753 {
754 int error;
755 xnb_ring_type_t i;
756
757 if ((xnb->flags & XNBF_RING_CONNECTED) != 0)
758 return (0);
759
760 /*
761 * Kva for our rings are at the tail of the region of kva allocated
762 * by xnb_alloc_communication_mem().
763 */
764 for (i=0; i < XNB_NUM_RING_TYPES; i++) {
765 error = xnb_connect_ring(xnb, i);
766 if (error != 0)
767 return error;
768 }
769
770 xnb->flags |= XNBF_RING_CONNECTED;
771
772 error = xen_intr_bind_remote_port(xnb->dev,
773 xnb->otherend_id,
774 xnb->evtchn,
775 /*filter*/NULL,
776 xnb_intr, /*arg*/xnb,
777 INTR_TYPE_NET | INTR_MPSAFE,
778 &xnb->xen_intr_handle);
779 if (error != 0) {
780 (void)xnb_disconnect(xnb);
781 xenbus_dev_fatal(xnb->dev, error, "binding event channel");
782 return (error);
783 }
784
785 DPRINTF("rings connected!\n");
786
787 return (0);
788 }
789
790 /**
791 * Size KVA and pseudo-physical address allocations based on negotiated
792 * values for the size and number of I/O requests, and the size of our
793 * communication ring.
794 *
795 * \param xnb Per-instance xnb configuration structure.
796 *
797 * These address spaces are used to dynamically map pages in the
798 * front-end's domain into our own.
799 */
800 static int
xnb_alloc_communication_mem(struct xnb_softc * xnb)801 xnb_alloc_communication_mem(struct xnb_softc *xnb)
802 {
803 xnb_ring_type_t i;
804
805 xnb->kva_size = 0;
806 for (i=0; i < XNB_NUM_RING_TYPES; i++) {
807 xnb->kva_size += xnb->ring_configs[i].ring_pages * PAGE_SIZE;
808 }
809
810 /*
811 * Reserve a range of pseudo physical memory that we can map
812 * into kva. These pages will only be backed by machine
813 * pages ("real memory") during the lifetime of front-end requests
814 * via grant table operations. We will map the netif tx and rx rings
815 * into this space.
816 */
817 xnb->pseudo_phys_res_id = 0;
818 xnb->pseudo_phys_res = xenmem_alloc(xnb->dev, &xnb->pseudo_phys_res_id,
819 xnb->kva_size);
820 if (xnb->pseudo_phys_res == NULL) {
821 xnb->kva = 0;
822 return (ENOMEM);
823 }
824 xnb->kva = (vm_offset_t)rman_get_virtual(xnb->pseudo_phys_res);
825 xnb->gnt_base_addr = rman_get_start(xnb->pseudo_phys_res);
826 return (0);
827 }
828
829 /**
830 * Collect information from the XenStore related to our device and its frontend
831 *
832 * \param xnb Per-instance xnb configuration structure.
833 */
834 static int
xnb_collect_xenstore_info(struct xnb_softc * xnb)835 xnb_collect_xenstore_info(struct xnb_softc *xnb)
836 {
837 /**
838 * \todo Linux collects the following info. We should collect most
839 * of this, too:
840 * "feature-rx-notify"
841 */
842 const char *otherend_path;
843 const char *our_path;
844 int err;
845 unsigned int rx_copy, bridge_len;
846 uint8_t no_csum_offload;
847
848 otherend_path = xenbus_get_otherend_path(xnb->dev);
849 our_path = xenbus_get_node(xnb->dev);
850
851 /* Collect the critical communication parameters */
852 err = xs_gather(XST_NIL, otherend_path,
853 "tx-ring-ref", "%l" PRIu32,
854 &xnb->ring_configs[XNB_RING_TYPE_TX].ring_ref,
855 "rx-ring-ref", "%l" PRIu32,
856 &xnb->ring_configs[XNB_RING_TYPE_RX].ring_ref,
857 "event-channel", "%" PRIu32, &xnb->evtchn,
858 NULL);
859 if (err != 0) {
860 xenbus_dev_fatal(xnb->dev, err,
861 "Unable to retrieve ring information from "
862 "frontend %s. Unable to connect.",
863 otherend_path);
864 return (err);
865 }
866
867 /* Collect the handle from xenstore */
868 err = xs_scanf(XST_NIL, our_path, "handle", NULL, "%li", &xnb->handle);
869 if (err != 0) {
870 xenbus_dev_fatal(xnb->dev, err,
871 "Error reading handle from frontend %s. "
872 "Unable to connect.", otherend_path);
873 }
874
875 /*
876 * Collect the bridgename, if any. We do not need bridge_len; we just
877 * throw it away
878 */
879 err = xs_read(XST_NIL, our_path, "bridge", &bridge_len,
880 (void**)&xnb->bridge);
881 if (err != 0)
882 xnb->bridge = NULL;
883
884 /*
885 * Does the frontend request that we use rx copy? If not, return an
886 * error because this driver only supports rx copy.
887 */
888 err = xs_scanf(XST_NIL, otherend_path, "request-rx-copy", NULL,
889 "%" PRIu32, &rx_copy);
890 if (err == ENOENT) {
891 err = 0;
892 rx_copy = 0;
893 }
894 if (err < 0) {
895 xenbus_dev_fatal(xnb->dev, err, "reading %s/request-rx-copy",
896 otherend_path);
897 return err;
898 }
899 /**
900 * \todo: figure out the exact meaning of this feature, and when
901 * the frontend will set it to true. It should be set to true
902 * at some point
903 */
904 /* if (!rx_copy)*/
905 /* return EOPNOTSUPP;*/
906
907 /** \todo Collect the rx notify feature */
908
909 /* Collect the feature-sg. */
910 if (xs_scanf(XST_NIL, otherend_path, "feature-sg", NULL,
911 "%hhu", &xnb->can_sg) < 0)
912 xnb->can_sg = 0;
913
914 /* Collect remaining frontend features */
915 if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4", NULL,
916 "%hhu", &xnb->gso) < 0)
917 xnb->gso = 0;
918
919 if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4-prefix", NULL,
920 "%hhu", &xnb->gso_prefix) < 0)
921 xnb->gso_prefix = 0;
922
923 if (xs_scanf(XST_NIL, otherend_path, "feature-no-csum-offload", NULL,
924 "%hhu", &no_csum_offload) < 0)
925 no_csum_offload = 0;
926 xnb->ip_csum = (no_csum_offload == 0);
927
928 return (0);
929 }
930
931 /**
932 * Supply information about the physical device to the frontend
933 * via XenBus.
934 *
935 * \param xnb Per-instance xnb configuration structure.
936 */
937 static int
xnb_publish_backend_info(struct xnb_softc * xnb)938 xnb_publish_backend_info(struct xnb_softc *xnb)
939 {
940 struct xs_transaction xst;
941 const char *our_path;
942 int error;
943
944 our_path = xenbus_get_node(xnb->dev);
945
946 do {
947 error = xs_transaction_start(&xst);
948 if (error != 0) {
949 xenbus_dev_fatal(xnb->dev, error,
950 "Error publishing backend info "
951 "(start transaction)");
952 break;
953 }
954
955 error = xs_printf(xst, our_path, "feature-sg",
956 "%d", XNB_SG);
957 if (error != 0)
958 break;
959
960 error = xs_printf(xst, our_path, "feature-gso-tcpv4",
961 "%d", XNB_GSO_TCPV4);
962 if (error != 0)
963 break;
964
965 error = xs_printf(xst, our_path, "feature-rx-copy",
966 "%d", XNB_RX_COPY);
967 if (error != 0)
968 break;
969
970 error = xs_printf(xst, our_path, "feature-rx-flip",
971 "%d", XNB_RX_FLIP);
972 if (error != 0)
973 break;
974
975 error = xs_transaction_end(xst, 0);
976 if (error != 0 && error != EAGAIN) {
977 xenbus_dev_fatal(xnb->dev, error, "ending transaction");
978 break;
979 }
980
981 } while (error == EAGAIN);
982
983 return (error);
984 }
985
986 /**
987 * Connect to our netfront peer now that it has completed publishing
988 * its configuration into the XenStore.
989 *
990 * \param xnb Per-instance xnb configuration structure.
