1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/jiffies.h>
12 #include <linux/pci.h>
13 #include <linux/iommu.h>
14 #include <linux/iopoll.h>
15 #include <linux/irq.h>
16 #include <linux/log2.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/slab.h>
20 #include <linux/string_choices.h>
21 #include <linux/dmi.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/usb/xhci-sideband.h>
24
25 #include "xhci.h"
26 #include "xhci-trace.h"
27 #include "xhci-debugfs.h"
28 #include "xhci-dbgcap.h"
29
30 #define DRIVER_AUTHOR "Sarah Sharp"
31 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
32
33 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
34
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39
40 static unsigned long long quirks;
41 module_param(quirks, ullong, S_IRUGO);
42 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
43
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)44 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
45 {
46 struct xhci_segment *seg;
47
48 if (!td || !td->start_seg)
49 return false;
50
51 xhci_for_each_ring_seg(ring->first_seg, seg) {
52 if (seg == td->start_seg)
53 return true;
54 }
55
56 return false;
57 }
58
59 /*
60 * xhci_handshake - spin reading hc until handshake completes or fails
61 * @ptr: address of hc register to be read
62 * @mask: bits to look at in result of read
63 * @done: value of those bits when handshake succeeds
64 * @usec: timeout in microseconds
65 *
66 * Returns negative errno, or zero on success
67 *
68 * Success happens when the "mask" bits have the specified value (hardware
69 * handshake done). There are two failure modes: "usec" have passed (major
70 * hardware flakeout), or the register reads as all-ones (hardware removed).
71 */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)72 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
73 {
74 u32 result;
75 int ret;
76
77 ret = readl_poll_timeout_atomic(ptr, result,
78 (result & mask) == done ||
79 result == U32_MAX,
80 1, timeout_us);
81 if (result == U32_MAX) /* card removed */
82 return -ENODEV;
83
84 return ret;
85 }
86
87 /*
88 * xhci_handshake_check_state - same as xhci_handshake but takes an additional
89 * exit_state parameter, and bails out with an error immediately when xhc_state
90 * has exit_state flag set.
91 */
xhci_handshake_check_state(struct xhci_hcd * xhci,void __iomem * ptr,u32 mask,u32 done,int usec,unsigned int exit_state)92 int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr,
93 u32 mask, u32 done, int usec, unsigned int exit_state)
94 {
95 u32 result;
96 int ret;
97
98 ret = readl_poll_timeout_atomic(ptr, result,
99 (result & mask) == done ||
100 result == U32_MAX ||
101 xhci->xhc_state & exit_state,
102 1, usec);
103
104 if (result == U32_MAX || xhci->xhc_state & exit_state)
105 return -ENODEV;
106
107 return ret;
108 }
109
110 /*
111 * Disable interrupts and begin the xHCI halting process.
112 */
xhci_quiesce(struct xhci_hcd * xhci)113 void xhci_quiesce(struct xhci_hcd *xhci)
114 {
115 u32 halted;
116 u32 cmd;
117 u32 mask;
118
119 mask = ~(XHCI_IRQS);
120 halted = readl(&xhci->op_regs->status) & STS_HALT;
121 if (!halted)
122 mask &= ~CMD_RUN;
123
124 cmd = readl(&xhci->op_regs->command);
125 cmd &= mask;
126 writel(cmd, &xhci->op_regs->command);
127 }
128
129 /*
130 * Force HC into halt state.
131 *
132 * Disable any IRQs and clear the run/stop bit.
133 * HC will complete any current and actively pipelined transactions, and
134 * should halt within 16 ms of the run/stop bit being cleared.
135 * Read HC Halted bit in the status register to see when the HC is finished.
136 */
xhci_halt(struct xhci_hcd * xhci)137 int xhci_halt(struct xhci_hcd *xhci)
138 {
139 int ret;
140
141 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
142 xhci_quiesce(xhci);
143
144 ret = xhci_handshake(&xhci->op_regs->status,
145 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
146 if (ret) {
147 xhci_warn(xhci, "Host halt failed, %d\n", ret);
148 return ret;
149 }
150
151 xhci->xhc_state |= XHCI_STATE_HALTED;
152 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
153
154 return ret;
155 }
156
157 /*
158 * Set the run bit and wait for the host to be running.
159 */
xhci_start(struct xhci_hcd * xhci)160 int xhci_start(struct xhci_hcd *xhci)
161 {
162 u32 temp;
163 int ret;
164
165 temp = readl(&xhci->op_regs->command);
166 temp |= (CMD_RUN);
167 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
168 temp);
169 writel(temp, &xhci->op_regs->command);
170
171 /*
172 * Wait for the HCHalted Status bit to be 0 to indicate the host is
173 * running.
174 */
175 ret = xhci_handshake(&xhci->op_regs->status,
176 STS_HALT, 0, XHCI_MAX_HALT_USEC);
177 if (ret == -ETIMEDOUT)
178 xhci_err(xhci, "Host took too long to start, "
179 "waited %u microseconds.\n",
180 XHCI_MAX_HALT_USEC);
181 if (!ret) {
182 /* clear state flags. Including dying, halted or removing */
183 xhci->xhc_state = 0;
184 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
185 }
186
187 return ret;
188 }
189
190 /*
191 * Reset a halted HC.
192 *
193 * This resets pipelines, timers, counters, state machines, etc.
194 * Transactions will be terminated immediately, and operational registers
195 * will be set to their defaults.
196 */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)197 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
198 {
199 u32 command;
200 u32 state;
201 int ret;
202
203 state = readl(&xhci->op_regs->status);
204
205 if (state == ~(u32)0) {
206 xhci_warn(xhci, "Host not accessible, reset failed.\n");
207 return -ENODEV;
208 }
209
210 if ((state & STS_HALT) == 0) {
211 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
212 return 0;
213 }
214
215 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
216 command = readl(&xhci->op_regs->command);
217 command |= CMD_RESET;
218 writel(command, &xhci->op_regs->command);
219
220 /* Existing Intel xHCI controllers require a delay of 1 mS,
221 * after setting the CMD_RESET bit, and before accessing any
222 * HC registers. This allows the HC to complete the
223 * reset operation and be ready for HC register access.
224 * Without this delay, the subsequent HC register access,
225 * may result in a system hang very rarely.
226 */
227 if (xhci->quirks & XHCI_INTEL_HOST)
228 udelay(1000);
229
230 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command,
231 CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING);
232 if (ret)
233 return ret;
234
235 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
236 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
237
238 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
239 "Wait for controller to be ready for doorbell rings");
240 /*
241 * xHCI cannot write to any doorbells or operational registers other
242 * than status until the "Controller Not Ready" flag is cleared.
243 */
244 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
245
246 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
247 xhci->usb2_rhub.bus_state.suspended_ports = 0;
248 xhci->usb2_rhub.bus_state.resuming_ports = 0;
249 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
250 xhci->usb3_rhub.bus_state.suspended_ports = 0;
251 xhci->usb3_rhub.bus_state.resuming_ports = 0;
252
253 return ret;
254 }
255
xhci_zero_64b_regs(struct xhci_hcd * xhci)256 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
257 {
258 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
259 struct iommu_domain *domain;
260 int err, i;
261 u64 val;
262 u32 intrs;
263
264 /*
265 * Some Renesas controllers get into a weird state if they are
266 * reset while programmed with 64bit addresses (they will preserve
267 * the top half of the address in internal, non visible
268 * registers). You end up with half the address coming from the
269 * kernel, and the other half coming from the firmware. Also,
270 * changing the programming leads to extra accesses even if the
271 * controller is supposed to be halted. The controller ends up with
272 * a fatal fault, and is then ripe for being properly reset.
273 *
274 * Special care is taken to only apply this if the device is behind
275 * an iommu. Doing anything when there is no iommu is definitely
276 * unsafe...
277 */
278 domain = iommu_get_domain_for_dev(dev);
279 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
280 domain->type == IOMMU_DOMAIN_IDENTITY)
281 return;
282
283 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
284
285 /* Clear HSEIE so that faults do not get signaled */
286 val = readl(&xhci->op_regs->command);
287 val &= ~CMD_HSEIE;
288 writel(val, &xhci->op_regs->command);
289
290 /* Clear HSE (aka FATAL) */
291 val = readl(&xhci->op_regs->status);
292 val |= STS_FATAL;
293 writel(val, &xhci->op_regs->status);
294
295 /* Now zero the registers, and brace for impact */
296 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
297 if (upper_32_bits(val))
298 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
299 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
300 if (upper_32_bits(val))
301 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
302
303 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
304 ARRAY_SIZE(xhci->run_regs->ir_set));
305
306 for (i = 0; i < intrs; i++) {
307 struct xhci_intr_reg __iomem *ir;
308
309 ir = &xhci->run_regs->ir_set[i];
310 val = xhci_read_64(xhci, &ir->erst_base);
311 if (upper_32_bits(val))
312 xhci_write_64(xhci, 0, &ir->erst_base);
313 val= xhci_read_64(xhci, &ir->erst_dequeue);
314 if (upper_32_bits(val))
315 xhci_write_64(xhci, 0, &ir->erst_dequeue);
316 }
317
318 /* Wait for the fault to appear. It will be cleared on reset */
319 err = xhci_handshake(&xhci->op_regs->status,
320 STS_FATAL, STS_FATAL,
321 XHCI_MAX_HALT_USEC);
322 if (!err)
323 xhci_info(xhci, "Fault detected\n");
324 }
325
xhci_enable_interrupter(struct xhci_interrupter * ir)326 int xhci_enable_interrupter(struct xhci_interrupter *ir)
327 {
328 u32 iman;
329
330 if (!ir || !ir->ir_set)
331 return -EINVAL;
332
333 iman = readl(&ir->ir_set->iman);
334 iman |= IMAN_IE;
335 writel(iman, &ir->ir_set->iman);
336
337 /* Read operation to guarantee the write has been flushed from posted buffers */
338 readl(&ir->ir_set->iman);
339 return 0;
340 }
341
xhci_disable_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir)342 int xhci_disable_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
343 {
344 u32 iman;
345
346 if (!ir || !ir->ir_set)
347 return -EINVAL;
348
349 iman = readl(&ir->ir_set->iman);
350 iman &= ~IMAN_IE;
351 writel(iman, &ir->ir_set->iman);
352
353 iman = readl(&ir->ir_set->iman);
354 if (iman & IMAN_IP)
355 xhci_dbg(xhci, "%s: Interrupt pending\n", __func__);
356
357 return 0;
358 }
359
360 /* interrupt moderation interval imod_interval in nanoseconds */
xhci_set_interrupter_moderation(struct xhci_interrupter * ir,u32 imod_interval)361 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir,
362 u32 imod_interval)
363 {
364 u32 imod;
365
366 if (!ir || !ir->ir_set)
367 return -EINVAL;
368
369 /* IMODI value in IMOD register is in 250ns increments */
370 imod_interval = umin(imod_interval / 250, IMODI_MASK);
371
372 imod = readl(&ir->ir_set->imod);
373 imod &= ~IMODI_MASK;
374 imod |= imod_interval;
375 writel(imod, &ir->ir_set->imod);
376
377 return 0;
378 }
379
compliance_mode_recovery(struct timer_list * t)380 static void compliance_mode_recovery(struct timer_list *t)
381 {
382 struct xhci_hcd *xhci;
383 struct usb_hcd *hcd;
384 struct xhci_hub *rhub;
385 u32 temp;
386 int i;
387
388 xhci = timer_container_of(xhci, t, comp_mode_recovery_timer);
389 rhub = &xhci->usb3_rhub;
390 hcd = rhub->hcd;
391
392 if (!hcd)
393 return;
394
395 for (i = 0; i < rhub->num_ports; i++) {
396 temp = readl(rhub->ports[i]->addr);
397 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
398 /*
399 * Compliance Mode Detected. Letting USB Core
400 * handle the Warm Reset
401 */
402 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
403 "Compliance mode detected->port %d",
404 i + 1);
405 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
406 "Attempting compliance mode recovery");
407
408 if (hcd->state == HC_STATE_SUSPENDED)
409 usb_hcd_resume_root_hub(hcd);
410
411 usb_hcd_poll_rh_status(hcd);
412 }
413 }
414
415 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
416 mod_timer(&xhci->comp_mode_recovery_timer,
417 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
418 }
419
420 /*
421 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
422 * that causes ports behind that hardware to enter compliance mode sometimes.
423 * The quirk creates a timer that polls every 2 seconds the link state of
424 * each host controller's port and recovers it by issuing a Warm reset
425 * if Compliance mode is detected, otherwise the port will become "dead" (no
426 * device connections or disconnections will be detected anymore). Becasue no
427 * status event is generated when entering compliance mode (per xhci spec),
428 * this quirk is needed on systems that have the failing hardware installed.
429 */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)430 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
431 {
432 xhci->port_status_u0 = 0;
433 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
434 0);
435 xhci->comp_mode_recovery_timer.expires = jiffies +
436 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
437
438 add_timer(&xhci->comp_mode_recovery_timer);
439 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
440 "Compliance mode recovery timer initialized");
441 }
442
443 /*
444 * This function identifies the systems that have installed the SN65LVPE502CP
445 * USB3.0 re-driver and that need the Compliance Mode Quirk.
446 * Systems:
447 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
448 */
xhci_compliance_mode_recovery_timer_quirk_check(void)449 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
450 {
451 const char *dmi_product_name, *dmi_sys_vendor;
452
453 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
454 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
455 if (!dmi_product_name || !dmi_sys_vendor)
456 return false;
457
458 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
459 return false;
460
461 if (strstr(dmi_product_name, "Z420") ||
462 strstr(dmi_product_name, "Z620") ||
463 strstr(dmi_product_name, "Z820") ||
464 strstr(dmi_product_name, "Z1 Workstation"))
465 return true;
466
467 return false;
468 }
469
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)470 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
471 {
472 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
473 }
474
xhci_hcd_page_size(struct xhci_hcd * xhci)475 static void xhci_hcd_page_size(struct xhci_hcd *xhci)
476 {
477 u32 page_size;
478
479 page_size = readl(&xhci->op_regs->page_size) & XHCI_PAGE_SIZE_MASK;
480 if (!is_power_of_2(page_size)) {
481 xhci_warn(xhci, "Invalid page size register = 0x%x\n", page_size);
482 /* Fallback to 4K page size, since that's common */
483 page_size = 1;
484 }
485
486 xhci->page_size = page_size << 12;
487 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "HCD page size set to %iK",
488 xhci->page_size >> 10);
489 }
490
xhci_enable_max_dev_slots(struct xhci_hcd * xhci)491 static void xhci_enable_max_dev_slots(struct xhci_hcd *xhci)
492 {
493 u32 config_reg;
494 u32 max_slots;
495
496 max_slots = HCS_MAX_SLOTS(xhci->hcs_params1);
497 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xHC can handle at most %d device slots",
498 max_slots);
499
500 config_reg = readl(&xhci->op_regs->config_reg);
501 config_reg &= ~HCS_SLOTS_MASK;
502 config_reg |= max_slots;
503
504 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Setting Max device slots reg = 0x%x",
505 config_reg);
506 writel(config_reg, &xhci->op_regs->config_reg);
507 }
508
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)509 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
510 {
511 dma_addr_t deq_dma;
512 u64 crcr;
513
514 deq_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, xhci->cmd_ring->dequeue);
515 deq_dma &= CMD_RING_PTR_MASK;
516
517 crcr = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
518 crcr &= ~CMD_RING_PTR_MASK;
519 crcr |= deq_dma;
520
521 crcr &= ~CMD_RING_CYCLE;
522 crcr |= xhci->cmd_ring->cycle_state;
523
524 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Setting command ring address to 0x%llx", crcr);
525 xhci_write_64(xhci, crcr, &xhci->op_regs->cmd_ring);
526 }
527
xhci_set_doorbell_ptr(struct xhci_hcd * xhci)528 static void xhci_set_doorbell_ptr(struct xhci_hcd *xhci)
529 {
530 u32 offset;
531
532 offset = readl(&xhci->cap_regs->db_off) & DBOFF_MASK;
533 xhci->dba = (void __iomem *)xhci->cap_regs + offset;
534 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
535 "Doorbell array is located at offset 0x%x from cap regs base addr", offset);
536 }
537
538 /*
539 * Enable USB 3.0 device notifications for function remote wake, which is necessary
540 * for allowing USB 3.0 devices to do remote wakeup from U3 (device suspend).
541 */
xhci_set_dev_notifications(struct xhci_hcd * xhci)542 static void xhci_set_dev_notifications(struct xhci_hcd *xhci)
543 {
544 u32 dev_notf;
545
546 dev_notf = readl(&xhci->op_regs->dev_notification);
547 dev_notf &= ~DEV_NOTE_MASK;
548 dev_notf |= DEV_NOTE_FWAKE;
549 writel(dev_notf, &xhci->op_regs->dev_notification);
550 }
551
552 /*
553 * Initialize memory for HCD and xHC (one-time init).
554 *
555 * Program the PAGESIZE register, initialize the device context array, create
556 * device contexts (?), set up a command ring segment (or two?), create event
557 * ring (one for now).
558 */
xhci_init(struct usb_hcd * hcd)559 static int xhci_init(struct usb_hcd *hcd)
560 {
561 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
562 int retval;
563
564 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Starting %s", __func__);
565 spin_lock_init(&xhci->lock);
566
567 INIT_LIST_HEAD(&xhci->cmd_list);
568 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
569 init_completion(&xhci->cmd_ring_stop_completion);
570 xhci_hcd_page_size(xhci);
571 memset(xhci->devs, 0, MAX_HC_SLOTS * sizeof(*xhci->devs));
572
573 retval = xhci_mem_init(xhci, GFP_KERNEL);
574 if (retval)
575 return retval;
576
577 /* Set the Number of Device Slots Enabled to the maximum supported value */
578 xhci_enable_max_dev_slots(xhci);
579
580 /* Set the address in the Command Ring Control register */
581 xhci_set_cmd_ring_deq(xhci);
582
583 /* Set Device Context Base Address Array pointer */
584 xhci_write_64(xhci, xhci->dcbaa->dma, &xhci->op_regs->dcbaa_ptr);
585
586 /* Set Doorbell array pointer */
587 xhci_set_doorbell_ptr(xhci);
588
589 /* Set USB 3.0 device notifications for function remote wake */
590 xhci_set_dev_notifications(xhci);
591
592 /* Initialize the Primary interrupter */
593 xhci_add_interrupter(xhci, 0);
594 xhci->interrupters[0]->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
595
596 /* Initializing Compliance Mode Recovery Data If Needed */
597 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
598 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
599 compliance_mode_recovery_timer_init(xhci);
600 }
601
602 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished %s", __func__);
603 return 0;
604 }
605
606 /*-------------------------------------------------------------------------*/
607
xhci_run_finished(struct xhci_hcd * xhci)608 static int xhci_run_finished(struct xhci_hcd *xhci)
609 {
610 struct xhci_interrupter *ir = xhci->interrupters[0];
611 unsigned long flags;
612 u32 temp;
613
614 /*
615 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
616 * Protect the short window before host is running with a lock
617 */
618 spin_lock_irqsave(&xhci->lock, flags);
619
620 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
621 temp = readl(&xhci->op_regs->command);
622 temp |= (CMD_EIE);
623 writel(temp, &xhci->op_regs->command);
624
625 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
626 xhci_enable_interrupter(ir);
627
628 if (xhci_start(xhci)) {
629 xhci_halt(xhci);
630 spin_unlock_irqrestore(&xhci->lock, flags);
631 return -ENODEV;
632 }
633
634 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
635
636 if (xhci->quirks & XHCI_NEC_HOST)
637 xhci_ring_cmd_db(xhci);
638
639 spin_unlock_irqrestore(&xhci->lock, flags);
640
641 return 0;
642 }
643
644 /*
645 * Start the HC after it was halted.
646 *
647 * This function is called by the USB core when the HC driver is added.
648 * Its opposite is xhci_stop().
649 *
650 * xhci_init() must be called once before this function can be called.
651 * Reset the HC, enable device slot contexts, program DCBAAP, and
652 * set command ring pointer and event ring pointer.
653 *
654 * Setup MSI-X vectors and enable interrupts.
655 */
xhci_run(struct usb_hcd * hcd)656 int xhci_run(struct usb_hcd *hcd)
657 {
658 u64 temp_64;
659 int ret;
660 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
661 struct xhci_interrupter *ir = xhci->interrupters[0];
662 /* Start the xHCI host controller running only after the USB 2.0 roothub
663 * is setup.
664 */
665
666 hcd->uses_new_polling = 1;
667 if (hcd->msi_enabled)
668 ir->ip_autoclear = true;
669
670 if (!usb_hcd_is_primary_hcd(hcd))
671 return xhci_run_finished(xhci);
672
673 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
674
675 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
676 temp_64 &= ERST_PTR_MASK;
677 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
678 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
679
680 xhci_set_interrupter_moderation(ir, xhci->imod_interval);
681
682 if (xhci->quirks & XHCI_NEC_HOST) {
683 struct xhci_command *command;
684
685 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
686 if (!command)
687 return -ENOMEM;
688
689 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
690 TRB_TYPE(TRB_NEC_GET_FW));
691 if (ret)
692 xhci_free_command(xhci, command);
693 }
694 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
695 "Finished %s for main hcd", __func__);
696
697 xhci_create_dbc_dev(xhci);
698
699 xhci_debugfs_init(xhci);
700
701 if (xhci_has_one_roothub(xhci))
702 return xhci_run_finished(xhci);
703
704 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
705
706 return 0;
707 }
708 EXPORT_SYMBOL_GPL(xhci_run);
709
710 /*
711 * Stop xHCI driver.
712 *
713 * This function is called by the USB core when the HC driver is removed.
714 * Its opposite is xhci_run().
715 *
716 * Disable device contexts, disable IRQs, and quiesce the HC.
717 * Reset the HC, finish any completed transactions, and cleanup memory.
