1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_error.h"
26 #include "xfs_quota.h"
27 #include "xfs_fsops.h"
28 #include "xfs_icache.h"
29 #include "xfs_sysfs.h"
30 #include "xfs_rmap_btree.h"
31 #include "xfs_refcount_btree.h"
32 #include "xfs_reflink.h"
33 #include "xfs_extent_busy.h"
34 #include "xfs_health.h"
35 #include "xfs_trace.h"
36 #include "xfs_ag.h"
37 #include "xfs_rtbitmap.h"
38 #include "xfs_metafile.h"
39 #include "xfs_rtgroup.h"
40 #include "xfs_rtrmap_btree.h"
41 #include "xfs_rtrefcount_btree.h"
42 #include "scrub/stats.h"
43
44 static DEFINE_MUTEX(xfs_uuid_table_mutex);
45 static int xfs_uuid_table_size;
46 static uuid_t *xfs_uuid_table;
47
48 void
xfs_uuid_table_free(void)49 xfs_uuid_table_free(void)
50 {
51 if (xfs_uuid_table_size == 0)
52 return;
53 kfree(xfs_uuid_table);
54 xfs_uuid_table = NULL;
55 xfs_uuid_table_size = 0;
56 }
57
58 /*
59 * See if the UUID is unique among mounted XFS filesystems.
60 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
61 */
62 STATIC int
xfs_uuid_mount(struct xfs_mount * mp)63 xfs_uuid_mount(
64 struct xfs_mount *mp)
65 {
66 uuid_t *uuid = &mp->m_sb.sb_uuid;
67 int hole, i;
68
69 /* Publish UUID in struct super_block */
70 super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid));
71
72 if (xfs_has_nouuid(mp))
73 return 0;
74
75 if (uuid_is_null(uuid)) {
76 xfs_warn(mp, "Filesystem has null UUID - can't mount");
77 return -EINVAL;
78 }
79
80 mutex_lock(&xfs_uuid_table_mutex);
81 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
82 if (uuid_is_null(&xfs_uuid_table[i])) {
83 hole = i;
84 continue;
85 }
86 if (uuid_equal(uuid, &xfs_uuid_table[i]))
87 goto out_duplicate;
88 }
89
90 if (hole < 0) {
91 xfs_uuid_table = krealloc(xfs_uuid_table,
92 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
93 GFP_KERNEL | __GFP_NOFAIL);
94 hole = xfs_uuid_table_size++;
95 }
96 xfs_uuid_table[hole] = *uuid;
97 mutex_unlock(&xfs_uuid_table_mutex);
98
99 return 0;
100
101 out_duplicate:
102 mutex_unlock(&xfs_uuid_table_mutex);
103 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
104 return -EINVAL;
105 }
106
107 STATIC void
xfs_uuid_unmount(struct xfs_mount * mp)108 xfs_uuid_unmount(
109 struct xfs_mount *mp)
110 {
111 uuid_t *uuid = &mp->m_sb.sb_uuid;
112 int i;
113
114 if (xfs_has_nouuid(mp))
115 return;
116
117 mutex_lock(&xfs_uuid_table_mutex);
118 for (i = 0; i < xfs_uuid_table_size; i++) {
119 if (uuid_is_null(&xfs_uuid_table[i]))
120 continue;
121 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
122 continue;
123 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
124 break;
125 }
126 ASSERT(i < xfs_uuid_table_size);
127 mutex_unlock(&xfs_uuid_table_mutex);
128 }
129
130 /*
131 * Check size of device based on the (data/realtime) block count.
132 * Note: this check is used by the growfs code as well as mount.
133 */
134 int
xfs_sb_validate_fsb_count(xfs_sb_t * sbp,uint64_t nblocks)135 xfs_sb_validate_fsb_count(
136 xfs_sb_t *sbp,
137 uint64_t nblocks)
138 {
139 uint64_t max_bytes;
140
141 ASSERT(sbp->sb_blocklog >= BBSHIFT);
142
143 if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes))
144 return -EFBIG;
145
146 /* Limited by ULONG_MAX of page cache index */
147 if (max_bytes >> PAGE_SHIFT > ULONG_MAX)
148 return -EFBIG;
149 return 0;
150 }
151
152 /*
153 * xfs_readsb
154 *
155 * Does the initial read of the superblock.
156 */
157 int
xfs_readsb(struct xfs_mount * mp,int flags)158 xfs_readsb(
159 struct xfs_mount *mp,
160 int flags)
161 {
162 unsigned int sector_size;
163 struct xfs_buf *bp;
164 struct xfs_sb *sbp = &mp->m_sb;
165 int error;
166 int loud = !(flags & XFS_MFSI_QUIET);
167 const struct xfs_buf_ops *buf_ops;
168
169 ASSERT(mp->m_sb_bp == NULL);
170 ASSERT(mp->m_ddev_targp != NULL);
171
172 /*
173 * For the initial read, we must guess at the sector
174 * size based on the block device. It's enough to
175 * get the sb_sectsize out of the superblock and
176 * then reread with the proper length.
177 * We don't verify it yet, because it may not be complete.
178 */
179 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
180 buf_ops = NULL;
181
182 /*
183 * Allocate a (locked) buffer to hold the superblock. This will be kept
184 * around at all times to optimize access to the superblock.
185 */
186 reread:
187 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
188 BTOBB(sector_size), 0, &bp, buf_ops);
189 if (error) {
190 if (loud)
191 xfs_warn(mp, "SB validate failed with error %d.", error);
192 /* bad CRC means corrupted metadata */
193 if (error == -EFSBADCRC)
194 error = -EFSCORRUPTED;
195 return error;
196 }
197
198 /*
199 * Initialize the mount structure from the superblock.
200 */
201 xfs_sb_from_disk(sbp, bp->b_addr);
202
203 /*
204 * If we haven't validated the superblock, do so now before we try
205 * to check the sector size and reread the superblock appropriately.
206 */
207 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
208 if (loud)
209 xfs_warn(mp, "Invalid superblock magic number");
210 error = -EINVAL;
211 goto release_buf;
212 }
213
214 /*
215 * We must be able to do sector-sized and sector-aligned IO.
