xref: /linux/fs/xfs/xfs_zone_gc.c (revision 27c0b5c4f67aeb73edd515200bd1e0c82a3ee892)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2023-2025 Christoph Hellwig.
4  * Copyright (c) 2024-2025, Western Digital Corporation or its affiliates.
5  */
6 #include "xfs.h"
7 #include "xfs_shared.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_inode.h"
13 #include "xfs_btree.h"
14 #include "xfs_trans.h"
15 #include "xfs_icache.h"
16 #include "xfs_rmap.h"
17 #include "xfs_rtbitmap.h"
18 #include "xfs_rtrmap_btree.h"
19 #include "xfs_zone_alloc.h"
20 #include "xfs_zone_priv.h"
21 #include "xfs_zones.h"
22 #include "xfs_trace.h"
23 
24 /*
25  * Implement Garbage Collection (GC) of partially used zoned.
26  *
27  * To support the purely sequential writes in each zone, zoned XFS needs to be
28  * able to move data remaining in a zone out of it to reset the zone to prepare
29  * for writing to it again.
30  *
31  * This is done by the GC thread implemented in this file.  To support that a
32  * number of zones (XFS_GC_ZONES) is reserved from the user visible capacity to
33  * write the garbage collected data into.
34  *
35  * Whenever the available space is below the chosen threshold, the GC thread
36  * looks for potential non-empty but not fully used zones that are worth
37  * reclaiming.  Once found the rmap for the victim zone is queried, and after
38  * a bit of sorting to reduce fragmentation, the still live extents are read
39  * into memory and written to the GC target zone, and the bmap btree of the
40  * files is updated to point to the new location.  To avoid taking the IOLOCK
41  * and MMAPLOCK for the entire GC process and thus affecting the latency of
42  * user reads and writes to the files, the GC writes are speculative and the
43  * I/O completion checks that no other writes happened for the affected regions
44  * before remapping.
45  *
46  * Once a zone does not contain any valid data, be that through GC or user
47  * block removal, it is queued for for a zone reset.  The reset operation
48  * carefully ensures that the RT device cache is flushed and all transactions
49  * referencing the rmap have been committed to disk.
50  */
51 
52 /*
53  * Size of each GC scratch pad.  This is also the upper bound for each
54  * GC I/O, which helps to keep latency down.
55  */
56 #define XFS_GC_CHUNK_SIZE	SZ_1M
57 
58 /*
59  * Scratchpad data to read GCed data into.
60  *
61  * The offset member tracks where the next allocation starts, and freed tracks
62  * the amount of space that is not used anymore.
63  */
64 #define XFS_ZONE_GC_NR_SCRATCH	2
65 struct xfs_zone_scratch {
66 	struct folio			*folio;
67 	unsigned int			offset;
68 	unsigned int			freed;
69 };
70 
71 /*
72  * Chunk that is read and written for each GC operation.
73  *
74  * Note that for writes to actual zoned devices, the chunk can be split when
75  * reaching the hardware limit.
76  */
77 struct xfs_gc_bio {
78 	struct xfs_zone_gc_data		*data;
79 
80 	/*
81 	 * Entry into the reading/writing/resetting list.  Only accessed from
82 	 * the GC thread, so no locking needed.
83 	 */
84 	struct list_head		entry;
85 
86 	/*
87 	 * State of this gc_bio.  Done means the current I/O completed.
88 	 * Set from the bio end I/O handler, read from the GC thread.
89 	 */
90 	enum {
91 		XFS_GC_BIO_NEW,
92 		XFS_GC_BIO_DONE,
93 	} state;
94 
95 	/*
96 	 * Pointer to the inode and byte range in the inode that this
97 	 * GC chunk is operating on.
98 	 */
99 	struct xfs_inode		*ip;
100 	loff_t				offset;
101 	unsigned int			len;
102 
103 	/*
104 	 * Existing startblock (in the zone to be freed) and newly assigned
105 	 * daddr in the zone GCed into.
106 	 */
107 	xfs_fsblock_t			old_startblock;
108 	xfs_daddr_t			new_daddr;
109 	struct xfs_zone_scratch		*scratch;
110 
111 	/* Are we writing to a sequential write required zone? */
112 	bool				is_seq;
113 
114 	/* Open Zone being written to */
115 	struct xfs_open_zone		*oz;
116 
117 	/* Bio used for reads and writes, including the bvec used by it */
118 	struct bio_vec			bv;
119 	struct bio			bio;	/* must be last */
120 };
121 
122 #define XFS_ZONE_GC_RECS		1024
123 
124 /* iterator, needs to be reinitialized for each victim zone */
125 struct xfs_zone_gc_iter {
126 	struct xfs_rtgroup		*victim_rtg;
127 	unsigned int			rec_count;
128 	unsigned int			rec_idx;
129 	xfs_agblock_t			next_startblock;
130 	struct xfs_rmap_irec		*recs;
131 };
132 
133 /*
134  * Per-mount GC state.
135  */
136 struct xfs_zone_gc_data {
137 	struct xfs_mount		*mp;
138 
139 	/* bioset used to allocate the gc_bios */
140 	struct bio_set			bio_set;
141 
142 	/*
143 	 * Scratchpad used, and index to indicated which one is used.
144 	 */
145 	struct xfs_zone_scratch		scratch[XFS_ZONE_GC_NR_SCRATCH];
146 	unsigned int			scratch_idx;
147 
148 	/*
149 	 * List of bios currently being read, written and reset.
150 	 * These lists are only accessed by the GC thread itself, and must only
151 	 * be processed in order.
152 	 */
153 	struct list_head		reading;
154 	struct list_head		writing;
155 	struct list_head		resetting;
156 
157 	/*
158 	 * Iterator for the victim zone.
159 	 */
160 	struct xfs_zone_gc_iter		iter;
161 };
162 
163 /*
164  * We aim to keep enough zones free in stock to fully use the open zone limit
165  * for data placement purposes. Additionally, the m_zonegc_low_space tunable
166  * can be set to make sure a fraction of the unused blocks are available for
167  * writing.