718 */
xhci_stop(struct usb_hcd * hcd)719 void xhci_stop(struct usb_hcd *hcd)
720 {
721 u32 temp;
722 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
723 struct xhci_interrupter *ir = xhci->interrupters[0];
724
725 mutex_lock(&xhci->mutex);
726
727 /* Only halt host and free memory after both hcds are removed */
728 if (!usb_hcd_is_primary_hcd(hcd)) {
729 mutex_unlock(&xhci->mutex);
730 return;
731 }
732
733 xhci_remove_dbc_dev(xhci);
734
735 spin_lock_irq(&xhci->lock);
736 xhci->xhc_state |= XHCI_STATE_HALTED;
737 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
738 xhci_halt(xhci);
739 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
740 spin_unlock_irq(&xhci->lock);
741
742 /* Deleting Compliance Mode Recovery Timer */
743 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
744 (!(xhci_all_ports_seen_u0(xhci)))) {
745 timer_delete_sync(&xhci->comp_mode_recovery_timer);
746 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
747 "%s: compliance mode recovery timer deleted",
748 __func__);
749 }
750
751 if (xhci->quirks & XHCI_AMD_PLL_FIX)
752 usb_amd_dev_put();
753
754 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
755 "// Disabling event ring interrupts");
756 temp = readl(&xhci->op_regs->status);
757 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
758 xhci_disable_interrupter(xhci, ir);
759
760 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
761 xhci_mem_cleanup(xhci);
762 xhci_debugfs_exit(xhci);
763 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
764 "xhci_stop completed - status = %x",
765 readl(&xhci->op_regs->status));
766 mutex_unlock(&xhci->mutex);
767 }
768 EXPORT_SYMBOL_GPL(xhci_stop);
769
770 /*
771 * Shutdown HC (not bus-specific)
772 *
773 * This is called when the machine is rebooting or halting. We assume that the
774 * machine will be powered off, and the HC's internal state will be reset.
775 * Don't bother to free memory.
776 *
777 * This will only ever be called with the main usb_hcd (the USB3 roothub).
778 */
xhci_shutdown(struct usb_hcd * hcd)779 void xhci_shutdown(struct usb_hcd *hcd)
780 {
781 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
782
783 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
784 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
785
786 /* Don't poll the roothubs after shutdown. */
787 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
788 __func__, hcd->self.busnum);
789 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
790 timer_delete_sync(&hcd->rh_timer);
791
792 if (xhci->shared_hcd) {
793 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
794 timer_delete_sync(&xhci->shared_hcd->rh_timer);
795 }
796
797 spin_lock_irq(&xhci->lock);
798 xhci_halt(xhci);
799
800 /*
801 * Workaround for spurious wakeps at shutdown with HSW, and for boot
802 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
803 */
804 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
805 xhci->quirks & XHCI_RESET_TO_DEFAULT)
806 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
807
808 spin_unlock_irq(&xhci->lock);
809
810 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
811 "xhci_shutdown completed - status = %x",
812 readl(&xhci->op_regs->status));
813 }
814 EXPORT_SYMBOL_GPL(xhci_shutdown);
815
816 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)817 static void xhci_save_registers(struct xhci_hcd *xhci)
818 {
819 struct xhci_interrupter *ir;
820 unsigned int i;
821
822 xhci->s3.command = readl(&xhci->op_regs->command);
823 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
824 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
825 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
826
827 /* save both primary and all secondary interrupters */
828 /* fixme, shold we lock to prevent race with remove secondary interrupter? */
829 for (i = 0; i < xhci->max_interrupters; i++) {
830 ir = xhci->interrupters[i];
831 if (!ir)
832 continue;
833
834 ir->s3_erst_size = readl(&ir->ir_set->erst_size);
835 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
836 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
837 ir->s3_iman = readl(&ir->ir_set->iman);
838 ir->s3_imod = readl(&ir->ir_set->imod);
839 }
840 }
841
xhci_restore_registers(struct xhci_hcd * xhci)842 static void xhci_restore_registers(struct xhci_hcd *xhci)
843 {
844 struct xhci_interrupter *ir;
845 unsigned int i;
846
847 writel(xhci->s3.command, &xhci->op_regs->command);
848 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
849 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
850 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
851
852 /* FIXME should we lock to protect against freeing of interrupters */
853 for (i = 0; i < xhci->max_interrupters; i++) {
854 ir = xhci->interrupters[i];
855 if (!ir)
856 continue;
857
858 writel(ir->s3_erst_size, &ir->ir_set->erst_size);
859 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
860 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
861 writel(ir->s3_iman, &ir->ir_set->iman);
862 writel(ir->s3_imod, &ir->ir_set->imod);
863 }
864 }
865
866 /*
867 * The whole command ring must be cleared to zero when we suspend the host.
868 *
869 * The host doesn't save the command ring pointer in the suspend well, so we
870 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
871 * aligned, because of the reserved bits in the command ring dequeue pointer
872 * register. Therefore, we can't just set the dequeue pointer back in the
873 * middle of the ring (TRBs are 16-byte aligned).
874 */
xhci_clear_command_ring(struct xhci_hcd * xhci)875 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
876 {
877 struct xhci_ring *ring;
878 struct xhci_segment *seg;
879
880 ring = xhci->cmd_ring;
881 xhci_for_each_ring_seg(ring->first_seg, seg) {
882 /* erase all TRBs before the link */
883 memset(seg->trbs, 0, sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
884 /* clear link cycle bit */
885 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= cpu_to_le32(~TRB_CYCLE);
886 }
887
888 xhci_initialize_ring_info(ring);
889 /*
890 * Reset the hardware dequeue pointer.
891 * Yes, this will need to be re-written after resume, but we're paranoid
892 * and want to make sure the hardware doesn't access bogus memory
893 * because, say, the BIOS or an SMI started the host without changing
894 * the command ring pointers.
895 */
896 xhci_set_cmd_ring_deq(xhci);
897 }
898
899 /*
900 * Disable port wake bits if do_wakeup is not set.
901 *
902 * Also clear a possible internal port wake state left hanging for ports that
903 * detected termination but never successfully enumerated (trained to 0U).
904 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
905 * at enumeration clears this wake, force one here as well for unconnected ports
906 */
907
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)908 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
909 struct xhci_hub *rhub,
910 bool do_wakeup)
911 {
912 unsigned long flags;
913 u32 t1, t2, portsc;
914 int i;
915
916 spin_lock_irqsave(&xhci->lock, flags);
917
918 for (i = 0; i < rhub->num_ports; i++) {
919 portsc = readl(rhub->ports[i]->addr);
920 t1 = xhci_port_state_to_neutral(portsc);
921 t2 = t1;
922
923 /* clear wake bits if do_wake is not set */
924 if (!do_wakeup)
925 t2 &= ~PORT_WAKE_BITS;
926
927 /* Don't touch csc bit if connected or connect change is set */
928 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
929 t2 |= PORT_CSC;
930
931 if (t1 != t2) {
932 writel(t2, rhub->ports[i]->addr);
933 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
934 rhub->hcd->self.busnum, i + 1, portsc, t2);
935 }
936 }
937 spin_unlock_irqrestore(&xhci->lock, flags);
938 }
939
xhci_pending_portevent(struct xhci_hcd * xhci)940 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
941 {
942 struct xhci_port **ports;
943 int port_index;
944 u32 status;
945 u32 portsc;
946
947 status = readl(&xhci->op_regs->status);
948 if (status & STS_EINT)
949 return true;
950 /*
951 * Checking STS_EINT is not enough as there is a lag between a change
952 * bit being set and the Port Status Change Event that it generated
953 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
954 */
955
956 port_index = xhci->usb2_rhub.num_ports;
957 ports = xhci->usb2_rhub.ports;
958 while (port_index--) {
959 portsc = readl(ports[port_index]->addr);
960 if (portsc & PORT_CHANGE_MASK ||
961 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
962 return true;
963 }
964 port_index = xhci->usb3_rhub.num_ports;
965 ports = xhci->usb3_rhub.ports;
966 while (port_index--) {
967 portsc = readl(ports[port_index]->addr);
968 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
969 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
970 return true;
971 }
972 return false;
973 }
974
975 /*
976 * Stop HC (not bus-specific)
977 *
978 * This is called when the machine transition into S3/S4 mode.
979 *
980 */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)981 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
982 {
983 int rc = 0;
984 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
985 struct usb_hcd *hcd = xhci_to_hcd(xhci);
986 u32 command;
987 u32 res;
988
989 if (!hcd->state)
990 return 0;
991
992 if (hcd->state != HC_STATE_SUSPENDED ||
993 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
994 return -EINVAL;
995
996 /* Clear root port wake on bits if wakeup not allowed. */
997 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
998 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
999
1000 if (!HCD_HW_ACCESSIBLE(hcd))
1001 return 0;
1002
1003 xhci_dbc_suspend(xhci);
1004
1005 /* Don't poll the roothubs on bus suspend. */
1006 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
1007 __func__, hcd->self.busnum);
1008 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1009 timer_delete_sync(&hcd->rh_timer);
1010 if (xhci->shared_hcd) {
1011 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1012 timer_delete_sync(&xhci->shared_hcd->rh_timer);
1013 }
1014
1015 if (xhci->quirks & XHCI_SUSPEND_DELAY)
1016 usleep_range(1000, 1500);
1017
1018 spin_lock_irq(&xhci->lock);
1019 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1020 if (xhci->shared_hcd)
1021 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1022 /* step 1: stop endpoint */
1023 /* skipped assuming that port suspend has done */
1024
1025 /* step 2: clear Run/Stop bit */
1026 command = readl(&xhci->op_regs->command);
1027 command &= ~CMD_RUN;
1028 writel(command, &xhci->op_regs->command);
1029
1030 /* Some chips from Fresco Logic need an extraordinary delay */
1031 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1032
1033 if (xhci_handshake(&xhci->op_regs->status,
1034 STS_HALT, STS_HALT, delay)) {
1035 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1036 spin_unlock_irq(&xhci->lock);
1037 return -ETIMEDOUT;
1038 }
1039 xhci_clear_command_ring(xhci);
1040
1041 /* step 3: save registers */
1042 xhci_save_registers(xhci);
1043
1044 /* step 4: set CSS flag */
1045 command = readl(&xhci->op_regs->command);
1046 command |= CMD_CSS;
1047 writel(command, &xhci->op_regs->command);
1048 xhci->broken_suspend = 0;
1049 if (xhci_handshake(&xhci->op_regs->status,
1050 STS_SAVE, 0, 20 * 1000)) {
1051 /*
1052 * AMD SNPS xHC 3.0 occasionally does not clear the
1053 * SSS bit of USBSTS and when driver tries to poll
1054 * to see if the xHC clears BIT(8) which never happens
1055 * and driver assumes that controller is not responding
1056 * and times out. To workaround this, its good to check
1057 * if SRE and HCE bits are not set (as per xhci
1058 * Section 5.4.2) and bypass the timeout.
1059 */
1060 res = readl(&xhci->op_regs->status);
1061 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1062 (((res & STS_SRE) == 0) &&
1063 ((res & STS_HCE) == 0))) {
1064 xhci->broken_suspend = 1;
1065 } else {
1066 xhci_warn(xhci, "WARN: xHC save state timeout\n");
1067 spin_unlock_irq(&xhci->lock);
1068 return -ETIMEDOUT;
1069 }
1070 }
1071 spin_unlock_irq(&xhci->lock);
1072
1073 /*
1074 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1075 * is about to be suspended.
1076 */
1077 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1078 (!(xhci_all_ports_seen_u0(xhci)))) {
1079 timer_delete_sync(&xhci->comp_mode_recovery_timer);
1080 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1081 "%s: compliance mode recovery timer deleted",
1082 __func__);
1083 }
1084
1085 return rc;
1086 }
1087 EXPORT_SYMBOL_GPL(xhci_suspend);
1088
1089 /*
1090 * start xHC (not bus-specific)
1091 *
1092 * This is called when the machine transition from S3/S4 mode.
1093 *
1094 */
xhci_resume(struct xhci_hcd * xhci,bool power_lost,bool is_auto_resume)1095 int xhci_resume(struct xhci_hcd *xhci, bool power_lost, bool is_auto_resume)
1096 {
1097 u32 command, temp = 0;
1098 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1099 int retval = 0;
1100 bool comp_timer_running = false;
1101 bool pending_portevent = false;
1102 bool suspended_usb3_devs = false;
1103
1104 if (!hcd->state)
1105 return 0;
1106
1107 /* Wait a bit if either of the roothubs need to settle from the
1108 * transition into bus suspend.
1109 */
1110
1111 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1112 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1113 msleep(100);
1114
1115 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1116 if (xhci->shared_hcd)
1117 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1118
1119 spin_lock_irq(&xhci->lock);
1120
1121 if (xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1122 power_lost = true;
1123
1124 if (!power_lost) {
1125 /*
1126 * Some controllers might lose power during suspend, so wait
1127 * for controller not ready bit to clear, just as in xHC init.
1128 */
1129 retval = xhci_handshake(&xhci->op_regs->status,
1130 STS_CNR, 0, 10 * 1000 * 1000);
1131 if (retval) {
1132 xhci_warn(xhci, "Controller not ready at resume %d\n",
1133 retval);
1134 spin_unlock_irq(&xhci->lock);
1135 return retval;
1136 }
1137 /* step 1: restore register */
1138 xhci_restore_registers(xhci);
1139 /* step 2: initialize command ring buffer */
1140 xhci_set_cmd_ring_deq(xhci);
1141 /* step 3: restore state and start state*/
1142 /* step 3: set CRS flag */
1143 command = readl(&xhci->op_regs->command);
1144 command |= CMD_CRS;
1145 writel(command, &xhci->op_regs->command);
1146 /*
1147 * Some controllers take up to 55+ ms to complete the controller
1148 * restore so setting the timeout to 100ms. Xhci specification
1149 * doesn't mention any timeout value.
1150 */
1151 if (xhci_handshake(&xhci->op_regs->status,
1152 STS_RESTORE, 0, 100 * 1000)) {
1153 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1154 spin_unlock_irq(&xhci->lock);
1155 return -ETIMEDOUT;
1156 }
1157 }
1158
1159 temp = readl(&xhci->op_regs->status);
1160
1161 /* re-initialize the HC on Restore Error, or Host Controller Error */
1162 if ((temp & (STS_SRE | STS_HCE)) &&
1163 !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1164 if (!power_lost)
1165 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1166 power_lost = true;
1167 }
1168
1169 if (power_lost) {
1170 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1171 !(xhci_all_ports_seen_u0(xhci))) {
1172 timer_delete_sync(&xhci->comp_mode_recovery_timer);
1173 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1174 "Compliance Mode Recovery Timer deleted!");
1175 }
1176
1177 /* Let the USB core know _both_ roothubs lost power. */
1178 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1179 if (xhci->shared_hcd)
1180 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1181
1182 xhci_dbg(xhci, "Stop HCD\n");
1183 xhci_halt(xhci);
1184 xhci_zero_64b_regs(xhci);
1185 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1186 spin_unlock_irq(&xhci->lock);
1187 if (retval)
1188 return retval;
1189
1190 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1191 temp = readl(&xhci->op_regs->status);
1192 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1193 xhci_disable_interrupter(xhci, xhci->interrupters[0]);
1194
1195 xhci_dbg(xhci, "cleaning up memory\n");
1196 xhci_mem_cleanup(xhci);
1197 xhci_debugfs_exit(xhci);
1198 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1199 readl(&xhci->op_regs->status));
1200
1201 /* USB core calls the PCI reinit and start functions twice:
1202 * first with the primary HCD, and then with the secondary HCD.
1203 * If we don't do the same, the host will never be started.
1204 */
1205 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1206 retval = xhci_init(hcd);
1207 if (retval)
1208 return retval;
1209 comp_timer_running = true;
1210
1211 xhci_dbg(xhci, "Start the primary HCD\n");
1212 retval = xhci_run(hcd);
1213 if (!retval && xhci->shared_hcd) {
1214 xhci_dbg(xhci, "Start the secondary HCD\n");
1215 retval = xhci_run(xhci->shared_hcd);
1216 }
1217 if (retval)
1218 return retval;
1219 /*
1220 * Resume roothubs unconditionally as PORTSC change bits are not
1221 * immediately visible after xHC reset
1222 */
1223 hcd->state = HC_STATE_SUSPENDED;
1224
1225 if (xhci->shared_hcd) {
1226 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1227 usb_hcd_resume_root_hub(xhci->shared_hcd);
1228 }
1229 usb_hcd_resume_root_hub(hcd);
1230
1231 goto done;
1232 }
1233
1234 /* step 4: set Run/Stop bit */
1235 command = readl(&xhci->op_regs->command);
1236 command |= CMD_RUN;
1237 writel(command, &xhci->op_regs->command);
1238 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1239 0, 250 * 1000);
1240
1241 /* step 5: walk topology and initialize portsc,
1242 * portpmsc and portli
1243 */
1244 /* this is done in bus_resume */
1245
1246 /* step 6: restart each of the previously
1247 * Running endpoints by ringing their doorbells
1248 */
1249
1250 spin_unlock_irq(&xhci->lock);
1251
1252 xhci_dbc_resume(xhci);
1253
1254 if (retval == 0) {
1255 /*
1256 * Resume roothubs only if there are pending events.
1257 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1258 * the first wake signalling failed, give it that chance if
1259 * there are suspended USB 3 devices.
1260 */
1261 if (xhci->usb3_rhub.bus_state.suspended_ports ||
1262 xhci->usb3_rhub.bus_state.bus_suspended)
1263 suspended_usb3_devs = true;
1264
1265 pending_portevent = xhci_pending_portevent(xhci);
1266
1267 if (suspended_usb3_devs && !pending_portevent && is_auto_resume) {
1268 msleep(120);
1269 pending_portevent = xhci_pending_portevent(xhci);
1270 }
1271
1272 if (pending_portevent) {
1273 if (xhci->shared_hcd)
1274 usb_hcd_resume_root_hub(xhci->shared_hcd);
1275 usb_hcd_resume_root_hub(hcd);
1276 }
1277 }
1278 done:
1279 /*
1280 * If system is subject to the Quirk, Compliance Mode Timer needs to
1281 * be re-initialized Always after a system resume. Ports are subject
1282 * to suffer the Compliance Mode issue again. It doesn't matter if
1283 * ports have entered previously to U0 before system's suspension.
1284 */
1285 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1286 compliance_mode_recovery_timer_init(xhci);
1287
1288 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1289 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1290
1291 /* Re-enable port polling. */
1292 xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1293 __func__, hcd->self.busnum);
1294 if (xhci->shared_hcd) {
1295 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1296 usb_hcd_poll_rh_status(xhci->shared_hcd);
1297 }
1298 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1299 usb_hcd_poll_rh_status(hcd);
1300
1301 return retval;
1302 }
1303 EXPORT_SYMBOL_GPL(xhci_resume);
1304 #endif /* CONFIG_PM */
1305
1306 /*-------------------------------------------------------------------------*/
1307
xhci_map_temp_buffer(struct usb_hcd * hcd,struct urb * urb)1308 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1309 {
1310 void *temp;
1311 int ret = 0;
1312 unsigned int buf_len;
1313 enum dma_data_direction dir;
1314
1315 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1316 buf_len = urb->transfer_buffer_length;
1317
1318 temp = kzalloc_node(buf_len, GFP_ATOMIC,
1319 dev_to_node(hcd->self.sysdev));
1320 if (!temp)
1321 return -ENOMEM;
1322
1323 if (usb_urb_dir_out(urb))
1324 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1325 temp, buf_len, 0);
1326
1327 urb->transfer_buffer = temp;
1328 urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1329 urb->transfer_buffer,
1330 urb->transfer_buffer_length,
1331 dir);
1332
1333 if (dma_mapping_error(hcd->self.sysdev,
1334 urb->transfer_dma)) {
1335 ret = -EAGAIN;
1336 kfree(temp);
1337 } else {
1338 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1339 }
1340
1341 return ret;
1342 }
1343
xhci_urb_temp_buffer_required(struct usb_hcd * hcd,struct urb * urb)1344 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1345 struct urb *urb)
1346 {
1347 bool ret = false;
1348 unsigned int i;
1349 unsigned int len = 0;
1350 unsigned int trb_size;
1351 unsigned int max_pkt;
1352 struct scatterlist *sg;
1353 struct scatterlist *tail_sg;
1354
1355 tail_sg = urb->sg;
1356 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1357
1358 if (!urb->num_sgs)
1359 return ret;
1360
1361 if (urb->dev->speed >= USB_SPEED_SUPER)
1362 trb_size = TRB_CACHE_SIZE_SS;
1363 else
1364 trb_size = TRB_CACHE_SIZE_HS;
1365
1366 if (urb->transfer_buffer_length != 0 &&
1367 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1368 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1369 len = len + sg->length;
1370 if (i > trb_size - 2) {
1371 len = len - tail_sg->length;
1372 if (len < max_pkt) {
1373 ret = true;
1374 break;
1375 }
1376
1377 tail_sg = sg_next(tail_sg);
1378 }
1379 }
1380 }
1381 return ret;
1382 }
1383
xhci_unmap_temp_buf(struct usb_hcd * hcd,struct urb * urb)1384 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1385 {
1386 unsigned int len;
1387 unsigned int buf_len;
1388 enum dma_data_direction dir;
1389
1390 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1391
1392 buf_len = urb->transfer_buffer_length;
1393
1394 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1395 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1396 dma_unmap_single(hcd->self.sysdev,
1397 urb->transfer_dma,
1398 urb->transfer_buffer_length,
1399 dir);
1400
1401 if (usb_urb_dir_in(urb)) {
1402 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1403 urb->transfer_buffer,
1404 buf_len,
1405 0);
1406 if (len != buf_len) {
1407 xhci_dbg(hcd_to_xhci(hcd),
1408 "Copy from tmp buf to urb sg list failed\n");
1409 urb->actual_length = len;
1410 }
1411 }
1412 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1413 kfree(urb->transfer_buffer);
1414 urb->transfer_buffer = NULL;
1415 }
1416
1417 /*
1418 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1419 * we'll copy the actual data into the TRB address register. This is limited to
1420 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1421 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1422 */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1423 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1424 gfp_t mem_flags)
1425 {
1426 struct xhci_hcd *xhci;
1427
1428 xhci = hcd_to_xhci(hcd);
1429
1430 if (xhci_urb_suitable_for_idt(urb))
1431 return 0;
1432
1433 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1434 if (xhci_urb_temp_buffer_required(hcd, urb))
1435 return xhci_map_temp_buffer(hcd, urb);
1436 }
1437 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1438 }
1439
xhci_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1440 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1441 {
1442 struct xhci_hcd *xhci;
1443 bool unmap_temp_buf = false;
1444
1445 xhci = hcd_to_xhci(hcd);
1446
1447 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1448 unmap_temp_buf = true;
1449
1450 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1451 xhci_unmap_temp_buf(hcd, urb);
1452 else
1453 usb_hcd_unmap_urb_for_dma(hcd, urb);
1454 }
1455
1456 /**
1457 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1458 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1459 * value to right shift 1 for the bitmask.
