xref: /linux/drivers/usb/host/xhci.c (revision 4eee1520ea845a6d6d82e85498d9412419560871)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/jiffies.h>
12 #include <linux/pci.h>
13 #include <linux/iommu.h>
14 #include <linux/iopoll.h>
15 #include <linux/irq.h>
16 #include <linux/log2.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/slab.h>
20 #include <linux/string_choices.h>
21 #include <linux/dmi.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/usb/xhci-sideband.h>
24 
25 #include "xhci.h"
26 #include "xhci-trace.h"
27 #include "xhci-debugfs.h"
28 #include "xhci-dbgcap.h"
29 
30 #define DRIVER_AUTHOR "Sarah Sharp"
31 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
32 
33 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
34 
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39 
40 static unsigned long long quirks;
41 module_param(quirks, ullong, S_IRUGO);
42 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
43 
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)44 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
45 {
46 	struct xhci_segment *seg;
47 
48 	if (!td || !td->start_seg)
49 		return false;
50 
51 	xhci_for_each_ring_seg(ring->first_seg, seg) {
52 		if (seg == td->start_seg)
53 			return true;
54 	}
55 
56 	return false;
57 }
58 
59 /*
60  * xhci_handshake - spin reading hc until handshake completes or fails
61  * @ptr: address of hc register to be read
62  * @mask: bits to look at in result of read
63  * @done: value of those bits when handshake succeeds
64  * @usec: timeout in microseconds
65  *
66  * Returns negative errno, or zero on success
67  *
68  * Success happens when the "mask" bits have the specified value (hardware
69  * handshake done).  There are two failure modes:  "usec" have passed (major
70  * hardware flakeout), or the register reads as all-ones (hardware removed).
71  */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)72 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
73 {
74 	u32	result;
75 	int	ret;
76 
77 	ret = readl_poll_timeout_atomic(ptr, result,
78 					(result & mask) == done ||
79 					result == U32_MAX,
80 					1, timeout_us);
81 	if (result == U32_MAX)		/* card removed */
82 		return -ENODEV;
83 
84 	return ret;
85 }
86 
87 /*
88  * Disable interrupts and begin the xHCI halting process.
89  */
xhci_quiesce(struct xhci_hcd * xhci)90 void xhci_quiesce(struct xhci_hcd *xhci)
91 {
92 	u32 halted;
93 	u32 cmd;
94 	u32 mask;
95 
96 	mask = ~(XHCI_IRQS);
97 	halted = readl(&xhci->op_regs->status) & STS_HALT;
98 	if (!halted)
99 		mask &= ~CMD_RUN;
100 
101 	cmd = readl(&xhci->op_regs->command);
102 	cmd &= mask;
103 	writel(cmd, &xhci->op_regs->command);
104 }
105 
106 /*
107  * Force HC into halt state.
108  *
109  * Disable any IRQs and clear the run/stop bit.
110  * HC will complete any current and actively pipelined transactions, and
111  * should halt within 16 ms of the run/stop bit being cleared.
112  * Read HC Halted bit in the status register to see when the HC is finished.
113  */
xhci_halt(struct xhci_hcd * xhci)114 int xhci_halt(struct xhci_hcd *xhci)
115 {
116 	int ret;
117 
118 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
119 	xhci_quiesce(xhci);
120 
121 	ret = xhci_handshake(&xhci->op_regs->status,
122 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
123 	if (ret) {
124 		if (!(xhci->xhc_state & XHCI_STATE_DYING))
125 			xhci_warn(xhci, "Host halt failed, %d\n", ret);
126 		return ret;
127 	}
128 
129 	xhci->xhc_state |= XHCI_STATE_HALTED;
130 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
131 
132 	return ret;
133 }
134 
135 /*
136  * Set the run bit and wait for the host to be running.
137  */
xhci_start(struct xhci_hcd * xhci)138 int xhci_start(struct xhci_hcd *xhci)
139 {
140 	u32 temp;
141 	int ret;
142 
143 	temp = readl(&xhci->op_regs->command);
144 	temp |= (CMD_RUN);
145 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
146 			temp);
147 	writel(temp, &xhci->op_regs->command);
148 
149 	/*
150 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
151 	 * running.
152 	 */
153 	ret = xhci_handshake(&xhci->op_regs->status,
154 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
155 	if (ret == -ETIMEDOUT)
156 		xhci_err(xhci, "Host took too long to start, "
157 				"waited %u microseconds.\n",
158 				XHCI_MAX_HALT_USEC);
159 	if (!ret) {
160 		/* clear state flags. Including dying, halted or removing */
161 		xhci->xhc_state = 0;
162 		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
163 	}
164 
165 	return ret;
166 }
167 
168 /*
169  * Reset a halted HC.
170  *
171  * This resets pipelines, timers, counters, state machines, etc.
172  * Transactions will be terminated immediately, and operational registers
173  * will be set to their defaults.
174  */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)175 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
176 {
177 	u32 command;
178 	u32 state;
179 	int ret;
180 
181 	state = readl(&xhci->op_regs->status);
182 
183 	if (state == ~(u32)0) {
184 		if (!(xhci->xhc_state & XHCI_STATE_DYING))
185 			xhci_warn(xhci, "Host not accessible, reset failed.\n");
186 		return -ENODEV;
187 	}
188 
189 	if ((state & STS_HALT) == 0) {
190 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
191 		return 0;
192 	}
193 
194 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
195 	command = readl(&xhci->op_regs->command);
196 	command |= CMD_RESET;
197 	writel(command, &xhci->op_regs->command);
198 
199 	/* Existing Intel xHCI controllers require a delay of 1 mS,
200 	 * after setting the CMD_RESET bit, and before accessing any
201 	 * HC registers. This allows the HC to complete the
202 	 * reset operation and be ready for HC register access.
203 	 * Without this delay, the subsequent HC register access,
204 	 * may result in a system hang very rarely.
205 	 */
206 	if (xhci->quirks & XHCI_INTEL_HOST)
207 		udelay(1000);
208 
209 	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
210 	if (ret)
211 		return ret;
212 
213 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
214 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
215 
216 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
217 			 "Wait for controller to be ready for doorbell rings");
218 	/*
219 	 * xHCI cannot write to any doorbells or operational registers other
220 	 * than status until the "Controller Not Ready" flag is cleared.
221 	 */
222 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
223 
224 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
225 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
226 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
227 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
228 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
229 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
230 
231 	return ret;
232 }
233 
xhci_zero_64b_regs(struct xhci_hcd * xhci)234 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
235 {
236 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
237 	struct iommu_domain *domain;
238 	int err, i;
239 	u64 val;
240 	u32 intrs;
241 
242 	/*
243 	 * Some Renesas controllers get into a weird state if they are
244 	 * reset while programmed with 64bit addresses (they will preserve
245 	 * the top half of the address in internal, non visible
246 	 * registers). You end up with half the address coming from the
247 	 * kernel, and the other half coming from the firmware. Also,
248 	 * changing the programming leads to extra accesses even if the
249 	 * controller is supposed to be halted. The controller ends up with
250 	 * a fatal fault, and is then ripe for being properly reset.
251 	 *
252 	 * Special care is taken to only apply this if the device is behind
253 	 * an iommu. Doing anything when there is no iommu is definitely
254 	 * unsafe...
255 	 */
256 	domain = iommu_get_domain_for_dev(dev);
257 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
258 	    domain->type == IOMMU_DOMAIN_IDENTITY)
259 		return;
260 
261 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
262 
263 	/* Clear HSEIE so that faults do not get signaled */
264 	val = readl(&xhci->op_regs->command);
265 	val &= ~CMD_HSEIE;
266 	writel(val, &xhci->op_regs->command);
267 
268 	/* Clear HSE (aka FATAL) */
269 	val = readl(&xhci->op_regs->status);
270 	val |= STS_FATAL;
271 	writel(val, &xhci->op_regs->status);
272 
273 	/* Now zero the registers, and brace for impact */
274 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
275 	if (upper_32_bits(val))
276 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
277 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
278 	if (upper_32_bits(val))
279 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
280 
281 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
282 		      ARRAY_SIZE(xhci->run_regs->ir_set));
283 
284 	for (i = 0; i < intrs; i++) {
285 		struct xhci_intr_reg __iomem *ir;
286 
287 		ir = &xhci->run_regs->ir_set[i];
288 		val = xhci_read_64(xhci, &ir->erst_base);
289 		if (upper_32_bits(val))
290 			xhci_write_64(xhci, 0, &ir->erst_base);
291 		val= xhci_read_64(xhci, &ir->erst_dequeue);
292 		if (upper_32_bits(val))
293 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
294 	}
295 
296 	/* Wait for the fault to appear. It will be cleared on reset */
297 	err = xhci_handshake(&xhci->op_regs->status,
298 			     STS_FATAL, STS_FATAL,
299 			     XHCI_MAX_HALT_USEC);
300 	if (!err)
301 		xhci_info(xhci, "Fault detected\n");
302 }
303 
xhci_enable_interrupter(struct xhci_interrupter * ir)304 int xhci_enable_interrupter(struct xhci_interrupter *ir)
305 {
306 	u32 iman;
307 
308 	if (!ir || !ir->ir_set)
309 		return -EINVAL;
310 
311 	iman = readl(&ir->ir_set->iman);
312 	iman |= IMAN_IE;
313 	writel(iman, &ir->ir_set->iman);
314 
315 	/* Read operation to guarantee the write has been flushed from posted buffers */
316 	readl(&ir->ir_set->iman);
317 	return 0;
318 }
319 
xhci_disable_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir)320 int xhci_disable_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
321 {
322 	u32 iman;
323 
324 	if (!ir || !ir->ir_set)
325 		return -EINVAL;
326 
327 	iman = readl(&ir->ir_set->iman);
328 	iman &= ~IMAN_IE;
329 	writel(iman, &ir->ir_set->iman);
330 
331 	iman = readl(&ir->ir_set->iman);
332 	if (iman & IMAN_IP)
333 		xhci_dbg(xhci, "%s: Interrupt pending\n", __func__);
334 
335 	return 0;
336 }
337 
338 /* interrupt moderation interval imod_interval in nanoseconds */
xhci_set_interrupter_moderation(struct xhci_interrupter * ir,u32 imod_interval)339 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir,
340 				    u32 imod_interval)
341 {
342 	u32 imod;
343 
344 	if (!ir || !ir->ir_set)
345 		return -EINVAL;
346 
347 	/* IMODI value in IMOD register is in 250ns increments */
348 	imod_interval = umin(imod_interval / 250, IMODI_MASK);
349 
350 	imod = readl(&ir->ir_set->imod);
351 	imod &= ~IMODI_MASK;
352 	imod |= imod_interval;
353 	writel(imod, &ir->ir_set->imod);
354 
355 	return 0;
356 }
357 
compliance_mode_recovery(struct timer_list * t)358 static void compliance_mode_recovery(struct timer_list *t)
359 {
360 	struct xhci_hcd *xhci;
361 	struct usb_hcd *hcd;
362 	struct xhci_hub *rhub;
363 	u32 temp;
364 	int i;
365 
366 	xhci = timer_container_of(xhci, t, comp_mode_recovery_timer);
367 	rhub = &xhci->usb3_rhub;
368 	hcd = rhub->hcd;
369 
370 	if (!hcd)
371 		return;
372 
373 	for (i = 0; i < rhub->num_ports; i++) {
374 		temp = readl(rhub->ports[i]->addr);
375 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
376 			/*
377 			 * Compliance Mode Detected. Letting USB Core
378 			 * handle the Warm Reset
379 			 */
380 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
381 					"Compliance mode detected->port %d",
382 					i + 1);
383 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
384 					"Attempting compliance mode recovery");
385 
386 			if (hcd->state == HC_STATE_SUSPENDED)
387 				usb_hcd_resume_root_hub(hcd);
388 
389 			usb_hcd_poll_rh_status(hcd);
390 		}
391 	}
392 
393 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
394 		mod_timer(&xhci->comp_mode_recovery_timer,
395 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
396 }
397 
398 /*
399  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
400  * that causes ports behind that hardware to enter compliance mode sometimes.
401  * The quirk creates a timer that polls every 2 seconds the link state of
402  * each host controller's port and recovers it by issuing a Warm reset
403  * if Compliance mode is detected, otherwise the port will become "dead" (no
404  * device connections or disconnections will be detected anymore). Becasue no
405  * status event is generated when entering compliance mode (per xhci spec),
406  * this quirk is needed on systems that have the failing hardware installed.
407  */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)408 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
409 {
410 	xhci->port_status_u0 = 0;
411 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
412 		    0);
413 	xhci->comp_mode_recovery_timer.expires = jiffies +
414 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
415 
416 	add_timer(&xhci->comp_mode_recovery_timer);
417 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
418 			"Compliance mode recovery timer initialized");
419 }
420 
421 /*
422  * This function identifies the systems that have installed the SN65LVPE502CP
423  * USB3.0 re-driver and that need the Compliance Mode Quirk.
424  * Systems:
425  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
426  */
xhci_compliance_mode_recovery_timer_quirk_check(void)427 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
428 {
429 	const char *dmi_product_name, *dmi_sys_vendor;
430 
431 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
432 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
433 	if (!dmi_product_name || !dmi_sys_vendor)
434 		return false;
435 
436 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
437 		return false;
438 
439 	if (strstr(dmi_product_name, "Z420") ||
440 			strstr(dmi_product_name, "Z620") ||
441 			strstr(dmi_product_name, "Z820") ||
442 			strstr(dmi_product_name, "Z1 Workstation"))
443 		return true;
444 
445 	return false;
446 }
447 
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)448 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
449 {
450 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
451 }
452 
xhci_hcd_page_size(struct xhci_hcd * xhci)453 static void xhci_hcd_page_size(struct xhci_hcd *xhci)
454 {
455 	u32 page_size;
456 
457 	page_size = readl(&xhci->op_regs->page_size) & XHCI_PAGE_SIZE_MASK;
458 	if (!is_power_of_2(page_size)) {
459 		xhci_warn(xhci, "Invalid page size register = 0x%x\n", page_size);
460 		/* Fallback to 4K page size, since that's common */
461 		page_size = 1;
462 	}
463 
464 	xhci->page_size = page_size << 12;
465 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "HCD page size set to %iK",
466 		       xhci->page_size >> 10);
467 }
468 
xhci_enable_max_dev_slots(struct xhci_hcd * xhci)469 static void xhci_enable_max_dev_slots(struct xhci_hcd *xhci)
470 {
471 	u32 config_reg;
472 	u32 max_slots;
473 
474 	max_slots = HCS_MAX_SLOTS(xhci->hcs_params1);
475 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xHC can handle at most %d device slots",
476 		       max_slots);
477 
478 	config_reg = readl(&xhci->op_regs->config_reg);
479 	config_reg &= ~HCS_SLOTS_MASK;
480 	config_reg |= max_slots;
481 
482 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Setting Max device slots reg = 0x%x",
483 		       config_reg);
484 	writel(config_reg, &xhci->op_regs->config_reg);
485 }
486 
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)487 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
488 {
489 	dma_addr_t deq_dma;
490 	u64 crcr;
491 
492 	deq_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, xhci->cmd_ring->dequeue);
493 	deq_dma &= CMD_RING_PTR_MASK;
494 
495 	crcr = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
496 	crcr &= ~CMD_RING_PTR_MASK;
497 	crcr |= deq_dma;
498 
499 	crcr &= ~CMD_RING_CYCLE;
500 	crcr |= xhci->cmd_ring->cycle_state;
501 
502 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Setting command ring address to 0x%llx", crcr);
503 	xhci_write_64(xhci, crcr, &xhci->op_regs->cmd_ring);
504 }
505 
xhci_set_doorbell_ptr(struct xhci_hcd * xhci)506 static void xhci_set_doorbell_ptr(struct xhci_hcd *xhci)
507 {
508 	u32 offset;
509 
510 	offset = readl(&xhci->cap_regs->db_off) & DBOFF_MASK;
511 	xhci->dba = (void __iomem *)xhci->cap_regs + offset;
512 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
513 		       "Doorbell array is located at offset 0x%x from cap regs base addr", offset);
514 }
515 
516 /*
517  * Enable USB 3.0 device notifications for function remote wake, which is necessary
518  * for allowing USB 3.0 devices to do remote wakeup from U3 (device suspend).
519  */
xhci_set_dev_notifications(struct xhci_hcd * xhci)520 static void xhci_set_dev_notifications(struct xhci_hcd *xhci)
521 {
522 	u32 dev_notf;
523 
524 	dev_notf = readl(&xhci->op_regs->dev_notification);
525 	dev_notf &= ~DEV_NOTE_MASK;
526 	dev_notf |= DEV_NOTE_FWAKE;
527 	writel(dev_notf, &xhci->op_regs->dev_notification);
528 }
529 
530 /*
531  * Initialize memory for HCD and xHC (one-time init).
532  *
533  * Program the PAGESIZE register, initialize the device context array, create
534  * device contexts (?), set up a command ring segment (or two?), create event
535  * ring (one for now).
536  */
xhci_init(struct usb_hcd * hcd)537 static int xhci_init(struct usb_hcd *hcd)
538 {
539 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
540 	int retval;
541 
542 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Starting %s", __func__);
543 	spin_lock_init(&xhci->lock);
544 
545 	INIT_LIST_HEAD(&xhci->cmd_list);
546 	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
547 	init_completion(&xhci->cmd_ring_stop_completion);
548 	xhci_hcd_page_size(xhci);
549 	memset(xhci->devs, 0, MAX_HC_SLOTS * sizeof(*xhci->devs));
550 
551 	retval = xhci_mem_init(xhci, GFP_KERNEL);
552 	if (retval)
553 		return retval;
554 
555 	/* Set the Number of Device Slots Enabled to the maximum supported value */
556 	xhci_enable_max_dev_slots(xhci);
557 
558 	/* Set the address in the Command Ring Control register */
559 	xhci_set_cmd_ring_deq(xhci);
560 
561 	/* Set Device Context Base Address Array pointer */
562 	xhci_write_64(xhci, xhci->dcbaa->dma, &xhci->op_regs->dcbaa_ptr);
563 
564 	/* Set Doorbell array pointer */
565 	xhci_set_doorbell_ptr(xhci);
566 
567 	/* Set USB 3.0 device notifications for function remote wake */
568 	xhci_set_dev_notifications(xhci);
569 
570 	/* Initialize the Primary interrupter */
571 	xhci_add_interrupter(xhci, 0);
572 	xhci->interrupters[0]->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
573 
574 	/* Initializing Compliance Mode Recovery Data If Needed */
575 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
576 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
577 		compliance_mode_recovery_timer_init(xhci);
578 	}
579 
580 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished %s", __func__);
581 	return 0;
582 }
583 
584 /*-------------------------------------------------------------------------*/
585 
xhci_run_finished(struct xhci_hcd * xhci)586 static int xhci_run_finished(struct xhci_hcd *xhci)
587 {
588 	struct xhci_interrupter *ir = xhci->interrupters[0];
589 	unsigned long	flags;
590 	u32		temp;
591 
592 	/*
593 	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
594 	 * Protect the short window before host is running with a lock
595 	 */
596 	spin_lock_irqsave(&xhci->lock, flags);
597 
598 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
599 	temp = readl(&xhci->op_regs->command);
600 	temp |= (CMD_EIE);
601 	writel(temp, &xhci->op_regs->command);
602 
603 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
604 	xhci_enable_interrupter(ir);
605 
606 	if (xhci_start(xhci)) {
607 		xhci_halt(xhci);
608 		spin_unlock_irqrestore(&xhci->lock, flags);
609 		return -ENODEV;
610 	}
611 
612 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
613 
614 	if (xhci->quirks & XHCI_NEC_HOST)
615 		xhci_ring_cmd_db(xhci);
616 
617 	spin_unlock_irqrestore(&xhci->lock, flags);
618 
619 	return 0;
620 }
621 
622 /*
623  * Start the HC after it was halted.
624  *
625  * This function is called by the USB core when the HC driver is added.
626  * Its opposite is xhci_stop().
627  *
628  * xhci_init() must be called once before this function can be called.
629  * Reset the HC, enable device slot contexts, program DCBAAP, and
630  * set command ring pointer and event ring pointer.
631  *
632  * Setup MSI-X vectors and enable interrupts.
633  */
xhci_run(struct usb_hcd * hcd)634 int xhci_run(struct usb_hcd *hcd)
635 {
636 	u64 temp_64;
637 	int ret;
638 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
639 	struct xhci_interrupter *ir = xhci->interrupters[0];
640 	/* Start the xHCI host controller running only after the USB 2.0 roothub
641 	 * is setup.
642 	 */
643 
644 	hcd->uses_new_polling = 1;
645 	if (hcd->msi_enabled)
646 		ir->ip_autoclear = true;
647 
648 	if (!usb_hcd_is_primary_hcd(hcd))
649 		return xhci_run_finished(xhci);
650 
651 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
652 
653 	temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
654 	temp_64 &= ERST_PTR_MASK;
655 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
656 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
657 
658 	xhci_set_interrupter_moderation(ir, xhci->imod_interval);
659 
660 	if (xhci->quirks & XHCI_NEC_HOST) {
661 		struct xhci_command *command;
662 
663 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
664 		if (!command)
665 			return -ENOMEM;
666 
667 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
668 				TRB_TYPE(TRB_NEC_GET_FW));
669 		if (ret)
670 			xhci_free_command(xhci, command);
671 	}
672 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
673 			"Finished %s for main hcd", __func__);
674 
675 	xhci_create_dbc_dev(xhci);
676 
677 	xhci_debugfs_init(xhci);
678 
679 	if (xhci_has_one_roothub(xhci))
680 		return xhci_run_finished(xhci);
681 
682 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
683 
684 	return 0;
685 }
686 EXPORT_SYMBOL_GPL(xhci_run);
687 
688 /*
689  * Stop xHCI driver.
690  *
691  * This function is called by the USB core when the HC driver is removed.
692  * Its opposite is xhci_run().
693  *
694  * Disable device contexts, disable IRQs, and quiesce the HC.
695  * Reset the HC, finish any completed transactions, and cleanup memory.
