1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/jiffies.h>
12 #include <linux/pci.h>
13 #include <linux/iommu.h>
14 #include <linux/iopoll.h>
15 #include <linux/irq.h>
16 #include <linux/log2.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/slab.h>
20 #include <linux/string_choices.h>
21 #include <linux/dmi.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/usb/xhci-sideband.h>
24
25 #include "xhci.h"
26 #include "xhci-trace.h"
27 #include "xhci-debugfs.h"
28 #include "xhci-dbgcap.h"
29
30 #define DRIVER_AUTHOR "Sarah Sharp"
31 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
32
33 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
34
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39
40 static unsigned long long quirks;
41 module_param(quirks, ullong, S_IRUGO);
42 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
43
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)44 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
45 {
46 struct xhci_segment *seg;
47
48 if (!td || !td->start_seg)
49 return false;
50
51 xhci_for_each_ring_seg(ring->first_seg, seg) {
52 if (seg == td->start_seg)
53 return true;
54 }
55
56 return false;
57 }
58
59 /*
60 * xhci_handshake - spin reading hc until handshake completes or fails
61 * @ptr: address of hc register to be read
62 * @mask: bits to look at in result of read
63 * @done: value of those bits when handshake succeeds
64 * @usec: timeout in microseconds
65 *
66 * Returns negative errno, or zero on success
67 *
68 * Success happens when the "mask" bits have the specified value (hardware
69 * handshake done). There are two failure modes: "usec" have passed (major
70 * hardware flakeout), or the register reads as all-ones (hardware removed).
71 */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)72 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
73 {
74 u32 result;
75 int ret;
76
77 ret = readl_poll_timeout_atomic(ptr, result,
78 (result & mask) == done ||
79 result == U32_MAX,
80 1, timeout_us);
81 if (result == U32_MAX) /* card removed */
82 return -ENODEV;
83
84 return ret;
85 }
86
87 /*
88 * Disable interrupts and begin the xHCI halting process.
89 */
xhci_quiesce(struct xhci_hcd * xhci)90 void xhci_quiesce(struct xhci_hcd *xhci)
91 {
92 u32 halted;
93 u32 cmd;
94 u32 mask;
95
96 mask = ~(XHCI_IRQS);
97 halted = readl(&xhci->op_regs->status) & STS_HALT;
98 if (!halted)
99 mask &= ~CMD_RUN;
100
101 cmd = readl(&xhci->op_regs->command);
102 cmd &= mask;
103 writel(cmd, &xhci->op_regs->command);
104 }
105
106 /*
107 * Force HC into halt state.
108 *
109 * Disable any IRQs and clear the run/stop bit.
110 * HC will complete any current and actively pipelined transactions, and
111 * should halt within 16 ms of the run/stop bit being cleared.
112 * Read HC Halted bit in the status register to see when the HC is finished.
113 */
xhci_halt(struct xhci_hcd * xhci)114 int xhci_halt(struct xhci_hcd *xhci)
115 {
116 int ret;
117
118 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
119 xhci_quiesce(xhci);
120
121 ret = xhci_handshake(&xhci->op_regs->status,
122 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
123 if (ret) {
124 if (!(xhci->xhc_state & XHCI_STATE_DYING))
125 xhci_warn(xhci, "Host halt failed, %d\n", ret);
126 return ret;
127 }
128
129 xhci->xhc_state |= XHCI_STATE_HALTED;
130 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
131
132 return ret;
133 }
134
135 /*
136 * Set the run bit and wait for the host to be running.
137 */
xhci_start(struct xhci_hcd * xhci)138 int xhci_start(struct xhci_hcd *xhci)
139 {
140 u32 temp;
141 int ret;
142
143 temp = readl(&xhci->op_regs->command);
144 temp |= (CMD_RUN);
145 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
146 temp);
147 writel(temp, &xhci->op_regs->command);
148
149 /*
150 * Wait for the HCHalted Status bit to be 0 to indicate the host is
151 * running.
152 */
153 ret = xhci_handshake(&xhci->op_regs->status,
154 STS_HALT, 0, XHCI_MAX_HALT_USEC);
155 if (ret == -ETIMEDOUT)
156 xhci_err(xhci, "Host took too long to start, "
157 "waited %u microseconds.\n",
158 XHCI_MAX_HALT_USEC);
159 if (!ret) {
160 /* clear state flags. Including dying, halted or removing */
161 xhci->xhc_state = 0;
162 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
163 }
164
165 return ret;
166 }
167
168 /*
169 * Reset a halted HC.
170 *
171 * This resets pipelines, timers, counters, state machines, etc.
172 * Transactions will be terminated immediately, and operational registers
173 * will be set to their defaults.
174 */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)175 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
176 {
177 u32 command;
178 u32 state;
179 int ret;
180
181 state = readl(&xhci->op_regs->status);
182
183 if (state == ~(u32)0) {
184 if (!(xhci->xhc_state & XHCI_STATE_DYING))
185 xhci_warn(xhci, "Host not accessible, reset failed.\n");
186 return -ENODEV;
187 }
188
189 if ((state & STS_HALT) == 0) {
190 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
191 return 0;
192 }
193
194 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
195 command = readl(&xhci->op_regs->command);
196 command |= CMD_RESET;
197 writel(command, &xhci->op_regs->command);
198
199 /* Existing Intel xHCI controllers require a delay of 1 mS,
200 * after setting the CMD_RESET bit, and before accessing any
201 * HC registers. This allows the HC to complete the
202 * reset operation and be ready for HC register access.
203 * Without this delay, the subsequent HC register access,
204 * may result in a system hang very rarely.
205 */
206 if (xhci->quirks & XHCI_INTEL_HOST)
207 udelay(1000);
208
209 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
210 if (ret)
211 return ret;
212
213 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
214 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
215
216 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
217 "Wait for controller to be ready for doorbell rings");
218 /*
219 * xHCI cannot write to any doorbells or operational registers other
220 * than status until the "Controller Not Ready" flag is cleared.
221 */
222 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
223
224 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
225 xhci->usb2_rhub.bus_state.suspended_ports = 0;
226 xhci->usb2_rhub.bus_state.resuming_ports = 0;
227 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
228 xhci->usb3_rhub.bus_state.suspended_ports = 0;
229 xhci->usb3_rhub.bus_state.resuming_ports = 0;
230
231 return ret;
232 }
233
xhci_zero_64b_regs(struct xhci_hcd * xhci)234 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
235 {
236 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
237 struct iommu_domain *domain;
238 int err, i;
239 u64 val;
240 u32 intrs;
241
242 /*
243 * Some Renesas controllers get into a weird state if they are
244 * reset while programmed with 64bit addresses (they will preserve
245 * the top half of the address in internal, non visible
246 * registers). You end up with half the address coming from the
247 * kernel, and the other half coming from the firmware. Also,
248 * changing the programming leads to extra accesses even if the
249 * controller is supposed to be halted. The controller ends up with
250 * a fatal fault, and is then ripe for being properly reset.
251 *
252 * Special care is taken to only apply this if the device is behind
253 * an iommu. Doing anything when there is no iommu is definitely
254 * unsafe...
255 */
256 domain = iommu_get_domain_for_dev(dev);
257 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
258 domain->type == IOMMU_DOMAIN_IDENTITY)
259 return;
260
261 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
262
263 /* Clear HSEIE so that faults do not get signaled */
264 val = readl(&xhci->op_regs->command);
265 val &= ~CMD_HSEIE;
266 writel(val, &xhci->op_regs->command);
267
268 /* Clear HSE (aka FATAL) */
269 val = readl(&xhci->op_regs->status);
270 val |= STS_FATAL;
271 writel(val, &xhci->op_regs->status);
272
273 /* Now zero the registers, and brace for impact */
274 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
275 if (upper_32_bits(val))
276 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
277 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
278 if (upper_32_bits(val))
279 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
280
281 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
282 ARRAY_SIZE(xhci->run_regs->ir_set));
283
284 for (i = 0; i < intrs; i++) {
285 struct xhci_intr_reg __iomem *ir;
286
287 ir = &xhci->run_regs->ir_set[i];
288 val = xhci_read_64(xhci, &ir->erst_base);
289 if (upper_32_bits(val))
290 xhci_write_64(xhci, 0, &ir->erst_base);
291 val= xhci_read_64(xhci, &ir->erst_dequeue);
292 if (upper_32_bits(val))
293 xhci_write_64(xhci, 0, &ir->erst_dequeue);
294 }
295
296 /* Wait for the fault to appear. It will be cleared on reset */
297 err = xhci_handshake(&xhci->op_regs->status,
298 STS_FATAL, STS_FATAL,
299 XHCI_MAX_HALT_USEC);
300 if (!err)
301 xhci_info(xhci, "Fault detected\n");
302 }
303
xhci_enable_interrupter(struct xhci_interrupter * ir)304 int xhci_enable_interrupter(struct xhci_interrupter *ir)
305 {
306 u32 iman;
307
308 if (!ir || !ir->ir_set)
309 return -EINVAL;
310
311 iman = readl(&ir->ir_set->iman);
312 iman |= IMAN_IE;
313 writel(iman, &ir->ir_set->iman);
314
315 /* Read operation to guarantee the write has been flushed from posted buffers */
316 readl(&ir->ir_set->iman);
317 return 0;
318 }
319
xhci_disable_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir)320 int xhci_disable_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
321 {
322 u32 iman;
323
324 if (!ir || !ir->ir_set)
325 return -EINVAL;
326
327 iman = readl(&ir->ir_set->iman);
328 iman &= ~IMAN_IE;
329 writel(iman, &ir->ir_set->iman);
330
331 iman = readl(&ir->ir_set->iman);
332 if (iman & IMAN_IP)
333 xhci_dbg(xhci, "%s: Interrupt pending\n", __func__);
334
335 return 0;
336 }
337
338 /* interrupt moderation interval imod_interval in nanoseconds */
xhci_set_interrupter_moderation(struct xhci_interrupter * ir,u32 imod_interval)339 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir,
340 u32 imod_interval)
341 {
342 u32 imod;
343
344 if (!ir || !ir->ir_set)
345 return -EINVAL;
346
347 /* IMODI value in IMOD register is in 250ns increments */
348 imod_interval = umin(imod_interval / 250, IMODI_MASK);
349
350 imod = readl(&ir->ir_set->imod);
351 imod &= ~IMODI_MASK;
352 imod |= imod_interval;
353 writel(imod, &ir->ir_set->imod);
354
355 return 0;
356 }
357
compliance_mode_recovery(struct timer_list * t)358 static void compliance_mode_recovery(struct timer_list *t)
359 {
360 struct xhci_hcd *xhci;
361 struct usb_hcd *hcd;
362 struct xhci_hub *rhub;
363 u32 temp;
364 int i;
365
366 xhci = timer_container_of(xhci, t, comp_mode_recovery_timer);
367 rhub = &xhci->usb3_rhub;
368 hcd = rhub->hcd;
369
370 if (!hcd)
371 return;
372
373 for (i = 0; i < rhub->num_ports; i++) {
374 temp = readl(rhub->ports[i]->addr);
375 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
376 /*
377 * Compliance Mode Detected. Letting USB Core
378 * handle the Warm Reset
379 */
380 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
381 "Compliance mode detected->port %d",
382 i + 1);
383 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
384 "Attempting compliance mode recovery");
385
386 if (hcd->state == HC_STATE_SUSPENDED)
387 usb_hcd_resume_root_hub(hcd);
388
389 usb_hcd_poll_rh_status(hcd);
390 }
391 }
392
393 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
394 mod_timer(&xhci->comp_mode_recovery_timer,
395 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
396 }
397
398 /*
399 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
400 * that causes ports behind that hardware to enter compliance mode sometimes.
401 * The quirk creates a timer that polls every 2 seconds the link state of
402 * each host controller's port and recovers it by issuing a Warm reset
403 * if Compliance mode is detected, otherwise the port will become "dead" (no
404 * device connections or disconnections will be detected anymore). Becasue no
405 * status event is generated when entering compliance mode (per xhci spec),
406 * this quirk is needed on systems that have the failing hardware installed.
407 */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)408 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
409 {
410 xhci->port_status_u0 = 0;
411 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
412 0);
413 xhci->comp_mode_recovery_timer.expires = jiffies +
414 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
415
416 add_timer(&xhci->comp_mode_recovery_timer);
417 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
418 "Compliance mode recovery timer initialized");
419 }
420
421 /*
422 * This function identifies the systems that have installed the SN65LVPE502CP
423 * USB3.0 re-driver and that need the Compliance Mode Quirk.
424 * Systems:
425 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
426 */
xhci_compliance_mode_recovery_timer_quirk_check(void)427 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
428 {
429 const char *dmi_product_name, *dmi_sys_vendor;
430
431 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
432 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
433 if (!dmi_product_name || !dmi_sys_vendor)
434 return false;
435
436 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
437 return false;
438
439 if (strstr(dmi_product_name, "Z420") ||
440 strstr(dmi_product_name, "Z620") ||
441 strstr(dmi_product_name, "Z820") ||
442 strstr(dmi_product_name, "Z1 Workstation"))
443 return true;
444
445 return false;
446 }
447
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)448 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
449 {
450 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
451 }
452
xhci_hcd_page_size(struct xhci_hcd * xhci)453 static void xhci_hcd_page_size(struct xhci_hcd *xhci)
454 {
455 u32 page_size;
456
457 page_size = readl(&xhci->op_regs->page_size) & XHCI_PAGE_SIZE_MASK;
458 if (!is_power_of_2(page_size)) {
459 xhci_warn(xhci, "Invalid page size register = 0x%x\n", page_size);
460 /* Fallback to 4K page size, since that's common */
461 page_size = 1;
462 }
463
464 xhci->page_size = page_size << 12;
465 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "HCD page size set to %iK",
466 xhci->page_size >> 10);
467 }
468
xhci_enable_max_dev_slots(struct xhci_hcd * xhci)469 static void xhci_enable_max_dev_slots(struct xhci_hcd *xhci)
470 {
471 u32 config_reg;
472 u32 max_slots;
473
474 max_slots = HCS_MAX_SLOTS(xhci->hcs_params1);
475 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xHC can handle at most %d device slots",
476 max_slots);
477
478 config_reg = readl(&xhci->op_regs->config_reg);
479 config_reg &= ~HCS_SLOTS_MASK;
480 config_reg |= max_slots;
481
482 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Setting Max device slots reg = 0x%x",
483 config_reg);
484 writel(config_reg, &xhci->op_regs->config_reg);
485 }
486
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)487 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
488 {
489 dma_addr_t deq_dma;
490 u64 crcr;
491
492 deq_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, xhci->cmd_ring->dequeue);
493 deq_dma &= CMD_RING_PTR_MASK;
494
495 crcr = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
496 crcr &= ~CMD_RING_PTR_MASK;
497 crcr |= deq_dma;
498
499 crcr &= ~CMD_RING_CYCLE;
500 crcr |= xhci->cmd_ring->cycle_state;
501
502 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Setting command ring address to 0x%llx", crcr);
503 xhci_write_64(xhci, crcr, &xhci->op_regs->cmd_ring);
504 }
505
xhci_set_doorbell_ptr(struct xhci_hcd * xhci)506 static void xhci_set_doorbell_ptr(struct xhci_hcd *xhci)
507 {
508 u32 offset;
509
510 offset = readl(&xhci->cap_regs->db_off) & DBOFF_MASK;
511 xhci->dba = (void __iomem *)xhci->cap_regs + offset;
512 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
513 "Doorbell array is located at offset 0x%x from cap regs base addr", offset);
514 }
515
516 /*
517 * Enable USB 3.0 device notifications for function remote wake, which is necessary
518 * for allowing USB 3.0 devices to do remote wakeup from U3 (device suspend).
519 */
xhci_set_dev_notifications(struct xhci_hcd * xhci)520 static void xhci_set_dev_notifications(struct xhci_hcd *xhci)
521 {
522 u32 dev_notf;
523
524 dev_notf = readl(&xhci->op_regs->dev_notification);
525 dev_notf &= ~DEV_NOTE_MASK;
526 dev_notf |= DEV_NOTE_FWAKE;
527 writel(dev_notf, &xhci->op_regs->dev_notification);
528 }
529
530 /*
531 * Initialize memory for HCD and xHC (one-time init).
532 *
533 * Program the PAGESIZE register, initialize the device context array, create
534 * device contexts (?), set up a command ring segment (or two?), create event
535 * ring (one for now).
536 */
xhci_init(struct usb_hcd * hcd)537 static int xhci_init(struct usb_hcd *hcd)
538 {
539 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
540 int retval;
541
542 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Starting %s", __func__);
543 spin_lock_init(&xhci->lock);
544
545 INIT_LIST_HEAD(&xhci->cmd_list);
546 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
547 init_completion(&xhci->cmd_ring_stop_completion);
548 xhci_hcd_page_size(xhci);
549 memset(xhci->devs, 0, MAX_HC_SLOTS * sizeof(*xhci->devs));
550
551 retval = xhci_mem_init(xhci, GFP_KERNEL);
552 if (retval)
553 return retval;
554
555 /* Set the Number of Device Slots Enabled to the maximum supported value */
556 xhci_enable_max_dev_slots(xhci);
557
558 /* Set the address in the Command Ring Control register */
559 xhci_set_cmd_ring_deq(xhci);
560
561 /* Set Device Context Base Address Array pointer */
562 xhci_write_64(xhci, xhci->dcbaa->dma, &xhci->op_regs->dcbaa_ptr);
563
564 /* Set Doorbell array pointer */
565 xhci_set_doorbell_ptr(xhci);
566
567 /* Set USB 3.0 device notifications for function remote wake */
568 xhci_set_dev_notifications(xhci);
569
570 /* Initialize the Primary interrupter */
571 xhci_add_interrupter(xhci, 0);
572 xhci->interrupters[0]->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
573
574 /* Initializing Compliance Mode Recovery Data If Needed */
575 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
576 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
577 compliance_mode_recovery_timer_init(xhci);
578 }
579
580 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished %s", __func__);
581 return 0;
582 }
583
584 /*-------------------------------------------------------------------------*/
585
xhci_run_finished(struct xhci_hcd * xhci)586 static int xhci_run_finished(struct xhci_hcd *xhci)
587 {
588 struct xhci_interrupter *ir = xhci->interrupters[0];
589 unsigned long flags;
590 u32 temp;
591
592 /*
593 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
594 * Protect the short window before host is running with a lock
595 */
596 spin_lock_irqsave(&xhci->lock, flags);
597
598 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
599 temp = readl(&xhci->op_regs->command);
600 temp |= (CMD_EIE);
601 writel(temp, &xhci->op_regs->command);
602
603 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
604 xhci_enable_interrupter(ir);
605
606 if (xhci_start(xhci)) {
607 xhci_halt(xhci);
608 spin_unlock_irqrestore(&xhci->lock, flags);
609 return -ENODEV;
610 }
611
612 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
613
614 if (xhci->quirks & XHCI_NEC_HOST)
615 xhci_ring_cmd_db(xhci);
616
617 spin_unlock_irqrestore(&xhci->lock, flags);
618
619 return 0;
620 }
621
622 /*
623 * Start the HC after it was halted.
624 *
625 * This function is called by the USB core when the HC driver is added.
626 * Its opposite is xhci_stop().
627 *
628 * xhci_init() must be called once before this function can be called.
629 * Reset the HC, enable device slot contexts, program DCBAAP, and
630 * set command ring pointer and event ring pointer.
631 *
632 * Setup MSI-X vectors and enable interrupts.
633 */
xhci_run(struct usb_hcd * hcd)634 int xhci_run(struct usb_hcd *hcd)
635 {
636 u64 temp_64;
637 int ret;
638 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
639 struct xhci_interrupter *ir = xhci->interrupters[0];
640 /* Start the xHCI host controller running only after the USB 2.0 roothub
641 * is setup.
642 */
643
644 hcd->uses_new_polling = 1;
645 if (hcd->msi_enabled)
646 ir->ip_autoclear = true;
647
648 if (!usb_hcd_is_primary_hcd(hcd))
649 return xhci_run_finished(xhci);
650
651 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
652
653 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
654 temp_64 &= ERST_PTR_MASK;
655 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
656 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
657
658 xhci_set_interrupter_moderation(ir, xhci->imod_interval);
659
660 if (xhci->quirks & XHCI_NEC_HOST) {
661 struct xhci_command *command;
662
663 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
664 if (!command)
665 return -ENOMEM;
666
667 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
668 TRB_TYPE(TRB_NEC_GET_FW));
669 if (ret)
670 xhci_free_command(xhci, command);
671 }
672 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
673 "Finished %s for main hcd", __func__);
674
675 xhci_create_dbc_dev(xhci);
676
677 xhci_debugfs_init(xhci);
678
679 if (xhci_has_one_roothub(xhci))
680 return xhci_run_finished(xhci);
681
682 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
683
684 return 0;
685 }
686 EXPORT_SYMBOL_GPL(xhci_run);
687
688 /*
689 * Stop xHCI driver.
690 *
691 * This function is called by the USB core when the HC driver is removed.
692 * Its opposite is xhci_run().
693 *
694 * Disable device contexts, disable IRQs, and quiesce the HC.
695 * Reset the HC, finish any completed transactions, and cleanup memory.