1460 * @desc: USB endpoint descriptor to determine index for
1461 *
1462 * Index = (epnum * 2) + direction - 1,
1463 * where direction = 0 for OUT, 1 for IN.
1464 * For control endpoints, the IN index is used (OUT index is unused), so
1465 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1466 */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1467 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1468 {
1469 unsigned int index;
1470 if (usb_endpoint_xfer_control(desc))
1471 index = (unsigned int) (usb_endpoint_num(desc)*2);
1472 else
1473 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1474 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1475 return index;
1476 }
1477 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1478
1479 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1480 * address from the XHCI endpoint index.
1481 */
xhci_get_endpoint_address(unsigned int ep_index)1482 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1483 {
1484 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1485 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1486 return direction | number;
1487 }
1488
1489 /* Find the flag for this endpoint (for use in the control context). Use the
1490 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1491 * bit 1, etc.
1492 */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1493 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1494 {
1495 return 1 << (xhci_get_endpoint_index(desc) + 1);
1496 }
1497
1498 /* Compute the last valid endpoint context index. Basically, this is the
1499 * endpoint index plus one. For slot contexts with more than valid endpoint,
1500 * we find the most significant bit set in the added contexts flags.
1501 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1502 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1503 */
xhci_last_valid_endpoint(u32 added_ctxs)1504 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1505 {
1506 return fls(added_ctxs) - 1;
1507 }
1508
1509 /* Returns 1 if the arguments are OK;
1510 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1511 */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1512 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1513 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1514 const char *func) {
1515 struct xhci_hcd *xhci;
1516 struct xhci_virt_device *virt_dev;
1517
1518 if (!hcd || (check_ep && !ep) || !udev) {
1519 pr_debug("xHCI %s called with invalid args\n", func);
1520 return -EINVAL;
1521 }
1522 if (!udev->parent) {
1523 pr_debug("xHCI %s called for root hub\n", func);
1524 return 0;
1525 }
1526
1527 xhci = hcd_to_xhci(hcd);
1528 if (check_virt_dev) {
1529 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1530 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1531 func);
1532 return -EINVAL;
1533 }
1534
1535 virt_dev = xhci->devs[udev->slot_id];
1536 if (virt_dev->udev != udev) {
1537 xhci_dbg(xhci, "xHCI %s called with udev and "
1538 "virt_dev does not match\n", func);
1539 return -EINVAL;
1540 }
1541 }
1542
1543 if (xhci->xhc_state & XHCI_STATE_HALTED)
1544 return -ENODEV;
1545
1546 return 1;
1547 }
1548
1549 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1550 struct usb_device *udev, struct xhci_command *command,
1551 bool ctx_change, bool must_succeed);
1552
1553 /*
1554 * Full speed devices may have a max packet size greater than 8 bytes, but the
1555 * USB core doesn't know that until it reads the first 8 bytes of the
1556 * descriptor. If the usb_device's max packet size changes after that point,
1557 * we need to issue an evaluate context command and wait on it.
1558 */
xhci_check_ep0_maxpacket(struct xhci_hcd * xhci,struct xhci_virt_device * vdev)1559 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
1560 {
1561 struct xhci_input_control_ctx *ctrl_ctx;
1562 struct xhci_ep_ctx *ep_ctx;
1563 struct xhci_command *command;
1564 int max_packet_size;
1565 int hw_max_packet_size;
1566 int ret = 0;
1567
1568 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
1569 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1570 max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1571
1572 if (hw_max_packet_size == max_packet_size)
1573 return 0;
1574
1575 switch (max_packet_size) {
1576 case 8: case 16: case 32: case 64: case 9:
1577 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1578 "Max Packet Size for ep 0 changed.");
1579 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1580 "Max packet size in usb_device = %d",
1581 max_packet_size);
1582 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1583 "Max packet size in xHCI HW = %d",
1584 hw_max_packet_size);
1585 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1586 "Issuing evaluate context command.");
1587
1588 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1589 if (!command)
1590 return -ENOMEM;
1591
1592 command->in_ctx = vdev->in_ctx;
1593 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1594 if (!ctrl_ctx) {
1595 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1596 __func__);
1597 ret = -ENOMEM;
1598 break;
1599 }
1600 /* Set up the modified control endpoint 0 */
1601 xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
1602
1603 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1604 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1605 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1606 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1607
1608 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1609 ctrl_ctx->drop_flags = 0;
1610
1611 ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1612 true, false);
1613 /* Clean up the input context for later use by bandwidth functions */
1614 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1615 break;
1616 default:
1617 dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1618 max_packet_size);
1619 return -EINVAL;
1620 }
1621
1622 kfree(command->completion);
1623 kfree(command);
1624
1625 return ret;
1626 }
1627
1628 /*
1629 * non-error returns are a promise to giveback() the urb later
1630 * we drop ownership so next owner (or urb unlink) can get it
1631 */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1632 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1633 {
1634 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1635 unsigned long flags;
1636 int ret = 0;
1637 unsigned int slot_id, ep_index;
1638 unsigned int *ep_state;
1639 struct urb_priv *urb_priv;
1640 int num_tds;
1641
1642 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1643
1644 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1645 num_tds = urb->number_of_packets;
1646 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1647 urb->transfer_buffer_length > 0 &&
1648 urb->transfer_flags & URB_ZERO_PACKET &&
1649 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1650 num_tds = 2;
1651 else
1652 num_tds = 1;
1653
1654 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1655 if (!urb_priv)
1656 return -ENOMEM;
1657
1658 urb_priv->num_tds = num_tds;
1659 urb_priv->num_tds_done = 0;
1660 urb->hcpriv = urb_priv;
1661
1662 trace_xhci_urb_enqueue(urb);
1663
1664 spin_lock_irqsave(&xhci->lock, flags);
1665
1666 ret = xhci_check_args(hcd, urb->dev, urb->ep,
1667 true, true, __func__);
1668 if (ret <= 0) {
1669 ret = ret ? ret : -EINVAL;
1670 goto free_priv;
1671 }
1672
1673 slot_id = urb->dev->slot_id;
1674
1675 if (!HCD_HW_ACCESSIBLE(hcd)) {
1676 ret = -ESHUTDOWN;
1677 goto free_priv;
1678 }
1679
1680 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1681 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1682 ret = -ENODEV;
1683 goto free_priv;
1684 }
1685
1686 if (xhci->xhc_state & XHCI_STATE_DYING) {
1687 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1688 urb->ep->desc.bEndpointAddress, urb);
1689 ret = -ESHUTDOWN;
1690 goto free_priv;
1691 }
1692
1693 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1694
1695 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1696 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1697 *ep_state);
1698 ret = -EINVAL;
1699 goto free_priv;
1700 }
1701 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1702 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1703 ret = -EINVAL;
1704 goto free_priv;
1705 }
1706
1707 switch (usb_endpoint_type(&urb->ep->desc)) {
1708
1709 case USB_ENDPOINT_XFER_CONTROL:
1710 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1711 slot_id, ep_index);
1712 break;
1713 case USB_ENDPOINT_XFER_BULK:
1714 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1715 slot_id, ep_index);
1716 break;
1717 case USB_ENDPOINT_XFER_INT:
1718 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1719 slot_id, ep_index);
1720 break;
1721 case USB_ENDPOINT_XFER_ISOC:
1722 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1723 slot_id, ep_index);
1724 }
1725
1726 if (ret) {
1727 free_priv:
1728 xhci_urb_free_priv(urb_priv);
1729 urb->hcpriv = NULL;
1730 }
1731 spin_unlock_irqrestore(&xhci->lock, flags);
1732 return ret;
1733 }
1734
1735 /*
1736 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1737 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1738 * should pick up where it left off in the TD, unless a Set Transfer Ring
1739 * Dequeue Pointer is issued.
1740 *
1741 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1742 * the ring. Since the ring is a contiguous structure, they can't be physically
1743 * removed. Instead, there are two options:
1744 *
1745 * 1) If the HC is in the middle of processing the URB to be canceled, we
1746 * simply move the ring's dequeue pointer past those TRBs using the Set
1747 * Transfer Ring Dequeue Pointer command. This will be the common case,
1748 * when drivers timeout on the last submitted URB and attempt to cancel.
1749 *
1750 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1751 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1752 * HC will need to invalidate the any TRBs it has cached after the stop
1753 * endpoint command, as noted in the xHCI 0.95 errata.
1754 *
1755 * 3) The TD may have completed by the time the Stop Endpoint Command
1756 * completes, so software needs to handle that case too.
1757 *
1758 * This function should protect against the TD enqueueing code ringing the
1759 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1760 * It also needs to account for multiple cancellations on happening at the same
1761 * time for the same endpoint.
1762 *
1763 * Note that this function can be called in any context, or so says
1764 * usb_hcd_unlink_urb()
1765 */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1766 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1767 {
1768 unsigned long flags;
1769 int ret, i;
1770 u32 temp;
1771 struct xhci_hcd *xhci;
1772 struct urb_priv *urb_priv;
1773 struct xhci_td *td;
1774 unsigned int ep_index;
1775 struct xhci_ring *ep_ring;
1776 struct xhci_virt_ep *ep;
1777 struct xhci_command *command;
1778 struct xhci_virt_device *vdev;
1779
1780 xhci = hcd_to_xhci(hcd);
1781 spin_lock_irqsave(&xhci->lock, flags);
1782
1783 trace_xhci_urb_dequeue(urb);
1784
1785 /* Make sure the URB hasn't completed or been unlinked already */
1786 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1787 if (ret)
1788 goto done;
1789
1790 /* give back URB now if we can't queue it for cancel */
1791 vdev = xhci->devs[urb->dev->slot_id];
1792 urb_priv = urb->hcpriv;
1793 if (!vdev || !urb_priv)
1794 goto err_giveback;
1795
1796 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1797 ep = &vdev->eps[ep_index];
1798 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1799 if (!ep || !ep_ring)
1800 goto err_giveback;
1801
1802 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1803 temp = readl(&xhci->op_regs->status);
1804 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1805 xhci_hc_died(xhci);
1806 goto done;
1807 }
1808
1809 /*
1810 * check ring is not re-allocated since URB was enqueued. If it is, then
1811 * make sure none of the ring related pointers in this URB private data
1812 * are touched, such as td_list, otherwise we overwrite freed data
1813 */
1814 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1815 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1816 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1817 td = &urb_priv->td[i];
1818 if (!list_empty(&td->cancelled_td_list))
1819 list_del_init(&td->cancelled_td_list);
1820 }
1821 goto err_giveback;
1822 }
1823
1824 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1825 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1826 "HC halted, freeing TD manually.");
1827 for (i = urb_priv->num_tds_done;
1828 i < urb_priv->num_tds;
1829 i++) {
1830 td = &urb_priv->td[i];
1831 if (!list_empty(&td->td_list))
1832 list_del_init(&td->td_list);
1833 if (!list_empty(&td->cancelled_td_list))
1834 list_del_init(&td->cancelled_td_list);
1835 }
1836 goto err_giveback;
1837 }
1838
1839 i = urb_priv->num_tds_done;
1840 if (i < urb_priv->num_tds)
1841 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1842 "Cancel URB %p, dev %s, ep 0x%x, "
1843 "starting at offset 0x%llx",
1844 urb, urb->dev->devpath,
1845 urb->ep->desc.bEndpointAddress,
1846 (unsigned long long) xhci_trb_virt_to_dma(
1847 urb_priv->td[i].start_seg,
1848 urb_priv->td[i].start_trb));
1849
1850 for (; i < urb_priv->num_tds; i++) {
1851 td = &urb_priv->td[i];
1852 /* TD can already be on cancelled list if ep halted on it */
1853 if (list_empty(&td->cancelled_td_list)) {
1854 td->cancel_status = TD_DIRTY;
1855 list_add_tail(&td->cancelled_td_list,
1856 &ep->cancelled_td_list);
1857 }
1858 }
1859
1860 /* These completion handlers will sort out cancelled TDs for us */
1861 if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) {
1862 xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n",
1863 urb->dev->slot_id, ep_index, ep->ep_state);
1864 goto done;
1865 }
1866
1867 /* In this case no commands are pending but the endpoint is stopped */
1868 if (ep->ep_state & EP_CLEARING_TT) {
1869 /* and cancelled TDs can be given back right away */
1870 xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n",
1871 urb->dev->slot_id, ep_index, ep->ep_state);
1872 xhci_process_cancelled_tds(ep);
1873 } else {
1874 /* Otherwise, queue a new Stop Endpoint command */
1875 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1876 if (!command) {
1877 ret = -ENOMEM;
1878 goto done;
1879 }
1880 ep->stop_time = jiffies;
1881 ep->ep_state |= EP_STOP_CMD_PENDING;
1882 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1883 ep_index, 0);
1884 xhci_ring_cmd_db(xhci);
1885 }
1886 done:
1887 spin_unlock_irqrestore(&xhci->lock, flags);
1888 return ret;
1889
1890 err_giveback:
1891 if (urb_priv)
1892 xhci_urb_free_priv(urb_priv);
1893 usb_hcd_unlink_urb_from_ep(hcd, urb);
1894 spin_unlock_irqrestore(&xhci->lock, flags);
1895 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1896 return ret;
1897 }
1898
1899 /* Drop an endpoint from a new bandwidth configuration for this device.
1900 * Only one call to this function is allowed per endpoint before
1901 * check_bandwidth() or reset_bandwidth() must be called.
1902 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1903 * add the endpoint to the schedule with possibly new parameters denoted by a
1904 * different endpoint descriptor in usb_host_endpoint.
1905 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1906 * not allowed.
1907 *
1908 * The USB core will not allow URBs to be queued to an endpoint that is being
1909 * disabled, so there's no need for mutual exclusion to protect
1910 * the xhci->devs[slot_id] structure.
1911 */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1912 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1913 struct usb_host_endpoint *ep)
1914 {
1915 struct xhci_hcd *xhci;
1916 struct xhci_container_ctx *in_ctx, *out_ctx;
1917 struct xhci_input_control_ctx *ctrl_ctx;
1918 unsigned int ep_index;
1919 struct xhci_ep_ctx *ep_ctx;
1920 u32 drop_flag;
1921 u32 new_add_flags, new_drop_flags;
1922 int ret;
1923
1924 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1925 if (ret <= 0)
1926 return ret;
1927 xhci = hcd_to_xhci(hcd);
1928 if (xhci->xhc_state & XHCI_STATE_DYING)
1929 return -ENODEV;
1930
1931 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1932 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1933 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1934 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1935 __func__, drop_flag);
1936 return 0;
1937 }
1938
1939 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1940 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1941 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1942 if (!ctrl_ctx) {
1943 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1944 __func__);
1945 return 0;
1946 }
1947
1948 ep_index = xhci_get_endpoint_index(&ep->desc);
1949 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1950 /* If the HC already knows the endpoint is disabled,
1951 * or the HCD has noted it is disabled, ignore this request
1952 */
1953 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1954 le32_to_cpu(ctrl_ctx->drop_flags) &
1955 xhci_get_endpoint_flag(&ep->desc)) {
1956 /* Do not warn when called after a usb_device_reset */
1957 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1958 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1959 __func__, ep);
1960 return 0;
1961 }
1962
1963 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1964 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1965
1966 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1967 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1968
1969 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1970
1971 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1972
1973 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1974 (unsigned int) ep->desc.bEndpointAddress,
1975 udev->slot_id,
1976 (unsigned int) new_drop_flags,
1977 (unsigned int) new_add_flags);
1978 return 0;
1979 }
1980 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1981
1982 /* Add an endpoint to a new possible bandwidth configuration for this device.
1983 * Only one call to this function is allowed per endpoint before
1984 * check_bandwidth() or reset_bandwidth() must be called.
1985 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1986 * add the endpoint to the schedule with possibly new parameters denoted by a
1987 * different endpoint descriptor in usb_host_endpoint.
1988 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1989 * not allowed.
1990 *
1991 * The USB core will not allow URBs to be queued to an endpoint until the
1992 * configuration or alt setting is installed in the device, so there's no need
1993 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1994 */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1995 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1996 struct usb_host_endpoint *ep)
1997 {
1998 struct xhci_hcd *xhci;
1999 struct xhci_container_ctx *in_ctx;
2000 unsigned int ep_index;
2001 struct xhci_input_control_ctx *ctrl_ctx;
2002 struct xhci_ep_ctx *ep_ctx;
2003 u32 added_ctxs;
2004 u32 new_add_flags, new_drop_flags;
2005 struct xhci_virt_device *virt_dev;
2006 int ret = 0;
2007
2008 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
2009 if (ret <= 0) {
2010 /* So we won't queue a reset ep command for a root hub */
2011 ep->hcpriv = NULL;
2012 return ret;
2013 }
2014 xhci = hcd_to_xhci(hcd);
2015 if (xhci->xhc_state & XHCI_STATE_DYING)
2016 return -ENODEV;
2017
2018 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2019 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2020 /* FIXME when we have to issue an evaluate endpoint command to
2021 * deal with ep0 max packet size changing once we get the
2022 * descriptors
2023 */
2024 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2025 __func__, added_ctxs);
2026 return 0;
2027 }
2028
2029 virt_dev = xhci->devs[udev->slot_id];
2030 in_ctx = virt_dev->in_ctx;
2031 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2032 if (!ctrl_ctx) {
2033 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2034 __func__);
2035 return 0;
2036 }
2037
2038 ep_index = xhci_get_endpoint_index(&ep->desc);
2039 /* If this endpoint is already in use, and the upper layers are trying
2040 * to add it again without dropping it, reject the addition.
2041 */
2042 if (virt_dev->eps[ep_index].ring &&
2043 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2044 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2045 "without dropping it.\n",
2046 (unsigned int) ep->desc.bEndpointAddress);
2047 return -EINVAL;
2048 }
2049
2050 /* If the HCD has already noted the endpoint is enabled,
2051 * ignore this request.
2052 */
2053 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2054 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2055 __func__, ep);
2056 return 0;
2057 }
2058
2059 /*
2060 * Configuration and alternate setting changes must be done in
2061 * process context, not interrupt context (or so documenation
2062 * for usb_set_interface() and usb_set_configuration() claim).
2063 */
2064 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2065 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2066 __func__, ep->desc.bEndpointAddress);
2067 return -ENOMEM;
2068 }
2069
2070 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2071 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2072
2073 /* If xhci_endpoint_disable() was called for this endpoint, but the
2074 * xHC hasn't been notified yet through the check_bandwidth() call,
2075 * this re-adds a new state for the endpoint from the new endpoint
2076 * descriptors. We must drop and re-add this endpoint, so we leave the
2077 * drop flags alone.
2078 */
2079 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2080
2081 /* Store the usb_device pointer for later use */
2082 ep->hcpriv = udev;
2083
2084 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2085 trace_xhci_add_endpoint(ep_ctx);
2086
2087 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2088 (unsigned int) ep->desc.bEndpointAddress,
2089 udev->slot_id,
2090 (unsigned int) new_drop_flags,
2091 (unsigned int) new_add_flags);
2092 return 0;
2093 }
2094 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2095
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2096 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2097 {
2098 struct xhci_input_control_ctx *ctrl_ctx;
2099 struct xhci_ep_ctx *ep_ctx;
2100 struct xhci_slot_ctx *slot_ctx;
2101 int i;
2102
2103 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2104 if (!ctrl_ctx) {
2105 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2106 __func__);
2107 return;
2108 }
2109
2110 /* When a device's add flag and drop flag are zero, any subsequent
2111 * configure endpoint command will leave that endpoint's state
2112 * untouched. Make sure we don't leave any old state in the input
2113 * endpoint contexts.