216 */
217 if (sector_size > sbp->sb_sectsize) {
218 if (loud)
219 xfs_warn(mp, "device supports %u byte sectors (not %u)",
220 sector_size, sbp->sb_sectsize);
221 error = -ENOSYS;
222 goto release_buf;
223 }
224
225 if (buf_ops == NULL) {
226 /*
227 * Re-read the superblock so the buffer is correctly sized,
228 * and properly verified.
229 */
230 xfs_buf_relse(bp);
231 sector_size = sbp->sb_sectsize;
232 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
233 goto reread;
234 }
235
236 mp->m_features |= xfs_sb_version_to_features(sbp);
237 xfs_reinit_percpu_counters(mp);
238
239 /*
240 * If logged xattrs are enabled after log recovery finishes, then set
241 * the opstate so that log recovery will work properly.
242 */
243 if (xfs_sb_version_haslogxattrs(&mp->m_sb))
244 xfs_set_using_logged_xattrs(mp);
245
246 /* no need to be quiet anymore, so reset the buf ops */
247 bp->b_ops = &xfs_sb_buf_ops;
248
249 mp->m_sb_bp = bp;
250 xfs_buf_unlock(bp);
251 return 0;
252
253 release_buf:
254 xfs_buf_relse(bp);
255 return error;
256 }
257
258 /*
259 * If the sunit/swidth change would move the precomputed root inode value, we
260 * must reject the ondisk change because repair will stumble over that.
261 * However, we allow the mount to proceed because we never rejected this
262 * combination before. Returns true to update the sb, false otherwise.
263 */
264 static inline int
xfs_check_new_dalign(struct xfs_mount * mp,int new_dalign,bool * update_sb)265 xfs_check_new_dalign(
266 struct xfs_mount *mp,
267 int new_dalign,
268 bool *update_sb)
269 {
270 struct xfs_sb *sbp = &mp->m_sb;
271 xfs_ino_t calc_ino;
272
273 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
274 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
275
276 if (sbp->sb_rootino == calc_ino) {
277 *update_sb = true;
278 return 0;
279 }
280
281 xfs_warn(mp,
282 "Cannot change stripe alignment; would require moving root inode.");
283
284 /*
285 * XXX: Next time we add a new incompat feature, this should start
286 * returning -EINVAL to fail the mount. Until then, spit out a warning
287 * that we're ignoring the administrator's instructions.
288 */
289 xfs_warn(mp, "Skipping superblock stripe alignment update.");
290 *update_sb = false;
291 return 0;
292 }
293
294 /*
295 * If we were provided with new sunit/swidth values as mount options, make sure
296 * that they pass basic alignment and superblock feature checks, and convert
297 * them into the same units (FSB) that everything else expects. This step
298 * /must/ be done before computing the inode geometry.
299 */
300 STATIC int
xfs_validate_new_dalign(struct xfs_mount * mp)301 xfs_validate_new_dalign(
302 struct xfs_mount *mp)
303 {
304 if (mp->m_dalign == 0)
305 return 0;
306
307 /*
308 * If stripe unit and stripe width are not multiples
309 * of the fs blocksize turn off alignment.
310 */
311 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
312 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
313 xfs_warn(mp,
314 "alignment check failed: sunit/swidth vs. blocksize(%d)",
315 mp->m_sb.sb_blocksize);
316 return -EINVAL;
317 }
318
319 /*
320 * Convert the stripe unit and width to FSBs.
321 */
322 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
323 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
324 xfs_warn(mp,
325 "alignment check failed: sunit/swidth vs. agsize(%d)",
326 mp->m_sb.sb_agblocks);
327 return -EINVAL;
328 }
329
330 if (!mp->m_dalign) {
331 xfs_warn(mp,
332 "alignment check failed: sunit(%d) less than bsize(%d)",
333 mp->m_dalign, mp->m_sb.sb_blocksize);
334 return -EINVAL;
335 }
336
337 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
338
339 if (!xfs_has_dalign(mp)) {
340 xfs_warn(mp,
341 "cannot change alignment: superblock does not support data alignment");
342 return -EINVAL;
343 }
344
345 return 0;
346 }
347
348 /* Update alignment values based on mount options and sb values. */
349 STATIC int
xfs_update_alignment(struct xfs_mount * mp)350 xfs_update_alignment(
351 struct xfs_mount *mp)
352 {
353 struct xfs_sb *sbp = &mp->m_sb;
354
355 if (mp->m_dalign) {
356 bool update_sb;
357 int error;
358
359 if (sbp->sb_unit == mp->m_dalign &&
360 sbp->sb_width == mp->m_swidth)
361 return 0;
362
363 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
364 if (error || !update_sb)
365 return error;
366
367 sbp->sb_unit = mp->m_dalign;
368 sbp->sb_width = mp->m_swidth;
369 mp->m_update_sb = true;
370 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
371 mp->m_dalign = sbp->sb_unit;
372 mp->m_swidth = sbp->sb_width;
373 }
374
375 return 0;
376 }
377
378 /*
379 * precalculate the low space thresholds for dynamic speculative preallocation.
380 */
381 void
xfs_set_low_space_thresholds(struct xfs_mount * mp)382 xfs_set_low_space_thresholds(
383 struct xfs_mount *mp)
384 {
385 uint64_t dblocks = mp->m_sb.sb_dblocks;
386 uint64_t rtexts = mp->m_sb.sb_rextents;
387 int i;
388
389 do_div(dblocks, 100);
390 do_div(rtexts, 100);
391
392 for (i = 0; i < XFS_LOWSP_MAX; i++) {
393 mp->m_low_space[i] = dblocks * (i + 1);
394 mp->m_low_rtexts[i] = rtexts * (i + 1);
395 }
396 }
397
398 /*
399 * Check that the data (and log if separate) is an ok size.
400 */
401 STATIC int
xfs_check_sizes(struct xfs_mount * mp)402 xfs_check_sizes(
403 struct xfs_mount *mp)
404 {
405 struct xfs_buf *bp;
406 xfs_daddr_t d;
407 int error;
408
409 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
410 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
411 xfs_warn(mp, "filesystem size mismatch detected");
412 return -EFBIG;
413 }
414 error = xfs_buf_read_uncached(mp->m_ddev_targp,
415 d - XFS_FSS_TO_BB(mp, 1),
416 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
417 if (error) {
418 xfs_warn(mp, "last sector read failed");
419 return error;
420 }
421 xfs_buf_relse(bp);
422
423 if (mp->m_logdev_targp == mp->m_ddev_targp)
424 return 0;
425
426 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
427 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
428 xfs_warn(mp, "log size mismatch detected");
429 return -EFBIG;
430 }
431 error = xfs_buf_read_uncached(mp->m_logdev_targp,
432 d - XFS_FSB_TO_BB(mp, 1),
433 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
434 if (error) {
435 xfs_warn(mp, "log device read failed");
436 return error;
437 }
438 xfs_buf_relse(bp);
439 return 0;
440 }
441
442 /*
443 * Clear the quotaflags in memory and in the superblock.