168  */
169 bool
xfs_zoned_need_gc(struct xfs_mount * mp)170 xfs_zoned_need_gc(
171 	struct xfs_mount	*mp)
172 {
173 	s64			available, free, threshold;
174 	s32			remainder;
175 
176 	if (!xfs_group_marked(mp, XG_TYPE_RTG, XFS_RTG_RECLAIMABLE))
177 		return false;
178 
179 	available = xfs_estimate_freecounter(mp, XC_FREE_RTAVAILABLE);
180 
181 	if (available <
182 	    mp->m_groups[XG_TYPE_RTG].blocks *
183 	    (mp->m_max_open_zones - XFS_OPEN_GC_ZONES))
184 		return true;
185 
186 	free = xfs_estimate_freecounter(mp, XC_FREE_RTEXTENTS);
187 
188 	threshold = div_s64_rem(free, 100, &remainder);
189 	threshold = threshold * mp->m_zonegc_low_space +
190 		    remainder * div_s64(mp->m_zonegc_low_space, 100);
191 
192 	if (available < threshold)
193 		return true;
194 
195 	return false;
196 }
197 
198 static struct xfs_zone_gc_data *
xfs_zone_gc_data_alloc(struct xfs_mount * mp)199 xfs_zone_gc_data_alloc(
200 	struct xfs_mount	*mp)
201 {
202 	struct xfs_zone_gc_data	*data;
203 	int			i;
204 
205 	data = kzalloc(sizeof(*data), GFP_KERNEL);
206 	if (!data)
207 		return NULL;
208 	data->iter.recs = kcalloc(XFS_ZONE_GC_RECS, sizeof(*data->iter.recs),
209 			GFP_KERNEL);
210 	if (!data->iter.recs)
211 		goto out_free_data;
212 
213 	/*
214 	 * We actually only need a single bio_vec.  It would be nice to have
215 	 * a flag that only allocates the inline bvecs and not the separate
216 	 * bvec pool.
217 	 */
218 	if (bioset_init(&data->bio_set, 16, offsetof(struct xfs_gc_bio, bio),
219 			BIOSET_NEED_BVECS))
220 		goto out_free_recs;
221 	for (i = 0; i < XFS_ZONE_GC_NR_SCRATCH; i++) {
222 		data->scratch[i].folio =
223 			folio_alloc(GFP_KERNEL, get_order(XFS_GC_CHUNK_SIZE));
224 		if (!data->scratch[i].folio)
225 			goto out_free_scratch;
226 	}
227 	INIT_LIST_HEAD(&data->reading);
228 	INIT_LIST_HEAD(&data->writing);
229 	INIT_LIST_HEAD(&data->resetting);
230 	data->mp = mp;
231 	return data;
232 
233 out_free_scratch:
234 	while (--i >= 0)
235 		folio_put(data->scratch[i].folio);
236 	bioset_exit(&data->bio_set);
237 out_free_recs:
238 	kfree(data->iter.recs);
239 out_free_data:
240 	kfree(data);
241 	return NULL;
242 }
243 
244 static void
xfs_zone_gc_data_free(struct xfs_zone_gc_data * data)245 xfs_zone_gc_data_free(
246 	struct xfs_zone_gc_data	*data)
247 {
248 	int			i;
249 
250 	for (i = 0; i < XFS_ZONE_GC_NR_SCRATCH; i++)
251 		folio_put(data->scratch[i].folio);
252 	bioset_exit(&data->bio_set);
253 	kfree(data->iter.recs);
254 	kfree(data);
255 }
256 
257 static void
xfs_zone_gc_iter_init(struct xfs_zone_gc_iter * iter,struct xfs_rtgroup * victim_rtg)258 xfs_zone_gc_iter_init(
259 	struct xfs_zone_gc_iter	*iter,
260 	struct xfs_rtgroup	*victim_rtg)
261 
262 {
263 	iter->next_startblock = 0;
264 	iter->rec_count = 0;
265 	iter->rec_idx = 0;
266 	iter->victim_rtg = victim_rtg;
267 }
268 
269 /*
270  * Query the rmap of the victim zone to gather the records to evacuate.
271  */
272 static int
xfs_zone_gc_query_cb(struct xfs_btree_cur * cur,const struct xfs_rmap_irec * irec,void * private)273 xfs_zone_gc_query_cb(
274 	struct xfs_btree_cur	*cur,
275 	const struct xfs_rmap_irec *irec,
276 	void			*private)
277 {
278 	struct xfs_zone_gc_iter	*iter = private;
279 
280 	ASSERT(!XFS_RMAP_NON_INODE_OWNER(irec->rm_owner));
281 	ASSERT(!xfs_is_sb_inum(cur->bc_mp, irec->rm_owner));
282 	ASSERT(!(irec->rm_flags & (XFS_RMAP_ATTR_FORK | XFS_RMAP_BMBT_BLOCK)));
283 
284 	iter->recs[iter->rec_count] = *irec;
285 	if (++iter->rec_count == XFS_ZONE_GC_RECS) {
286 		iter->next_startblock =
287 			irec->rm_startblock + irec->rm_blockcount;
288 		return 1;
289 	}
290 	return 0;
291 }
292 
293 static int
xfs_zone_gc_rmap_rec_cmp(const void * a,const void * b)294 xfs_zone_gc_rmap_rec_cmp(
295 	const void			*a,
296 	const void			*b)
297 {
298 	const struct xfs_rmap_irec	*reca = a;
299 	const struct xfs_rmap_irec	*recb = b;
300 	int				diff;
301 
302 	diff = cmp_int(reca->rm_owner, recb->rm_owner);
303 	if (diff)
304 		return diff;
305 	return cmp_int(reca->rm_offset, recb->rm_offset);
306 }
307 
308 static int
xfs_zone_gc_query(struct xfs_mount * mp,struct xfs_zone_gc_iter * iter)309 xfs_zone_gc_query(
310 	struct xfs_mount	*mp,
311 	struct xfs_zone_gc_iter	*iter)
312 {
313 	struct xfs_rtgroup	*rtg = iter->victim_rtg;
314 	struct xfs_rmap_irec	ri_low = { };
315 	struct xfs_rmap_irec	ri_high;
316 	struct xfs_btree_cur	*cur;
317 	struct xfs_trans	*tp;
318 	int			error;
319 
320 	ASSERT(iter->next_startblock <= rtg_blocks(rtg));
321 	if (iter->next_startblock == rtg_blocks(rtg))
322 		goto done;
323 
324 	ASSERT(iter->next_startblock < rtg_blocks(rtg));
325 	ri_low.rm_startblock = iter->next_startblock;
326 	memset(&ri_high, 0xFF, sizeof(ri_high));
327 
328 	iter->rec_idx = 0;
329 	iter->rec_count = 0;
330 
331 	tp = xfs_trans_alloc_empty(mp);
332 	xfs_rtgroup_lock(rtg, XFS_RTGLOCK_RMAP);
333 	cur = xfs_rtrmapbt_init_cursor(tp, rtg);
334 	error = xfs_rmap_query_range(cur, &ri_low, &ri_high,
335 			xfs_zone_gc_query_cb, iter);
336 	xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_RMAP);
337 	xfs_btree_del_cursor(cur, error < 0 ? error : 0);
338 	xfs_trans_cancel(tp);
339 
340 	if (error < 0)
341 		return error;
342 
343 	/*
344 	 * Sort the rmap records by inode number and increasing offset to
345 	 * defragment the mappings.