2114 */
2115 ctrl_ctx->drop_flags = 0;
2116 ctrl_ctx->add_flags = 0;
2117 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2118 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2119 /* Endpoint 0 is always valid */
2120 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2121 for (i = 1; i < 31; i++) {
2122 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2123 ep_ctx->ep_info = 0;
2124 ep_ctx->ep_info2 = 0;
2125 ep_ctx->deq = 0;
2126 ep_ctx->tx_info = 0;
2127 }
2128 }
2129
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2130 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2131 struct usb_device *udev, u32 *cmd_status)
2132 {
2133 int ret;
2134
2135 switch (*cmd_status) {
2136 case COMP_COMMAND_ABORTED:
2137 case COMP_COMMAND_RING_STOPPED:
2138 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2139 ret = -ETIME;
2140 break;
2141 case COMP_RESOURCE_ERROR:
2142 dev_warn(&udev->dev,
2143 "Not enough host controller resources for new device state.\n");
2144 ret = -ENOMEM;
2145 /* FIXME: can we allocate more resources for the HC? */
2146 break;
2147 case COMP_BANDWIDTH_ERROR:
2148 case COMP_SECONDARY_BANDWIDTH_ERROR:
2149 dev_warn(&udev->dev,
2150 "Not enough bandwidth for new device state.\n");
2151 ret = -ENOSPC;
2152 /* FIXME: can we go back to the old state? */
2153 break;
2154 case COMP_TRB_ERROR:
2155 /* the HCD set up something wrong */
2156 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2157 "add flag = 1, "
2158 "and endpoint is not disabled.\n");
2159 ret = -EINVAL;
2160 break;
2161 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2162 dev_warn(&udev->dev,
2163 "ERROR: Incompatible device for endpoint configure command.\n");
2164 ret = -ENODEV;
2165 break;
2166 case COMP_SUCCESS:
2167 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2168 "Successful Endpoint Configure command");
2169 ret = 0;
2170 break;
2171 default:
2172 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2173 *cmd_status);
2174 ret = -EINVAL;
2175 break;
2176 }
2177 return ret;
2178 }
2179
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2180 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2181 struct usb_device *udev, u32 *cmd_status)
2182 {
2183 int ret;
2184
2185 switch (*cmd_status) {
2186 case COMP_COMMAND_ABORTED:
2187 case COMP_COMMAND_RING_STOPPED:
2188 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2189 ret = -ETIME;
2190 break;
2191 case COMP_PARAMETER_ERROR:
2192 dev_warn(&udev->dev,
2193 "WARN: xHCI driver setup invalid evaluate context command.\n");
2194 ret = -EINVAL;
2195 break;
2196 case COMP_SLOT_NOT_ENABLED_ERROR:
2197 dev_warn(&udev->dev,
2198 "WARN: slot not enabled for evaluate context command.\n");
2199 ret = -EINVAL;
2200 break;
2201 case COMP_CONTEXT_STATE_ERROR:
2202 dev_warn(&udev->dev,
2203 "WARN: invalid context state for evaluate context command.\n");
2204 ret = -EINVAL;
2205 break;
2206 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2207 dev_warn(&udev->dev,
2208 "ERROR: Incompatible device for evaluate context command.\n");
2209 ret = -ENODEV;
2210 break;
2211 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2212 /* Max Exit Latency too large error */
2213 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2214 ret = -EINVAL;
2215 break;
2216 case COMP_SUCCESS:
2217 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2218 "Successful evaluate context command");
2219 ret = 0;
2220 break;
2221 default:
2222 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2223 *cmd_status);
2224 ret = -EINVAL;
2225 break;
2226 }
2227 return ret;
2228 }
2229
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2230 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2231 struct xhci_input_control_ctx *ctrl_ctx)
2232 {
2233 u32 valid_add_flags;
2234 u32 valid_drop_flags;
2235
2236 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2237 * (bit 1). The default control endpoint is added during the Address
2238 * Device command and is never removed until the slot is disabled.
2239 */
2240 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2241 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2242
2243 /* Use hweight32 to count the number of ones in the add flags, or
2244 * number of endpoints added. Don't count endpoints that are changed
2245 * (both added and dropped).
2246 */
2247 return hweight32(valid_add_flags) -
2248 hweight32(valid_add_flags & valid_drop_flags);
2249 }
2250
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2251 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2252 struct xhci_input_control_ctx *ctrl_ctx)
2253 {
2254 u32 valid_add_flags;
2255 u32 valid_drop_flags;
2256
2257 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2258 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2259
2260 return hweight32(valid_drop_flags) -
2261 hweight32(valid_add_flags & valid_drop_flags);
2262 }
2263
2264 /*
2265 * We need to reserve the new number of endpoints before the configure endpoint
2266 * command completes. We can't subtract the dropped endpoints from the number
2267 * of active endpoints until the command completes because we can oversubscribe
2268 * the host in this case:
2269 *
2270 * - the first configure endpoint command drops more endpoints than it adds
2271 * - a second configure endpoint command that adds more endpoints is queued
2272 * - the first configure endpoint command fails, so the config is unchanged
2273 * - the second command may succeed, even though there isn't enough resources
2274 *
2275 * Must be called with xhci->lock held.
2276 */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2277 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2278 struct xhci_input_control_ctx *ctrl_ctx)
2279 {
2280 u32 added_eps;
2281
2282 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2283 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2284 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2285 "Not enough ep ctxs: "
2286 "%u active, need to add %u, limit is %u.",
2287 xhci->num_active_eps, added_eps,
2288 xhci->limit_active_eps);
2289 return -ENOMEM;
2290 }
2291 xhci->num_active_eps += added_eps;
2292 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2293 "Adding %u ep ctxs, %u now active.", added_eps,
2294 xhci->num_active_eps);
2295 return 0;
2296 }
2297
2298 /*
2299 * The configure endpoint was failed by the xHC for some other reason, so we
2300 * need to revert the resources that failed configuration would have used.
2301 *
2302 * Must be called with xhci->lock held.
2303 */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2304 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2305 struct xhci_input_control_ctx *ctrl_ctx)
2306 {
2307 u32 num_failed_eps;
2308
2309 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2310 xhci->num_active_eps -= num_failed_eps;
2311 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2312 "Removing %u failed ep ctxs, %u now active.",
2313 num_failed_eps,
2314 xhci->num_active_eps);
2315 }
2316
2317 /*
2318 * Now that the command has completed, clean up the active endpoint count by
2319 * subtracting out the endpoints that were dropped (but not changed).
2320 *
2321 * Must be called with xhci->lock held.
2322 */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2323 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2324 struct xhci_input_control_ctx *ctrl_ctx)
2325 {
2326 u32 num_dropped_eps;
2327
2328 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2329 xhci->num_active_eps -= num_dropped_eps;
2330 if (num_dropped_eps)
2331 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2332 "Removing %u dropped ep ctxs, %u now active.",
2333 num_dropped_eps,
2334 xhci->num_active_eps);
2335 }
2336
xhci_get_block_size(struct usb_device * udev)2337 static unsigned int xhci_get_block_size(struct usb_device *udev)
2338 {
2339 switch (udev->speed) {
2340 case USB_SPEED_LOW:
2341 case USB_SPEED_FULL:
2342 return FS_BLOCK;
2343 case USB_SPEED_HIGH:
2344 return HS_BLOCK;
2345 case USB_SPEED_SUPER:
2346 case USB_SPEED_SUPER_PLUS:
2347 return SS_BLOCK;
2348 case USB_SPEED_UNKNOWN:
2349 default:
2350 /* Should never happen */
2351 return 1;
2352 }
2353 }
2354
2355 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2356 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2357 {
2358 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2359 return LS_OVERHEAD;
2360 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2361 return FS_OVERHEAD;
2362 return HS_OVERHEAD;
2363 }
2364
2365 /* If we are changing a LS/FS device under a HS hub,
2366 * make sure (if we are activating a new TT) that the HS bus has enough
2367 * bandwidth for this new TT.
2368 */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2369 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2370 struct xhci_virt_device *virt_dev,
2371 int old_active_eps)
2372 {
2373 struct xhci_interval_bw_table *bw_table;
2374 struct xhci_tt_bw_info *tt_info;
2375
2376 /* Find the bandwidth table for the root port this TT is attached to. */
2377 bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table;
2378 tt_info = virt_dev->tt_info;
2379 /* If this TT already had active endpoints, the bandwidth for this TT
2380 * has already been added. Removing all periodic endpoints (and thus
2381 * making the TT enactive) will only decrease the bandwidth used.
2382 */
2383 if (old_active_eps)
2384 return 0;
2385 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2386 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2387 return -ENOMEM;
2388 return 0;
2389 }
2390 /* Not sure why we would have no new active endpoints...
2391 *
2392 * Maybe because of an Evaluate Context change for a hub update or a
2393 * control endpoint 0 max packet size change?
2394 * FIXME: skip the bandwidth calculation in that case.
2395 */
2396 return 0;
2397 }
2398
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2399 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2400 struct xhci_virt_device *virt_dev)
2401 {
2402 unsigned int bw_reserved;
2403
2404 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2405 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2406 return -ENOMEM;
2407
2408 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2409 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2410 return -ENOMEM;
2411
2412 return 0;
2413 }
2414
2415 /*
2416 * This algorithm is a very conservative estimate of the worst-case scheduling
2417 * scenario for any one interval. The hardware dynamically schedules the
2418 * packets, so we can't tell which microframe could be the limiting factor in
2419 * the bandwidth scheduling. This only takes into account periodic endpoints.
2420 *
2421 * Obviously, we can't solve an NP complete problem to find the minimum worst
2422 * case scenario. Instead, we come up with an estimate that is no less than
2423 * the worst case bandwidth used for any one microframe, but may be an
2424 * over-estimate.
2425 *
2426 * We walk the requirements for each endpoint by interval, starting with the
2427 * smallest interval, and place packets in the schedule where there is only one
2428 * possible way to schedule packets for that interval. In order to simplify
2429 * this algorithm, we record the largest max packet size for each interval, and
2430 * assume all packets will be that size.
2431 *
2432 * For interval 0, we obviously must schedule all packets for each interval.
2433 * The bandwidth for interval 0 is just the amount of data to be transmitted
2434 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2435 * the number of packets).
2436 *
2437 * For interval 1, we have two possible microframes to schedule those packets
2438 * in. For this algorithm, if we can schedule the same number of packets for
2439 * each possible scheduling opportunity (each microframe), we will do so. The
2440 * remaining number of packets will be saved to be transmitted in the gaps in
2441 * the next interval's scheduling sequence.
2442 *
2443 * As we move those remaining packets to be scheduled with interval 2 packets,
2444 * we have to double the number of remaining packets to transmit. This is
2445 * because the intervals are actually powers of 2, and we would be transmitting
2446 * the previous interval's packets twice in this interval. We also have to be
2447 * sure that when we look at the largest max packet size for this interval, we
2448 * also look at the largest max packet size for the remaining packets and take
2449 * the greater of the two.
2450 *
2451 * The algorithm continues to evenly distribute packets in each scheduling
2452 * opportunity, and push the remaining packets out, until we get to the last
2453 * interval. Then those packets and their associated overhead are just added
2454 * to the bandwidth used.
2455 */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2456 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2457 struct xhci_virt_device *virt_dev,
2458 int old_active_eps)
2459 {
2460 unsigned int bw_reserved;
2461 unsigned int max_bandwidth;
2462 unsigned int bw_used;
2463 unsigned int block_size;
2464 struct xhci_interval_bw_table *bw_table;
2465 unsigned int packet_size = 0;
2466 unsigned int overhead = 0;
2467 unsigned int packets_transmitted = 0;
2468 unsigned int packets_remaining = 0;
2469 unsigned int i;
2470
2471 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2472 return xhci_check_ss_bw(xhci, virt_dev);
2473
2474 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2475 max_bandwidth = HS_BW_LIMIT;
2476 /* Convert percent of bus BW reserved to blocks reserved */
2477 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2478 } else {
2479 max_bandwidth = FS_BW_LIMIT;
2480 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2481 }
2482
2483 bw_table = virt_dev->bw_table;
2484 /* We need to translate the max packet size and max ESIT payloads into
2485 * the units the hardware uses.
2486 */
2487 block_size = xhci_get_block_size(virt_dev->udev);
2488
2489 /* If we are manipulating a LS/FS device under a HS hub, double check
2490 * that the HS bus has enough bandwidth if we are activing a new TT.
2491 */
2492 if (virt_dev->tt_info) {
2493 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2494 "Recalculating BW for rootport %u",
2495 virt_dev->rhub_port->hw_portnum + 1);
2496 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2497 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2498 "newly activated TT.\n");
2499 return -ENOMEM;
2500 }
2501 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2502 "Recalculating BW for TT slot %u port %u",
2503 virt_dev->tt_info->slot_id,
2504 virt_dev->tt_info->ttport);
2505 } else {
2506 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2507 "Recalculating BW for rootport %u",
2508 virt_dev->rhub_port->hw_portnum + 1);
2509 }
2510
2511 /* Add in how much bandwidth will be used for interval zero, or the
2512 * rounded max ESIT payload + number of packets * largest overhead.
2513 */
2514 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2515 bw_table->interval_bw[0].num_packets *
2516 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2517
2518 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2519 unsigned int bw_added;
2520 unsigned int largest_mps;
2521 unsigned int interval_overhead;
2522
2523 /*
2524 * How many packets could we transmit in this interval?
2525 * If packets didn't fit in the previous interval, we will need
2526 * to transmit that many packets twice within this interval.
2527 */
2528 packets_remaining = 2 * packets_remaining +
2529 bw_table->interval_bw[i].num_packets;
2530
2531 /* Find the largest max packet size of this or the previous
2532 * interval.
2533 */
2534 if (list_empty(&bw_table->interval_bw[i].endpoints))
2535 largest_mps = 0;
2536 else {
2537 struct xhci_virt_ep *virt_ep;
2538 struct list_head *ep_entry;
2539
2540 ep_entry = bw_table->interval_bw[i].endpoints.next;
2541 virt_ep = list_entry(ep_entry,
2542 struct xhci_virt_ep, bw_endpoint_list);
2543 /* Convert to blocks, rounding up */
2544 largest_mps = DIV_ROUND_UP(
2545 virt_ep->bw_info.max_packet_size,
2546 block_size);
2547 }
2548 if (largest_mps > packet_size)
2549 packet_size = largest_mps;
2550
2551 /* Use the larger overhead of this or the previous interval. */
2552 interval_overhead = xhci_get_largest_overhead(
2553 &bw_table->interval_bw[i]);
2554 if (interval_overhead > overhead)
2555 overhead = interval_overhead;
2556
2557 /* How many packets can we evenly distribute across
2558 * (1 << (i + 1)) possible scheduling opportunities?
2559 */
2560 packets_transmitted = packets_remaining >> (i + 1);
2561
2562 /* Add in the bandwidth used for those scheduled packets */
2563 bw_added = packets_transmitted * (overhead + packet_size);
2564
2565 /* How many packets do we have remaining to transmit? */
2566 packets_remaining = packets_remaining % (1 << (i + 1));
2567
2568 /* What largest max packet size should those packets have? */
2569 /* If we've transmitted all packets, don't carry over the
2570 * largest packet size.
2571 */
2572 if (packets_remaining == 0) {
2573 packet_size = 0;
2574 overhead = 0;
2575 } else if (packets_transmitted > 0) {
2576 /* Otherwise if we do have remaining packets, and we've
2577 * scheduled some packets in this interval, take the
2578 * largest max packet size from endpoints with this
2579 * interval.
2580 */
2581 packet_size = largest_mps;
2582 overhead = interval_overhead;
2583 }
2584 /* Otherwise carry over packet_size and overhead from the last
2585 * time we had a remainder.
2586 */
2587 bw_used += bw_added;
2588 if (bw_used > max_bandwidth) {
2589 xhci_warn(xhci, "Not enough bandwidth. "
2590 "Proposed: %u, Max: %u\n",
2591 bw_used, max_bandwidth);
2592 return -ENOMEM;
2593 }
2594 }
2595 /*
2596 * Ok, we know we have some packets left over after even-handedly
2597 * scheduling interval 15. We don't know which microframes they will
2598 * fit into, so we over-schedule and say they will be scheduled every
2599 * microframe.
2600 */
2601 if (packets_remaining > 0)
2602 bw_used += overhead + packet_size;
2603
2604 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2605 /* OK, we're manipulating a HS device attached to a
2606 * root port bandwidth domain. Include the number of active TTs
2607 * in the bandwidth used.
2608 */
2609 bw_used += TT_HS_OVERHEAD *
2610 xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts;
2611 }
2612
2613 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2614 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2615 "Available: %u " "percent",
2616 bw_used, max_bandwidth, bw_reserved,
2617 (max_bandwidth - bw_used - bw_reserved) * 100 /
2618 max_bandwidth);
2619
2620 bw_used += bw_reserved;
2621 if (bw_used > max_bandwidth) {
2622 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2623 bw_used, max_bandwidth);
2624 return -ENOMEM;
2625 }
2626
2627 bw_table->bw_used = bw_used;
2628 return 0;
2629 }
2630
xhci_is_async_ep(unsigned int ep_type)2631 static bool xhci_is_async_ep(unsigned int ep_type)
2632 {
2633 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2634 ep_type != ISOC_IN_EP &&
2635 ep_type != INT_IN_EP);
2636 }
2637
xhci_is_sync_in_ep(unsigned int ep_type)2638 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2639 {
2640 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2641 }
2642
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2643 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2644 {
2645 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2646
2647 if (ep_bw->ep_interval == 0)
2648 return SS_OVERHEAD_BURST +
2649 (ep_bw->mult * ep_bw->num_packets *
2650 (SS_OVERHEAD + mps));
2651 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2652 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2653 1 << ep_bw->ep_interval);
2654
2655 }
2656
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2657 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2658 struct xhci_bw_info *ep_bw,
2659 struct xhci_interval_bw_table *bw_table,
2660 struct usb_device *udev,
2661 struct xhci_virt_ep *virt_ep,
2662 struct xhci_tt_bw_info *tt_info)
2663 {
2664 struct xhci_interval_bw *interval_bw;
2665 int normalized_interval;
2666
2667 if (xhci_is_async_ep(ep_bw->type))
2668 return;
2669
2670 if (udev->speed >= USB_SPEED_SUPER) {
2671 if (xhci_is_sync_in_ep(ep_bw->type))
2672 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2673 xhci_get_ss_bw_consumed(ep_bw);
2674 else
2675 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2676 xhci_get_ss_bw_consumed(ep_bw);
2677 return;
2678 }
2679
2680 /* SuperSpeed endpoints never get added to intervals in the table, so
2681 * this check is only valid for HS/FS/LS devices.
2682 */
2683 if (list_empty(&virt_ep->bw_endpoint_list))
2684 return;
2685 /* For LS/FS devices, we need to translate the interval expressed in
2686 * microframes to frames.
2687 */
2688 if (udev->speed == USB_SPEED_HIGH)
2689 normalized_interval = ep_bw->ep_interval;
2690 else
2691 normalized_interval = ep_bw->ep_interval - 3;
2692
2693 if (normalized_interval == 0)
2694 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2695 interval_bw = &bw_table->interval_bw[normalized_interval];
2696 interval_bw->num_packets -= ep_bw->num_packets;
2697 switch (udev->speed) {
2698 case USB_SPEED_LOW:
2699 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2700 break;
2701 case USB_SPEED_FULL:
2702 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2703 break;
2704 case USB_SPEED_HIGH:
2705 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2706 break;
2707 default:
2708 /* Should never happen because only LS/FS/HS endpoints will get
2709 * added to the endpoint list.
2710 */
2711 return;
2712 }
2713 if (tt_info)
2714 tt_info->active_eps -= 1;
2715 list_del_init(&virt_ep->bw_endpoint_list);
2716 }
2717
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2718 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2719 struct xhci_bw_info *ep_bw,
2720 struct xhci_interval_bw_table *bw_table,
2721 struct usb_device *udev,
2722 struct xhci_virt_ep *virt_ep,
2723 struct xhci_tt_bw_info *tt_info)
2724 {
2725 struct xhci_interval_bw *interval_bw;
2726 struct xhci_virt_ep *smaller_ep;
2727 int normalized_interval;
2728
2729 if (xhci_is_async_ep(ep_bw->type))
2730 return;
2731
2732 if (udev->speed == USB_SPEED_SUPER) {
2733 if (xhci_is_sync_in_ep(ep_bw->type))
2734 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2735 xhci_get_ss_bw_consumed(ep_bw);
2736 else
2737 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2738 xhci_get_ss_bw_consumed(ep_bw);
2739 return;
2740 }
2741
2742 /* For LS/FS devices, we need to translate the interval expressed in
2743 * microframes to frames.
2744 */
2745 if (udev->speed == USB_SPEED_HIGH)
2746 normalized_interval = ep_bw->ep_interval;
2747 else
2748 normalized_interval = ep_bw->ep_interval - 3;
2749
2750 if (normalized_interval == 0)
2751 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2752 interval_bw = &bw_table->interval_bw[normalized_interval];
2753 interval_bw->num_packets += ep_bw->num_packets;
2754 switch (udev->speed) {
2755 case USB_SPEED_LOW:
2756 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2757 break;
2758 case USB_SPEED_FULL:
2759 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2760 break;
2761 case USB_SPEED_HIGH:
2762 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2763 break;
2764 default:
2765 /* Should never happen because only LS/FS/HS endpoints will get
2766 * added to the endpoint list.
2767 */
2768 return;
2769 }
2770
2771 if (tt_info)
2772 tt_info->active_eps += 1;
2773 /* Insert the endpoint into the list, largest max packet size first. */
2774 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2775 bw_endpoint_list) {
2776 if (ep_bw->max_packet_size >=
2777 smaller_ep->bw_info.max_packet_size) {
2778 /* Add the new ep before the smaller endpoint */
2779 list_add_tail(&virt_ep->bw_endpoint_list,
2780 &smaller_ep->bw_endpoint_list);
2781 return;
2782 }
2783 }
2784 /* Add the new endpoint at the end of the list. */
2785 list_add_tail(&virt_ep->bw_endpoint_list,
2786 &interval_bw->endpoints);
2787 }
2788
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2789 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2790 struct xhci_virt_device *virt_dev,
2791 int old_active_eps)
2792 {
2793 struct xhci_root_port_bw_info *rh_bw_info;
2794 if (!virt_dev->tt_info)
2795 return;
2796
2797 rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum];
2798 if (old_active_eps == 0 &&
2799 virt_dev->tt_info->active_eps != 0) {
2800 rh_bw_info->num_active_tts += 1;
2801 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2802 } else if (old_active_eps != 0 &&
2803 virt_dev->tt_info->active_eps == 0) {
2804 rh_bw_info->num_active_tts -= 1;
2805 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2806 }
2807 }
2808
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2809 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2810 struct xhci_virt_device *virt_dev,
2811 struct xhci_container_ctx *in_ctx)
2812 {
2813 struct xhci_bw_info ep_bw_info[31];
2814 int i;
2815 struct xhci_input_control_ctx *ctrl_ctx;
2816 int old_active_eps = 0;
2817
2818 if (virt_dev->tt_info)
2819 old_active_eps = virt_dev->tt_info->active_eps;
2820
2821 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2822 if (!ctrl_ctx) {
2823 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2824 __func__);
2825 return -ENOMEM;
2826 }
2827
2828 for (i = 0; i < 31; i++) {
2829 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2830 continue;
2831
2832 /* Make a copy of the BW info in case we need to revert this */
2833 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2834 sizeof(ep_bw_info[i]));
2835 /* Drop the endpoint from the interval table if the endpoint is
2836 * being dropped or changed.