444 */
445 int
xfs_mount_reset_sbqflags(struct xfs_mount * mp)446 xfs_mount_reset_sbqflags(
447 struct xfs_mount *mp)
448 {
449 mp->m_qflags = 0;
450
451 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
452 if (mp->m_sb.sb_qflags == 0)
453 return 0;
454 spin_lock(&mp->m_sb_lock);
455 mp->m_sb.sb_qflags = 0;
456 spin_unlock(&mp->m_sb_lock);
457
458 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
459 return 0;
460
461 return xfs_sync_sb(mp, false);
462 }
463
464 uint64_t
xfs_default_resblks(xfs_mount_t * mp)465 xfs_default_resblks(xfs_mount_t *mp)
466 {
467 uint64_t resblks;
468
469 /*
470 * We default to 5% or 8192 fsbs of space reserved, whichever is
471 * smaller. This is intended to cover concurrent allocation
472 * transactions when we initially hit enospc. These each require a 4
473 * block reservation. Hence by default we cover roughly 2000 concurrent
474 * allocation reservations.
475 */
476 resblks = mp->m_sb.sb_dblocks;
477 do_div(resblks, 20);
478 resblks = min_t(uint64_t, resblks, 8192);
479 return resblks;
480 }
481
482 /* Ensure the summary counts are correct. */
483 STATIC int
xfs_check_summary_counts(struct xfs_mount * mp)484 xfs_check_summary_counts(
485 struct xfs_mount *mp)
486 {
487 int error = 0;
488
489 /*
490 * The AG0 superblock verifier rejects in-progress filesystems,
491 * so we should never see the flag set this far into mounting.
492 */
493 if (mp->m_sb.sb_inprogress) {
494 xfs_err(mp, "sb_inprogress set after log recovery??");
495 WARN_ON(1);
496 return -EFSCORRUPTED;
497 }
498
499 /*
500 * Now the log is mounted, we know if it was an unclean shutdown or
501 * not. If it was, with the first phase of recovery has completed, we
502 * have consistent AG blocks on disk. We have not recovered EFIs yet,
503 * but they are recovered transactionally in the second recovery phase
504 * later.
505 *
506 * If the log was clean when we mounted, we can check the summary
507 * counters. If any of them are obviously incorrect, we can recompute
508 * them from the AGF headers in the next step.
509 */
510 if (xfs_is_clean(mp) &&
511 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
512 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
513 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
514 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
515
516 /*
517 * We can safely re-initialise incore superblock counters from the
518 * per-ag data. These may not be correct if the filesystem was not
519 * cleanly unmounted, so we waited for recovery to finish before doing
520 * this.
521 *
522 * If the filesystem was cleanly unmounted or the previous check did
523 * not flag anything weird, then we can trust the values in the
524 * superblock to be correct and we don't need to do anything here.
525 * Otherwise, recalculate the summary counters.
526 */
527 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
528 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
529 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
530 if (error)
531 return error;
532 }
533
534 /*
535 * Older kernels misused sb_frextents to reflect both incore
536 * reservations made by running transactions and the actual count of
537 * free rt extents in the ondisk metadata. Transactions committed
538 * during runtime can therefore contain a superblock update that
539 * undercounts the number of free rt extents tracked in the rt bitmap.
540 * A clean unmount record will have the correct frextents value since
541 * there can be no other transactions running at that point.
542 *
543 * If we're mounting the rt volume after recovering the log, recompute
544 * frextents from the rtbitmap file to fix the inconsistency.
545 */
546 if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
547 error = xfs_rtalloc_reinit_frextents(mp);
548 if (error)
549 return error;
550 }
551
552 return 0;
553 }
554
555 static void
xfs_unmount_check(struct xfs_mount * mp)556 xfs_unmount_check(
557 struct xfs_mount *mp)
558 {
559 if (xfs_is_shutdown(mp))
560 return;
561
562 if (percpu_counter_sum(&mp->m_ifree) >
563 percpu_counter_sum(&mp->m_icount)) {
564 xfs_alert(mp, "ifree/icount mismatch at unmount");
565 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
566 }
567 }
568
569 /*
570 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
571 * internal inode structures can be sitting in the CIL and AIL at this point,
572 * so we need to unpin them, write them back and/or reclaim them before unmount
573 * can proceed. In other words, callers are required to have inactivated all
574 * inodes.
575 *
576 * An inode cluster that has been freed can have its buffer still pinned in
577 * memory because the transaction is still sitting in a iclog. The stale inodes
578 * on that buffer will be pinned to the buffer until the transaction hits the
579 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
580 * may never see the pinned buffer, so nothing will push out the iclog and
581 * unpin the buffer.
582 *
583 * Hence we need to force the log to unpin everything first. However, log
584 * forces don't wait for the discards they issue to complete, so we have to
585 * explicitly wait for them to complete here as well.
586 *
587 * Then we can tell the world we are unmounting so that error handling knows
588 * that the filesystem is going away and we should error out anything that we
589 * have been retrying in the background. This will prevent never-ending
590 * retries in AIL pushing from hanging the unmount.
591 *
592 * Finally, we can push the AIL to clean all the remaining dirty objects, then
593 * reclaim the remaining inodes that are still in memory at this point in time.