991 */
992 static void
xnb_connect(struct xnb_softc * xnb)993 xnb_connect(struct xnb_softc *xnb)
994 {
995 int error;
996
997 if (xenbus_get_state(xnb->dev) == XenbusStateConnected)
998 return;
999
1000 if (xnb_collect_xenstore_info(xnb) != 0)
1001 return;
1002
1003 xnb->flags &= ~XNBF_SHUTDOWN;
1004
1005 /* Read front end configuration. */
1006
1007 /* Allocate resources whose size depends on front-end configuration. */
1008 error = xnb_alloc_communication_mem(xnb);
1009 if (error != 0) {
1010 xenbus_dev_fatal(xnb->dev, error,
1011 "Unable to allocate communication memory");
1012 return;
1013 }
1014
1015 /*
1016 * Connect communication channel.
1017 */
1018 error = xnb_connect_comms(xnb);
1019 if (error != 0) {
1020 /* Specific errors are reported by xnb_connect_comms(). */
1021 return;
1022 }
1023 xnb->carrier = 1;
1024
1025 /* Ready for I/O. */
1026 xenbus_set_state(xnb->dev, XenbusStateConnected);
1027 }
1028
1029 /*-------------------------- Device Teardown Support -------------------------*/
1030 /**
1031 * Perform device shutdown functions.
1032 *
1033 * \param xnb Per-instance xnb configuration structure.
1034 *
1035 * Mark this instance as shutting down, wait for any active requests
1036 * to drain, disconnect from the front-end, and notify any waiters (e.g.
1037 * a thread invoking our detach method) that detach can now proceed.
1038 */
1039 static int
xnb_shutdown(struct xnb_softc * xnb)1040 xnb_shutdown(struct xnb_softc *xnb)
1041 {
1042 /*
1043 * Due to the need to drop our mutex during some
1044 * xenbus operations, it is possible for two threads
1045 * to attempt to close out shutdown processing at
1046 * the same time. Tell the caller that hits this
1047 * race to try back later.
1048 */
1049 if ((xnb->flags & XNBF_IN_SHUTDOWN) != 0)
1050 return (EAGAIN);
1051
1052 xnb->flags |= XNBF_SHUTDOWN;
1053
1054 xnb->flags |= XNBF_IN_SHUTDOWN;
1055
1056 mtx_unlock(&xnb->sc_lock);
1057 /* Free the network interface */
1058 xnb->carrier = 0;
1059 if (xnb->xnb_ifp != NULL) {
1060 ether_ifdetach(xnb->xnb_ifp);
1061 if_free(xnb->xnb_ifp);
1062 xnb->xnb_ifp = NULL;
1063 }
1064
1065 xnb_disconnect(xnb);
1066
1067 if (xenbus_get_state(xnb->dev) < XenbusStateClosing)
1068 xenbus_set_state(xnb->dev, XenbusStateClosing);
1069 mtx_lock(&xnb->sc_lock);
1070
1071 xnb->flags &= ~XNBF_IN_SHUTDOWN;
1072
1073 /* Indicate to xnb_detach() that is it safe to proceed. */
1074 wakeup(xnb);
1075
1076 return (0);
1077 }
1078
1079 /**
1080 * Report an attach time error to the console and Xen, and cleanup
1081 * this instance by forcing immediate detach processing.
1082 *
1083 * \param xnb Per-instance xnb configuration structure.
1084 * \param err Errno describing the error.
1085 * \param fmt Printf style format and arguments
1086 */
1087 static void
xnb_attach_failed(struct xnb_softc * xnb,int err,const char * fmt,...)1088 xnb_attach_failed(struct xnb_softc *xnb, int err, const char *fmt, ...)
1089 {
1090 va_list ap;
1091 va_list ap_hotplug;
1092
1093 va_start(ap, fmt);
1094 va_copy(ap_hotplug, ap);
1095 xs_vprintf(XST_NIL, xenbus_get_node(xnb->dev),
1096 "hotplug-error", fmt, ap_hotplug);
1097 va_end(ap_hotplug);
1098 (void)xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1099 "hotplug-status", "error");
1100
1101 xenbus_dev_vfatal(xnb->dev, err, fmt, ap);
1102 va_end(ap);
1103
1104 (void)xs_printf(XST_NIL, xenbus_get_node(xnb->dev), "online", "0");
1105 xnb_detach(xnb->dev);
1106 }
1107
1108 /*---------------------------- NewBus Entrypoints ----------------------------*/
1109 /**
1110 * Inspect a XenBus device and claim it if is of the appropriate type.
1111 *
1112 * \param dev NewBus device object representing a candidate XenBus device.
1113 *
1114 * \return 0 for success, errno codes for failure.
1115 */
1116 static int
xnb_probe(device_t dev)1117 xnb_probe(device_t dev)
1118 {
1119 if (!strcmp(xenbus_get_type(dev), "vif")) {
1120 DPRINTF("Claiming device %d, %s\n", device_get_unit(dev),
1121 devclass_get_name(device_get_devclass(dev)));
1122 device_set_desc(dev, "Backend Virtual Network Device");
1123 device_quiet(dev);
1124 return (0);
1125 }
1126 return (ENXIO);
1127 }
1128
1129 /**
1130 * Setup sysctl variables to control various Network Back parameters.
1131 *
1132 * \param xnb Xen Net Back softc.
1133 *
1134 */
1135 static void
xnb_setup_sysctl(struct xnb_softc * xnb)1136 xnb_setup_sysctl(struct xnb_softc *xnb)
1137 {
1138 struct sysctl_ctx_list *sysctl_ctx = NULL;
1139 struct sysctl_oid *sysctl_tree = NULL;
1140
1141 sysctl_ctx = device_get_sysctl_ctx(xnb->dev);
1142 if (sysctl_ctx == NULL)
1143 return;
1144
1145 sysctl_tree = device_get_sysctl_tree(xnb->dev);
1146 if (sysctl_tree == NULL)
1147 return;
1148
1149 #ifdef XNB_DEBUG
1150 SYSCTL_ADD_PROC(sysctl_ctx,
1151 SYSCTL_CHILDREN(sysctl_tree),
1152 OID_AUTO,
1153 "unit_test_results",
1154 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
1155 xnb,
1156 0,
1157 xnb_unit_test_main,
1158 "A",
1159 "Results of builtin unit tests");
1160
1161 SYSCTL_ADD_PROC(sysctl_ctx,
1162 SYSCTL_CHILDREN(sysctl_tree),
1163 OID_AUTO,
1164 "dump_rings",
1165 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
1166 xnb,
1167 0,
1168 xnb_dump_rings,
1169 "A",
1170 "Xennet Back Rings");
1171 #endif /* XNB_DEBUG */
1172 }
1173
1174 /**
1175 * Create a network device.
1176 * @param handle device handle
1177 */
1178 int
create_netdev(device_t dev)1179 create_netdev(device_t dev)
1180 {
1181 if_t ifp;
1182 struct xnb_softc *xnb;
1183 int err = 0;
1184 uint32_t handle;
1185
1186 xnb = device_get_softc(dev);
1187 mtx_init(&xnb->sc_lock, "xnb_softc", "xen netback softc lock", MTX_DEF);
1188 mtx_init(&xnb->tx_lock, "xnb_tx", "xen netback tx lock", MTX_DEF);
1189 mtx_init(&xnb->rx_lock, "xnb_rx", "xen netback rx lock", MTX_DEF);
1190
1191 xnb->dev = dev;
1192
1193 ifmedia_init(&xnb->sc_media, 0, xnb_ifmedia_upd, xnb_ifmedia_sts);
1194 ifmedia_add(&xnb->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
1195 ifmedia_set(&xnb->sc_media, IFM_ETHER|IFM_MANUAL);
1196
1197 /*
1198 * Set the MAC address to a dummy value (00:00:00:00:00),
1199 * if the MAC address of the host-facing interface is set
1200 * to the same as the guest-facing one (the value found in
1201 * xenstore), the bridge would stop delivering packets to
1202 * us because it would see that the destination address of
1203 * the packet is the same as the interface, and so the bridge
1204 * would expect the packet has already been delivered locally
1205 * (and just drop it).
1206 */
1207 bzero(&xnb->mac[0], sizeof(xnb->mac));
1208
1209 /* The interface will be named using the following nomenclature:
1210 *
1211 * xnb<domid>.<handle>
1212 *
1213 * Where handle is the oder of the interface referred to the guest.