2837 */
2838 if (EP_IS_DROPPED(ctrl_ctx, i))
2839 xhci_drop_ep_from_interval_table(xhci,
2840 &virt_dev->eps[i].bw_info,
2841 virt_dev->bw_table,
2842 virt_dev->udev,
2843 &virt_dev->eps[i],
2844 virt_dev->tt_info);
2845 }
2846 /* Overwrite the information stored in the endpoints' bw_info */
2847 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2848 for (i = 0; i < 31; i++) {
2849 /* Add any changed or added endpoints to the interval table */
2850 if (EP_IS_ADDED(ctrl_ctx, i))
2851 xhci_add_ep_to_interval_table(xhci,
2852 &virt_dev->eps[i].bw_info,
2853 virt_dev->bw_table,
2854 virt_dev->udev,
2855 &virt_dev->eps[i],
2856 virt_dev->tt_info);
2857 }
2858
2859 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2860 /* Ok, this fits in the bandwidth we have.
2861 * Update the number of active TTs.
2862 */
2863 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2864 return 0;
2865 }
2866
2867 /* We don't have enough bandwidth for this, revert the stored info. */
2868 for (i = 0; i < 31; i++) {
2869 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2870 continue;
2871
2872 /* Drop the new copies of any added or changed endpoints from
2873 * the interval table.
2874 */
2875 if (EP_IS_ADDED(ctrl_ctx, i)) {
2876 xhci_drop_ep_from_interval_table(xhci,
2877 &virt_dev->eps[i].bw_info,
2878 virt_dev->bw_table,
2879 virt_dev->udev,
2880 &virt_dev->eps[i],
2881 virt_dev->tt_info);
2882 }
2883 /* Revert the endpoint back to its old information */
2884 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2885 sizeof(ep_bw_info[i]));
2886 /* Add any changed or dropped endpoints back into the table */
2887 if (EP_IS_DROPPED(ctrl_ctx, i))
2888 xhci_add_ep_to_interval_table(xhci,
2889 &virt_dev->eps[i].bw_info,
2890 virt_dev->bw_table,
2891 virt_dev->udev,
2892 &virt_dev->eps[i],
2893 virt_dev->tt_info);
2894 }
2895 return -ENOMEM;
2896 }
2897
2898 /*
2899 * Synchronous XHCI stop endpoint helper. Issues the stop endpoint command and
2900 * waits for the command completion before returning. This does not call
2901 * xhci_handle_cmd_stop_ep(), which has additional handling for 'context error'
2902 * cases, along with transfer ring cleanup.
2903 *
2904 * xhci_stop_endpoint_sync() is intended to be utilized by clients that manage
2905 * their own transfer ring, such as offload situations.
2906 */
xhci_stop_endpoint_sync(struct xhci_hcd * xhci,struct xhci_virt_ep * ep,int suspend,gfp_t gfp_flags)2907 int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend,
2908 gfp_t gfp_flags)
2909 {
2910 struct xhci_command *command;
2911 unsigned long flags;
2912 int ret;
2913
2914 command = xhci_alloc_command(xhci, true, gfp_flags);
2915 if (!command)
2916 return -ENOMEM;
2917
2918 spin_lock_irqsave(&xhci->lock, flags);
2919 ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id,
2920 ep->ep_index, suspend);
2921 if (ret < 0) {
2922 spin_unlock_irqrestore(&xhci->lock, flags);
2923 goto out;
2924 }
2925
2926 xhci_ring_cmd_db(xhci);
2927 spin_unlock_irqrestore(&xhci->lock, flags);
2928
2929 wait_for_completion(command->completion);
2930
2931 /* No handling for COMP_CONTEXT_STATE_ERROR done at command completion*/
2932 if (command->status == COMP_COMMAND_ABORTED ||
2933 command->status == COMP_COMMAND_RING_STOPPED) {
2934 xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n");
2935 ret = -ETIME;
2936 }
2937 out:
2938 xhci_free_command(xhci, command);
2939
2940 return ret;
2941 }
2942 EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync);
2943
2944 /* Issue a configure endpoint command or evaluate context command
2945 * and wait for it to finish.
2946 */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2947 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2948 struct usb_device *udev,
2949 struct xhci_command *command,
2950 bool ctx_change, bool must_succeed)
2951 {
2952 int ret;
2953 unsigned long flags;
2954 struct xhci_input_control_ctx *ctrl_ctx;
2955 struct xhci_virt_device *virt_dev;
2956 struct xhci_slot_ctx *slot_ctx;
2957
2958 if (!command)
2959 return -EINVAL;
2960
2961 spin_lock_irqsave(&xhci->lock, flags);
2962
2963 if (xhci->xhc_state & XHCI_STATE_DYING) {
2964 spin_unlock_irqrestore(&xhci->lock, flags);
2965 return -ESHUTDOWN;
2966 }
2967
2968 virt_dev = xhci->devs[udev->slot_id];
2969
2970 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2971 if (!ctrl_ctx) {
2972 spin_unlock_irqrestore(&xhci->lock, flags);
2973 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2974 __func__);
2975 return -ENOMEM;
2976 }
2977
2978 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2979 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2980 spin_unlock_irqrestore(&xhci->lock, flags);
2981 xhci_warn(xhci, "Not enough host resources, "
2982 "active endpoint contexts = %u\n",
2983 xhci->num_active_eps);
2984 return -ENOMEM;
2985 }
2986 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change &&
2987 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2988 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2989 xhci_free_host_resources(xhci, ctrl_ctx);
2990 spin_unlock_irqrestore(&xhci->lock, flags);
2991 xhci_warn(xhci, "Not enough bandwidth\n");
2992 return -ENOMEM;
2993 }
2994
2995 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2996
2997 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2998 trace_xhci_configure_endpoint(slot_ctx);
2999
3000 if (!ctx_change)
3001 ret = xhci_queue_configure_endpoint(xhci, command,
3002 command->in_ctx->dma,
3003 udev->slot_id, must_succeed);
3004 else
3005 ret = xhci_queue_evaluate_context(xhci, command,
3006 command->in_ctx->dma,
3007 udev->slot_id, must_succeed);
3008 if (ret < 0) {
3009 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
3010 xhci_free_host_resources(xhci, ctrl_ctx);
3011 spin_unlock_irqrestore(&xhci->lock, flags);
3012 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3013 "FIXME allocate a new ring segment");
3014 return -ENOMEM;
3015 }
3016 xhci_ring_cmd_db(xhci);
3017 spin_unlock_irqrestore(&xhci->lock, flags);
3018
3019 /* Wait for the configure endpoint command to complete */
3020 wait_for_completion(command->completion);
3021
3022 if (!ctx_change)
3023 ret = xhci_configure_endpoint_result(xhci, udev,
3024 &command->status);
3025 else
3026 ret = xhci_evaluate_context_result(xhci, udev,
3027 &command->status);
3028
3029 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3030 spin_lock_irqsave(&xhci->lock, flags);
3031 /* If the command failed, remove the reserved resources.
3032 * Otherwise, clean up the estimate to include dropped eps.
3033 */
3034 if (ret)
3035 xhci_free_host_resources(xhci, ctrl_ctx);
3036 else
3037 xhci_finish_resource_reservation(xhci, ctrl_ctx);
3038 spin_unlock_irqrestore(&xhci->lock, flags);
3039 }
3040 return ret;
3041 }
3042
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)3043 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3044 struct xhci_virt_device *vdev, int i)
3045 {
3046 struct xhci_virt_ep *ep = &vdev->eps[i];
3047
3048 if (ep->ep_state & EP_HAS_STREAMS) {
3049 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3050 xhci_get_endpoint_address(i));
3051 xhci_free_stream_info(xhci, ep->stream_info);
3052 ep->stream_info = NULL;
3053 ep->ep_state &= ~EP_HAS_STREAMS;
3054 }
3055 }
3056
3057 /* Called after one or more calls to xhci_add_endpoint() or
3058 * xhci_drop_endpoint(). If this call fails, the USB core is expected
3059 * to call xhci_reset_bandwidth().
3060 *
3061 * Since we are in the middle of changing either configuration or
3062 * installing a new alt setting, the USB core won't allow URBs to be
3063 * enqueued for any endpoint on the old config or interface. Nothing
3064 * else should be touching the xhci->devs[slot_id] structure, so we
3065 * don't need to take the xhci->lock for manipulating that.
3066 */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3067 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3068 {
3069 int i;
3070 int ret = 0;
3071 struct xhci_hcd *xhci;
3072 struct xhci_virt_device *virt_dev;
3073 struct xhci_input_control_ctx *ctrl_ctx;
3074 struct xhci_slot_ctx *slot_ctx;
3075 struct xhci_command *command;
3076
3077 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3078 if (ret <= 0)
3079 return ret;
3080 xhci = hcd_to_xhci(hcd);
3081 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3082 (xhci->xhc_state & XHCI_STATE_REMOVING))
3083 return -ENODEV;
3084
3085 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3086 virt_dev = xhci->devs[udev->slot_id];
3087
3088 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3089 if (!command)
3090 return -ENOMEM;
3091
3092 command->in_ctx = virt_dev->in_ctx;
3093
3094 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3095 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3096 if (!ctrl_ctx) {
3097 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3098 __func__);
3099 ret = -ENOMEM;
3100 goto command_cleanup;
3101 }
3102 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3103 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3104 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3105
3106 /* Don't issue the command if there's no endpoints to update. */
3107 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3108 ctrl_ctx->drop_flags == 0) {
3109 ret = 0;
3110 goto command_cleanup;
3111 }
3112 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3113 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3114 for (i = 31; i >= 1; i--) {
3115 __le32 le32 = cpu_to_le32(BIT(i));
3116
3117 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3118 || (ctrl_ctx->add_flags & le32) || i == 1) {
3119 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3120 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3121 break;
3122 }
3123 }
3124
3125 ret = xhci_configure_endpoint(xhci, udev, command,
3126 false, false);
3127 if (ret)
3128 /* Callee should call reset_bandwidth() */
3129 goto command_cleanup;
3130
3131 /* Free any rings that were dropped, but not changed. */
3132 for (i = 1; i < 31; i++) {
3133 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3134 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3135 xhci_free_endpoint_ring(xhci, virt_dev, i);
3136 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3137 }
3138 }
3139 xhci_zero_in_ctx(xhci, virt_dev);
3140 /*
3141 * Install any rings for completely new endpoints or changed endpoints,
3142 * and free any old rings from changed endpoints.
3143 */
3144 for (i = 1; i < 31; i++) {
3145 if (!virt_dev->eps[i].new_ring)
3146 continue;
3147 /* Only free the old ring if it exists.
3148 * It may not if this is the first add of an endpoint.
3149 */
3150 if (virt_dev->eps[i].ring) {
3151 xhci_free_endpoint_ring(xhci, virt_dev, i);
3152 }
3153 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3154 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3155 virt_dev->eps[i].new_ring = NULL;
3156 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3157 }
3158 command_cleanup:
3159 kfree(command->completion);
3160 kfree(command);
3161
3162 return ret;
3163 }
3164 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3165
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3166 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3167 {
3168 struct xhci_hcd *xhci;
3169 struct xhci_virt_device *virt_dev;
3170 int i, ret;
3171
3172 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3173 if (ret <= 0)
3174 return;
3175 xhci = hcd_to_xhci(hcd);
3176
3177 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3178 virt_dev = xhci->devs[udev->slot_id];
3179 /* Free any rings allocated for added endpoints */
3180 for (i = 0; i < 31; i++) {
3181 if (virt_dev->eps[i].new_ring) {
3182 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3183 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3184 virt_dev->eps[i].new_ring = NULL;
3185 }
3186 }
3187 xhci_zero_in_ctx(xhci, virt_dev);
3188 }
3189 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3190
3191 /* Get the available bandwidth of the ports under the xhci roothub */
xhci_get_port_bandwidth(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,u8 dev_speed)3192 int xhci_get_port_bandwidth(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx,
3193 u8 dev_speed)
3194 {
3195 struct xhci_command *cmd;
3196 unsigned long flags;
3197 int ret;
3198
3199 if (!ctx || !xhci)
3200 return -EINVAL;
3201
3202 cmd = xhci_alloc_command(xhci, true, GFP_KERNEL);
3203 if (!cmd)
3204 return -ENOMEM;
3205
3206 cmd->in_ctx = ctx;
3207
3208 /* get xhci port bandwidth, refer to xhci rev1_2 protocol 4.6.15 */
3209 spin_lock_irqsave(&xhci->lock, flags);
3210
3211 ret = xhci_queue_get_port_bw(xhci, cmd, ctx->dma, dev_speed, 0);
3212 if (ret) {
3213 spin_unlock_irqrestore(&xhci->lock, flags);
3214 goto err_out;
3215 }
3216 xhci_ring_cmd_db(xhci);
3217 spin_unlock_irqrestore(&xhci->lock, flags);
3218
3219 wait_for_completion(cmd->completion);
3220 err_out:
3221 kfree(cmd->completion);
3222 kfree(cmd);
3223
3224 return ret;
3225 }
3226
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3227 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3228 struct xhci_container_ctx *in_ctx,
3229 struct xhci_container_ctx *out_ctx,
3230 struct xhci_input_control_ctx *ctrl_ctx,
3231 u32 add_flags, u32 drop_flags)
3232 {
3233 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3234 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3235 xhci_slot_copy(xhci, in_ctx, out_ctx);
3236 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3237 }
3238
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3239 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3240 struct usb_host_endpoint *host_ep)
3241 {
3242 struct xhci_hcd *xhci;
3243 struct xhci_virt_device *vdev;
3244 struct xhci_virt_ep *ep;
3245 struct usb_device *udev;
3246 unsigned long flags;
3247 unsigned int ep_index;
3248
3249 xhci = hcd_to_xhci(hcd);
3250 rescan:
3251 spin_lock_irqsave(&xhci->lock, flags);
3252
3253 udev = (struct usb_device *)host_ep->hcpriv;
3254 if (!udev || !udev->slot_id)
3255 goto done;
3256
3257 vdev = xhci->devs[udev->slot_id];
3258 if (!vdev)
3259 goto done;
3260
3261 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3262 ep = &vdev->eps[ep_index];
3263
3264 /* wait for hub_tt_work to finish clearing hub TT */
3265 if (ep->ep_state & EP_CLEARING_TT) {
3266 spin_unlock_irqrestore(&xhci->lock, flags);
3267 schedule_timeout_uninterruptible(1);
3268 goto rescan;
3269 }
3270
3271 if (ep->ep_state)
3272 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3273 ep->ep_state);
3274 done:
3275 host_ep->hcpriv = NULL;
3276 spin_unlock_irqrestore(&xhci->lock, flags);
3277 }
3278
3279 /*
3280 * Called after usb core issues a clear halt control message.
3281 * The host side of the halt should already be cleared by a reset endpoint
3282 * command issued when the STALL event was received.
3283 *
3284 * The reset endpoint command may only be issued to endpoints in the halted
3285 * state. For software that wishes to reset the data toggle or sequence number
3286 * of an endpoint that isn't in the halted state this function will issue a
3287 * configure endpoint command with the Drop and Add bits set for the target
3288 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3289 *
3290 * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3291 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3292 */
3293
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3294 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3295 struct usb_host_endpoint *host_ep)
3296 {
3297 struct xhci_hcd *xhci;
3298 struct usb_device *udev;
3299 struct xhci_virt_device *vdev;
3300 struct xhci_virt_ep *ep;
3301 struct xhci_input_control_ctx *ctrl_ctx;
3302 struct xhci_command *stop_cmd, *cfg_cmd;
3303 unsigned int ep_index;
3304 unsigned long flags;
3305 u32 ep_flag;
3306 int err;
3307
3308 xhci = hcd_to_xhci(hcd);
3309 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3310
3311 /*
3312 * Usb core assumes a max packet value for ep0 on FS devices until the
3313 * real value is read from the descriptor. Core resets Ep0 if values
3314 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3315 */
3316 if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
3317
3318 udev = container_of(host_ep, struct usb_device, ep0);
3319 if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3320 return;
3321
3322 vdev = xhci->devs[udev->slot_id];
3323 if (!vdev || vdev->udev != udev)
3324 return;
3325
3326 xhci_check_ep0_maxpacket(xhci, vdev);
3327
3328 /* Nothing else should be done here for ep0 during ep reset */
3329 return;
3330 }
3331
3332 if (!host_ep->hcpriv)
3333 return;
3334 udev = (struct usb_device *) host_ep->hcpriv;
3335 vdev = xhci->devs[udev->slot_id];
3336
3337 if (!udev->slot_id || !vdev)
3338 return;
3339
3340 ep = &vdev->eps[ep_index];
3341
3342 /* Bail out if toggle is already being cleared by a endpoint reset */
3343 spin_lock_irqsave(&xhci->lock, flags);
3344 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3345 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3346 spin_unlock_irqrestore(&xhci->lock, flags);
3347 return;
3348 }
3349 spin_unlock_irqrestore(&xhci->lock, flags);
3350 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3351 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3352 usb_endpoint_xfer_isoc(&host_ep->desc))
3353 return;
3354
3355 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3356
3357 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3358 return;
3359
3360 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3361 if (!stop_cmd)
3362 return;
3363
3364 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3365 if (!cfg_cmd)
3366 goto cleanup;
3367
3368 spin_lock_irqsave(&xhci->lock, flags);
3369
3370 /* block queuing new trbs and ringing ep doorbell */
3371 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3372
3373 /*
3374 * Make sure endpoint ring is empty before resetting the toggle/seq.
3375 * Driver is required to synchronously cancel all transfer request.
3376 * Stop the endpoint to force xHC to update the output context
3377 */
3378
3379 if (!list_empty(&ep->ring->td_list)) {
3380 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3381 spin_unlock_irqrestore(&xhci->lock, flags);
3382 xhci_free_command(xhci, cfg_cmd);
3383 goto cleanup;
3384 }
3385
3386 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3387 ep_index, 0);
3388 if (err < 0) {
3389 spin_unlock_irqrestore(&xhci->lock, flags);
3390 xhci_free_command(xhci, cfg_cmd);
3391 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3392 __func__, err);
3393 goto cleanup;
3394 }
3395
3396 xhci_ring_cmd_db(xhci);
3397 spin_unlock_irqrestore(&xhci->lock, flags);
3398
3399 wait_for_completion(stop_cmd->completion);
3400
3401 spin_lock_irqsave(&xhci->lock, flags);
3402
3403 /* config ep command clears toggle if add and drop ep flags are set */
3404 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3405 if (!ctrl_ctx) {
3406 spin_unlock_irqrestore(&xhci->lock, flags);
3407 xhci_free_command(xhci, cfg_cmd);
3408 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3409 __func__);
3410 goto cleanup;
3411 }
3412
3413 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3414 ctrl_ctx, ep_flag, ep_flag);
3415 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3416
3417 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3418 udev->slot_id, false);
3419 if (err < 0) {
3420 spin_unlock_irqrestore(&xhci->lock, flags);
3421 xhci_free_command(xhci, cfg_cmd);
3422 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3423 __func__, err);
3424 goto cleanup;
3425 }
3426
3427 xhci_ring_cmd_db(xhci);
3428 spin_unlock_irqrestore(&xhci->lock, flags);
3429
3430 wait_for_completion(cfg_cmd->completion);
3431
3432 xhci_free_command(xhci, cfg_cmd);
3433 cleanup:
3434 xhci_free_command(xhci, stop_cmd);
3435 spin_lock_irqsave(&xhci->lock, flags);
3436 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3437 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3438 spin_unlock_irqrestore(&xhci->lock, flags);
3439 }
3440
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3441 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3442 struct usb_device *udev, struct usb_host_endpoint *ep,
3443 unsigned int slot_id)
3444 {
3445 int ret;
3446 unsigned int ep_index;
3447 unsigned int ep_state;
3448
3449 if (!ep)
3450 return -EINVAL;
3451 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3452 if (ret <= 0)
3453 return ret ? ret : -EINVAL;
3454 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3455 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3456 " descriptor for ep 0x%x does not support streams\n",
3457 ep->desc.bEndpointAddress);
3458 return -EINVAL;
3459 }
3460
3461 ep_index = xhci_get_endpoint_index(&ep->desc);
3462 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3463 if (ep_state & EP_HAS_STREAMS ||
3464 ep_state & EP_GETTING_STREAMS) {
3465 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3466 "already has streams set up.\n",
3467 ep->desc.bEndpointAddress);
3468 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3469 "dynamic stream context array reallocation.\n");
3470 return -EINVAL;
3471 }
3472 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3473 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3474 "endpoint 0x%x; URBs are pending.\n",
3475 ep->desc.bEndpointAddress);
3476 return -EINVAL;
3477 }
3478 return 0;
3479 }
3480
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3481 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3482 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3483 {
3484 unsigned int max_streams;
3485
3486 /* The stream context array size must be a power of two */
3487 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3488 /*
3489 * Find out how many primary stream array entries the host controller
3490 * supports. Later we may use secondary stream arrays (similar to 2nd
3491 * level page entries), but that's an optional feature for xHCI host
3492 * controllers. xHCs must support at least 4 stream IDs.
3493 */
3494 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3495 if (*num_stream_ctxs > max_streams) {
3496 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3497 max_streams);
3498 *num_stream_ctxs = max_streams;
3499 *num_streams = max_streams;
3500 }
3501 }
3502
3503 /* Returns an error code if one of the endpoint already has streams.
3504 * This does not change any data structures, it only checks and gathers
3505 * information.