594 */
595 static void
xfs_unmount_flush_inodes(struct xfs_mount * mp)596 xfs_unmount_flush_inodes(
597 struct xfs_mount *mp)
598 {
599 xfs_log_force(mp, XFS_LOG_SYNC);
600 xfs_extent_busy_wait_all(mp);
601 flush_workqueue(xfs_discard_wq);
602
603 xfs_set_unmounting(mp);
604
605 xfs_ail_push_all_sync(mp->m_ail);
606 xfs_inodegc_stop(mp);
607 cancel_delayed_work_sync(&mp->m_reclaim_work);
608 xfs_reclaim_inodes(mp);
609 xfs_health_unmount(mp);
610 }
611
612 static void
xfs_mount_setup_inode_geom(struct xfs_mount * mp)613 xfs_mount_setup_inode_geom(
614 struct xfs_mount *mp)
615 {
616 struct xfs_ino_geometry *igeo = M_IGEO(mp);
617
618 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
619 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
620
621 xfs_ialloc_setup_geometry(mp);
622 }
623
624 /* Mount the metadata directory tree root. */
625 STATIC int
xfs_mount_setup_metadir(struct xfs_mount * mp)626 xfs_mount_setup_metadir(
627 struct xfs_mount *mp)
628 {
629 int error;
630
631 /* Load the metadata directory root inode into memory. */
632 error = xfs_metafile_iget(mp, mp->m_sb.sb_metadirino, XFS_METAFILE_DIR,
633 &mp->m_metadirip);
634 if (error)
635 xfs_warn(mp, "Failed to load metadir root directory, error %d",
636 error);
637 return error;
638 }
639
640 /* Compute maximum possible height for per-AG btree types for this fs. */
641 static inline void
xfs_agbtree_compute_maxlevels(struct xfs_mount * mp)642 xfs_agbtree_compute_maxlevels(
643 struct xfs_mount *mp)
644 {
645 unsigned int levels;
646
647 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
648 levels = max(levels, mp->m_rmap_maxlevels);
649 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
650 }
651
652 /* Compute maximum possible height for realtime btree types for this fs. */
653 static inline void
xfs_rtbtree_compute_maxlevels(struct xfs_mount * mp)654 xfs_rtbtree_compute_maxlevels(
655 struct xfs_mount *mp)
656 {
657 mp->m_rtbtree_maxlevels = max(mp->m_rtrmap_maxlevels,
658 mp->m_rtrefc_maxlevels);
659 }
660
661 /*
662 * This function does the following on an initial mount of a file system:
663 * - reads the superblock from disk and init the mount struct
664 * - if we're a 32-bit kernel, do a size check on the superblock
665 * so we don't mount terabyte filesystems
666 * - init mount struct realtime fields
667 * - allocate inode hash table for fs
668 * - init directory manager
669 * - perform recovery and init the log manager
670 */
671 int
xfs_mountfs(struct xfs_mount * mp)672 xfs_mountfs(
673 struct xfs_mount *mp)
674 {
675 struct xfs_sb *sbp = &(mp->m_sb);
676 struct xfs_inode *rip;
677 struct xfs_ino_geometry *igeo = M_IGEO(mp);
678 uint quotamount = 0;
679 uint quotaflags = 0;
680 int error = 0;
681
682 xfs_sb_mount_common(mp, sbp);
683
684 /*
685 * Check for a mismatched features2 values. Older kernels read & wrote
686 * into the wrong sb offset for sb_features2 on some platforms due to
687 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
688 * which made older superblock reading/writing routines swap it as a
689 * 64-bit value.
690 *
691 * For backwards compatibility, we make both slots equal.
692 *
693 * If we detect a mismatched field, we OR the set bits into the existing
694 * features2 field in case it has already been modified; we don't want
695 * to lose any features. We then update the bad location with the ORed
696 * value so that older kernels will see any features2 flags. The
697 * superblock writeback code ensures the new sb_features2 is copied to
698 * sb_bad_features2 before it is logged or written to disk.
699 */
700 if (xfs_sb_has_mismatched_features2(sbp)) {
701 xfs_warn(mp, "correcting sb_features alignment problem");
702 sbp->sb_features2 |= sbp->sb_bad_features2;
703 mp->m_update_sb = true;
704 }
705
706
707 /* always use v2 inodes by default now */
708 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
709 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
710 mp->m_features |= XFS_FEAT_NLINK;
711 mp->m_update_sb = true;
712 }
713
714 /*
715 * If we were given new sunit/swidth options, do some basic validation
716 * checks and convert the incore dalign and swidth values to the
717 * same units (FSB) that everything else uses. This /must/ happen
718 * before computing the inode geometry.
719 */
720 error = xfs_validate_new_dalign(mp);
721 if (error)
722 goto out;
723
724 xfs_alloc_compute_maxlevels(mp);
725 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
726 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
727 xfs_mount_setup_inode_geom(mp);
728 xfs_rmapbt_compute_maxlevels(mp);
729 xfs_rtrmapbt_compute_maxlevels(mp);
730 xfs_refcountbt_compute_maxlevels(mp);
731 xfs_rtrefcountbt_compute_maxlevels(mp);
732
733 xfs_agbtree_compute_maxlevels(mp);
734 xfs_rtbtree_compute_maxlevels(mp);
735
736 /*
737 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
738 * is NOT aligned turn off m_dalign since allocator alignment is within
739 * an ag, therefore ag has to be aligned at stripe boundary. Note that
740 * we must compute the free space and rmap btree geometry before doing
741 * this.
742 */
743 error = xfs_update_alignment(mp);
744 if (error)
745 goto out;
746
747 /* enable fail_at_unmount as default */
748 mp->m_fail_unmount = true;
749
750 super_set_sysfs_name_id(mp->m_super);
751
752 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
753 NULL, mp->m_super->s_id);
754 if (error)
755 goto out;
756
757 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
758 &mp->m_kobj, "stats");
759 if (error)
760 goto out_remove_sysfs;
761
762 xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs);
763
764 error = xfs_error_sysfs_init(mp);
765 if (error)
766 goto out_remove_scrub_stats;
767
768 error = xfs_errortag_init(mp);
769 if (error)
770 goto out_remove_error_sysfs;
771
772 error = xfs_uuid_mount(mp);
773 if (error)
774 goto out_remove_errortag;
775
776 /*
777 * Update the preferred write size based on the information from the
778 * on-disk superblock.
779 */
780 mp->m_allocsize_log =
781 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
782 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
783
784 /* set the low space thresholds for dynamic preallocation */
785 xfs_set_low_space_thresholds(mp);
786
787 /*
788 * If enabled, sparse inode chunk alignment is expected to match the
789 * cluster size. Full inode chunk alignment must match the chunk size,
790 * but that is checked on sb read verification...
791 */
792 if (xfs_has_sparseinodes(mp) &&
793 mp->m_sb.sb_spino_align !=
794 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
795 xfs_warn(mp,
796 "Sparse inode block alignment (%u) must match cluster size (%llu).",
797 mp->m_sb.sb_spino_align,
798 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
799 error = -EINVAL;
800 goto out_remove_uuid;
801 }
802
803 /*
804 * Check that the data (and log if separate) is an ok size.