1214 */
1215 err = xs_scanf(XST_NIL, xenbus_get_node(xnb->dev), "handle", NULL,
1216 "%" PRIu32, &handle);
1217 if (err != 0)
1218 return (err);
1219 snprintf(xnb->if_name, IFNAMSIZ, "xnb%" PRIu16 ".%" PRIu32,
1220 xenbus_get_otherend_id(dev), handle);
1221
1222 if (err == 0) {
1223 /* Set up ifnet structure */
1224 ifp = xnb->xnb_ifp = if_alloc(IFT_ETHER);
1225 if_setsoftc(ifp, xnb);
1226 if_initname(ifp, xnb->if_name, IF_DUNIT_NONE);
1227 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1228 if_setioctlfn(ifp, xnb_ioctl);
1229 if_setstartfn(ifp, xnb_start);
1230 if_setinitfn(ifp, xnb_ifinit);
1231 if_setmtu(ifp, ETHERMTU);
1232 if_setsendqlen(ifp, NET_RX_RING_SIZE - 1);
1233
1234 if_sethwassist(ifp, XNB_CSUM_FEATURES);
1235 if_setcapabilities(ifp, IFCAP_HWCSUM);
1236 if_setcapenable(ifp, IFCAP_HWCSUM);
1237
1238 ether_ifattach(ifp, xnb->mac);
1239 xnb->carrier = 0;
1240 }
1241
1242 return err;
1243 }
1244
1245 /**
1246 * Attach to a XenBus device that has been claimed by our probe routine.
1247 *
1248 * \param dev NewBus device object representing this Xen Net Back instance.
1249 *
1250 * \return 0 for success, errno codes for failure.
1251 */
1252 static int
xnb_attach(device_t dev)1253 xnb_attach(device_t dev)
1254 {
1255 struct xnb_softc *xnb;
1256 int error;
1257 xnb_ring_type_t i;
1258
1259 error = create_netdev(dev);
1260 if (error != 0) {
1261 xenbus_dev_fatal(dev, error, "creating netdev");
1262 return (error);
1263 }
1264
1265 DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
1266
1267 /*
1268 * Basic initialization.
1269 * After this block it is safe to call xnb_detach()
1270 * to clean up any allocated data for this instance.
1271 */
1272 xnb = device_get_softc(dev);
1273 xnb->otherend_id = xenbus_get_otherend_id(dev);
1274 for (i=0; i < XNB_NUM_RING_TYPES; i++) {
1275 xnb->ring_configs[i].ring_pages = 1;
1276 }
1277
1278 /*
1279 * Setup sysctl variables.
1280 */
1281 xnb_setup_sysctl(xnb);
1282
1283 /* Update hot-plug status to satisfy xend. */
1284 error = xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1285 "hotplug-status", "connected");
1286 if (error != 0) {
1287 xnb_attach_failed(xnb, error, "writing %s/hotplug-status",
1288 xenbus_get_node(xnb->dev));
1289 return (error);
1290 }
1291
1292 if ((error = xnb_publish_backend_info(xnb)) != 0) {
1293 /*
1294 * If we can't publish our data, we cannot participate
1295 * in this connection, and waiting for a front-end state
1296 * change will not help the situation.
1297 */
1298 xnb_attach_failed(xnb, error,
1299 "Publishing backend status for %s",
1300 xenbus_get_node(xnb->dev));
1301 return error;
1302 }
1303
1304 /* Tell the front end that we are ready to connect. */
1305 xenbus_set_state(dev, XenbusStateInitWait);
1306
1307 return (0);
1308 }
1309
1310 /**
1311 * Detach from a net back device instance.
1312 *
1313 * \param dev NewBus device object representing this Xen Net Back instance.
1314 *
1315 * \return 0 for success, errno codes for failure.
1316 *
1317 * \note A net back device may be detached at any time in its life-cycle,
1318 * including part way through the attach process. For this reason,
1319 * initialization order and the initialization state checks in this
1320 * routine must be carefully coupled so that attach time failures
1321 * are gracefully handled.
1322 */
1323 static int
xnb_detach(device_t dev)1324 xnb_detach(device_t dev)
1325 {
1326 struct xnb_softc *xnb;
1327
1328 DPRINTF("\n");
1329
1330 xnb = device_get_softc(dev);
1331 mtx_lock(&xnb->sc_lock);
1332 while (xnb_shutdown(xnb) == EAGAIN) {
1333 msleep(xnb, &xnb->sc_lock, /*wakeup prio unchanged*/0,
1334 "xnb_shutdown", 0);
1335 }
1336 mtx_unlock(&xnb->sc_lock);
1337 DPRINTF("\n");
1338
1339 mtx_destroy(&xnb->tx_lock);
1340 mtx_destroy(&xnb->rx_lock);
1341 mtx_destroy(&xnb->sc_lock);
1342 return (0);
1343 }
1344
1345 /**
1346 * Prepare this net back device for suspension of this VM.
1347 *
1348 * \param dev NewBus device object representing this Xen net Back instance.
1349 *
1350 * \return 0 for success, errno codes for failure.
1351 */
1352 static int
xnb_suspend(device_t dev)1353 xnb_suspend(device_t dev)
1354 {
1355 return (0);
1356 }
1357
1358 /**
1359 * Perform any processing required to recover from a suspended state.
1360 *
1361 * \param dev NewBus device object representing this Xen Net Back instance.
1362 *
1363 * \return 0 for success, errno codes for failure.
1364 */
1365 static int
xnb_resume(device_t dev)1366 xnb_resume(device_t dev)
1367 {
1368 return (0);
1369 }
1370
1371 /**
1372 * Handle state changes expressed via the XenStore by our front-end peer.
1373 *
1374 * \param dev NewBus device object representing this Xen
1375 * Net Back instance.
1376 * \param frontend_state The new state of the front-end.
1377 *
1378 * \return 0 for success, errno codes for failure.
1379 */
1380 static void
xnb_frontend_changed(device_t dev,XenbusState frontend_state)1381 xnb_frontend_changed(device_t dev, XenbusState frontend_state)
1382 {
1383 struct xnb_softc *xnb;
1384
1385 xnb = device_get_softc(dev);
1386
1387 DPRINTF("frontend_state=%s, xnb_state=%s\n",
1388 xenbus_strstate(frontend_state),
1389 xenbus_strstate(xenbus_get_state(xnb->dev)));
1390
1391 switch (frontend_state) {
1392 case XenbusStateInitialising:
1393 case XenbusStateInitialised:
1394 break;
1395 case XenbusStateConnected:
1396 xnb_connect(xnb);
1397 break;
1398 case XenbusStateClosing:
1399 case XenbusStateClosed:
1400 mtx_lock(&xnb->sc_lock);
1401 xnb_shutdown(xnb);
1402 mtx_unlock(&xnb->sc_lock);
1403 if (frontend_state == XenbusStateClosed)
1404 xenbus_set_state(xnb->dev, XenbusStateClosed);
1405 break;
1406 default:
1407 xenbus_dev_fatal(xnb->dev, EINVAL, "saw state %d at frontend",
1408 frontend_state);
1409 break;
1410 }
1411 }
1412
1413 /*---------------------------- Request Processing ----------------------------*/
1414 /**
1415 * Interrupt handler bound to the shared ring's event channel.
1416 * Entry point for the xennet transmit path in netback
1417 * Transfers packets from the Xen ring to the host's generic networking stack
1418 *
1419 * \param arg Callback argument registerd during event channel
1420 * binding - the xnb_softc for this instance.
1421 */
1422 static void
xnb_intr(void * arg)1423 xnb_intr(void *arg)
1424 {
1425 struct xnb_softc *xnb;
1426 if_t ifp;
1427 netif_tx_back_ring_t *txb;
1428 RING_IDX req_prod_local;
1429
1430 xnb = (struct xnb_softc *)arg;
1431 ifp = xnb->xnb_ifp;
1432 txb = &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
1433
1434 mtx_lock(&xnb->tx_lock);
1435 do {
1436 int notify;
1437 req_prod_local = txb->sring->req_prod;
1438 xen_rmb();
1439
1440 for (;;) {
1441 struct mbuf *mbufc;
1442 int err;
1443
1444 err = xnb_recv(txb, xnb->otherend_id, &mbufc, ifp,
1445 xnb->tx_gnttab);
1446 if (err || (mbufc == NULL))
1447 break;
1448
1449 /* Send the packet to the generic network stack */
1450 if_input(xnb->xnb_ifp, mbufc);
1451 }
1452
1453 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(txb, notify);
1454 if (notify != 0)
1455 xen_intr_signal(xnb->xen_intr_handle);
1456
1457 txb->sring->req_event = txb->req_cons + 1;
1458 xen_mb();
1459 } while (txb->sring->req_prod != req_prod_local) ;
1460 mtx_unlock(&xnb->tx_lock);
1461
1462 xnb_start(ifp);
1463 }
1464
1465 /**
1466 * Build a struct xnb_pkt based on netif_tx_request's from a netif tx ring.