3506 */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3507 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3508 struct usb_device *udev,
3509 struct usb_host_endpoint **eps, unsigned int num_eps,
3510 unsigned int *num_streams, u32 *changed_ep_bitmask)
3511 {
3512 unsigned int max_streams;
3513 unsigned int endpoint_flag;
3514 int i;
3515 int ret;
3516
3517 for (i = 0; i < num_eps; i++) {
3518 ret = xhci_check_streams_endpoint(xhci, udev,
3519 eps[i], udev->slot_id);
3520 if (ret < 0)
3521 return ret;
3522
3523 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3524 if (max_streams < (*num_streams - 1)) {
3525 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3526 eps[i]->desc.bEndpointAddress,
3527 max_streams);
3528 *num_streams = max_streams+1;
3529 }
3530
3531 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3532 if (*changed_ep_bitmask & endpoint_flag)
3533 return -EINVAL;
3534 *changed_ep_bitmask |= endpoint_flag;
3535 }
3536 return 0;
3537 }
3538
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3539 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3540 struct usb_device *udev,
3541 struct usb_host_endpoint **eps, unsigned int num_eps)
3542 {
3543 u32 changed_ep_bitmask = 0;
3544 unsigned int slot_id;
3545 unsigned int ep_index;
3546 unsigned int ep_state;
3547 int i;
3548
3549 slot_id = udev->slot_id;
3550 if (!xhci->devs[slot_id])
3551 return 0;
3552
3553 for (i = 0; i < num_eps; i++) {
3554 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3555 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3556 /* Are streams already being freed for the endpoint? */
3557 if (ep_state & EP_GETTING_NO_STREAMS) {
3558 xhci_warn(xhci, "WARN Can't disable streams for "
3559 "endpoint 0x%x, "
3560 "streams are being disabled already\n",
3561 eps[i]->desc.bEndpointAddress);
3562 return 0;
3563 }
3564 /* Are there actually any streams to free? */
3565 if (!(ep_state & EP_HAS_STREAMS) &&
3566 !(ep_state & EP_GETTING_STREAMS)) {
3567 xhci_warn(xhci, "WARN Can't disable streams for "
3568 "endpoint 0x%x, "
3569 "streams are already disabled!\n",
3570 eps[i]->desc.bEndpointAddress);
3571 xhci_warn(xhci, "WARN xhci_free_streams() called "
3572 "with non-streams endpoint\n");
3573 return 0;
3574 }
3575 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3576 }
3577 return changed_ep_bitmask;
3578 }
3579
3580 /*
3581 * The USB device drivers use this function (through the HCD interface in USB
3582 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3583 * coordinate mass storage command queueing across multiple endpoints (basically
3584 * a stream ID == a task ID).
3585 *
3586 * Setting up streams involves allocating the same size stream context array
3587 * for each endpoint and issuing a configure endpoint command for all endpoints.
3588 *
3589 * Don't allow the call to succeed if one endpoint only supports one stream
3590 * (which means it doesn't support streams at all).
3591 *
3592 * Drivers may get less stream IDs than they asked for, if the host controller
3593 * hardware or endpoints claim they can't support the number of requested
3594 * stream IDs.
3595 */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3596 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3597 struct usb_host_endpoint **eps, unsigned int num_eps,
3598 unsigned int num_streams, gfp_t mem_flags)
3599 {
3600 int i, ret;
3601 struct xhci_hcd *xhci;
3602 struct xhci_virt_device *vdev;
3603 struct xhci_command *config_cmd;
3604 struct xhci_input_control_ctx *ctrl_ctx;
3605 unsigned int ep_index;
3606 unsigned int num_stream_ctxs;
3607 unsigned int max_packet;
3608 unsigned long flags;
3609 u32 changed_ep_bitmask = 0;
3610
3611 if (!eps)
3612 return -EINVAL;
3613
3614 /* Add one to the number of streams requested to account for
3615 * stream 0 that is reserved for xHCI usage.
3616 */
3617 num_streams += 1;
3618 xhci = hcd_to_xhci(hcd);
3619 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3620 num_streams);
3621
3622 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3623 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3624 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3625 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3626 return -ENOSYS;
3627 }
3628
3629 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3630 if (!config_cmd)
3631 return -ENOMEM;
3632
3633 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3634 if (!ctrl_ctx) {
3635 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3636 __func__);
3637 xhci_free_command(xhci, config_cmd);
3638 return -ENOMEM;
3639 }
3640
3641 /* Check to make sure all endpoints are not already configured for
3642 * streams. While we're at it, find the maximum number of streams that
3643 * all the endpoints will support and check for duplicate endpoints.
3644 */
3645 spin_lock_irqsave(&xhci->lock, flags);
3646 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3647 num_eps, &num_streams, &changed_ep_bitmask);
3648 if (ret < 0) {
3649 xhci_free_command(xhci, config_cmd);
3650 spin_unlock_irqrestore(&xhci->lock, flags);
3651 return ret;
3652 }
3653 if (num_streams <= 1) {
3654 xhci_warn(xhci, "WARN: endpoints can't handle "
3655 "more than one stream.\n");
3656 xhci_free_command(xhci, config_cmd);
3657 spin_unlock_irqrestore(&xhci->lock, flags);
3658 return -EINVAL;
3659 }
3660 vdev = xhci->devs[udev->slot_id];
3661 /* Mark each endpoint as being in transition, so
3662 * xhci_urb_enqueue() will reject all URBs.
3663 */
3664 for (i = 0; i < num_eps; i++) {
3665 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3666 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3667 }
3668 spin_unlock_irqrestore(&xhci->lock, flags);
3669
3670 /* Setup internal data structures and allocate HW data structures for
3671 * streams (but don't install the HW structures in the input context
3672 * until we're sure all memory allocation succeeded).
3673 */
3674 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3675 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3676 num_stream_ctxs, num_streams);
3677
3678 for (i = 0; i < num_eps; i++) {
3679 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3680 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3681 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3682 num_stream_ctxs,
3683 num_streams,
3684 max_packet, mem_flags);
3685 if (!vdev->eps[ep_index].stream_info)
3686 goto cleanup;
3687 /* Set maxPstreams in endpoint context and update deq ptr to
3688 * point to stream context array. FIXME
3689 */
3690 }
3691
3692 /* Set up the input context for a configure endpoint command. */
3693 for (i = 0; i < num_eps; i++) {
3694 struct xhci_ep_ctx *ep_ctx;
3695
3696 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3697 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3698
3699 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3700 vdev->out_ctx, ep_index);
3701 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3702 vdev->eps[ep_index].stream_info);
3703 }
3704 /* Tell the HW to drop its old copy of the endpoint context info
3705 * and add the updated copy from the input context.
3706 */
3707 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3708 vdev->out_ctx, ctrl_ctx,
3709 changed_ep_bitmask, changed_ep_bitmask);
3710
3711 /* Issue and wait for the configure endpoint command */
3712 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3713 false, false);
3714
3715 /* xHC rejected the configure endpoint command for some reason, so we
3716 * leave the old ring intact and free our internal streams data
3717 * structure.
3718 */
3719 if (ret < 0)
3720 goto cleanup;
3721
3722 spin_lock_irqsave(&xhci->lock, flags);
3723 for (i = 0; i < num_eps; i++) {
3724 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3725 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3726 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3727 udev->slot_id, ep_index);
3728 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3729 }
3730 xhci_free_command(xhci, config_cmd);
3731 spin_unlock_irqrestore(&xhci->lock, flags);
3732
3733 for (i = 0; i < num_eps; i++) {
3734 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3735 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3736 }
3737 /* Subtract 1 for stream 0, which drivers can't use */
3738 return num_streams - 1;
3739
3740 cleanup:
3741 /* If it didn't work, free the streams! */
3742 for (i = 0; i < num_eps; i++) {
3743 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3744 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3745 vdev->eps[ep_index].stream_info = NULL;
3746 /* FIXME Unset maxPstreams in endpoint context and
3747 * update deq ptr to point to normal string ring.
3748 */
3749 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3750 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3751 xhci_endpoint_zero(xhci, vdev, eps[i]);
3752 }
3753 xhci_free_command(xhci, config_cmd);
3754 return -ENOMEM;
3755 }
3756
3757 /* Transition the endpoint from using streams to being a "normal" endpoint
3758 * without streams.
3759 *
3760 * Modify the endpoint context state, submit a configure endpoint command,
3761 * and free all endpoint rings for streams if that completes successfully.
3762 */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3763 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3764 struct usb_host_endpoint **eps, unsigned int num_eps,
3765 gfp_t mem_flags)
3766 {
3767 int i, ret;
3768 struct xhci_hcd *xhci;
3769 struct xhci_virt_device *vdev;
3770 struct xhci_command *command;
3771 struct xhci_input_control_ctx *ctrl_ctx;
3772 unsigned int ep_index;
3773 unsigned long flags;
3774 u32 changed_ep_bitmask;
3775
3776 xhci = hcd_to_xhci(hcd);
3777 vdev = xhci->devs[udev->slot_id];
3778
3779 /* Set up a configure endpoint command to remove the streams rings */
3780 spin_lock_irqsave(&xhci->lock, flags);
3781 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3782 udev, eps, num_eps);
3783 if (changed_ep_bitmask == 0) {
3784 spin_unlock_irqrestore(&xhci->lock, flags);
3785 return -EINVAL;
3786 }
3787
3788 /* Use the xhci_command structure from the first endpoint. We may have
3789 * allocated too many, but the driver may call xhci_free_streams() for
3790 * each endpoint it grouped into one call to xhci_alloc_streams().
3791 */
3792 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3793 command = vdev->eps[ep_index].stream_info->free_streams_command;
3794 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3795 if (!ctrl_ctx) {
3796 spin_unlock_irqrestore(&xhci->lock, flags);
3797 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3798 __func__);
3799 return -EINVAL;
3800 }
3801
3802 for (i = 0; i < num_eps; i++) {
3803 struct xhci_ep_ctx *ep_ctx;
3804
3805 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3806 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3807 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3808 EP_GETTING_NO_STREAMS;
3809
3810 xhci_endpoint_copy(xhci, command->in_ctx,
3811 vdev->out_ctx, ep_index);
3812 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3813 &vdev->eps[ep_index]);
3814 }
3815 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3816 vdev->out_ctx, ctrl_ctx,
3817 changed_ep_bitmask, changed_ep_bitmask);
3818 spin_unlock_irqrestore(&xhci->lock, flags);
3819
3820 /* Issue and wait for the configure endpoint command,
3821 * which must succeed.
3822 */
3823 ret = xhci_configure_endpoint(xhci, udev, command,
3824 false, true);
3825
3826 /* xHC rejected the configure endpoint command for some reason, so we
3827 * leave the streams rings intact.
3828 */
3829 if (ret < 0)
3830 return ret;
3831
3832 spin_lock_irqsave(&xhci->lock, flags);
3833 for (i = 0; i < num_eps; i++) {
3834 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3835 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3836 vdev->eps[ep_index].stream_info = NULL;
3837 /* FIXME Unset maxPstreams in endpoint context and
3838 * update deq ptr to point to normal string ring.
3839 */
3840 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3841 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3842 }
3843 spin_unlock_irqrestore(&xhci->lock, flags);
3844
3845 return 0;
3846 }
3847
3848 /*
3849 * Deletes endpoint resources for endpoints that were active before a Reset
3850 * Device command, or a Disable Slot command. The Reset Device command leaves
3851 * the control endpoint intact, whereas the Disable Slot command deletes it.
3852 *
3853 * Must be called with xhci->lock held.
3854 */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3855 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3856 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3857 {
3858 int i;
3859 unsigned int num_dropped_eps = 0;
3860 unsigned int drop_flags = 0;
3861
3862 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3863 if (virt_dev->eps[i].ring) {
3864 drop_flags |= 1 << i;
3865 num_dropped_eps++;
3866 }
3867 }
3868 xhci->num_active_eps -= num_dropped_eps;
3869 if (num_dropped_eps)
3870 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3871 "Dropped %u ep ctxs, flags = 0x%x, "
3872 "%u now active.",
3873 num_dropped_eps, drop_flags,
3874 xhci->num_active_eps);
3875 }
3876
3877 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev);
3878
3879 /*
3880 * This submits a Reset Device Command, which will set the device state to 0,
3881 * set the device address to 0, and disable all the endpoints except the default
3882 * control endpoint. The USB core should come back and call
3883 * xhci_address_device(), and then re-set up the configuration. If this is
3884 * called because of a usb_reset_and_verify_device(), then the old alternate
3885 * settings will be re-installed through the normal bandwidth allocation
3886 * functions.
3887 *
3888 * Wait for the Reset Device command to finish. Remove all structures
3889 * associated with the endpoints that were disabled. Clear the input device
3890 * structure? Reset the control endpoint 0 max packet size?
3891 *
3892 * If the virt_dev to be reset does not exist or does not match the udev,
3893 * it means the device is lost, possibly due to the xHC restore error and
3894 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3895 * re-allocate the device.
3896 */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3897 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3898 struct usb_device *udev)
3899 {
3900 int ret, i;
3901 unsigned long flags;
3902 struct xhci_hcd *xhci;
3903 unsigned int slot_id;
3904 struct xhci_virt_device *virt_dev;
3905 struct xhci_command *reset_device_cmd;
3906 struct xhci_slot_ctx *slot_ctx;
3907 int old_active_eps = 0;
3908
3909 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3910 if (ret <= 0)
3911 return ret;
3912 xhci = hcd_to_xhci(hcd);
3913 slot_id = udev->slot_id;
3914 virt_dev = xhci->devs[slot_id];
3915 if (!virt_dev) {
3916 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3917 "not exist. Re-allocate the device\n", slot_id);
3918 ret = xhci_alloc_dev(hcd, udev);
3919 if (ret == 1)
3920 return 0;
3921 else
3922 return -EINVAL;
3923 }
3924
3925 if (virt_dev->tt_info)
3926 old_active_eps = virt_dev->tt_info->active_eps;
3927
3928 if (virt_dev->udev != udev) {
3929 /* If the virt_dev and the udev does not match, this virt_dev
3930 * may belong to another udev.
3931 * Re-allocate the device.
3932 */
3933 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3934 "not match the udev. Re-allocate the device\n",
3935 slot_id);
3936 ret = xhci_alloc_dev(hcd, udev);
3937 if (ret == 1)
3938 return 0;
3939 else
3940 return -EINVAL;
3941 }
3942
3943 /* If device is not setup, there is no point in resetting it */
3944 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3945 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3946 SLOT_STATE_DISABLED)
3947 return 0;
3948
3949 if (xhci->quirks & XHCI_ETRON_HOST) {
3950 /*
3951 * Obtaining a new device slot to inform the xHCI host that
3952 * the USB device has been reset.
3953 */
3954 ret = xhci_disable_slot(xhci, udev->slot_id);
3955 xhci_free_virt_device(xhci, udev->slot_id);
3956 if (!ret) {
3957 ret = xhci_alloc_dev(hcd, udev);
3958 if (ret == 1)
3959 ret = 0;
3960 else
3961 ret = -EINVAL;
3962 }
3963 return ret;
3964 }
3965
3966 trace_xhci_discover_or_reset_device(slot_ctx);
3967
3968 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3969 /* Allocate the command structure that holds the struct completion.
3970 * Assume we're in process context, since the normal device reset
3971 * process has to wait for the device anyway. Storage devices are
3972 * reset as part of error handling, so use GFP_NOIO instead of
3973 * GFP_KERNEL.
3974 */
3975 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3976 if (!reset_device_cmd) {
3977 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3978 return -ENOMEM;
3979 }
3980
3981 /* Attempt to submit the Reset Device command to the command ring */
3982 spin_lock_irqsave(&xhci->lock, flags);
3983
3984 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3985 if (ret) {
3986 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3987 spin_unlock_irqrestore(&xhci->lock, flags);
3988 goto command_cleanup;
3989 }
3990 xhci_ring_cmd_db(xhci);
3991 spin_unlock_irqrestore(&xhci->lock, flags);
3992
3993 /* Wait for the Reset Device command to finish */
3994 wait_for_completion(reset_device_cmd->completion);
3995
3996 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3997 * unless we tried to reset a slot ID that wasn't enabled,
3998 * or the device wasn't in the addressed or configured state.
3999 */
4000 ret = reset_device_cmd->status;
4001 switch (ret) {
4002 case COMP_COMMAND_ABORTED:
4003 case COMP_COMMAND_RING_STOPPED:
4004 xhci_warn(xhci, "Timeout waiting for reset device command\n");
4005 ret = -ETIME;
4006 goto command_cleanup;
4007 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
4008 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
4009 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
4010 slot_id,
4011 xhci_get_slot_state(xhci, virt_dev->out_ctx));
4012 xhci_dbg(xhci, "Not freeing device rings.\n");
4013 /* Don't treat this as an error. May change my mind later. */
4014 ret = 0;
4015 goto command_cleanup;
4016 case COMP_SUCCESS:
4017 xhci_dbg(xhci, "Successful reset device command.\n");
4018 break;
4019 default:
4020 if (xhci_is_vendor_info_code(xhci, ret))
4021 break;
4022 xhci_warn(xhci, "Unknown completion code %u for "
4023 "reset device command.\n", ret);
4024 ret = -EINVAL;
4025 goto command_cleanup;
4026 }
4027
4028 /* Free up host controller endpoint resources */
4029 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4030 spin_lock_irqsave(&xhci->lock, flags);
4031 /* Don't delete the default control endpoint resources */
4032 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
4033 spin_unlock_irqrestore(&xhci->lock, flags);
4034 }
4035
4036 /* Everything but endpoint 0 is disabled, so free the rings. */
4037 for (i = 1; i < 31; i++) {
4038 struct xhci_virt_ep *ep = &virt_dev->eps[i];
4039
4040 if (ep->ep_state & EP_HAS_STREAMS) {
4041 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
4042 xhci_get_endpoint_address(i));
4043 xhci_free_stream_info(xhci, ep->stream_info);
4044 ep->stream_info = NULL;
4045 ep->ep_state &= ~EP_HAS_STREAMS;
4046 }
4047
4048 if (ep->ring) {
4049 if (ep->sideband)
4050 xhci_sideband_notify_ep_ring_free(ep->sideband, i);
4051 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
4052 xhci_free_endpoint_ring(xhci, virt_dev, i);
4053 }
4054 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
4055 xhci_drop_ep_from_interval_table(xhci,
4056 &virt_dev->eps[i].bw_info,
4057 virt_dev->bw_table,
4058 udev,
4059 &virt_dev->eps[i],
4060 virt_dev->tt_info);
4061 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
4062 }
4063 /* If necessary, update the number of active TTs on this root port */
4064 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
4065 virt_dev->flags = 0;
4066 ret = 0;
4067
4068 command_cleanup:
4069 xhci_free_command(xhci, reset_device_cmd);
4070 return ret;
4071 }
4072
4073 /*
4074 * At this point, the struct usb_device is about to go away, the device has
4075 * disconnected, and all traffic has been stopped and the endpoints have been
4076 * disabled. Free any HC data structures associated with that device.
4077 */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)4078 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4079 {
4080 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4081 struct xhci_virt_device *virt_dev;
4082 struct xhci_slot_ctx *slot_ctx;
4083 unsigned long flags;
4084 int i, ret;
4085
4086 /*
4087 * We called pm_runtime_get_noresume when the device was attached.
4088 * Decrement the counter here to allow controller to runtime suspend
4089 * if no devices remain.
4090 */
4091 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4092 pm_runtime_put_noidle(hcd->self.controller);
4093
4094 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
4095 /* If the host is halted due to driver unload, we still need to free the
4096 * device.
4097 */
4098 if (ret <= 0 && ret != -ENODEV)
4099 return;
4100
4101 virt_dev = xhci->devs[udev->slot_id];
4102 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4103 trace_xhci_free_dev(slot_ctx);
4104
4105 /* Stop any wayward timer functions (which may grab the lock) */
4106 for (i = 0; i < 31; i++)
4107 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
4108 virt_dev->udev = NULL;
4109 xhci_disable_slot(xhci, udev->slot_id);
4110
4111 spin_lock_irqsave(&xhci->lock, flags);
4112 xhci_free_virt_device(xhci, udev->slot_id);
4113 spin_unlock_irqrestore(&xhci->lock, flags);
4114
4115 }
4116
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)4117 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4118 {
4119 struct xhci_command *command;
4120 unsigned long flags;
4121 u32 state;
4122 int ret;
4123
4124 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4125 if (!command)
4126 return -ENOMEM;
4127
4128 xhci_debugfs_remove_slot(xhci, slot_id);
4129
4130 spin_lock_irqsave(&xhci->lock, flags);
4131 /* Don't disable the slot if the host controller is dead. */
4132 state = readl(&xhci->op_regs->status);
4133 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4134 (xhci->xhc_state & XHCI_STATE_HALTED)) {
4135 spin_unlock_irqrestore(&xhci->lock, flags);
4136 kfree(command);
4137 return -ENODEV;
4138 }
4139
4140 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4141 slot_id);
4142 if (ret) {
4143 spin_unlock_irqrestore(&xhci->lock, flags);
4144 kfree(command);
4145 return ret;
4146 }
4147 xhci_ring_cmd_db(xhci);
4148 spin_unlock_irqrestore(&xhci->lock, flags);
4149
4150 wait_for_completion(command->completion);
4151
4152 if (command->status != COMP_SUCCESS)
4153 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4154 slot_id, command->status);
4155
4156 xhci_free_command(xhci, command);
4157
4158 return 0;
4159 }
4160
4161 /*
4162 * Checks if we have enough host controller resources for the default control
4163 * endpoint.
4164 *
4165 * Must be called with xhci->lock held.
4166 */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)4167 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4168 {
4169 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4170 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4171 "Not enough ep ctxs: "
4172 "%u active, need to add 1, limit is %u.",
4173 xhci->num_active_eps, xhci->limit_active_eps);
4174 return -ENOMEM;
4175 }
4176 xhci->num_active_eps += 1;
4177 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4178 "Adding 1 ep ctx, %u now active.",
4179 xhci->num_active_eps);
4180 return 0;
4181 }
4182
4183
4184 /*
4185 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4186 * timed out, or allocating memory failed. Returns 1 on success.