805 */
806 error = xfs_check_sizes(mp);
807 if (error)
808 goto out_remove_uuid;
809
810 /*
811 * Initialize realtime fields in the mount structure
812 */
813 error = xfs_rtmount_init(mp);
814 if (error) {
815 xfs_warn(mp, "RT mount failed");
816 goto out_remove_uuid;
817 }
818
819 /*
820 * Copies the low order bits of the timestamp and the randomly
821 * set "sequence" number out of a UUID.
822 */
823 mp->m_fixedfsid[0] =
824 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
825 get_unaligned_be16(&sbp->sb_uuid.b[4]);
826 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
827
828 error = xfs_da_mount(mp);
829 if (error) {
830 xfs_warn(mp, "Failed dir/attr init: %d", error);
831 goto out_remove_uuid;
832 }
833
834 /*
835 * Initialize the precomputed transaction reservations values.
836 */
837 xfs_trans_init(mp);
838
839 /*
840 * Allocate and initialize the per-ag data.
841 */
842 error = xfs_initialize_perag(mp, 0, sbp->sb_agcount,
843 mp->m_sb.sb_dblocks, &mp->m_maxagi);
844 if (error) {
845 xfs_warn(mp, "Failed per-ag init: %d", error);
846 goto out_free_dir;
847 }
848
849 error = xfs_initialize_rtgroups(mp, 0, sbp->sb_rgcount,
850 mp->m_sb.sb_rextents);
851 if (error) {
852 xfs_warn(mp, "Failed rtgroup init: %d", error);
853 goto out_free_perag;
854 }
855
856 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
857 xfs_warn(mp, "no log defined");
858 error = -EFSCORRUPTED;
859 goto out_free_rtgroup;
860 }
861
862 error = xfs_inodegc_register_shrinker(mp);
863 if (error)
864 goto out_fail_wait;
865
866 /*
867 * If we're resuming quota status, pick up the preliminary qflags from
868 * the ondisk superblock so that we know if we should recover dquots.
869 */
870 if (xfs_is_resuming_quotaon(mp))
871 xfs_qm_resume_quotaon(mp);
872
873 /*
874 * Log's mount-time initialization. The first part of recovery can place
875 * some items on the AIL, to be handled when recovery is finished or
876 * cancelled.
877 */
878 error = xfs_log_mount(mp, mp->m_logdev_targp,
879 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
880 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
881 if (error) {
882 xfs_warn(mp, "log mount failed");
883 goto out_inodegc_shrinker;
884 }
885
886 /*
887 * If we're resuming quota status and recovered the log, re-sample the
888 * qflags from the ondisk superblock now that we've recovered it, just
889 * in case someone shut down enforcement just before a crash.
890 */
891 if (xfs_clear_resuming_quotaon(mp) && xlog_recovery_needed(mp->m_log))
892 xfs_qm_resume_quotaon(mp);
893
894 /*
895 * If logged xattrs are still enabled after log recovery finishes, then
896 * they'll be available until unmount. Otherwise, turn them off.
897 */
898 if (xfs_sb_version_haslogxattrs(&mp->m_sb))
899 xfs_set_using_logged_xattrs(mp);
900 else
901 xfs_clear_using_logged_xattrs(mp);
902
903 /* Enable background inode inactivation workers. */
904 xfs_inodegc_start(mp);
905 xfs_blockgc_start(mp);
906
907 /*
908 * Now that we've recovered any pending superblock feature bit
909 * additions, we can finish setting up the attr2 behaviour for the
910 * mount. The noattr2 option overrides the superblock flag, so only
911 * check the superblock feature flag if the mount option is not set.
912 */
913 if (xfs_has_noattr2(mp)) {
914 mp->m_features &= ~XFS_FEAT_ATTR2;
915 } else if (!xfs_has_attr2(mp) &&
916 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
917 mp->m_features |= XFS_FEAT_ATTR2;
918 }
919
920 if (xfs_has_metadir(mp)) {
921 error = xfs_mount_setup_metadir(mp);
922 if (error)
923 goto out_free_metadir;
924 }
925
926 /*
927 * Get and sanity-check the root inode.
928 * Save the pointer to it in the mount structure.
929 */
930 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
931 XFS_ILOCK_EXCL, &rip);
932 if (error) {
933 xfs_warn(mp,
934 "Failed to read root inode 0x%llx, error %d",
935 sbp->sb_rootino, -error);
936 goto out_free_metadir;
937 }
938
939 ASSERT(rip != NULL);
940
941 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
942 xfs_warn(mp, "corrupted root inode %llu: not a directory",
943 (unsigned long long)rip->i_ino);
944 xfs_iunlock(rip, XFS_ILOCK_EXCL);
945 error = -EFSCORRUPTED;
946 goto out_rele_rip;
947 }
948 mp->m_rootip = rip; /* save it */
949
950 xfs_iunlock(rip, XFS_ILOCK_EXCL);
951
952 /*
953 * Initialize realtime inode pointers in the mount structure
954 */
955 error = xfs_rtmount_inodes(mp);
956 if (error) {
957 /*
958 * Free up the root inode.
959 */
960 xfs_warn(mp, "failed to read RT inodes");
961 goto out_rele_rip;
962 }
963
964 /* Make sure the summary counts are ok. */
965 error = xfs_check_summary_counts(mp);
966 if (error)
967 goto out_rtunmount;
968
969 /*
970 * If this is a read-only mount defer the superblock updates until
971 * the next remount into writeable mode. Otherwise we would never
972 * perform the update e.g. for the root filesystem.
973 */
974 if (mp->m_update_sb && !xfs_is_readonly(mp)) {
975 error = xfs_sync_sb(mp, false);
976 if (error) {
977 xfs_warn(mp, "failed to write sb changes");
978 goto out_rtunmount;
979 }
980 }
981
982 /*
983 * Initialise the XFS quota management subsystem for this mount
984 */
985 if (XFS_IS_QUOTA_ON(mp)) {
986 error = xfs_qm_newmount(mp, "amount, "aflags);
987 if (error)
988 goto out_rtunmount;
989 } else {
990 /*
991 * If a file system had quotas running earlier, but decided to
992 * mount without -o uquota/pquota/gquota options, revoke the
993 * quotachecked license.