696  */
xhci_stop(struct usb_hcd * hcd)697 void xhci_stop(struct usb_hcd *hcd)
698 {
699 	u32 temp;
700 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
701 	struct xhci_interrupter *ir = xhci->interrupters[0];
702 
703 	mutex_lock(&xhci->mutex);
704 
705 	/* Only halt host and free memory after both hcds are removed */
706 	if (!usb_hcd_is_primary_hcd(hcd)) {
707 		mutex_unlock(&xhci->mutex);
708 		return;
709 	}
710 
711 	xhci_remove_dbc_dev(xhci);
712 
713 	spin_lock_irq(&xhci->lock);
714 	xhci->xhc_state |= XHCI_STATE_HALTED;
715 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
716 	xhci_halt(xhci);
717 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
718 	spin_unlock_irq(&xhci->lock);
719 
720 	/* Deleting Compliance Mode Recovery Timer */
721 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
722 			(!(xhci_all_ports_seen_u0(xhci)))) {
723 		timer_delete_sync(&xhci->comp_mode_recovery_timer);
724 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
725 				"%s: compliance mode recovery timer deleted",
726 				__func__);
727 	}
728 
729 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
730 		usb_amd_dev_put();
731 
732 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
733 			"// Disabling event ring interrupts");
734 	temp = readl(&xhci->op_regs->status);
735 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
736 	xhci_disable_interrupter(xhci, ir);
737 
738 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
739 	xhci_mem_cleanup(xhci);
740 	xhci_debugfs_exit(xhci);
741 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
742 			"xhci_stop completed - status = %x",
743 			readl(&xhci->op_regs->status));
744 	mutex_unlock(&xhci->mutex);
745 }
746 EXPORT_SYMBOL_GPL(xhci_stop);
747 
748 /*
749  * Shutdown HC (not bus-specific)
750  *
751  * This is called when the machine is rebooting or halting.  We assume that the
752  * machine will be powered off, and the HC's internal state will be reset.
753  * Don't bother to free memory.
754  *
755  * This will only ever be called with the main usb_hcd (the USB3 roothub).
756  */
xhci_shutdown(struct usb_hcd * hcd)757 void xhci_shutdown(struct usb_hcd *hcd)
758 {
759 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
760 
761 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
762 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
763 
764 	/* Don't poll the roothubs after shutdown. */
765 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
766 			__func__, hcd->self.busnum);
767 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
768 	timer_delete_sync(&hcd->rh_timer);
769 
770 	if (xhci->shared_hcd) {
771 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
772 		timer_delete_sync(&xhci->shared_hcd->rh_timer);
773 	}
774 
775 	spin_lock_irq(&xhci->lock);
776 	xhci_halt(xhci);
777 
778 	/*
779 	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
780 	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
781 	 */
782 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
783 	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
784 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
785 
786 	spin_unlock_irq(&xhci->lock);
787 
788 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
789 			"xhci_shutdown completed - status = %x",
790 			readl(&xhci->op_regs->status));
791 }
792 EXPORT_SYMBOL_GPL(xhci_shutdown);
793 
794 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)795 static void xhci_save_registers(struct xhci_hcd *xhci)
796 {
797 	struct xhci_interrupter *ir;
798 	unsigned int i;
799 
800 	xhci->s3.command = readl(&xhci->op_regs->command);
801 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
802 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
803 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
804 
805 	/* save both primary and all secondary interrupters */
806 	/* fixme, shold we lock  to prevent race with remove secondary interrupter? */
807 	for (i = 0; i < xhci->max_interrupters; i++) {
808 		ir = xhci->interrupters[i];
809 		if (!ir)
810 			continue;
811 
812 		ir->s3_erst_size = readl(&ir->ir_set->erst_size);
813 		ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
814 		ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
815 		ir->s3_iman = readl(&ir->ir_set->iman);
816 		ir->s3_imod = readl(&ir->ir_set->imod);
817 	}
818 }
819 
xhci_restore_registers(struct xhci_hcd * xhci)820 static void xhci_restore_registers(struct xhci_hcd *xhci)
821 {
822 	struct xhci_interrupter *ir;
823 	unsigned int i;
824 
825 	writel(xhci->s3.command, &xhci->op_regs->command);
826 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
827 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
828 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
829 
830 	/* FIXME should we lock to protect against freeing of interrupters */
831 	for (i = 0; i < xhci->max_interrupters; i++) {
832 		ir = xhci->interrupters[i];
833 		if (!ir)
834 			continue;
835 
836 		writel(ir->s3_erst_size, &ir->ir_set->erst_size);
837 		xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
838 		xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
839 		writel(ir->s3_iman, &ir->ir_set->iman);
840 		writel(ir->s3_imod, &ir->ir_set->imod);
841 	}
842 }
843 
844 /*
845  * The whole command ring must be cleared to zero when we suspend the host.
846  *
847  * The host doesn't save the command ring pointer in the suspend well, so we
848  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
849  * aligned, because of the reserved bits in the command ring dequeue pointer
850  * register.  Therefore, we can't just set the dequeue pointer back in the
851  * middle of the ring (TRBs are 16-byte aligned).
852  */
xhci_clear_command_ring(struct xhci_hcd * xhci)853 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
854 {
855 	struct xhci_ring *ring;
856 	struct xhci_segment *seg;
857 
858 	ring = xhci->cmd_ring;
859 	xhci_for_each_ring_seg(ring->first_seg, seg) {
860 		/* erase all TRBs before the link */
861 		memset(seg->trbs, 0, sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
862 		/* clear link cycle bit */
863 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= cpu_to_le32(~TRB_CYCLE);
864 	}
865 
866 	xhci_initialize_ring_info(ring);
867 	/*
868 	 * Reset the hardware dequeue pointer.
869 	 * Yes, this will need to be re-written after resume, but we're paranoid
870 	 * and want to make sure the hardware doesn't access bogus memory
871 	 * because, say, the BIOS or an SMI started the host without changing
872 	 * the command ring pointers.
873 	 */
874 	xhci_set_cmd_ring_deq(xhci);
875 }
876 
877 /*
878  * Disable port wake bits if do_wakeup is not set.
879  *
880  * Also clear a possible internal port wake state left hanging for ports that
881  * detected termination but never successfully enumerated (trained to 0U).
882  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
883  * at enumeration clears this wake, force one here as well for unconnected ports
884  */
885 
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)886 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
887 				       struct xhci_hub *rhub,
888 				       bool do_wakeup)
889 {
890 	unsigned long flags;
891 	u32 t1, t2, portsc;
892 	int i;
893 
894 	spin_lock_irqsave(&xhci->lock, flags);
895 
896 	for (i = 0; i < rhub->num_ports; i++) {
897 		portsc = readl(rhub->ports[i]->addr);
898 		t1 = xhci_port_state_to_neutral(portsc);
899 		t2 = t1;
900 
901 		/* clear wake bits if do_wake is not set */
902 		if (!do_wakeup)
903 			t2 &= ~PORT_WAKE_BITS;
904 
905 		/* Don't touch csc bit if connected or connect change is set */
906 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
907 			t2 |= PORT_CSC;
908 
909 		if (t1 != t2) {
910 			writel(t2, rhub->ports[i]->addr);
911 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
912 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
913 		}
914 	}
915 	spin_unlock_irqrestore(&xhci->lock, flags);
916 }
917 
xhci_pending_portevent(struct xhci_hcd * xhci)918 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
919 {
920 	struct xhci_port	**ports;
921 	int			port_index;
922 	u32			status;
923 	u32			portsc;
924 
925 	status = readl(&xhci->op_regs->status);
926 	if (status & STS_EINT)
927 		return true;
928 	/*
929 	 * Checking STS_EINT is not enough as there is a lag between a change
930 	 * bit being set and the Port Status Change Event that it generated
931 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
932 	 */
933 
934 	port_index = xhci->usb2_rhub.num_ports;
935 	ports = xhci->usb2_rhub.ports;
936 	while (port_index--) {
937 		portsc = readl(ports[port_index]->addr);
938 		if (portsc & PORT_CHANGE_MASK ||
939 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
940 			return true;
941 	}
942 	port_index = xhci->usb3_rhub.num_ports;
943 	ports = xhci->usb3_rhub.ports;
944 	while (port_index--) {
945 		portsc = readl(ports[port_index]->addr);
946 		if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
947 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
948 			return true;
949 	}
950 	return false;
951 }
952 
953 /*
954  * Stop HC (not bus-specific)
955  *
956  * This is called when the machine transition into S3/S4 mode.
957  *
958  */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)959 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
960 {
961 	int			rc = 0;
962 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
963 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
964 	u32			command;
965 	u32			res;
966 
967 	if (!hcd->state)
968 		return 0;
969 
970 	if (hcd->state != HC_STATE_SUSPENDED ||
971 	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
972 		return -EINVAL;
973 
974 	/* Clear root port wake on bits if wakeup not allowed. */
975 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
976 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
977 
978 	if (!HCD_HW_ACCESSIBLE(hcd))
979 		return 0;
980 
981 	xhci_dbc_suspend(xhci);
982 
983 	/* Don't poll the roothubs on bus suspend. */
984 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
985 		 __func__, hcd->self.busnum);
986 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
987 	timer_delete_sync(&hcd->rh_timer);
988 	if (xhci->shared_hcd) {
989 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
990 		timer_delete_sync(&xhci->shared_hcd->rh_timer);
991 	}
992 
993 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
994 		usleep_range(1000, 1500);
995 
996 	spin_lock_irq(&xhci->lock);
997 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
998 	if (xhci->shared_hcd)
999 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1000 	/* step 1: stop endpoint */
1001 	/* skipped assuming that port suspend has done */
1002 
1003 	/* step 2: clear Run/Stop bit */
1004 	command = readl(&xhci->op_regs->command);
1005 	command &= ~CMD_RUN;
1006 	writel(command, &xhci->op_regs->command);
1007 
1008 	/* Some chips from Fresco Logic need an extraordinary delay */
1009 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1010 
1011 	if (xhci_handshake(&xhci->op_regs->status,
1012 		      STS_HALT, STS_HALT, delay)) {
1013 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1014 		spin_unlock_irq(&xhci->lock);
1015 		return -ETIMEDOUT;
1016 	}
1017 	xhci_clear_command_ring(xhci);
1018 
1019 	/* step 3: save registers */
1020 	xhci_save_registers(xhci);
1021 
1022 	/* step 4: set CSS flag */
1023 	command = readl(&xhci->op_regs->command);
1024 	command |= CMD_CSS;
1025 	writel(command, &xhci->op_regs->command);
1026 	xhci->broken_suspend = 0;
1027 	if (xhci_handshake(&xhci->op_regs->status,
1028 				STS_SAVE, 0, 20 * 1000)) {
1029 	/*
1030 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1031 	 * SSS bit of USBSTS and when driver tries to poll
1032 	 * to see if the xHC clears BIT(8) which never happens
1033 	 * and driver assumes that controller is not responding
1034 	 * and times out. To workaround this, its good to check
1035 	 * if SRE and HCE bits are not set (as per xhci
1036 	 * Section 5.4.2) and bypass the timeout.
1037 	 */
1038 		res = readl(&xhci->op_regs->status);
1039 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1040 		    (((res & STS_SRE) == 0) &&
1041 				((res & STS_HCE) == 0))) {
1042 			xhci->broken_suspend = 1;
1043 		} else {
1044 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1045 			spin_unlock_irq(&xhci->lock);
1046 			return -ETIMEDOUT;
1047 		}
1048 	}
1049 	spin_unlock_irq(&xhci->lock);
1050 
1051 	/*
1052 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1053 	 * is about to be suspended.
1054 	 */
1055 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1056 			(!(xhci_all_ports_seen_u0(xhci)))) {
1057 		timer_delete_sync(&xhci->comp_mode_recovery_timer);
1058 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1059 				"%s: compliance mode recovery timer deleted",
1060 				__func__);
1061 	}
1062 
1063 	return rc;
1064 }
1065 EXPORT_SYMBOL_GPL(xhci_suspend);
1066 
1067 /*
1068  * start xHC (not bus-specific)
1069  *
1070  * This is called when the machine transition from S3/S4 mode.
1071  *
1072  */
xhci_resume(struct xhci_hcd * xhci,bool power_lost,bool is_auto_resume)1073 int xhci_resume(struct xhci_hcd *xhci, bool power_lost, bool is_auto_resume)
1074 {
1075 	u32			command, temp = 0;
1076 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1077 	int			retval = 0;
1078 	bool			comp_timer_running = false;
1079 	bool			pending_portevent = false;
1080 	bool			suspended_usb3_devs = false;
1081 
1082 	if (!hcd->state)
1083 		return 0;
1084 
1085 	/* Wait a bit if either of the roothubs need to settle from the
1086 	 * transition into bus suspend.
1087 	 */
1088 
1089 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1090 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1091 		msleep(100);
1092 
1093 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1094 	if (xhci->shared_hcd)
1095 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1096 
1097 	spin_lock_irq(&xhci->lock);
1098 
1099 	if (xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1100 		power_lost = true;
1101 
1102 	if (!power_lost) {
1103 		/*
1104 		 * Some controllers might lose power during suspend, so wait
1105 		 * for controller not ready bit to clear, just as in xHC init.
1106 		 */
1107 		retval = xhci_handshake(&xhci->op_regs->status,
1108 					STS_CNR, 0, 10 * 1000 * 1000);
1109 		if (retval) {
1110 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1111 				  retval);
1112 			spin_unlock_irq(&xhci->lock);
1113 			return retval;
1114 		}
1115 		/* step 1: restore register */
1116 		xhci_restore_registers(xhci);
1117 		/* step 2: initialize command ring buffer */
1118 		xhci_set_cmd_ring_deq(xhci);
1119 		/* step 3: restore state and start state*/
1120 		/* step 3: set CRS flag */
1121 		command = readl(&xhci->op_regs->command);
1122 		command |= CMD_CRS;
1123 		writel(command, &xhci->op_regs->command);
1124 		/*
1125 		 * Some controllers take up to 55+ ms to complete the controller
1126 		 * restore so setting the timeout to 100ms. Xhci specification
1127 		 * doesn't mention any timeout value.
1128 		 */
1129 		if (xhci_handshake(&xhci->op_regs->status,
1130 			      STS_RESTORE, 0, 100 * 1000)) {
1131 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1132 			spin_unlock_irq(&xhci->lock);
1133 			return -ETIMEDOUT;
1134 		}
1135 	}
1136 
1137 	temp = readl(&xhci->op_regs->status);
1138 
1139 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1140 	if ((temp & (STS_SRE | STS_HCE)) &&
1141 	    !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1142 		if (!power_lost)
1143 			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1144 		power_lost = true;
1145 	}
1146 
1147 	if (power_lost) {
1148 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1149 				!(xhci_all_ports_seen_u0(xhci))) {
1150 			timer_delete_sync(&xhci->comp_mode_recovery_timer);
1151 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1152 				"Compliance Mode Recovery Timer deleted!");
1153 		}
1154 
1155 		/* Let the USB core know _both_ roothubs lost power. */
1156 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1157 		if (xhci->shared_hcd)
1158 			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1159 
1160 		xhci_dbg(xhci, "Stop HCD\n");
1161 		xhci_halt(xhci);
1162 		xhci_zero_64b_regs(xhci);
1163 		if (xhci->xhc_state & XHCI_STATE_REMOVING)
1164 			retval = -ENODEV;
1165 		else
1166 			retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1167 		spin_unlock_irq(&xhci->lock);
1168 		if (retval)
1169 			return retval;
1170 
1171 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1172 		temp = readl(&xhci->op_regs->status);
1173 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1174 		xhci_disable_interrupter(xhci, xhci->interrupters[0]);
1175 
1176 		xhci_dbg(xhci, "cleaning up memory\n");
1177 		xhci_mem_cleanup(xhci);
1178 		xhci_debugfs_exit(xhci);
1179 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1180 			    readl(&xhci->op_regs->status));
1181 
1182 		/* USB core calls the PCI reinit and start functions twice:
1183 		 * first with the primary HCD, and then with the secondary HCD.
1184 		 * If we don't do the same, the host will never be started.
1185 		 */
1186 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1187 		retval = xhci_init(hcd);
1188 		if (retval)
1189 			return retval;
1190 		comp_timer_running = true;
1191 
1192 		xhci_dbg(xhci, "Start the primary HCD\n");
1193 		retval = xhci_run(hcd);
1194 		if (!retval && xhci->shared_hcd) {
1195 			xhci_dbg(xhci, "Start the secondary HCD\n");
1196 			retval = xhci_run(xhci->shared_hcd);
1197 		}
1198 		if (retval)
1199 			return retval;
1200 		/*
1201 		 * Resume roothubs unconditionally as PORTSC change bits are not
1202 		 * immediately visible after xHC reset
1203 		 */
1204 		hcd->state = HC_STATE_SUSPENDED;
1205 
1206 		if (xhci->shared_hcd) {
1207 			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1208 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1209 		}
1210 		usb_hcd_resume_root_hub(hcd);
1211 
1212 		goto done;
1213 	}
1214 
1215 	/* step 4: set Run/Stop bit */
1216 	command = readl(&xhci->op_regs->command);
1217 	command |= CMD_RUN;
1218 	writel(command, &xhci->op_regs->command);
1219 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1220 		  0, 250 * 1000);
1221 
1222 	/* step 5: walk topology and initialize portsc,
1223 	 * portpmsc and portli
1224 	 */
1225 	/* this is done in bus_resume */
1226 
1227 	/* step 6: restart each of the previously
1228 	 * Running endpoints by ringing their doorbells
1229 	 */
1230 
1231 	spin_unlock_irq(&xhci->lock);
1232 
1233 	xhci_dbc_resume(xhci);
1234 
1235 	if (retval == 0) {
1236 		/*
1237 		 * Resume roothubs only if there are pending events.
1238 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1239 		 * the first wake signalling failed, give it that chance if
1240 		 * there are suspended USB 3 devices.
1241 		 */
1242 		if (xhci->usb3_rhub.bus_state.suspended_ports ||
1243 		    xhci->usb3_rhub.bus_state.bus_suspended)
1244 			suspended_usb3_devs = true;
1245 
1246 		pending_portevent = xhci_pending_portevent(xhci);
1247 
1248 		if (suspended_usb3_devs && !pending_portevent && is_auto_resume) {
1249 			msleep(120);
1250 			pending_portevent = xhci_pending_portevent(xhci);
1251 		}
1252 
1253 		if (pending_portevent) {
1254 			if (xhci->shared_hcd)
1255 				usb_hcd_resume_root_hub(xhci->shared_hcd);
1256 			usb_hcd_resume_root_hub(hcd);
1257 		}
1258 	}
1259 done:
1260 	/*
1261 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1262 	 * be re-initialized Always after a system resume. Ports are subject
1263 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1264 	 * ports have entered previously to U0 before system's suspension.
1265 	 */
1266 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1267 		compliance_mode_recovery_timer_init(xhci);
1268 
1269 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1270 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1271 
1272 	/* Re-enable port polling. */
1273 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1274 		 __func__, hcd->self.busnum);
1275 	if (xhci->shared_hcd) {
1276 		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1277 		usb_hcd_poll_rh_status(xhci->shared_hcd);
1278 	}
1279 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1280 	usb_hcd_poll_rh_status(hcd);
1281 
1282 	return retval;
1283 }
1284 EXPORT_SYMBOL_GPL(xhci_resume);
1285 #endif	/* CONFIG_PM */
1286 
1287 /*-------------------------------------------------------------------------*/
1288 
xhci_map_temp_buffer(struct usb_hcd * hcd,struct urb * urb)1289 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1290 {
1291 	void *temp;
1292 	int ret = 0;
1293 	unsigned int buf_len;
1294 	enum dma_data_direction dir;
1295 
1296 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1297 	buf_len = urb->transfer_buffer_length;
1298 
1299 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1300 			    dev_to_node(hcd->self.sysdev));
1301 	if (!temp)
1302 		return -ENOMEM;
1303 
1304 	if (usb_urb_dir_out(urb))
1305 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1306 				   temp, buf_len, 0);
1307 
1308 	urb->transfer_buffer = temp;
1309 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1310 					   urb->transfer_buffer,
1311 					   urb->transfer_buffer_length,
1312 					   dir);
1313 
1314 	if (dma_mapping_error(hcd->self.sysdev,
1315 			      urb->transfer_dma)) {
1316 		ret = -EAGAIN;
1317 		kfree(temp);
1318 	} else {
1319 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1320 	}
1321 
1322 	return ret;
1323 }
1324 
xhci_urb_temp_buffer_required(struct usb_hcd * hcd,struct urb * urb)1325 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1326 					  struct urb *urb)
1327 {
1328 	bool ret = false;
1329 	unsigned int i;
1330 	unsigned int len = 0;
1331 	unsigned int trb_size;
1332 	unsigned int max_pkt;
1333 	struct scatterlist *sg;
1334 	struct scatterlist *tail_sg;
1335 
1336 	tail_sg = urb->sg;
1337 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1338 
1339 	if (!urb->num_sgs)
1340 		return ret;
1341 
1342 	if (urb->dev->speed >= USB_SPEED_SUPER)
1343 		trb_size = TRB_CACHE_SIZE_SS;
1344 	else
1345 		trb_size = TRB_CACHE_SIZE_HS;
1346 
1347 	if (urb->transfer_buffer_length != 0 &&
1348 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1349 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1350 			len = len + sg->length;
1351 			if (i > trb_size - 2) {
1352 				len = len - tail_sg->length;
1353 				if (len < max_pkt) {
1354 					ret = true;
1355 					break;
1356 				}
1357 
1358 				tail_sg = sg_next(tail_sg);
1359 			}
1360 		}
1361 	}
1362 	return ret;
1363 }
1364 
xhci_unmap_temp_buf(struct usb_hcd * hcd,struct urb * urb)1365 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1366 {
1367 	unsigned int len;
1368 	unsigned int buf_len;
1369 	enum dma_data_direction dir;
1370 
1371 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1372 
1373 	buf_len = urb->transfer_buffer_length;
1374 
1375 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1376 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1377 		dma_unmap_single(hcd->self.sysdev,
1378 				 urb->transfer_dma,
1379 				 urb->transfer_buffer_length,
1380 				 dir);
1381 
1382 	if (usb_urb_dir_in(urb)) {
1383 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1384 					   urb->transfer_buffer,
1385 					   buf_len,
1386 					   0);
1387 		if (len != buf_len) {
1388 			xhci_dbg(hcd_to_xhci(hcd),
1389 				 "Copy from tmp buf to urb sg list failed\n");
1390 			urb->actual_length = len;
1391 		}
1392 	}
1393 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1394 	kfree(urb->transfer_buffer);
1395 	urb->transfer_buffer = NULL;
1396 }
1397 
1398 /*
1399  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1400  * we'll copy the actual data into the TRB address register. This is limited to
1401  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1402  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1403  */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1404 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1405 				gfp_t mem_flags)
1406 {
1407 	struct xhci_hcd *xhci;
1408 
1409 	xhci = hcd_to_xhci(hcd);
1410 
1411 	if (xhci_urb_suitable_for_idt(urb))
1412 		return 0;
1413 
1414 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1415 		if (xhci_urb_temp_buffer_required(hcd, urb))
1416 			return xhci_map_temp_buffer(hcd, urb);
1417 	}
1418 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1419 }
1420 
xhci_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1421 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1422 {
1423 	struct xhci_hcd *xhci;
1424 	bool unmap_temp_buf = false;
1425 
1426 	xhci = hcd_to_xhci(hcd);
1427 
1428 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1429 		unmap_temp_buf = true;
1430 
1431 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1432 		xhci_unmap_temp_buf(hcd, urb);
1433 	else
1434 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1435 }
1436 
1437 /**
1438  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1439  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1440  * value to right shift 1 for the bitmask.