4187 */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)4188 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4189 {
4190 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4191 struct xhci_virt_device *vdev;
4192 struct xhci_slot_ctx *slot_ctx;
4193 unsigned long flags;
4194 int ret, slot_id;
4195 struct xhci_command *command;
4196
4197 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4198 if (!command)
4199 return 0;
4200
4201 spin_lock_irqsave(&xhci->lock, flags);
4202 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4203 if (ret) {
4204 spin_unlock_irqrestore(&xhci->lock, flags);
4205 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4206 xhci_free_command(xhci, command);
4207 return 0;
4208 }
4209 xhci_ring_cmd_db(xhci);
4210 spin_unlock_irqrestore(&xhci->lock, flags);
4211
4212 wait_for_completion(command->completion);
4213 slot_id = command->slot_id;
4214
4215 if (!slot_id || command->status != COMP_SUCCESS) {
4216 xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4217 xhci_trb_comp_code_string(command->status));
4218 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4219 HCS_MAX_SLOTS(
4220 readl(&xhci->cap_regs->hcs_params1)));
4221 xhci_free_command(xhci, command);
4222 return 0;
4223 }
4224
4225 xhci_free_command(xhci, command);
4226
4227 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4228 spin_lock_irqsave(&xhci->lock, flags);
4229 ret = xhci_reserve_host_control_ep_resources(xhci);
4230 if (ret) {
4231 spin_unlock_irqrestore(&xhci->lock, flags);
4232 xhci_warn(xhci, "Not enough host resources, "
4233 "active endpoint contexts = %u\n",
4234 xhci->num_active_eps);
4235 goto disable_slot;
4236 }
4237 spin_unlock_irqrestore(&xhci->lock, flags);
4238 }
4239 /* Use GFP_NOIO, since this function can be called from
4240 * xhci_discover_or_reset_device(), which may be called as part of
4241 * mass storage driver error handling.
4242 */
4243 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4244 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4245 goto disable_slot;
4246 }
4247 vdev = xhci->devs[slot_id];
4248 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4249 trace_xhci_alloc_dev(slot_ctx);
4250
4251 udev->slot_id = slot_id;
4252
4253 xhci_debugfs_create_slot(xhci, slot_id);
4254
4255 /*
4256 * If resetting upon resume, we can't put the controller into runtime
4257 * suspend if there is a device attached.
4258 */
4259 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4260 pm_runtime_get_noresume(hcd->self.controller);
4261
4262 /* Is this a LS or FS device under a HS hub? */
4263 /* Hub or peripherial? */
4264 return 1;
4265
4266 disable_slot:
4267 xhci_disable_slot(xhci, udev->slot_id);
4268 xhci_free_virt_device(xhci, udev->slot_id);
4269
4270 return 0;
4271 }
4272
4273 /**
4274 * xhci_setup_device - issues an Address Device command to assign a unique
4275 * USB bus address.
4276 * @hcd: USB host controller data structure.
4277 * @udev: USB dev structure representing the connected device.
4278 * @setup: Enum specifying setup mode: address only or with context.
4279 * @timeout_ms: Max wait time (ms) for the command operation to complete.
4280 *
4281 * Return: 0 if successful; otherwise, negative error code.
4282 */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup,unsigned int timeout_ms)4283 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4284 enum xhci_setup_dev setup, unsigned int timeout_ms)
4285 {
4286 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4287 unsigned long flags;
4288 struct xhci_virt_device *virt_dev;
4289 int ret = 0;
4290 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4291 struct xhci_slot_ctx *slot_ctx;
4292 struct xhci_input_control_ctx *ctrl_ctx;
4293 u64 temp_64;
4294 struct xhci_command *command = NULL;
4295
4296 mutex_lock(&xhci->mutex);
4297
4298 if (xhci->xhc_state) { /* dying, removing or halted */
4299 ret = -ESHUTDOWN;
4300 goto out;
4301 }
4302
4303 if (!udev->slot_id) {
4304 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4305 "Bad Slot ID %d", udev->slot_id);
4306 ret = -EINVAL;
4307 goto out;
4308 }
4309
4310 virt_dev = xhci->devs[udev->slot_id];
4311
4312 if (WARN_ON(!virt_dev)) {
4313 /*
4314 * In plug/unplug torture test with an NEC controller,
4315 * a zero-dereference was observed once due to virt_dev = 0.
4316 * Print useful debug rather than crash if it is observed again!
4317 */
4318 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4319 udev->slot_id);
4320 ret = -EINVAL;
4321 goto out;
4322 }
4323 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4324 trace_xhci_setup_device_slot(slot_ctx);
4325
4326 if (setup == SETUP_CONTEXT_ONLY) {
4327 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4328 SLOT_STATE_DEFAULT) {
4329 xhci_dbg(xhci, "Slot already in default state\n");
4330 goto out;
4331 }
4332 }
4333
4334 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4335 if (!command) {
4336 ret = -ENOMEM;
4337 goto out;
4338 }
4339
4340 command->in_ctx = virt_dev->in_ctx;
4341 command->timeout_ms = timeout_ms;
4342
4343 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4344 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4345 if (!ctrl_ctx) {
4346 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4347 __func__);
4348 ret = -EINVAL;
4349 goto out;
4350 }
4351 /*
4352 * If this is the first Set Address since device plug-in or
4353 * virt_device realloaction after a resume with an xHCI power loss,
4354 * then set up the slot context.
4355 */
4356 if (!slot_ctx->dev_info)
4357 xhci_setup_addressable_virt_dev(xhci, udev);
4358 /* Otherwise, update the control endpoint ring enqueue pointer. */
4359 else
4360 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4361 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4362 ctrl_ctx->drop_flags = 0;
4363
4364 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4365 le32_to_cpu(slot_ctx->dev_info) >> 27);
4366
4367 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4368 spin_lock_irqsave(&xhci->lock, flags);
4369 trace_xhci_setup_device(virt_dev);
4370 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4371 udev->slot_id, setup);
4372 if (ret) {
4373 spin_unlock_irqrestore(&xhci->lock, flags);
4374 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4375 "FIXME: allocate a command ring segment");
4376 goto out;
4377 }
4378 xhci_ring_cmd_db(xhci);
4379 spin_unlock_irqrestore(&xhci->lock, flags);
4380
4381 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4382 wait_for_completion(command->completion);
4383
4384 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4385 * the SetAddress() "recovery interval" required by USB and aborting the
4386 * command on a timeout.
4387 */
4388 switch (command->status) {
4389 case COMP_COMMAND_ABORTED:
4390 case COMP_COMMAND_RING_STOPPED:
4391 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4392 ret = -ETIME;
4393 break;
4394 case COMP_CONTEXT_STATE_ERROR:
4395 case COMP_SLOT_NOT_ENABLED_ERROR:
4396 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4397 act, udev->slot_id);
4398 ret = -EINVAL;
4399 break;
4400 case COMP_USB_TRANSACTION_ERROR:
4401 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4402
4403 mutex_unlock(&xhci->mutex);
4404 ret = xhci_disable_slot(xhci, udev->slot_id);
4405 xhci_free_virt_device(xhci, udev->slot_id);
4406 if (!ret) {
4407 if (xhci_alloc_dev(hcd, udev) == 1)
4408 xhci_setup_addressable_virt_dev(xhci, udev);
4409 }
4410 kfree(command->completion);
4411 kfree(command);
4412 return -EPROTO;
4413 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4414 dev_warn(&udev->dev,
4415 "ERROR: Incompatible device for setup %s command\n", act);
4416 ret = -ENODEV;
4417 break;
4418 case COMP_SUCCESS:
4419 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4420 "Successful setup %s command", act);
4421 break;
4422 default:
4423 xhci_err(xhci,
4424 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4425 act, command->status);
4426 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4427 ret = -EINVAL;
4428 break;
4429 }
4430 if (ret)
4431 goto out;
4432 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4433 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4434 "Op regs DCBAA ptr = %#016llx", temp_64);
4435 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4436 "Slot ID %d dcbaa entry @%p = %#016llx",
4437 udev->slot_id,
4438 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4439 (unsigned long long)
4440 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4441 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4442 "Output Context DMA address = %#08llx",
4443 (unsigned long long)virt_dev->out_ctx->dma);
4444 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4445 le32_to_cpu(slot_ctx->dev_info) >> 27);
4446 /*
4447 * USB core uses address 1 for the roothubs, so we add one to the
4448 * address given back to us by the HC.
4449 */
4450 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4451 le32_to_cpu(slot_ctx->dev_info) >> 27);
4452 /* Zero the input context control for later use */
4453 ctrl_ctx->add_flags = 0;
4454 ctrl_ctx->drop_flags = 0;
4455 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4456 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4457
4458 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4459 "Internal device address = %d",
4460 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4461 out:
4462 mutex_unlock(&xhci->mutex);
4463 if (command) {
4464 kfree(command->completion);
4465 kfree(command);
4466 }
4467 return ret;
4468 }
4469
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev,unsigned int timeout_ms)4470 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4471 unsigned int timeout_ms)
4472 {
4473 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4474 }
4475
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4476 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4477 {
4478 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4479 XHCI_CMD_DEFAULT_TIMEOUT);
4480 }
4481
4482 /*
4483 * Transfer the port index into real index in the HW port status
4484 * registers. Caculate offset between the port's PORTSC register
4485 * and port status base. Divide the number of per port register
4486 * to get the real index. The raw port number bases 1.
4487 */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4488 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4489 {
4490 struct xhci_hub *rhub;
4491
4492 rhub = xhci_get_rhub(hcd);
4493 return rhub->ports[port1 - 1]->hw_portnum + 1;
4494 }
4495
4496 /*
4497 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4498 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4499 */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4500 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4501 struct usb_device *udev, u16 max_exit_latency)
4502 {
4503 struct xhci_virt_device *virt_dev;
4504 struct xhci_command *command;
4505 struct xhci_input_control_ctx *ctrl_ctx;
4506 struct xhci_slot_ctx *slot_ctx;
4507 unsigned long flags;
4508 int ret;
4509
4510 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4511 if (!command)
4512 return -ENOMEM;
4513
4514 spin_lock_irqsave(&xhci->lock, flags);
4515
4516 virt_dev = xhci->devs[udev->slot_id];
4517
4518 /*
4519 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4520 * xHC was re-initialized. Exit latency will be set later after
4521 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4522 */
4523
4524 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4525 spin_unlock_irqrestore(&xhci->lock, flags);
4526 xhci_free_command(xhci, command);
4527 return 0;
4528 }
4529
4530 /* Attempt to issue an Evaluate Context command to change the MEL. */
4531 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4532 if (!ctrl_ctx) {
4533 spin_unlock_irqrestore(&xhci->lock, flags);
4534 xhci_free_command(xhci, command);
4535 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4536 __func__);
4537 return -ENOMEM;
4538 }
4539
4540 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4541 spin_unlock_irqrestore(&xhci->lock, flags);
4542
4543 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4544 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4545 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4546 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4547 slot_ctx->dev_state = 0;
4548
4549 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4550 "Set up evaluate context for LPM MEL change.");
4551
4552 /* Issue and wait for the evaluate context command. */
4553 ret = xhci_configure_endpoint(xhci, udev, command,
4554 true, true);
4555
4556 if (!ret) {
4557 spin_lock_irqsave(&xhci->lock, flags);
4558 virt_dev->current_mel = max_exit_latency;
4559 spin_unlock_irqrestore(&xhci->lock, flags);
4560 }
4561
4562 xhci_free_command(xhci, command);
4563
4564 return ret;
4565 }
4566
4567 #ifdef CONFIG_PM
4568
4569 /* BESL to HIRD Encoding array for USB2 LPM */
4570 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4571 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4572
4573 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4574 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4575 struct usb_device *udev)
4576 {
4577 int u2del, besl, besl_host;
4578 int besl_device = 0;
4579 u32 field;
4580
4581 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4582 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4583
4584 if (field & USB_BESL_SUPPORT) {
4585 for (besl_host = 0; besl_host < 16; besl_host++) {
4586 if (xhci_besl_encoding[besl_host] >= u2del)
4587 break;
4588 }
4589 /* Use baseline BESL value as default */
4590 if (field & USB_BESL_BASELINE_VALID)
4591 besl_device = USB_GET_BESL_BASELINE(field);
4592 else if (field & USB_BESL_DEEP_VALID)
4593 besl_device = USB_GET_BESL_DEEP(field);
4594 } else {
4595 if (u2del <= 50)
4596 besl_host = 0;
4597 else
4598 besl_host = (u2del - 51) / 75 + 1;
4599 }
4600
4601 besl = besl_host + besl_device;
4602 if (besl > 15)
4603 besl = 15;
4604
4605 return besl;
4606 }
4607
4608 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4609 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4610 {
4611 u32 field;
4612 int l1;
4613 int besld = 0;
4614 int hirdm = 0;
4615
4616 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4617
4618 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4619 l1 = udev->l1_params.timeout / 256;
4620
4621 /* device has preferred BESLD */
4622 if (field & USB_BESL_DEEP_VALID) {
4623 besld = USB_GET_BESL_DEEP(field);
4624 hirdm = 1;
4625 }
4626
4627 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4628 }
4629
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4630 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4631 struct usb_device *udev, int enable)
4632 {
4633 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4634 struct xhci_port **ports;
4635 __le32 __iomem *pm_addr, *hlpm_addr;
4636 u32 pm_val, hlpm_val, field;
4637 unsigned int port_num;
4638 unsigned long flags;
4639 int hird, exit_latency;
4640 int ret;
4641
4642 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4643 return -EPERM;
4644
4645 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4646 !udev->lpm_capable)
4647 return -EPERM;
4648
4649 if (!udev->parent || udev->parent->parent ||
4650 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4651 return -EPERM;
4652
4653 if (udev->usb2_hw_lpm_capable != 1)
4654 return -EPERM;
4655
4656 spin_lock_irqsave(&xhci->lock, flags);
4657
4658 ports = xhci->usb2_rhub.ports;
4659 port_num = udev->portnum - 1;
4660 pm_addr = ports[port_num]->addr + PORTPMSC;
4661 pm_val = readl(pm_addr);
4662 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4663
4664 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4665 str_enable_disable(enable), port_num + 1);
4666
4667 if (enable) {
4668 /* Host supports BESL timeout instead of HIRD */
4669 if (udev->usb2_hw_lpm_besl_capable) {
4670 /* if device doesn't have a preferred BESL value use a
4671 * default one which works with mixed HIRD and BESL
4672 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4673 */
4674 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4675 if ((field & USB_BESL_SUPPORT) &&
4676 (field & USB_BESL_BASELINE_VALID))
4677 hird = USB_GET_BESL_BASELINE(field);
4678 else
4679 hird = udev->l1_params.besl;
4680
4681 exit_latency = xhci_besl_encoding[hird];
4682 spin_unlock_irqrestore(&xhci->lock, flags);
4683
4684 ret = xhci_change_max_exit_latency(xhci, udev,
4685 exit_latency);
4686 if (ret < 0)
4687 return ret;
4688 spin_lock_irqsave(&xhci->lock, flags);
4689
4690 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4691 writel(hlpm_val, hlpm_addr);
4692 /* flush write */
4693 readl(hlpm_addr);
4694 } else {
4695 hird = xhci_calculate_hird_besl(xhci, udev);
4696 }
4697
4698 pm_val &= ~PORT_HIRD_MASK;
4699 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4700 writel(pm_val, pm_addr);
4701 pm_val = readl(pm_addr);
4702 pm_val |= PORT_HLE;
4703 writel(pm_val, pm_addr);
4704 /* flush write */
4705 readl(pm_addr);
4706 } else {
4707 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4708 writel(pm_val, pm_addr);
4709 /* flush write */
4710 readl(pm_addr);
4711 if (udev->usb2_hw_lpm_besl_capable) {
4712 spin_unlock_irqrestore(&xhci->lock, flags);
4713 xhci_change_max_exit_latency(xhci, udev, 0);
4714 readl_poll_timeout(ports[port_num]->addr, pm_val,
4715 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4716 100, 10000);
4717 return 0;
4718 }
4719 }
4720
4721 spin_unlock_irqrestore(&xhci->lock, flags);
4722 return 0;
4723 }
4724
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4725 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4726 {
4727 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4728 struct xhci_port *port;
4729 u32 capability;
4730
4731 /* Check if USB3 device at root port is tunneled over USB4 */
4732 if (hcd->speed >= HCD_USB3 && !udev->parent->parent) {
4733 port = xhci->usb3_rhub.ports[udev->portnum - 1];
4734
4735 udev->tunnel_mode = xhci_port_is_tunneled(xhci, port);
4736 if (udev->tunnel_mode == USB_LINK_UNKNOWN)
4737 dev_dbg(&udev->dev, "link tunnel state unknown\n");
4738 else if (udev->tunnel_mode == USB_LINK_TUNNELED)
4739 dev_dbg(&udev->dev, "tunneled over USB4 link\n");
4740 else if (udev->tunnel_mode == USB_LINK_NATIVE)
4741 dev_dbg(&udev->dev, "native USB 3.x link\n");
4742 return 0;
4743 }
4744
4745 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support)
4746 return 0;
4747
4748 /* we only support lpm for non-hub device connected to root hub yet */
4749 if (!udev->parent || udev->parent->parent ||
4750 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4751 return 0;
4752
4753 port = xhci->usb2_rhub.ports[udev->portnum - 1];
4754 capability = port->port_cap->protocol_caps;
4755
4756 if (capability & XHCI_HLC) {
4757 udev->usb2_hw_lpm_capable = 1;
4758 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4759 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4760 if (capability & XHCI_BLC)
4761 udev->usb2_hw_lpm_besl_capable = 1;
4762 }
4763
4764 return 0;
4765 }
4766
4767 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4768
4769 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4770 static unsigned long long xhci_service_interval_to_ns(
4771 struct usb_endpoint_descriptor *desc)
4772 {
4773 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4774 }
4775
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4776 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4777 enum usb3_link_state state)
4778 {
4779 unsigned long long sel;
4780 unsigned long long pel;
4781 unsigned int max_sel_pel;
4782 char *state_name;
4783
4784 switch (state) {
4785 case USB3_LPM_U1:
4786 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4787 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4788 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4789 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4790 state_name = "U1";
4791 break;
4792 case USB3_LPM_U2:
4793 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4794 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4795 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4796 state_name = "U2";
4797 break;
4798 default:
4799 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4800 __func__);
4801 return USB3_LPM_DISABLED;
4802 }
4803
4804 if (sel <= max_sel_pel && pel <= max_sel_pel)
4805 return USB3_LPM_DEVICE_INITIATED;
4806
4807 if (sel > max_sel_pel)
4808 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4809 "due to long SEL %llu ms\n",
4810 state_name, sel);
4811 else
4812 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4813 "due to long PEL %llu ms\n",
4814 state_name, pel);
4815 return USB3_LPM_DISABLED;
4816 }
4817
4818 /* The U1 timeout should be the maximum of the following values:
4819 * - For control endpoints, U1 system exit latency (SEL) * 3
4820 * - For bulk endpoints, U1 SEL * 5
4821 * - For interrupt endpoints:
4822 * - Notification EPs, U1 SEL * 3
4823 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4824 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4825 */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4826 static unsigned long long xhci_calculate_intel_u1_timeout(
4827 struct usb_device *udev,
4828 struct usb_endpoint_descriptor *desc)
4829 {
4830 unsigned long long timeout_ns;
4831 int ep_type;
4832 int intr_type;
4833
4834 ep_type = usb_endpoint_type(desc);
4835 switch (ep_type) {
4836 case USB_ENDPOINT_XFER_CONTROL:
4837 timeout_ns = udev->u1_params.sel * 3;
4838 break;
4839 case USB_ENDPOINT_XFER_BULK:
4840 timeout_ns = udev->u1_params.sel * 5;
4841 break;
4842 case USB_ENDPOINT_XFER_INT:
4843 intr_type = usb_endpoint_interrupt_type(desc);
4844 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4845 timeout_ns = udev->u1_params.sel * 3;
4846 break;
4847 }
4848 /* Otherwise the calculation is the same as isoc eps */
4849 fallthrough;
4850 case USB_ENDPOINT_XFER_ISOC:
4851 timeout_ns = xhci_service_interval_to_ns(desc);
4852 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4853 if (timeout_ns < udev->u1_params.sel * 2)
4854 timeout_ns = udev->u1_params.sel * 2;
4855 break;
4856 default:
4857 return 0;
4858 }
4859
4860 return timeout_ns;
4861 }
4862
4863 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4864 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4865 struct usb_device *udev,
4866 struct usb_endpoint_descriptor *desc)
4867 {
4868 unsigned long long timeout_ns;
4869
4870 /* Prevent U1 if service interval is shorter than U1 exit latency */
4871 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4872 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4873 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4874 return USB3_LPM_DISABLED;
4875 }
4876 }
4877
4878 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4879 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4880 else
4881 timeout_ns = udev->u1_params.sel;
4882
4883 /* The U1 timeout is encoded in 1us intervals.
4884 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4885 */
4886 if (timeout_ns == USB3_LPM_DISABLED)
4887 timeout_ns = 1;
4888 else
4889 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4890
4891 /* If the necessary timeout value is bigger than what we can set in the
4892 * USB 3.0 hub, we have to disable hub-initiated U1.
4893 */
4894 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4895 return timeout_ns;
4896 dev_dbg(&udev->dev, "Hub-initiated U1 disabled due to long timeout %lluus\n",
4897 timeout_ns);
4898 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4899 }
4900
4901 /* The U2 timeout should be the maximum of:
4902 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4903 * - largest bInterval of any active periodic endpoint (to avoid going
4904 * into lower power link states between intervals).
4905 * - the U2 Exit Latency of the device
4906 */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4907 static unsigned long long xhci_calculate_intel_u2_timeout(
4908 struct usb_device *udev,
4909 struct usb_endpoint_descriptor *desc)
4910 {
4911 unsigned long long timeout_ns;
4912 unsigned long long u2_del_ns;
4913
4914 timeout_ns = 10 * 1000 * 1000;
4915
4916 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4917 (xhci_service_interval_to_ns(desc) > timeout_ns))
4918 timeout_ns = xhci_service_interval_to_ns(desc);
4919
4920 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4921 if (u2_del_ns > timeout_ns)
4922 timeout_ns = u2_del_ns;
4923
4924 return timeout_ns;
4925 }
4926
4927 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4928 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4929 struct usb_device *udev,
4930 struct usb_endpoint_descriptor *desc)
4931 {
4932 unsigned long long timeout_ns;
4933
4934 /* Prevent U2 if service interval is shorter than U2 exit latency */
4935 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4936 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4937 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4938 return USB3_LPM_DISABLED;
4939 }
4940 }
4941
4942 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4943 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4944 else
4945 timeout_ns = udev->u2_params.sel;
4946
4947 /* The U2 timeout is encoded in 256us intervals */
4948 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4949 /* If the necessary timeout value is bigger than what we can set in the
4950 * USB 3.0 hub, we have to disable hub-initiated U2.