1467 * Will read exactly 0 or 1 packets from the ring; never a partial packet.
1468 * \param[out] pkt The returned packet. If there is an error building
1469 * the packet, pkt.list_len will be set to 0.
1470 * \param[in] tx_ring Pointer to the Ring that is the input to this function
1471 * \param[in] start The ring index of the first potential request
1472 * \return The number of requests consumed to build this packet
1473 */
1474 static int
xnb_ring2pkt(struct xnb_pkt * pkt,const netif_tx_back_ring_t * tx_ring,RING_IDX start)1475 xnb_ring2pkt(struct xnb_pkt *pkt, const netif_tx_back_ring_t *tx_ring,
1476 RING_IDX start)
1477 {
1478 /*
1479 * Outline:
1480 * 1) Initialize pkt
1481 * 2) Read the first request of the packet
1482 * 3) Read the extras
1483 * 4) Set cdr
1484 * 5) Loop on the remainder of the packet
1485 * 6) Finalize pkt (stuff like car_size and list_len)
1486 */
1487 int idx = start;
1488 int discard = 0; /* whether to discard the packet */
1489 int more_data = 0; /* there are more request past the last one */
1490 uint16_t cdr_size = 0; /* accumulated size of requests 2 through n */
1491
1492 xnb_pkt_initialize(pkt);
1493
1494 /* Read the first request */
1495 if (RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1496 netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1497 pkt->size = tx->size;
1498 pkt->flags = tx->flags & ~NETTXF_more_data;
1499 more_data = tx->flags & NETTXF_more_data;
1500 pkt->list_len++;
1501 pkt->car = idx;
1502 idx++;
1503 }
1504
1505 /* Read the extra info */
1506 if ((pkt->flags & NETTXF_extra_info) &&
1507 RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1508 netif_extra_info_t *ext =
1509 (netif_extra_info_t*) RING_GET_REQUEST(tx_ring, idx);
1510 pkt->extra.type = ext->type;
1511 switch (pkt->extra.type) {
1512 case XEN_NETIF_EXTRA_TYPE_GSO:
1513 pkt->extra.u.gso = ext->u.gso;
1514 break;
1515 default:
1516 /*
1517 * The reference Linux netfront driver will
1518 * never set any other extra.type. So we don't
1519 * know what to do with it. Let's print an
1520 * error, then consume and discard the packet
1521 */
1522 printf("xnb(%s:%d): Unknown extra info type %d."
1523 " Discarding packet\n",
1524 __func__, __LINE__, pkt->extra.type);
1525 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring,
1526 start));
1527 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring,
1528 idx));
1529 discard = 1;
1530 break;
1531 }
1532
1533 pkt->extra.flags = ext->flags;
1534 if (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE) {
1535 /*
1536 * The reference linux netfront driver never sets this
1537 * flag (nor does any other known netfront). So we
1538 * will discard the packet.
1539 */
1540 printf("xnb(%s:%d): Request sets "
1541 "XEN_NETIF_EXTRA_FLAG_MORE, but we can't handle "
1542 "that\n", __func__, __LINE__);
1543 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1544 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1545 discard = 1;
1546 }
1547
1548 idx++;
1549 }
1550
1551 /* Set cdr. If there is not more data, cdr is invalid */
1552 pkt->cdr = idx;
1553
1554 /* Loop on remainder of packet */
1555 while (more_data && RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1556 netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1557 pkt->list_len++;
1558 cdr_size += tx->size;
1559 if (tx->flags & ~NETTXF_more_data) {
1560 /* There should be no other flags set at this point */
1561 printf("xnb(%s:%d): Request sets unknown flags %d "
1562 "after the 1st request in the packet.\n",
1563 __func__, __LINE__, tx->flags);
1564 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1565 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1566 }
1567
1568 more_data = tx->flags & NETTXF_more_data;
1569 idx++;
1570 }
1571
1572 /* Finalize packet */
1573 if (more_data != 0) {
1574 /* The ring ran out of requests before finishing the packet */
1575 xnb_pkt_invalidate(pkt);
1576 idx = start; /* tell caller that we consumed no requests */
1577 } else {
1578 /* Calculate car_size */
1579 pkt->car_size = pkt->size - cdr_size;
1580 }
1581 if (discard != 0) {
1582 xnb_pkt_invalidate(pkt);
1583 }
1584
1585 return idx - start;
1586 }
1587
1588 /**
1589 * Respond to all the requests that constituted pkt. Builds the responses and
1590 * writes them to the ring, but doesn't push them to the shared ring.
1591 * \param[in] pkt the packet that needs a response
1592 * \param[in] error true if there was an error handling the packet, such
1593 * as in the hypervisor copy op or mbuf allocation
1594 * \param[out] ring Responses go here
1595 */
1596 static void
xnb_txpkt2rsp(const struct xnb_pkt * pkt,netif_tx_back_ring_t * ring,int error)1597 xnb_txpkt2rsp(const struct xnb_pkt *pkt, netif_tx_back_ring_t *ring,
1598 int error)
1599 {
1600 /*
1601 * Outline:
1602 * 1) Respond to the first request
1603 * 2) Respond to the extra info reques
1604 * Loop through every remaining request in the packet, generating
1605 * responses that copy those requests' ids and sets the status
1606 * appropriately.
1607 */
1608 netif_tx_request_t *tx;
1609 netif_tx_response_t *rsp;
1610 int i;
1611 uint16_t status;
1612
1613 status = (xnb_pkt_is_valid(pkt) == 0) || error ?
1614 NETIF_RSP_ERROR : NETIF_RSP_OKAY;
1615 KASSERT((pkt->list_len == 0) || (ring->rsp_prod_pvt == pkt->car),
1616 ("Cannot respond to ring requests out of order"));
1617
1618 if (pkt->list_len >= 1) {
1619 uint16_t id;
1620 tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1621 id = tx->id;
1622 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1623 rsp->id = id;
1624 rsp->status = status;
1625 ring->rsp_prod_pvt++;
1626
1627 if (pkt->flags & NETRXF_extra_info) {
1628 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1629 rsp->status = NETIF_RSP_NULL;
1630 ring->rsp_prod_pvt++;
1631 }
1632 }
1633
1634 for (i=0; i < pkt->list_len - 1; i++) {
1635 uint16_t id;
1636 tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1637 id = tx->id;
1638 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1639 rsp->id = id;
1640 rsp->status = status;
1641 ring->rsp_prod_pvt++;
1642 }
1643 }
1644
1645 /**
1646 * Create an mbuf chain to represent a packet. Initializes all of the headers
1647 * in the mbuf chain, but does not copy the data. The returned chain must be
1648 * free()'d when no longer needed
1649 * \param[in] pkt A packet to model the mbuf chain after
1650 * \return A newly allocated mbuf chain, possibly with clusters attached.
1651 * NULL on failure
1652 */
1653 static struct mbuf*
xnb_pkt2mbufc(const struct xnb_pkt * pkt,if_t ifp)1654 xnb_pkt2mbufc(const struct xnb_pkt *pkt, if_t ifp)
1655 {
1656 /**
1657 * \todo consider using a memory pool for mbufs instead of
1658 * reallocating them for every packet
1659 */
1660 /** \todo handle extra data */
1661 struct mbuf *m;
1662
1663 m = m_getm(NULL, pkt->size, M_NOWAIT, MT_DATA);
1664
1665 if (m != NULL) {
1666 m->m_pkthdr.rcvif = ifp;
1667 if (pkt->flags & NETTXF_data_validated) {
1668 /*
1669 * We lie to the host OS and always tell it that the
1670 * checksums are ok, because the packet is unlikely to
1671 * get corrupted going across domains.
1672 */
1673 m->m_pkthdr.csum_flags = (
1674 CSUM_IP_CHECKED |
1675 CSUM_IP_VALID |
1676 CSUM_DATA_VALID |
1677 CSUM_PSEUDO_HDR
1678 );
1679 m->m_pkthdr.csum_data = 0xffff;
1680 }
1681 }
1682 return m;
1683 }
1684
1685 /**
1686 * Build a gnttab_copy table that can be used to copy data from a pkt
1687 * to an mbufc. Does not actually perform the copy. Always uses gref's on
1688 * the packet side.