346 	 *
347 	 * This could be further enhanced by an even bigger look ahead window,
348 	 * but that's better left until we have better detection of changes to
349 	 * inode mapping to avoid the potential of GCing already dead data.
350 	 */
351 	sort(iter->recs, iter->rec_count, sizeof(iter->recs[0]),
352 			xfs_zone_gc_rmap_rec_cmp, NULL);
353 
354 	if (error == 0) {
355 		/*
356 		 * We finished iterating through the zone.
357 		 */
358 		iter->next_startblock = rtg_blocks(rtg);
359 		if (iter->rec_count == 0)
360 			goto done;
361 	}
362 
363 	return 0;
364 done:
365 	xfs_rtgroup_rele(iter->victim_rtg);
366 	iter->victim_rtg = NULL;
367 	return 0;
368 }
369 
370 static bool
xfs_zone_gc_iter_next(struct xfs_mount * mp,struct xfs_zone_gc_iter * iter,struct xfs_rmap_irec * chunk_rec,struct xfs_inode ** ipp)371 xfs_zone_gc_iter_next(
372 	struct xfs_mount	*mp,
373 	struct xfs_zone_gc_iter	*iter,
374 	struct xfs_rmap_irec	*chunk_rec,
375 	struct xfs_inode	**ipp)
376 {
377 	struct xfs_rmap_irec	*irec;
378 	int			error;
379 
380 	if (!iter->victim_rtg)
381 		return false;
382 
383 retry:
384 	if (iter->rec_idx == iter->rec_count) {
385 		error = xfs_zone_gc_query(mp, iter);
386 		if (error)
387 			goto fail;
388 		if (!iter->victim_rtg)
389 			return false;
390 	}
391 
392 	irec = &iter->recs[iter->rec_idx];
393 	error = xfs_iget(mp, NULL, irec->rm_owner,
394 			XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE, 0, ipp);
395 	if (error) {
396 		/*
397 		 * If the inode was already deleted, skip over it.
398 		 */
399 		if (error == -ENOENT) {
400 			iter->rec_idx++;
401 			goto retry;
402 		}
403 		goto fail;
404 	}
405 
406 	if (!S_ISREG(VFS_I(*ipp)->i_mode) || !XFS_IS_REALTIME_INODE(*ipp)) {
407 		iter->rec_idx++;
408 		xfs_irele(*ipp);
409 		goto retry;
410 	}
411 
412 	*chunk_rec = *irec;
413 	return true;
414 
415 fail:
416 	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
417 	return false;
418 }
419 
420 static void
xfs_zone_gc_iter_advance(struct xfs_zone_gc_iter * iter,xfs_extlen_t count_fsb)421 xfs_zone_gc_iter_advance(
422 	struct xfs_zone_gc_iter	*iter,
423 	xfs_extlen_t		count_fsb)
424 {
425 	struct xfs_rmap_irec	*irec = &iter->recs[iter->rec_idx];
426 
427 	irec->rm_offset += count_fsb;
428 	irec->rm_startblock += count_fsb;
429 	irec->rm_blockcount -= count_fsb;
430 	if (!irec->rm_blockcount)
431 		iter->rec_idx++;
432 }
433 
434 static struct xfs_rtgroup *
xfs_zone_gc_pick_victim_from(struct xfs_mount * mp,uint32_t bucket)435 xfs_zone_gc_pick_victim_from(
436 	struct xfs_mount	*mp,
437 	uint32_t		bucket)
438 {
439 	struct xfs_zone_info	*zi = mp->m_zone_info;
440 	uint32_t		victim_used = U32_MAX;
441 	struct xfs_rtgroup	*victim_rtg = NULL;
442 	uint32_t		bit;
443 
444 	if (!zi->zi_used_bucket_entries[bucket])
445 		return NULL;
446 
447 	for_each_set_bit(bit, zi->zi_used_bucket_bitmap[bucket],
448 			mp->m_sb.sb_rgcount) {
449 		struct xfs_rtgroup *rtg = xfs_rtgroup_grab(mp, bit);
450 
451 		if (!rtg)
452 			continue;
453 
454 		/* skip zones that are just waiting for a reset */
455 		if (rtg_rmap(rtg)->i_used_blocks == 0 ||
456 		    rtg_rmap(rtg)->i_used_blocks >= victim_used) {
457 			xfs_rtgroup_rele(rtg);
458 			continue;
459 		}
460 
461 		if (victim_rtg)
462 			xfs_rtgroup_rele(victim_rtg);
463 		victim_rtg = rtg;
464 		victim_used = rtg_rmap(rtg)->i_used_blocks;
465 
466 		/*
467 		 * Any zone that is less than 1 percent used is fair game for
468 		 * instant reclaim. All of these zones are in the last
469 		 * bucket, so avoid the expensive division for the zones
470 		 * in the other buckets.
471 		 */
472 		if (bucket == 0 &&
473 		    rtg_rmap(rtg)->i_used_blocks < rtg_blocks(rtg) / 100)
474 			break;
475 	}
476 
477 	return victim_rtg;
478 }
479 
480 /*
481  * Iterate through all zones marked as reclaimable and find a candidate to
482  * reclaim.