1441  * @desc: USB endpoint descriptor to determine index for
1442  *
1443  * Index  = (epnum * 2) + direction - 1,
1444  * where direction = 0 for OUT, 1 for IN.
1445  * For control endpoints, the IN index is used (OUT index is unused), so
1446  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1447  */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1448 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1449 {
1450 	unsigned int index;
1451 	if (usb_endpoint_xfer_control(desc))
1452 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1453 	else
1454 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1455 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1456 	return index;
1457 }
1458 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1459 
1460 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1461  * address from the XHCI endpoint index.
1462  */
xhci_get_endpoint_address(unsigned int ep_index)1463 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1464 {
1465 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1466 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1467 	return direction | number;
1468 }
1469 
1470 /* Find the flag for this endpoint (for use in the control context).  Use the
1471  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1472  * bit 1, etc.
1473  */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1474 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1475 {
1476 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1477 }
1478 
1479 /* Compute the last valid endpoint context index.  Basically, this is the
1480  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1481  * we find the most significant bit set in the added contexts flags.
1482  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1483  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1484  */
xhci_last_valid_endpoint(u32 added_ctxs)1485 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1486 {
1487 	return fls(added_ctxs) - 1;
1488 }
1489 
1490 /* Returns 1 if the arguments are OK;
1491  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1492  */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1493 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1494 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1495 		const char *func) {
1496 	struct xhci_hcd	*xhci;
1497 	struct xhci_virt_device	*virt_dev;
1498 
1499 	if (!hcd || (check_ep && !ep) || !udev) {
1500 		pr_debug("xHCI %s called with invalid args\n", func);
1501 		return -EINVAL;
1502 	}
1503 	if (!udev->parent) {
1504 		pr_debug("xHCI %s called for root hub\n", func);
1505 		return 0;
1506 	}
1507 
1508 	xhci = hcd_to_xhci(hcd);
1509 	if (check_virt_dev) {
1510 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1511 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1512 					func);
1513 			return -EINVAL;
1514 		}
1515 
1516 		virt_dev = xhci->devs[udev->slot_id];
1517 		if (virt_dev->udev != udev) {
1518 			xhci_dbg(xhci, "xHCI %s called with udev and "
1519 					  "virt_dev does not match\n", func);
1520 			return -EINVAL;
1521 		}
1522 	}
1523 
1524 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1525 		return -ENODEV;
1526 
1527 	return 1;
1528 }
1529 
1530 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1531 		struct usb_device *udev, struct xhci_command *command,
1532 		bool ctx_change, bool must_succeed);
1533 
1534 /*
1535  * Full speed devices may have a max packet size greater than 8 bytes, but the
1536  * USB core doesn't know that until it reads the first 8 bytes of the
1537  * descriptor.  If the usb_device's max packet size changes after that point,
1538  * we need to issue an evaluate context command and wait on it.
1539  */
xhci_check_ep0_maxpacket(struct xhci_hcd * xhci,struct xhci_virt_device * vdev)1540 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
1541 {
1542 	struct xhci_input_control_ctx *ctrl_ctx;
1543 	struct xhci_ep_ctx *ep_ctx;
1544 	struct xhci_command *command;
1545 	int max_packet_size;
1546 	int hw_max_packet_size;
1547 	int ret = 0;
1548 
1549 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
1550 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1551 	max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1552 
1553 	if (hw_max_packet_size == max_packet_size)
1554 		return 0;
1555 
1556 	switch (max_packet_size) {
1557 	case 8: case 16: case 32: case 64: case 9:
1558 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1559 				"Max Packet Size for ep 0 changed.");
1560 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1561 				"Max packet size in usb_device = %d",
1562 				max_packet_size);
1563 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1564 				"Max packet size in xHCI HW = %d",
1565 				hw_max_packet_size);
1566 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1567 				"Issuing evaluate context command.");
1568 
1569 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1570 		if (!command)
1571 			return -ENOMEM;
1572 
1573 		command->in_ctx = vdev->in_ctx;
1574 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1575 		if (!ctrl_ctx) {
1576 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1577 					__func__);
1578 			ret = -ENOMEM;
1579 			break;
1580 		}
1581 		/* Set up the modified control endpoint 0 */
1582 		xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
1583 
1584 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1585 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1586 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1587 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1588 
1589 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1590 		ctrl_ctx->drop_flags = 0;
1591 
1592 		ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1593 					      true, false);
1594 		/* Clean up the input context for later use by bandwidth functions */
1595 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1596 		break;
1597 	default:
1598 		dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1599 			max_packet_size);
1600 		return -EINVAL;
1601 	}
1602 
1603 	kfree(command->completion);
1604 	kfree(command);
1605 
1606 	return ret;
1607 }
1608 
1609 /*
1610  * non-error returns are a promise to giveback() the urb later
1611  * we drop ownership so next owner (or urb unlink) can get it
1612  */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1613 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1614 {
1615 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1616 	unsigned long flags;
1617 	int ret = 0;
1618 	unsigned int slot_id, ep_index;
1619 	unsigned int *ep_state;
1620 	struct urb_priv	*urb_priv;
1621 	int num_tds;
1622 
1623 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1624 
1625 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1626 		num_tds = urb->number_of_packets;
1627 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1628 	    urb->transfer_buffer_length > 0 &&
1629 	    urb->transfer_flags & URB_ZERO_PACKET &&
1630 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1631 		num_tds = 2;
1632 	else
1633 		num_tds = 1;
1634 
1635 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1636 	if (!urb_priv)
1637 		return -ENOMEM;
1638 
1639 	urb_priv->num_tds = num_tds;
1640 	urb_priv->num_tds_done = 0;
1641 	urb->hcpriv = urb_priv;
1642 
1643 	trace_xhci_urb_enqueue(urb);
1644 
1645 	spin_lock_irqsave(&xhci->lock, flags);
1646 
1647 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1648 			      true, true, __func__);
1649 	if (ret <= 0) {
1650 		ret = ret ? ret : -EINVAL;
1651 		goto free_priv;
1652 	}
1653 
1654 	slot_id = urb->dev->slot_id;
1655 
1656 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1657 		ret = -ESHUTDOWN;
1658 		goto free_priv;
1659 	}
1660 
1661 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1662 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1663 		ret = -ENODEV;
1664 		goto free_priv;
1665 	}
1666 
1667 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1668 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1669 			 urb->ep->desc.bEndpointAddress, urb);
1670 		ret = -ESHUTDOWN;
1671 		goto free_priv;
1672 	}
1673 
1674 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1675 
1676 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1677 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1678 			  *ep_state);
1679 		ret = -EINVAL;
1680 		goto free_priv;
1681 	}
1682 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1683 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1684 		ret = -EINVAL;
1685 		goto free_priv;
1686 	}
1687 
1688 	switch (usb_endpoint_type(&urb->ep->desc)) {
1689 
1690 	case USB_ENDPOINT_XFER_CONTROL:
1691 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1692 					 slot_id, ep_index);
1693 		break;
1694 	case USB_ENDPOINT_XFER_BULK:
1695 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1696 					 slot_id, ep_index);
1697 		break;
1698 	case USB_ENDPOINT_XFER_INT:
1699 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1700 				slot_id, ep_index);
1701 		break;
1702 	case USB_ENDPOINT_XFER_ISOC:
1703 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1704 				slot_id, ep_index);
1705 	}
1706 
1707 	if (ret) {
1708 free_priv:
1709 		xhci_urb_free_priv(urb_priv);
1710 		urb->hcpriv = NULL;
1711 	}
1712 	spin_unlock_irqrestore(&xhci->lock, flags);
1713 	return ret;
1714 }
1715 
1716 /*
1717  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1718  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1719  * should pick up where it left off in the TD, unless a Set Transfer Ring
1720  * Dequeue Pointer is issued.
1721  *
1722  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1723  * the ring.  Since the ring is a contiguous structure, they can't be physically
1724  * removed.  Instead, there are two options:
1725  *
1726  *  1) If the HC is in the middle of processing the URB to be canceled, we
1727  *     simply move the ring's dequeue pointer past those TRBs using the Set
1728  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1729  *     when drivers timeout on the last submitted URB and attempt to cancel.
1730  *
1731  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1732  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1733  *     HC will need to invalidate the any TRBs it has cached after the stop
1734  *     endpoint command, as noted in the xHCI 0.95 errata.
1735  *
1736  *  3) The TD may have completed by the time the Stop Endpoint Command
1737  *     completes, so software needs to handle that case too.
1738  *
1739  * This function should protect against the TD enqueueing code ringing the
1740  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1741  * It also needs to account for multiple cancellations on happening at the same
1742  * time for the same endpoint.
1743  *
1744  * Note that this function can be called in any context, or so says
1745  * usb_hcd_unlink_urb()
1746  */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1747 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1748 {
1749 	unsigned long flags;
1750 	int ret, i;
1751 	u32 temp;
1752 	struct xhci_hcd *xhci;
1753 	struct urb_priv	*urb_priv;
1754 	struct xhci_td *td;
1755 	unsigned int ep_index;
1756 	struct xhci_ring *ep_ring;
1757 	struct xhci_virt_ep *ep;
1758 	struct xhci_command *command;
1759 	struct xhci_virt_device *vdev;
1760 
1761 	xhci = hcd_to_xhci(hcd);
1762 	spin_lock_irqsave(&xhci->lock, flags);
1763 
1764 	trace_xhci_urb_dequeue(urb);
1765 
1766 	/* Make sure the URB hasn't completed or been unlinked already */
1767 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1768 	if (ret)
1769 		goto done;
1770 
1771 	/* give back URB now if we can't queue it for cancel */
1772 	vdev = xhci->devs[urb->dev->slot_id];
1773 	urb_priv = urb->hcpriv;
1774 	if (!vdev || !urb_priv)
1775 		goto err_giveback;
1776 
1777 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1778 	ep = &vdev->eps[ep_index];
1779 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1780 	if (!ep || !ep_ring)
1781 		goto err_giveback;
1782 
1783 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1784 	temp = readl(&xhci->op_regs->status);
1785 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1786 		xhci_hc_died(xhci);
1787 		goto done;
1788 	}
1789 
1790 	/*
1791 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1792 	 * make sure none of the ring related pointers in this URB private data
1793 	 * are touched, such as td_list, otherwise we overwrite freed data
1794 	 */
1795 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1796 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1797 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1798 			td = &urb_priv->td[i];
1799 			if (!list_empty(&td->cancelled_td_list))
1800 				list_del_init(&td->cancelled_td_list);
1801 		}
1802 		goto err_giveback;
1803 	}
1804 
1805 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1806 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1807 				"HC halted, freeing TD manually.");
1808 		for (i = urb_priv->num_tds_done;
1809 		     i < urb_priv->num_tds;
1810 		     i++) {
1811 			td = &urb_priv->td[i];
1812 			if (!list_empty(&td->td_list))
1813 				list_del_init(&td->td_list);
1814 			if (!list_empty(&td->cancelled_td_list))
1815 				list_del_init(&td->cancelled_td_list);
1816 		}
1817 		goto err_giveback;
1818 	}
1819 
1820 	i = urb_priv->num_tds_done;
1821 	if (i < urb_priv->num_tds)
1822 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1823 				"Cancel URB %p, dev %s, ep 0x%x, "
1824 				"starting at offset 0x%llx",
1825 				urb, urb->dev->devpath,
1826 				urb->ep->desc.bEndpointAddress,
1827 				(unsigned long long) xhci_trb_virt_to_dma(
1828 					urb_priv->td[i].start_seg,
1829 					urb_priv->td[i].start_trb));
1830 
1831 	for (; i < urb_priv->num_tds; i++) {
1832 		td = &urb_priv->td[i];
1833 		/* TD can already be on cancelled list if ep halted on it */
1834 		if (list_empty(&td->cancelled_td_list)) {
1835 			td->cancel_status = TD_DIRTY;
1836 			list_add_tail(&td->cancelled_td_list,
1837 				      &ep->cancelled_td_list);
1838 		}
1839 	}
1840 
1841 	/* These completion handlers will sort out cancelled TDs for us */
1842 	if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) {
1843 		xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n",
1844 				urb->dev->slot_id, ep_index, ep->ep_state);
1845 		goto done;
1846 	}
1847 
1848 	/* In this case no commands are pending but the endpoint is stopped */
1849 	if (ep->ep_state & EP_CLEARING_TT) {
1850 		/* and cancelled TDs can be given back right away */
1851 		xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n",
1852 				urb->dev->slot_id, ep_index, ep->ep_state);
1853 		xhci_process_cancelled_tds(ep);
1854 	} else {
1855 		/* Otherwise, queue a new Stop Endpoint command */
1856 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1857 		if (!command) {
1858 			ret = -ENOMEM;
1859 			goto done;
1860 		}
1861 		ep->stop_time = jiffies;
1862 		ep->ep_state |= EP_STOP_CMD_PENDING;
1863 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1864 					 ep_index, 0);
1865 		xhci_ring_cmd_db(xhci);
1866 	}
1867 done:
1868 	spin_unlock_irqrestore(&xhci->lock, flags);
1869 	return ret;
1870 
1871 err_giveback:
1872 	if (urb_priv)
1873 		xhci_urb_free_priv(urb_priv);
1874 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1875 	spin_unlock_irqrestore(&xhci->lock, flags);
1876 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1877 	return ret;
1878 }
1879 
1880 /* Drop an endpoint from a new bandwidth configuration for this device.
1881  * Only one call to this function is allowed per endpoint before
1882  * check_bandwidth() or reset_bandwidth() must be called.
1883  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1884  * add the endpoint to the schedule with possibly new parameters denoted by a
1885  * different endpoint descriptor in usb_host_endpoint.
1886  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1887  * not allowed.
1888  *
1889  * The USB core will not allow URBs to be queued to an endpoint that is being
1890  * disabled, so there's no need for mutual exclusion to protect
1891  * the xhci->devs[slot_id] structure.
1892  */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1893 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1894 		       struct usb_host_endpoint *ep)
1895 {
1896 	struct xhci_hcd *xhci;
1897 	struct xhci_container_ctx *in_ctx, *out_ctx;
1898 	struct xhci_input_control_ctx *ctrl_ctx;
1899 	unsigned int ep_index;
1900 	struct xhci_ep_ctx *ep_ctx;
1901 	u32 drop_flag;
1902 	u32 new_add_flags, new_drop_flags;
1903 	int ret;
1904 
1905 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1906 	if (ret <= 0)
1907 		return ret;
1908 	xhci = hcd_to_xhci(hcd);
1909 	if (xhci->xhc_state & XHCI_STATE_DYING)
1910 		return -ENODEV;
1911 
1912 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1913 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1914 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1915 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1916 				__func__, drop_flag);
1917 		return 0;
1918 	}
1919 
1920 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1921 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1922 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1923 	if (!ctrl_ctx) {
1924 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1925 				__func__);
1926 		return 0;
1927 	}
1928 
1929 	ep_index = xhci_get_endpoint_index(&ep->desc);
1930 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1931 	/* If the HC already knows the endpoint is disabled,
1932 	 * or the HCD has noted it is disabled, ignore this request
1933 	 */
1934 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1935 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1936 	    xhci_get_endpoint_flag(&ep->desc)) {
1937 		/* Do not warn when called after a usb_device_reset */
1938 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1939 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1940 				  __func__, ep);
1941 		return 0;
1942 	}
1943 
1944 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1945 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1946 
1947 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1948 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1949 
1950 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1951 
1952 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1953 
1954 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1955 			(unsigned int) ep->desc.bEndpointAddress,
1956 			udev->slot_id,
1957 			(unsigned int) new_drop_flags,
1958 			(unsigned int) new_add_flags);
1959 	return 0;
1960 }
1961 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1962 
1963 /* Add an endpoint to a new possible bandwidth configuration for this device.
1964  * Only one call to this function is allowed per endpoint before
1965  * check_bandwidth() or reset_bandwidth() must be called.
1966  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1967  * add the endpoint to the schedule with possibly new parameters denoted by a
1968  * different endpoint descriptor in usb_host_endpoint.
1969  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1970  * not allowed.
1971  *
1972  * The USB core will not allow URBs to be queued to an endpoint until the
1973  * configuration or alt setting is installed in the device, so there's no need
1974  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1975  */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1976 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1977 		      struct usb_host_endpoint *ep)
1978 {
1979 	struct xhci_hcd *xhci;
1980 	struct xhci_container_ctx *in_ctx;
1981 	unsigned int ep_index;
1982 	struct xhci_input_control_ctx *ctrl_ctx;
1983 	struct xhci_ep_ctx *ep_ctx;
1984 	u32 added_ctxs;
1985 	u32 new_add_flags, new_drop_flags;
1986 	struct xhci_virt_device *virt_dev;
1987 	int ret = 0;
1988 
1989 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1990 	if (ret <= 0) {
1991 		/* So we won't queue a reset ep command for a root hub */
1992 		ep->hcpriv = NULL;
1993 		return ret;
1994 	}
1995 	xhci = hcd_to_xhci(hcd);
1996 	if (xhci->xhc_state & XHCI_STATE_DYING)
1997 		return -ENODEV;
1998 
1999 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2000 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2001 		/* FIXME when we have to issue an evaluate endpoint command to
2002 		 * deal with ep0 max packet size changing once we get the
2003 		 * descriptors
2004 		 */
2005 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2006 				__func__, added_ctxs);
2007 		return 0;
2008 	}
2009 
2010 	virt_dev = xhci->devs[udev->slot_id];
2011 	in_ctx = virt_dev->in_ctx;
2012 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2013 	if (!ctrl_ctx) {
2014 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2015 				__func__);
2016 		return 0;
2017 	}
2018 
2019 	ep_index = xhci_get_endpoint_index(&ep->desc);
2020 	/* If this endpoint is already in use, and the upper layers are trying
2021 	 * to add it again without dropping it, reject the addition.
2022 	 */
2023 	if (virt_dev->eps[ep_index].ring &&
2024 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2025 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
2026 				"without dropping it.\n",
2027 				(unsigned int) ep->desc.bEndpointAddress);
2028 		return -EINVAL;
2029 	}
2030 
2031 	/* If the HCD has already noted the endpoint is enabled,
2032 	 * ignore this request.
2033 	 */
2034 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2035 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2036 				__func__, ep);
2037 		return 0;
2038 	}
2039 
2040 	/*
2041 	 * Configuration and alternate setting changes must be done in
2042 	 * process context, not interrupt context (or so documenation
2043 	 * for usb_set_interface() and usb_set_configuration() claim).
2044 	 */
2045 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2046 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2047 				__func__, ep->desc.bEndpointAddress);
2048 		return -ENOMEM;
2049 	}
2050 
2051 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2052 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2053 
2054 	/* If xhci_endpoint_disable() was called for this endpoint, but the
2055 	 * xHC hasn't been notified yet through the check_bandwidth() call,
2056 	 * this re-adds a new state for the endpoint from the new endpoint
2057 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
2058 	 * drop flags alone.
2059 	 */
2060 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2061 
2062 	/* Store the usb_device pointer for later use */
2063 	ep->hcpriv = udev;
2064 
2065 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2066 	trace_xhci_add_endpoint(ep_ctx);
2067 
2068 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2069 			(unsigned int) ep->desc.bEndpointAddress,
2070 			udev->slot_id,
2071 			(unsigned int) new_drop_flags,
2072 			(unsigned int) new_add_flags);
2073 	return 0;
2074 }
2075 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2076 
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2077 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2078 {
2079 	struct xhci_input_control_ctx *ctrl_ctx;
2080 	struct xhci_ep_ctx *ep_ctx;
2081 	struct xhci_slot_ctx *slot_ctx;
2082 	int i;
2083 
2084 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2085 	if (!ctrl_ctx) {
2086 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2087 				__func__);
2088 		return;
2089 	}
2090 
2091 	/* When a device's add flag and drop flag are zero, any subsequent
2092 	 * configure endpoint command will leave that endpoint's state
2093 	 * untouched.  Make sure we don't leave any old state in the input
2094 	 * endpoint contexts.
2095 	 */
2096 	ctrl_ctx->drop_flags = 0;
2097 	ctrl_ctx->add_flags = 0;
2098 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2099 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2100 	/* Endpoint 0 is always valid */
2101 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2102 	for (i = 1; i < 31; i++) {
2103 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2104 		ep_ctx->ep_info = 0;
2105 		ep_ctx->ep_info2 = 0;
2106 		ep_ctx->deq = 0;
2107 		ep_ctx->tx_info = 0;
2108 	}
2109 }
2110 
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2111 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2112 		struct usb_device *udev, u32 *cmd_status)
2113 {
2114 	int ret;
2115 
2116 	switch (*cmd_status) {
2117 	case COMP_COMMAND_ABORTED:
2118 	case COMP_COMMAND_RING_STOPPED:
2119 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2120 		ret = -ETIME;
2121 		break;
2122 	case COMP_RESOURCE_ERROR:
2123 		dev_warn(&udev->dev,
2124 			 "Not enough host controller resources for new device state.\n");
2125 		ret = -ENOMEM;
2126 		/* FIXME: can we allocate more resources for the HC? */
2127 		break;
2128 	case COMP_BANDWIDTH_ERROR:
2129 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2130 		dev_warn(&udev->dev,
2131 			 "Not enough bandwidth for new device state.\n");
2132 		ret = -ENOSPC;
2133 		/* FIXME: can we go back to the old state? */
2134 		break;
2135 	case COMP_TRB_ERROR:
2136 		/* the HCD set up something wrong */
2137 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2138 				"add flag = 1, "
2139 				"and endpoint is not disabled.\n");
2140 		ret = -EINVAL;
2141 		break;
2142 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2143 		dev_warn(&udev->dev,
2144 			 "ERROR: Incompatible device for endpoint configure command.\n");
2145 		ret = -ENODEV;
2146 		break;
2147 	case COMP_SUCCESS:
2148 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2149 				"Successful Endpoint Configure command");
2150 		ret = 0;
2151 		break;
2152 	default:
2153 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2154 				*cmd_status);
2155 		ret = -EINVAL;
2156 		break;
2157 	}
2158 	return ret;
2159 }
2160 
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2161 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2162 		struct usb_device *udev, u32 *cmd_status)
2163 {
2164 	int ret;
2165 
2166 	switch (*cmd_status) {
2167 	case COMP_COMMAND_ABORTED:
2168 	case COMP_COMMAND_RING_STOPPED:
2169 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2170 		ret = -ETIME;
2171 		break;
2172 	case COMP_PARAMETER_ERROR:
2173 		dev_warn(&udev->dev,
2174 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2175 		ret = -EINVAL;
2176 		break;
2177 	case COMP_SLOT_NOT_ENABLED_ERROR:
2178 		dev_warn(&udev->dev,
2179 			"WARN: slot not enabled for evaluate context command.\n");
2180 		ret = -EINVAL;
2181 		break;
2182 	case COMP_CONTEXT_STATE_ERROR:
2183 		dev_warn(&udev->dev,
2184 			"WARN: invalid context state for evaluate context command.\n");
2185 		ret = -EINVAL;
2186 		break;
2187 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2188 		dev_warn(&udev->dev,
2189 			"ERROR: Incompatible device for evaluate context command.\n");
2190 		ret = -ENODEV;
2191 		break;
2192 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2193 		/* Max Exit Latency too large error */
2194 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2195 		ret = -EINVAL;
2196 		break;
2197 	case COMP_SUCCESS:
2198 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2199 				"Successful evaluate context command");
2200 		ret = 0;
2201 		break;
2202 	default:
2203 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2204 			*cmd_status);
2205 		ret = -EINVAL;
2206 		break;
2207 	}
2208 	return ret;
2209 }
2210 
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2211 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2212 		struct xhci_input_control_ctx *ctrl_ctx)
2213 {
2214 	u32 valid_add_flags;
2215 	u32 valid_drop_flags;
2216 
2217 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2218 	 * (bit 1).  The default control endpoint is added during the Address
2219 	 * Device command and is never removed until the slot is disabled.