696 */
xhci_stop(struct usb_hcd * hcd)697 void xhci_stop(struct usb_hcd *hcd)
698 {
699 u32 temp;
700 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
701 struct xhci_interrupter *ir = xhci->interrupters[0];
702
703 mutex_lock(&xhci->mutex);
704
705 /* Only halt host and free memory after both hcds are removed */
706 if (!usb_hcd_is_primary_hcd(hcd)) {
707 mutex_unlock(&xhci->mutex);
708 return;
709 }
710
711 xhci_remove_dbc_dev(xhci);
712
713 spin_lock_irq(&xhci->lock);
714 xhci->xhc_state |= XHCI_STATE_HALTED;
715 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
716 xhci_halt(xhci);
717 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
718 spin_unlock_irq(&xhci->lock);
719
720 /* Deleting Compliance Mode Recovery Timer */
721 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
722 (!(xhci_all_ports_seen_u0(xhci)))) {
723 timer_delete_sync(&xhci->comp_mode_recovery_timer);
724 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
725 "%s: compliance mode recovery timer deleted",
726 __func__);
727 }
728
729 if (xhci->quirks & XHCI_AMD_PLL_FIX)
730 usb_amd_dev_put();
731
732 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
733 "// Disabling event ring interrupts");
734 temp = readl(&xhci->op_regs->status);
735 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
736 xhci_disable_interrupter(xhci, ir);
737
738 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
739 xhci_mem_cleanup(xhci);
740 xhci_debugfs_exit(xhci);
741 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
742 "xhci_stop completed - status = %x",
743 readl(&xhci->op_regs->status));
744 mutex_unlock(&xhci->mutex);
745 }
746 EXPORT_SYMBOL_GPL(xhci_stop);
747
748 /*
749 * Shutdown HC (not bus-specific)
750 *
751 * This is called when the machine is rebooting or halting. We assume that the
752 * machine will be powered off, and the HC's internal state will be reset.
753 * Don't bother to free memory.
754 *
755 * This will only ever be called with the main usb_hcd (the USB3 roothub).
756 */
xhci_shutdown(struct usb_hcd * hcd)757 void xhci_shutdown(struct usb_hcd *hcd)
758 {
759 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
760
761 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
762 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
763
764 /* Don't poll the roothubs after shutdown. */
765 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
766 __func__, hcd->self.busnum);
767 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
768 timer_delete_sync(&hcd->rh_timer);
769
770 if (xhci->shared_hcd) {
771 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
772 timer_delete_sync(&xhci->shared_hcd->rh_timer);
773 }
774
775 spin_lock_irq(&xhci->lock);
776 xhci_halt(xhci);
777
778 /*
779 * Workaround for spurious wakeps at shutdown with HSW, and for boot
780 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
781 */
782 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
783 xhci->quirks & XHCI_RESET_TO_DEFAULT)
784 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
785
786 spin_unlock_irq(&xhci->lock);
787
788 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
789 "xhci_shutdown completed - status = %x",
790 readl(&xhci->op_regs->status));
791 }
792 EXPORT_SYMBOL_GPL(xhci_shutdown);
793
794 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)795 static void xhci_save_registers(struct xhci_hcd *xhci)
796 {
797 struct xhci_interrupter *ir;
798 unsigned int i;
799
800 xhci->s3.command = readl(&xhci->op_regs->command);
801 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
802 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
803 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
804
805 /* save both primary and all secondary interrupters */
806 /* fixme, shold we lock to prevent race with remove secondary interrupter? */
807 for (i = 0; i < xhci->max_interrupters; i++) {
808 ir = xhci->interrupters[i];
809 if (!ir)
810 continue;
811
812 ir->s3_erst_size = readl(&ir->ir_set->erst_size);
813 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
814 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
815 ir->s3_iman = readl(&ir->ir_set->iman);
816 ir->s3_imod = readl(&ir->ir_set->imod);
817 }
818 }
819
xhci_restore_registers(struct xhci_hcd * xhci)820 static void xhci_restore_registers(struct xhci_hcd *xhci)
821 {
822 struct xhci_interrupter *ir;
823 unsigned int i;
824
825 writel(xhci->s3.command, &xhci->op_regs->command);
826 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
827 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
828 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
829
830 /* FIXME should we lock to protect against freeing of interrupters */
831 for (i = 0; i < xhci->max_interrupters; i++) {
832 ir = xhci->interrupters[i];
833 if (!ir)
834 continue;
835
836 writel(ir->s3_erst_size, &ir->ir_set->erst_size);
837 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
838 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
839 writel(ir->s3_iman, &ir->ir_set->iman);
840 writel(ir->s3_imod, &ir->ir_set->imod);
841 }
842 }
843
844 /*
845 * The whole command ring must be cleared to zero when we suspend the host.
846 *
847 * The host doesn't save the command ring pointer in the suspend well, so we
848 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
849 * aligned, because of the reserved bits in the command ring dequeue pointer
850 * register. Therefore, we can't just set the dequeue pointer back in the
851 * middle of the ring (TRBs are 16-byte aligned).
852 */
xhci_clear_command_ring(struct xhci_hcd * xhci)853 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
854 {
855 struct xhci_ring *ring;
856 struct xhci_segment *seg;
857
858 ring = xhci->cmd_ring;
859 xhci_for_each_ring_seg(ring->first_seg, seg) {
860 /* erase all TRBs before the link */
861 memset(seg->trbs, 0, sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
862 /* clear link cycle bit */
863 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= cpu_to_le32(~TRB_CYCLE);
864 }
865
866 xhci_initialize_ring_info(ring);
867 /*
868 * Reset the hardware dequeue pointer.
869 * Yes, this will need to be re-written after resume, but we're paranoid
870 * and want to make sure the hardware doesn't access bogus memory
871 * because, say, the BIOS or an SMI started the host without changing
872 * the command ring pointers.
873 */
874 xhci_set_cmd_ring_deq(xhci);
875 }
876
877 /*
878 * Disable port wake bits if do_wakeup is not set.
879 *
880 * Also clear a possible internal port wake state left hanging for ports that
881 * detected termination but never successfully enumerated (trained to 0U).
882 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
883 * at enumeration clears this wake, force one here as well for unconnected ports
884 */
885
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)886 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
887 struct xhci_hub *rhub,
888 bool do_wakeup)
889 {
890 unsigned long flags;
891 u32 t1, t2, portsc;
892 int i;
893
894 spin_lock_irqsave(&xhci->lock, flags);
895
896 for (i = 0; i < rhub->num_ports; i++) {
897 portsc = readl(rhub->ports[i]->addr);
898 t1 = xhci_port_state_to_neutral(portsc);
899 t2 = t1;
900
901 /* clear wake bits if do_wake is not set */
902 if (!do_wakeup)
903 t2 &= ~PORT_WAKE_BITS;
904
905 /* Don't touch csc bit if connected or connect change is set */
906 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
907 t2 |= PORT_CSC;
908
909 if (t1 != t2) {
910 writel(t2, rhub->ports[i]->addr);
911 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
912 rhub->hcd->self.busnum, i + 1, portsc, t2);
913 }
914 }
915 spin_unlock_irqrestore(&xhci->lock, flags);
916 }
917
xhci_pending_portevent(struct xhci_hcd * xhci)918 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
919 {
920 struct xhci_port **ports;
921 int port_index;
922 u32 status;
923 u32 portsc;
924
925 status = readl(&xhci->op_regs->status);
926 if (status & STS_EINT)
927 return true;
928 /*
929 * Checking STS_EINT is not enough as there is a lag between a change
930 * bit being set and the Port Status Change Event that it generated
931 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
932 */
933
934 port_index = xhci->usb2_rhub.num_ports;
935 ports = xhci->usb2_rhub.ports;
936 while (port_index--) {
937 portsc = readl(ports[port_index]->addr);
938 if (portsc & PORT_CHANGE_MASK ||
939 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
940 return true;
941 }
942 port_index = xhci->usb3_rhub.num_ports;
943 ports = xhci->usb3_rhub.ports;
944 while (port_index--) {
945 portsc = readl(ports[port_index]->addr);
946 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
947 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
948 return true;
949 }
950 return false;
951 }
952
953 /*
954 * Stop HC (not bus-specific)
955 *
956 * This is called when the machine transition into S3/S4 mode.
957 *
958 */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)959 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
960 {
961 int rc = 0;
962 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
963 struct usb_hcd *hcd = xhci_to_hcd(xhci);
964 u32 command;
965 u32 res;
966
967 if (!hcd->state)
968 return 0;
969
970 if (hcd->state != HC_STATE_SUSPENDED ||
971 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
972 return -EINVAL;
973
974 /* Clear root port wake on bits if wakeup not allowed. */
975 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
976 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
977
978 if (!HCD_HW_ACCESSIBLE(hcd))
979 return 0;
980
981 xhci_dbc_suspend(xhci);
982
983 /* Don't poll the roothubs on bus suspend. */
984 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
985 __func__, hcd->self.busnum);
986 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
987 timer_delete_sync(&hcd->rh_timer);
988 if (xhci->shared_hcd) {
989 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
990 timer_delete_sync(&xhci->shared_hcd->rh_timer);
991 }
992
993 if (xhci->quirks & XHCI_SUSPEND_DELAY)
994 usleep_range(1000, 1500);
995
996 spin_lock_irq(&xhci->lock);
997 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
998 if (xhci->shared_hcd)
999 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1000 /* step 1: stop endpoint */
1001 /* skipped assuming that port suspend has done */
1002
1003 /* step 2: clear Run/Stop bit */
1004 command = readl(&xhci->op_regs->command);
1005 command &= ~CMD_RUN;
1006 writel(command, &xhci->op_regs->command);
1007
1008 /* Some chips from Fresco Logic need an extraordinary delay */
1009 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1010
1011 if (xhci_handshake(&xhci->op_regs->status,
1012 STS_HALT, STS_HALT, delay)) {
1013 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1014 spin_unlock_irq(&xhci->lock);
1015 return -ETIMEDOUT;
1016 }
1017 xhci_clear_command_ring(xhci);
1018
1019 /* step 3: save registers */
1020 xhci_save_registers(xhci);
1021
1022 /* step 4: set CSS flag */
1023 command = readl(&xhci->op_regs->command);
1024 command |= CMD_CSS;
1025 writel(command, &xhci->op_regs->command);
1026 xhci->broken_suspend = 0;
1027 if (xhci_handshake(&xhci->op_regs->status,
1028 STS_SAVE, 0, 20 * 1000)) {
1029 /*
1030 * AMD SNPS xHC 3.0 occasionally does not clear the
1031 * SSS bit of USBSTS and when driver tries to poll
1032 * to see if the xHC clears BIT(8) which never happens
1033 * and driver assumes that controller is not responding
1034 * and times out. To workaround this, its good to check
1035 * if SRE and HCE bits are not set (as per xhci
1036 * Section 5.4.2) and bypass the timeout.
1037 */
1038 res = readl(&xhci->op_regs->status);
1039 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1040 (((res & STS_SRE) == 0) &&
1041 ((res & STS_HCE) == 0))) {
1042 xhci->broken_suspend = 1;
1043 } else {
1044 xhci_warn(xhci, "WARN: xHC save state timeout\n");
1045 spin_unlock_irq(&xhci->lock);
1046 return -ETIMEDOUT;
1047 }
1048 }
1049 spin_unlock_irq(&xhci->lock);
1050
1051 /*
1052 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1053 * is about to be suspended.
1054 */
1055 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1056 (!(xhci_all_ports_seen_u0(xhci)))) {
1057 timer_delete_sync(&xhci->comp_mode_recovery_timer);
1058 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1059 "%s: compliance mode recovery timer deleted",
1060 __func__);
1061 }
1062
1063 return rc;
1064 }
1065 EXPORT_SYMBOL_GPL(xhci_suspend);
1066
1067 /*
1068 * start xHC (not bus-specific)
1069 *
1070 * This is called when the machine transition from S3/S4 mode.
1071 *
1072 */
xhci_resume(struct xhci_hcd * xhci,bool power_lost,bool is_auto_resume)1073 int xhci_resume(struct xhci_hcd *xhci, bool power_lost, bool is_auto_resume)
1074 {
1075 u32 command, temp = 0;
1076 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1077 int retval = 0;
1078 bool comp_timer_running = false;
1079 bool pending_portevent = false;
1080 bool suspended_usb3_devs = false;
1081
1082 if (!hcd->state)
1083 return 0;
1084
1085 /* Wait a bit if either of the roothubs need to settle from the
1086 * transition into bus suspend.
1087 */
1088
1089 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1090 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1091 msleep(100);
1092
1093 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1094 if (xhci->shared_hcd)
1095 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1096
1097 spin_lock_irq(&xhci->lock);
1098
1099 if (xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1100 power_lost = true;
1101
1102 if (!power_lost) {
1103 /*
1104 * Some controllers might lose power during suspend, so wait
1105 * for controller not ready bit to clear, just as in xHC init.
1106 */
1107 retval = xhci_handshake(&xhci->op_regs->status,
1108 STS_CNR, 0, 10 * 1000 * 1000);
1109 if (retval) {
1110 xhci_warn(xhci, "Controller not ready at resume %d\n",
1111 retval);
1112 spin_unlock_irq(&xhci->lock);
1113 return retval;
1114 }
1115 /* step 1: restore register */
1116 xhci_restore_registers(xhci);
1117 /* step 2: initialize command ring buffer */
1118 xhci_set_cmd_ring_deq(xhci);
1119 /* step 3: restore state and start state*/
1120 /* step 3: set CRS flag */
1121 command = readl(&xhci->op_regs->command);
1122 command |= CMD_CRS;
1123 writel(command, &xhci->op_regs->command);
1124 /*
1125 * Some controllers take up to 55+ ms to complete the controller
1126 * restore so setting the timeout to 100ms. Xhci specification
1127 * doesn't mention any timeout value.
1128 */
1129 if (xhci_handshake(&xhci->op_regs->status,
1130 STS_RESTORE, 0, 100 * 1000)) {
1131 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1132 spin_unlock_irq(&xhci->lock);
1133 return -ETIMEDOUT;
1134 }
1135 }
1136
1137 temp = readl(&xhci->op_regs->status);
1138
1139 /* re-initialize the HC on Restore Error, or Host Controller Error */
1140 if ((temp & (STS_SRE | STS_HCE)) &&
1141 !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1142 if (!power_lost)
1143 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1144 power_lost = true;
1145 }
1146
1147 if (power_lost) {
1148 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1149 !(xhci_all_ports_seen_u0(xhci))) {
1150 timer_delete_sync(&xhci->comp_mode_recovery_timer);
1151 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1152 "Compliance Mode Recovery Timer deleted!");
1153 }
1154
1155 /* Let the USB core know _both_ roothubs lost power. */
1156 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1157 if (xhci->shared_hcd)
1158 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1159
1160 xhci_dbg(xhci, "Stop HCD\n");
1161 xhci_halt(xhci);
1162 xhci_zero_64b_regs(xhci);
1163 if (xhci->xhc_state & XHCI_STATE_REMOVING)
1164 retval = -ENODEV;
1165 else
1166 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1167 spin_unlock_irq(&xhci->lock);
1168 if (retval)
1169 return retval;
1170
1171 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1172 temp = readl(&xhci->op_regs->status);
1173 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1174 xhci_disable_interrupter(xhci, xhci->interrupters[0]);
1175
1176 xhci_dbg(xhci, "cleaning up memory\n");
1177 xhci_mem_cleanup(xhci);
1178 xhci_debugfs_exit(xhci);
1179 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1180 readl(&xhci->op_regs->status));
1181
1182 /* USB core calls the PCI reinit and start functions twice:
1183 * first with the primary HCD, and then with the secondary HCD.
1184 * If we don't do the same, the host will never be started.
1185 */
1186 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1187 retval = xhci_init(hcd);
1188 if (retval)
1189 return retval;
1190 comp_timer_running = true;
1191
1192 xhci_dbg(xhci, "Start the primary HCD\n");
1193 retval = xhci_run(hcd);
1194 if (!retval && xhci->shared_hcd) {
1195 xhci_dbg(xhci, "Start the secondary HCD\n");
1196 retval = xhci_run(xhci->shared_hcd);
1197 }
1198 if (retval)
1199 return retval;
1200 /*
1201 * Resume roothubs unconditionally as PORTSC change bits are not
1202 * immediately visible after xHC reset
1203 */
1204 hcd->state = HC_STATE_SUSPENDED;
1205
1206 if (xhci->shared_hcd) {
1207 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1208 usb_hcd_resume_root_hub(xhci->shared_hcd);
1209 }
1210 usb_hcd_resume_root_hub(hcd);
1211
1212 goto done;
1213 }
1214
1215 /* step 4: set Run/Stop bit */
1216 command = readl(&xhci->op_regs->command);
1217 command |= CMD_RUN;
1218 writel(command, &xhci->op_regs->command);
1219 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1220 0, 250 * 1000);
1221
1222 /* step 5: walk topology and initialize portsc,
1223 * portpmsc and portli
1224 */
1225 /* this is done in bus_resume */
1226
1227 /* step 6: restart each of the previously
1228 * Running endpoints by ringing their doorbells
1229 */
1230
1231 spin_unlock_irq(&xhci->lock);
1232
1233 xhci_dbc_resume(xhci);
1234
1235 if (retval == 0) {
1236 /*
1237 * Resume roothubs only if there are pending events.
1238 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1239 * the first wake signalling failed, give it that chance if
1240 * there are suspended USB 3 devices.
1241 */
1242 if (xhci->usb3_rhub.bus_state.suspended_ports ||
1243 xhci->usb3_rhub.bus_state.bus_suspended)
1244 suspended_usb3_devs = true;
1245
1246 pending_portevent = xhci_pending_portevent(xhci);
1247
1248 if (suspended_usb3_devs && !pending_portevent && is_auto_resume) {
1249 msleep(120);
1250 pending_portevent = xhci_pending_portevent(xhci);
1251 }
1252
1253 if (pending_portevent) {
1254 if (xhci->shared_hcd)
1255 usb_hcd_resume_root_hub(xhci->shared_hcd);
1256 usb_hcd_resume_root_hub(hcd);
1257 }
1258 }
1259 done:
1260 /*
1261 * If system is subject to the Quirk, Compliance Mode Timer needs to
1262 * be re-initialized Always after a system resume. Ports are subject
1263 * to suffer the Compliance Mode issue again. It doesn't matter if
1264 * ports have entered previously to U0 before system's suspension.
1265 */
1266 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1267 compliance_mode_recovery_timer_init(xhci);
1268
1269 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1270 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1271
1272 /* Re-enable port polling. */
1273 xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1274 __func__, hcd->self.busnum);
1275 if (xhci->shared_hcd) {
1276 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1277 usb_hcd_poll_rh_status(xhci->shared_hcd);
1278 }
1279 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1280 usb_hcd_poll_rh_status(hcd);
1281
1282 return retval;
1283 }
1284 EXPORT_SYMBOL_GPL(xhci_resume);
1285 #endif /* CONFIG_PM */
1286
1287 /*-------------------------------------------------------------------------*/
1288
xhci_map_temp_buffer(struct usb_hcd * hcd,struct urb * urb)1289 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1290 {
1291 void *temp;
1292 int ret = 0;
1293 unsigned int buf_len;
1294 enum dma_data_direction dir;
1295
1296 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1297 buf_len = urb->transfer_buffer_length;
1298
1299 temp = kzalloc_node(buf_len, GFP_ATOMIC,
1300 dev_to_node(hcd->self.sysdev));
1301 if (!temp)
1302 return -ENOMEM;
1303
1304 if (usb_urb_dir_out(urb))
1305 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1306 temp, buf_len, 0);
1307
1308 urb->transfer_buffer = temp;
1309 urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1310 urb->transfer_buffer,
1311 urb->transfer_buffer_length,
1312 dir);
1313
1314 if (dma_mapping_error(hcd->self.sysdev,
1315 urb->transfer_dma)) {
1316 ret = -EAGAIN;
1317 kfree(temp);
1318 } else {
1319 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1320 }
1321
1322 return ret;
1323 }
1324
xhci_urb_temp_buffer_required(struct usb_hcd * hcd,struct urb * urb)1325 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1326 struct urb *urb)
1327 {
1328 bool ret = false;
1329 unsigned int i;
1330 unsigned int len = 0;
1331 unsigned int trb_size;
1332 unsigned int max_pkt;
1333 struct scatterlist *sg;
1334 struct scatterlist *tail_sg;
1335
1336 tail_sg = urb->sg;
1337 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1338
1339 if (!urb->num_sgs)
1340 return ret;
1341
1342 if (urb->dev->speed >= USB_SPEED_SUPER)
1343 trb_size = TRB_CACHE_SIZE_SS;
1344 else
1345 trb_size = TRB_CACHE_SIZE_HS;
1346
1347 if (urb->transfer_buffer_length != 0 &&
1348 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1349 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1350 len = len + sg->length;
1351 if (i > trb_size - 2) {
1352 len = len - tail_sg->length;
1353 if (len < max_pkt) {
1354 ret = true;
1355 break;
1356 }
1357
1358 tail_sg = sg_next(tail_sg);
1359 }
1360 }
1361 }
1362 return ret;
1363 }
1364
xhci_unmap_temp_buf(struct usb_hcd * hcd,struct urb * urb)1365 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1366 {
1367 unsigned int len;
1368 unsigned int buf_len;
1369 enum dma_data_direction dir;
1370
1371 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1372
1373 buf_len = urb->transfer_buffer_length;
1374
1375 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1376 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1377 dma_unmap_single(hcd->self.sysdev,
1378 urb->transfer_dma,
1379 urb->transfer_buffer_length,
1380 dir);
1381
1382 if (usb_urb_dir_in(urb)) {
1383 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1384 urb->transfer_buffer,
1385 buf_len,
1386 0);
1387 if (len != buf_len) {
1388 xhci_dbg(hcd_to_xhci(hcd),
1389 "Copy from tmp buf to urb sg list failed\n");
1390 urb->actual_length = len;
1391 }
1392 }
1393 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1394 kfree(urb->transfer_buffer);
1395 urb->transfer_buffer = NULL;
1396 }
1397
1398 /*
1399 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1400 * we'll copy the actual data into the TRB address register. This is limited to
1401 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1402 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1403 */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1404 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1405 gfp_t mem_flags)
1406 {
1407 struct xhci_hcd *xhci;
1408
1409 xhci = hcd_to_xhci(hcd);
1410
1411 if (xhci_urb_suitable_for_idt(urb))
1412 return 0;
1413
1414 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1415 if (xhci_urb_temp_buffer_required(hcd, urb))
1416 return xhci_map_temp_buffer(hcd, urb);
1417 }
1418 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1419 }
1420
xhci_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1421 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1422 {
1423 struct xhci_hcd *xhci;
1424 bool unmap_temp_buf = false;
1425
1426 xhci = hcd_to_xhci(hcd);
1427
1428 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1429 unmap_temp_buf = true;
1430
1431 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1432 xhci_unmap_temp_buf(hcd, urb);
1433 else
1434 usb_hcd_unmap_urb_for_dma(hcd, urb);
1435 }
1436
1437 /**
1438 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1439 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1440 * value to right shift 1 for the bitmask.