1689 * \param[in] pkt pkt's associated requests form the src for
1690 * the copy operation
1691 * \param[in] mbufc mbufc's storage forms the dest for the copy operation
1692 * \param[out] gnttab Storage for the returned grant table
1693 * \param[in] txb Pointer to the backend ring structure
1694 * \param[in] otherend_id The domain ID of the other end of the copy
1695 * \return The number of gnttab entries filled
1696 */
1697 static int
xnb_txpkt2gnttab(const struct xnb_pkt * pkt,struct mbuf * mbufc,gnttab_copy_table gnttab,const netif_tx_back_ring_t * txb,domid_t otherend_id)1698 xnb_txpkt2gnttab(const struct xnb_pkt *pkt, struct mbuf *mbufc,
1699 gnttab_copy_table gnttab, const netif_tx_back_ring_t *txb,
1700 domid_t otherend_id)
1701 {
1702
1703 struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1704 int gnt_idx = 0; /* index into grant table */
1705 RING_IDX r_idx = pkt->car; /* index into tx ring buffer */
1706 int r_ofs = 0; /* offset of next data within tx request's data area */
1707 int m_ofs = 0; /* offset of next data within mbuf's data area */
1708 /* size in bytes that still needs to be represented in the table */
1709 uint16_t size_remaining = pkt->size;
1710
1711 while (size_remaining > 0) {
1712 const netif_tx_request_t *txq = RING_GET_REQUEST(txb, r_idx);
1713 const size_t mbuf_space = M_TRAILINGSPACE(mbuf) - m_ofs;
1714 const size_t req_size =
1715 r_idx == pkt->car ? pkt->car_size : txq->size;
1716 const size_t pkt_space = req_size - r_ofs;
1717 /*
1718 * space is the largest amount of data that can be copied in the
1719 * grant table's next entry
1720 */
1721 const size_t space = MIN(pkt_space, mbuf_space);
1722
1723 /* TODO: handle this error condition without panicking */
1724 KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1725
1726 gnttab[gnt_idx].source.u.ref = txq->gref;
1727 gnttab[gnt_idx].source.domid = otherend_id;
1728 gnttab[gnt_idx].source.offset = txq->offset + r_ofs;
1729 gnttab[gnt_idx].dest.u.gmfn = virt_to_mfn(
1730 mtod(mbuf, vm_offset_t) + m_ofs);
1731 gnttab[gnt_idx].dest.offset = virt_to_offset(
1732 mtod(mbuf, vm_offset_t) + m_ofs);
1733 gnttab[gnt_idx].dest.domid = DOMID_SELF;
1734 gnttab[gnt_idx].len = space;
1735 gnttab[gnt_idx].flags = GNTCOPY_source_gref;
1736
1737 gnt_idx++;
1738 r_ofs += space;
1739 m_ofs += space;
1740 size_remaining -= space;
1741 if (req_size - r_ofs <= 0) {
1742 /* Must move to the next tx request */
1743 r_ofs = 0;
1744 r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
1745 }
1746 if (M_TRAILINGSPACE(mbuf) - m_ofs <= 0) {
1747 /* Must move to the next mbuf */
1748 m_ofs = 0;
1749 mbuf = mbuf->m_next;
1750 }
1751 }
1752
1753 return gnt_idx;
1754 }
1755
1756 /**
1757 * Check the status of the grant copy operations, and update mbufs various
1758 * non-data fields to reflect the data present.
1759 * \param[in,out] mbufc mbuf chain to update. The chain must be valid and of
1760 * the correct length, and data should already be present
1761 * \param[in] gnttab A grant table for a just completed copy op
1762 * \param[in] n_entries The number of valid entries in the grant table
1763 */
1764 static void
xnb_update_mbufc(struct mbuf * mbufc,const gnttab_copy_table gnttab,int n_entries)1765 xnb_update_mbufc(struct mbuf *mbufc, const gnttab_copy_table gnttab,
1766 int n_entries)
1767 {
1768 struct mbuf *mbuf = mbufc;
1769 int i;
1770 size_t total_size = 0;
1771
1772 for (i = 0; i < n_entries; i++) {
1773 KASSERT(gnttab[i].status == GNTST_okay,
1774 ("Some gnttab_copy entry had error status %hd\n",
1775 gnttab[i].status));
1776
1777 mbuf->m_len += gnttab[i].len;
1778 total_size += gnttab[i].len;
1779 if (M_TRAILINGSPACE(mbuf) <= 0) {
1780 mbuf = mbuf->m_next;
1781 }
1782 }
1783 mbufc->m_pkthdr.len = total_size;
1784
1785 #if defined(INET) || defined(INET6)
1786 xnb_add_mbuf_cksum(mbufc);
1787 #endif
1788 }
1789
1790 /**
1791 * Dequeue at most one packet from the shared ring
1792 * \param[in,out] txb Netif tx ring. A packet will be removed from it, and
1793 * its private indices will be updated. But the indices
1794 * will not be pushed to the shared ring.
1795 * \param[in] ifnet Interface to which the packet will be sent
1796 * \param[in] otherend Domain ID of the other end of the ring
1797 * \param[out] mbufc The assembled mbuf chain, ready to send to the generic
1798 * networking stack
1799 * \param[in,out] gnttab Pointer to enough memory for a grant table. We make
1800 * this a function parameter so that we will take less
1801 * stack space.
1802 * \return An error code
1803 */
1804 static int
xnb_recv(netif_tx_back_ring_t * txb,domid_t otherend,struct mbuf ** mbufc,if_t ifnet,gnttab_copy_table gnttab)1805 xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, struct mbuf **mbufc,
1806 if_t ifnet, gnttab_copy_table gnttab)
1807 {
1808 struct xnb_pkt pkt;
1809 /* number of tx requests consumed to build the last packet */
1810 int num_consumed;
1811 int nr_ents;
1812
1813 *mbufc = NULL;
1814 num_consumed = xnb_ring2pkt(&pkt, txb, txb->req_cons);
1815 if (num_consumed == 0)
1816 return 0; /* Nothing to receive */
1817
1818 /* update statistics independent of errors */
1819 if_inc_counter(ifnet, IFCOUNTER_IPACKETS, 1);
1820
1821 /*
1822 * if we got here, then 1 or more requests was consumed, but the packet
1823 * is not necessarily valid.
1824 */
1825 if (xnb_pkt_is_valid(&pkt) == 0) {
1826 /* got a garbage packet, respond and drop it */
1827 xnb_txpkt2rsp(&pkt, txb, 1);
1828 txb->req_cons += num_consumed;
1829 DPRINTF("xnb_intr: garbage packet, num_consumed=%d\n",
1830 num_consumed);
1831 if_inc_counter(ifnet, IFCOUNTER_IERRORS, 1);
1832 return EINVAL;
1833 }
1834
1835 *mbufc = xnb_pkt2mbufc(&pkt, ifnet);
1836
1837 if (*mbufc == NULL) {
1838 /*
1839 * Couldn't allocate mbufs. Respond and drop the packet. Do
1840 * not consume the requests
1841 */
1842 xnb_txpkt2rsp(&pkt, txb, 1);
1843 DPRINTF("xnb_intr: Couldn't allocate mbufs, num_consumed=%d\n",
1844 num_consumed);
1845 if_inc_counter(ifnet, IFCOUNTER_IQDROPS, 1);
1846 return ENOMEM;
1847 }
1848
1849 nr_ents = xnb_txpkt2gnttab(&pkt, *mbufc, gnttab, txb, otherend);
1850
1851 if (nr_ents > 0) {
1852 int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
1853 gnttab, nr_ents);
1854 KASSERT(hv_ret == 0,
1855 ("HYPERVISOR_grant_table_op returned %d\n", hv_ret));
1856 xnb_update_mbufc(*mbufc, gnttab, nr_ents);
1857 }
1858
1859 xnb_txpkt2rsp(&pkt, txb, 0);
1860 txb->req_cons += num_consumed;
1861 return 0;
1862 }
1863
1864 /**
1865 * Create an xnb_pkt based on the contents of an mbuf chain.