994 */
995 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
996 xfs_notice(mp, "resetting quota flags");
997 error = xfs_mount_reset_sbqflags(mp);
998 if (error)
999 goto out_rtunmount;
1000 }
1001 }
1002
1003 /*
1004 * Finish recovering the file system. This part needed to be delayed
1005 * until after the root and real-time bitmap inodes were consistently
1006 * read in. Temporarily create per-AG space reservations for metadata
1007 * btree shape changes because space freeing transactions (for inode
1008 * inactivation) require the per-AG reservation in lieu of reserving
1009 * blocks.
1010 */
1011 error = xfs_fs_reserve_ag_blocks(mp);
1012 if (error && error == -ENOSPC)
1013 xfs_warn(mp,
1014 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
1015 error = xfs_log_mount_finish(mp);
1016 xfs_fs_unreserve_ag_blocks(mp);
1017 if (error) {
1018 xfs_warn(mp, "log mount finish failed");
1019 goto out_rtunmount;
1020 }
1021
1022 /*
1023 * Now the log is fully replayed, we can transition to full read-only
1024 * mode for read-only mounts. This will sync all the metadata and clean
1025 * the log so that the recovery we just performed does not have to be
1026 * replayed again on the next mount.
1027 *
1028 * We use the same quiesce mechanism as the rw->ro remount, as they are
1029 * semantically identical operations.
1030 */
1031 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
1032 xfs_log_clean(mp);
1033
1034 /*
1035 * Complete the quota initialisation, post-log-replay component.
1036 */
1037 if (quotamount) {
1038 ASSERT(mp->m_qflags == 0);
1039 mp->m_qflags = quotaflags;
1040
1041 xfs_qm_mount_quotas(mp);
1042 }
1043
1044 /*
1045 * Now we are mounted, reserve a small amount of unused space for
1046 * privileged transactions. This is needed so that transaction
1047 * space required for critical operations can dip into this pool
1048 * when at ENOSPC. This is needed for operations like create with
1049 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1050 * are not allowed to use this reserved space.
1051 *
1052 * This may drive us straight to ENOSPC on mount, but that implies
1053 * we were already there on the last unmount. Warn if this occurs.
1054 */
1055 if (!xfs_is_readonly(mp)) {
1056 error = xfs_reserve_blocks(mp, xfs_default_resblks(mp));
1057 if (error)
1058 xfs_warn(mp,
1059 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1060
1061 /* Reserve AG blocks for future btree expansion. */
1062 error = xfs_fs_reserve_ag_blocks(mp);
1063 if (error && error != -ENOSPC)
1064 goto out_agresv;
1065 }
1066
1067 return 0;
1068
1069 out_agresv:
1070 xfs_fs_unreserve_ag_blocks(mp);
1071 xfs_qm_unmount_quotas(mp);
1072 out_rtunmount:
1073 xfs_rtunmount_inodes(mp);
1074 out_rele_rip:
1075 xfs_irele(rip);
1076 /* Clean out dquots that might be in memory after quotacheck. */
1077 xfs_qm_unmount(mp);
1078 out_free_metadir:
1079 if (mp->m_metadirip)
1080 xfs_irele(mp->m_metadirip);
1081
1082 /*
1083 * Inactivate all inodes that might still be in memory after a log
1084 * intent recovery failure so that reclaim can free them. Metadata
1085 * inodes and the root directory shouldn't need inactivation, but the
1086 * mount failed for some reason, so pull down all the state and flee.
1087 */
1088 xfs_inodegc_flush(mp);
1089
1090 /*
1091 * Flush all inode reclamation work and flush the log.
1092 * We have to do this /after/ rtunmount and qm_unmount because those
1093 * two will have scheduled delayed reclaim for the rt/quota inodes.
1094 *
1095 * This is slightly different from the unmountfs call sequence
1096 * because we could be tearing down a partially set up mount. In
1097 * particular, if log_mount_finish fails we bail out without calling
1098 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1099 * quota inodes.
1100 */
1101 xfs_unmount_flush_inodes(mp);
1102 xfs_log_mount_cancel(mp);
1103 out_inodegc_shrinker:
1104 shrinker_free(mp->m_inodegc_shrinker);
1105 out_fail_wait:
1106 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1107 xfs_buftarg_drain(mp->m_logdev_targp);
1108 xfs_buftarg_drain(mp->m_ddev_targp);
1109 out_free_rtgroup:
1110 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1111 out_free_perag:
1112 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1113 out_free_dir:
1114 xfs_da_unmount(mp);
1115 out_remove_uuid:
1116 xfs_uuid_unmount(mp);
1117 out_remove_errortag:
1118 xfs_errortag_del(mp);
1119 out_remove_error_sysfs:
1120 xfs_error_sysfs_del(mp);
1121 out_remove_scrub_stats:
1122 xchk_stats_unregister(mp->m_scrub_stats);
1123 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1124 out_remove_sysfs:
1125 xfs_sysfs_del(&mp->m_kobj);
1126 out:
1127 return error;
1128 }
1129
1130 /*
1131 * This flushes out the inodes,dquots and the superblock, unmounts the
1132 * log and makes sure that incore structures are freed.
1133 */
1134 void
xfs_unmountfs(struct xfs_mount * mp)1135 xfs_unmountfs(
1136 struct xfs_mount *mp)
1137 {
1138 int error;
1139
1140 /*
1141 * Perform all on-disk metadata updates required to inactivate inodes
1142 * that the VFS evicted earlier in the unmount process. Freeing inodes
1143 * and discarding CoW fork preallocations can cause shape changes to
1144 * the free inode and refcount btrees, respectively, so we must finish
1145 * this before we discard the metadata space reservations. Metadata
1146 * inodes and the root directory do not require inactivation.
1147 */
1148 xfs_inodegc_flush(mp);
1149
1150 xfs_blockgc_stop(mp);
1151 xfs_fs_unreserve_ag_blocks(mp);
1152 xfs_qm_unmount_quotas(mp);
1153 xfs_rtunmount_inodes(mp);
1154 xfs_irele(mp->m_rootip);
1155 if (mp->m_metadirip)
1156 xfs_irele(mp->m_metadirip);
1157
1158 xfs_unmount_flush_inodes(mp);
1159
1160 xfs_qm_unmount(mp);
1161
1162 /*
1163 * Unreserve any blocks we have so that when we unmount we don't account
1164 * the reserved free space as used. This is really only necessary for
1165 * lazy superblock counting because it trusts the incore superblock
1166 * counters to be absolutely correct on clean unmount.