1441 * @desc: USB endpoint descriptor to determine index for
1442 *
1443 * Index = (epnum * 2) + direction - 1,
1444 * where direction = 0 for OUT, 1 for IN.
1445 * For control endpoints, the IN index is used (OUT index is unused), so
1446 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1447 */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1448 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1449 {
1450 unsigned int index;
1451 if (usb_endpoint_xfer_control(desc))
1452 index = (unsigned int) (usb_endpoint_num(desc)*2);
1453 else
1454 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1455 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1456 return index;
1457 }
1458 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1459
1460 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1461 * address from the XHCI endpoint index.
1462 */
xhci_get_endpoint_address(unsigned int ep_index)1463 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1464 {
1465 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1466 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1467 return direction | number;
1468 }
1469
1470 /* Find the flag for this endpoint (for use in the control context). Use the
1471 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1472 * bit 1, etc.
1473 */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1474 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1475 {
1476 return 1 << (xhci_get_endpoint_index(desc) + 1);
1477 }
1478
1479 /* Compute the last valid endpoint context index. Basically, this is the
1480 * endpoint index plus one. For slot contexts with more than valid endpoint,
1481 * we find the most significant bit set in the added contexts flags.
1482 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1483 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1484 */
xhci_last_valid_endpoint(u32 added_ctxs)1485 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1486 {
1487 return fls(added_ctxs) - 1;
1488 }
1489
1490 /* Returns 1 if the arguments are OK;
1491 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1492 */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1493 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1494 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1495 const char *func) {
1496 struct xhci_hcd *xhci;
1497 struct xhci_virt_device *virt_dev;
1498
1499 if (!hcd || (check_ep && !ep) || !udev) {
1500 pr_debug("xHCI %s called with invalid args\n", func);
1501 return -EINVAL;
1502 }
1503 if (!udev->parent) {
1504 pr_debug("xHCI %s called for root hub\n", func);
1505 return 0;
1506 }
1507
1508 xhci = hcd_to_xhci(hcd);
1509 if (check_virt_dev) {
1510 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1511 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1512 func);
1513 return -EINVAL;
1514 }
1515
1516 virt_dev = xhci->devs[udev->slot_id];
1517 if (virt_dev->udev != udev) {
1518 xhci_dbg(xhci, "xHCI %s called with udev and "
1519 "virt_dev does not match\n", func);
1520 return -EINVAL;
1521 }
1522 }
1523
1524 if (xhci->xhc_state & XHCI_STATE_HALTED)
1525 return -ENODEV;
1526
1527 return 1;
1528 }
1529
1530 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1531 struct usb_device *udev, struct xhci_command *command,
1532 bool ctx_change, bool must_succeed);
1533
1534 /*
1535 * Full speed devices may have a max packet size greater than 8 bytes, but the
1536 * USB core doesn't know that until it reads the first 8 bytes of the
1537 * descriptor. If the usb_device's max packet size changes after that point,
1538 * we need to issue an evaluate context command and wait on it.
1539 */
xhci_check_ep0_maxpacket(struct xhci_hcd * xhci,struct xhci_virt_device * vdev)1540 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
1541 {
1542 struct xhci_input_control_ctx *ctrl_ctx;
1543 struct xhci_ep_ctx *ep_ctx;
1544 struct xhci_command *command;
1545 int max_packet_size;
1546 int hw_max_packet_size;
1547 int ret = 0;
1548
1549 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
1550 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1551 max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1552
1553 if (hw_max_packet_size == max_packet_size)
1554 return 0;
1555
1556 switch (max_packet_size) {
1557 case 8: case 16: case 32: case 64: case 9:
1558 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1559 "Max Packet Size for ep 0 changed.");
1560 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1561 "Max packet size in usb_device = %d",
1562 max_packet_size);
1563 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1564 "Max packet size in xHCI HW = %d",
1565 hw_max_packet_size);
1566 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1567 "Issuing evaluate context command.");
1568
1569 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1570 if (!command)
1571 return -ENOMEM;
1572
1573 command->in_ctx = vdev->in_ctx;
1574 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1575 if (!ctrl_ctx) {
1576 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1577 __func__);
1578 ret = -ENOMEM;
1579 break;
1580 }
1581 /* Set up the modified control endpoint 0 */
1582 xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
1583
1584 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1585 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1586 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1587 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1588
1589 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1590 ctrl_ctx->drop_flags = 0;
1591
1592 ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1593 true, false);
1594 /* Clean up the input context for later use by bandwidth functions */
1595 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1596 break;
1597 default:
1598 dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1599 max_packet_size);
1600 return -EINVAL;
1601 }
1602
1603 kfree(command->completion);
1604 kfree(command);
1605
1606 return ret;
1607 }
1608
1609 /*
1610 * non-error returns are a promise to giveback() the urb later
1611 * we drop ownership so next owner (or urb unlink) can get it
1612 */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1613 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1614 {
1615 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1616 unsigned long flags;
1617 int ret = 0;
1618 unsigned int slot_id, ep_index;
1619 unsigned int *ep_state;
1620 struct urb_priv *urb_priv;
1621 int num_tds;
1622
1623 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1624
1625 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1626 num_tds = urb->number_of_packets;
1627 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1628 urb->transfer_buffer_length > 0 &&
1629 urb->transfer_flags & URB_ZERO_PACKET &&
1630 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1631 num_tds = 2;
1632 else
1633 num_tds = 1;
1634
1635 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1636 if (!urb_priv)
1637 return -ENOMEM;
1638
1639 urb_priv->num_tds = num_tds;
1640 urb_priv->num_tds_done = 0;
1641 urb->hcpriv = urb_priv;
1642
1643 trace_xhci_urb_enqueue(urb);
1644
1645 spin_lock_irqsave(&xhci->lock, flags);
1646
1647 ret = xhci_check_args(hcd, urb->dev, urb->ep,
1648 true, true, __func__);
1649 if (ret <= 0) {
1650 ret = ret ? ret : -EINVAL;
1651 goto free_priv;
1652 }
1653
1654 slot_id = urb->dev->slot_id;
1655
1656 if (!HCD_HW_ACCESSIBLE(hcd)) {
1657 ret = -ESHUTDOWN;
1658 goto free_priv;
1659 }
1660
1661 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1662 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1663 ret = -ENODEV;
1664 goto free_priv;
1665 }
1666
1667 if (xhci->xhc_state & XHCI_STATE_DYING) {
1668 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1669 urb->ep->desc.bEndpointAddress, urb);
1670 ret = -ESHUTDOWN;
1671 goto free_priv;
1672 }
1673
1674 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1675
1676 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1677 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1678 *ep_state);
1679 ret = -EINVAL;
1680 goto free_priv;
1681 }
1682 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1683 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1684 ret = -EINVAL;
1685 goto free_priv;
1686 }
1687
1688 switch (usb_endpoint_type(&urb->ep->desc)) {
1689
1690 case USB_ENDPOINT_XFER_CONTROL:
1691 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1692 slot_id, ep_index);
1693 break;
1694 case USB_ENDPOINT_XFER_BULK:
1695 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1696 slot_id, ep_index);
1697 break;
1698 case USB_ENDPOINT_XFER_INT:
1699 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1700 slot_id, ep_index);
1701 break;
1702 case USB_ENDPOINT_XFER_ISOC:
1703 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1704 slot_id, ep_index);
1705 }
1706
1707 if (ret) {
1708 free_priv:
1709 xhci_urb_free_priv(urb_priv);
1710 urb->hcpriv = NULL;
1711 }
1712 spin_unlock_irqrestore(&xhci->lock, flags);
1713 return ret;
1714 }
1715
1716 /*
1717 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1718 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1719 * should pick up where it left off in the TD, unless a Set Transfer Ring
1720 * Dequeue Pointer is issued.
1721 *
1722 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1723 * the ring. Since the ring is a contiguous structure, they can't be physically
1724 * removed. Instead, there are two options:
1725 *
1726 * 1) If the HC is in the middle of processing the URB to be canceled, we
1727 * simply move the ring's dequeue pointer past those TRBs using the Set
1728 * Transfer Ring Dequeue Pointer command. This will be the common case,
1729 * when drivers timeout on the last submitted URB and attempt to cancel.
1730 *
1731 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1732 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1733 * HC will need to invalidate the any TRBs it has cached after the stop
1734 * endpoint command, as noted in the xHCI 0.95 errata.
1735 *
1736 * 3) The TD may have completed by the time the Stop Endpoint Command
1737 * completes, so software needs to handle that case too.
1738 *
1739 * This function should protect against the TD enqueueing code ringing the
1740 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1741 * It also needs to account for multiple cancellations on happening at the same
1742 * time for the same endpoint.
1743 *
1744 * Note that this function can be called in any context, or so says
1745 * usb_hcd_unlink_urb()
1746 */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1747 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1748 {
1749 unsigned long flags;
1750 int ret, i;
1751 u32 temp;
1752 struct xhci_hcd *xhci;
1753 struct urb_priv *urb_priv;
1754 struct xhci_td *td;
1755 unsigned int ep_index;
1756 struct xhci_ring *ep_ring;
1757 struct xhci_virt_ep *ep;
1758 struct xhci_command *command;
1759 struct xhci_virt_device *vdev;
1760
1761 xhci = hcd_to_xhci(hcd);
1762 spin_lock_irqsave(&xhci->lock, flags);
1763
1764 trace_xhci_urb_dequeue(urb);
1765
1766 /* Make sure the URB hasn't completed or been unlinked already */
1767 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1768 if (ret)
1769 goto done;
1770
1771 /* give back URB now if we can't queue it for cancel */
1772 vdev = xhci->devs[urb->dev->slot_id];
1773 urb_priv = urb->hcpriv;
1774 if (!vdev || !urb_priv)
1775 goto err_giveback;
1776
1777 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1778 ep = &vdev->eps[ep_index];
1779 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1780 if (!ep || !ep_ring)
1781 goto err_giveback;
1782
1783 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1784 temp = readl(&xhci->op_regs->status);
1785 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1786 xhci_hc_died(xhci);
1787 goto done;
1788 }
1789
1790 /*
1791 * check ring is not re-allocated since URB was enqueued. If it is, then
1792 * make sure none of the ring related pointers in this URB private data
1793 * are touched, such as td_list, otherwise we overwrite freed data
1794 */
1795 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1796 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1797 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1798 td = &urb_priv->td[i];
1799 if (!list_empty(&td->cancelled_td_list))
1800 list_del_init(&td->cancelled_td_list);
1801 }
1802 goto err_giveback;
1803 }
1804
1805 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1806 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1807 "HC halted, freeing TD manually.");
1808 for (i = urb_priv->num_tds_done;
1809 i < urb_priv->num_tds;
1810 i++) {
1811 td = &urb_priv->td[i];
1812 if (!list_empty(&td->td_list))
1813 list_del_init(&td->td_list);
1814 if (!list_empty(&td->cancelled_td_list))
1815 list_del_init(&td->cancelled_td_list);
1816 }
1817 goto err_giveback;
1818 }
1819
1820 i = urb_priv->num_tds_done;
1821 if (i < urb_priv->num_tds)
1822 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1823 "Cancel URB %p, dev %s, ep 0x%x, "
1824 "starting at offset 0x%llx",
1825 urb, urb->dev->devpath,
1826 urb->ep->desc.bEndpointAddress,
1827 (unsigned long long) xhci_trb_virt_to_dma(
1828 urb_priv->td[i].start_seg,
1829 urb_priv->td[i].start_trb));
1830
1831 for (; i < urb_priv->num_tds; i++) {
1832 td = &urb_priv->td[i];
1833 /* TD can already be on cancelled list if ep halted on it */
1834 if (list_empty(&td->cancelled_td_list)) {
1835 td->cancel_status = TD_DIRTY;
1836 list_add_tail(&td->cancelled_td_list,
1837 &ep->cancelled_td_list);
1838 }
1839 }
1840
1841 /* These completion handlers will sort out cancelled TDs for us */
1842 if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) {
1843 xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n",
1844 urb->dev->slot_id, ep_index, ep->ep_state);
1845 goto done;
1846 }
1847
1848 /* In this case no commands are pending but the endpoint is stopped */
1849 if (ep->ep_state & EP_CLEARING_TT) {
1850 /* and cancelled TDs can be given back right away */
1851 xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n",
1852 urb->dev->slot_id, ep_index, ep->ep_state);
1853 xhci_process_cancelled_tds(ep);
1854 } else {
1855 /* Otherwise, queue a new Stop Endpoint command */
1856 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1857 if (!command) {
1858 ret = -ENOMEM;
1859 goto done;
1860 }
1861 ep->stop_time = jiffies;
1862 ep->ep_state |= EP_STOP_CMD_PENDING;
1863 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1864 ep_index, 0);
1865 xhci_ring_cmd_db(xhci);
1866 }
1867 done:
1868 spin_unlock_irqrestore(&xhci->lock, flags);
1869 return ret;
1870
1871 err_giveback:
1872 if (urb_priv)
1873 xhci_urb_free_priv(urb_priv);
1874 usb_hcd_unlink_urb_from_ep(hcd, urb);
1875 spin_unlock_irqrestore(&xhci->lock, flags);
1876 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1877 return ret;
1878 }
1879
1880 /* Drop an endpoint from a new bandwidth configuration for this device.
1881 * Only one call to this function is allowed per endpoint before
1882 * check_bandwidth() or reset_bandwidth() must be called.
1883 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1884 * add the endpoint to the schedule with possibly new parameters denoted by a
1885 * different endpoint descriptor in usb_host_endpoint.
1886 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1887 * not allowed.
1888 *
1889 * The USB core will not allow URBs to be queued to an endpoint that is being
1890 * disabled, so there's no need for mutual exclusion to protect
1891 * the xhci->devs[slot_id] structure.
1892 */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1893 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1894 struct usb_host_endpoint *ep)
1895 {
1896 struct xhci_hcd *xhci;
1897 struct xhci_container_ctx *in_ctx, *out_ctx;
1898 struct xhci_input_control_ctx *ctrl_ctx;
1899 unsigned int ep_index;
1900 struct xhci_ep_ctx *ep_ctx;
1901 u32 drop_flag;
1902 u32 new_add_flags, new_drop_flags;
1903 int ret;
1904
1905 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1906 if (ret <= 0)
1907 return ret;
1908 xhci = hcd_to_xhci(hcd);
1909 if (xhci->xhc_state & XHCI_STATE_DYING)
1910 return -ENODEV;
1911
1912 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1913 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1914 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1915 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1916 __func__, drop_flag);
1917 return 0;
1918 }
1919
1920 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1921 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1922 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1923 if (!ctrl_ctx) {
1924 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1925 __func__);
1926 return 0;
1927 }
1928
1929 ep_index = xhci_get_endpoint_index(&ep->desc);
1930 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1931 /* If the HC already knows the endpoint is disabled,
1932 * or the HCD has noted it is disabled, ignore this request
1933 */
1934 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1935 le32_to_cpu(ctrl_ctx->drop_flags) &
1936 xhci_get_endpoint_flag(&ep->desc)) {
1937 /* Do not warn when called after a usb_device_reset */
1938 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1939 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1940 __func__, ep);
1941 return 0;
1942 }
1943
1944 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1945 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1946
1947 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1948 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1949
1950 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1951
1952 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1953
1954 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1955 (unsigned int) ep->desc.bEndpointAddress,
1956 udev->slot_id,
1957 (unsigned int) new_drop_flags,
1958 (unsigned int) new_add_flags);
1959 return 0;
1960 }
1961 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1962
1963 /* Add an endpoint to a new possible bandwidth configuration for this device.
1964 * Only one call to this function is allowed per endpoint before
1965 * check_bandwidth() or reset_bandwidth() must be called.
1966 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1967 * add the endpoint to the schedule with possibly new parameters denoted by a
1968 * different endpoint descriptor in usb_host_endpoint.
1969 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1970 * not allowed.
1971 *
1972 * The USB core will not allow URBs to be queued to an endpoint until the
1973 * configuration or alt setting is installed in the device, so there's no need
1974 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1975 */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1976 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1977 struct usb_host_endpoint *ep)
1978 {
1979 struct xhci_hcd *xhci;
1980 struct xhci_container_ctx *in_ctx;
1981 unsigned int ep_index;
1982 struct xhci_input_control_ctx *ctrl_ctx;
1983 struct xhci_ep_ctx *ep_ctx;
1984 u32 added_ctxs;
1985 u32 new_add_flags, new_drop_flags;
1986 struct xhci_virt_device *virt_dev;
1987 int ret = 0;
1988
1989 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1990 if (ret <= 0) {
1991 /* So we won't queue a reset ep command for a root hub */
1992 ep->hcpriv = NULL;
1993 return ret;
1994 }
1995 xhci = hcd_to_xhci(hcd);
1996 if (xhci->xhc_state & XHCI_STATE_DYING)
1997 return -ENODEV;
1998
1999 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2000 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2001 /* FIXME when we have to issue an evaluate endpoint command to
2002 * deal with ep0 max packet size changing once we get the
2003 * descriptors
2004 */
2005 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2006 __func__, added_ctxs);
2007 return 0;
2008 }
2009
2010 virt_dev = xhci->devs[udev->slot_id];
2011 in_ctx = virt_dev->in_ctx;
2012 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2013 if (!ctrl_ctx) {
2014 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2015 __func__);
2016 return 0;
2017 }
2018
2019 ep_index = xhci_get_endpoint_index(&ep->desc);
2020 /* If this endpoint is already in use, and the upper layers are trying
2021 * to add it again without dropping it, reject the addition.
2022 */
2023 if (virt_dev->eps[ep_index].ring &&
2024 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2025 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2026 "without dropping it.\n",
2027 (unsigned int) ep->desc.bEndpointAddress);
2028 return -EINVAL;
2029 }
2030
2031 /* If the HCD has already noted the endpoint is enabled,
2032 * ignore this request.
2033 */
2034 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2035 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2036 __func__, ep);
2037 return 0;
2038 }
2039
2040 /*
2041 * Configuration and alternate setting changes must be done in
2042 * process context, not interrupt context (or so documenation
2043 * for usb_set_interface() and usb_set_configuration() claim).
2044 */
2045 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2046 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2047 __func__, ep->desc.bEndpointAddress);
2048 return -ENOMEM;
2049 }
2050
2051 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2052 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2053
2054 /* If xhci_endpoint_disable() was called for this endpoint, but the
2055 * xHC hasn't been notified yet through the check_bandwidth() call,
2056 * this re-adds a new state for the endpoint from the new endpoint
2057 * descriptors. We must drop and re-add this endpoint, so we leave the
2058 * drop flags alone.
2059 */
2060 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2061
2062 /* Store the usb_device pointer for later use */
2063 ep->hcpriv = udev;
2064
2065 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2066 trace_xhci_add_endpoint(ep_ctx);
2067
2068 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2069 (unsigned int) ep->desc.bEndpointAddress,
2070 udev->slot_id,
2071 (unsigned int) new_drop_flags,
2072 (unsigned int) new_add_flags);
2073 return 0;
2074 }
2075 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2076
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2077 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2078 {
2079 struct xhci_input_control_ctx *ctrl_ctx;
2080 struct xhci_ep_ctx *ep_ctx;
2081 struct xhci_slot_ctx *slot_ctx;
2082 int i;
2083
2084 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2085 if (!ctrl_ctx) {
2086 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2087 __func__);
2088 return;
2089 }
2090
2091 /* When a device's add flag and drop flag are zero, any subsequent
2092 * configure endpoint command will leave that endpoint's state
2093 * untouched. Make sure we don't leave any old state in the input
2094 * endpoint contexts.
2095 */
2096 ctrl_ctx->drop_flags = 0;
2097 ctrl_ctx->add_flags = 0;
2098 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2099 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2100 /* Endpoint 0 is always valid */
2101 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2102 for (i = 1; i < 31; i++) {
2103 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2104 ep_ctx->ep_info = 0;
2105 ep_ctx->ep_info2 = 0;
2106 ep_ctx->deq = 0;
2107 ep_ctx->tx_info = 0;
2108 }
2109 }
2110
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2111 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2112 struct usb_device *udev, u32 *cmd_status)
2113 {
2114 int ret;
2115
2116 switch (*cmd_status) {
2117 case COMP_COMMAND_ABORTED:
2118 case COMP_COMMAND_RING_STOPPED:
2119 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2120 ret = -ETIME;
2121 break;
2122 case COMP_RESOURCE_ERROR:
2123 dev_warn(&udev->dev,
2124 "Not enough host controller resources for new device state.\n");
2125 ret = -ENOMEM;
2126 /* FIXME: can we allocate more resources for the HC? */
2127 break;
2128 case COMP_BANDWIDTH_ERROR:
2129 case COMP_SECONDARY_BANDWIDTH_ERROR:
2130 dev_warn(&udev->dev,
2131 "Not enough bandwidth for new device state.\n");
2132 ret = -ENOSPC;
2133 /* FIXME: can we go back to the old state? */
2134 break;
2135 case COMP_TRB_ERROR:
2136 /* the HCD set up something wrong */
2137 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2138 "add flag = 1, "
2139 "and endpoint is not disabled.\n");
2140 ret = -EINVAL;
2141 break;
2142 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2143 dev_warn(&udev->dev,
2144 "ERROR: Incompatible device for endpoint configure command.\n");
2145 ret = -ENODEV;
2146 break;
2147 case COMP_SUCCESS:
2148 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2149 "Successful Endpoint Configure command");
2150 ret = 0;
2151 break;
2152 default:
2153 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2154 *cmd_status);
2155 ret = -EINVAL;
2156 break;
2157 }
2158 return ret;
2159 }
2160
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2161 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2162 struct usb_device *udev, u32 *cmd_status)
2163 {
2164 int ret;
2165
2166 switch (*cmd_status) {
2167 case COMP_COMMAND_ABORTED:
2168 case COMP_COMMAND_RING_STOPPED:
2169 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2170 ret = -ETIME;
2171 break;
2172 case COMP_PARAMETER_ERROR:
2173 dev_warn(&udev->dev,
2174 "WARN: xHCI driver setup invalid evaluate context command.\n");
2175 ret = -EINVAL;
2176 break;
2177 case COMP_SLOT_NOT_ENABLED_ERROR:
2178 dev_warn(&udev->dev,
2179 "WARN: slot not enabled for evaluate context command.\n");
2180 ret = -EINVAL;
2181 break;
2182 case COMP_CONTEXT_STATE_ERROR:
2183 dev_warn(&udev->dev,
2184 "WARN: invalid context state for evaluate context command.\n");
2185 ret = -EINVAL;
2186 break;
2187 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2188 dev_warn(&udev->dev,
2189 "ERROR: Incompatible device for evaluate context command.\n");
2190 ret = -ENODEV;
2191 break;
2192 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2193 /* Max Exit Latency too large error */
2194 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2195 ret = -EINVAL;
2196 break;
2197 case COMP_SUCCESS:
2198 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2199 "Successful evaluate context command");
2200 ret = 0;
2201 break;
2202 default:
2203 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2204 *cmd_status);
2205 ret = -EINVAL;
2206 break;
2207 }
2208 return ret;
2209 }
2210
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2211 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2212 struct xhci_input_control_ctx *ctrl_ctx)
2213 {
2214 u32 valid_add_flags;
2215 u32 valid_drop_flags;
2216
2217 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2218 * (bit 1). The default control endpoint is added during the Address
2219 * Device command and is never removed until the slot is disabled.