483  */
484 static bool
xfs_zone_gc_select_victim(struct xfs_zone_gc_data * data)485 xfs_zone_gc_select_victim(
486 	struct xfs_zone_gc_data	*data)
487 {
488 	struct xfs_zone_gc_iter	*iter = &data->iter;
489 	struct xfs_mount	*mp = data->mp;
490 	struct xfs_zone_info	*zi = mp->m_zone_info;
491 	struct xfs_rtgroup	*victim_rtg = NULL;
492 	unsigned int		bucket;
493 
494 	spin_lock(&zi->zi_used_buckets_lock);
495 	for (bucket = 0; bucket < XFS_ZONE_USED_BUCKETS; bucket++) {
496 		victim_rtg = xfs_zone_gc_pick_victim_from(mp, bucket);
497 		if (victim_rtg)
498 			break;
499 	}
500 	spin_unlock(&zi->zi_used_buckets_lock);
501 
502 	if (!victim_rtg)
503 		return false;
504 
505 	trace_xfs_zone_gc_select_victim(victim_rtg, bucket);
506 	xfs_zone_gc_iter_init(iter, victim_rtg);
507 	return true;
508 }
509 
510 static struct xfs_open_zone *
xfs_zone_gc_steal_open(struct xfs_zone_info * zi)511 xfs_zone_gc_steal_open(
512 	struct xfs_zone_info	*zi)
513 {
514 	struct xfs_open_zone	*oz, *found = NULL;
515 
516 	spin_lock(&zi->zi_open_zones_lock);
517 	list_for_each_entry(oz, &zi->zi_open_zones, oz_entry) {
518 		if (!found || oz->oz_allocated < found->oz_allocated)
519 			found = oz;
520 	}
521 
522 	if (found) {
523 		found->oz_is_gc = true;
524 		list_del_init(&found->oz_entry);
525 		zi->zi_nr_open_zones--;
526 	}
527 
528 	spin_unlock(&zi->zi_open_zones_lock);
529 	return found;
530 }
531 
532 static struct xfs_open_zone *
xfs_zone_gc_select_target(struct xfs_mount * mp)533 xfs_zone_gc_select_target(
534 	struct xfs_mount	*mp)
535 {
536 	struct xfs_zone_info	*zi = mp->m_zone_info;
537 	struct xfs_open_zone	*oz = zi->zi_open_gc_zone;
538 
539 	/*
540 	 * We need to wait for pending writes to finish.
541 	 */
542 	if (oz && oz->oz_written < rtg_blocks(oz->oz_rtg))
543 		return NULL;
544 
545 	ASSERT(zi->zi_nr_open_zones <=
546 		mp->m_max_open_zones - XFS_OPEN_GC_ZONES);
547 	oz = xfs_open_zone(mp, WRITE_LIFE_NOT_SET, true);
548 	if (oz)
549 		trace_xfs_zone_gc_target_opened(oz->oz_rtg);
550 	spin_lock(&zi->zi_open_zones_lock);
551 	zi->zi_open_gc_zone = oz;
552 	spin_unlock(&zi->zi_open_zones_lock);
553 	return oz;
554 }
555 
556 /*
557  * Ensure we have a valid open zone to write the GC data to.
558  *
559  * If the current target zone has space keep writing to it, else first wait for
560  * all pending writes and then pick a new one.
561  */
562 static struct xfs_open_zone *
xfs_zone_gc_ensure_target(struct xfs_mount * mp)563 xfs_zone_gc_ensure_target(
564 	struct xfs_mount	*mp)
565 {
566 	struct xfs_open_zone	*oz = mp->m_zone_info->zi_open_gc_zone;
567 
568 	if (!oz || oz->oz_allocated == rtg_blocks(oz->oz_rtg))
569 		return xfs_zone_gc_select_target(mp);
570 	return oz;
571 }
572 
573 static unsigned int
xfs_zone_gc_scratch_available(struct xfs_zone_gc_data * data)574 xfs_zone_gc_scratch_available(
575 	struct xfs_zone_gc_data	*data)
576 {
577 	return XFS_GC_CHUNK_SIZE - data->scratch[data->scratch_idx].offset;
578 }
579 
580 static bool
xfs_zone_gc_space_available(struct xfs_zone_gc_data * data)581 xfs_zone_gc_space_available(
582 	struct xfs_zone_gc_data	*data)
583 {
584 	struct xfs_open_zone	*oz;
585 
586 	oz = xfs_zone_gc_ensure_target(data->mp);
587 	if (!oz)
588 		return false;
589 	return oz->oz_allocated < rtg_blocks(oz->oz_rtg) &&
590 		xfs_zone_gc_scratch_available(data);
591 }
592 
593 static void
xfs_zone_gc_end_io(struct bio * bio)594 xfs_zone_gc_end_io(
595 	struct bio		*bio)
596 {
597 	struct xfs_gc_bio	*chunk =
598 		container_of(bio, struct xfs_gc_bio, bio);
599 	struct xfs_zone_gc_data	*data = chunk->data;
600 
601 	WRITE_ONCE(chunk->state, XFS_GC_BIO_DONE);
602 	wake_up_process(data->mp->m_zone_info->zi_gc_thread);
603 }
604 
605 static struct xfs_open_zone *
xfs_zone_gc_alloc_blocks(struct xfs_zone_gc_data * data,xfs_extlen_t * count_fsb,xfs_daddr_t * daddr,bool * is_seq)606 xfs_zone_gc_alloc_blocks(
607 	struct xfs_zone_gc_data	*data,
608 	xfs_extlen_t		*count_fsb,
609 	xfs_daddr_t		*daddr,
610 	bool			*is_seq)
611 {
612 	struct xfs_mount	*mp = data->mp;
613 	struct xfs_open_zone	*oz;
614 
615 	oz = xfs_zone_gc_ensure_target(mp);
616 	if (!oz)
617 		return NULL;
618 
619 	*count_fsb = min(*count_fsb,
620 		XFS_B_TO_FSB(mp, xfs_zone_gc_scratch_available(data)));
621 
622 	/*
623 	 * Directly allocate GC blocks from the reserved pool.