1866 * \param[in] mbufc mbuf chain to transform into a packet
1867 * \param[out] pkt Storage for the newly generated xnb_pkt
1868 * \param[in] start The ring index of the first available slot in the rx
1869 * ring
1870 * \param[in] space The number of free slots in the rx ring
1871 * \retval 0 Success
1872 * \retval EINVAL mbufc was corrupt or not convertible into a pkt
1873 * \retval EAGAIN There was not enough space in the ring to queue the
1874 * packet
1875 */
1876 static int
xnb_mbufc2pkt(const struct mbuf * mbufc,struct xnb_pkt * pkt,RING_IDX start,int space)1877 xnb_mbufc2pkt(const struct mbuf *mbufc, struct xnb_pkt *pkt,
1878 RING_IDX start, int space)
1879 {
1880
1881 int retval = 0;
1882
1883 if ((mbufc == NULL) ||
1884 ( (mbufc->m_flags & M_PKTHDR) == 0) ||
1885 (mbufc->m_pkthdr.len == 0)) {
1886 xnb_pkt_invalidate(pkt);
1887 retval = EINVAL;
1888 } else {
1889 int slots_required;
1890
1891 xnb_pkt_validate(pkt);
1892 pkt->flags = 0;
1893 pkt->size = mbufc->m_pkthdr.len;
1894 pkt->car = start;
1895 pkt->car_size = mbufc->m_len;
1896
1897 if (mbufc->m_pkthdr.csum_flags & CSUM_TSO) {
1898 pkt->flags |= NETRXF_extra_info;
1899 pkt->extra.u.gso.size = mbufc->m_pkthdr.tso_segsz;
1900 pkt->extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
1901 pkt->extra.u.gso.pad = 0;
1902 pkt->extra.u.gso.features = 0;
1903 pkt->extra.type = XEN_NETIF_EXTRA_TYPE_GSO;
1904 pkt->extra.flags = 0;
1905 pkt->cdr = start + 2;
1906 } else {
1907 pkt->cdr = start + 1;
1908 }
1909 if (mbufc->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_DELAY_DATA)) {
1910 pkt->flags |=
1911 (NETRXF_csum_blank | NETRXF_data_validated);
1912 }
1913
1914 /*
1915 * Each ring response can have up to PAGE_SIZE of data.
1916 * Assume that we can defragment the mbuf chain efficiently
1917 * into responses so that each response but the last uses all
1918 * PAGE_SIZE bytes.
1919 */
1920 pkt->list_len = howmany(pkt->size, PAGE_SIZE);
1921
1922 if (pkt->list_len > 1) {
1923 pkt->flags |= NETRXF_more_data;
1924 }
1925
1926 slots_required = pkt->list_len +
1927 (pkt->flags & NETRXF_extra_info ? 1 : 0);
1928 if (slots_required > space) {
1929 xnb_pkt_invalidate(pkt);
1930 retval = EAGAIN;
1931 }
1932 }
1933
1934 return retval;
1935 }
1936
1937 /**
1938 * Build a gnttab_copy table that can be used to copy data from an mbuf chain
1939 * to the frontend's shared buffers. Does not actually perform the copy.
1940 * Always uses gref's on the other end's side.
1941 * \param[in] pkt pkt's associated responses form the dest for the copy
1942 * operatoin
1943 * \param[in] mbufc The source for the copy operation
1944 * \param[out] gnttab Storage for the returned grant table
1945 * \param[in] rxb Pointer to the backend ring structure
1946 * \param[in] otherend_id The domain ID of the other end of the copy
1947 * \return The number of gnttab entries filled
1948 */
1949 static int
xnb_rxpkt2gnttab(const struct xnb_pkt * pkt,const struct mbuf * mbufc,gnttab_copy_table gnttab,const netif_rx_back_ring_t * rxb,domid_t otherend_id)1950 xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1951 gnttab_copy_table gnttab, const netif_rx_back_ring_t *rxb,
1952 domid_t otherend_id)
1953 {
1954
1955 const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1956 int gnt_idx = 0; /* index into grant table */
1957 RING_IDX r_idx = pkt->car; /* index into rx ring buffer */
1958 int r_ofs = 0; /* offset of next data within rx request's data area */
1959 int m_ofs = 0; /* offset of next data within mbuf's data area */
1960 /* size in bytes that still needs to be represented in the table */
1961 uint16_t size_remaining;
1962
1963 size_remaining = (xnb_pkt_is_valid(pkt) != 0) ? pkt->size : 0;
1964
1965 while (size_remaining > 0) {
1966 const netif_rx_request_t *rxq = RING_GET_REQUEST(rxb, r_idx);
1967 const size_t mbuf_space = mbuf->m_len - m_ofs;
1968 /* Xen shared pages have an implied size of PAGE_SIZE */
1969 const size_t req_size = PAGE_SIZE;
1970 const size_t pkt_space = req_size - r_ofs;
1971 /*
1972 * space is the largest amount of data that can be copied in the
1973 * grant table's next entry
1974 */
1975 const size_t space = MIN(pkt_space, mbuf_space);
1976
1977 /* TODO: handle this error condition without panicing */
1978 KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1979
1980 gnttab[gnt_idx].dest.u.ref = rxq->gref;
1981 gnttab[gnt_idx].dest.domid = otherend_id;
1982 gnttab[gnt_idx].dest.offset = r_ofs;
1983 gnttab[gnt_idx].source.u.gmfn = virt_to_mfn(
1984 mtod(mbuf, vm_offset_t) + m_ofs);
1985 gnttab[gnt_idx].source.offset = virt_to_offset(
1986 mtod(mbuf, vm_offset_t) + m_ofs);
1987 gnttab[gnt_idx].source.domid = DOMID_SELF;
1988 gnttab[gnt_idx].len = space;
1989 gnttab[gnt_idx].flags = GNTCOPY_dest_gref;
1990
1991 gnt_idx++;
1992
1993 r_ofs += space;
1994 m_ofs += space;
1995 size_remaining -= space;
1996 if (req_size - r_ofs <= 0) {
1997 /* Must move to the next rx request */
1998 r_ofs = 0;
1999 r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
2000 }
2001 if (mbuf->m_len - m_ofs <= 0) {
2002 /* Must move to the next mbuf */
2003 m_ofs = 0;
2004 mbuf = mbuf->m_next;
2005 }
2006 }
2007
2008 return gnt_idx;
2009 }
2010
2011 /**
2012 * Generates responses for all the requests that constituted pkt. Builds
2013 * responses and writes them to the ring, but doesn't push the shared ring
2014 * indices.
2015 * \param[in] pkt the packet that needs a response
2016 * \param[in] gnttab The grant copy table corresponding to this packet.
2017 * Used to determine how many rsp->netif_rx_response_t's to
2018 * generate.
2019 * \param[in] n_entries Number of relevant entries in the grant table
2020 * \param[out] ring Responses go here
2021 * \return The number of RX requests that were consumed to generate
2022 * the responses
2023 */
2024 static int
xnb_rxpkt2rsp(const struct xnb_pkt * pkt,const gnttab_copy_table gnttab,int n_entries,netif_rx_back_ring_t * ring)2025 xnb_rxpkt2rsp(const struct xnb_pkt *pkt, const gnttab_copy_table gnttab,
2026 int n_entries, netif_rx_back_ring_t *ring)
2027 {
2028 /*
2029 * This code makes the following assumptions:
2030 * * All entries in gnttab set GNTCOPY_dest_gref
2031 * * The entries in gnttab are grouped by their grefs: any two
2032 * entries with the same gref must be adjacent
2033 */
2034 int error = 0;
2035 int gnt_idx, i;
2036 int n_responses = 0;
2037 grant_ref_t last_gref = GRANT_REF_INVALID;
2038 RING_IDX r_idx;
2039
2040 KASSERT(gnttab != NULL, ("Received a null granttable copy"));
2041
2042 /*
2043 * In the event of an error, we only need to send one response to the
2044 * netfront. In that case, we musn't write any data to the responses
2045 * after the one we send. So we must loop all the way through gnttab
2046 * looking for errors before we generate any responses
2047 *
2048 * Since we're looping through the grant table anyway, we'll count the
2049 * number of different gref's in it, which will tell us how many
2050 * responses to generate
2051 */
2052 for (gnt_idx = 0; gnt_idx < n_entries; gnt_idx++) {
2053 int16_t status = gnttab[gnt_idx].status;
2054 if (status != GNTST_okay) {
2055 DPRINTF(
2056 "Got error %d for hypervisor gnttab_copy status\n",
2057 status);
2058 error = 1;
2059 break;
2060 }
2061 if (gnttab[gnt_idx].dest.u.ref != last_gref) {
2062 n_responses++;
2063 last_gref = gnttab[gnt_idx].dest.u.ref;
2064 }
2065 }
2066
2067 if (error != 0) {
2068 uint16_t id;
2069 netif_rx_response_t *rsp;
2070
2071 id = RING_GET_REQUEST(ring, ring->rsp_prod_pvt)->id;
2072 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
2073 rsp->id = id;
2074 rsp->status = NETIF_RSP_ERROR;
2075 n_responses = 1;
2076 } else {
2077 gnt_idx = 0;
2078 const int has_extra = pkt->flags & NETRXF_extra_info;
2079 if (has_extra != 0)
2080 n_responses++;
2081
2082 for (i = 0; i < n_responses; i++) {
2083 netif_rx_request_t rxq;
2084 netif_rx_response_t *rsp;
2085
2086 r_idx = ring->rsp_prod_pvt + i;
2087 /*
2088 * We copy the structure of rxq instead of making a
2089 * pointer because it shares the same memory as rsp.