2220 */
2221 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2222 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2223
2224 /* Use hweight32 to count the number of ones in the add flags, or
2225 * number of endpoints added. Don't count endpoints that are changed
2226 * (both added and dropped).
2227 */
2228 return hweight32(valid_add_flags) -
2229 hweight32(valid_add_flags & valid_drop_flags);
2230 }
2231
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2232 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2233 struct xhci_input_control_ctx *ctrl_ctx)
2234 {
2235 u32 valid_add_flags;
2236 u32 valid_drop_flags;
2237
2238 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2239 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2240
2241 return hweight32(valid_drop_flags) -
2242 hweight32(valid_add_flags & valid_drop_flags);
2243 }
2244
2245 /*
2246 * We need to reserve the new number of endpoints before the configure endpoint
2247 * command completes. We can't subtract the dropped endpoints from the number
2248 * of active endpoints until the command completes because we can oversubscribe
2249 * the host in this case:
2250 *
2251 * - the first configure endpoint command drops more endpoints than it adds
2252 * - a second configure endpoint command that adds more endpoints is queued
2253 * - the first configure endpoint command fails, so the config is unchanged
2254 * - the second command may succeed, even though there isn't enough resources
2255 *
2256 * Must be called with xhci->lock held.
2257 */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2258 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2259 struct xhci_input_control_ctx *ctrl_ctx)
2260 {
2261 u32 added_eps;
2262
2263 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2264 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2265 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2266 "Not enough ep ctxs: "
2267 "%u active, need to add %u, limit is %u.",
2268 xhci->num_active_eps, added_eps,
2269 xhci->limit_active_eps);
2270 return -ENOMEM;
2271 }
2272 xhci->num_active_eps += added_eps;
2273 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2274 "Adding %u ep ctxs, %u now active.", added_eps,
2275 xhci->num_active_eps);
2276 return 0;
2277 }
2278
2279 /*
2280 * The configure endpoint was failed by the xHC for some other reason, so we
2281 * need to revert the resources that failed configuration would have used.
2282 *
2283 * Must be called with xhci->lock held.
2284 */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2285 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2286 struct xhci_input_control_ctx *ctrl_ctx)
2287 {
2288 u32 num_failed_eps;
2289
2290 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2291 xhci->num_active_eps -= num_failed_eps;
2292 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2293 "Removing %u failed ep ctxs, %u now active.",
2294 num_failed_eps,
2295 xhci->num_active_eps);
2296 }
2297
2298 /*
2299 * Now that the command has completed, clean up the active endpoint count by
2300 * subtracting out the endpoints that were dropped (but not changed).
2301 *
2302 * Must be called with xhci->lock held.
2303 */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2304 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2305 struct xhci_input_control_ctx *ctrl_ctx)
2306 {
2307 u32 num_dropped_eps;
2308
2309 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2310 xhci->num_active_eps -= num_dropped_eps;
2311 if (num_dropped_eps)
2312 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2313 "Removing %u dropped ep ctxs, %u now active.",
2314 num_dropped_eps,
2315 xhci->num_active_eps);
2316 }
2317
xhci_get_block_size(struct usb_device * udev)2318 static unsigned int xhci_get_block_size(struct usb_device *udev)
2319 {
2320 switch (udev->speed) {
2321 case USB_SPEED_LOW:
2322 case USB_SPEED_FULL:
2323 return FS_BLOCK;
2324 case USB_SPEED_HIGH:
2325 return HS_BLOCK;
2326 case USB_SPEED_SUPER:
2327 case USB_SPEED_SUPER_PLUS:
2328 return SS_BLOCK;
2329 case USB_SPEED_UNKNOWN:
2330 default:
2331 /* Should never happen */
2332 return 1;
2333 }
2334 }
2335
2336 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2337 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2338 {
2339 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2340 return LS_OVERHEAD;
2341 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2342 return FS_OVERHEAD;
2343 return HS_OVERHEAD;
2344 }
2345
2346 /* If we are changing a LS/FS device under a HS hub,
2347 * make sure (if we are activating a new TT) that the HS bus has enough
2348 * bandwidth for this new TT.
2349 */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2350 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2351 struct xhci_virt_device *virt_dev,
2352 int old_active_eps)
2353 {
2354 struct xhci_interval_bw_table *bw_table;
2355 struct xhci_tt_bw_info *tt_info;
2356
2357 /* Find the bandwidth table for the root port this TT is attached to. */
2358 bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table;
2359 tt_info = virt_dev->tt_info;
2360 /* If this TT already had active endpoints, the bandwidth for this TT
2361 * has already been added. Removing all periodic endpoints (and thus
2362 * making the TT enactive) will only decrease the bandwidth used.
2363 */
2364 if (old_active_eps)
2365 return 0;
2366 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2367 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2368 return -ENOMEM;
2369 return 0;
2370 }
2371 /* Not sure why we would have no new active endpoints...
2372 *
2373 * Maybe because of an Evaluate Context change for a hub update or a
2374 * control endpoint 0 max packet size change?
2375 * FIXME: skip the bandwidth calculation in that case.
2376 */
2377 return 0;
2378 }
2379
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2380 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2381 struct xhci_virt_device *virt_dev)
2382 {
2383 unsigned int bw_reserved;
2384
2385 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2386 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2387 return -ENOMEM;
2388
2389 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2390 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2391 return -ENOMEM;
2392
2393 return 0;
2394 }
2395
2396 /*
2397 * This algorithm is a very conservative estimate of the worst-case scheduling
2398 * scenario for any one interval. The hardware dynamically schedules the
2399 * packets, so we can't tell which microframe could be the limiting factor in
2400 * the bandwidth scheduling. This only takes into account periodic endpoints.
2401 *
2402 * Obviously, we can't solve an NP complete problem to find the minimum worst
2403 * case scenario. Instead, we come up with an estimate that is no less than
2404 * the worst case bandwidth used for any one microframe, but may be an
2405 * over-estimate.
2406 *
2407 * We walk the requirements for each endpoint by interval, starting with the
2408 * smallest interval, and place packets in the schedule where there is only one
2409 * possible way to schedule packets for that interval. In order to simplify
2410 * this algorithm, we record the largest max packet size for each interval, and
2411 * assume all packets will be that size.
2412 *
2413 * For interval 0, we obviously must schedule all packets for each interval.
2414 * The bandwidth for interval 0 is just the amount of data to be transmitted
2415 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2416 * the number of packets).
2417 *
2418 * For interval 1, we have two possible microframes to schedule those packets
2419 * in. For this algorithm, if we can schedule the same number of packets for
2420 * each possible scheduling opportunity (each microframe), we will do so. The
2421 * remaining number of packets will be saved to be transmitted in the gaps in
2422 * the next interval's scheduling sequence.
2423 *
2424 * As we move those remaining packets to be scheduled with interval 2 packets,
2425 * we have to double the number of remaining packets to transmit. This is
2426 * because the intervals are actually powers of 2, and we would be transmitting
2427 * the previous interval's packets twice in this interval. We also have to be
2428 * sure that when we look at the largest max packet size for this interval, we
2429 * also look at the largest max packet size for the remaining packets and take
2430 * the greater of the two.
2431 *
2432 * The algorithm continues to evenly distribute packets in each scheduling
2433 * opportunity, and push the remaining packets out, until we get to the last
2434 * interval. Then those packets and their associated overhead are just added
2435 * to the bandwidth used.
2436 */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2437 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2438 struct xhci_virt_device *virt_dev,
2439 int old_active_eps)
2440 {
2441 unsigned int bw_reserved;
2442 unsigned int max_bandwidth;
2443 unsigned int bw_used;
2444 unsigned int block_size;
2445 struct xhci_interval_bw_table *bw_table;
2446 unsigned int packet_size = 0;
2447 unsigned int overhead = 0;
2448 unsigned int packets_transmitted = 0;
2449 unsigned int packets_remaining = 0;
2450 unsigned int i;
2451
2452 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2453 return xhci_check_ss_bw(xhci, virt_dev);
2454
2455 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2456 max_bandwidth = HS_BW_LIMIT;
2457 /* Convert percent of bus BW reserved to blocks reserved */
2458 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2459 } else {
2460 max_bandwidth = FS_BW_LIMIT;
2461 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2462 }
2463
2464 bw_table = virt_dev->bw_table;
2465 /* We need to translate the max packet size and max ESIT payloads into
2466 * the units the hardware uses.
2467 */
2468 block_size = xhci_get_block_size(virt_dev->udev);
2469
2470 /* If we are manipulating a LS/FS device under a HS hub, double check
2471 * that the HS bus has enough bandwidth if we are activing a new TT.
2472 */
2473 if (virt_dev->tt_info) {
2474 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2475 "Recalculating BW for rootport %u",
2476 virt_dev->rhub_port->hw_portnum + 1);
2477 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2478 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2479 "newly activated TT.\n");
2480 return -ENOMEM;
2481 }
2482 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2483 "Recalculating BW for TT slot %u port %u",
2484 virt_dev->tt_info->slot_id,
2485 virt_dev->tt_info->ttport);
2486 } else {
2487 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2488 "Recalculating BW for rootport %u",
2489 virt_dev->rhub_port->hw_portnum + 1);
2490 }
2491
2492 /* Add in how much bandwidth will be used for interval zero, or the
2493 * rounded max ESIT payload + number of packets * largest overhead.
2494 */
2495 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2496 bw_table->interval_bw[0].num_packets *
2497 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2498
2499 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2500 unsigned int bw_added;
2501 unsigned int largest_mps;
2502 unsigned int interval_overhead;
2503
2504 /*
2505 * How many packets could we transmit in this interval?
2506 * If packets didn't fit in the previous interval, we will need
2507 * to transmit that many packets twice within this interval.
2508 */
2509 packets_remaining = 2 * packets_remaining +
2510 bw_table->interval_bw[i].num_packets;
2511
2512 /* Find the largest max packet size of this or the previous
2513 * interval.
2514 */
2515 if (list_empty(&bw_table->interval_bw[i].endpoints))
2516 largest_mps = 0;
2517 else {
2518 struct xhci_virt_ep *virt_ep;
2519 struct list_head *ep_entry;
2520
2521 ep_entry = bw_table->interval_bw[i].endpoints.next;
2522 virt_ep = list_entry(ep_entry,
2523 struct xhci_virt_ep, bw_endpoint_list);
2524 /* Convert to blocks, rounding up */
2525 largest_mps = DIV_ROUND_UP(
2526 virt_ep->bw_info.max_packet_size,
2527 block_size);
2528 }
2529 if (largest_mps > packet_size)
2530 packet_size = largest_mps;
2531
2532 /* Use the larger overhead of this or the previous interval. */
2533 interval_overhead = xhci_get_largest_overhead(
2534 &bw_table->interval_bw[i]);
2535 if (interval_overhead > overhead)
2536 overhead = interval_overhead;
2537
2538 /* How many packets can we evenly distribute across
2539 * (1 << (i + 1)) possible scheduling opportunities?
2540 */
2541 packets_transmitted = packets_remaining >> (i + 1);
2542
2543 /* Add in the bandwidth used for those scheduled packets */
2544 bw_added = packets_transmitted * (overhead + packet_size);
2545
2546 /* How many packets do we have remaining to transmit? */
2547 packets_remaining = packets_remaining % (1 << (i + 1));
2548
2549 /* What largest max packet size should those packets have? */
2550 /* If we've transmitted all packets, don't carry over the
2551 * largest packet size.
2552 */
2553 if (packets_remaining == 0) {
2554 packet_size = 0;
2555 overhead = 0;
2556 } else if (packets_transmitted > 0) {
2557 /* Otherwise if we do have remaining packets, and we've
2558 * scheduled some packets in this interval, take the
2559 * largest max packet size from endpoints with this
2560 * interval.
2561 */
2562 packet_size = largest_mps;
2563 overhead = interval_overhead;
2564 }
2565 /* Otherwise carry over packet_size and overhead from the last
2566 * time we had a remainder.
2567 */
2568 bw_used += bw_added;
2569 if (bw_used > max_bandwidth) {
2570 xhci_warn(xhci, "Not enough bandwidth. "
2571 "Proposed: %u, Max: %u\n",
2572 bw_used, max_bandwidth);
2573 return -ENOMEM;
2574 }
2575 }
2576 /*
2577 * Ok, we know we have some packets left over after even-handedly
2578 * scheduling interval 15. We don't know which microframes they will
2579 * fit into, so we over-schedule and say they will be scheduled every
2580 * microframe.
2581 */
2582 if (packets_remaining > 0)
2583 bw_used += overhead + packet_size;
2584
2585 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2586 /* OK, we're manipulating a HS device attached to a
2587 * root port bandwidth domain. Include the number of active TTs
2588 * in the bandwidth used.
2589 */
2590 bw_used += TT_HS_OVERHEAD *
2591 xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts;
2592 }
2593
2594 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2595 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2596 "Available: %u " "percent",
2597 bw_used, max_bandwidth, bw_reserved,
2598 (max_bandwidth - bw_used - bw_reserved) * 100 /
2599 max_bandwidth);
2600
2601 bw_used += bw_reserved;
2602 if (bw_used > max_bandwidth) {
2603 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2604 bw_used, max_bandwidth);
2605 return -ENOMEM;
2606 }
2607
2608 bw_table->bw_used = bw_used;
2609 return 0;
2610 }
2611
xhci_is_async_ep(unsigned int ep_type)2612 static bool xhci_is_async_ep(unsigned int ep_type)
2613 {
2614 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2615 ep_type != ISOC_IN_EP &&
2616 ep_type != INT_IN_EP);
2617 }
2618
xhci_is_sync_in_ep(unsigned int ep_type)2619 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2620 {
2621 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2622 }
2623
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2624 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2625 {
2626 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2627
2628 if (ep_bw->ep_interval == 0)
2629 return SS_OVERHEAD_BURST +
2630 (ep_bw->mult * ep_bw->num_packets *
2631 (SS_OVERHEAD + mps));
2632 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2633 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2634 1 << ep_bw->ep_interval);
2635
2636 }
2637
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2638 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2639 struct xhci_bw_info *ep_bw,
2640 struct xhci_interval_bw_table *bw_table,
2641 struct usb_device *udev,
2642 struct xhci_virt_ep *virt_ep,
2643 struct xhci_tt_bw_info *tt_info)
2644 {
2645 struct xhci_interval_bw *interval_bw;
2646 int normalized_interval;
2647
2648 if (xhci_is_async_ep(ep_bw->type))
2649 return;
2650
2651 if (udev->speed >= USB_SPEED_SUPER) {
2652 if (xhci_is_sync_in_ep(ep_bw->type))
2653 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2654 xhci_get_ss_bw_consumed(ep_bw);
2655 else
2656 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2657 xhci_get_ss_bw_consumed(ep_bw);
2658 return;
2659 }
2660
2661 /* SuperSpeed endpoints never get added to intervals in the table, so
2662 * this check is only valid for HS/FS/LS devices.
2663 */
2664 if (list_empty(&virt_ep->bw_endpoint_list))
2665 return;
2666 /* For LS/FS devices, we need to translate the interval expressed in
2667 * microframes to frames.
2668 */
2669 if (udev->speed == USB_SPEED_HIGH)
2670 normalized_interval = ep_bw->ep_interval;
2671 else
2672 normalized_interval = ep_bw->ep_interval - 3;
2673
2674 if (normalized_interval == 0)
2675 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2676 interval_bw = &bw_table->interval_bw[normalized_interval];
2677 interval_bw->num_packets -= ep_bw->num_packets;
2678 switch (udev->speed) {
2679 case USB_SPEED_LOW:
2680 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2681 break;
2682 case USB_SPEED_FULL:
2683 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2684 break;
2685 case USB_SPEED_HIGH:
2686 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2687 break;
2688 default:
2689 /* Should never happen because only LS/FS/HS endpoints will get
2690 * added to the endpoint list.
2691 */
2692 return;
2693 }
2694 if (tt_info)
2695 tt_info->active_eps -= 1;
2696 list_del_init(&virt_ep->bw_endpoint_list);
2697 }
2698
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2699 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2700 struct xhci_bw_info *ep_bw,
2701 struct xhci_interval_bw_table *bw_table,
2702 struct usb_device *udev,
2703 struct xhci_virt_ep *virt_ep,
2704 struct xhci_tt_bw_info *tt_info)
2705 {
2706 struct xhci_interval_bw *interval_bw;
2707 struct xhci_virt_ep *smaller_ep;
2708 int normalized_interval;
2709
2710 if (xhci_is_async_ep(ep_bw->type))
2711 return;
2712
2713 if (udev->speed == USB_SPEED_SUPER) {
2714 if (xhci_is_sync_in_ep(ep_bw->type))
2715 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2716 xhci_get_ss_bw_consumed(ep_bw);
2717 else
2718 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2719 xhci_get_ss_bw_consumed(ep_bw);
2720 return;
2721 }
2722
2723 /* For LS/FS devices, we need to translate the interval expressed in
2724 * microframes to frames.
2725 */
2726 if (udev->speed == USB_SPEED_HIGH)
2727 normalized_interval = ep_bw->ep_interval;
2728 else
2729 normalized_interval = ep_bw->ep_interval - 3;
2730
2731 if (normalized_interval == 0)
2732 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2733 interval_bw = &bw_table->interval_bw[normalized_interval];
2734 interval_bw->num_packets += ep_bw->num_packets;
2735 switch (udev->speed) {
2736 case USB_SPEED_LOW:
2737 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2738 break;
2739 case USB_SPEED_FULL:
2740 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2741 break;
2742 case USB_SPEED_HIGH:
2743 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2744 break;
2745 default:
2746 /* Should never happen because only LS/FS/HS endpoints will get
2747 * added to the endpoint list.
2748 */
2749 return;
2750 }
2751
2752 if (tt_info)
2753 tt_info->active_eps += 1;
2754 /* Insert the endpoint into the list, largest max packet size first. */
2755 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2756 bw_endpoint_list) {
2757 if (ep_bw->max_packet_size >=
2758 smaller_ep->bw_info.max_packet_size) {
2759 /* Add the new ep before the smaller endpoint */
2760 list_add_tail(&virt_ep->bw_endpoint_list,
2761 &smaller_ep->bw_endpoint_list);
2762 return;
2763 }
2764 }
2765 /* Add the new endpoint at the end of the list. */
2766 list_add_tail(&virt_ep->bw_endpoint_list,
2767 &interval_bw->endpoints);
2768 }
2769
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2770 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2771 struct xhci_virt_device *virt_dev,
2772 int old_active_eps)
2773 {
2774 struct xhci_root_port_bw_info *rh_bw_info;
2775 if (!virt_dev->tt_info)
2776 return;
2777
2778 rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum];
2779 if (old_active_eps == 0 &&
2780 virt_dev->tt_info->active_eps != 0) {
2781 rh_bw_info->num_active_tts += 1;
2782 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2783 } else if (old_active_eps != 0 &&
2784 virt_dev->tt_info->active_eps == 0) {
2785 rh_bw_info->num_active_tts -= 1;
2786 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2787 }
2788 }
2789
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2790 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2791 struct xhci_virt_device *virt_dev,
2792 struct xhci_container_ctx *in_ctx)
2793 {
2794 struct xhci_bw_info ep_bw_info[31];
2795 int i;
2796 struct xhci_input_control_ctx *ctrl_ctx;
2797 int old_active_eps = 0;
2798
2799 if (virt_dev->tt_info)
2800 old_active_eps = virt_dev->tt_info->active_eps;
2801
2802 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2803 if (!ctrl_ctx) {
2804 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2805 __func__);
2806 return -ENOMEM;
2807 }
2808
2809 for (i = 0; i < 31; i++) {
2810 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2811 continue;
2812
2813 /* Make a copy of the BW info in case we need to revert this */
2814 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2815 sizeof(ep_bw_info[i]));
2816 /* Drop the endpoint from the interval table if the endpoint is
2817 * being dropped or changed.