624 	 *
625 	 * If we'd take them from the normal pool we could be stealing blocks
626 	 * from a regular writer, which would then have to wait for GC and
627 	 * deadlock.
628 	 */
629 	spin_lock(&mp->m_sb_lock);
630 	*count_fsb = min(*count_fsb,
631 			rtg_blocks(oz->oz_rtg) - oz->oz_allocated);
632 	*count_fsb = min3(*count_fsb,
633 			mp->m_free[XC_FREE_RTEXTENTS].res_avail,
634 			mp->m_free[XC_FREE_RTAVAILABLE].res_avail);
635 	mp->m_free[XC_FREE_RTEXTENTS].res_avail -= *count_fsb;
636 	mp->m_free[XC_FREE_RTAVAILABLE].res_avail -= *count_fsb;
637 	spin_unlock(&mp->m_sb_lock);
638 
639 	if (!*count_fsb)
640 		return NULL;
641 
642 	*daddr = xfs_gbno_to_daddr(&oz->oz_rtg->rtg_group, 0);
643 	*is_seq = bdev_zone_is_seq(mp->m_rtdev_targp->bt_bdev, *daddr);
644 	if (!*is_seq)
645 		*daddr += XFS_FSB_TO_BB(mp, oz->oz_allocated);
646 	oz->oz_allocated += *count_fsb;
647 	atomic_inc(&oz->oz_ref);
648 	return oz;
649 }
650 
651 static bool
xfs_zone_gc_start_chunk(struct xfs_zone_gc_data * data)652 xfs_zone_gc_start_chunk(
653 	struct xfs_zone_gc_data	*data)
654 {
655 	struct xfs_zone_gc_iter	*iter = &data->iter;
656 	struct xfs_mount	*mp = data->mp;
657 	struct block_device	*bdev = mp->m_rtdev_targp->bt_bdev;
658 	struct xfs_open_zone	*oz;
659 	struct xfs_rmap_irec	irec;
660 	struct xfs_gc_bio	*chunk;
661 	struct xfs_inode	*ip;
662 	struct bio		*bio;
663 	xfs_daddr_t		daddr;
664 	bool			is_seq;
665 
666 	if (xfs_is_shutdown(mp))
667 		return false;
668 
669 	if (!xfs_zone_gc_iter_next(mp, iter, &irec, &ip))
670 		return false;
671 	oz = xfs_zone_gc_alloc_blocks(data, &irec.rm_blockcount, &daddr,
672 			&is_seq);
673 	if (!oz) {
674 		xfs_irele(ip);
675 		return false;
676 	}
677 
678 	bio = bio_alloc_bioset(bdev, 1, REQ_OP_READ, GFP_NOFS, &data->bio_set);
679 
680 	chunk = container_of(bio, struct xfs_gc_bio, bio);
681 	chunk->ip = ip;
682 	chunk->offset = XFS_FSB_TO_B(mp, irec.rm_offset);
683 	chunk->len = XFS_FSB_TO_B(mp, irec.rm_blockcount);
684 	chunk->old_startblock =
685 		xfs_rgbno_to_rtb(iter->victim_rtg, irec.rm_startblock);
686 	chunk->new_daddr = daddr;
687 	chunk->is_seq = is_seq;
688 	chunk->scratch = &data->scratch[data->scratch_idx];
689 	chunk->data = data;
690 	chunk->oz = oz;
691 
692 	bio->bi_iter.bi_sector = xfs_rtb_to_daddr(mp, chunk->old_startblock);
693 	bio->bi_end_io = xfs_zone_gc_end_io;
694 	bio_add_folio_nofail(bio, chunk->scratch->folio, chunk->len,
695 			chunk->scratch->offset);
696 	chunk->scratch->offset += chunk->len;
697 	if (chunk->scratch->offset == XFS_GC_CHUNK_SIZE) {
698 		data->scratch_idx =
699 			(data->scratch_idx + 1) % XFS_ZONE_GC_NR_SCRATCH;
700 	}
701 	WRITE_ONCE(chunk->state, XFS_GC_BIO_NEW);
702 	list_add_tail(&chunk->entry, &data->reading);
703 	xfs_zone_gc_iter_advance(iter, irec.rm_blockcount);
704 
705 	submit_bio(bio);
706 	return true;
707 }
708 
709 static void
xfs_zone_gc_free_chunk(struct xfs_gc_bio * chunk)710 xfs_zone_gc_free_chunk(
711 	struct xfs_gc_bio	*chunk)
712 {
713 	list_del(&chunk->entry);
714 	xfs_open_zone_put(chunk->oz);
715 	xfs_irele(chunk->ip);
716 	bio_put(&chunk->bio);
717 }
718 
719 static void
xfs_zone_gc_submit_write(struct xfs_zone_gc_data * data,struct xfs_gc_bio * chunk)720 xfs_zone_gc_submit_write(
721 	struct xfs_zone_gc_data	*data,
722 	struct xfs_gc_bio	*chunk)
723 {
724 	if (chunk->is_seq) {
725 		chunk->bio.bi_opf &= ~REQ_OP_WRITE;
726 		chunk->bio.bi_opf |= REQ_OP_ZONE_APPEND;
727 	}
728 	chunk->bio.bi_iter.bi_sector = chunk->new_daddr;
729 	chunk->bio.bi_end_io = xfs_zone_gc_end_io;
730 	submit_bio(&chunk->bio);
731 }
732 
733 static struct xfs_gc_bio *
xfs_zone_gc_split_write(struct xfs_zone_gc_data * data,struct xfs_gc_bio * chunk)734 xfs_zone_gc_split_write(
735 	struct xfs_zone_gc_data	*data,
736 	struct xfs_gc_bio	*chunk)
737 {
738 	struct queue_limits	*lim =
739 		&bdev_get_queue(chunk->bio.bi_bdev)->limits;
740 	struct xfs_gc_bio	*split_chunk;
741 	int			split_sectors;
742 	unsigned int		split_len;
743 	struct bio		*split;
744 	unsigned int		nsegs;
745 
746 	if (!chunk->is_seq)
747 		return NULL;
748 
749 	split_sectors = bio_split_rw_at(&chunk->bio, lim, &nsegs,
750 			lim->max_zone_append_sectors << SECTOR_SHIFT);
751 	if (!split_sectors)
752 		return NULL;
753 
754 	/* ensure the split chunk is still block size aligned */
755 	split_sectors = ALIGN_DOWN(split_sectors << SECTOR_SHIFT,
756 			data->mp->m_sb.sb_blocksize) >> SECTOR_SHIFT;
757 	split_len = split_sectors << SECTOR_SHIFT;
758 
759 	split = bio_split(&chunk->bio, split_sectors, GFP_NOFS, &data->bio_set);