2220 	 */
2221 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2222 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2223 
2224 	/* Use hweight32 to count the number of ones in the add flags, or
2225 	 * number of endpoints added.  Don't count endpoints that are changed
2226 	 * (both added and dropped).
2227 	 */
2228 	return hweight32(valid_add_flags) -
2229 		hweight32(valid_add_flags & valid_drop_flags);
2230 }
2231 
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2232 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2233 		struct xhci_input_control_ctx *ctrl_ctx)
2234 {
2235 	u32 valid_add_flags;
2236 	u32 valid_drop_flags;
2237 
2238 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2239 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2240 
2241 	return hweight32(valid_drop_flags) -
2242 		hweight32(valid_add_flags & valid_drop_flags);
2243 }
2244 
2245 /*
2246  * We need to reserve the new number of endpoints before the configure endpoint
2247  * command completes.  We can't subtract the dropped endpoints from the number
2248  * of active endpoints until the command completes because we can oversubscribe
2249  * the host in this case:
2250  *
2251  *  - the first configure endpoint command drops more endpoints than it adds
2252  *  - a second configure endpoint command that adds more endpoints is queued
2253  *  - the first configure endpoint command fails, so the config is unchanged
2254  *  - the second command may succeed, even though there isn't enough resources
2255  *
2256  * Must be called with xhci->lock held.
2257  */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2258 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2259 		struct xhci_input_control_ctx *ctrl_ctx)
2260 {
2261 	u32 added_eps;
2262 
2263 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2264 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2265 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2266 				"Not enough ep ctxs: "
2267 				"%u active, need to add %u, limit is %u.",
2268 				xhci->num_active_eps, added_eps,
2269 				xhci->limit_active_eps);
2270 		return -ENOMEM;
2271 	}
2272 	xhci->num_active_eps += added_eps;
2273 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2274 			"Adding %u ep ctxs, %u now active.", added_eps,
2275 			xhci->num_active_eps);
2276 	return 0;
2277 }
2278 
2279 /*
2280  * The configure endpoint was failed by the xHC for some other reason, so we
2281  * need to revert the resources that failed configuration would have used.
2282  *
2283  * Must be called with xhci->lock held.
2284  */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2285 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2286 		struct xhci_input_control_ctx *ctrl_ctx)
2287 {
2288 	u32 num_failed_eps;
2289 
2290 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2291 	xhci->num_active_eps -= num_failed_eps;
2292 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2293 			"Removing %u failed ep ctxs, %u now active.",
2294 			num_failed_eps,
2295 			xhci->num_active_eps);
2296 }
2297 
2298 /*
2299  * Now that the command has completed, clean up the active endpoint count by
2300  * subtracting out the endpoints that were dropped (but not changed).
2301  *
2302  * Must be called with xhci->lock held.
2303  */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2304 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2305 		struct xhci_input_control_ctx *ctrl_ctx)
2306 {
2307 	u32 num_dropped_eps;
2308 
2309 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2310 	xhci->num_active_eps -= num_dropped_eps;
2311 	if (num_dropped_eps)
2312 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2313 				"Removing %u dropped ep ctxs, %u now active.",
2314 				num_dropped_eps,
2315 				xhci->num_active_eps);
2316 }
2317 
xhci_get_block_size(struct usb_device * udev)2318 static unsigned int xhci_get_block_size(struct usb_device *udev)
2319 {
2320 	switch (udev->speed) {
2321 	case USB_SPEED_LOW:
2322 	case USB_SPEED_FULL:
2323 		return FS_BLOCK;
2324 	case USB_SPEED_HIGH:
2325 		return HS_BLOCK;
2326 	case USB_SPEED_SUPER:
2327 	case USB_SPEED_SUPER_PLUS:
2328 		return SS_BLOCK;
2329 	case USB_SPEED_UNKNOWN:
2330 	default:
2331 		/* Should never happen */
2332 		return 1;
2333 	}
2334 }
2335 
2336 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2337 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2338 {
2339 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2340 		return LS_OVERHEAD;
2341 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2342 		return FS_OVERHEAD;
2343 	return HS_OVERHEAD;
2344 }
2345 
2346 /* If we are changing a LS/FS device under a HS hub,
2347  * make sure (if we are activating a new TT) that the HS bus has enough
2348  * bandwidth for this new TT.
2349  */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2350 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2351 		struct xhci_virt_device *virt_dev,
2352 		int old_active_eps)
2353 {
2354 	struct xhci_interval_bw_table *bw_table;
2355 	struct xhci_tt_bw_info *tt_info;
2356 
2357 	/* Find the bandwidth table for the root port this TT is attached to. */
2358 	bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table;
2359 	tt_info = virt_dev->tt_info;
2360 	/* If this TT already had active endpoints, the bandwidth for this TT
2361 	 * has already been added.  Removing all periodic endpoints (and thus
2362 	 * making the TT enactive) will only decrease the bandwidth used.
2363 	 */
2364 	if (old_active_eps)
2365 		return 0;
2366 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2367 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2368 			return -ENOMEM;
2369 		return 0;
2370 	}
2371 	/* Not sure why we would have no new active endpoints...
2372 	 *
2373 	 * Maybe because of an Evaluate Context change for a hub update or a
2374 	 * control endpoint 0 max packet size change?
2375 	 * FIXME: skip the bandwidth calculation in that case.
2376 	 */
2377 	return 0;
2378 }
2379 
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2380 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2381 		struct xhci_virt_device *virt_dev)
2382 {
2383 	unsigned int bw_reserved;
2384 
2385 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2386 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2387 		return -ENOMEM;
2388 
2389 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2390 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2391 		return -ENOMEM;
2392 
2393 	return 0;
2394 }
2395 
2396 /*
2397  * This algorithm is a very conservative estimate of the worst-case scheduling
2398  * scenario for any one interval.  The hardware dynamically schedules the
2399  * packets, so we can't tell which microframe could be the limiting factor in
2400  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2401  *
2402  * Obviously, we can't solve an NP complete problem to find the minimum worst
2403  * case scenario.  Instead, we come up with an estimate that is no less than
2404  * the worst case bandwidth used for any one microframe, but may be an
2405  * over-estimate.
2406  *
2407  * We walk the requirements for each endpoint by interval, starting with the
2408  * smallest interval, and place packets in the schedule where there is only one
2409  * possible way to schedule packets for that interval.  In order to simplify
2410  * this algorithm, we record the largest max packet size for each interval, and
2411  * assume all packets will be that size.
2412  *
2413  * For interval 0, we obviously must schedule all packets for each interval.
2414  * The bandwidth for interval 0 is just the amount of data to be transmitted
2415  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2416  * the number of packets).
2417  *
2418  * For interval 1, we have two possible microframes to schedule those packets
2419  * in.  For this algorithm, if we can schedule the same number of packets for
2420  * each possible scheduling opportunity (each microframe), we will do so.  The
2421  * remaining number of packets will be saved to be transmitted in the gaps in
2422  * the next interval's scheduling sequence.
2423  *
2424  * As we move those remaining packets to be scheduled with interval 2 packets,
2425  * we have to double the number of remaining packets to transmit.  This is
2426  * because the intervals are actually powers of 2, and we would be transmitting
2427  * the previous interval's packets twice in this interval.  We also have to be
2428  * sure that when we look at the largest max packet size for this interval, we
2429  * also look at the largest max packet size for the remaining packets and take
2430  * the greater of the two.
2431  *
2432  * The algorithm continues to evenly distribute packets in each scheduling
2433  * opportunity, and push the remaining packets out, until we get to the last
2434  * interval.  Then those packets and their associated overhead are just added
2435  * to the bandwidth used.
2436  */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2437 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2438 		struct xhci_virt_device *virt_dev,
2439 		int old_active_eps)
2440 {
2441 	unsigned int bw_reserved;
2442 	unsigned int max_bandwidth;
2443 	unsigned int bw_used;
2444 	unsigned int block_size;
2445 	struct xhci_interval_bw_table *bw_table;
2446 	unsigned int packet_size = 0;
2447 	unsigned int overhead = 0;
2448 	unsigned int packets_transmitted = 0;
2449 	unsigned int packets_remaining = 0;
2450 	unsigned int i;
2451 
2452 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2453 		return xhci_check_ss_bw(xhci, virt_dev);
2454 
2455 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2456 		max_bandwidth = HS_BW_LIMIT;
2457 		/* Convert percent of bus BW reserved to blocks reserved */
2458 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2459 	} else {
2460 		max_bandwidth = FS_BW_LIMIT;
2461 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2462 	}
2463 
2464 	bw_table = virt_dev->bw_table;
2465 	/* We need to translate the max packet size and max ESIT payloads into
2466 	 * the units the hardware uses.
2467 	 */
2468 	block_size = xhci_get_block_size(virt_dev->udev);
2469 
2470 	/* If we are manipulating a LS/FS device under a HS hub, double check
2471 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2472 	 */
2473 	if (virt_dev->tt_info) {
2474 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2475 				"Recalculating BW for rootport %u",
2476 				virt_dev->rhub_port->hw_portnum + 1);
2477 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2478 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2479 					"newly activated TT.\n");
2480 			return -ENOMEM;
2481 		}
2482 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2483 				"Recalculating BW for TT slot %u port %u",
2484 				virt_dev->tt_info->slot_id,
2485 				virt_dev->tt_info->ttport);
2486 	} else {
2487 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2488 				"Recalculating BW for rootport %u",
2489 				virt_dev->rhub_port->hw_portnum + 1);
2490 	}
2491 
2492 	/* Add in how much bandwidth will be used for interval zero, or the
2493 	 * rounded max ESIT payload + number of packets * largest overhead.
2494 	 */
2495 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2496 		bw_table->interval_bw[0].num_packets *
2497 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2498 
2499 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2500 		unsigned int bw_added;
2501 		unsigned int largest_mps;
2502 		unsigned int interval_overhead;
2503 
2504 		/*
2505 		 * How many packets could we transmit in this interval?
2506 		 * If packets didn't fit in the previous interval, we will need
2507 		 * to transmit that many packets twice within this interval.
2508 		 */
2509 		packets_remaining = 2 * packets_remaining +
2510 			bw_table->interval_bw[i].num_packets;
2511 
2512 		/* Find the largest max packet size of this or the previous
2513 		 * interval.
2514 		 */
2515 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2516 			largest_mps = 0;
2517 		else {
2518 			struct xhci_virt_ep *virt_ep;
2519 			struct list_head *ep_entry;
2520 
2521 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2522 			virt_ep = list_entry(ep_entry,
2523 					struct xhci_virt_ep, bw_endpoint_list);
2524 			/* Convert to blocks, rounding up */
2525 			largest_mps = DIV_ROUND_UP(
2526 					virt_ep->bw_info.max_packet_size,
2527 					block_size);
2528 		}
2529 		if (largest_mps > packet_size)
2530 			packet_size = largest_mps;
2531 
2532 		/* Use the larger overhead of this or the previous interval. */
2533 		interval_overhead = xhci_get_largest_overhead(
2534 				&bw_table->interval_bw[i]);
2535 		if (interval_overhead > overhead)
2536 			overhead = interval_overhead;
2537 
2538 		/* How many packets can we evenly distribute across
2539 		 * (1 << (i + 1)) possible scheduling opportunities?
2540 		 */
2541 		packets_transmitted = packets_remaining >> (i + 1);
2542 
2543 		/* Add in the bandwidth used for those scheduled packets */
2544 		bw_added = packets_transmitted * (overhead + packet_size);
2545 
2546 		/* How many packets do we have remaining to transmit? */
2547 		packets_remaining = packets_remaining % (1 << (i + 1));
2548 
2549 		/* What largest max packet size should those packets have? */
2550 		/* If we've transmitted all packets, don't carry over the
2551 		 * largest packet size.
2552 		 */
2553 		if (packets_remaining == 0) {
2554 			packet_size = 0;
2555 			overhead = 0;
2556 		} else if (packets_transmitted > 0) {
2557 			/* Otherwise if we do have remaining packets, and we've
2558 			 * scheduled some packets in this interval, take the
2559 			 * largest max packet size from endpoints with this
2560 			 * interval.
2561 			 */
2562 			packet_size = largest_mps;
2563 			overhead = interval_overhead;
2564 		}
2565 		/* Otherwise carry over packet_size and overhead from the last
2566 		 * time we had a remainder.
2567 		 */
2568 		bw_used += bw_added;
2569 		if (bw_used > max_bandwidth) {
2570 			xhci_warn(xhci, "Not enough bandwidth. "
2571 					"Proposed: %u, Max: %u\n",
2572 				bw_used, max_bandwidth);
2573 			return -ENOMEM;
2574 		}
2575 	}
2576 	/*
2577 	 * Ok, we know we have some packets left over after even-handedly
2578 	 * scheduling interval 15.  We don't know which microframes they will
2579 	 * fit into, so we over-schedule and say they will be scheduled every
2580 	 * microframe.
2581 	 */
2582 	if (packets_remaining > 0)
2583 		bw_used += overhead + packet_size;
2584 
2585 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2586 		/* OK, we're manipulating a HS device attached to a
2587 		 * root port bandwidth domain.  Include the number of active TTs
2588 		 * in the bandwidth used.
2589 		 */
2590 		bw_used += TT_HS_OVERHEAD *
2591 			xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts;
2592 	}
2593 
2594 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2595 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2596 		"Available: %u " "percent",
2597 		bw_used, max_bandwidth, bw_reserved,
2598 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2599 		max_bandwidth);
2600 
2601 	bw_used += bw_reserved;
2602 	if (bw_used > max_bandwidth) {
2603 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2604 				bw_used, max_bandwidth);
2605 		return -ENOMEM;
2606 	}
2607 
2608 	bw_table->bw_used = bw_used;
2609 	return 0;
2610 }
2611 
xhci_is_async_ep(unsigned int ep_type)2612 static bool xhci_is_async_ep(unsigned int ep_type)
2613 {
2614 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2615 					ep_type != ISOC_IN_EP &&
2616 					ep_type != INT_IN_EP);
2617 }
2618 
xhci_is_sync_in_ep(unsigned int ep_type)2619 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2620 {
2621 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2622 }
2623 
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2624 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2625 {
2626 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2627 
2628 	if (ep_bw->ep_interval == 0)
2629 		return SS_OVERHEAD_BURST +
2630 			(ep_bw->mult * ep_bw->num_packets *
2631 					(SS_OVERHEAD + mps));
2632 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2633 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2634 				1 << ep_bw->ep_interval);
2635 
2636 }
2637 
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2638 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2639 		struct xhci_bw_info *ep_bw,
2640 		struct xhci_interval_bw_table *bw_table,
2641 		struct usb_device *udev,
2642 		struct xhci_virt_ep *virt_ep,
2643 		struct xhci_tt_bw_info *tt_info)
2644 {
2645 	struct xhci_interval_bw	*interval_bw;
2646 	int normalized_interval;
2647 
2648 	if (xhci_is_async_ep(ep_bw->type))
2649 		return;
2650 
2651 	if (udev->speed >= USB_SPEED_SUPER) {
2652 		if (xhci_is_sync_in_ep(ep_bw->type))
2653 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2654 				xhci_get_ss_bw_consumed(ep_bw);
2655 		else
2656 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2657 				xhci_get_ss_bw_consumed(ep_bw);
2658 		return;
2659 	}
2660 
2661 	/* SuperSpeed endpoints never get added to intervals in the table, so
2662 	 * this check is only valid for HS/FS/LS devices.
2663 	 */
2664 	if (list_empty(&virt_ep->bw_endpoint_list))
2665 		return;
2666 	/* For LS/FS devices, we need to translate the interval expressed in
2667 	 * microframes to frames.
2668 	 */
2669 	if (udev->speed == USB_SPEED_HIGH)
2670 		normalized_interval = ep_bw->ep_interval;
2671 	else
2672 		normalized_interval = ep_bw->ep_interval - 3;
2673 
2674 	if (normalized_interval == 0)
2675 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2676 	interval_bw = &bw_table->interval_bw[normalized_interval];
2677 	interval_bw->num_packets -= ep_bw->num_packets;
2678 	switch (udev->speed) {
2679 	case USB_SPEED_LOW:
2680 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2681 		break;
2682 	case USB_SPEED_FULL:
2683 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2684 		break;
2685 	case USB_SPEED_HIGH:
2686 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2687 		break;
2688 	default:
2689 		/* Should never happen because only LS/FS/HS endpoints will get
2690 		 * added to the endpoint list.
2691 		 */
2692 		return;
2693 	}
2694 	if (tt_info)
2695 		tt_info->active_eps -= 1;
2696 	list_del_init(&virt_ep->bw_endpoint_list);
2697 }
2698 
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2699 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2700 		struct xhci_bw_info *ep_bw,
2701 		struct xhci_interval_bw_table *bw_table,
2702 		struct usb_device *udev,
2703 		struct xhci_virt_ep *virt_ep,
2704 		struct xhci_tt_bw_info *tt_info)
2705 {
2706 	struct xhci_interval_bw	*interval_bw;
2707 	struct xhci_virt_ep *smaller_ep;
2708 	int normalized_interval;
2709 
2710 	if (xhci_is_async_ep(ep_bw->type))
2711 		return;
2712 
2713 	if (udev->speed == USB_SPEED_SUPER) {
2714 		if (xhci_is_sync_in_ep(ep_bw->type))
2715 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2716 				xhci_get_ss_bw_consumed(ep_bw);
2717 		else
2718 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2719 				xhci_get_ss_bw_consumed(ep_bw);
2720 		return;
2721 	}
2722 
2723 	/* For LS/FS devices, we need to translate the interval expressed in
2724 	 * microframes to frames.
2725 	 */
2726 	if (udev->speed == USB_SPEED_HIGH)
2727 		normalized_interval = ep_bw->ep_interval;
2728 	else
2729 		normalized_interval = ep_bw->ep_interval - 3;
2730 
2731 	if (normalized_interval == 0)
2732 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2733 	interval_bw = &bw_table->interval_bw[normalized_interval];
2734 	interval_bw->num_packets += ep_bw->num_packets;
2735 	switch (udev->speed) {
2736 	case USB_SPEED_LOW:
2737 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2738 		break;
2739 	case USB_SPEED_FULL:
2740 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2741 		break;
2742 	case USB_SPEED_HIGH:
2743 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2744 		break;
2745 	default:
2746 		/* Should never happen because only LS/FS/HS endpoints will get
2747 		 * added to the endpoint list.
2748 		 */
2749 		return;
2750 	}
2751 
2752 	if (tt_info)
2753 		tt_info->active_eps += 1;
2754 	/* Insert the endpoint into the list, largest max packet size first. */
2755 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2756 			bw_endpoint_list) {
2757 		if (ep_bw->max_packet_size >=
2758 				smaller_ep->bw_info.max_packet_size) {
2759 			/* Add the new ep before the smaller endpoint */
2760 			list_add_tail(&virt_ep->bw_endpoint_list,
2761 					&smaller_ep->bw_endpoint_list);
2762 			return;
2763 		}
2764 	}
2765 	/* Add the new endpoint at the end of the list. */
2766 	list_add_tail(&virt_ep->bw_endpoint_list,
2767 			&interval_bw->endpoints);
2768 }
2769 
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2770 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2771 		struct xhci_virt_device *virt_dev,
2772 		int old_active_eps)
2773 {
2774 	struct xhci_root_port_bw_info *rh_bw_info;
2775 	if (!virt_dev->tt_info)
2776 		return;
2777 
2778 	rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum];
2779 	if (old_active_eps == 0 &&
2780 				virt_dev->tt_info->active_eps != 0) {
2781 		rh_bw_info->num_active_tts += 1;
2782 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2783 	} else if (old_active_eps != 0 &&
2784 				virt_dev->tt_info->active_eps == 0) {
2785 		rh_bw_info->num_active_tts -= 1;
2786 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2787 	}
2788 }
2789 
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2790 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2791 		struct xhci_virt_device *virt_dev,
2792 		struct xhci_container_ctx *in_ctx)
2793 {
2794 	struct xhci_bw_info ep_bw_info[31];
2795 	int i;
2796 	struct xhci_input_control_ctx *ctrl_ctx;
2797 	int old_active_eps = 0;
2798 
2799 	if (virt_dev->tt_info)
2800 		old_active_eps = virt_dev->tt_info->active_eps;
2801 
2802 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2803 	if (!ctrl_ctx) {
2804 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2805 				__func__);
2806 		return -ENOMEM;
2807 	}
2808 
2809 	for (i = 0; i < 31; i++) {
2810 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2811 			continue;
2812 
2813 		/* Make a copy of the BW info in case we need to revert this */
2814 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2815 				sizeof(ep_bw_info[i]));
2816 		/* Drop the endpoint from the interval table if the endpoint is
2817 		 * being dropped or changed.