2818 */
2819 if (EP_IS_DROPPED(ctrl_ctx, i))
2820 xhci_drop_ep_from_interval_table(xhci,
2821 &virt_dev->eps[i].bw_info,
2822 virt_dev->bw_table,
2823 virt_dev->udev,
2824 &virt_dev->eps[i],
2825 virt_dev->tt_info);
2826 }
2827 /* Overwrite the information stored in the endpoints' bw_info */
2828 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2829 for (i = 0; i < 31; i++) {
2830 /* Add any changed or added endpoints to the interval table */
2831 if (EP_IS_ADDED(ctrl_ctx, i))
2832 xhci_add_ep_to_interval_table(xhci,
2833 &virt_dev->eps[i].bw_info,
2834 virt_dev->bw_table,
2835 virt_dev->udev,
2836 &virt_dev->eps[i],
2837 virt_dev->tt_info);
2838 }
2839
2840 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2841 /* Ok, this fits in the bandwidth we have.
2842 * Update the number of active TTs.
2843 */
2844 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2845 return 0;
2846 }
2847
2848 /* We don't have enough bandwidth for this, revert the stored info. */
2849 for (i = 0; i < 31; i++) {
2850 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2851 continue;
2852
2853 /* Drop the new copies of any added or changed endpoints from
2854 * the interval table.
2855 */
2856 if (EP_IS_ADDED(ctrl_ctx, i)) {
2857 xhci_drop_ep_from_interval_table(xhci,
2858 &virt_dev->eps[i].bw_info,
2859 virt_dev->bw_table,
2860 virt_dev->udev,
2861 &virt_dev->eps[i],
2862 virt_dev->tt_info);
2863 }
2864 /* Revert the endpoint back to its old information */
2865 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2866 sizeof(ep_bw_info[i]));
2867 /* Add any changed or dropped endpoints back into the table */
2868 if (EP_IS_DROPPED(ctrl_ctx, i))
2869 xhci_add_ep_to_interval_table(xhci,
2870 &virt_dev->eps[i].bw_info,
2871 virt_dev->bw_table,
2872 virt_dev->udev,
2873 &virt_dev->eps[i],
2874 virt_dev->tt_info);
2875 }
2876 return -ENOMEM;
2877 }
2878
2879 /*
2880 * Synchronous XHCI stop endpoint helper. Issues the stop endpoint command and
2881 * waits for the command completion before returning. This does not call
2882 * xhci_handle_cmd_stop_ep(), which has additional handling for 'context error'
2883 * cases, along with transfer ring cleanup.
2884 *
2885 * xhci_stop_endpoint_sync() is intended to be utilized by clients that manage
2886 * their own transfer ring, such as offload situations.
2887 */
xhci_stop_endpoint_sync(struct xhci_hcd * xhci,struct xhci_virt_ep * ep,int suspend,gfp_t gfp_flags)2888 int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend,
2889 gfp_t gfp_flags)
2890 {
2891 struct xhci_command *command;
2892 unsigned long flags;
2893 int ret;
2894
2895 command = xhci_alloc_command(xhci, true, gfp_flags);
2896 if (!command)
2897 return -ENOMEM;
2898
2899 spin_lock_irqsave(&xhci->lock, flags);
2900 ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id,
2901 ep->ep_index, suspend);
2902 if (ret < 0) {
2903 spin_unlock_irqrestore(&xhci->lock, flags);
2904 goto out;
2905 }
2906
2907 xhci_ring_cmd_db(xhci);
2908 spin_unlock_irqrestore(&xhci->lock, flags);
2909
2910 wait_for_completion(command->completion);
2911
2912 /* No handling for COMP_CONTEXT_STATE_ERROR done at command completion*/
2913 if (command->status == COMP_COMMAND_ABORTED ||
2914 command->status == COMP_COMMAND_RING_STOPPED) {
2915 xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n");
2916 ret = -ETIME;
2917 }
2918 out:
2919 xhci_free_command(xhci, command);
2920
2921 return ret;
2922 }
2923 EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync);
2924
2925 /* Issue a configure endpoint command or evaluate context command
2926 * and wait for it to finish.
2927 */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2928 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2929 struct usb_device *udev,
2930 struct xhci_command *command,
2931 bool ctx_change, bool must_succeed)
2932 {
2933 int ret;
2934 unsigned long flags;
2935 struct xhci_input_control_ctx *ctrl_ctx;
2936 struct xhci_virt_device *virt_dev;
2937 struct xhci_slot_ctx *slot_ctx;
2938
2939 if (!command)
2940 return -EINVAL;
2941
2942 spin_lock_irqsave(&xhci->lock, flags);
2943
2944 if (xhci->xhc_state & XHCI_STATE_DYING) {
2945 spin_unlock_irqrestore(&xhci->lock, flags);
2946 return -ESHUTDOWN;
2947 }
2948
2949 virt_dev = xhci->devs[udev->slot_id];
2950
2951 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2952 if (!ctrl_ctx) {
2953 spin_unlock_irqrestore(&xhci->lock, flags);
2954 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2955 __func__);
2956 return -ENOMEM;
2957 }
2958
2959 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2960 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2961 spin_unlock_irqrestore(&xhci->lock, flags);
2962 xhci_warn(xhci, "Not enough host resources, "
2963 "active endpoint contexts = %u\n",
2964 xhci->num_active_eps);
2965 return -ENOMEM;
2966 }
2967 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change &&
2968 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2969 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2970 xhci_free_host_resources(xhci, ctrl_ctx);
2971 spin_unlock_irqrestore(&xhci->lock, flags);
2972 xhci_warn(xhci, "Not enough bandwidth\n");
2973 return -ENOMEM;
2974 }
2975
2976 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2977
2978 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2979 trace_xhci_configure_endpoint(slot_ctx);
2980
2981 if (!ctx_change)
2982 ret = xhci_queue_configure_endpoint(xhci, command,
2983 command->in_ctx->dma,
2984 udev->slot_id, must_succeed);
2985 else
2986 ret = xhci_queue_evaluate_context(xhci, command,
2987 command->in_ctx->dma,
2988 udev->slot_id, must_succeed);
2989 if (ret < 0) {
2990 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2991 xhci_free_host_resources(xhci, ctrl_ctx);
2992 spin_unlock_irqrestore(&xhci->lock, flags);
2993 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2994 "FIXME allocate a new ring segment");
2995 return -ENOMEM;
2996 }
2997 xhci_ring_cmd_db(xhci);
2998 spin_unlock_irqrestore(&xhci->lock, flags);
2999
3000 /* Wait for the configure endpoint command to complete */
3001 wait_for_completion(command->completion);
3002
3003 if (!ctx_change)
3004 ret = xhci_configure_endpoint_result(xhci, udev,
3005 &command->status);
3006 else
3007 ret = xhci_evaluate_context_result(xhci, udev,
3008 &command->status);
3009
3010 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3011 spin_lock_irqsave(&xhci->lock, flags);
3012 /* If the command failed, remove the reserved resources.
3013 * Otherwise, clean up the estimate to include dropped eps.
3014 */
3015 if (ret)
3016 xhci_free_host_resources(xhci, ctrl_ctx);
3017 else
3018 xhci_finish_resource_reservation(xhci, ctrl_ctx);
3019 spin_unlock_irqrestore(&xhci->lock, flags);
3020 }
3021 return ret;
3022 }
3023
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)3024 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3025 struct xhci_virt_device *vdev, int i)
3026 {
3027 struct xhci_virt_ep *ep = &vdev->eps[i];
3028
3029 if (ep->ep_state & EP_HAS_STREAMS) {
3030 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3031 xhci_get_endpoint_address(i));
3032 xhci_free_stream_info(xhci, ep->stream_info);
3033 ep->stream_info = NULL;
3034 ep->ep_state &= ~EP_HAS_STREAMS;
3035 }
3036 }
3037
3038 /* Called after one or more calls to xhci_add_endpoint() or
3039 * xhci_drop_endpoint(). If this call fails, the USB core is expected
3040 * to call xhci_reset_bandwidth().
3041 *
3042 * Since we are in the middle of changing either configuration or
3043 * installing a new alt setting, the USB core won't allow URBs to be
3044 * enqueued for any endpoint on the old config or interface. Nothing
3045 * else should be touching the xhci->devs[slot_id] structure, so we
3046 * don't need to take the xhci->lock for manipulating that.
3047 */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3048 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3049 {
3050 int i;
3051 int ret = 0;
3052 struct xhci_hcd *xhci;
3053 struct xhci_virt_device *virt_dev;
3054 struct xhci_input_control_ctx *ctrl_ctx;
3055 struct xhci_slot_ctx *slot_ctx;
3056 struct xhci_command *command;
3057
3058 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3059 if (ret <= 0)
3060 return ret;
3061 xhci = hcd_to_xhci(hcd);
3062 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3063 (xhci->xhc_state & XHCI_STATE_REMOVING))
3064 return -ENODEV;
3065
3066 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3067 virt_dev = xhci->devs[udev->slot_id];
3068
3069 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3070 if (!command)
3071 return -ENOMEM;
3072
3073 command->in_ctx = virt_dev->in_ctx;
3074
3075 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3076 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3077 if (!ctrl_ctx) {
3078 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3079 __func__);
3080 ret = -ENOMEM;
3081 goto command_cleanup;
3082 }
3083 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3084 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3085 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3086
3087 /* Don't issue the command if there's no endpoints to update. */
3088 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3089 ctrl_ctx->drop_flags == 0) {
3090 ret = 0;
3091 goto command_cleanup;
3092 }
3093 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3094 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3095 for (i = 31; i >= 1; i--) {
3096 __le32 le32 = cpu_to_le32(BIT(i));
3097
3098 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3099 || (ctrl_ctx->add_flags & le32) || i == 1) {
3100 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3101 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3102 break;
3103 }
3104 }
3105
3106 ret = xhci_configure_endpoint(xhci, udev, command,
3107 false, false);
3108 if (ret)
3109 /* Callee should call reset_bandwidth() */
3110 goto command_cleanup;
3111
3112 /* Free any rings that were dropped, but not changed. */
3113 for (i = 1; i < 31; i++) {
3114 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3115 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3116 xhci_free_endpoint_ring(xhci, virt_dev, i);
3117 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3118 }
3119 }
3120 xhci_zero_in_ctx(xhci, virt_dev);
3121 /*
3122 * Install any rings for completely new endpoints or changed endpoints,
3123 * and free any old rings from changed endpoints.
3124 */
3125 for (i = 1; i < 31; i++) {
3126 if (!virt_dev->eps[i].new_ring)
3127 continue;
3128 /* Only free the old ring if it exists.
3129 * It may not if this is the first add of an endpoint.
3130 */
3131 if (virt_dev->eps[i].ring) {
3132 xhci_free_endpoint_ring(xhci, virt_dev, i);
3133 }
3134 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3135 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3136 virt_dev->eps[i].new_ring = NULL;
3137 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3138 }
3139 command_cleanup:
3140 kfree(command->completion);
3141 kfree(command);
3142
3143 return ret;
3144 }
3145 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3146
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3147 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3148 {
3149 struct xhci_hcd *xhci;
3150 struct xhci_virt_device *virt_dev;
3151 int i, ret;
3152
3153 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3154 if (ret <= 0)
3155 return;
3156 xhci = hcd_to_xhci(hcd);
3157
3158 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3159 virt_dev = xhci->devs[udev->slot_id];
3160 /* Free any rings allocated for added endpoints */
3161 for (i = 0; i < 31; i++) {
3162 if (virt_dev->eps[i].new_ring) {
3163 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3164 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3165 virt_dev->eps[i].new_ring = NULL;
3166 }
3167 }
3168 xhci_zero_in_ctx(xhci, virt_dev);
3169 }
3170 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3171
3172 /* Get the available bandwidth of the ports under the xhci roothub */
xhci_get_port_bandwidth(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,u8 dev_speed)3173 int xhci_get_port_bandwidth(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx,
3174 u8 dev_speed)
3175 {
3176 struct xhci_command *cmd;
3177 unsigned long flags;
3178 int ret;
3179
3180 if (!ctx || !xhci)
3181 return -EINVAL;
3182
3183 cmd = xhci_alloc_command(xhci, true, GFP_KERNEL);
3184 if (!cmd)
3185 return -ENOMEM;
3186
3187 cmd->in_ctx = ctx;
3188
3189 /* get xhci port bandwidth, refer to xhci rev1_2 protocol 4.6.15 */
3190 spin_lock_irqsave(&xhci->lock, flags);
3191
3192 ret = xhci_queue_get_port_bw(xhci, cmd, ctx->dma, dev_speed, 0);
3193 if (ret) {
3194 spin_unlock_irqrestore(&xhci->lock, flags);
3195 goto err_out;
3196 }
3197 xhci_ring_cmd_db(xhci);
3198 spin_unlock_irqrestore(&xhci->lock, flags);
3199
3200 wait_for_completion(cmd->completion);
3201 err_out:
3202 kfree(cmd->completion);
3203 kfree(cmd);
3204
3205 return ret;
3206 }
3207
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3208 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3209 struct xhci_container_ctx *in_ctx,
3210 struct xhci_container_ctx *out_ctx,
3211 struct xhci_input_control_ctx *ctrl_ctx,
3212 u32 add_flags, u32 drop_flags)
3213 {
3214 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3215 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3216 xhci_slot_copy(xhci, in_ctx, out_ctx);
3217 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3218 }
3219
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3220 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3221 struct usb_host_endpoint *host_ep)
3222 {
3223 struct xhci_hcd *xhci;
3224 struct xhci_virt_device *vdev;
3225 struct xhci_virt_ep *ep;
3226 struct usb_device *udev;
3227 unsigned long flags;
3228 unsigned int ep_index;
3229
3230 xhci = hcd_to_xhci(hcd);
3231 rescan:
3232 spin_lock_irqsave(&xhci->lock, flags);
3233
3234 udev = (struct usb_device *)host_ep->hcpriv;
3235 if (!udev || !udev->slot_id)
3236 goto done;
3237
3238 vdev = xhci->devs[udev->slot_id];
3239 if (!vdev)
3240 goto done;
3241
3242 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3243 ep = &vdev->eps[ep_index];
3244
3245 /* wait for hub_tt_work to finish clearing hub TT */
3246 if (ep->ep_state & EP_CLEARING_TT) {
3247 spin_unlock_irqrestore(&xhci->lock, flags);
3248 schedule_timeout_uninterruptible(1);
3249 goto rescan;
3250 }
3251
3252 if (ep->ep_state)
3253 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3254 ep->ep_state);
3255 done:
3256 host_ep->hcpriv = NULL;
3257 spin_unlock_irqrestore(&xhci->lock, flags);
3258 }
3259
3260 /*
3261 * Called after usb core issues a clear halt control message.
3262 * The host side of the halt should already be cleared by a reset endpoint
3263 * command issued when the STALL event was received.
3264 *
3265 * The reset endpoint command may only be issued to endpoints in the halted
3266 * state. For software that wishes to reset the data toggle or sequence number
3267 * of an endpoint that isn't in the halted state this function will issue a
3268 * configure endpoint command with the Drop and Add bits set for the target
3269 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3270 *
3271 * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3272 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3273 */
3274
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3275 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3276 struct usb_host_endpoint *host_ep)
3277 {
3278 struct xhci_hcd *xhci;
3279 struct usb_device *udev;
3280 struct xhci_virt_device *vdev;
3281 struct xhci_virt_ep *ep;
3282 struct xhci_input_control_ctx *ctrl_ctx;
3283 struct xhci_command *stop_cmd, *cfg_cmd;
3284 unsigned int ep_index;
3285 unsigned long flags;
3286 u32 ep_flag;
3287 int err;
3288
3289 xhci = hcd_to_xhci(hcd);
3290 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3291
3292 /*
3293 * Usb core assumes a max packet value for ep0 on FS devices until the
3294 * real value is read from the descriptor. Core resets Ep0 if values
3295 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3296 */
3297 if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
3298
3299 udev = container_of(host_ep, struct usb_device, ep0);
3300 if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3301 return;
3302
3303 vdev = xhci->devs[udev->slot_id];
3304 if (!vdev || vdev->udev != udev)
3305 return;
3306
3307 xhci_check_ep0_maxpacket(xhci, vdev);
3308
3309 /* Nothing else should be done here for ep0 during ep reset */
3310 return;
3311 }
3312
3313 if (!host_ep->hcpriv)
3314 return;
3315 udev = (struct usb_device *) host_ep->hcpriv;
3316 vdev = xhci->devs[udev->slot_id];
3317
3318 if (!udev->slot_id || !vdev)
3319 return;
3320
3321 ep = &vdev->eps[ep_index];
3322
3323 /* Bail out if toggle is already being cleared by a endpoint reset */
3324 spin_lock_irqsave(&xhci->lock, flags);
3325 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3326 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3327 spin_unlock_irqrestore(&xhci->lock, flags);
3328 return;
3329 }
3330 spin_unlock_irqrestore(&xhci->lock, flags);
3331 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3332 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3333 usb_endpoint_xfer_isoc(&host_ep->desc))
3334 return;
3335
3336 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3337
3338 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3339 return;
3340
3341 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3342 if (!stop_cmd)
3343 return;
3344
3345 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3346 if (!cfg_cmd)
3347 goto cleanup;
3348
3349 spin_lock_irqsave(&xhci->lock, flags);
3350
3351 /* block queuing new trbs and ringing ep doorbell */
3352 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3353
3354 /*
3355 * Make sure endpoint ring is empty before resetting the toggle/seq.
3356 * Driver is required to synchronously cancel all transfer request.
3357 * Stop the endpoint to force xHC to update the output context
3358 */
3359
3360 if (!list_empty(&ep->ring->td_list)) {
3361 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3362 spin_unlock_irqrestore(&xhci->lock, flags);
3363 xhci_free_command(xhci, cfg_cmd);
3364 goto cleanup;
3365 }
3366
3367 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3368 ep_index, 0);
3369 if (err < 0) {
3370 spin_unlock_irqrestore(&xhci->lock, flags);
3371 xhci_free_command(xhci, cfg_cmd);
3372 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3373 __func__, err);
3374 goto cleanup;
3375 }
3376
3377 xhci_ring_cmd_db(xhci);
3378 spin_unlock_irqrestore(&xhci->lock, flags);
3379
3380 wait_for_completion(stop_cmd->completion);
3381
3382 spin_lock_irqsave(&xhci->lock, flags);
3383
3384 /* config ep command clears toggle if add and drop ep flags are set */
3385 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3386 if (!ctrl_ctx) {
3387 spin_unlock_irqrestore(&xhci->lock, flags);
3388 xhci_free_command(xhci, cfg_cmd);
3389 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3390 __func__);
3391 goto cleanup;
3392 }
3393
3394 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3395 ctrl_ctx, ep_flag, ep_flag);
3396 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3397
3398 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3399 udev->slot_id, false);
3400 if (err < 0) {
3401 spin_unlock_irqrestore(&xhci->lock, flags);
3402 xhci_free_command(xhci, cfg_cmd);
3403 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3404 __func__, err);
3405 goto cleanup;
3406 }
3407
3408 xhci_ring_cmd_db(xhci);
3409 spin_unlock_irqrestore(&xhci->lock, flags);
3410
3411 wait_for_completion(cfg_cmd->completion);
3412
3413 xhci_free_command(xhci, cfg_cmd);
3414 cleanup:
3415 xhci_free_command(xhci, stop_cmd);
3416 spin_lock_irqsave(&xhci->lock, flags);
3417 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3418 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3419 spin_unlock_irqrestore(&xhci->lock, flags);
3420 }
3421
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3422 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3423 struct usb_device *udev, struct usb_host_endpoint *ep,
3424 unsigned int slot_id)
3425 {
3426 int ret;
3427 unsigned int ep_index;
3428 unsigned int ep_state;
3429
3430 if (!ep)
3431 return -EINVAL;
3432 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3433 if (ret <= 0)
3434 return ret ? ret : -EINVAL;
3435 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3436 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3437 " descriptor for ep 0x%x does not support streams\n",
3438 ep->desc.bEndpointAddress);
3439 return -EINVAL;
3440 }
3441
3442 ep_index = xhci_get_endpoint_index(&ep->desc);
3443 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3444 if (ep_state & EP_HAS_STREAMS ||
3445 ep_state & EP_GETTING_STREAMS) {
3446 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3447 "already has streams set up.\n",
3448 ep->desc.bEndpointAddress);
3449 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3450 "dynamic stream context array reallocation.\n");
3451 return -EINVAL;
3452 }
3453 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3454 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3455 "endpoint 0x%x; URBs are pending.\n",
3456 ep->desc.bEndpointAddress);
3457 return -EINVAL;
3458 }
3459 return 0;
3460 }
3461
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3462 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3463 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3464 {
3465 unsigned int max_streams;
3466
3467 /* The stream context array size must be a power of two */
3468 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3469 /*
3470 * Find out how many primary stream array entries the host controller
3471 * supports. Later we may use secondary stream arrays (similar to 2nd
3472 * level page entries), but that's an optional feature for xHCI host
3473 * controllers. xHCs must support at least 4 stream IDs.
3474 */
3475 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3476 if (*num_stream_ctxs > max_streams) {
3477 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3478 max_streams);
3479 *num_stream_ctxs = max_streams;
3480 *num_streams = max_streams;
3481 }
3482 }
3483
3484 /* Returns an error code if one of the endpoint already has streams.
3485 * This does not change any data structures, it only checks and gathers
3486 * information.