1167 *
1168 * We don't bother correcting this elsewhere for lazy superblock
1169 * counting because on mount of an unclean filesystem we reconstruct the
1170 * correct counter value and this is irrelevant.
1171 *
1172 * For non-lazy counter filesystems, this doesn't matter at all because
1173 * we only every apply deltas to the superblock and hence the incore
1174 * value does not matter....
1175 */
1176 error = xfs_reserve_blocks(mp, 0);
1177 if (error)
1178 xfs_warn(mp, "Unable to free reserved block pool. "
1179 "Freespace may not be correct on next mount.");
1180 xfs_unmount_check(mp);
1181
1182 /*
1183 * Indicate that it's ok to clear log incompat bits before cleaning
1184 * the log and writing the unmount record.
1185 */
1186 xfs_set_done_with_log_incompat(mp);
1187 xfs_log_unmount(mp);
1188 xfs_da_unmount(mp);
1189 xfs_uuid_unmount(mp);
1190
1191 #if defined(DEBUG)
1192 xfs_errortag_clearall(mp);
1193 #endif
1194 shrinker_free(mp->m_inodegc_shrinker);
1195 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1196 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1197 xfs_errortag_del(mp);
1198 xfs_error_sysfs_del(mp);
1199 xchk_stats_unregister(mp->m_scrub_stats);
1200 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1201 xfs_sysfs_del(&mp->m_kobj);
1202 }
1203
1204 /*
1205 * Determine whether modifications can proceed. The caller specifies the minimum
1206 * freeze level for which modifications should not be allowed. This allows
1207 * certain operations to proceed while the freeze sequence is in progress, if
1208 * necessary.
1209 */
1210 bool
xfs_fs_writable(struct xfs_mount * mp,int level)1211 xfs_fs_writable(
1212 struct xfs_mount *mp,
1213 int level)
1214 {
1215 ASSERT(level > SB_UNFROZEN);
1216 if ((mp->m_super->s_writers.frozen >= level) ||
1217 xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1218 return false;
1219
1220 return true;
1221 }
1222
1223 void
xfs_add_freecounter(struct xfs_mount * mp,struct percpu_counter * counter,uint64_t delta)1224 xfs_add_freecounter(
1225 struct xfs_mount *mp,
1226 struct percpu_counter *counter,
1227 uint64_t delta)
1228 {
1229 bool has_resv_pool = (counter == &mp->m_fdblocks);
1230 uint64_t res_used;
1231
1232 /*
1233 * If the reserve pool is depleted, put blocks back into it first.
1234 * Most of the time the pool is full.
1235 */
1236 if (!has_resv_pool || mp->m_resblks == mp->m_resblks_avail) {
1237 percpu_counter_add(counter, delta);
1238 return;
1239 }
1240
1241 spin_lock(&mp->m_sb_lock);
1242 res_used = mp->m_resblks - mp->m_resblks_avail;
1243 if (res_used > delta) {
1244 mp->m_resblks_avail += delta;
1245 } else {
1246 delta -= res_used;
1247 mp->m_resblks_avail = mp->m_resblks;
1248 percpu_counter_add(counter, delta);
1249 }
1250 spin_unlock(&mp->m_sb_lock);
1251 }
1252
1253 int
xfs_dec_freecounter(struct xfs_mount * mp,struct percpu_counter * counter,uint64_t delta,bool rsvd)1254 xfs_dec_freecounter(
1255 struct xfs_mount *mp,
1256 struct percpu_counter *counter,
1257 uint64_t delta,
1258 bool rsvd)
1259 {
1260 int64_t lcounter;
1261 uint64_t set_aside = 0;
1262 s32 batch;
1263 bool has_resv_pool;
1264
1265 ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
1266 has_resv_pool = (counter == &mp->m_fdblocks);
1267 if (rsvd)
1268 ASSERT(has_resv_pool);
1269
1270 /*
1271 * Taking blocks away, need to be more accurate the closer we
1272 * are to zero.
1273 *
1274 * If the counter has a value of less than 2 * max batch size,
1275 * then make everything serialise as we are real close to
1276 * ENOSPC.
1277 */
1278 if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
1279 XFS_FDBLOCKS_BATCH) < 0)
1280 batch = 1;
1281 else
1282 batch = XFS_FDBLOCKS_BATCH;
1283
1284 /*
1285 * Set aside allocbt blocks because these blocks are tracked as free
1286 * space but not available for allocation. Technically this means that a
1287 * single reservation cannot consume all remaining free space, but the
1288 * ratio of allocbt blocks to usable free blocks should be rather small.
1289 * The tradeoff without this is that filesystems that maintain high
1290 * perag block reservations can over reserve physical block availability
1291 * and fail physical allocation, which leads to much more serious
1292 * problems (i.e. transaction abort, pagecache discards, etc.) than
1293 * slightly premature -ENOSPC.
1294 */
1295 if (has_resv_pool)
1296 set_aside = xfs_fdblocks_unavailable(mp);
1297 percpu_counter_add_batch(counter, -((int64_t)delta), batch);
1298 if (__percpu_counter_compare(counter, set_aside,
1299 XFS_FDBLOCKS_BATCH) >= 0) {
1300 /* we had space! */
1301 return 0;
1302 }
1303
1304 /*
1305 * lock up the sb for dipping into reserves before releasing the space
1306 * that took us to ENOSPC.
1307 */
1308 spin_lock(&mp->m_sb_lock);
1309 percpu_counter_add(counter, delta);
1310 if (!has_resv_pool || !rsvd)
1311 goto fdblocks_enospc;
1312
1313 lcounter = (long long)mp->m_resblks_avail - delta;
1314 if (lcounter >= 0) {
1315 mp->m_resblks_avail = lcounter;
1316 spin_unlock(&mp->m_sb_lock);
1317 return 0;
1318 }
1319 xfs_warn_once(mp,
1320 "Reserve blocks depleted! Consider increasing reserve pool size.");
1321
1322 fdblocks_enospc:
1323 spin_unlock(&mp->m_sb_lock);
1324 return -ENOSPC;
1325 }
1326
1327 /*
1328 * Used to free the superblock along various error paths.