4951 */
4952 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4953 return timeout_ns;
4954 dev_dbg(&udev->dev, "Hub-initiated U2 disabled due to long timeout %lluus\n",
4955 timeout_ns * 256);
4956 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4957 }
4958
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4959 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4960 struct usb_device *udev,
4961 struct usb_endpoint_descriptor *desc,
4962 enum usb3_link_state state,
4963 u16 *timeout)
4964 {
4965 if (state == USB3_LPM_U1)
4966 return xhci_calculate_u1_timeout(xhci, udev, desc);
4967 else if (state == USB3_LPM_U2)
4968 return xhci_calculate_u2_timeout(xhci, udev, desc);
4969
4970 return USB3_LPM_DISABLED;
4971 }
4972
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4973 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4974 struct usb_device *udev,
4975 struct usb_endpoint_descriptor *desc,
4976 enum usb3_link_state state,
4977 u16 *timeout)
4978 {
4979 u16 alt_timeout;
4980
4981 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4982 desc, state, timeout);
4983
4984 /* If we found we can't enable hub-initiated LPM, and
4985 * the U1 or U2 exit latency was too high to allow
4986 * device-initiated LPM as well, then we will disable LPM
4987 * for this device, so stop searching any further.
4988 */
4989 if (alt_timeout == USB3_LPM_DISABLED) {
4990 *timeout = alt_timeout;
4991 return -E2BIG;
4992 }
4993 if (alt_timeout > *timeout)
4994 *timeout = alt_timeout;
4995 return 0;
4996 }
4997
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4998 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4999 struct usb_device *udev,
5000 struct usb_host_interface *alt,
5001 enum usb3_link_state state,
5002 u16 *timeout)
5003 {
5004 int j;
5005
5006 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
5007 if (xhci_update_timeout_for_endpoint(xhci, udev,
5008 &alt->endpoint[j].desc, state, timeout))
5009 return -E2BIG;
5010 }
5011 return 0;
5012 }
5013
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)5014 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
5015 struct usb_device *udev,
5016 enum usb3_link_state state)
5017 {
5018 struct usb_device *parent = udev->parent;
5019 int tier = 1; /* roothub is tier1 */
5020
5021 while (parent) {
5022 parent = parent->parent;
5023 tier++;
5024 }
5025
5026 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
5027 goto fail;
5028 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
5029 goto fail;
5030
5031 return 0;
5032 fail:
5033 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
5034 tier);
5035 return -E2BIG;
5036 }
5037
5038 /* Returns the U1 or U2 timeout that should be enabled.
5039 * If the tier check or timeout setting functions return with a non-zero exit
5040 * code, that means the timeout value has been finalized and we shouldn't look
5041 * at any more endpoints.
5042 */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5043 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
5044 struct usb_device *udev, enum usb3_link_state state)
5045 {
5046 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5047 struct usb_host_config *config;
5048 char *state_name;
5049 int i;
5050 u16 timeout = USB3_LPM_DISABLED;
5051
5052 if (state == USB3_LPM_U1)
5053 state_name = "U1";
5054 else if (state == USB3_LPM_U2)
5055 state_name = "U2";
5056 else {
5057 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
5058 state);
5059 return timeout;
5060 }
5061
5062 /* Gather some information about the currently installed configuration
5063 * and alternate interface settings.
5064 */
5065 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
5066 state, &timeout))
5067 return timeout;
5068
5069 config = udev->actconfig;
5070 if (!config)
5071 return timeout;
5072
5073 for (i = 0; i < config->desc.bNumInterfaces; i++) {
5074 struct usb_driver *driver;
5075 struct usb_interface *intf = config->interface[i];
5076
5077 if (!intf)
5078 continue;
5079
5080 /* Check if any currently bound drivers want hub-initiated LPM
5081 * disabled.
5082 */
5083 if (intf->dev.driver) {
5084 driver = to_usb_driver(intf->dev.driver);
5085 if (driver && driver->disable_hub_initiated_lpm) {
5086 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
5087 state_name, driver->name);
5088 timeout = xhci_get_timeout_no_hub_lpm(udev,
5089 state);
5090 if (timeout == USB3_LPM_DISABLED)
5091 return timeout;
5092 }
5093 }
5094
5095 /* Not sure how this could happen... */
5096 if (!intf->cur_altsetting)
5097 continue;
5098
5099 if (xhci_update_timeout_for_interface(xhci, udev,
5100 intf->cur_altsetting,
5101 state, &timeout))
5102 return timeout;
5103 }
5104 return timeout;
5105 }
5106
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)5107 static int calculate_max_exit_latency(struct usb_device *udev,
5108 enum usb3_link_state state_changed,
5109 u16 hub_encoded_timeout)
5110 {
5111 unsigned long long u1_mel_us = 0;
5112 unsigned long long u2_mel_us = 0;
5113 unsigned long long mel_us = 0;
5114 bool disabling_u1;
5115 bool disabling_u2;
5116 bool enabling_u1;
5117 bool enabling_u2;
5118
5119 disabling_u1 = (state_changed == USB3_LPM_U1 &&
5120 hub_encoded_timeout == USB3_LPM_DISABLED);
5121 disabling_u2 = (state_changed == USB3_LPM_U2 &&
5122 hub_encoded_timeout == USB3_LPM_DISABLED);
5123
5124 enabling_u1 = (state_changed == USB3_LPM_U1 &&
5125 hub_encoded_timeout != USB3_LPM_DISABLED);
5126 enabling_u2 = (state_changed == USB3_LPM_U2 &&
5127 hub_encoded_timeout != USB3_LPM_DISABLED);
5128
5129 /* If U1 was already enabled and we're not disabling it,
5130 * or we're going to enable U1, account for the U1 max exit latency.
5131 */
5132 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5133 enabling_u1)
5134 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5135 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5136 enabling_u2)
5137 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5138
5139 mel_us = max(u1_mel_us, u2_mel_us);
5140
5141 /* xHCI host controller max exit latency field is only 16 bits wide. */
5142 if (mel_us > MAX_EXIT) {
5143 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5144 "is too big.\n", mel_us);
5145 return -E2BIG;
5146 }
5147 return mel_us;
5148 }
5149
5150 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5151 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5152 struct usb_device *udev, enum usb3_link_state state)
5153 {
5154 struct xhci_hcd *xhci;
5155 struct xhci_port *port;
5156 u16 hub_encoded_timeout;
5157 int mel;
5158 int ret;
5159
5160 xhci = hcd_to_xhci(hcd);
5161 /* The LPM timeout values are pretty host-controller specific, so don't
5162 * enable hub-initiated timeouts unless the vendor has provided
5163 * information about their timeout algorithm.
5164 */
5165 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5166 !xhci->devs[udev->slot_id])
5167 return USB3_LPM_DISABLED;
5168
5169 if (xhci_check_tier_policy(xhci, udev, state) < 0)
5170 return USB3_LPM_DISABLED;
5171
5172 /* If connected to root port then check port can handle lpm */
5173 if (udev->parent && !udev->parent->parent) {
5174 port = xhci->usb3_rhub.ports[udev->portnum - 1];
5175 if (port->lpm_incapable)
5176 return USB3_LPM_DISABLED;
5177 }
5178
5179 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5180 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5181 if (mel < 0) {
5182 /* Max Exit Latency is too big, disable LPM. */
5183 hub_encoded_timeout = USB3_LPM_DISABLED;
5184 mel = 0;
5185 }
5186
5187 ret = xhci_change_max_exit_latency(xhci, udev, mel);
5188 if (ret)
5189 return ret;
5190 return hub_encoded_timeout;
5191 }
5192
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5193 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5194 struct usb_device *udev, enum usb3_link_state state)
5195 {
5196 struct xhci_hcd *xhci;
5197 u16 mel;
5198
5199 xhci = hcd_to_xhci(hcd);
5200 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5201 !xhci->devs[udev->slot_id])
5202 return 0;
5203
5204 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5205 return xhci_change_max_exit_latency(xhci, udev, mel);
5206 }
5207 #else /* CONFIG_PM */
5208
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)5209 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5210 struct usb_device *udev, int enable)
5211 {
5212 return 0;
5213 }
5214
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5215 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5216 {
5217 return 0;
5218 }
5219
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5220 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5221 struct usb_device *udev, enum usb3_link_state state)
5222 {
5223 return USB3_LPM_DISABLED;
5224 }
5225
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5226 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5227 struct usb_device *udev, enum usb3_link_state state)
5228 {
5229 return 0;
5230 }
5231 #endif /* CONFIG_PM */
5232
5233 /*-------------------------------------------------------------------------*/
5234
5235 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5236 * internal data structures for the device.
5237 */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5238 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5239 struct usb_tt *tt, gfp_t mem_flags)
5240 {
5241 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5242 struct xhci_virt_device *vdev;
5243 struct xhci_command *config_cmd;
5244 struct xhci_input_control_ctx *ctrl_ctx;
5245 struct xhci_slot_ctx *slot_ctx;
5246 unsigned long flags;
5247 unsigned think_time;
5248 int ret;
5249
5250 /* Ignore root hubs */
5251 if (!hdev->parent)
5252 return 0;
5253
5254 vdev = xhci->devs[hdev->slot_id];
5255 if (!vdev) {
5256 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5257 return -EINVAL;
5258 }
5259
5260 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5261 if (!config_cmd)
5262 return -ENOMEM;
5263
5264 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5265 if (!ctrl_ctx) {
5266 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5267 __func__);
5268 xhci_free_command(xhci, config_cmd);
5269 return -ENOMEM;
5270 }
5271
5272 spin_lock_irqsave(&xhci->lock, flags);
5273 if (hdev->speed == USB_SPEED_HIGH &&
5274 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5275 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5276 xhci_free_command(xhci, config_cmd);
5277 spin_unlock_irqrestore(&xhci->lock, flags);
5278 return -ENOMEM;
5279 }
5280
5281 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5282 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5283 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5284 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5285 /*
5286 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5287 * but it may be already set to 1 when setup an xHCI virtual
5288 * device, so clear it anyway.
5289 */
5290 if (tt->multi)
5291 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5292 else if (hdev->speed == USB_SPEED_FULL)
5293 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5294
5295 if (xhci->hci_version > 0x95) {
5296 xhci_dbg(xhci, "xHCI version %x needs hub "
5297 "TT think time and number of ports\n",
5298 (unsigned int) xhci->hci_version);
5299 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5300 /* Set TT think time - convert from ns to FS bit times.
5301 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5302 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5303 *
5304 * xHCI 1.0: this field shall be 0 if the device is not a
5305 * High-spped hub.
5306 */
5307 think_time = tt->think_time;
5308 if (think_time != 0)
5309 think_time = (think_time / 666) - 1;
5310 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5311 slot_ctx->tt_info |=
5312 cpu_to_le32(TT_THINK_TIME(think_time));
5313 } else {
5314 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5315 "TT think time or number of ports\n",
5316 (unsigned int) xhci->hci_version);
5317 }
5318 slot_ctx->dev_state = 0;
5319 spin_unlock_irqrestore(&xhci->lock, flags);
5320
5321 xhci_dbg(xhci, "Set up %s for hub device.\n",
5322 (xhci->hci_version > 0x95) ?
5323 "configure endpoint" : "evaluate context");
5324
5325 /* Issue and wait for the configure endpoint or
5326 * evaluate context command.
5327 */
5328 if (xhci->hci_version > 0x95)
5329 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5330 false, false);
5331 else
5332 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5333 true, false);
5334
5335 xhci_free_command(xhci, config_cmd);
5336 return ret;
5337 }
5338 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5339
xhci_get_frame(struct usb_hcd * hcd)5340 static int xhci_get_frame(struct usb_hcd *hcd)
5341 {
5342 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5343 /* EHCI mods by the periodic size. Why? */
5344 return readl(&xhci->run_regs->microframe_index) >> 3;
5345 }
5346
xhci_hcd_init_usb2_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5347 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5348 {
5349 xhci->usb2_rhub.hcd = hcd;
5350 hcd->speed = HCD_USB2;
5351 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5352 /*
5353 * USB 2.0 roothub under xHCI has an integrated TT,
5354 * (rate matching hub) as opposed to having an OHCI/UHCI
5355 * companion controller.
5356 */
5357 hcd->has_tt = 1;
5358 }
5359
xhci_hcd_init_usb3_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5360 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5361 {
5362 unsigned int minor_rev;
5363
5364 /*
5365 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5366 * should return 0x31 for sbrn, or that the minor revision
5367 * is a two digit BCD containig minor and sub-minor numbers.
5368 * This was later clarified in xHCI 1.2.
5369 *
5370 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5371 * minor revision set to 0x1 instead of 0x10.
5372 */
5373 if (xhci->usb3_rhub.min_rev == 0x1)
5374 minor_rev = 1;
5375 else
5376 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5377
5378 switch (minor_rev) {
5379 case 2:
5380 hcd->speed = HCD_USB32;
5381 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5382 hcd->self.root_hub->rx_lanes = 2;
5383 hcd->self.root_hub->tx_lanes = 2;
5384 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5385 break;
5386 case 1:
5387 hcd->speed = HCD_USB31;
5388 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5389 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5390 break;
5391 }
5392 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5393 minor_rev, minor_rev ? "Enhanced " : "");
5394
5395 xhci->usb3_rhub.hcd = hcd;
5396 }
5397
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5398 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5399 {
5400 struct xhci_hcd *xhci;
5401 /*
5402 * TODO: Check with DWC3 clients for sysdev according to
5403 * quirks
5404 */
5405 struct device *dev = hcd->self.sysdev;
5406 int retval;
5407
5408 /* Accept arbitrarily long scatter-gather lists */
5409 hcd->self.sg_tablesize = ~0;
5410
5411 /* support to build packet from discontinuous buffers */
5412 hcd->self.no_sg_constraint = 1;
5413
5414 /* XHCI controllers don't stop the ep queue on short packets :| */
5415 hcd->self.no_stop_on_short = 1;
5416
5417 xhci = hcd_to_xhci(hcd);
5418
5419 if (!usb_hcd_is_primary_hcd(hcd)) {
5420 xhci_hcd_init_usb3_data(xhci, hcd);
5421 return 0;
5422 }
5423
5424 mutex_init(&xhci->mutex);
5425 xhci->main_hcd = hcd;
5426 xhci->cap_regs = hcd->regs;
5427 xhci->op_regs = hcd->regs +
5428 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5429 xhci->run_regs = hcd->regs +
5430 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5431 /* Cache read-only capability registers */
5432 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5433 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5434 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5435 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5436 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5437 if (xhci->hci_version > 0x100)
5438 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5439
5440 /* xhci-plat or xhci-pci might have set max_interrupters already */
5441 if ((!xhci->max_interrupters) ||
5442 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5443 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5444
5445 xhci->quirks |= quirks;
5446
5447 if (get_quirks)
5448 get_quirks(dev, xhci);
5449
5450 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5451 * success event after a short transfer. This quirk will ignore such
5452 * spurious event.
5453 */
5454 if (xhci->hci_version > 0x96)
5455 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5456
5457 if (xhci->hci_version == 0x95 && link_quirk) {
5458 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits");
5459 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
5460 }
5461
5462 /* Make sure the HC is halted. */
5463 retval = xhci_halt(xhci);
5464 if (retval)
5465 return retval;
5466
5467 xhci_zero_64b_regs(xhci);
5468
5469 xhci_dbg(xhci, "Resetting HCD\n");
5470 /* Reset the internal HC memory state and registers. */
5471 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5472 if (retval)
5473 return retval;
5474 xhci_dbg(xhci, "Reset complete\n");
5475
5476 /*
5477 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5478 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5479 * address memory pointers actually. So, this driver clears the AC64
5480 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5481 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5482 */
5483 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5484 xhci->hcc_params &= ~BIT(0);
5485
5486 /* Set dma_mask and coherent_dma_mask to 64-bits,
5487 * if xHC supports 64-bit addressing */
5488 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5489 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5490 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5491 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5492 } else {
5493 /*
5494 * This is to avoid error in cases where a 32-bit USB
5495 * controller is used on a 64-bit capable system.
5496 */
5497 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5498 if (retval)
5499 return retval;
5500 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5501 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5502 }
5503
5504 xhci_dbg(xhci, "Calling HCD init\n");
5505 /* Initialize HCD and host controller data structures. */
5506 retval = xhci_init(hcd);
5507 if (retval)
5508 return retval;
5509 xhci_dbg(xhci, "Called HCD init\n");
5510
5511 if (xhci_hcd_is_usb3(hcd))
5512 xhci_hcd_init_usb3_data(xhci, hcd);
5513 else
5514 xhci_hcd_init_usb2_data(xhci, hcd);
5515
5516 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5517 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5518
5519 return 0;
5520 }
5521 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5522
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5523 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5524 struct usb_host_endpoint *ep)
5525 {
5526 struct xhci_hcd *xhci;
5527 struct usb_device *udev;
5528 unsigned int slot_id;
5529 unsigned int ep_index;
5530 unsigned long flags;
5531
5532 xhci = hcd_to_xhci(hcd);
5533
5534 spin_lock_irqsave(&xhci->lock, flags);
5535 udev = (struct usb_device *)ep->hcpriv;
5536 slot_id = udev->slot_id;
5537 ep_index = xhci_get_endpoint_index(&ep->desc);
5538
5539 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5540 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5541 spin_unlock_irqrestore(&xhci->lock, flags);
5542 }
5543
5544 static const struct hc_driver xhci_hc_driver = {
5545 .description = "xhci-hcd",
5546 .product_desc = "xHCI Host Controller",
5547 .hcd_priv_size = sizeof(struct xhci_hcd),
5548
5549 /*
5550 * generic hardware linkage
5551 */
5552 .irq = xhci_irq,
5553 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5554 HCD_BH,
5555
5556 /*
5557 * basic lifecycle operations
5558 */
5559 .reset = NULL, /* set in xhci_init_driver() */
5560 .start = xhci_run,
5561 .stop = xhci_stop,
5562 .shutdown = xhci_shutdown,
5563
5564 /*
5565 * managing i/o requests and associated device resources
5566 */
5567 .map_urb_for_dma = xhci_map_urb_for_dma,
5568 .unmap_urb_for_dma = xhci_unmap_urb_for_dma,
5569 .urb_enqueue = xhci_urb_enqueue,
5570 .urb_dequeue = xhci_urb_dequeue,
5571 .alloc_dev = xhci_alloc_dev,
5572 .free_dev = xhci_free_dev,
5573 .alloc_streams = xhci_alloc_streams,
5574 .free_streams = xhci_free_streams,
5575 .add_endpoint = xhci_add_endpoint,
5576 .drop_endpoint = xhci_drop_endpoint,
5577 .endpoint_disable = xhci_endpoint_disable,
5578 .endpoint_reset = xhci_endpoint_reset,
5579 .check_bandwidth = xhci_check_bandwidth,
5580 .reset_bandwidth = xhci_reset_bandwidth,
5581 .address_device = xhci_address_device,
5582 .enable_device = xhci_enable_device,
5583 .update_hub_device = xhci_update_hub_device,
5584 .reset_device = xhci_discover_or_reset_device,
5585
5586 /*
5587 * scheduling support
5588 */
5589 .get_frame_number = xhci_get_frame,
5590
5591 /*
5592 * root hub support
5593 */
5594 .hub_control = xhci_hub_control,
5595 .hub_status_data = xhci_hub_status_data,
5596 .bus_suspend = xhci_bus_suspend,
5597 .bus_resume = xhci_bus_resume,
5598 .get_resuming_ports = xhci_get_resuming_ports,
5599
5600 /*
5601 * call back when device connected and addressed
5602 */
5603 .update_device = xhci_update_device,
5604 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5605 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5606 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5607 .find_raw_port_number = xhci_find_raw_port_number,
5608 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5609 };
5610
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5611 void xhci_init_driver(struct hc_driver *drv,
5612 const struct xhci_driver_overrides *over)
5613 {
5614 BUG_ON(!over);
5615
5616 /* Copy the generic table to drv then apply the overrides */
5617 *drv = xhci_hc_driver;
5618
5619 if (over) {
5620 drv->hcd_priv_size += over->extra_priv_size;
5621 if (over->reset)
5622 drv->reset = over->reset;
5623 if (over->start)
5624 drv->start = over->start;
5625 if (over->add_endpoint)
5626 drv->add_endpoint = over->add_endpoint;
5627 if (over->drop_endpoint)
5628 drv->drop_endpoint = over->drop_endpoint;
5629 if (over->check_bandwidth)
5630 drv->check_bandwidth = over->check_bandwidth;
5631 if (over->reset_bandwidth)
5632 drv->reset_bandwidth = over->reset_bandwidth;
5633 if (over->update_hub_device)
5634 drv->update_hub_device = over->update_hub_device;
5635 if (over->hub_control)
5636 drv->hub_control = over->hub_control;
5637 }
5638 }
5639 EXPORT_SYMBOL_GPL(xhci_init_driver);
5640
5641 MODULE_DESCRIPTION(DRIVER_DESC);
5642 MODULE_AUTHOR(DRIVER_AUTHOR);
5643 MODULE_LICENSE("GPL");
5644
xhci_hcd_init(void)5645 static int __init xhci_hcd_init(void)
5646 {
5647 /*
5648 * Check the compiler generated sizes of structures that must be laid
5649 * out in specific ways for hardware access.
5650 */
5651 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5652 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5653 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5654 /* xhci_device_control has eight fields, and also
5655 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5656 */
5657 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5658 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5659 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5660 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5661 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5662 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5663 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5664
5665 if (usb_disabled())
5666 return -ENODEV;
5667
5668 xhci_debugfs_create_root();
5669 xhci_dbc_init();
5670
5671 return 0;
5672 }
5673
5674 /*
5675 * If an init function is provided, an exit function must also be provided
5676 * to allow module unload.
5677 */
xhci_hcd_fini(void)5678 static void __exit xhci_hcd_fini(void)
5679 {
5680 xhci_debugfs_remove_root();
5681 xhci_dbc_exit();
5682 }
5683
5684 module_init(xhci_hcd_init);
5685 module_exit(xhci_hcd_fini);
5686