3487 */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3488 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3489 struct usb_device *udev,
3490 struct usb_host_endpoint **eps, unsigned int num_eps,
3491 unsigned int *num_streams, u32 *changed_ep_bitmask)
3492 {
3493 unsigned int max_streams;
3494 unsigned int endpoint_flag;
3495 int i;
3496 int ret;
3497
3498 for (i = 0; i < num_eps; i++) {
3499 ret = xhci_check_streams_endpoint(xhci, udev,
3500 eps[i], udev->slot_id);
3501 if (ret < 0)
3502 return ret;
3503
3504 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3505 if (max_streams < (*num_streams - 1)) {
3506 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3507 eps[i]->desc.bEndpointAddress,
3508 max_streams);
3509 *num_streams = max_streams+1;
3510 }
3511
3512 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3513 if (*changed_ep_bitmask & endpoint_flag)
3514 return -EINVAL;
3515 *changed_ep_bitmask |= endpoint_flag;
3516 }
3517 return 0;
3518 }
3519
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3520 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3521 struct usb_device *udev,
3522 struct usb_host_endpoint **eps, unsigned int num_eps)
3523 {
3524 u32 changed_ep_bitmask = 0;
3525 unsigned int slot_id;
3526 unsigned int ep_index;
3527 unsigned int ep_state;
3528 int i;
3529
3530 slot_id = udev->slot_id;
3531 if (!xhci->devs[slot_id])
3532 return 0;
3533
3534 for (i = 0; i < num_eps; i++) {
3535 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3536 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3537 /* Are streams already being freed for the endpoint? */
3538 if (ep_state & EP_GETTING_NO_STREAMS) {
3539 xhci_warn(xhci, "WARN Can't disable streams for "
3540 "endpoint 0x%x, "
3541 "streams are being disabled already\n",
3542 eps[i]->desc.bEndpointAddress);
3543 return 0;
3544 }
3545 /* Are there actually any streams to free? */
3546 if (!(ep_state & EP_HAS_STREAMS) &&
3547 !(ep_state & EP_GETTING_STREAMS)) {
3548 xhci_warn(xhci, "WARN Can't disable streams for "
3549 "endpoint 0x%x, "
3550 "streams are already disabled!\n",
3551 eps[i]->desc.bEndpointAddress);
3552 xhci_warn(xhci, "WARN xhci_free_streams() called "
3553 "with non-streams endpoint\n");
3554 return 0;
3555 }
3556 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3557 }
3558 return changed_ep_bitmask;
3559 }
3560
3561 /*
3562 * The USB device drivers use this function (through the HCD interface in USB
3563 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3564 * coordinate mass storage command queueing across multiple endpoints (basically
3565 * a stream ID == a task ID).
3566 *
3567 * Setting up streams involves allocating the same size stream context array
3568 * for each endpoint and issuing a configure endpoint command for all endpoints.
3569 *
3570 * Don't allow the call to succeed if one endpoint only supports one stream
3571 * (which means it doesn't support streams at all).
3572 *
3573 * Drivers may get less stream IDs than they asked for, if the host controller
3574 * hardware or endpoints claim they can't support the number of requested
3575 * stream IDs.
3576 */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3577 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3578 struct usb_host_endpoint **eps, unsigned int num_eps,
3579 unsigned int num_streams, gfp_t mem_flags)
3580 {
3581 int i, ret;
3582 struct xhci_hcd *xhci;
3583 struct xhci_virt_device *vdev;
3584 struct xhci_command *config_cmd;
3585 struct xhci_input_control_ctx *ctrl_ctx;
3586 unsigned int ep_index;
3587 unsigned int num_stream_ctxs;
3588 unsigned int max_packet;
3589 unsigned long flags;
3590 u32 changed_ep_bitmask = 0;
3591
3592 if (!eps)
3593 return -EINVAL;
3594
3595 /* Add one to the number of streams requested to account for
3596 * stream 0 that is reserved for xHCI usage.
3597 */
3598 num_streams += 1;
3599 xhci = hcd_to_xhci(hcd);
3600 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3601 num_streams);
3602
3603 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3604 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3605 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3606 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3607 return -ENOSYS;
3608 }
3609
3610 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3611 if (!config_cmd)
3612 return -ENOMEM;
3613
3614 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3615 if (!ctrl_ctx) {
3616 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3617 __func__);
3618 xhci_free_command(xhci, config_cmd);
3619 return -ENOMEM;
3620 }
3621
3622 /* Check to make sure all endpoints are not already configured for
3623 * streams. While we're at it, find the maximum number of streams that
3624 * all the endpoints will support and check for duplicate endpoints.
3625 */
3626 spin_lock_irqsave(&xhci->lock, flags);
3627 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3628 num_eps, &num_streams, &changed_ep_bitmask);
3629 if (ret < 0) {
3630 xhci_free_command(xhci, config_cmd);
3631 spin_unlock_irqrestore(&xhci->lock, flags);
3632 return ret;
3633 }
3634 if (num_streams <= 1) {
3635 xhci_warn(xhci, "WARN: endpoints can't handle "
3636 "more than one stream.\n");
3637 xhci_free_command(xhci, config_cmd);
3638 spin_unlock_irqrestore(&xhci->lock, flags);
3639 return -EINVAL;
3640 }
3641 vdev = xhci->devs[udev->slot_id];
3642 /* Mark each endpoint as being in transition, so
3643 * xhci_urb_enqueue() will reject all URBs.
3644 */
3645 for (i = 0; i < num_eps; i++) {
3646 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3647 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3648 }
3649 spin_unlock_irqrestore(&xhci->lock, flags);
3650
3651 /* Setup internal data structures and allocate HW data structures for
3652 * streams (but don't install the HW structures in the input context
3653 * until we're sure all memory allocation succeeded).
3654 */
3655 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3656 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3657 num_stream_ctxs, num_streams);
3658
3659 for (i = 0; i < num_eps; i++) {
3660 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3661 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3662 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3663 num_stream_ctxs,
3664 num_streams,
3665 max_packet, mem_flags);
3666 if (!vdev->eps[ep_index].stream_info)
3667 goto cleanup;
3668 /* Set maxPstreams in endpoint context and update deq ptr to
3669 * point to stream context array. FIXME
3670 */
3671 }
3672
3673 /* Set up the input context for a configure endpoint command. */
3674 for (i = 0; i < num_eps; i++) {
3675 struct xhci_ep_ctx *ep_ctx;
3676
3677 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3678 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3679
3680 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3681 vdev->out_ctx, ep_index);
3682 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3683 vdev->eps[ep_index].stream_info);
3684 }
3685 /* Tell the HW to drop its old copy of the endpoint context info
3686 * and add the updated copy from the input context.
3687 */
3688 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3689 vdev->out_ctx, ctrl_ctx,
3690 changed_ep_bitmask, changed_ep_bitmask);
3691
3692 /* Issue and wait for the configure endpoint command */
3693 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3694 false, false);
3695
3696 /* xHC rejected the configure endpoint command for some reason, so we
3697 * leave the old ring intact and free our internal streams data
3698 * structure.
3699 */
3700 if (ret < 0)
3701 goto cleanup;
3702
3703 spin_lock_irqsave(&xhci->lock, flags);
3704 for (i = 0; i < num_eps; i++) {
3705 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3706 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3707 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3708 udev->slot_id, ep_index);
3709 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3710 }
3711 xhci_free_command(xhci, config_cmd);
3712 spin_unlock_irqrestore(&xhci->lock, flags);
3713
3714 for (i = 0; i < num_eps; i++) {
3715 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3716 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3717 }
3718 /* Subtract 1 for stream 0, which drivers can't use */
3719 return num_streams - 1;
3720
3721 cleanup:
3722 /* If it didn't work, free the streams! */
3723 for (i = 0; i < num_eps; i++) {
3724 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3725 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3726 vdev->eps[ep_index].stream_info = NULL;
3727 /* FIXME Unset maxPstreams in endpoint context and
3728 * update deq ptr to point to normal string ring.
3729 */
3730 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3731 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3732 xhci_endpoint_zero(xhci, vdev, eps[i]);
3733 }
3734 xhci_free_command(xhci, config_cmd);
3735 return -ENOMEM;
3736 }
3737
3738 /* Transition the endpoint from using streams to being a "normal" endpoint
3739 * without streams.
3740 *
3741 * Modify the endpoint context state, submit a configure endpoint command,
3742 * and free all endpoint rings for streams if that completes successfully.
3743 */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3744 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3745 struct usb_host_endpoint **eps, unsigned int num_eps,
3746 gfp_t mem_flags)
3747 {
3748 int i, ret;
3749 struct xhci_hcd *xhci;
3750 struct xhci_virt_device *vdev;
3751 struct xhci_command *command;
3752 struct xhci_input_control_ctx *ctrl_ctx;
3753 unsigned int ep_index;
3754 unsigned long flags;
3755 u32 changed_ep_bitmask;
3756
3757 xhci = hcd_to_xhci(hcd);
3758 vdev = xhci->devs[udev->slot_id];
3759
3760 /* Set up a configure endpoint command to remove the streams rings */
3761 spin_lock_irqsave(&xhci->lock, flags);
3762 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3763 udev, eps, num_eps);
3764 if (changed_ep_bitmask == 0) {
3765 spin_unlock_irqrestore(&xhci->lock, flags);
3766 return -EINVAL;
3767 }
3768
3769 /* Use the xhci_command structure from the first endpoint. We may have
3770 * allocated too many, but the driver may call xhci_free_streams() for
3771 * each endpoint it grouped into one call to xhci_alloc_streams().
3772 */
3773 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3774 command = vdev->eps[ep_index].stream_info->free_streams_command;
3775 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3776 if (!ctrl_ctx) {
3777 spin_unlock_irqrestore(&xhci->lock, flags);
3778 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3779 __func__);
3780 return -EINVAL;
3781 }
3782
3783 for (i = 0; i < num_eps; i++) {
3784 struct xhci_ep_ctx *ep_ctx;
3785
3786 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3787 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3788 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3789 EP_GETTING_NO_STREAMS;
3790
3791 xhci_endpoint_copy(xhci, command->in_ctx,
3792 vdev->out_ctx, ep_index);
3793 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3794 &vdev->eps[ep_index]);
3795 }
3796 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3797 vdev->out_ctx, ctrl_ctx,
3798 changed_ep_bitmask, changed_ep_bitmask);
3799 spin_unlock_irqrestore(&xhci->lock, flags);
3800
3801 /* Issue and wait for the configure endpoint command,
3802 * which must succeed.
3803 */
3804 ret = xhci_configure_endpoint(xhci, udev, command,
3805 false, true);
3806
3807 /* xHC rejected the configure endpoint command for some reason, so we
3808 * leave the streams rings intact.
3809 */
3810 if (ret < 0)
3811 return ret;
3812
3813 spin_lock_irqsave(&xhci->lock, flags);
3814 for (i = 0; i < num_eps; i++) {
3815 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3816 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3817 vdev->eps[ep_index].stream_info = NULL;
3818 /* FIXME Unset maxPstreams in endpoint context and
3819 * update deq ptr to point to normal string ring.
3820 */
3821 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3822 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3823 }
3824 spin_unlock_irqrestore(&xhci->lock, flags);
3825
3826 return 0;
3827 }
3828
3829 /*
3830 * Deletes endpoint resources for endpoints that were active before a Reset
3831 * Device command, or a Disable Slot command. The Reset Device command leaves
3832 * the control endpoint intact, whereas the Disable Slot command deletes it.
3833 *
3834 * Must be called with xhci->lock held.
3835 */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3836 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3837 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3838 {
3839 int i;
3840 unsigned int num_dropped_eps = 0;
3841 unsigned int drop_flags = 0;
3842
3843 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3844 if (virt_dev->eps[i].ring) {
3845 drop_flags |= 1 << i;
3846 num_dropped_eps++;
3847 }
3848 }
3849 xhci->num_active_eps -= num_dropped_eps;
3850 if (num_dropped_eps)
3851 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3852 "Dropped %u ep ctxs, flags = 0x%x, "
3853 "%u now active.",
3854 num_dropped_eps, drop_flags,
3855 xhci->num_active_eps);
3856 }
3857
3858 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev);
3859
3860 /*
3861 * This submits a Reset Device Command, which will set the device state to 0,
3862 * set the device address to 0, and disable all the endpoints except the default
3863 * control endpoint. The USB core should come back and call
3864 * xhci_address_device(), and then re-set up the configuration. If this is
3865 * called because of a usb_reset_and_verify_device(), then the old alternate
3866 * settings will be re-installed through the normal bandwidth allocation
3867 * functions.
3868 *
3869 * Wait for the Reset Device command to finish. Remove all structures
3870 * associated with the endpoints that were disabled. Clear the input device
3871 * structure? Reset the control endpoint 0 max packet size?
3872 *
3873 * If the virt_dev to be reset does not exist or does not match the udev,
3874 * it means the device is lost, possibly due to the xHC restore error and
3875 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3876 * re-allocate the device.
3877 */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3878 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3879 struct usb_device *udev)
3880 {
3881 int ret, i;
3882 unsigned long flags;
3883 struct xhci_hcd *xhci;
3884 unsigned int slot_id;
3885 struct xhci_virt_device *virt_dev;
3886 struct xhci_command *reset_device_cmd;
3887 struct xhci_slot_ctx *slot_ctx;
3888 int old_active_eps = 0;
3889
3890 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3891 if (ret <= 0)
3892 return ret;
3893 xhci = hcd_to_xhci(hcd);
3894 slot_id = udev->slot_id;
3895 virt_dev = xhci->devs[slot_id];
3896 if (!virt_dev) {
3897 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3898 "not exist. Re-allocate the device\n", slot_id);
3899 ret = xhci_alloc_dev(hcd, udev);
3900 if (ret == 1)
3901 return 0;
3902 else
3903 return -EINVAL;
3904 }
3905
3906 if (virt_dev->tt_info)
3907 old_active_eps = virt_dev->tt_info->active_eps;
3908
3909 if (virt_dev->udev != udev) {
3910 /* If the virt_dev and the udev does not match, this virt_dev
3911 * may belong to another udev.
3912 * Re-allocate the device.
3913 */
3914 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3915 "not match the udev. Re-allocate the device\n",
3916 slot_id);
3917 ret = xhci_alloc_dev(hcd, udev);
3918 if (ret == 1)
3919 return 0;
3920 else
3921 return -EINVAL;
3922 }
3923
3924 /* If device is not setup, there is no point in resetting it */
3925 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3926 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3927 SLOT_STATE_DISABLED)
3928 return 0;
3929
3930 if (xhci->quirks & XHCI_ETRON_HOST) {
3931 /*
3932 * Obtaining a new device slot to inform the xHCI host that
3933 * the USB device has been reset.
3934 */
3935 ret = xhci_disable_slot(xhci, udev->slot_id);
3936 xhci_free_virt_device(xhci, udev->slot_id);
3937 if (!ret) {
3938 ret = xhci_alloc_dev(hcd, udev);
3939 if (ret == 1)
3940 ret = 0;
3941 else
3942 ret = -EINVAL;
3943 }
3944 return ret;
3945 }
3946
3947 trace_xhci_discover_or_reset_device(slot_ctx);
3948
3949 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3950 /* Allocate the command structure that holds the struct completion.
3951 * Assume we're in process context, since the normal device reset
3952 * process has to wait for the device anyway. Storage devices are
3953 * reset as part of error handling, so use GFP_NOIO instead of
3954 * GFP_KERNEL.
3955 */
3956 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3957 if (!reset_device_cmd) {
3958 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3959 return -ENOMEM;
3960 }
3961
3962 /* Attempt to submit the Reset Device command to the command ring */
3963 spin_lock_irqsave(&xhci->lock, flags);
3964
3965 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3966 if (ret) {
3967 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3968 spin_unlock_irqrestore(&xhci->lock, flags);
3969 goto command_cleanup;
3970 }
3971 xhci_ring_cmd_db(xhci);
3972 spin_unlock_irqrestore(&xhci->lock, flags);
3973
3974 /* Wait for the Reset Device command to finish */
3975 wait_for_completion(reset_device_cmd->completion);
3976
3977 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3978 * unless we tried to reset a slot ID that wasn't enabled,
3979 * or the device wasn't in the addressed or configured state.
3980 */
3981 ret = reset_device_cmd->status;
3982 switch (ret) {
3983 case COMP_COMMAND_ABORTED:
3984 case COMP_COMMAND_RING_STOPPED:
3985 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3986 ret = -ETIME;
3987 goto command_cleanup;
3988 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3989 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3990 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3991 slot_id,
3992 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3993 xhci_dbg(xhci, "Not freeing device rings.\n");
3994 /* Don't treat this as an error. May change my mind later. */
3995 ret = 0;
3996 goto command_cleanup;
3997 case COMP_SUCCESS:
3998 xhci_dbg(xhci, "Successful reset device command.\n");
3999 break;
4000 default:
4001 if (xhci_is_vendor_info_code(xhci, ret))
4002 break;
4003 xhci_warn(xhci, "Unknown completion code %u for "
4004 "reset device command.\n", ret);
4005 ret = -EINVAL;
4006 goto command_cleanup;
4007 }
4008
4009 /* Free up host controller endpoint resources */
4010 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4011 spin_lock_irqsave(&xhci->lock, flags);
4012 /* Don't delete the default control endpoint resources */
4013 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
4014 spin_unlock_irqrestore(&xhci->lock, flags);
4015 }
4016
4017 /* Everything but endpoint 0 is disabled, so free the rings. */
4018 for (i = 1; i < 31; i++) {
4019 struct xhci_virt_ep *ep = &virt_dev->eps[i];
4020
4021 if (ep->ep_state & EP_HAS_STREAMS) {
4022 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
4023 xhci_get_endpoint_address(i));
4024 xhci_free_stream_info(xhci, ep->stream_info);
4025 ep->stream_info = NULL;
4026 ep->ep_state &= ~EP_HAS_STREAMS;
4027 }
4028
4029 if (ep->ring) {
4030 if (ep->sideband)
4031 xhci_sideband_notify_ep_ring_free(ep->sideband, i);
4032 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
4033 xhci_free_endpoint_ring(xhci, virt_dev, i);
4034 }
4035 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
4036 xhci_drop_ep_from_interval_table(xhci,
4037 &virt_dev->eps[i].bw_info,
4038 virt_dev->bw_table,
4039 udev,
4040 &virt_dev->eps[i],
4041 virt_dev->tt_info);
4042 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
4043 }
4044 /* If necessary, update the number of active TTs on this root port */
4045 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
4046 virt_dev->flags = 0;
4047 ret = 0;
4048
4049 command_cleanup:
4050 xhci_free_command(xhci, reset_device_cmd);
4051 return ret;
4052 }
4053
4054 /*
4055 * At this point, the struct usb_device is about to go away, the device has
4056 * disconnected, and all traffic has been stopped and the endpoints have been
4057 * disabled. Free any HC data structures associated with that device.
4058 */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)4059 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4060 {
4061 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4062 struct xhci_virt_device *virt_dev;
4063 struct xhci_slot_ctx *slot_ctx;
4064 unsigned long flags;
4065 int i, ret;
4066
4067 /*
4068 * We called pm_runtime_get_noresume when the device was attached.
4069 * Decrement the counter here to allow controller to runtime suspend
4070 * if no devices remain.
4071 */
4072 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4073 pm_runtime_put_noidle(hcd->self.controller);
4074
4075 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
4076 /* If the host is halted due to driver unload, we still need to free the
4077 * device.
4078 */
4079 if (ret <= 0 && ret != -ENODEV)
4080 return;
4081
4082 virt_dev = xhci->devs[udev->slot_id];
4083 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4084 trace_xhci_free_dev(slot_ctx);
4085
4086 /* Stop any wayward timer functions (which may grab the lock) */
4087 for (i = 0; i < 31; i++)
4088 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
4089 virt_dev->udev = NULL;
4090 xhci_disable_slot(xhci, udev->slot_id);
4091
4092 spin_lock_irqsave(&xhci->lock, flags);
4093 xhci_free_virt_device(xhci, udev->slot_id);
4094 spin_unlock_irqrestore(&xhci->lock, flags);
4095
4096 }
4097
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)4098 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4099 {
4100 struct xhci_command *command;
4101 unsigned long flags;
4102 u32 state;
4103 int ret;
4104
4105 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4106 if (!command)
4107 return -ENOMEM;
4108
4109 xhci_debugfs_remove_slot(xhci, slot_id);
4110
4111 spin_lock_irqsave(&xhci->lock, flags);
4112 /* Don't disable the slot if the host controller is dead. */
4113 state = readl(&xhci->op_regs->status);
4114 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4115 (xhci->xhc_state & XHCI_STATE_HALTED)) {
4116 spin_unlock_irqrestore(&xhci->lock, flags);
4117 kfree(command);
4118 return -ENODEV;
4119 }
4120
4121 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4122 slot_id);
4123 if (ret) {
4124 spin_unlock_irqrestore(&xhci->lock, flags);
4125 kfree(command);
4126 return ret;
4127 }
4128 xhci_ring_cmd_db(xhci);
4129 spin_unlock_irqrestore(&xhci->lock, flags);
4130
4131 wait_for_completion(command->completion);
4132
4133 if (command->status != COMP_SUCCESS)
4134 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4135 slot_id, command->status);
4136
4137 xhci_free_command(xhci, command);
4138
4139 return 0;
4140 }
4141
4142 /*
4143 * Checks if we have enough host controller resources for the default control
4144 * endpoint.
4145 *
4146 * Must be called with xhci->lock held.
4147 */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)4148 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4149 {
4150 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4151 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4152 "Not enough ep ctxs: "
4153 "%u active, need to add 1, limit is %u.",
4154 xhci->num_active_eps, xhci->limit_active_eps);
4155 return -ENOMEM;
4156 }
4157 xhci->num_active_eps += 1;
4158 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4159 "Adding 1 ep ctx, %u now active.",
4160 xhci->num_active_eps);
4161 return 0;
4162 }
4163
4164
4165 /*
4166 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4167 * timed out, or allocating memory failed. Returns 1 on success.
4168 */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)4169 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4170 {
4171 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4172 struct xhci_virt_device *vdev;
4173 struct xhci_slot_ctx *slot_ctx;
4174 unsigned long flags;
4175 int ret, slot_id;
4176 struct xhci_command *command;
4177
4178 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4179 if (!command)
4180 return 0;
4181
4182 spin_lock_irqsave(&xhci->lock, flags);
4183 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4184 if (ret) {
4185 spin_unlock_irqrestore(&xhci->lock, flags);
4186 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4187 xhci_free_command(xhci, command);
4188 return 0;
4189 }
4190 xhci_ring_cmd_db(xhci);
4191 spin_unlock_irqrestore(&xhci->lock, flags);
4192
4193 wait_for_completion(command->completion);
4194 slot_id = command->slot_id;
4195
4196 if (!slot_id || command->status != COMP_SUCCESS) {
4197 xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4198 xhci_trb_comp_code_string(command->status));
4199 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4200 HCS_MAX_SLOTS(
4201 readl(&xhci->cap_regs->hcs_params1)));
4202 xhci_free_command(xhci, command);
4203 return 0;
4204 }
4205
4206 xhci_free_command(xhci, command);
4207
4208 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4209 spin_lock_irqsave(&xhci->lock, flags);
4210 ret = xhci_reserve_host_control_ep_resources(xhci);
4211 if (ret) {
4212 spin_unlock_irqrestore(&xhci->lock, flags);
4213 xhci_warn(xhci, "Not enough host resources, "
4214 "active endpoint contexts = %u\n",
4215 xhci->num_active_eps);
4216 goto disable_slot;
4217 }
4218 spin_unlock_irqrestore(&xhci->lock, flags);
4219 }
4220 /* Use GFP_NOIO, since this function can be called from
4221 * xhci_discover_or_reset_device(), which may be called as part of
4222 * mass storage driver error handling.