2818 		 */
2819 		if (EP_IS_DROPPED(ctrl_ctx, i))
2820 			xhci_drop_ep_from_interval_table(xhci,
2821 					&virt_dev->eps[i].bw_info,
2822 					virt_dev->bw_table,
2823 					virt_dev->udev,
2824 					&virt_dev->eps[i],
2825 					virt_dev->tt_info);
2826 	}
2827 	/* Overwrite the information stored in the endpoints' bw_info */
2828 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2829 	for (i = 0; i < 31; i++) {
2830 		/* Add any changed or added endpoints to the interval table */
2831 		if (EP_IS_ADDED(ctrl_ctx, i))
2832 			xhci_add_ep_to_interval_table(xhci,
2833 					&virt_dev->eps[i].bw_info,
2834 					virt_dev->bw_table,
2835 					virt_dev->udev,
2836 					&virt_dev->eps[i],
2837 					virt_dev->tt_info);
2838 	}
2839 
2840 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2841 		/* Ok, this fits in the bandwidth we have.
2842 		 * Update the number of active TTs.
2843 		 */
2844 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2845 		return 0;
2846 	}
2847 
2848 	/* We don't have enough bandwidth for this, revert the stored info. */
2849 	for (i = 0; i < 31; i++) {
2850 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2851 			continue;
2852 
2853 		/* Drop the new copies of any added or changed endpoints from
2854 		 * the interval table.
2855 		 */
2856 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2857 			xhci_drop_ep_from_interval_table(xhci,
2858 					&virt_dev->eps[i].bw_info,
2859 					virt_dev->bw_table,
2860 					virt_dev->udev,
2861 					&virt_dev->eps[i],
2862 					virt_dev->tt_info);
2863 		}
2864 		/* Revert the endpoint back to its old information */
2865 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2866 				sizeof(ep_bw_info[i]));
2867 		/* Add any changed or dropped endpoints back into the table */
2868 		if (EP_IS_DROPPED(ctrl_ctx, i))
2869 			xhci_add_ep_to_interval_table(xhci,
2870 					&virt_dev->eps[i].bw_info,
2871 					virt_dev->bw_table,
2872 					virt_dev->udev,
2873 					&virt_dev->eps[i],
2874 					virt_dev->tt_info);
2875 	}
2876 	return -ENOMEM;
2877 }
2878 
2879 /*
2880  * Synchronous XHCI stop endpoint helper.  Issues the stop endpoint command and
2881  * waits for the command completion before returning.  This does not call
2882  * xhci_handle_cmd_stop_ep(), which has additional handling for 'context error'
2883  * cases, along with transfer ring cleanup.
2884  *
2885  * xhci_stop_endpoint_sync() is intended to be utilized by clients that manage
2886  * their own transfer ring, such as offload situations.
2887  */
xhci_stop_endpoint_sync(struct xhci_hcd * xhci,struct xhci_virt_ep * ep,int suspend,gfp_t gfp_flags)2888 int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend,
2889 			    gfp_t gfp_flags)
2890 {
2891 	struct xhci_command *command;
2892 	unsigned long flags;
2893 	int ret;
2894 
2895 	command = xhci_alloc_command(xhci, true, gfp_flags);
2896 	if (!command)
2897 		return -ENOMEM;
2898 
2899 	spin_lock_irqsave(&xhci->lock, flags);
2900 	ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id,
2901 				       ep->ep_index, suspend);
2902 	if (ret < 0) {
2903 		spin_unlock_irqrestore(&xhci->lock, flags);
2904 		goto out;
2905 	}
2906 
2907 	xhci_ring_cmd_db(xhci);
2908 	spin_unlock_irqrestore(&xhci->lock, flags);
2909 
2910 	wait_for_completion(command->completion);
2911 
2912 	/* No handling for COMP_CONTEXT_STATE_ERROR done at command completion*/
2913 	if (command->status == COMP_COMMAND_ABORTED ||
2914 	    command->status == COMP_COMMAND_RING_STOPPED) {
2915 		xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n");
2916 		ret = -ETIME;
2917 	}
2918 out:
2919 	xhci_free_command(xhci, command);
2920 
2921 	return ret;
2922 }
2923 EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync);
2924 
2925 /* Issue a configure endpoint command or evaluate context command
2926  * and wait for it to finish.
2927  */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2928 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2929 		struct usb_device *udev,
2930 		struct xhci_command *command,
2931 		bool ctx_change, bool must_succeed)
2932 {
2933 	int ret;
2934 	unsigned long flags;
2935 	struct xhci_input_control_ctx *ctrl_ctx;
2936 	struct xhci_virt_device *virt_dev;
2937 	struct xhci_slot_ctx *slot_ctx;
2938 
2939 	if (!command)
2940 		return -EINVAL;
2941 
2942 	spin_lock_irqsave(&xhci->lock, flags);
2943 
2944 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2945 		spin_unlock_irqrestore(&xhci->lock, flags);
2946 		return -ESHUTDOWN;
2947 	}
2948 
2949 	virt_dev = xhci->devs[udev->slot_id];
2950 
2951 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2952 	if (!ctrl_ctx) {
2953 		spin_unlock_irqrestore(&xhci->lock, flags);
2954 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2955 				__func__);
2956 		return -ENOMEM;
2957 	}
2958 
2959 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2960 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2961 		spin_unlock_irqrestore(&xhci->lock, flags);
2962 		xhci_warn(xhci, "Not enough host resources, "
2963 				"active endpoint contexts = %u\n",
2964 				xhci->num_active_eps);
2965 		return -ENOMEM;
2966 	}
2967 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change &&
2968 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2969 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2970 			xhci_free_host_resources(xhci, ctrl_ctx);
2971 		spin_unlock_irqrestore(&xhci->lock, flags);
2972 		xhci_warn(xhci, "Not enough bandwidth\n");
2973 		return -ENOMEM;
2974 	}
2975 
2976 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2977 
2978 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2979 	trace_xhci_configure_endpoint(slot_ctx);
2980 
2981 	if (!ctx_change)
2982 		ret = xhci_queue_configure_endpoint(xhci, command,
2983 				command->in_ctx->dma,
2984 				udev->slot_id, must_succeed);
2985 	else
2986 		ret = xhci_queue_evaluate_context(xhci, command,
2987 				command->in_ctx->dma,
2988 				udev->slot_id, must_succeed);
2989 	if (ret < 0) {
2990 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2991 			xhci_free_host_resources(xhci, ctrl_ctx);
2992 		spin_unlock_irqrestore(&xhci->lock, flags);
2993 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2994 				"FIXME allocate a new ring segment");
2995 		return -ENOMEM;
2996 	}
2997 	xhci_ring_cmd_db(xhci);
2998 	spin_unlock_irqrestore(&xhci->lock, flags);
2999 
3000 	/* Wait for the configure endpoint command to complete */
3001 	wait_for_completion(command->completion);
3002 
3003 	if (!ctx_change)
3004 		ret = xhci_configure_endpoint_result(xhci, udev,
3005 						     &command->status);
3006 	else
3007 		ret = xhci_evaluate_context_result(xhci, udev,
3008 						   &command->status);
3009 
3010 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3011 		spin_lock_irqsave(&xhci->lock, flags);
3012 		/* If the command failed, remove the reserved resources.
3013 		 * Otherwise, clean up the estimate to include dropped eps.
3014 		 */
3015 		if (ret)
3016 			xhci_free_host_resources(xhci, ctrl_ctx);
3017 		else
3018 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
3019 		spin_unlock_irqrestore(&xhci->lock, flags);
3020 	}
3021 	return ret;
3022 }
3023 
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)3024 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3025 	struct xhci_virt_device *vdev, int i)
3026 {
3027 	struct xhci_virt_ep *ep = &vdev->eps[i];
3028 
3029 	if (ep->ep_state & EP_HAS_STREAMS) {
3030 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3031 				xhci_get_endpoint_address(i));
3032 		xhci_free_stream_info(xhci, ep->stream_info);
3033 		ep->stream_info = NULL;
3034 		ep->ep_state &= ~EP_HAS_STREAMS;
3035 	}
3036 }
3037 
3038 /* Called after one or more calls to xhci_add_endpoint() or
3039  * xhci_drop_endpoint().  If this call fails, the USB core is expected
3040  * to call xhci_reset_bandwidth().
3041  *
3042  * Since we are in the middle of changing either configuration or
3043  * installing a new alt setting, the USB core won't allow URBs to be
3044  * enqueued for any endpoint on the old config or interface.  Nothing
3045  * else should be touching the xhci->devs[slot_id] structure, so we
3046  * don't need to take the xhci->lock for manipulating that.
3047  */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3048 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3049 {
3050 	int i;
3051 	int ret = 0;
3052 	struct xhci_hcd *xhci;
3053 	struct xhci_virt_device	*virt_dev;
3054 	struct xhci_input_control_ctx *ctrl_ctx;
3055 	struct xhci_slot_ctx *slot_ctx;
3056 	struct xhci_command *command;
3057 
3058 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3059 	if (ret <= 0)
3060 		return ret;
3061 	xhci = hcd_to_xhci(hcd);
3062 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3063 		(xhci->xhc_state & XHCI_STATE_REMOVING))
3064 		return -ENODEV;
3065 
3066 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3067 	virt_dev = xhci->devs[udev->slot_id];
3068 
3069 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3070 	if (!command)
3071 		return -ENOMEM;
3072 
3073 	command->in_ctx = virt_dev->in_ctx;
3074 
3075 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3076 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3077 	if (!ctrl_ctx) {
3078 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3079 				__func__);
3080 		ret = -ENOMEM;
3081 		goto command_cleanup;
3082 	}
3083 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3084 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3085 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3086 
3087 	/* Don't issue the command if there's no endpoints to update. */
3088 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3089 	    ctrl_ctx->drop_flags == 0) {
3090 		ret = 0;
3091 		goto command_cleanup;
3092 	}
3093 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3094 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3095 	for (i = 31; i >= 1; i--) {
3096 		__le32 le32 = cpu_to_le32(BIT(i));
3097 
3098 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3099 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3100 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3101 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3102 			break;
3103 		}
3104 	}
3105 
3106 	ret = xhci_configure_endpoint(xhci, udev, command,
3107 			false, false);
3108 	if (ret)
3109 		/* Callee should call reset_bandwidth() */
3110 		goto command_cleanup;
3111 
3112 	/* Free any rings that were dropped, but not changed. */
3113 	for (i = 1; i < 31; i++) {
3114 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3115 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3116 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3117 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3118 		}
3119 	}
3120 	xhci_zero_in_ctx(xhci, virt_dev);
3121 	/*
3122 	 * Install any rings for completely new endpoints or changed endpoints,
3123 	 * and free any old rings from changed endpoints.
3124 	 */
3125 	for (i = 1; i < 31; i++) {
3126 		if (!virt_dev->eps[i].new_ring)
3127 			continue;
3128 		/* Only free the old ring if it exists.
3129 		 * It may not if this is the first add of an endpoint.
3130 		 */
3131 		if (virt_dev->eps[i].ring) {
3132 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3133 		}
3134 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3135 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3136 		virt_dev->eps[i].new_ring = NULL;
3137 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3138 	}
3139 command_cleanup:
3140 	kfree(command->completion);
3141 	kfree(command);
3142 
3143 	return ret;
3144 }
3145 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3146 
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3147 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3148 {
3149 	struct xhci_hcd *xhci;
3150 	struct xhci_virt_device	*virt_dev;
3151 	int i, ret;
3152 
3153 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3154 	if (ret <= 0)
3155 		return;
3156 	xhci = hcd_to_xhci(hcd);
3157 
3158 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3159 	virt_dev = xhci->devs[udev->slot_id];
3160 	/* Free any rings allocated for added endpoints */
3161 	for (i = 0; i < 31; i++) {
3162 		if (virt_dev->eps[i].new_ring) {
3163 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3164 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3165 			virt_dev->eps[i].new_ring = NULL;
3166 		}
3167 	}
3168 	xhci_zero_in_ctx(xhci, virt_dev);
3169 }
3170 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3171 
3172 /* Get the available bandwidth of the ports under the xhci roothub */
xhci_get_port_bandwidth(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,u8 dev_speed)3173 int xhci_get_port_bandwidth(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx,
3174 			    u8 dev_speed)
3175 {
3176 	struct xhci_command *cmd;
3177 	unsigned long flags;
3178 	int ret;
3179 
3180 	if (!ctx || !xhci)
3181 		return -EINVAL;
3182 
3183 	cmd = xhci_alloc_command(xhci, true, GFP_KERNEL);
3184 	if (!cmd)
3185 		return -ENOMEM;
3186 
3187 	cmd->in_ctx = ctx;
3188 
3189 	/* get xhci port bandwidth, refer to xhci rev1_2 protocol 4.6.15 */
3190 	spin_lock_irqsave(&xhci->lock, flags);
3191 
3192 	ret = xhci_queue_get_port_bw(xhci, cmd, ctx->dma, dev_speed, 0);
3193 	if (ret) {
3194 		spin_unlock_irqrestore(&xhci->lock, flags);
3195 		goto err_out;
3196 	}
3197 	xhci_ring_cmd_db(xhci);
3198 	spin_unlock_irqrestore(&xhci->lock, flags);
3199 
3200 	wait_for_completion(cmd->completion);
3201 err_out:
3202 	kfree(cmd->completion);
3203 	kfree(cmd);
3204 
3205 	return ret;
3206 }
3207 
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3208 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3209 		struct xhci_container_ctx *in_ctx,
3210 		struct xhci_container_ctx *out_ctx,
3211 		struct xhci_input_control_ctx *ctrl_ctx,
3212 		u32 add_flags, u32 drop_flags)
3213 {
3214 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3215 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3216 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3217 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3218 }
3219 
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3220 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3221 				  struct usb_host_endpoint *host_ep)
3222 {
3223 	struct xhci_hcd		*xhci;
3224 	struct xhci_virt_device	*vdev;
3225 	struct xhci_virt_ep	*ep;
3226 	struct usb_device	*udev;
3227 	unsigned long		flags;
3228 	unsigned int		ep_index;
3229 
3230 	xhci = hcd_to_xhci(hcd);
3231 rescan:
3232 	spin_lock_irqsave(&xhci->lock, flags);
3233 
3234 	udev = (struct usb_device *)host_ep->hcpriv;
3235 	if (!udev || !udev->slot_id)
3236 		goto done;
3237 
3238 	vdev = xhci->devs[udev->slot_id];
3239 	if (!vdev)
3240 		goto done;
3241 
3242 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3243 	ep = &vdev->eps[ep_index];
3244 
3245 	/* wait for hub_tt_work to finish clearing hub TT */
3246 	if (ep->ep_state & EP_CLEARING_TT) {
3247 		spin_unlock_irqrestore(&xhci->lock, flags);
3248 		schedule_timeout_uninterruptible(1);
3249 		goto rescan;
3250 	}
3251 
3252 	if (ep->ep_state)
3253 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3254 			 ep->ep_state);
3255 done:
3256 	host_ep->hcpriv = NULL;
3257 	spin_unlock_irqrestore(&xhci->lock, flags);
3258 }
3259 
3260 /*
3261  * Called after usb core issues a clear halt control message.
3262  * The host side of the halt should already be cleared by a reset endpoint
3263  * command issued when the STALL event was received.
3264  *
3265  * The reset endpoint command may only be issued to endpoints in the halted
3266  * state. For software that wishes to reset the data toggle or sequence number
3267  * of an endpoint that isn't in the halted state this function will issue a
3268  * configure endpoint command with the Drop and Add bits set for the target
3269  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3270  *
3271  * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3272  * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3273  */
3274 
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3275 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3276 		struct usb_host_endpoint *host_ep)
3277 {
3278 	struct xhci_hcd *xhci;
3279 	struct usb_device *udev;
3280 	struct xhci_virt_device *vdev;
3281 	struct xhci_virt_ep *ep;
3282 	struct xhci_input_control_ctx *ctrl_ctx;
3283 	struct xhci_command *stop_cmd, *cfg_cmd;
3284 	unsigned int ep_index;
3285 	unsigned long flags;
3286 	u32 ep_flag;
3287 	int err;
3288 
3289 	xhci = hcd_to_xhci(hcd);
3290 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3291 
3292 	/*
3293 	 * Usb core assumes a max packet value for ep0 on FS devices until the
3294 	 * real value is read from the descriptor. Core resets Ep0 if values
3295 	 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3296 	 */
3297 	if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
3298 
3299 		udev = container_of(host_ep, struct usb_device, ep0);
3300 		if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3301 			return;
3302 
3303 		vdev = xhci->devs[udev->slot_id];
3304 		if (!vdev || vdev->udev != udev)
3305 			return;
3306 
3307 		xhci_check_ep0_maxpacket(xhci, vdev);
3308 
3309 		/* Nothing else should be done here for ep0 during ep reset */
3310 		return;
3311 	}
3312 
3313 	if (!host_ep->hcpriv)
3314 		return;
3315 	udev = (struct usb_device *) host_ep->hcpriv;
3316 	vdev = xhci->devs[udev->slot_id];
3317 
3318 	if (!udev->slot_id || !vdev)
3319 		return;
3320 
3321 	ep = &vdev->eps[ep_index];
3322 
3323 	/* Bail out if toggle is already being cleared by a endpoint reset */
3324 	spin_lock_irqsave(&xhci->lock, flags);
3325 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3326 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3327 		spin_unlock_irqrestore(&xhci->lock, flags);
3328 		return;
3329 	}
3330 	spin_unlock_irqrestore(&xhci->lock, flags);
3331 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3332 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3333 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3334 		return;
3335 
3336 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3337 
3338 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3339 		return;
3340 
3341 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3342 	if (!stop_cmd)
3343 		return;
3344 
3345 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3346 	if (!cfg_cmd)
3347 		goto cleanup;
3348 
3349 	spin_lock_irqsave(&xhci->lock, flags);
3350 
3351 	/* block queuing new trbs and ringing ep doorbell */
3352 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3353 
3354 	/*
3355 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3356 	 * Driver is required to synchronously cancel all transfer request.
3357 	 * Stop the endpoint to force xHC to update the output context
3358 	 */
3359 
3360 	if (!list_empty(&ep->ring->td_list)) {
3361 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3362 		spin_unlock_irqrestore(&xhci->lock, flags);
3363 		xhci_free_command(xhci, cfg_cmd);
3364 		goto cleanup;
3365 	}
3366 
3367 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3368 					ep_index, 0);
3369 	if (err < 0) {
3370 		spin_unlock_irqrestore(&xhci->lock, flags);
3371 		xhci_free_command(xhci, cfg_cmd);
3372 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3373 				__func__, err);
3374 		goto cleanup;
3375 	}
3376 
3377 	xhci_ring_cmd_db(xhci);
3378 	spin_unlock_irqrestore(&xhci->lock, flags);
3379 
3380 	wait_for_completion(stop_cmd->completion);
3381 
3382 	spin_lock_irqsave(&xhci->lock, flags);
3383 
3384 	/* config ep command clears toggle if add and drop ep flags are set */
3385 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3386 	if (!ctrl_ctx) {
3387 		spin_unlock_irqrestore(&xhci->lock, flags);
3388 		xhci_free_command(xhci, cfg_cmd);
3389 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3390 				__func__);
3391 		goto cleanup;
3392 	}
3393 
3394 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3395 					   ctrl_ctx, ep_flag, ep_flag);
3396 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3397 
3398 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3399 				      udev->slot_id, false);
3400 	if (err < 0) {
3401 		spin_unlock_irqrestore(&xhci->lock, flags);
3402 		xhci_free_command(xhci, cfg_cmd);
3403 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3404 				__func__, err);
3405 		goto cleanup;
3406 	}
3407 
3408 	xhci_ring_cmd_db(xhci);
3409 	spin_unlock_irqrestore(&xhci->lock, flags);
3410 
3411 	wait_for_completion(cfg_cmd->completion);
3412 
3413 	xhci_free_command(xhci, cfg_cmd);
3414 cleanup:
3415 	xhci_free_command(xhci, stop_cmd);
3416 	spin_lock_irqsave(&xhci->lock, flags);
3417 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3418 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3419 	spin_unlock_irqrestore(&xhci->lock, flags);
3420 }
3421 
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3422 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3423 		struct usb_device *udev, struct usb_host_endpoint *ep,
3424 		unsigned int slot_id)
3425 {
3426 	int ret;
3427 	unsigned int ep_index;
3428 	unsigned int ep_state;
3429 
3430 	if (!ep)
3431 		return -EINVAL;
3432 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3433 	if (ret <= 0)
3434 		return ret ? ret : -EINVAL;
3435 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3436 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3437 				" descriptor for ep 0x%x does not support streams\n",
3438 				ep->desc.bEndpointAddress);
3439 		return -EINVAL;
3440 	}
3441 
3442 	ep_index = xhci_get_endpoint_index(&ep->desc);
3443 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3444 	if (ep_state & EP_HAS_STREAMS ||
3445 			ep_state & EP_GETTING_STREAMS) {
3446 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3447 				"already has streams set up.\n",
3448 				ep->desc.bEndpointAddress);
3449 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3450 				"dynamic stream context array reallocation.\n");
3451 		return -EINVAL;
3452 	}
3453 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3454 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3455 				"endpoint 0x%x; URBs are pending.\n",
3456 				ep->desc.bEndpointAddress);
3457 		return -EINVAL;
3458 	}
3459 	return 0;
3460 }
3461 
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3462 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3463 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3464 {
3465 	unsigned int max_streams;
3466 
3467 	/* The stream context array size must be a power of two */
3468 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3469 	/*
3470 	 * Find out how many primary stream array entries the host controller
3471 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3472 	 * level page entries), but that's an optional feature for xHCI host
3473 	 * controllers. xHCs must support at least 4 stream IDs.
3474 	 */
3475 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3476 	if (*num_stream_ctxs > max_streams) {
3477 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3478 				max_streams);
3479 		*num_stream_ctxs = max_streams;
3480 		*num_streams = max_streams;
3481 	}
3482 }
3483 
3484 /* Returns an error code if one of the endpoint already has streams.
3485  * This does not change any data structures, it only checks and gathers
3486  * information.