760 	split_chunk = container_of(split, struct xfs_gc_bio, bio);
761 	split_chunk->data = data;
762 	ihold(VFS_I(chunk->ip));
763 	split_chunk->ip = chunk->ip;
764 	split_chunk->is_seq = chunk->is_seq;
765 	split_chunk->scratch = chunk->scratch;
766 	split_chunk->offset = chunk->offset;
767 	split_chunk->len = split_len;
768 	split_chunk->old_startblock = chunk->old_startblock;
769 	split_chunk->new_daddr = chunk->new_daddr;
770 	split_chunk->oz = chunk->oz;
771 	atomic_inc(&chunk->oz->oz_ref);
772 
773 	chunk->offset += split_len;
774 	chunk->len -= split_len;
775 	chunk->old_startblock += XFS_B_TO_FSB(data->mp, split_len);
776 
777 	/* add right before the original chunk */
778 	WRITE_ONCE(split_chunk->state, XFS_GC_BIO_NEW);
779 	list_add_tail(&split_chunk->entry, &chunk->entry);
780 	return split_chunk;
781 }
782 
783 static void
xfs_zone_gc_write_chunk(struct xfs_gc_bio * chunk)784 xfs_zone_gc_write_chunk(
785 	struct xfs_gc_bio	*chunk)
786 {
787 	struct xfs_zone_gc_data	*data = chunk->data;
788 	struct xfs_mount	*mp = chunk->ip->i_mount;
789 	phys_addr_t		bvec_paddr =
790 		bvec_phys(bio_first_bvec_all(&chunk->bio));
791 	struct xfs_gc_bio	*split_chunk;
792 
793 	if (chunk->bio.bi_status)
794 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
795 	if (xfs_is_shutdown(mp)) {
796 		xfs_zone_gc_free_chunk(chunk);
797 		return;
798 	}
799 
800 	WRITE_ONCE(chunk->state, XFS_GC_BIO_NEW);
801 	list_move_tail(&chunk->entry, &data->writing);
802 
803 	bio_reset(&chunk->bio, mp->m_rtdev_targp->bt_bdev, REQ_OP_WRITE);
804 	bio_add_folio_nofail(&chunk->bio, chunk->scratch->folio, chunk->len,
805 			offset_in_folio(chunk->scratch->folio, bvec_paddr));
806 
807 	while ((split_chunk = xfs_zone_gc_split_write(data, chunk)))
808 		xfs_zone_gc_submit_write(data, split_chunk);
809 	xfs_zone_gc_submit_write(data, chunk);
810 }
811 
812 static void
xfs_zone_gc_finish_chunk(struct xfs_gc_bio * chunk)813 xfs_zone_gc_finish_chunk(
814 	struct xfs_gc_bio	*chunk)
815 {
816 	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
817 	struct xfs_inode	*ip = chunk->ip;
818 	struct xfs_mount	*mp = ip->i_mount;
819 	int			error;
820 
821 	if (chunk->bio.bi_status)
822 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
823 	if (xfs_is_shutdown(mp)) {
824 		xfs_zone_gc_free_chunk(chunk);
825 		return;
826 	}
827 
828 	chunk->scratch->freed += chunk->len;
829 	if (chunk->scratch->freed == chunk->scratch->offset) {
830 		chunk->scratch->offset = 0;
831 		chunk->scratch->freed = 0;
832 	}
833 
834 	/*
835 	 * Cycle through the iolock and wait for direct I/O and layouts to
836 	 * ensure no one is reading from the old mapping before it goes away.
837 	 *
838 	 * Note that xfs_zoned_end_io() below checks that no other writer raced
839 	 * with us to update the mapping by checking that the old startblock
840 	 * didn't change.
841 	 */
842 	xfs_ilock(ip, iolock);
843 	error = xfs_break_layouts(VFS_I(ip), &iolock, BREAK_UNMAP);
844 	if (!error)
845 		inode_dio_wait(VFS_I(ip));
846 	xfs_iunlock(ip, iolock);
847 	if (error)
848 		goto free;
849 
850 	if (chunk->is_seq)
851 		chunk->new_daddr = chunk->bio.bi_iter.bi_sector;
852 	error = xfs_zoned_end_io(ip, chunk->offset, chunk->len,
853 			chunk->new_daddr, chunk->oz, chunk->old_startblock);
854 free:
855 	if (error)
856 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
857 	xfs_zone_gc_free_chunk(chunk);
858 }
859 
860 static void
xfs_zone_gc_finish_reset(struct xfs_gc_bio * chunk)861 xfs_zone_gc_finish_reset(
862 	struct xfs_gc_bio	*chunk)
863 {
864 	struct xfs_rtgroup	*rtg = chunk->bio.bi_private;
865 	struct xfs_mount	*mp = rtg_mount(rtg);
866 	struct xfs_zone_info	*zi = mp->m_zone_info;
867 
868 	if (chunk->bio.bi_status) {
869 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
870 		goto out;
871 	}
872 
873 	xfs_group_set_mark(&rtg->rtg_group, XFS_RTG_FREE);
874 	atomic_inc(&zi->zi_nr_free_zones);
875 
876 	xfs_zoned_add_available(mp, rtg_blocks(rtg));
877 
878 	wake_up_all(&zi->zi_zone_wait);
879 out:
880 	list_del(&chunk->entry);
881 	bio_put(&chunk->bio);
882 }
883 
884 static bool
xfs_zone_gc_prepare_reset(struct bio * bio,struct xfs_rtgroup * rtg)885 xfs_zone_gc_prepare_reset(
886 	struct bio		*bio,
887 	struct xfs_rtgroup	*rtg)
888 {
889 	trace_xfs_zone_reset(rtg);
890 
891 	ASSERT(rtg_rmap(rtg)->i_used_blocks == 0);
892 	bio->bi_iter.bi_sector = xfs_gbno_to_daddr(&rtg->rtg_group, 0);
893 	if (!bdev_zone_is_seq(bio->bi_bdev, bio->bi_iter.bi_sector)) {
894 		if (!bdev_max_discard_sectors(bio->bi_bdev))
895 			return false;
896 		bio->bi_opf = REQ_OP_DISCARD | REQ_SYNC;