4223 */
4224 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4225 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4226 goto disable_slot;
4227 }
4228 vdev = xhci->devs[slot_id];
4229 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4230 trace_xhci_alloc_dev(slot_ctx);
4231
4232 udev->slot_id = slot_id;
4233
4234 xhci_debugfs_create_slot(xhci, slot_id);
4235
4236 /*
4237 * If resetting upon resume, we can't put the controller into runtime
4238 * suspend if there is a device attached.
4239 */
4240 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4241 pm_runtime_get_noresume(hcd->self.controller);
4242
4243 /* Is this a LS or FS device under a HS hub? */
4244 /* Hub or peripherial? */
4245 return 1;
4246
4247 disable_slot:
4248 xhci_disable_slot(xhci, udev->slot_id);
4249 xhci_free_virt_device(xhci, udev->slot_id);
4250
4251 return 0;
4252 }
4253
4254 /**
4255 * xhci_setup_device - issues an Address Device command to assign a unique
4256 * USB bus address.
4257 * @hcd: USB host controller data structure.
4258 * @udev: USB dev structure representing the connected device.
4259 * @setup: Enum specifying setup mode: address only or with context.
4260 * @timeout_ms: Max wait time (ms) for the command operation to complete.
4261 *
4262 * Return: 0 if successful; otherwise, negative error code.
4263 */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup,unsigned int timeout_ms)4264 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4265 enum xhci_setup_dev setup, unsigned int timeout_ms)
4266 {
4267 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4268 unsigned long flags;
4269 struct xhci_virt_device *virt_dev;
4270 int ret = 0;
4271 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4272 struct xhci_slot_ctx *slot_ctx;
4273 struct xhci_input_control_ctx *ctrl_ctx;
4274 u64 temp_64;
4275 struct xhci_command *command = NULL;
4276
4277 mutex_lock(&xhci->mutex);
4278
4279 if (xhci->xhc_state) { /* dying, removing or halted */
4280 ret = -ESHUTDOWN;
4281 goto out;
4282 }
4283
4284 if (!udev->slot_id) {
4285 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4286 "Bad Slot ID %d", udev->slot_id);
4287 ret = -EINVAL;
4288 goto out;
4289 }
4290
4291 virt_dev = xhci->devs[udev->slot_id];
4292
4293 if (WARN_ON(!virt_dev)) {
4294 /*
4295 * In plug/unplug torture test with an NEC controller,
4296 * a zero-dereference was observed once due to virt_dev = 0.
4297 * Print useful debug rather than crash if it is observed again!
4298 */
4299 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4300 udev->slot_id);
4301 ret = -EINVAL;
4302 goto out;
4303 }
4304 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4305 trace_xhci_setup_device_slot(slot_ctx);
4306
4307 if (setup == SETUP_CONTEXT_ONLY) {
4308 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4309 SLOT_STATE_DEFAULT) {
4310 xhci_dbg(xhci, "Slot already in default state\n");
4311 goto out;
4312 }
4313 }
4314
4315 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4316 if (!command) {
4317 ret = -ENOMEM;
4318 goto out;
4319 }
4320
4321 command->in_ctx = virt_dev->in_ctx;
4322 command->timeout_ms = timeout_ms;
4323
4324 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4325 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4326 if (!ctrl_ctx) {
4327 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4328 __func__);
4329 ret = -EINVAL;
4330 goto out;
4331 }
4332 /*
4333 * If this is the first Set Address since device plug-in or
4334 * virt_device realloaction after a resume with an xHCI power loss,
4335 * then set up the slot context.
4336 */
4337 if (!slot_ctx->dev_info)
4338 xhci_setup_addressable_virt_dev(xhci, udev);
4339 /* Otherwise, update the control endpoint ring enqueue pointer. */
4340 else
4341 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4342 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4343 ctrl_ctx->drop_flags = 0;
4344
4345 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4346 le32_to_cpu(slot_ctx->dev_info) >> 27);
4347
4348 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4349 spin_lock_irqsave(&xhci->lock, flags);
4350 trace_xhci_setup_device(virt_dev);
4351 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4352 udev->slot_id, setup);
4353 if (ret) {
4354 spin_unlock_irqrestore(&xhci->lock, flags);
4355 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4356 "FIXME: allocate a command ring segment");
4357 goto out;
4358 }
4359 xhci_ring_cmd_db(xhci);
4360 spin_unlock_irqrestore(&xhci->lock, flags);
4361
4362 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4363 wait_for_completion(command->completion);
4364
4365 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4366 * the SetAddress() "recovery interval" required by USB and aborting the
4367 * command on a timeout.
4368 */
4369 switch (command->status) {
4370 case COMP_COMMAND_ABORTED:
4371 case COMP_COMMAND_RING_STOPPED:
4372 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4373 ret = -ETIME;
4374 break;
4375 case COMP_CONTEXT_STATE_ERROR:
4376 case COMP_SLOT_NOT_ENABLED_ERROR:
4377 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4378 act, udev->slot_id);
4379 ret = -EINVAL;
4380 break;
4381 case COMP_USB_TRANSACTION_ERROR:
4382 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4383
4384 mutex_unlock(&xhci->mutex);
4385 ret = xhci_disable_slot(xhci, udev->slot_id);
4386 xhci_free_virt_device(xhci, udev->slot_id);
4387 if (!ret) {
4388 if (xhci_alloc_dev(hcd, udev) == 1)
4389 xhci_setup_addressable_virt_dev(xhci, udev);
4390 }
4391 kfree(command->completion);
4392 kfree(command);
4393 return -EPROTO;
4394 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4395 dev_warn(&udev->dev,
4396 "ERROR: Incompatible device for setup %s command\n", act);
4397 ret = -ENODEV;
4398 break;
4399 case COMP_SUCCESS:
4400 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4401 "Successful setup %s command", act);
4402 break;
4403 default:
4404 xhci_err(xhci,
4405 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4406 act, command->status);
4407 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4408 ret = -EINVAL;
4409 break;
4410 }
4411 if (ret)
4412 goto out;
4413 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4414 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4415 "Op regs DCBAA ptr = %#016llx", temp_64);
4416 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4417 "Slot ID %d dcbaa entry @%p = %#016llx",
4418 udev->slot_id,
4419 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4420 (unsigned long long)
4421 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4422 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4423 "Output Context DMA address = %#08llx",
4424 (unsigned long long)virt_dev->out_ctx->dma);
4425 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4426 le32_to_cpu(slot_ctx->dev_info) >> 27);
4427 /*
4428 * USB core uses address 1 for the roothubs, so we add one to the
4429 * address given back to us by the HC.
4430 */
4431 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4432 le32_to_cpu(slot_ctx->dev_info) >> 27);
4433 /* Zero the input context control for later use */
4434 ctrl_ctx->add_flags = 0;
4435 ctrl_ctx->drop_flags = 0;
4436 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4437 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4438
4439 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4440 "Internal device address = %d",
4441 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4442 out:
4443 mutex_unlock(&xhci->mutex);
4444 if (command) {
4445 kfree(command->completion);
4446 kfree(command);
4447 }
4448 return ret;
4449 }
4450
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev,unsigned int timeout_ms)4451 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4452 unsigned int timeout_ms)
4453 {
4454 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4455 }
4456
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4457 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4458 {
4459 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4460 XHCI_CMD_DEFAULT_TIMEOUT);
4461 }
4462
4463 /*
4464 * Transfer the port index into real index in the HW port status
4465 * registers. Caculate offset between the port's PORTSC register
4466 * and port status base. Divide the number of per port register
4467 * to get the real index. The raw port number bases 1.
4468 */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4469 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4470 {
4471 struct xhci_hub *rhub;
4472
4473 rhub = xhci_get_rhub(hcd);
4474 return rhub->ports[port1 - 1]->hw_portnum + 1;
4475 }
4476
4477 /*
4478 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4479 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4480 */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4481 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4482 struct usb_device *udev, u16 max_exit_latency)
4483 {
4484 struct xhci_virt_device *virt_dev;
4485 struct xhci_command *command;
4486 struct xhci_input_control_ctx *ctrl_ctx;
4487 struct xhci_slot_ctx *slot_ctx;
4488 unsigned long flags;
4489 int ret;
4490
4491 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4492 if (!command)
4493 return -ENOMEM;
4494
4495 spin_lock_irqsave(&xhci->lock, flags);
4496
4497 virt_dev = xhci->devs[udev->slot_id];
4498
4499 /*
4500 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4501 * xHC was re-initialized. Exit latency will be set later after
4502 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4503 */
4504
4505 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4506 spin_unlock_irqrestore(&xhci->lock, flags);
4507 xhci_free_command(xhci, command);
4508 return 0;
4509 }
4510
4511 /* Attempt to issue an Evaluate Context command to change the MEL. */
4512 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4513 if (!ctrl_ctx) {
4514 spin_unlock_irqrestore(&xhci->lock, flags);
4515 xhci_free_command(xhci, command);
4516 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4517 __func__);
4518 return -ENOMEM;
4519 }
4520
4521 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4522 spin_unlock_irqrestore(&xhci->lock, flags);
4523
4524 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4525 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4526 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4527 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4528 slot_ctx->dev_state = 0;
4529
4530 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4531 "Set up evaluate context for LPM MEL change.");
4532
4533 /* Issue and wait for the evaluate context command. */
4534 ret = xhci_configure_endpoint(xhci, udev, command,
4535 true, true);
4536
4537 if (!ret) {
4538 spin_lock_irqsave(&xhci->lock, flags);
4539 virt_dev->current_mel = max_exit_latency;
4540 spin_unlock_irqrestore(&xhci->lock, flags);
4541 }
4542
4543 xhci_free_command(xhci, command);
4544
4545 return ret;
4546 }
4547
4548 #ifdef CONFIG_PM
4549
4550 /* BESL to HIRD Encoding array for USB2 LPM */
4551 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4552 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4553
4554 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4555 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4556 struct usb_device *udev)
4557 {
4558 int u2del, besl, besl_host;
4559 int besl_device = 0;
4560 u32 field;
4561
4562 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4563 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4564
4565 if (field & USB_BESL_SUPPORT) {
4566 for (besl_host = 0; besl_host < 16; besl_host++) {
4567 if (xhci_besl_encoding[besl_host] >= u2del)
4568 break;
4569 }
4570 /* Use baseline BESL value as default */
4571 if (field & USB_BESL_BASELINE_VALID)
4572 besl_device = USB_GET_BESL_BASELINE(field);
4573 else if (field & USB_BESL_DEEP_VALID)
4574 besl_device = USB_GET_BESL_DEEP(field);
4575 } else {
4576 if (u2del <= 50)
4577 besl_host = 0;
4578 else
4579 besl_host = (u2del - 51) / 75 + 1;
4580 }
4581
4582 besl = besl_host + besl_device;
4583 if (besl > 15)
4584 besl = 15;
4585
4586 return besl;
4587 }
4588
4589 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4590 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4591 {
4592 u32 field;
4593 int l1;
4594 int besld = 0;
4595 int hirdm = 0;
4596
4597 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4598
4599 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4600 l1 = udev->l1_params.timeout / 256;
4601
4602 /* device has preferred BESLD */
4603 if (field & USB_BESL_DEEP_VALID) {
4604 besld = USB_GET_BESL_DEEP(field);
4605 hirdm = 1;
4606 }
4607
4608 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4609 }
4610
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4611 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4612 struct usb_device *udev, int enable)
4613 {
4614 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4615 struct xhci_port **ports;
4616 __le32 __iomem *pm_addr, *hlpm_addr;
4617 u32 pm_val, hlpm_val, field;
4618 unsigned int port_num;
4619 unsigned long flags;
4620 int hird, exit_latency;
4621 int ret;
4622
4623 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4624 return -EPERM;
4625
4626 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4627 !udev->lpm_capable)
4628 return -EPERM;
4629
4630 if (!udev->parent || udev->parent->parent ||
4631 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4632 return -EPERM;
4633
4634 if (udev->usb2_hw_lpm_capable != 1)
4635 return -EPERM;
4636
4637 spin_lock_irqsave(&xhci->lock, flags);
4638
4639 ports = xhci->usb2_rhub.ports;
4640 port_num = udev->portnum - 1;
4641 pm_addr = ports[port_num]->addr + PORTPMSC;
4642 pm_val = readl(pm_addr);
4643 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4644
4645 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4646 str_enable_disable(enable), port_num + 1);
4647
4648 if (enable) {
4649 /* Host supports BESL timeout instead of HIRD */
4650 if (udev->usb2_hw_lpm_besl_capable) {
4651 /* if device doesn't have a preferred BESL value use a
4652 * default one which works with mixed HIRD and BESL
4653 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4654 */
4655 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4656 if ((field & USB_BESL_SUPPORT) &&
4657 (field & USB_BESL_BASELINE_VALID))
4658 hird = USB_GET_BESL_BASELINE(field);
4659 else
4660 hird = udev->l1_params.besl;
4661
4662 exit_latency = xhci_besl_encoding[hird];
4663 spin_unlock_irqrestore(&xhci->lock, flags);
4664
4665 ret = xhci_change_max_exit_latency(xhci, udev,
4666 exit_latency);
4667 if (ret < 0)
4668 return ret;
4669 spin_lock_irqsave(&xhci->lock, flags);
4670
4671 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4672 writel(hlpm_val, hlpm_addr);
4673 /* flush write */
4674 readl(hlpm_addr);
4675 } else {
4676 hird = xhci_calculate_hird_besl(xhci, udev);
4677 }
4678
4679 pm_val &= ~PORT_HIRD_MASK;
4680 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4681 writel(pm_val, pm_addr);
4682 pm_val = readl(pm_addr);
4683 pm_val |= PORT_HLE;
4684 writel(pm_val, pm_addr);
4685 /* flush write */
4686 readl(pm_addr);
4687 } else {
4688 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4689 writel(pm_val, pm_addr);
4690 /* flush write */
4691 readl(pm_addr);
4692 if (udev->usb2_hw_lpm_besl_capable) {
4693 spin_unlock_irqrestore(&xhci->lock, flags);
4694 xhci_change_max_exit_latency(xhci, udev, 0);
4695 readl_poll_timeout(ports[port_num]->addr, pm_val,
4696 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4697 100, 10000);
4698 return 0;
4699 }
4700 }
4701
4702 spin_unlock_irqrestore(&xhci->lock, flags);
4703 return 0;
4704 }
4705
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4706 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4707 {
4708 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4709 struct xhci_port *port;
4710 u32 capability;
4711
4712 /* Check if USB3 device at root port is tunneled over USB4 */
4713 if (hcd->speed >= HCD_USB3 && !udev->parent->parent) {
4714 port = xhci->usb3_rhub.ports[udev->portnum - 1];
4715
4716 udev->tunnel_mode = xhci_port_is_tunneled(xhci, port);
4717 if (udev->tunnel_mode == USB_LINK_UNKNOWN)
4718 dev_dbg(&udev->dev, "link tunnel state unknown\n");
4719 else if (udev->tunnel_mode == USB_LINK_TUNNELED)
4720 dev_dbg(&udev->dev, "tunneled over USB4 link\n");
4721 else if (udev->tunnel_mode == USB_LINK_NATIVE)
4722 dev_dbg(&udev->dev, "native USB 3.x link\n");
4723 return 0;
4724 }
4725
4726 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support)
4727 return 0;
4728
4729 /* we only support lpm for non-hub device connected to root hub yet */
4730 if (!udev->parent || udev->parent->parent ||
4731 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4732 return 0;
4733
4734 port = xhci->usb2_rhub.ports[udev->portnum - 1];
4735 capability = port->port_cap->protocol_caps;
4736
4737 if (capability & XHCI_HLC) {
4738 udev->usb2_hw_lpm_capable = 1;
4739 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4740 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4741 if (capability & XHCI_BLC)
4742 udev->usb2_hw_lpm_besl_capable = 1;
4743 }
4744
4745 return 0;
4746 }
4747
4748 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4749
4750 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4751 static unsigned long long xhci_service_interval_to_ns(
4752 struct usb_endpoint_descriptor *desc)
4753 {
4754 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4755 }
4756
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4757 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4758 enum usb3_link_state state)
4759 {
4760 unsigned long long sel;
4761 unsigned long long pel;
4762 unsigned int max_sel_pel;
4763 char *state_name;
4764
4765 switch (state) {
4766 case USB3_LPM_U1:
4767 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4768 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4769 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4770 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4771 state_name = "U1";
4772 break;
4773 case USB3_LPM_U2:
4774 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4775 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4776 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4777 state_name = "U2";
4778 break;
4779 default:
4780 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4781 __func__);
4782 return USB3_LPM_DISABLED;
4783 }
4784
4785 if (sel <= max_sel_pel && pel <= max_sel_pel)
4786 return USB3_LPM_DEVICE_INITIATED;
4787
4788 if (sel > max_sel_pel)
4789 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4790 "due to long SEL %llu ms\n",
4791 state_name, sel);
4792 else
4793 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4794 "due to long PEL %llu ms\n",
4795 state_name, pel);
4796 return USB3_LPM_DISABLED;
4797 }
4798
4799 /* The U1 timeout should be the maximum of the following values:
4800 * - For control endpoints, U1 system exit latency (SEL) * 3
4801 * - For bulk endpoints, U1 SEL * 5
4802 * - For interrupt endpoints:
4803 * - Notification EPs, U1 SEL * 3
4804 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4805 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4806 */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4807 static unsigned long long xhci_calculate_intel_u1_timeout(
4808 struct usb_device *udev,
4809 struct usb_endpoint_descriptor *desc)
4810 {
4811 unsigned long long timeout_ns;
4812 int ep_type;
4813 int intr_type;
4814
4815 ep_type = usb_endpoint_type(desc);
4816 switch (ep_type) {
4817 case USB_ENDPOINT_XFER_CONTROL:
4818 timeout_ns = udev->u1_params.sel * 3;
4819 break;
4820 case USB_ENDPOINT_XFER_BULK:
4821 timeout_ns = udev->u1_params.sel * 5;
4822 break;
4823 case USB_ENDPOINT_XFER_INT:
4824 intr_type = usb_endpoint_interrupt_type(desc);
4825 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4826 timeout_ns = udev->u1_params.sel * 3;
4827 break;
4828 }
4829 /* Otherwise the calculation is the same as isoc eps */
4830 fallthrough;
4831 case USB_ENDPOINT_XFER_ISOC:
4832 timeout_ns = xhci_service_interval_to_ns(desc);
4833 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4834 if (timeout_ns < udev->u1_params.sel * 2)
4835 timeout_ns = udev->u1_params.sel * 2;
4836 break;
4837 default:
4838 return 0;
4839 }
4840
4841 return timeout_ns;
4842 }
4843
4844 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4845 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4846 struct usb_device *udev,
4847 struct usb_endpoint_descriptor *desc)
4848 {
4849 unsigned long long timeout_ns;
4850
4851 /* Prevent U1 if service interval is shorter than U1 exit latency */
4852 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4853 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4854 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4855 return USB3_LPM_DISABLED;
4856 }
4857 }
4858
4859 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4860 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4861 else
4862 timeout_ns = udev->u1_params.sel;
4863
4864 /* The U1 timeout is encoded in 1us intervals.
4865 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4866 */
4867 if (timeout_ns == USB3_LPM_DISABLED)
4868 timeout_ns = 1;
4869 else
4870 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4871
4872 /* If the necessary timeout value is bigger than what we can set in the
4873 * USB 3.0 hub, we have to disable hub-initiated U1.
4874 */
4875 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4876 return timeout_ns;
4877 dev_dbg(&udev->dev, "Hub-initiated U1 disabled due to long timeout %lluus\n",
4878 timeout_ns);
4879 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4880 }
4881
4882 /* The U2 timeout should be the maximum of:
4883 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4884 * - largest bInterval of any active periodic endpoint (to avoid going
4885 * into lower power link states between intervals).
4886 * - the U2 Exit Latency of the device
4887 */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4888 static unsigned long long xhci_calculate_intel_u2_timeout(
4889 struct usb_device *udev,
4890 struct usb_endpoint_descriptor *desc)
4891 {
4892 unsigned long long timeout_ns;
4893 unsigned long long u2_del_ns;
4894
4895 timeout_ns = 10 * 1000 * 1000;
4896
4897 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4898 (xhci_service_interval_to_ns(desc) > timeout_ns))
4899 timeout_ns = xhci_service_interval_to_ns(desc);
4900
4901 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4902 if (u2_del_ns > timeout_ns)
4903 timeout_ns = u2_del_ns;
4904
4905 return timeout_ns;
4906 }
4907
4908 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4909 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4910 struct usb_device *udev,
4911 struct usb_endpoint_descriptor *desc)
4912 {
4913 unsigned long long timeout_ns;
4914
4915 /* Prevent U2 if service interval is shorter than U2 exit latency */
4916 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4917 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4918 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4919 return USB3_LPM_DISABLED;
4920 }
4921 }
4922
4923 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4924 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4925 else
4926 timeout_ns = udev->u2_params.sel;
4927
4928 /* The U2 timeout is encoded in 256us intervals */
4929 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4930 /* If the necessary timeout value is bigger than what we can set in the
4931 * USB 3.0 hub, we have to disable hub-initiated U2.