3487  */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3488 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3489 		struct usb_device *udev,
3490 		struct usb_host_endpoint **eps, unsigned int num_eps,
3491 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3492 {
3493 	unsigned int max_streams;
3494 	unsigned int endpoint_flag;
3495 	int i;
3496 	int ret;
3497 
3498 	for (i = 0; i < num_eps; i++) {
3499 		ret = xhci_check_streams_endpoint(xhci, udev,
3500 				eps[i], udev->slot_id);
3501 		if (ret < 0)
3502 			return ret;
3503 
3504 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3505 		if (max_streams < (*num_streams - 1)) {
3506 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3507 					eps[i]->desc.bEndpointAddress,
3508 					max_streams);
3509 			*num_streams = max_streams+1;
3510 		}
3511 
3512 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3513 		if (*changed_ep_bitmask & endpoint_flag)
3514 			return -EINVAL;
3515 		*changed_ep_bitmask |= endpoint_flag;
3516 	}
3517 	return 0;
3518 }
3519 
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3520 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3521 		struct usb_device *udev,
3522 		struct usb_host_endpoint **eps, unsigned int num_eps)
3523 {
3524 	u32 changed_ep_bitmask = 0;
3525 	unsigned int slot_id;
3526 	unsigned int ep_index;
3527 	unsigned int ep_state;
3528 	int i;
3529 
3530 	slot_id = udev->slot_id;
3531 	if (!xhci->devs[slot_id])
3532 		return 0;
3533 
3534 	for (i = 0; i < num_eps; i++) {
3535 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3536 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3537 		/* Are streams already being freed for the endpoint? */
3538 		if (ep_state & EP_GETTING_NO_STREAMS) {
3539 			xhci_warn(xhci, "WARN Can't disable streams for "
3540 					"endpoint 0x%x, "
3541 					"streams are being disabled already\n",
3542 					eps[i]->desc.bEndpointAddress);
3543 			return 0;
3544 		}
3545 		/* Are there actually any streams to free? */
3546 		if (!(ep_state & EP_HAS_STREAMS) &&
3547 				!(ep_state & EP_GETTING_STREAMS)) {
3548 			xhci_warn(xhci, "WARN Can't disable streams for "
3549 					"endpoint 0x%x, "
3550 					"streams are already disabled!\n",
3551 					eps[i]->desc.bEndpointAddress);
3552 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3553 					"with non-streams endpoint\n");
3554 			return 0;
3555 		}
3556 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3557 	}
3558 	return changed_ep_bitmask;
3559 }
3560 
3561 /*
3562  * The USB device drivers use this function (through the HCD interface in USB
3563  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3564  * coordinate mass storage command queueing across multiple endpoints (basically
3565  * a stream ID == a task ID).
3566  *
3567  * Setting up streams involves allocating the same size stream context array
3568  * for each endpoint and issuing a configure endpoint command for all endpoints.
3569  *
3570  * Don't allow the call to succeed if one endpoint only supports one stream
3571  * (which means it doesn't support streams at all).
3572  *
3573  * Drivers may get less stream IDs than they asked for, if the host controller
3574  * hardware or endpoints claim they can't support the number of requested
3575  * stream IDs.
3576  */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3577 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3578 		struct usb_host_endpoint **eps, unsigned int num_eps,
3579 		unsigned int num_streams, gfp_t mem_flags)
3580 {
3581 	int i, ret;
3582 	struct xhci_hcd *xhci;
3583 	struct xhci_virt_device *vdev;
3584 	struct xhci_command *config_cmd;
3585 	struct xhci_input_control_ctx *ctrl_ctx;
3586 	unsigned int ep_index;
3587 	unsigned int num_stream_ctxs;
3588 	unsigned int max_packet;
3589 	unsigned long flags;
3590 	u32 changed_ep_bitmask = 0;
3591 
3592 	if (!eps)
3593 		return -EINVAL;
3594 
3595 	/* Add one to the number of streams requested to account for
3596 	 * stream 0 that is reserved for xHCI usage.
3597 	 */
3598 	num_streams += 1;
3599 	xhci = hcd_to_xhci(hcd);
3600 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3601 			num_streams);
3602 
3603 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3604 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3605 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3606 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3607 		return -ENOSYS;
3608 	}
3609 
3610 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3611 	if (!config_cmd)
3612 		return -ENOMEM;
3613 
3614 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3615 	if (!ctrl_ctx) {
3616 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3617 				__func__);
3618 		xhci_free_command(xhci, config_cmd);
3619 		return -ENOMEM;
3620 	}
3621 
3622 	/* Check to make sure all endpoints are not already configured for
3623 	 * streams.  While we're at it, find the maximum number of streams that
3624 	 * all the endpoints will support and check for duplicate endpoints.
3625 	 */
3626 	spin_lock_irqsave(&xhci->lock, flags);
3627 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3628 			num_eps, &num_streams, &changed_ep_bitmask);
3629 	if (ret < 0) {
3630 		xhci_free_command(xhci, config_cmd);
3631 		spin_unlock_irqrestore(&xhci->lock, flags);
3632 		return ret;
3633 	}
3634 	if (num_streams <= 1) {
3635 		xhci_warn(xhci, "WARN: endpoints can't handle "
3636 				"more than one stream.\n");
3637 		xhci_free_command(xhci, config_cmd);
3638 		spin_unlock_irqrestore(&xhci->lock, flags);
3639 		return -EINVAL;
3640 	}
3641 	vdev = xhci->devs[udev->slot_id];
3642 	/* Mark each endpoint as being in transition, so
3643 	 * xhci_urb_enqueue() will reject all URBs.
3644 	 */
3645 	for (i = 0; i < num_eps; i++) {
3646 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3647 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3648 	}
3649 	spin_unlock_irqrestore(&xhci->lock, flags);
3650 
3651 	/* Setup internal data structures and allocate HW data structures for
3652 	 * streams (but don't install the HW structures in the input context
3653 	 * until we're sure all memory allocation succeeded).
3654 	 */
3655 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3656 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3657 			num_stream_ctxs, num_streams);
3658 
3659 	for (i = 0; i < num_eps; i++) {
3660 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3661 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3662 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3663 				num_stream_ctxs,
3664 				num_streams,
3665 				max_packet, mem_flags);
3666 		if (!vdev->eps[ep_index].stream_info)
3667 			goto cleanup;
3668 		/* Set maxPstreams in endpoint context and update deq ptr to
3669 		 * point to stream context array. FIXME
3670 		 */
3671 	}
3672 
3673 	/* Set up the input context for a configure endpoint command. */
3674 	for (i = 0; i < num_eps; i++) {
3675 		struct xhci_ep_ctx *ep_ctx;
3676 
3677 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3678 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3679 
3680 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3681 				vdev->out_ctx, ep_index);
3682 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3683 				vdev->eps[ep_index].stream_info);
3684 	}
3685 	/* Tell the HW to drop its old copy of the endpoint context info
3686 	 * and add the updated copy from the input context.
3687 	 */
3688 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3689 			vdev->out_ctx, ctrl_ctx,
3690 			changed_ep_bitmask, changed_ep_bitmask);
3691 
3692 	/* Issue and wait for the configure endpoint command */
3693 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3694 			false, false);
3695 
3696 	/* xHC rejected the configure endpoint command for some reason, so we
3697 	 * leave the old ring intact and free our internal streams data
3698 	 * structure.
3699 	 */
3700 	if (ret < 0)
3701 		goto cleanup;
3702 
3703 	spin_lock_irqsave(&xhci->lock, flags);
3704 	for (i = 0; i < num_eps; i++) {
3705 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3706 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3707 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3708 			 udev->slot_id, ep_index);
3709 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3710 	}
3711 	xhci_free_command(xhci, config_cmd);
3712 	spin_unlock_irqrestore(&xhci->lock, flags);
3713 
3714 	for (i = 0; i < num_eps; i++) {
3715 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3716 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3717 	}
3718 	/* Subtract 1 for stream 0, which drivers can't use */
3719 	return num_streams - 1;
3720 
3721 cleanup:
3722 	/* If it didn't work, free the streams! */
3723 	for (i = 0; i < num_eps; i++) {
3724 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3725 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3726 		vdev->eps[ep_index].stream_info = NULL;
3727 		/* FIXME Unset maxPstreams in endpoint context and
3728 		 * update deq ptr to point to normal string ring.
3729 		 */
3730 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3731 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3732 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3733 	}
3734 	xhci_free_command(xhci, config_cmd);
3735 	return -ENOMEM;
3736 }
3737 
3738 /* Transition the endpoint from using streams to being a "normal" endpoint
3739  * without streams.
3740  *
3741  * Modify the endpoint context state, submit a configure endpoint command,
3742  * and free all endpoint rings for streams if that completes successfully.
3743  */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3744 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3745 		struct usb_host_endpoint **eps, unsigned int num_eps,
3746 		gfp_t mem_flags)
3747 {
3748 	int i, ret;
3749 	struct xhci_hcd *xhci;
3750 	struct xhci_virt_device *vdev;
3751 	struct xhci_command *command;
3752 	struct xhci_input_control_ctx *ctrl_ctx;
3753 	unsigned int ep_index;
3754 	unsigned long flags;
3755 	u32 changed_ep_bitmask;
3756 
3757 	xhci = hcd_to_xhci(hcd);
3758 	vdev = xhci->devs[udev->slot_id];
3759 
3760 	/* Set up a configure endpoint command to remove the streams rings */
3761 	spin_lock_irqsave(&xhci->lock, flags);
3762 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3763 			udev, eps, num_eps);
3764 	if (changed_ep_bitmask == 0) {
3765 		spin_unlock_irqrestore(&xhci->lock, flags);
3766 		return -EINVAL;
3767 	}
3768 
3769 	/* Use the xhci_command structure from the first endpoint.  We may have
3770 	 * allocated too many, but the driver may call xhci_free_streams() for
3771 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3772 	 */
3773 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3774 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3775 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3776 	if (!ctrl_ctx) {
3777 		spin_unlock_irqrestore(&xhci->lock, flags);
3778 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3779 				__func__);
3780 		return -EINVAL;
3781 	}
3782 
3783 	for (i = 0; i < num_eps; i++) {
3784 		struct xhci_ep_ctx *ep_ctx;
3785 
3786 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3787 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3788 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3789 			EP_GETTING_NO_STREAMS;
3790 
3791 		xhci_endpoint_copy(xhci, command->in_ctx,
3792 				vdev->out_ctx, ep_index);
3793 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3794 				&vdev->eps[ep_index]);
3795 	}
3796 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3797 			vdev->out_ctx, ctrl_ctx,
3798 			changed_ep_bitmask, changed_ep_bitmask);
3799 	spin_unlock_irqrestore(&xhci->lock, flags);
3800 
3801 	/* Issue and wait for the configure endpoint command,
3802 	 * which must succeed.
3803 	 */
3804 	ret = xhci_configure_endpoint(xhci, udev, command,
3805 			false, true);
3806 
3807 	/* xHC rejected the configure endpoint command for some reason, so we
3808 	 * leave the streams rings intact.
3809 	 */
3810 	if (ret < 0)
3811 		return ret;
3812 
3813 	spin_lock_irqsave(&xhci->lock, flags);
3814 	for (i = 0; i < num_eps; i++) {
3815 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3816 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3817 		vdev->eps[ep_index].stream_info = NULL;
3818 		/* FIXME Unset maxPstreams in endpoint context and
3819 		 * update deq ptr to point to normal string ring.
3820 		 */
3821 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3822 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3823 	}
3824 	spin_unlock_irqrestore(&xhci->lock, flags);
3825 
3826 	return 0;
3827 }
3828 
3829 /*
3830  * Deletes endpoint resources for endpoints that were active before a Reset
3831  * Device command, or a Disable Slot command.  The Reset Device command leaves
3832  * the control endpoint intact, whereas the Disable Slot command deletes it.
3833  *
3834  * Must be called with xhci->lock held.
3835  */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3836 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3837 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3838 {
3839 	int i;
3840 	unsigned int num_dropped_eps = 0;
3841 	unsigned int drop_flags = 0;
3842 
3843 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3844 		if (virt_dev->eps[i].ring) {
3845 			drop_flags |= 1 << i;
3846 			num_dropped_eps++;
3847 		}
3848 	}
3849 	xhci->num_active_eps -= num_dropped_eps;
3850 	if (num_dropped_eps)
3851 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3852 				"Dropped %u ep ctxs, flags = 0x%x, "
3853 				"%u now active.",
3854 				num_dropped_eps, drop_flags,
3855 				xhci->num_active_eps);
3856 }
3857 
3858 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev);
3859 
3860 /*
3861  * This submits a Reset Device Command, which will set the device state to 0,
3862  * set the device address to 0, and disable all the endpoints except the default
3863  * control endpoint.  The USB core should come back and call
3864  * xhci_address_device(), and then re-set up the configuration.  If this is
3865  * called because of a usb_reset_and_verify_device(), then the old alternate
3866  * settings will be re-installed through the normal bandwidth allocation
3867  * functions.
3868  *
3869  * Wait for the Reset Device command to finish.  Remove all structures
3870  * associated with the endpoints that were disabled.  Clear the input device
3871  * structure? Reset the control endpoint 0 max packet size?
3872  *
3873  * If the virt_dev to be reset does not exist or does not match the udev,
3874  * it means the device is lost, possibly due to the xHC restore error and
3875  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3876  * re-allocate the device.
3877  */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3878 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3879 		struct usb_device *udev)
3880 {
3881 	int ret, i;
3882 	unsigned long flags;
3883 	struct xhci_hcd *xhci;
3884 	unsigned int slot_id;
3885 	struct xhci_virt_device *virt_dev;
3886 	struct xhci_command *reset_device_cmd;
3887 	struct xhci_slot_ctx *slot_ctx;
3888 	int old_active_eps = 0;
3889 
3890 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3891 	if (ret <= 0)
3892 		return ret;
3893 	xhci = hcd_to_xhci(hcd);
3894 	slot_id = udev->slot_id;
3895 	virt_dev = xhci->devs[slot_id];
3896 	if (!virt_dev) {
3897 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3898 				"not exist. Re-allocate the device\n", slot_id);
3899 		ret = xhci_alloc_dev(hcd, udev);
3900 		if (ret == 1)
3901 			return 0;
3902 		else
3903 			return -EINVAL;
3904 	}
3905 
3906 	if (virt_dev->tt_info)
3907 		old_active_eps = virt_dev->tt_info->active_eps;
3908 
3909 	if (virt_dev->udev != udev) {
3910 		/* If the virt_dev and the udev does not match, this virt_dev
3911 		 * may belong to another udev.
3912 		 * Re-allocate the device.
3913 		 */
3914 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3915 				"not match the udev. Re-allocate the device\n",
3916 				slot_id);
3917 		ret = xhci_alloc_dev(hcd, udev);
3918 		if (ret == 1)
3919 			return 0;
3920 		else
3921 			return -EINVAL;
3922 	}
3923 
3924 	/* If device is not setup, there is no point in resetting it */
3925 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3926 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3927 						SLOT_STATE_DISABLED)
3928 		return 0;
3929 
3930 	if (xhci->quirks & XHCI_ETRON_HOST) {
3931 		/*
3932 		 * Obtaining a new device slot to inform the xHCI host that
3933 		 * the USB device has been reset.
3934 		 */
3935 		ret = xhci_disable_slot(xhci, udev->slot_id);
3936 		xhci_free_virt_device(xhci, udev->slot_id);
3937 		if (!ret) {
3938 			ret = xhci_alloc_dev(hcd, udev);
3939 			if (ret == 1)
3940 				ret = 0;
3941 			else
3942 				ret = -EINVAL;
3943 		}
3944 		return ret;
3945 	}
3946 
3947 	trace_xhci_discover_or_reset_device(slot_ctx);
3948 
3949 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3950 	/* Allocate the command structure that holds the struct completion.
3951 	 * Assume we're in process context, since the normal device reset
3952 	 * process has to wait for the device anyway.  Storage devices are
3953 	 * reset as part of error handling, so use GFP_NOIO instead of
3954 	 * GFP_KERNEL.
3955 	 */
3956 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3957 	if (!reset_device_cmd) {
3958 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3959 		return -ENOMEM;
3960 	}
3961 
3962 	/* Attempt to submit the Reset Device command to the command ring */
3963 	spin_lock_irqsave(&xhci->lock, flags);
3964 
3965 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3966 	if (ret) {
3967 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3968 		spin_unlock_irqrestore(&xhci->lock, flags);
3969 		goto command_cleanup;
3970 	}
3971 	xhci_ring_cmd_db(xhci);
3972 	spin_unlock_irqrestore(&xhci->lock, flags);
3973 
3974 	/* Wait for the Reset Device command to finish */
3975 	wait_for_completion(reset_device_cmd->completion);
3976 
3977 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3978 	 * unless we tried to reset a slot ID that wasn't enabled,
3979 	 * or the device wasn't in the addressed or configured state.
3980 	 */
3981 	ret = reset_device_cmd->status;
3982 	switch (ret) {
3983 	case COMP_COMMAND_ABORTED:
3984 	case COMP_COMMAND_RING_STOPPED:
3985 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3986 		ret = -ETIME;
3987 		goto command_cleanup;
3988 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3989 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3990 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3991 				slot_id,
3992 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3993 		xhci_dbg(xhci, "Not freeing device rings.\n");
3994 		/* Don't treat this as an error.  May change my mind later. */
3995 		ret = 0;
3996 		goto command_cleanup;
3997 	case COMP_SUCCESS:
3998 		xhci_dbg(xhci, "Successful reset device command.\n");
3999 		break;
4000 	default:
4001 		if (xhci_is_vendor_info_code(xhci, ret))
4002 			break;
4003 		xhci_warn(xhci, "Unknown completion code %u for "
4004 				"reset device command.\n", ret);
4005 		ret = -EINVAL;
4006 		goto command_cleanup;
4007 	}
4008 
4009 	/* Free up host controller endpoint resources */
4010 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4011 		spin_lock_irqsave(&xhci->lock, flags);
4012 		/* Don't delete the default control endpoint resources */
4013 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
4014 		spin_unlock_irqrestore(&xhci->lock, flags);
4015 	}
4016 
4017 	/* Everything but endpoint 0 is disabled, so free the rings. */
4018 	for (i = 1; i < 31; i++) {
4019 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
4020 
4021 		if (ep->ep_state & EP_HAS_STREAMS) {
4022 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
4023 					xhci_get_endpoint_address(i));
4024 			xhci_free_stream_info(xhci, ep->stream_info);
4025 			ep->stream_info = NULL;
4026 			ep->ep_state &= ~EP_HAS_STREAMS;
4027 		}
4028 
4029 		if (ep->ring) {
4030 			if (ep->sideband)
4031 				xhci_sideband_notify_ep_ring_free(ep->sideband, i);
4032 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
4033 			xhci_free_endpoint_ring(xhci, virt_dev, i);
4034 		}
4035 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
4036 			xhci_drop_ep_from_interval_table(xhci,
4037 					&virt_dev->eps[i].bw_info,
4038 					virt_dev->bw_table,
4039 					udev,
4040 					&virt_dev->eps[i],
4041 					virt_dev->tt_info);
4042 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
4043 	}
4044 	/* If necessary, update the number of active TTs on this root port */
4045 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
4046 	virt_dev->flags = 0;
4047 	ret = 0;
4048 
4049 command_cleanup:
4050 	xhci_free_command(xhci, reset_device_cmd);
4051 	return ret;
4052 }
4053 
4054 /*
4055  * At this point, the struct usb_device is about to go away, the device has
4056  * disconnected, and all traffic has been stopped and the endpoints have been
4057  * disabled.  Free any HC data structures associated with that device.
4058  */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)4059 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4060 {
4061 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4062 	struct xhci_virt_device *virt_dev;
4063 	struct xhci_slot_ctx *slot_ctx;
4064 	unsigned long flags;
4065 	int i, ret;
4066 
4067 	/*
4068 	 * We called pm_runtime_get_noresume when the device was attached.
4069 	 * Decrement the counter here to allow controller to runtime suspend
4070 	 * if no devices remain.
4071 	 */
4072 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4073 		pm_runtime_put_noidle(hcd->self.controller);
4074 
4075 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
4076 	/* If the host is halted due to driver unload, we still need to free the
4077 	 * device.
4078 	 */
4079 	if (ret <= 0 && ret != -ENODEV)
4080 		return;
4081 
4082 	virt_dev = xhci->devs[udev->slot_id];
4083 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4084 	trace_xhci_free_dev(slot_ctx);
4085 
4086 	/* Stop any wayward timer functions (which may grab the lock) */
4087 	for (i = 0; i < 31; i++)
4088 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
4089 	virt_dev->udev = NULL;
4090 	xhci_disable_slot(xhci, udev->slot_id);
4091 
4092 	spin_lock_irqsave(&xhci->lock, flags);
4093 	xhci_free_virt_device(xhci, udev->slot_id);
4094 	spin_unlock_irqrestore(&xhci->lock, flags);
4095 
4096 }
4097 
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)4098 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4099 {
4100 	struct xhci_command *command;
4101 	unsigned long flags;
4102 	u32 state;
4103 	int ret;
4104 
4105 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4106 	if (!command)
4107 		return -ENOMEM;
4108 
4109 	xhci_debugfs_remove_slot(xhci, slot_id);
4110 
4111 	spin_lock_irqsave(&xhci->lock, flags);
4112 	/* Don't disable the slot if the host controller is dead. */
4113 	state = readl(&xhci->op_regs->status);
4114 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4115 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
4116 		spin_unlock_irqrestore(&xhci->lock, flags);
4117 		kfree(command);
4118 		return -ENODEV;
4119 	}
4120 
4121 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4122 				slot_id);
4123 	if (ret) {
4124 		spin_unlock_irqrestore(&xhci->lock, flags);
4125 		kfree(command);
4126 		return ret;
4127 	}
4128 	xhci_ring_cmd_db(xhci);
4129 	spin_unlock_irqrestore(&xhci->lock, flags);
4130 
4131 	wait_for_completion(command->completion);
4132 
4133 	if (command->status != COMP_SUCCESS)
4134 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4135 			  slot_id, command->status);
4136 
4137 	xhci_free_command(xhci, command);
4138 
4139 	return 0;
4140 }
4141 
4142 /*
4143  * Checks if we have enough host controller resources for the default control
4144  * endpoint.
4145  *
4146  * Must be called with xhci->lock held.
4147  */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)4148 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4149 {
4150 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4151 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4152 				"Not enough ep ctxs: "
4153 				"%u active, need to add 1, limit is %u.",
4154 				xhci->num_active_eps, xhci->limit_active_eps);
4155 		return -ENOMEM;
4156 	}
4157 	xhci->num_active_eps += 1;
4158 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4159 			"Adding 1 ep ctx, %u now active.",
4160 			xhci->num_active_eps);
4161 	return 0;
4162 }
4163 
4164 
4165 /*
4166  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4167  * timed out, or allocating memory failed.  Returns 1 on success.