897 		bio->bi_iter.bi_size =
898 			XFS_FSB_TO_B(rtg_mount(rtg), rtg_blocks(rtg));
899 	}
900 
901 	return true;
902 }
903 
904 int
xfs_zone_gc_reset_sync(struct xfs_rtgroup * rtg)905 xfs_zone_gc_reset_sync(
906 	struct xfs_rtgroup	*rtg)
907 {
908 	int			error = 0;
909 	struct bio		bio;
910 
911 	bio_init(&bio, rtg_mount(rtg)->m_rtdev_targp->bt_bdev, NULL, 0,
912 			REQ_OP_ZONE_RESET);
913 	if (xfs_zone_gc_prepare_reset(&bio, rtg))
914 		error = submit_bio_wait(&bio);
915 	bio_uninit(&bio);
916 
917 	return error;
918 }
919 
920 static void
xfs_zone_gc_reset_zones(struct xfs_zone_gc_data * data,struct xfs_group * reset_list)921 xfs_zone_gc_reset_zones(
922 	struct xfs_zone_gc_data	*data,
923 	struct xfs_group	*reset_list)
924 {
925 	struct xfs_group	*next = reset_list;
926 
927 	if (blkdev_issue_flush(data->mp->m_rtdev_targp->bt_bdev) < 0) {
928 		xfs_force_shutdown(data->mp, SHUTDOWN_META_IO_ERROR);
929 		return;
930 	}
931 
932 	do {
933 		struct xfs_rtgroup	*rtg = to_rtg(next);
934 		struct xfs_gc_bio	*chunk;
935 		struct bio		*bio;
936 
937 		xfs_log_force_inode(rtg_rmap(rtg));
938 
939 		next = rtg_group(rtg)->xg_next_reset;
940 		rtg_group(rtg)->xg_next_reset = NULL;
941 
942 		bio = bio_alloc_bioset(rtg_mount(rtg)->m_rtdev_targp->bt_bdev,
943 				0, REQ_OP_ZONE_RESET, GFP_NOFS, &data->bio_set);
944 		bio->bi_private = rtg;
945 		bio->bi_end_io = xfs_zone_gc_end_io;
946 
947 		chunk = container_of(bio, struct xfs_gc_bio, bio);
948 		chunk->data = data;
949 		WRITE_ONCE(chunk->state, XFS_GC_BIO_NEW);
950 		list_add_tail(&chunk->entry, &data->resetting);
951 
952 		/*
953 		 * Also use the bio to drive the state machine when neither
954 		 * zone reset nor discard is supported to keep things simple.
955 		 */
956 		if (xfs_zone_gc_prepare_reset(bio, rtg))
957 			submit_bio(bio);
958 		else
959 			bio_endio(bio);
960 	} while (next);
961 }
962 
963 static bool
xfs_zone_gc_should_start_new_work(struct xfs_zone_gc_data * data)964 xfs_zone_gc_should_start_new_work(
965 	struct xfs_zone_gc_data	*data)
966 {
967 	if (xfs_is_shutdown(data->mp))
968 		return false;
969 	if (!xfs_zone_gc_space_available(data))
970 		return false;
971 
972 	if (!data->iter.victim_rtg) {
973 		if (kthread_should_stop() || kthread_should_park())
974 			return false;
975 		if (!xfs_zoned_need_gc(data->mp))
976 			return false;
977 		if (!xfs_zone_gc_select_victim(data))
978 			return false;
979 	}
980 
981 	return true;
982 }
983 
984 /*
985  * Handle the work to read and write data for GC and to reset the zones,
986  * including handling all completions.
987  *
988  * Note that the order of the chunks is preserved so that we don't undo the
989  * optimal order established by xfs_zone_gc_query().
990  */
991 static void
xfs_zone_gc_handle_work(struct xfs_zone_gc_data * data)992 xfs_zone_gc_handle_work(
993 	struct xfs_zone_gc_data	*data)
994 {
995 	struct xfs_zone_info	*zi = data->mp->m_zone_info;
996 	struct xfs_gc_bio	*chunk, *next;
997 	struct xfs_group	*reset_list;
998 	struct blk_plug		plug;
999 
1000 	spin_lock(&zi->zi_reset_list_lock);
1001 	reset_list = zi->zi_reset_list;
1002 	zi->zi_reset_list = NULL;
1003 	spin_unlock(&zi->zi_reset_list_lock);
1004 
1005 	if (reset_list) {
1006 		set_current_state(TASK_RUNNING);
1007 		xfs_zone_gc_reset_zones(data, reset_list);
1008 	}
1009 
1010 	list_for_each_entry_safe(chunk, next, &data->resetting, entry) {
1011 		if (READ_ONCE(chunk->state) != XFS_GC_BIO_DONE)
1012 			break;
1013 		set_current_state(TASK_RUNNING);
1014 		xfs_zone_gc_finish_reset(chunk);
1015 	}
1016 
1017 	list_for_each_entry_safe(chunk, next, &data->writing, entry) {
1018 		if (READ_ONCE(chunk->state) != XFS_GC_BIO_DONE)
1019 			break;
1020 		set_current_state(TASK_RUNNING);
1021 		xfs_zone_gc_finish_chunk(chunk);
1022 	}
1023 
1024 	blk_start_plug(&plug);
1025 	list_for_each_entry_safe(chunk, next, &data->reading, entry) {
1026 		if (READ_ONCE(chunk->state) != XFS_GC_BIO_DONE)
1027 			break;
1028 		set_current_state(TASK_RUNNING);
1029 		xfs_zone_gc_write_chunk(chunk);
1030 	}
1031 	blk_finish_plug(&plug);
1032 
1033 	if (xfs_zone_gc_should_start_new_work(data)) {
1034 		set_current_state(TASK_RUNNING);
1035 		blk_start_plug(&plug);
1036 		while (xfs_zone_gc_start_chunk(data))
1037 			;
1038 		blk_finish_plug(&plug);
1039 	}
1040 }
1041 
1042 /*
1043  * Note that the current GC algorithm would break reflinks and thus duplicate
1044  * data that was shared by multiple owners before.  Because of that reflinks
1045  * are currently not supported on zoned file systems and can't be created or
1046  * mounted.