1329 */
1330 void
xfs_freesb(struct xfs_mount * mp)1331 xfs_freesb(
1332 struct xfs_mount *mp)
1333 {
1334 struct xfs_buf *bp = mp->m_sb_bp;
1335
1336 xfs_buf_lock(bp);
1337 mp->m_sb_bp = NULL;
1338 xfs_buf_relse(bp);
1339 }
1340
1341 /*
1342 * If the underlying (data/log/rt) device is readonly, there are some
1343 * operations that cannot proceed.
1344 */
1345 int
xfs_dev_is_read_only(struct xfs_mount * mp,char * message)1346 xfs_dev_is_read_only(
1347 struct xfs_mount *mp,
1348 char *message)
1349 {
1350 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1351 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1352 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1353 xfs_notice(mp, "%s required on read-only device.", message);
1354 xfs_notice(mp, "write access unavailable, cannot proceed.");
1355 return -EROFS;
1356 }
1357 return 0;
1358 }
1359
1360 /* Force the summary counters to be recalculated at next mount. */
1361 void
xfs_force_summary_recalc(struct xfs_mount * mp)1362 xfs_force_summary_recalc(
1363 struct xfs_mount *mp)
1364 {
1365 if (!xfs_has_lazysbcount(mp))
1366 return;
1367
1368 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1369 }
1370
1371 /*
1372 * Enable a log incompat feature flag in the primary superblock. The caller
1373 * cannot have any other transactions in progress.
1374 */
1375 int
xfs_add_incompat_log_feature(struct xfs_mount * mp,uint32_t feature)1376 xfs_add_incompat_log_feature(
1377 struct xfs_mount *mp,
1378 uint32_t feature)
1379 {
1380 struct xfs_dsb *dsb;
1381 int error;
1382
1383 ASSERT(hweight32(feature) == 1);
1384 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1385
1386 /*
1387 * Force the log to disk and kick the background AIL thread to reduce
1388 * the chances that the bwrite will stall waiting for the AIL to unpin
1389 * the primary superblock buffer. This isn't a data integrity
1390 * operation, so we don't need a synchronous push.
1391 */
1392 error = xfs_log_force(mp, XFS_LOG_SYNC);
1393 if (error)
1394 return error;
1395 xfs_ail_push_all(mp->m_ail);
1396
1397 /*
1398 * Lock the primary superblock buffer to serialize all callers that
1399 * are trying to set feature bits.
1400 */
1401 xfs_buf_lock(mp->m_sb_bp);
1402 xfs_buf_hold(mp->m_sb_bp);
1403
1404 if (xfs_is_shutdown(mp)) {
1405 error = -EIO;
1406 goto rele;
1407 }
1408
1409 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1410 goto rele;
1411
1412 /*
1413 * Write the primary superblock to disk immediately, because we need
1414 * the log_incompat bit to be set in the primary super now to protect
1415 * the log items that we're going to commit later.
1416 */
1417 dsb = mp->m_sb_bp->b_addr;
1418 xfs_sb_to_disk(dsb, &mp->m_sb);
1419 dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1420 error = xfs_bwrite(mp->m_sb_bp);
1421 if (error)
1422 goto shutdown;
1423
1424 /*
1425 * Add the feature bits to the incore superblock before we unlock the
1426 * buffer.
1427 */
1428 xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1429 xfs_buf_relse(mp->m_sb_bp);
1430
1431 /* Log the superblock to disk. */
1432 return xfs_sync_sb(mp, false);
1433 shutdown:
1434 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1435 rele:
1436 xfs_buf_relse(mp->m_sb_bp);
1437 return error;
1438 }
1439
1440 /*
1441 * Clear all the log incompat flags from the superblock.
1442 *
1443 * The caller cannot be in a transaction, must ensure that the log does not
1444 * contain any log items protected by any log incompat bit, and must ensure
1445 * that there are no other threads that depend on the state of the log incompat
1446 * feature flags in the primary super.
1447 *
1448 * Returns true if the superblock is dirty.
1449 */
1450 bool
xfs_clear_incompat_log_features(struct xfs_mount * mp)1451 xfs_clear_incompat_log_features(
1452 struct xfs_mount *mp)
1453 {
1454 bool ret = false;
1455
1456 if (!xfs_has_crc(mp) ||
1457 !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1458 XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1459 xfs_is_shutdown(mp) ||
1460 !xfs_is_done_with_log_incompat(mp))
1461 return false;
1462
1463 /*
1464 * Update the incore superblock. We synchronize on the primary super
1465 * buffer lock to be consistent with the add function, though at least
1466 * in theory this shouldn't be necessary.
1467 */
1468 xfs_buf_lock(mp->m_sb_bp);
1469 xfs_buf_hold(mp->m_sb_bp);
1470
1471 if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1472 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1473 xfs_sb_remove_incompat_log_features(&mp->m_sb);
1474 ret = true;
1475 }
1476
1477 xfs_buf_relse(mp->m_sb_bp);
1478 return ret;
1479 }
1480
1481 /*
1482 * Update the in-core delayed block counter.
1483 *
1484 * We prefer to update the counter without having to take a spinlock for every
1485 * counter update (i.e. batching). Each change to delayed allocation
1486 * reservations can change can easily exceed the default percpu counter
1487 * batching, so we use a larger batch factor here.
1488 *
1489 * Note that we don't currently have any callers requiring fast summation
1490 * (e.g. percpu_counter_read) so we can use a big batch value here.
1491 */
1492 #define XFS_DELALLOC_BATCH (4096)
1493 void
xfs_mod_delalloc(struct xfs_inode * ip,int64_t data_delta,int64_t ind_delta)1494 xfs_mod_delalloc(
1495 struct xfs_inode *ip,
1496 int64_t data_delta,
1497 int64_t ind_delta)
1498 {
1499 struct xfs_mount *mp = ip->i_mount;
1500
1501 if (XFS_IS_REALTIME_INODE(ip)) {
1502 percpu_counter_add_batch(&mp->m_delalloc_rtextents,
1503 xfs_blen_to_rtbxlen(mp, data_delta),
1504 XFS_DELALLOC_BATCH);
1505 if (!ind_delta)
1506 return;
1507 data_delta = 0;
1508 }
1509 percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta,
1510 XFS_DELALLOC_BATCH);
1511 }
1512