4168  */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)4169 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4170 {
4171 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4172 	struct xhci_virt_device *vdev;
4173 	struct xhci_slot_ctx *slot_ctx;
4174 	unsigned long flags;
4175 	int ret, slot_id;
4176 	struct xhci_command *command;
4177 
4178 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4179 	if (!command)
4180 		return 0;
4181 
4182 	spin_lock_irqsave(&xhci->lock, flags);
4183 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4184 	if (ret) {
4185 		spin_unlock_irqrestore(&xhci->lock, flags);
4186 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4187 		xhci_free_command(xhci, command);
4188 		return 0;
4189 	}
4190 	xhci_ring_cmd_db(xhci);
4191 	spin_unlock_irqrestore(&xhci->lock, flags);
4192 
4193 	wait_for_completion(command->completion);
4194 	slot_id = command->slot_id;
4195 
4196 	if (!slot_id || command->status != COMP_SUCCESS) {
4197 		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4198 			 xhci_trb_comp_code_string(command->status));
4199 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4200 				HCS_MAX_SLOTS(
4201 					readl(&xhci->cap_regs->hcs_params1)));
4202 		xhci_free_command(xhci, command);
4203 		return 0;
4204 	}
4205 
4206 	xhci_free_command(xhci, command);
4207 
4208 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4209 		spin_lock_irqsave(&xhci->lock, flags);
4210 		ret = xhci_reserve_host_control_ep_resources(xhci);
4211 		if (ret) {
4212 			spin_unlock_irqrestore(&xhci->lock, flags);
4213 			xhci_warn(xhci, "Not enough host resources, "
4214 					"active endpoint contexts = %u\n",
4215 					xhci->num_active_eps);
4216 			goto disable_slot;
4217 		}
4218 		spin_unlock_irqrestore(&xhci->lock, flags);
4219 	}
4220 	/* Use GFP_NOIO, since this function can be called from
4221 	 * xhci_discover_or_reset_device(), which may be called as part of
4222 	 * mass storage driver error handling.
4223 	 */
4224 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4225 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4226 		goto disable_slot;
4227 	}
4228 	vdev = xhci->devs[slot_id];
4229 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4230 	trace_xhci_alloc_dev(slot_ctx);
4231 
4232 	udev->slot_id = slot_id;
4233 
4234 	xhci_debugfs_create_slot(xhci, slot_id);
4235 
4236 	/*
4237 	 * If resetting upon resume, we can't put the controller into runtime
4238 	 * suspend if there is a device attached.
4239 	 */
4240 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4241 		pm_runtime_get_noresume(hcd->self.controller);
4242 
4243 	/* Is this a LS or FS device under a HS hub? */
4244 	/* Hub or peripherial? */
4245 	return 1;
4246 
4247 disable_slot:
4248 	xhci_disable_slot(xhci, udev->slot_id);
4249 	xhci_free_virt_device(xhci, udev->slot_id);
4250 
4251 	return 0;
4252 }
4253 
4254 /**
4255  * xhci_setup_device - issues an Address Device command to assign a unique
4256  *			USB bus address.
4257  * @hcd: USB host controller data structure.
4258  * @udev: USB dev structure representing the connected device.
4259  * @setup: Enum specifying setup mode: address only or with context.
4260  * @timeout_ms: Max wait time (ms) for the command operation to complete.
4261  *
4262  * Return: 0 if successful; otherwise, negative error code.
4263  */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup,unsigned int timeout_ms)4264 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4265 			     enum xhci_setup_dev setup, unsigned int timeout_ms)
4266 {
4267 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4268 	unsigned long flags;
4269 	struct xhci_virt_device *virt_dev;
4270 	int ret = 0;
4271 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4272 	struct xhci_slot_ctx *slot_ctx;
4273 	struct xhci_input_control_ctx *ctrl_ctx;
4274 	u64 temp_64;
4275 	struct xhci_command *command = NULL;
4276 
4277 	mutex_lock(&xhci->mutex);
4278 
4279 	if (xhci->xhc_state) {	/* dying, removing or halted */
4280 		ret = -ESHUTDOWN;
4281 		goto out;
4282 	}
4283 
4284 	if (!udev->slot_id) {
4285 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4286 				"Bad Slot ID %d", udev->slot_id);
4287 		ret = -EINVAL;
4288 		goto out;
4289 	}
4290 
4291 	virt_dev = xhci->devs[udev->slot_id];
4292 
4293 	if (WARN_ON(!virt_dev)) {
4294 		/*
4295 		 * In plug/unplug torture test with an NEC controller,
4296 		 * a zero-dereference was observed once due to virt_dev = 0.
4297 		 * Print useful debug rather than crash if it is observed again!
4298 		 */
4299 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4300 			udev->slot_id);
4301 		ret = -EINVAL;
4302 		goto out;
4303 	}
4304 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4305 	trace_xhci_setup_device_slot(slot_ctx);
4306 
4307 	if (setup == SETUP_CONTEXT_ONLY) {
4308 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4309 		    SLOT_STATE_DEFAULT) {
4310 			xhci_dbg(xhci, "Slot already in default state\n");
4311 			goto out;
4312 		}
4313 	}
4314 
4315 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4316 	if (!command) {
4317 		ret = -ENOMEM;
4318 		goto out;
4319 	}
4320 
4321 	command->in_ctx = virt_dev->in_ctx;
4322 	command->timeout_ms = timeout_ms;
4323 
4324 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4325 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4326 	if (!ctrl_ctx) {
4327 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4328 				__func__);
4329 		ret = -EINVAL;
4330 		goto out;
4331 	}
4332 	/*
4333 	 * If this is the first Set Address since device plug-in or
4334 	 * virt_device realloaction after a resume with an xHCI power loss,
4335 	 * then set up the slot context.
4336 	 */
4337 	if (!slot_ctx->dev_info)
4338 		xhci_setup_addressable_virt_dev(xhci, udev);
4339 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4340 	else
4341 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4342 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4343 	ctrl_ctx->drop_flags = 0;
4344 
4345 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4346 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4347 
4348 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4349 	spin_lock_irqsave(&xhci->lock, flags);
4350 	trace_xhci_setup_device(virt_dev);
4351 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4352 					udev->slot_id, setup);
4353 	if (ret) {
4354 		spin_unlock_irqrestore(&xhci->lock, flags);
4355 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4356 				"FIXME: allocate a command ring segment");
4357 		goto out;
4358 	}
4359 	xhci_ring_cmd_db(xhci);
4360 	spin_unlock_irqrestore(&xhci->lock, flags);
4361 
4362 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4363 	wait_for_completion(command->completion);
4364 
4365 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4366 	 * the SetAddress() "recovery interval" required by USB and aborting the
4367 	 * command on a timeout.
4368 	 */
4369 	switch (command->status) {
4370 	case COMP_COMMAND_ABORTED:
4371 	case COMP_COMMAND_RING_STOPPED:
4372 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4373 		ret = -ETIME;
4374 		break;
4375 	case COMP_CONTEXT_STATE_ERROR:
4376 	case COMP_SLOT_NOT_ENABLED_ERROR:
4377 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4378 			 act, udev->slot_id);
4379 		ret = -EINVAL;
4380 		break;
4381 	case COMP_USB_TRANSACTION_ERROR:
4382 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4383 
4384 		mutex_unlock(&xhci->mutex);
4385 		ret = xhci_disable_slot(xhci, udev->slot_id);
4386 		xhci_free_virt_device(xhci, udev->slot_id);
4387 		if (!ret) {
4388 			if (xhci_alloc_dev(hcd, udev) == 1)
4389 				xhci_setup_addressable_virt_dev(xhci, udev);
4390 		}
4391 		kfree(command->completion);
4392 		kfree(command);
4393 		return -EPROTO;
4394 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4395 		dev_warn(&udev->dev,
4396 			 "ERROR: Incompatible device for setup %s command\n", act);
4397 		ret = -ENODEV;
4398 		break;
4399 	case COMP_SUCCESS:
4400 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4401 			       "Successful setup %s command", act);
4402 		break;
4403 	default:
4404 		xhci_err(xhci,
4405 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4406 			 act, command->status);
4407 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4408 		ret = -EINVAL;
4409 		break;
4410 	}
4411 	if (ret)
4412 		goto out;
4413 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4414 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4415 			"Op regs DCBAA ptr = %#016llx", temp_64);
4416 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4417 		"Slot ID %d dcbaa entry @%p = %#016llx",
4418 		udev->slot_id,
4419 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4420 		(unsigned long long)
4421 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4422 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4423 			"Output Context DMA address = %#08llx",
4424 			(unsigned long long)virt_dev->out_ctx->dma);
4425 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4426 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4427 	/*
4428 	 * USB core uses address 1 for the roothubs, so we add one to the
4429 	 * address given back to us by the HC.
4430 	 */
4431 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4432 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4433 	/* Zero the input context control for later use */
4434 	ctrl_ctx->add_flags = 0;
4435 	ctrl_ctx->drop_flags = 0;
4436 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4437 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4438 
4439 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4440 		       "Internal device address = %d",
4441 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4442 out:
4443 	mutex_unlock(&xhci->mutex);
4444 	if (command) {
4445 		kfree(command->completion);
4446 		kfree(command);
4447 	}
4448 	return ret;
4449 }
4450 
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev,unsigned int timeout_ms)4451 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4452 			       unsigned int timeout_ms)
4453 {
4454 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4455 }
4456 
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4457 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4458 {
4459 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4460 				 XHCI_CMD_DEFAULT_TIMEOUT);
4461 }
4462 
4463 /*
4464  * Transfer the port index into real index in the HW port status
4465  * registers. Caculate offset between the port's PORTSC register
4466  * and port status base. Divide the number of per port register
4467  * to get the real index. The raw port number bases 1.
4468  */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4469 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4470 {
4471 	struct xhci_hub *rhub;
4472 
4473 	rhub = xhci_get_rhub(hcd);
4474 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4475 }
4476 
4477 /*
4478  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4479  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4480  */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4481 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4482 			struct usb_device *udev, u16 max_exit_latency)
4483 {
4484 	struct xhci_virt_device *virt_dev;
4485 	struct xhci_command *command;
4486 	struct xhci_input_control_ctx *ctrl_ctx;
4487 	struct xhci_slot_ctx *slot_ctx;
4488 	unsigned long flags;
4489 	int ret;
4490 
4491 	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4492 	if (!command)
4493 		return -ENOMEM;
4494 
4495 	spin_lock_irqsave(&xhci->lock, flags);
4496 
4497 	virt_dev = xhci->devs[udev->slot_id];
4498 
4499 	/*
4500 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4501 	 * xHC was re-initialized. Exit latency will be set later after
4502 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4503 	 */
4504 
4505 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4506 		spin_unlock_irqrestore(&xhci->lock, flags);
4507 		xhci_free_command(xhci, command);
4508 		return 0;
4509 	}
4510 
4511 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4512 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4513 	if (!ctrl_ctx) {
4514 		spin_unlock_irqrestore(&xhci->lock, flags);
4515 		xhci_free_command(xhci, command);
4516 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4517 				__func__);
4518 		return -ENOMEM;
4519 	}
4520 
4521 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4522 	spin_unlock_irqrestore(&xhci->lock, flags);
4523 
4524 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4525 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4526 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4527 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4528 	slot_ctx->dev_state = 0;
4529 
4530 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4531 			"Set up evaluate context for LPM MEL change.");
4532 
4533 	/* Issue and wait for the evaluate context command. */
4534 	ret = xhci_configure_endpoint(xhci, udev, command,
4535 			true, true);
4536 
4537 	if (!ret) {
4538 		spin_lock_irqsave(&xhci->lock, flags);
4539 		virt_dev->current_mel = max_exit_latency;
4540 		spin_unlock_irqrestore(&xhci->lock, flags);
4541 	}
4542 
4543 	xhci_free_command(xhci, command);
4544 
4545 	return ret;
4546 }
4547 
4548 #ifdef CONFIG_PM
4549 
4550 /* BESL to HIRD Encoding array for USB2 LPM */
4551 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4552 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4553 
4554 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4555 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4556 					struct usb_device *udev)
4557 {
4558 	int u2del, besl, besl_host;
4559 	int besl_device = 0;
4560 	u32 field;
4561 
4562 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4563 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4564 
4565 	if (field & USB_BESL_SUPPORT) {
4566 		for (besl_host = 0; besl_host < 16; besl_host++) {
4567 			if (xhci_besl_encoding[besl_host] >= u2del)
4568 				break;
4569 		}
4570 		/* Use baseline BESL value as default */
4571 		if (field & USB_BESL_BASELINE_VALID)
4572 			besl_device = USB_GET_BESL_BASELINE(field);
4573 		else if (field & USB_BESL_DEEP_VALID)
4574 			besl_device = USB_GET_BESL_DEEP(field);
4575 	} else {
4576 		if (u2del <= 50)
4577 			besl_host = 0;
4578 		else
4579 			besl_host = (u2del - 51) / 75 + 1;
4580 	}
4581 
4582 	besl = besl_host + besl_device;
4583 	if (besl > 15)
4584 		besl = 15;
4585 
4586 	return besl;
4587 }
4588 
4589 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4590 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4591 {
4592 	u32 field;
4593 	int l1;
4594 	int besld = 0;
4595 	int hirdm = 0;
4596 
4597 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4598 
4599 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4600 	l1 = udev->l1_params.timeout / 256;
4601 
4602 	/* device has preferred BESLD */
4603 	if (field & USB_BESL_DEEP_VALID) {
4604 		besld = USB_GET_BESL_DEEP(field);
4605 		hirdm = 1;
4606 	}
4607 
4608 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4609 }
4610 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4611 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4612 			struct usb_device *udev, int enable)
4613 {
4614 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4615 	struct xhci_port **ports;
4616 	__le32 __iomem	*pm_addr, *hlpm_addr;
4617 	u32		pm_val, hlpm_val, field;
4618 	unsigned int	port_num;
4619 	unsigned long	flags;
4620 	int		hird, exit_latency;
4621 	int		ret;
4622 
4623 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4624 		return -EPERM;
4625 
4626 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4627 			!udev->lpm_capable)
4628 		return -EPERM;
4629 
4630 	if (!udev->parent || udev->parent->parent ||
4631 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4632 		return -EPERM;
4633 
4634 	if (udev->usb2_hw_lpm_capable != 1)
4635 		return -EPERM;
4636 
4637 	spin_lock_irqsave(&xhci->lock, flags);
4638 
4639 	ports = xhci->usb2_rhub.ports;
4640 	port_num = udev->portnum - 1;
4641 	pm_addr = ports[port_num]->addr + PORTPMSC;
4642 	pm_val = readl(pm_addr);
4643 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4644 
4645 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4646 		 str_enable_disable(enable), port_num + 1);
4647 
4648 	if (enable) {
4649 		/* Host supports BESL timeout instead of HIRD */
4650 		if (udev->usb2_hw_lpm_besl_capable) {
4651 			/* if device doesn't have a preferred BESL value use a
4652 			 * default one which works with mixed HIRD and BESL
4653 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4654 			 */
4655 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4656 			if ((field & USB_BESL_SUPPORT) &&
4657 			    (field & USB_BESL_BASELINE_VALID))
4658 				hird = USB_GET_BESL_BASELINE(field);
4659 			else
4660 				hird = udev->l1_params.besl;
4661 
4662 			exit_latency = xhci_besl_encoding[hird];
4663 			spin_unlock_irqrestore(&xhci->lock, flags);
4664 
4665 			ret = xhci_change_max_exit_latency(xhci, udev,
4666 							   exit_latency);
4667 			if (ret < 0)
4668 				return ret;
4669 			spin_lock_irqsave(&xhci->lock, flags);
4670 
4671 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4672 			writel(hlpm_val, hlpm_addr);
4673 			/* flush write */
4674 			readl(hlpm_addr);
4675 		} else {
4676 			hird = xhci_calculate_hird_besl(xhci, udev);
4677 		}
4678 
4679 		pm_val &= ~PORT_HIRD_MASK;
4680 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4681 		writel(pm_val, pm_addr);
4682 		pm_val = readl(pm_addr);
4683 		pm_val |= PORT_HLE;
4684 		writel(pm_val, pm_addr);
4685 		/* flush write */
4686 		readl(pm_addr);
4687 	} else {
4688 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4689 		writel(pm_val, pm_addr);
4690 		/* flush write */
4691 		readl(pm_addr);
4692 		if (udev->usb2_hw_lpm_besl_capable) {
4693 			spin_unlock_irqrestore(&xhci->lock, flags);
4694 			xhci_change_max_exit_latency(xhci, udev, 0);
4695 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4696 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4697 					   100, 10000);
4698 			return 0;
4699 		}
4700 	}
4701 
4702 	spin_unlock_irqrestore(&xhci->lock, flags);
4703 	return 0;
4704 }
4705 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4706 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4707 {
4708 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4709 	struct xhci_port *port;
4710 	u32 capability;
4711 
4712 	/* Check if USB3 device at root port is tunneled over USB4 */
4713 	if (hcd->speed >= HCD_USB3 && !udev->parent->parent) {
4714 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
4715 
4716 		udev->tunnel_mode = xhci_port_is_tunneled(xhci, port);
4717 		if (udev->tunnel_mode == USB_LINK_UNKNOWN)
4718 			dev_dbg(&udev->dev, "link tunnel state unknown\n");
4719 		else if (udev->tunnel_mode == USB_LINK_TUNNELED)
4720 			dev_dbg(&udev->dev, "tunneled over USB4 link\n");
4721 		else if (udev->tunnel_mode == USB_LINK_NATIVE)
4722 			dev_dbg(&udev->dev, "native USB 3.x link\n");
4723 		return 0;
4724 	}
4725 
4726 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support)
4727 		return 0;
4728 
4729 	/* we only support lpm for non-hub device connected to root hub yet */
4730 	if (!udev->parent || udev->parent->parent ||
4731 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4732 		return 0;
4733 
4734 	port = xhci->usb2_rhub.ports[udev->portnum - 1];
4735 	capability = port->port_cap->protocol_caps;
4736 
4737 	if (capability & XHCI_HLC) {
4738 		udev->usb2_hw_lpm_capable = 1;
4739 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4740 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4741 		if (capability & XHCI_BLC)
4742 			udev->usb2_hw_lpm_besl_capable = 1;
4743 	}
4744 
4745 	return 0;
4746 }
4747 
4748 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4749 
4750 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4751 static unsigned long long xhci_service_interval_to_ns(
4752 		struct usb_endpoint_descriptor *desc)
4753 {
4754 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4755 }
4756 
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4757 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4758 		enum usb3_link_state state)
4759 {
4760 	unsigned long long sel;
4761 	unsigned long long pel;
4762 	unsigned int max_sel_pel;
4763 	char *state_name;
4764 
4765 	switch (state) {
4766 	case USB3_LPM_U1:
4767 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4768 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4769 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4770 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4771 		state_name = "U1";
4772 		break;
4773 	case USB3_LPM_U2:
4774 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4775 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4776 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4777 		state_name = "U2";
4778 		break;
4779 	default:
4780 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4781 				__func__);
4782 		return USB3_LPM_DISABLED;
4783 	}
4784 
4785 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4786 		return USB3_LPM_DEVICE_INITIATED;
4787 
4788 	if (sel > max_sel_pel)
4789 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4790 				"due to long SEL %llu ms\n",
4791 				state_name, sel);
4792 	else
4793 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4794 				"due to long PEL %llu ms\n",
4795 				state_name, pel);
4796 	return USB3_LPM_DISABLED;
4797 }
4798 
4799 /* The U1 timeout should be the maximum of the following values:
4800  *  - For control endpoints, U1 system exit latency (SEL) * 3
4801  *  - For bulk endpoints, U1 SEL * 5
4802  *  - For interrupt endpoints:
4803  *    - Notification EPs, U1 SEL * 3
4804  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4805  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4806  */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4807 static unsigned long long xhci_calculate_intel_u1_timeout(
4808 		struct usb_device *udev,
4809 		struct usb_endpoint_descriptor *desc)
4810 {
4811 	unsigned long long timeout_ns;
4812 	int ep_type;
4813 	int intr_type;
4814 
4815 	ep_type = usb_endpoint_type(desc);
4816 	switch (ep_type) {
4817 	case USB_ENDPOINT_XFER_CONTROL:
4818 		timeout_ns = udev->u1_params.sel * 3;
4819 		break;
4820 	case USB_ENDPOINT_XFER_BULK:
4821 		timeout_ns = udev->u1_params.sel * 5;
4822 		break;
4823 	case USB_ENDPOINT_XFER_INT:
4824 		intr_type = usb_endpoint_interrupt_type(desc);
4825 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4826 			timeout_ns = udev->u1_params.sel * 3;
4827 			break;
4828 		}
4829 		/* Otherwise the calculation is the same as isoc eps */
4830 		fallthrough;
4831 	case USB_ENDPOINT_XFER_ISOC:
4832 		timeout_ns = xhci_service_interval_to_ns(desc);
4833 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4834 		if (timeout_ns < udev->u1_params.sel * 2)
4835 			timeout_ns = udev->u1_params.sel * 2;
4836 		break;
4837 	default:
4838 		return 0;
4839 	}
4840 
4841 	return timeout_ns;
4842 }
4843 
4844 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4845 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4846 		struct usb_device *udev,
4847 		struct usb_endpoint_descriptor *desc)
4848 {
4849 	unsigned long long timeout_ns;
4850 
4851 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4852 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4853 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4854 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4855 			return USB3_LPM_DISABLED;
4856 		}
4857 	}
4858 
4859 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4860 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4861 	else
4862 		timeout_ns = udev->u1_params.sel;
4863 
4864 	/* The U1 timeout is encoded in 1us intervals.
4865 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4866 	 */
4867 	if (timeout_ns == USB3_LPM_DISABLED)
4868 		timeout_ns = 1;
4869 	else
4870 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4871 
4872 	/* If the necessary timeout value is bigger than what we can set in the
4873 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4874 	 */
4875 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4876 		return timeout_ns;
4877 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled due to long timeout %lluus\n",
4878 		timeout_ns);
4879 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4880 }
4881 
4882 /* The U2 timeout should be the maximum of:
4883  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4884  *  - largest bInterval of any active periodic endpoint (to avoid going
4885  *    into lower power link states between intervals).