1047  */
1048 static int
xfs_zoned_gcd(void * private)1049 xfs_zoned_gcd(
1050 	void			*private)
1051 {
1052 	struct xfs_zone_gc_data	*data = private;
1053 	struct xfs_mount	*mp = data->mp;
1054 	struct xfs_zone_info	*zi = mp->m_zone_info;
1055 	unsigned int		nofs_flag;
1056 
1057 	nofs_flag = memalloc_nofs_save();
1058 	set_freezable();
1059 
1060 	for (;;) {
1061 		set_current_state(TASK_INTERRUPTIBLE | TASK_FREEZABLE);
1062 		xfs_set_zonegc_running(mp);
1063 
1064 		xfs_zone_gc_handle_work(data);
1065 
1066 		/*
1067 		 * Only sleep if nothing set the state to running.  Else check for
1068 		 * work again as someone might have queued up more work and woken
1069 		 * us in the meantime.
1070 		 */
1071 		if (get_current_state() == TASK_RUNNING) {
1072 			try_to_freeze();
1073 			continue;
1074 		}
1075 
1076 		if (list_empty(&data->reading) &&
1077 		    list_empty(&data->writing) &&
1078 		    list_empty(&data->resetting) &&
1079 		    !zi->zi_reset_list) {
1080 			xfs_clear_zonegc_running(mp);
1081 			xfs_zoned_resv_wake_all(mp);
1082 
1083 			if (kthread_should_stop()) {
1084 				__set_current_state(TASK_RUNNING);
1085 				break;
1086 			}
1087 
1088 			if (kthread_should_park()) {
1089 				__set_current_state(TASK_RUNNING);
1090 				kthread_parkme();
1091 				continue;
1092 			}
1093 		}
1094 
1095 		schedule();
1096 	}
1097 	xfs_clear_zonegc_running(mp);
1098 
1099 	if (data->iter.victim_rtg)
1100 		xfs_rtgroup_rele(data->iter.victim_rtg);
1101 
1102 	memalloc_nofs_restore(nofs_flag);
1103 	xfs_zone_gc_data_free(data);
1104 	return 0;
1105 }
1106 
1107 void
xfs_zone_gc_start(struct xfs_mount * mp)1108 xfs_zone_gc_start(
1109 	struct xfs_mount	*mp)
1110 {
1111 	if (xfs_has_zoned(mp))
1112 		kthread_unpark(mp->m_zone_info->zi_gc_thread);
1113 }
1114 
1115 void
xfs_zone_gc_stop(struct xfs_mount * mp)1116 xfs_zone_gc_stop(
1117 	struct xfs_mount	*mp)
1118 {
1119 	if (xfs_has_zoned(mp))
1120 		kthread_park(mp->m_zone_info->zi_gc_thread);
1121 }
1122 
1123 int
xfs_zone_gc_mount(struct xfs_mount * mp)1124 xfs_zone_gc_mount(
1125 	struct xfs_mount	*mp)
1126 {
1127 	struct xfs_zone_info	*zi = mp->m_zone_info;
1128 	struct xfs_zone_gc_data	*data;
1129 	struct xfs_open_zone	*oz;
1130 	int			error;
1131 
1132 	/*
1133 	 * If there are no free zones available for GC, pick the open zone with
1134 	 * the least used space to GC into.  This should only happen after an
1135 	 * unclean shutdown near ENOSPC while GC was ongoing.
1136 	 *
1137 	 * We also need to do this for the first gc zone allocation if we
1138 	 * unmounted while at the open limit.
1139 	 */
1140 	if (!xfs_group_marked(mp, XG_TYPE_RTG, XFS_RTG_FREE) ||
1141 	    zi->zi_nr_open_zones == mp->m_max_open_zones)
1142 		oz = xfs_zone_gc_steal_open(zi);
1143 	else
1144 		oz = xfs_open_zone(mp, WRITE_LIFE_NOT_SET, true);
1145 	if (!oz) {
1146 		xfs_warn(mp, "unable to allocate a zone for gc");
1147 		error = -EIO;
1148 		goto out;
1149 	}
1150 
1151 	trace_xfs_zone_gc_target_opened(oz->oz_rtg);
1152 	zi->zi_open_gc_zone = oz;
1153 
1154 	data = xfs_zone_gc_data_alloc(mp);
1155 	if (!data) {
1156 		error = -ENOMEM;
1157 		goto out_put_gc_zone;
1158 	}
1159 
1160 	mp->m_zone_info->zi_gc_thread = kthread_create(xfs_zoned_gcd, data,
1161 			"xfs-zone-gc/%s", mp->m_super->s_id);
1162 	if (IS_ERR(mp->m_zone_info->zi_gc_thread)) {
1163 		xfs_warn(mp, "unable to create zone gc thread");
1164 		error = PTR_ERR(mp->m_zone_info->zi_gc_thread);
1165 		goto out_free_gc_data;
1166 	}
1167 
1168 	/* xfs_zone_gc_start will unpark for rw mounts */
1169 	kthread_park(mp->m_zone_info->zi_gc_thread);
1170 	return 0;
1171 
1172 out_free_gc_data:
1173 	kfree(data);
1174 out_put_gc_zone:
1175 	xfs_open_zone_put(zi->zi_open_gc_zone);
1176 out:
1177 	return error;
1178 }
1179 
1180 void
xfs_zone_gc_unmount(struct xfs_mount * mp)1181 xfs_zone_gc_unmount(
1182 	struct xfs_mount	*mp)
1183 {
1184 	struct xfs_zone_info	*zi = mp->m_zone_info;
1185 
1186 	kthread_stop(zi->zi_gc_thread);
1187 	if (zi->zi_open_gc_zone)
1188 		xfs_open_zone_put(zi->zi_open_gc_zone);
1189 }
1190