4932 */
4933 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4934 return timeout_ns;
4935 dev_dbg(&udev->dev, "Hub-initiated U2 disabled due to long timeout %lluus\n",
4936 timeout_ns * 256);
4937 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4938 }
4939
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4940 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4941 struct usb_device *udev,
4942 struct usb_endpoint_descriptor *desc,
4943 enum usb3_link_state state,
4944 u16 *timeout)
4945 {
4946 if (state == USB3_LPM_U1)
4947 return xhci_calculate_u1_timeout(xhci, udev, desc);
4948 else if (state == USB3_LPM_U2)
4949 return xhci_calculate_u2_timeout(xhci, udev, desc);
4950
4951 return USB3_LPM_DISABLED;
4952 }
4953
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4954 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4955 struct usb_device *udev,
4956 struct usb_endpoint_descriptor *desc,
4957 enum usb3_link_state state,
4958 u16 *timeout)
4959 {
4960 u16 alt_timeout;
4961
4962 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4963 desc, state, timeout);
4964
4965 /* If we found we can't enable hub-initiated LPM, and
4966 * the U1 or U2 exit latency was too high to allow
4967 * device-initiated LPM as well, then we will disable LPM
4968 * for this device, so stop searching any further.
4969 */
4970 if (alt_timeout == USB3_LPM_DISABLED) {
4971 *timeout = alt_timeout;
4972 return -E2BIG;
4973 }
4974 if (alt_timeout > *timeout)
4975 *timeout = alt_timeout;
4976 return 0;
4977 }
4978
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4979 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4980 struct usb_device *udev,
4981 struct usb_host_interface *alt,
4982 enum usb3_link_state state,
4983 u16 *timeout)
4984 {
4985 int j;
4986
4987 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4988 if (xhci_update_timeout_for_endpoint(xhci, udev,
4989 &alt->endpoint[j].desc, state, timeout))
4990 return -E2BIG;
4991 }
4992 return 0;
4993 }
4994
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4995 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4996 struct usb_device *udev,
4997 enum usb3_link_state state)
4998 {
4999 struct usb_device *parent = udev->parent;
5000 int tier = 1; /* roothub is tier1 */
5001
5002 while (parent) {
5003 parent = parent->parent;
5004 tier++;
5005 }
5006
5007 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
5008 goto fail;
5009 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
5010 goto fail;
5011
5012 return 0;
5013 fail:
5014 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
5015 tier);
5016 return -E2BIG;
5017 }
5018
5019 /* Returns the U1 or U2 timeout that should be enabled.
5020 * If the tier check or timeout setting functions return with a non-zero exit
5021 * code, that means the timeout value has been finalized and we shouldn't look
5022 * at any more endpoints.
5023 */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5024 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
5025 struct usb_device *udev, enum usb3_link_state state)
5026 {
5027 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5028 struct usb_host_config *config;
5029 char *state_name;
5030 int i;
5031 u16 timeout = USB3_LPM_DISABLED;
5032
5033 if (state == USB3_LPM_U1)
5034 state_name = "U1";
5035 else if (state == USB3_LPM_U2)
5036 state_name = "U2";
5037 else {
5038 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
5039 state);
5040 return timeout;
5041 }
5042
5043 /* Gather some information about the currently installed configuration
5044 * and alternate interface settings.
5045 */
5046 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
5047 state, &timeout))
5048 return timeout;
5049
5050 config = udev->actconfig;
5051 if (!config)
5052 return timeout;
5053
5054 for (i = 0; i < config->desc.bNumInterfaces; i++) {
5055 struct usb_driver *driver;
5056 struct usb_interface *intf = config->interface[i];
5057
5058 if (!intf)
5059 continue;
5060
5061 /* Check if any currently bound drivers want hub-initiated LPM
5062 * disabled.
5063 */
5064 if (intf->dev.driver) {
5065 driver = to_usb_driver(intf->dev.driver);
5066 if (driver && driver->disable_hub_initiated_lpm) {
5067 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
5068 state_name, driver->name);
5069 timeout = xhci_get_timeout_no_hub_lpm(udev,
5070 state);
5071 if (timeout == USB3_LPM_DISABLED)
5072 return timeout;
5073 }
5074 }
5075
5076 /* Not sure how this could happen... */
5077 if (!intf->cur_altsetting)
5078 continue;
5079
5080 if (xhci_update_timeout_for_interface(xhci, udev,
5081 intf->cur_altsetting,
5082 state, &timeout))
5083 return timeout;
5084 }
5085 return timeout;
5086 }
5087
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)5088 static int calculate_max_exit_latency(struct usb_device *udev,
5089 enum usb3_link_state state_changed,
5090 u16 hub_encoded_timeout)
5091 {
5092 unsigned long long u1_mel_us = 0;
5093 unsigned long long u2_mel_us = 0;
5094 unsigned long long mel_us = 0;
5095 bool disabling_u1;
5096 bool disabling_u2;
5097 bool enabling_u1;
5098 bool enabling_u2;
5099
5100 disabling_u1 = (state_changed == USB3_LPM_U1 &&
5101 hub_encoded_timeout == USB3_LPM_DISABLED);
5102 disabling_u2 = (state_changed == USB3_LPM_U2 &&
5103 hub_encoded_timeout == USB3_LPM_DISABLED);
5104
5105 enabling_u1 = (state_changed == USB3_LPM_U1 &&
5106 hub_encoded_timeout != USB3_LPM_DISABLED);
5107 enabling_u2 = (state_changed == USB3_LPM_U2 &&
5108 hub_encoded_timeout != USB3_LPM_DISABLED);
5109
5110 /* If U1 was already enabled and we're not disabling it,
5111 * or we're going to enable U1, account for the U1 max exit latency.
5112 */
5113 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5114 enabling_u1)
5115 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5116 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5117 enabling_u2)
5118 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5119
5120 mel_us = max(u1_mel_us, u2_mel_us);
5121
5122 /* xHCI host controller max exit latency field is only 16 bits wide. */
5123 if (mel_us > MAX_EXIT) {
5124 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5125 "is too big.\n", mel_us);
5126 return -E2BIG;
5127 }
5128 return mel_us;
5129 }
5130
5131 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5132 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5133 struct usb_device *udev, enum usb3_link_state state)
5134 {
5135 struct xhci_hcd *xhci;
5136 struct xhci_port *port;
5137 u16 hub_encoded_timeout;
5138 int mel;
5139 int ret;
5140
5141 xhci = hcd_to_xhci(hcd);
5142 /* The LPM timeout values are pretty host-controller specific, so don't
5143 * enable hub-initiated timeouts unless the vendor has provided
5144 * information about their timeout algorithm.
5145 */
5146 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5147 !xhci->devs[udev->slot_id])
5148 return USB3_LPM_DISABLED;
5149
5150 if (xhci_check_tier_policy(xhci, udev, state) < 0)
5151 return USB3_LPM_DISABLED;
5152
5153 /* If connected to root port then check port can handle lpm */
5154 if (udev->parent && !udev->parent->parent) {
5155 port = xhci->usb3_rhub.ports[udev->portnum - 1];
5156 if (port->lpm_incapable)
5157 return USB3_LPM_DISABLED;
5158 }
5159
5160 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5161 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5162 if (mel < 0) {
5163 /* Max Exit Latency is too big, disable LPM. */
5164 hub_encoded_timeout = USB3_LPM_DISABLED;
5165 mel = 0;
5166 }
5167
5168 ret = xhci_change_max_exit_latency(xhci, udev, mel);
5169 if (ret)
5170 return ret;
5171 return hub_encoded_timeout;
5172 }
5173
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5174 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5175 struct usb_device *udev, enum usb3_link_state state)
5176 {
5177 struct xhci_hcd *xhci;
5178 u16 mel;
5179
5180 xhci = hcd_to_xhci(hcd);
5181 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5182 !xhci->devs[udev->slot_id])
5183 return 0;
5184
5185 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5186 return xhci_change_max_exit_latency(xhci, udev, mel);
5187 }
5188 #else /* CONFIG_PM */
5189
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)5190 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5191 struct usb_device *udev, int enable)
5192 {
5193 return 0;
5194 }
5195
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5196 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5197 {
5198 return 0;
5199 }
5200
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5201 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5202 struct usb_device *udev, enum usb3_link_state state)
5203 {
5204 return USB3_LPM_DISABLED;
5205 }
5206
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5207 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5208 struct usb_device *udev, enum usb3_link_state state)
5209 {
5210 return 0;
5211 }
5212 #endif /* CONFIG_PM */
5213
5214 /*-------------------------------------------------------------------------*/
5215
5216 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5217 * internal data structures for the device.
5218 */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5219 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5220 struct usb_tt *tt, gfp_t mem_flags)
5221 {
5222 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5223 struct xhci_virt_device *vdev;
5224 struct xhci_command *config_cmd;
5225 struct xhci_input_control_ctx *ctrl_ctx;
5226 struct xhci_slot_ctx *slot_ctx;
5227 unsigned long flags;
5228 unsigned think_time;
5229 int ret;
5230
5231 /* Ignore root hubs */
5232 if (!hdev->parent)
5233 return 0;
5234
5235 vdev = xhci->devs[hdev->slot_id];
5236 if (!vdev) {
5237 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5238 return -EINVAL;
5239 }
5240
5241 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5242 if (!config_cmd)
5243 return -ENOMEM;
5244
5245 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5246 if (!ctrl_ctx) {
5247 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5248 __func__);
5249 xhci_free_command(xhci, config_cmd);
5250 return -ENOMEM;
5251 }
5252
5253 spin_lock_irqsave(&xhci->lock, flags);
5254 if (hdev->speed == USB_SPEED_HIGH &&
5255 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5256 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5257 xhci_free_command(xhci, config_cmd);
5258 spin_unlock_irqrestore(&xhci->lock, flags);
5259 return -ENOMEM;
5260 }
5261
5262 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5263 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5264 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5265 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5266 /*
5267 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5268 * but it may be already set to 1 when setup an xHCI virtual
5269 * device, so clear it anyway.
5270 */
5271 if (tt->multi)
5272 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5273 else if (hdev->speed == USB_SPEED_FULL)
5274 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5275
5276 if (xhci->hci_version > 0x95) {
5277 xhci_dbg(xhci, "xHCI version %x needs hub "
5278 "TT think time and number of ports\n",
5279 (unsigned int) xhci->hci_version);
5280 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5281 /* Set TT think time - convert from ns to FS bit times.
5282 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5283 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5284 *
5285 * xHCI 1.0: this field shall be 0 if the device is not a
5286 * High-spped hub.
5287 */
5288 think_time = tt->think_time;
5289 if (think_time != 0)
5290 think_time = (think_time / 666) - 1;
5291 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5292 slot_ctx->tt_info |=
5293 cpu_to_le32(TT_THINK_TIME(think_time));
5294 } else {
5295 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5296 "TT think time or number of ports\n",
5297 (unsigned int) xhci->hci_version);
5298 }
5299 slot_ctx->dev_state = 0;
5300 spin_unlock_irqrestore(&xhci->lock, flags);
5301
5302 xhci_dbg(xhci, "Set up %s for hub device.\n",
5303 (xhci->hci_version > 0x95) ?
5304 "configure endpoint" : "evaluate context");
5305
5306 /* Issue and wait for the configure endpoint or
5307 * evaluate context command.
5308 */
5309 if (xhci->hci_version > 0x95)
5310 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5311 false, false);
5312 else
5313 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5314 true, false);
5315
5316 xhci_free_command(xhci, config_cmd);
5317 return ret;
5318 }
5319 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5320
xhci_get_frame(struct usb_hcd * hcd)5321 static int xhci_get_frame(struct usb_hcd *hcd)
5322 {
5323 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5324 /* EHCI mods by the periodic size. Why? */
5325 return readl(&xhci->run_regs->microframe_index) >> 3;
5326 }
5327
xhci_hcd_init_usb2_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5328 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5329 {
5330 xhci->usb2_rhub.hcd = hcd;
5331 hcd->speed = HCD_USB2;
5332 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5333 /*
5334 * USB 2.0 roothub under xHCI has an integrated TT,
5335 * (rate matching hub) as opposed to having an OHCI/UHCI
5336 * companion controller.
5337 */
5338 hcd->has_tt = 1;
5339 }
5340
xhci_hcd_init_usb3_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5341 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5342 {
5343 unsigned int minor_rev;
5344
5345 /*
5346 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5347 * should return 0x31 for sbrn, or that the minor revision
5348 * is a two digit BCD containig minor and sub-minor numbers.
5349 * This was later clarified in xHCI 1.2.
5350 *
5351 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5352 * minor revision set to 0x1 instead of 0x10.
5353 */
5354 if (xhci->usb3_rhub.min_rev == 0x1)
5355 minor_rev = 1;
5356 else
5357 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5358
5359 switch (minor_rev) {
5360 case 2:
5361 hcd->speed = HCD_USB32;
5362 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5363 hcd->self.root_hub->rx_lanes = 2;
5364 hcd->self.root_hub->tx_lanes = 2;
5365 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5366 break;
5367 case 1:
5368 hcd->speed = HCD_USB31;
5369 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5370 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5371 break;
5372 }
5373 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5374 minor_rev, minor_rev ? "Enhanced " : "");
5375
5376 xhci->usb3_rhub.hcd = hcd;
5377 }
5378
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5379 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5380 {
5381 struct xhci_hcd *xhci;
5382 /*
5383 * TODO: Check with DWC3 clients for sysdev according to
5384 * quirks
5385 */
5386 struct device *dev = hcd->self.sysdev;
5387 int retval;
5388
5389 /* Accept arbitrarily long scatter-gather lists */
5390 hcd->self.sg_tablesize = ~0;
5391
5392 /* support to build packet from discontinuous buffers */
5393 hcd->self.no_sg_constraint = 1;
5394
5395 /* XHCI controllers don't stop the ep queue on short packets :| */
5396 hcd->self.no_stop_on_short = 1;
5397
5398 xhci = hcd_to_xhci(hcd);
5399
5400 if (!usb_hcd_is_primary_hcd(hcd)) {
5401 xhci_hcd_init_usb3_data(xhci, hcd);
5402 return 0;
5403 }
5404
5405 mutex_init(&xhci->mutex);
5406 xhci->main_hcd = hcd;
5407 xhci->cap_regs = hcd->regs;
5408 xhci->op_regs = hcd->regs +
5409 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5410 xhci->run_regs = hcd->regs +
5411 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5412 /* Cache read-only capability registers */
5413 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5414 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5415 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5416 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5417 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5418 if (xhci->hci_version > 0x100)
5419 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5420
5421 /* xhci-plat or xhci-pci might have set max_interrupters already */
5422 if ((!xhci->max_interrupters) ||
5423 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5424 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5425
5426 xhci->quirks |= quirks;
5427
5428 if (get_quirks)
5429 get_quirks(dev, xhci);
5430
5431 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5432 * success event after a short transfer. This quirk will ignore such
5433 * spurious event.
5434 */
5435 if (xhci->hci_version > 0x96)
5436 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5437
5438 if (xhci->hci_version == 0x95 && link_quirk) {
5439 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits");
5440 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
5441 }
5442
5443 /* Make sure the HC is halted. */
5444 retval = xhci_halt(xhci);
5445 if (retval)
5446 return retval;
5447
5448 xhci_zero_64b_regs(xhci);
5449
5450 xhci_dbg(xhci, "Resetting HCD\n");
5451 /* Reset the internal HC memory state and registers. */
5452 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5453 if (retval)
5454 return retval;
5455 xhci_dbg(xhci, "Reset complete\n");
5456
5457 /*
5458 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5459 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5460 * address memory pointers actually. So, this driver clears the AC64
5461 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5462 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5463 */
5464 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5465 xhci->hcc_params &= ~BIT(0);
5466
5467 /* Set dma_mask and coherent_dma_mask to 64-bits,
5468 * if xHC supports 64-bit addressing */
5469 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5470 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5471 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5472 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5473 } else {
5474 /*
5475 * This is to avoid error in cases where a 32-bit USB
5476 * controller is used on a 64-bit capable system.
5477 */
5478 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5479 if (retval)
5480 return retval;
5481 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5482 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5483 }
5484
5485 xhci_dbg(xhci, "Calling HCD init\n");
5486 /* Initialize HCD and host controller data structures. */
5487 retval = xhci_init(hcd);
5488 if (retval)
5489 return retval;
5490 xhci_dbg(xhci, "Called HCD init\n");
5491
5492 if (xhci_hcd_is_usb3(hcd))
5493 xhci_hcd_init_usb3_data(xhci, hcd);
5494 else
5495 xhci_hcd_init_usb2_data(xhci, hcd);
5496
5497 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5498 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5499
5500 return 0;
5501 }
5502 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5503
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5504 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5505 struct usb_host_endpoint *ep)
5506 {
5507 struct xhci_hcd *xhci;
5508 struct usb_device *udev;
5509 unsigned int slot_id;
5510 unsigned int ep_index;
5511 unsigned long flags;
5512
5513 xhci = hcd_to_xhci(hcd);
5514
5515 spin_lock_irqsave(&xhci->lock, flags);
5516 udev = (struct usb_device *)ep->hcpriv;
5517 slot_id = udev->slot_id;
5518 ep_index = xhci_get_endpoint_index(&ep->desc);
5519
5520 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5521 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5522 spin_unlock_irqrestore(&xhci->lock, flags);
5523 }
5524
5525 static const struct hc_driver xhci_hc_driver = {
5526 .description = "xhci-hcd",
5527 .product_desc = "xHCI Host Controller",
5528 .hcd_priv_size = sizeof(struct xhci_hcd),
5529
5530 /*
5531 * generic hardware linkage
5532 */
5533 .irq = xhci_irq,
5534 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5535 HCD_BH,
5536
5537 /*
5538 * basic lifecycle operations
5539 */
5540 .reset = NULL, /* set in xhci_init_driver() */
5541 .start = xhci_run,
5542 .stop = xhci_stop,
5543 .shutdown = xhci_shutdown,
5544
5545 /*
5546 * managing i/o requests and associated device resources
5547 */
5548 .map_urb_for_dma = xhci_map_urb_for_dma,
5549 .unmap_urb_for_dma = xhci_unmap_urb_for_dma,
5550 .urb_enqueue = xhci_urb_enqueue,
5551 .urb_dequeue = xhci_urb_dequeue,
5552 .alloc_dev = xhci_alloc_dev,
5553 .free_dev = xhci_free_dev,
5554 .alloc_streams = xhci_alloc_streams,
5555 .free_streams = xhci_free_streams,
5556 .add_endpoint = xhci_add_endpoint,
5557 .drop_endpoint = xhci_drop_endpoint,
5558 .endpoint_disable = xhci_endpoint_disable,
5559 .endpoint_reset = xhci_endpoint_reset,
5560 .check_bandwidth = xhci_check_bandwidth,
5561 .reset_bandwidth = xhci_reset_bandwidth,
5562 .address_device = xhci_address_device,
5563 .enable_device = xhci_enable_device,
5564 .update_hub_device = xhci_update_hub_device,
5565 .reset_device = xhci_discover_or_reset_device,
5566
5567 /*
5568 * scheduling support
5569 */
5570 .get_frame_number = xhci_get_frame,
5571
5572 /*
5573 * root hub support
5574 */
5575 .hub_control = xhci_hub_control,
5576 .hub_status_data = xhci_hub_status_data,
5577 .bus_suspend = xhci_bus_suspend,
5578 .bus_resume = xhci_bus_resume,
5579 .get_resuming_ports = xhci_get_resuming_ports,
5580
5581 /*
5582 * call back when device connected and addressed
5583 */
5584 .update_device = xhci_update_device,
5585 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5586 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5587 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5588 .find_raw_port_number = xhci_find_raw_port_number,
5589 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5590 };
5591
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5592 void xhci_init_driver(struct hc_driver *drv,
5593 const struct xhci_driver_overrides *over)
5594 {
5595 BUG_ON(!over);
5596
5597 /* Copy the generic table to drv then apply the overrides */
5598 *drv = xhci_hc_driver;
5599
5600 if (over) {
5601 drv->hcd_priv_size += over->extra_priv_size;
5602 if (over->reset)
5603 drv->reset = over->reset;
5604 if (over->start)
5605 drv->start = over->start;
5606 if (over->add_endpoint)
5607 drv->add_endpoint = over->add_endpoint;
5608 if (over->drop_endpoint)
5609 drv->drop_endpoint = over->drop_endpoint;
5610 if (over->check_bandwidth)
5611 drv->check_bandwidth = over->check_bandwidth;
5612 if (over->reset_bandwidth)
5613 drv->reset_bandwidth = over->reset_bandwidth;
5614 if (over->update_hub_device)
5615 drv->update_hub_device = over->update_hub_device;
5616 if (over->hub_control)
5617 drv->hub_control = over->hub_control;
5618 }
5619 }
5620 EXPORT_SYMBOL_GPL(xhci_init_driver);
5621
5622 MODULE_DESCRIPTION(DRIVER_DESC);
5623 MODULE_AUTHOR(DRIVER_AUTHOR);
5624 MODULE_LICENSE("GPL");
5625
xhci_hcd_init(void)5626 static int __init xhci_hcd_init(void)
5627 {
5628 /*
5629 * Check the compiler generated sizes of structures that must be laid
5630 * out in specific ways for hardware access.
5631 */
5632 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5633 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5634 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5635 /* xhci_device_control has eight fields, and also
5636 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5637 */
5638 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5639 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5640 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5641 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5642 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5643 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5644 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5645
5646 if (usb_disabled())
5647 return -ENODEV;
5648
5649 xhci_debugfs_create_root();
5650 xhci_dbc_init();
5651
5652 return 0;
5653 }
5654
5655 /*
5656 * If an init function is provided, an exit function must also be provided
5657 * to allow module unload.
5658 */
xhci_hcd_fini(void)5659 static void __exit xhci_hcd_fini(void)
5660 {
5661 xhci_debugfs_remove_root();
5662 xhci_dbc_exit();
5663 }
5664
5665 module_init(xhci_hcd_init);
5666 module_exit(xhci_hcd_fini);
5667