2090 */
2091 rxq = *(RING_GET_REQUEST(ring, r_idx));
2092 rsp = RING_GET_RESPONSE(ring, r_idx);
2093 if (has_extra && (i == 1)) {
2094 netif_extra_info_t *ext =
2095 (netif_extra_info_t*)rsp;
2096 ext->type = XEN_NETIF_EXTRA_TYPE_GSO;
2097 ext->flags = 0;
2098 ext->u.gso.size = pkt->extra.u.gso.size;
2099 ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
2100 ext->u.gso.pad = 0;
2101 ext->u.gso.features = 0;
2102 } else {
2103 rsp->id = rxq.id;
2104 rsp->status = GNTST_okay;
2105 rsp->offset = 0;
2106 rsp->flags = 0;
2107 if (i < pkt->list_len - 1)
2108 rsp->flags |= NETRXF_more_data;
2109 if ((i == 0) && has_extra)
2110 rsp->flags |= NETRXF_extra_info;
2111 if ((i == 0) &&
2112 (pkt->flags & NETRXF_data_validated)) {
2113 rsp->flags |= NETRXF_data_validated;
2114 rsp->flags |= NETRXF_csum_blank;
2115 }
2116 rsp->status = 0;
2117 for (; gnttab[gnt_idx].dest.u.ref == rxq.gref;
2118 gnt_idx++) {
2119 rsp->status += gnttab[gnt_idx].len;
2120 }
2121 }
2122 }
2123 }
2124
2125 ring->req_cons += n_responses;
2126 ring->rsp_prod_pvt += n_responses;
2127 return n_responses;
2128 }
2129
2130 #if defined(INET) || defined(INET6)
2131 /**
2132 * Add IP, TCP, and/or UDP checksums to every mbuf in a chain. The first mbuf
2133 * in the chain must start with a struct ether_header.
2134 *
2135 * XXX This function will perform incorrectly on UDP packets that are split up
2136 * into multiple ethernet frames.
2137 */
2138 static void
xnb_add_mbuf_cksum(struct mbuf * mbufc)2139 xnb_add_mbuf_cksum(struct mbuf *mbufc)
2140 {
2141 struct ether_header *eh;
2142 struct ip *iph;
2143 uint16_t ether_type;
2144
2145 eh = mtod(mbufc, struct ether_header*);
2146 ether_type = ntohs(eh->ether_type);
2147 if (ether_type != ETHERTYPE_IP) {
2148 /* Nothing to calculate */
2149 return;
2150 }
2151
2152 iph = (struct ip*)(eh + 1);
2153 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2154 iph->ip_sum = 0;
2155 iph->ip_sum = in_cksum_hdr(iph);
2156 }
2157
2158 switch (iph->ip_p) {
2159 case IPPROTO_TCP:
2160 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2161 size_t tcplen = ntohs(iph->ip_len) - sizeof(struct ip);
2162 struct tcphdr *th = (struct tcphdr*)(iph + 1);
2163 th->th_sum = in_pseudo(iph->ip_src.s_addr,
2164 iph->ip_dst.s_addr, htons(IPPROTO_TCP + tcplen));
2165 th->th_sum = in_cksum_skip(mbufc,
2166 sizeof(struct ether_header) + ntohs(iph->ip_len),
2167 sizeof(struct ether_header) + (iph->ip_hl << 2));
2168 }
2169 break;
2170 case IPPROTO_UDP:
2171 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2172 size_t udplen = ntohs(iph->ip_len) - sizeof(struct ip);
2173 struct udphdr *uh = (struct udphdr*)(iph + 1);
2174 uh->uh_sum = in_pseudo(iph->ip_src.s_addr,
2175 iph->ip_dst.s_addr, htons(IPPROTO_UDP + udplen));
2176 uh->uh_sum = in_cksum_skip(mbufc,
2177 sizeof(struct ether_header) + ntohs(iph->ip_len),
2178 sizeof(struct ether_header) + (iph->ip_hl << 2));
2179 }
2180 break;
2181 default:
2182 break;
2183 }
2184 }
2185 #endif /* INET || INET6 */
2186
2187 static void
xnb_stop(struct xnb_softc * xnb)2188 xnb_stop(struct xnb_softc *xnb)
2189 {
2190 if_t ifp;
2191
2192 mtx_assert(&xnb->sc_lock, MA_OWNED);
2193 ifp = xnb->xnb_ifp;
2194 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2195 if_link_state_change(ifp, LINK_STATE_DOWN);
2196 }
2197
2198 static int
xnb_ioctl(if_t ifp,u_long cmd,caddr_t data)2199 xnb_ioctl(if_t ifp, u_long cmd, caddr_t data)
2200 {
2201 struct xnb_softc *xnb = if_getsoftc(ifp);
2202 struct ifreq *ifr = (struct ifreq*) data;
2203 #ifdef INET
2204 struct ifaddr *ifa = (struct ifaddr*)data;
2205 #endif
2206 int error = 0;
2207
2208 switch (cmd) {
2209 case SIOCSIFFLAGS:
2210 mtx_lock(&xnb->sc_lock);
2211 if (if_getflags(ifp) & IFF_UP) {
2212 xnb_ifinit_locked(xnb);
2213 } else {
2214 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2215 xnb_stop(xnb);
2216 }
2217 }
2218 /*
2219 * Note: netfront sets a variable named xn_if_flags
2220 * here, but that variable is never read
2221 */
2222 mtx_unlock(&xnb->sc_lock);
2223 break;
2224 case SIOCSIFADDR:
2225 #ifdef INET
2226 mtx_lock(&xnb->sc_lock);
2227 if (ifa->ifa_addr->sa_family == AF_INET) {
2228 if_setflagbits(ifp, IFF_UP, 0);
2229 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
2230 if_setdrvflagbits(ifp, 0,
2231 IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2232 if_link_state_change(ifp,
2233 LINK_STATE_DOWN);
2234 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2235 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2236 if_link_state_change(ifp,
2237 LINK_STATE_UP);
2238 }
2239 arp_ifinit(ifp, ifa);
2240 mtx_unlock(&xnb->sc_lock);
2241 } else {
2242 mtx_unlock(&xnb->sc_lock);
2243 #endif
2244 error = ether_ioctl(ifp, cmd, data);
2245 #ifdef INET
2246 }
2247 #endif
2248 break;
2249 case SIOCSIFCAP:
2250 mtx_lock(&xnb->sc_lock);
2251 if (ifr->ifr_reqcap & IFCAP_TXCSUM) {
2252 if_setcapenablebit(ifp, IFCAP_TXCSUM, 0);
2253 if_sethwassistbits(ifp, XNB_CSUM_FEATURES, 0);
2254 } else {
2255 if_setcapenablebit(ifp, 0, IFCAP_TXCSUM);
2256 if_sethwassistbits(ifp, 0, XNB_CSUM_FEATURES);
2257 }
2258 if ((ifr->ifr_reqcap & IFCAP_RXCSUM)) {
2259 if_setcapenablebit(ifp, IFCAP_RXCSUM, 0);
2260 } else {
2261 if_setcapenablebit(ifp, 0, IFCAP_RXCSUM);
2262 }
2263 /*
2264 * TODO enable TSO4 and LRO once we no longer need
2265 * to calculate checksums in software
2266 */
2267 #if 0
2268 if (ifr->if_reqcap |= IFCAP_TSO4) {
2269 if (IFCAP_TXCSUM & if_getcapenable(ifp)) {
2270 printf("xnb: Xen netif requires that "
2271 "TXCSUM be enabled in order "
2272 "to use TSO4\n");
2273 error = EINVAL;
2274 } else {
2275 if_setcapenablebit(ifp, IFCAP_TSO4, 0);
2276 if_sethwassistbits(ifp, CSUM_TSO, 0);
2277 }
2278 } else {
2279 if_setcapenablebit(ifp, 0, IFCAP_TSO4);
2280 if_sethwassistbits(ifp, 0, (CSUM_TSO));
2281 }
2282 if (ifr->ifreqcap |= IFCAP_LRO) {
2283 if_setcapenablebit(ifp, IFCAP_LRO, 0);
2284 } else {
2285 if_setcapenablebit(ifp, 0, IFCAP_LRO);
2286 }
2287 #endif
2288 mtx_unlock(&xnb->sc_lock);
2289 break;
2290 case SIOCSIFMTU:
2291 if_setmtu(ifp, ifr->ifr_mtu);
2292 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2293 xnb_ifinit(xnb);
2294 break;
2295 case SIOCADDMULTI:
2296 case SIOCDELMULTI:
2297 break;
2298 case SIOCSIFMEDIA:
2299 case SIOCGIFMEDIA:
2300 error = ifmedia_ioctl(ifp, ifr, &xnb->sc_media, cmd);
2301 break;
2302 default:
2303 error = ether_ioctl(ifp, cmd, data);
2304 break;
2305 }
2306 return (error);
2307 }
2308
2309 static void
xnb_start_locked(if_t ifp)2310 xnb_start_locked(if_t ifp)
2311 {
2312 netif_rx_back_ring_t *rxb;
2313 struct xnb_softc *xnb;
2314 struct mbuf *mbufc;
2315 RING_IDX req_prod_local;
2316
2317 xnb = if_getsoftc(ifp);
2318 rxb = &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
2319
2320 if (!xnb->carrier)
2321 return;
2322
2323 do {
2324 int out_of_space = 0;
2325 int notify;
2326 req_prod_local = rxb->sring->req_prod;
2327 xen_rmb();
2328 for (;;) {
2329 int error;
2330
2331 mbufc = if_dequeue(ifp);
2332 if (mbufc == NULL)
2333 break;
2334 error = xnb_send(rxb, xnb->otherend_id, mbufc,
2335 xnb->rx_gnttab);
2336 switch (error) {
2337 case EAGAIN:
2338 /*
2339 * Insufficient space in the ring.