4886  *  - the U2 Exit Latency of the device
4887  */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4888 static unsigned long long xhci_calculate_intel_u2_timeout(
4889 		struct usb_device *udev,
4890 		struct usb_endpoint_descriptor *desc)
4891 {
4892 	unsigned long long timeout_ns;
4893 	unsigned long long u2_del_ns;
4894 
4895 	timeout_ns = 10 * 1000 * 1000;
4896 
4897 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4898 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4899 		timeout_ns = xhci_service_interval_to_ns(desc);
4900 
4901 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4902 	if (u2_del_ns > timeout_ns)
4903 		timeout_ns = u2_del_ns;
4904 
4905 	return timeout_ns;
4906 }
4907 
4908 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4909 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4910 		struct usb_device *udev,
4911 		struct usb_endpoint_descriptor *desc)
4912 {
4913 	unsigned long long timeout_ns;
4914 
4915 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4916 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4917 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4918 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4919 			return USB3_LPM_DISABLED;
4920 		}
4921 	}
4922 
4923 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4924 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4925 	else
4926 		timeout_ns = udev->u2_params.sel;
4927 
4928 	/* The U2 timeout is encoded in 256us intervals */
4929 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4930 	/* If the necessary timeout value is bigger than what we can set in the
4931 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4932 	 */
4933 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4934 		return timeout_ns;
4935 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled due to long timeout %lluus\n",
4936 		timeout_ns * 256);
4937 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4938 }
4939 
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4940 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4941 		struct usb_device *udev,
4942 		struct usb_endpoint_descriptor *desc,
4943 		enum usb3_link_state state,
4944 		u16 *timeout)
4945 {
4946 	if (state == USB3_LPM_U1)
4947 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4948 	else if (state == USB3_LPM_U2)
4949 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4950 
4951 	return USB3_LPM_DISABLED;
4952 }
4953 
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4954 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4955 		struct usb_device *udev,
4956 		struct usb_endpoint_descriptor *desc,
4957 		enum usb3_link_state state,
4958 		u16 *timeout)
4959 {
4960 	u16 alt_timeout;
4961 
4962 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4963 		desc, state, timeout);
4964 
4965 	/* If we found we can't enable hub-initiated LPM, and
4966 	 * the U1 or U2 exit latency was too high to allow
4967 	 * device-initiated LPM as well, then we will disable LPM
4968 	 * for this device, so stop searching any further.
4969 	 */
4970 	if (alt_timeout == USB3_LPM_DISABLED) {
4971 		*timeout = alt_timeout;
4972 		return -E2BIG;
4973 	}
4974 	if (alt_timeout > *timeout)
4975 		*timeout = alt_timeout;
4976 	return 0;
4977 }
4978 
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4979 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4980 		struct usb_device *udev,
4981 		struct usb_host_interface *alt,
4982 		enum usb3_link_state state,
4983 		u16 *timeout)
4984 {
4985 	int j;
4986 
4987 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4988 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4989 					&alt->endpoint[j].desc, state, timeout))
4990 			return -E2BIG;
4991 	}
4992 	return 0;
4993 }
4994 
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4995 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4996 		struct usb_device *udev,
4997 		enum usb3_link_state state)
4998 {
4999 	struct usb_device *parent = udev->parent;
5000 	int tier = 1; /* roothub is tier1 */
5001 
5002 	while (parent) {
5003 		parent = parent->parent;
5004 		tier++;
5005 	}
5006 
5007 	if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
5008 		goto fail;
5009 	if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
5010 		goto fail;
5011 
5012 	return 0;
5013 fail:
5014 	dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
5015 			tier);
5016 	return -E2BIG;
5017 }
5018 
5019 /* Returns the U1 or U2 timeout that should be enabled.
5020  * If the tier check or timeout setting functions return with a non-zero exit
5021  * code, that means the timeout value has been finalized and we shouldn't look
5022  * at any more endpoints.
5023  */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5024 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
5025 			struct usb_device *udev, enum usb3_link_state state)
5026 {
5027 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5028 	struct usb_host_config *config;
5029 	char *state_name;
5030 	int i;
5031 	u16 timeout = USB3_LPM_DISABLED;
5032 
5033 	if (state == USB3_LPM_U1)
5034 		state_name = "U1";
5035 	else if (state == USB3_LPM_U2)
5036 		state_name = "U2";
5037 	else {
5038 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
5039 				state);
5040 		return timeout;
5041 	}
5042 
5043 	/* Gather some information about the currently installed configuration
5044 	 * and alternate interface settings.
5045 	 */
5046 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
5047 			state, &timeout))
5048 		return timeout;
5049 
5050 	config = udev->actconfig;
5051 	if (!config)
5052 		return timeout;
5053 
5054 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
5055 		struct usb_driver *driver;
5056 		struct usb_interface *intf = config->interface[i];
5057 
5058 		if (!intf)
5059 			continue;
5060 
5061 		/* Check if any currently bound drivers want hub-initiated LPM
5062 		 * disabled.
5063 		 */
5064 		if (intf->dev.driver) {
5065 			driver = to_usb_driver(intf->dev.driver);
5066 			if (driver && driver->disable_hub_initiated_lpm) {
5067 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
5068 					state_name, driver->name);
5069 				timeout = xhci_get_timeout_no_hub_lpm(udev,
5070 								      state);
5071 				if (timeout == USB3_LPM_DISABLED)
5072 					return timeout;
5073 			}
5074 		}
5075 
5076 		/* Not sure how this could happen... */
5077 		if (!intf->cur_altsetting)
5078 			continue;
5079 
5080 		if (xhci_update_timeout_for_interface(xhci, udev,
5081 					intf->cur_altsetting,
5082 					state, &timeout))
5083 			return timeout;
5084 	}
5085 	return timeout;
5086 }
5087 
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)5088 static int calculate_max_exit_latency(struct usb_device *udev,
5089 		enum usb3_link_state state_changed,
5090 		u16 hub_encoded_timeout)
5091 {
5092 	unsigned long long u1_mel_us = 0;
5093 	unsigned long long u2_mel_us = 0;
5094 	unsigned long long mel_us = 0;
5095 	bool disabling_u1;
5096 	bool disabling_u2;
5097 	bool enabling_u1;
5098 	bool enabling_u2;
5099 
5100 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
5101 			hub_encoded_timeout == USB3_LPM_DISABLED);
5102 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
5103 			hub_encoded_timeout == USB3_LPM_DISABLED);
5104 
5105 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
5106 			hub_encoded_timeout != USB3_LPM_DISABLED);
5107 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
5108 			hub_encoded_timeout != USB3_LPM_DISABLED);
5109 
5110 	/* If U1 was already enabled and we're not disabling it,
5111 	 * or we're going to enable U1, account for the U1 max exit latency.
5112 	 */
5113 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5114 			enabling_u1)
5115 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5116 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5117 			enabling_u2)
5118 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5119 
5120 	mel_us = max(u1_mel_us, u2_mel_us);
5121 
5122 	/* xHCI host controller max exit latency field is only 16 bits wide. */
5123 	if (mel_us > MAX_EXIT) {
5124 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5125 				"is too big.\n", mel_us);
5126 		return -E2BIG;
5127 	}
5128 	return mel_us;
5129 }
5130 
5131 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5132 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5133 			struct usb_device *udev, enum usb3_link_state state)
5134 {
5135 	struct xhci_hcd	*xhci;
5136 	struct xhci_port *port;
5137 	u16 hub_encoded_timeout;
5138 	int mel;
5139 	int ret;
5140 
5141 	xhci = hcd_to_xhci(hcd);
5142 	/* The LPM timeout values are pretty host-controller specific, so don't
5143 	 * enable hub-initiated timeouts unless the vendor has provided
5144 	 * information about their timeout algorithm.
5145 	 */
5146 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5147 			!xhci->devs[udev->slot_id])
5148 		return USB3_LPM_DISABLED;
5149 
5150 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
5151 		return USB3_LPM_DISABLED;
5152 
5153 	/* If connected to root port then check port can handle lpm */
5154 	if (udev->parent && !udev->parent->parent) {
5155 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
5156 		if (port->lpm_incapable)
5157 			return USB3_LPM_DISABLED;
5158 	}
5159 
5160 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5161 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5162 	if (mel < 0) {
5163 		/* Max Exit Latency is too big, disable LPM. */
5164 		hub_encoded_timeout = USB3_LPM_DISABLED;
5165 		mel = 0;
5166 	}
5167 
5168 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5169 	if (ret)
5170 		return ret;
5171 	return hub_encoded_timeout;
5172 }
5173 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5174 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5175 			struct usb_device *udev, enum usb3_link_state state)
5176 {
5177 	struct xhci_hcd	*xhci;
5178 	u16 mel;
5179 
5180 	xhci = hcd_to_xhci(hcd);
5181 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5182 			!xhci->devs[udev->slot_id])
5183 		return 0;
5184 
5185 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5186 	return xhci_change_max_exit_latency(xhci, udev, mel);
5187 }
5188 #else /* CONFIG_PM */
5189 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)5190 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5191 				struct usb_device *udev, int enable)
5192 {
5193 	return 0;
5194 }
5195 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5196 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5197 {
5198 	return 0;
5199 }
5200 
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5201 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5202 			struct usb_device *udev, enum usb3_link_state state)
5203 {
5204 	return USB3_LPM_DISABLED;
5205 }
5206 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5207 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5208 			struct usb_device *udev, enum usb3_link_state state)
5209 {
5210 	return 0;
5211 }
5212 #endif	/* CONFIG_PM */
5213 
5214 /*-------------------------------------------------------------------------*/
5215 
5216 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5217  * internal data structures for the device.
5218  */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5219 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5220 			struct usb_tt *tt, gfp_t mem_flags)
5221 {
5222 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5223 	struct xhci_virt_device *vdev;
5224 	struct xhci_command *config_cmd;
5225 	struct xhci_input_control_ctx *ctrl_ctx;
5226 	struct xhci_slot_ctx *slot_ctx;
5227 	unsigned long flags;
5228 	unsigned think_time;
5229 	int ret;
5230 
5231 	/* Ignore root hubs */
5232 	if (!hdev->parent)
5233 		return 0;
5234 
5235 	vdev = xhci->devs[hdev->slot_id];
5236 	if (!vdev) {
5237 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5238 		return -EINVAL;
5239 	}
5240 
5241 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5242 	if (!config_cmd)
5243 		return -ENOMEM;
5244 
5245 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5246 	if (!ctrl_ctx) {
5247 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5248 				__func__);
5249 		xhci_free_command(xhci, config_cmd);
5250 		return -ENOMEM;
5251 	}
5252 
5253 	spin_lock_irqsave(&xhci->lock, flags);
5254 	if (hdev->speed == USB_SPEED_HIGH &&
5255 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5256 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5257 		xhci_free_command(xhci, config_cmd);
5258 		spin_unlock_irqrestore(&xhci->lock, flags);
5259 		return -ENOMEM;
5260 	}
5261 
5262 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5263 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5264 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5265 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5266 	/*
5267 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5268 	 * but it may be already set to 1 when setup an xHCI virtual
5269 	 * device, so clear it anyway.
5270 	 */
5271 	if (tt->multi)
5272 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5273 	else if (hdev->speed == USB_SPEED_FULL)
5274 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5275 
5276 	if (xhci->hci_version > 0x95) {
5277 		xhci_dbg(xhci, "xHCI version %x needs hub "
5278 				"TT think time and number of ports\n",
5279 				(unsigned int) xhci->hci_version);
5280 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5281 		/* Set TT think time - convert from ns to FS bit times.
5282 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5283 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5284 		 *
5285 		 * xHCI 1.0: this field shall be 0 if the device is not a
5286 		 * High-spped hub.
5287 		 */
5288 		think_time = tt->think_time;
5289 		if (think_time != 0)
5290 			think_time = (think_time / 666) - 1;
5291 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5292 			slot_ctx->tt_info |=
5293 				cpu_to_le32(TT_THINK_TIME(think_time));
5294 	} else {
5295 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5296 				"TT think time or number of ports\n",
5297 				(unsigned int) xhci->hci_version);
5298 	}
5299 	slot_ctx->dev_state = 0;
5300 	spin_unlock_irqrestore(&xhci->lock, flags);
5301 
5302 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5303 			(xhci->hci_version > 0x95) ?
5304 			"configure endpoint" : "evaluate context");
5305 
5306 	/* Issue and wait for the configure endpoint or
5307 	 * evaluate context command.
5308 	 */
5309 	if (xhci->hci_version > 0x95)
5310 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5311 				false, false);
5312 	else
5313 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5314 				true, false);
5315 
5316 	xhci_free_command(xhci, config_cmd);
5317 	return ret;
5318 }
5319 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5320 
xhci_get_frame(struct usb_hcd * hcd)5321 static int xhci_get_frame(struct usb_hcd *hcd)
5322 {
5323 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5324 	/* EHCI mods by the periodic size.  Why? */
5325 	return readl(&xhci->run_regs->microframe_index) >> 3;
5326 }
5327 
xhci_hcd_init_usb2_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5328 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5329 {
5330 	xhci->usb2_rhub.hcd = hcd;
5331 	hcd->speed = HCD_USB2;
5332 	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5333 	/*
5334 	 * USB 2.0 roothub under xHCI has an integrated TT,
5335 	 * (rate matching hub) as opposed to having an OHCI/UHCI
5336 	 * companion controller.
5337 	 */
5338 	hcd->has_tt = 1;
5339 }
5340 
xhci_hcd_init_usb3_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5341 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5342 {
5343 	unsigned int minor_rev;
5344 
5345 	/*
5346 	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5347 	 * should return 0x31 for sbrn, or that the minor revision
5348 	 * is a two digit BCD containig minor and sub-minor numbers.
5349 	 * This was later clarified in xHCI 1.2.
5350 	 *
5351 	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5352 	 * minor revision set to 0x1 instead of 0x10.
5353 	 */
5354 	if (xhci->usb3_rhub.min_rev == 0x1)
5355 		minor_rev = 1;
5356 	else
5357 		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5358 
5359 	switch (minor_rev) {
5360 	case 2:
5361 		hcd->speed = HCD_USB32;
5362 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5363 		hcd->self.root_hub->rx_lanes = 2;
5364 		hcd->self.root_hub->tx_lanes = 2;
5365 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5366 		break;
5367 	case 1:
5368 		hcd->speed = HCD_USB31;
5369 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5370 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5371 		break;
5372 	}
5373 	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5374 		  minor_rev, minor_rev ? "Enhanced " : "");
5375 
5376 	xhci->usb3_rhub.hcd = hcd;
5377 }
5378 
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5379 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5380 {
5381 	struct xhci_hcd		*xhci;
5382 	/*
5383 	 * TODO: Check with DWC3 clients for sysdev according to
5384 	 * quirks
5385 	 */
5386 	struct device		*dev = hcd->self.sysdev;
5387 	int			retval;
5388 
5389 	/* Accept arbitrarily long scatter-gather lists */
5390 	hcd->self.sg_tablesize = ~0;
5391 
5392 	/* support to build packet from discontinuous buffers */
5393 	hcd->self.no_sg_constraint = 1;
5394 
5395 	/* XHCI controllers don't stop the ep queue on short packets :| */
5396 	hcd->self.no_stop_on_short = 1;
5397 
5398 	xhci = hcd_to_xhci(hcd);
5399 
5400 	if (!usb_hcd_is_primary_hcd(hcd)) {
5401 		xhci_hcd_init_usb3_data(xhci, hcd);
5402 		return 0;
5403 	}
5404 
5405 	mutex_init(&xhci->mutex);
5406 	xhci->main_hcd = hcd;
5407 	xhci->cap_regs = hcd->regs;
5408 	xhci->op_regs = hcd->regs +
5409 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5410 	xhci->run_regs = hcd->regs +
5411 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5412 	/* Cache read-only capability registers */
5413 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5414 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5415 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5416 	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5417 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5418 	if (xhci->hci_version > 0x100)
5419 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5420 
5421 	/* xhci-plat or xhci-pci might have set max_interrupters already */
5422 	if ((!xhci->max_interrupters) ||
5423 	    xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5424 		xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5425 
5426 	xhci->quirks |= quirks;
5427 
5428 	if (get_quirks)
5429 		get_quirks(dev, xhci);
5430 
5431 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5432 	 * success event after a short transfer. This quirk will ignore such
5433 	 * spurious event.
5434 	 */
5435 	if (xhci->hci_version > 0x96)
5436 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5437 
5438 	if (xhci->hci_version == 0x95 && link_quirk) {
5439 		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits");
5440 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
5441 	}
5442 
5443 	/* Make sure the HC is halted. */
5444 	retval = xhci_halt(xhci);
5445 	if (retval)
5446 		return retval;
5447 
5448 	xhci_zero_64b_regs(xhci);
5449 
5450 	xhci_dbg(xhci, "Resetting HCD\n");
5451 	/* Reset the internal HC memory state and registers. */
5452 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5453 	if (retval)
5454 		return retval;
5455 	xhci_dbg(xhci, "Reset complete\n");
5456 
5457 	/*
5458 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5459 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5460 	 * address memory pointers actually. So, this driver clears the AC64
5461 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5462 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5463 	 */
5464 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5465 		xhci->hcc_params &= ~BIT(0);
5466 
5467 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5468 	 * if xHC supports 64-bit addressing */
5469 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5470 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5471 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5472 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5473 	} else {
5474 		/*
5475 		 * This is to avoid error in cases where a 32-bit USB
5476 		 * controller is used on a 64-bit capable system.
5477 		 */
5478 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5479 		if (retval)
5480 			return retval;
5481 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5482 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5483 	}
5484 
5485 	xhci_dbg(xhci, "Calling HCD init\n");
5486 	/* Initialize HCD and host controller data structures. */
5487 	retval = xhci_init(hcd);
5488 	if (retval)
5489 		return retval;
5490 	xhci_dbg(xhci, "Called HCD init\n");
5491 
5492 	if (xhci_hcd_is_usb3(hcd))
5493 		xhci_hcd_init_usb3_data(xhci, hcd);
5494 	else
5495 		xhci_hcd_init_usb2_data(xhci, hcd);
5496 
5497 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5498 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5499 
5500 	return 0;
5501 }
5502 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5503 
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5504 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5505 		struct usb_host_endpoint *ep)
5506 {
5507 	struct xhci_hcd *xhci;
5508 	struct usb_device *udev;
5509 	unsigned int slot_id;
5510 	unsigned int ep_index;
5511 	unsigned long flags;
5512 
5513 	xhci = hcd_to_xhci(hcd);
5514 
5515 	spin_lock_irqsave(&xhci->lock, flags);
5516 	udev = (struct usb_device *)ep->hcpriv;
5517 	slot_id = udev->slot_id;
5518 	ep_index = xhci_get_endpoint_index(&ep->desc);
5519 
5520 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5521 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5522 	spin_unlock_irqrestore(&xhci->lock, flags);
5523 }
5524 
5525 static const struct hc_driver xhci_hc_driver = {
5526 	.description =		"xhci-hcd",
5527 	.product_desc =		"xHCI Host Controller",
5528 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5529 
5530 	/*
5531 	 * generic hardware linkage
5532 	 */
5533 	.irq =			xhci_irq,
5534 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5535 				HCD_BH,
5536 
5537 	/*
5538 	 * basic lifecycle operations
5539 	 */
5540 	.reset =		NULL, /* set in xhci_init_driver() */
5541 	.start =		xhci_run,
5542 	.stop =			xhci_stop,
5543 	.shutdown =		xhci_shutdown,
5544 
5545 	/*
5546 	 * managing i/o requests and associated device resources
5547 	 */
5548 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5549 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5550 	.urb_enqueue =		xhci_urb_enqueue,
5551 	.urb_dequeue =		xhci_urb_dequeue,
5552 	.alloc_dev =		xhci_alloc_dev,
5553 	.free_dev =		xhci_free_dev,
5554 	.alloc_streams =	xhci_alloc_streams,
5555 	.free_streams =		xhci_free_streams,
5556 	.add_endpoint =		xhci_add_endpoint,
5557 	.drop_endpoint =	xhci_drop_endpoint,
5558 	.endpoint_disable =	xhci_endpoint_disable,
5559 	.endpoint_reset =	xhci_endpoint_reset,
5560 	.check_bandwidth =	xhci_check_bandwidth,
5561 	.reset_bandwidth =	xhci_reset_bandwidth,
5562 	.address_device =	xhci_address_device,
5563 	.enable_device =	xhci_enable_device,
5564 	.update_hub_device =	xhci_update_hub_device,
5565 	.reset_device =		xhci_discover_or_reset_device,
5566 
5567 	/*
5568 	 * scheduling support
5569 	 */
5570 	.get_frame_number =	xhci_get_frame,
5571 
5572 	/*
5573 	 * root hub support
5574 	 */
5575 	.hub_control =		xhci_hub_control,
5576 	.hub_status_data =	xhci_hub_status_data,
5577 	.bus_suspend =		xhci_bus_suspend,
5578 	.bus_resume =		xhci_bus_resume,
5579 	.get_resuming_ports =	xhci_get_resuming_ports,
5580 
5581 	/*
5582 	 * call back when device connected and addressed
5583 	 */
5584 	.update_device =        xhci_update_device,
5585 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5586 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5587 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5588 	.find_raw_port_number =	xhci_find_raw_port_number,
5589 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5590 };
5591 
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5592 void xhci_init_driver(struct hc_driver *drv,
5593 		      const struct xhci_driver_overrides *over)
5594 {
5595 	BUG_ON(!over);
5596 
5597 	/* Copy the generic table to drv then apply the overrides */
5598 	*drv = xhci_hc_driver;
5599 
5600 	if (over) {
5601 		drv->hcd_priv_size += over->extra_priv_size;
5602 		if (over->reset)
5603 			drv->reset = over->reset;
5604 		if (over->start)
5605 			drv->start = over->start;
5606 		if (over->add_endpoint)
5607 			drv->add_endpoint = over->add_endpoint;
5608 		if (over->drop_endpoint)
5609 			drv->drop_endpoint = over->drop_endpoint;
5610 		if (over->check_bandwidth)
5611 			drv->check_bandwidth = over->check_bandwidth;
5612 		if (over->reset_bandwidth)
5613 			drv->reset_bandwidth = over->reset_bandwidth;
5614 		if (over->update_hub_device)
5615 			drv->update_hub_device = over->update_hub_device;
5616 		if (over->hub_control)
5617 			drv->hub_control = over->hub_control;
5618 	}
5619 }
5620 EXPORT_SYMBOL_GPL(xhci_init_driver);
5621 
5622 MODULE_DESCRIPTION(DRIVER_DESC);
5623 MODULE_AUTHOR(DRIVER_AUTHOR);
5624 MODULE_LICENSE("GPL");
5625 
xhci_hcd_init(void)5626 static int __init xhci_hcd_init(void)
5627 {
5628 	/*
5629 	 * Check the compiler generated sizes of structures that must be laid
5630 	 * out in specific ways for hardware access.
5631 	 */
5632 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5633 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5634 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5635 	/* xhci_device_control has eight fields, and also
5636 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5637 	 */
5638 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5639 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5640 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5641 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5642 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5643 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5644 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5645 
5646 	if (usb_disabled())
5647 		return -ENODEV;
5648 
5649 	xhci_debugfs_create_root();
5650 	xhci_dbc_init();
5651 
5652 	return 0;
5653 }
5654 
5655 /*
5656  * If an init function is provided, an exit function must also be provided
5657  * to allow module unload.
5658  */
xhci_hcd_fini(void)5659 static void __exit xhci_hcd_fini(void)
5660 {
5661 	xhci_debugfs_remove_root();
5662 	xhci_dbc_exit();
5663 }
5664 
5665 module_init(xhci_hcd_init);
5666 module_exit(xhci_hcd_fini);
5667