2340 * Requeue pkt and send when space is
2341 * available.
2342 */
2343 if_sendq_prepend(ifp, mbufc);
2344 /*
2345 * Perhaps the frontend missed an IRQ
2346 * and went to sleep. Notify it to wake
2347 * it up.
2348 */
2349 out_of_space = 1;
2350 break;
2351
2352 case EINVAL:
2353 /* OS gave a corrupt packet. Drop it.*/
2354 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2355 /* FALLTHROUGH */
2356 default:
2357 /* Send succeeded, or packet had error.
2358 * Free the packet */
2359 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2360 if (mbufc)
2361 m_freem(mbufc);
2362 break;
2363 }
2364 if (out_of_space != 0)
2365 break;
2366 }
2367
2368 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(rxb, notify);
2369 if ((notify != 0) || (out_of_space != 0))
2370 xen_intr_signal(xnb->xen_intr_handle);
2371 rxb->sring->req_event = req_prod_local + 1;
2372 xen_mb();
2373 } while (rxb->sring->req_prod != req_prod_local) ;
2374 }
2375
2376 /**
2377 * Sends one packet to the ring. Blocks until the packet is on the ring
2378 * \param[in] mbufc Contains one packet to send. Caller must free
2379 * \param[in,out] rxb The packet will be pushed onto this ring, but the
2380 * otherend will not be notified.
2381 * \param[in] otherend The domain ID of the other end of the connection
2382 * \retval EAGAIN The ring did not have enough space for the packet.
2383 * The ring has not been modified
2384 * \param[in,out] gnttab Pointer to enough memory for a grant table. We make
2385 * this a function parameter so that we will take less
2386 * stack space.
2387 * \retval EINVAL mbufc was corrupt or not convertible into a pkt
2388 */
2389 static int
xnb_send(netif_rx_back_ring_t * ring,domid_t otherend,const struct mbuf * mbufc,gnttab_copy_table gnttab)2390 xnb_send(netif_rx_back_ring_t *ring, domid_t otherend, const struct mbuf *mbufc,
2391 gnttab_copy_table gnttab)
2392 {
2393 struct xnb_pkt pkt;
2394 int error, n_entries;
2395 RING_IDX space;
2396
2397 space = ring->sring->req_prod - ring->req_cons;
2398 error = xnb_mbufc2pkt(mbufc, &pkt, ring->rsp_prod_pvt, space);
2399 if (error != 0)
2400 return error;
2401 n_entries = xnb_rxpkt2gnttab(&pkt, mbufc, gnttab, ring, otherend);
2402 if (n_entries != 0) {
2403 int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
2404 gnttab, n_entries);
2405 KASSERT(hv_ret == 0, ("HYPERVISOR_grant_table_op returned %d\n",
2406 hv_ret));
2407 }
2408
2409 xnb_rxpkt2rsp(&pkt, gnttab, n_entries, ring);
2410
2411 return 0;
2412 }
2413
2414 static void
xnb_start(if_t ifp)2415 xnb_start(if_t ifp)
2416 {
2417 struct xnb_softc *xnb;
2418
2419 xnb = if_getsoftc(ifp);
2420 mtx_lock(&xnb->rx_lock);
2421 xnb_start_locked(ifp);
2422 mtx_unlock(&xnb->rx_lock);
2423 }
2424
2425 /* equivalent of network_open() in Linux */
2426 static void
xnb_ifinit_locked(struct xnb_softc * xnb)2427 xnb_ifinit_locked(struct xnb_softc *xnb)
2428 {
2429 if_t ifp;
2430
2431 ifp = xnb->xnb_ifp;
2432
2433 mtx_assert(&xnb->sc_lock, MA_OWNED);
2434
2435 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2436 return;
2437
2438 xnb_stop(xnb);
2439
2440 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2441 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2442 if_link_state_change(ifp, LINK_STATE_UP);
2443 }
2444
2445 static void
xnb_ifinit(void * xsc)2446 xnb_ifinit(void *xsc)
2447 {
2448 struct xnb_softc *xnb = xsc;
2449
2450 mtx_lock(&xnb->sc_lock);
2451 xnb_ifinit_locked(xnb);
2452 mtx_unlock(&xnb->sc_lock);
2453 }
2454
2455 /**
2456 * Callback used by the generic networking code to tell us when our carrier
2457 * state has changed. Since we don't have a physical carrier, we don't care
2458 */
2459 static int
xnb_ifmedia_upd(if_t ifp)2460 xnb_ifmedia_upd(if_t ifp)
2461 {
2462 return (0);
2463 }
2464
2465 /**
2466 * Callback used by the generic networking code to ask us what our carrier
2467 * state is. Since we don't have a physical carrier, this is very simple
2468 */
2469 static void
xnb_ifmedia_sts(if_t ifp,struct ifmediareq * ifmr)2470 xnb_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2471 {
2472 ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2473 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2474 }
2475
2476 /*---------------------------- NewBus Registration ---------------------------*/
2477 static device_method_t xnb_methods[] = {
2478 /* Device interface */
2479 DEVMETHOD(device_probe, xnb_probe),
2480 DEVMETHOD(device_attach, xnb_attach),
2481 DEVMETHOD(device_detach, xnb_detach),
2482 DEVMETHOD(device_shutdown, bus_generic_shutdown),
2483 DEVMETHOD(device_suspend, xnb_suspend),
2484 DEVMETHOD(device_resume, xnb_resume),
2485
2486 /* Xenbus interface */
2487 DEVMETHOD(xenbus_otherend_changed, xnb_frontend_changed),
2488
2489 DEVMETHOD_END
2490 };
2491
2492 static driver_t xnb_driver = {
2493 "xnb",
2494 xnb_methods,
2495 sizeof(struct xnb_softc),
2496 };
2497
2498 DRIVER_MODULE(xnb, xenbusb_back, xnb_driver, 0, 0);
2499
2500 /*-------------------------- Unit Tests -------------------------------------*/
2501 #ifdef XNB_DEBUG
2502 #include "netback_unit_tests.c"
2503 #endif
2504