xref: /linux/fs/xfs/xfs_icache.c (revision 3ed1c68307c4ce53256e15b8a8830b12bdba1ff5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_quota.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_dquot_item.h"
22 #include "xfs_dquot.h"
23 #include "xfs_reflink.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_ag.h"
26 #include "xfs_log_priv.h"
27 #include "xfs_health.h"
28 #include "xfs_da_format.h"
29 #include "xfs_dir2.h"
30 #include "xfs_metafile.h"
31 
32 #include <linux/iversion.h>
33 
34 /* Radix tree tags for incore inode tree. */
35 
36 /* inode is to be reclaimed */
37 #define XFS_ICI_RECLAIM_TAG	0
38 /* Inode has speculative preallocations (posteof or cow) to clean. */
39 #define XFS_ICI_BLOCKGC_TAG	1
40 
41 /*
42  * The goal for walking incore inodes.  These can correspond with incore inode
43  * radix tree tags when convenient.  Avoid existing XFS_IWALK namespace.
44  */
45 enum xfs_icwalk_goal {
46 	/* Goals directly associated with tagged inodes. */
47 	XFS_ICWALK_BLOCKGC	= XFS_ICI_BLOCKGC_TAG,
48 	XFS_ICWALK_RECLAIM	= XFS_ICI_RECLAIM_TAG,
49 };
50 
51 static int xfs_icwalk(struct xfs_mount *mp,
52 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
53 static int xfs_icwalk_ag(struct xfs_perag *pag,
54 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
55 
56 /*
57  * Private inode cache walk flags for struct xfs_icwalk.  Must not
58  * coincide with XFS_ICWALK_FLAGS_VALID.
59  */
60 
61 /* Stop scanning after icw_scan_limit inodes. */
62 #define XFS_ICWALK_FLAG_SCAN_LIMIT	(1U << 28)
63 
64 #define XFS_ICWALK_FLAG_RECLAIM_SICK	(1U << 27)
65 #define XFS_ICWALK_FLAG_UNION		(1U << 26) /* union filter algorithm */
66 
67 #define XFS_ICWALK_PRIVATE_FLAGS	(XFS_ICWALK_FLAG_SCAN_LIMIT | \
68 					 XFS_ICWALK_FLAG_RECLAIM_SICK | \
69 					 XFS_ICWALK_FLAG_UNION)
70 
71 /* Marks for the perag xarray */
72 #define XFS_PERAG_RECLAIM_MARK	XA_MARK_0
73 #define XFS_PERAG_BLOCKGC_MARK	XA_MARK_1
74 
75 static inline xa_mark_t ici_tag_to_mark(unsigned int tag)
76 {
77 	if (tag == XFS_ICI_RECLAIM_TAG)
78 		return XFS_PERAG_RECLAIM_MARK;
79 	ASSERT(tag == XFS_ICI_BLOCKGC_TAG);
80 	return XFS_PERAG_BLOCKGC_MARK;
81 }
82 
83 /*
84  * Allocate and initialise an xfs_inode.
85  */
86 struct xfs_inode *
87 xfs_inode_alloc(
88 	struct xfs_mount	*mp,
89 	xfs_ino_t		ino)
90 {
91 	struct xfs_inode	*ip;
92 
93 	/*
94 	 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
95 	 * and return NULL here on ENOMEM.
96 	 */
97 	ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
98 
99 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
100 		kmem_cache_free(xfs_inode_cache, ip);
101 		return NULL;
102 	}
103 
104 	/* VFS doesn't initialise i_mode! */
105 	VFS_I(ip)->i_mode = 0;
106 	mapping_set_folio_min_order(VFS_I(ip)->i_mapping,
107 				    M_IGEO(mp)->min_folio_order);
108 
109 	XFS_STATS_INC(mp, vn_active);
110 	ASSERT(atomic_read(&ip->i_pincount) == 0);
111 	ASSERT(ip->i_ino == 0);
112 
113 	/* initialise the xfs inode */
114 	ip->i_ino = ino;
115 	ip->i_mount = mp;
116 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
117 	ip->i_cowfp = NULL;
118 	memset(&ip->i_af, 0, sizeof(ip->i_af));
119 	ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
120 	memset(&ip->i_df, 0, sizeof(ip->i_df));
121 	ip->i_flags = 0;
122 	ip->i_delayed_blks = 0;
123 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
124 	ip->i_nblocks = 0;
125 	ip->i_forkoff = 0;
126 	ip->i_sick = 0;
127 	ip->i_checked = 0;
128 	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
129 	INIT_LIST_HEAD(&ip->i_ioend_list);
130 	spin_lock_init(&ip->i_ioend_lock);
131 	ip->i_next_unlinked = NULLAGINO;
132 	ip->i_prev_unlinked = 0;
133 
134 	return ip;
135 }
136 
137 STATIC void
138 xfs_inode_free_callback(
139 	struct rcu_head		*head)
140 {
141 	struct inode		*inode = container_of(head, struct inode, i_rcu);
142 	struct xfs_inode	*ip = XFS_I(inode);
143 
144 	switch (VFS_I(ip)->i_mode & S_IFMT) {
145 	case S_IFREG:
146 	case S_IFDIR:
147 	case S_IFLNK:
148 		xfs_idestroy_fork(&ip->i_df);
149 		break;
150 	}
151 
152 	xfs_ifork_zap_attr(ip);
153 
154 	if (ip->i_cowfp) {
155 		xfs_idestroy_fork(ip->i_cowfp);
156 		kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
157 	}
158 	if (ip->i_itemp) {
159 		ASSERT(!test_bit(XFS_LI_IN_AIL,
160 				 &ip->i_itemp->ili_item.li_flags));
161 		xfs_inode_item_destroy(ip);
162 		ip->i_itemp = NULL;
163 	}
164 
165 	kmem_cache_free(xfs_inode_cache, ip);
166 }
167 
168 static void
169 __xfs_inode_free(
170 	struct xfs_inode	*ip)
171 {
172 	/* asserts to verify all state is correct here */
173 	ASSERT(atomic_read(&ip->i_pincount) == 0);
174 	ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
175 	XFS_STATS_DEC(ip->i_mount, vn_active);
176 
177 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
178 }
179 
180 void
181 xfs_inode_free(
182 	struct xfs_inode	*ip)
183 {
184 	ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
185 
186 	/*
187 	 * Because we use RCU freeing we need to ensure the inode always
188 	 * appears to be reclaimed with an invalid inode number when in the
189 	 * free state. The ip->i_flags_lock provides the barrier against lookup
190 	 * races.
191 	 */
192 	spin_lock(&ip->i_flags_lock);
193 	ip->i_flags = XFS_IRECLAIM;
194 	ip->i_ino = 0;
195 	spin_unlock(&ip->i_flags_lock);
196 
197 	__xfs_inode_free(ip);
198 }
199 
200 /*
201  * Queue background inode reclaim work if there are reclaimable inodes and there
202  * isn't reclaim work already scheduled or in progress.
203  */
204 static void
205 xfs_reclaim_work_queue(
206 	struct xfs_mount        *mp)
207 {
208 
209 	rcu_read_lock();
210 	if (xfs_group_marked(mp, XG_TYPE_AG, XFS_PERAG_RECLAIM_MARK)) {
211 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
212 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
213 	}
214 	rcu_read_unlock();
215 }
216 
217 /*
218  * Background scanning to trim preallocated space. This is queued based on the
219  * 'speculative_prealloc_lifetime' tunable (5m by default).
220  */
221 static inline void
222 xfs_blockgc_queue(
223 	struct xfs_perag	*pag)
224 {
225 	struct xfs_mount	*mp = pag_mount(pag);
226 
227 	if (!xfs_is_blockgc_enabled(mp))
228 		return;
229 
230 	rcu_read_lock();
231 	if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
232 		queue_delayed_work(mp->m_blockgc_wq, &pag->pag_blockgc_work,
233 				   secs_to_jiffies(xfs_blockgc_secs));
234 	rcu_read_unlock();
235 }
236 
237 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
238 static void
239 xfs_perag_set_inode_tag(
240 	struct xfs_perag	*pag,
241 	xfs_agino_t		agino,
242 	unsigned int		tag)
243 {
244 	bool			was_tagged;
245 
246 	lockdep_assert_held(&pag->pag_ici_lock);
247 
248 	was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
249 	radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
250 
251 	if (tag == XFS_ICI_RECLAIM_TAG)
252 		pag->pag_ici_reclaimable++;
253 
254 	if (was_tagged)
255 		return;
256 
257 	/* propagate the tag up into the pag xarray tree */
258 	xfs_group_set_mark(pag_group(pag), ici_tag_to_mark(tag));
259 
260 	/* start background work */
261 	switch (tag) {
262 	case XFS_ICI_RECLAIM_TAG:
263 		xfs_reclaim_work_queue(pag_mount(pag));
264 		break;
265 	case XFS_ICI_BLOCKGC_TAG:
266 		xfs_blockgc_queue(pag);
267 		break;
268 	}
269 
270 	trace_xfs_perag_set_inode_tag(pag, _RET_IP_);
271 }
272 
273 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
274 static void
275 xfs_perag_clear_inode_tag(
276 	struct xfs_perag	*pag,
277 	xfs_agino_t		agino,
278 	unsigned int		tag)
279 {
280 	lockdep_assert_held(&pag->pag_ici_lock);
281 
282 	/*
283 	 * Reclaim can signal (with a null agino) that it cleared its own tag
284 	 * by removing the inode from the radix tree.
285 	 */
286 	if (agino != NULLAGINO)
287 		radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
288 	else
289 		ASSERT(tag == XFS_ICI_RECLAIM_TAG);
290 
291 	if (tag == XFS_ICI_RECLAIM_TAG)
292 		pag->pag_ici_reclaimable--;
293 
294 	if (radix_tree_tagged(&pag->pag_ici_root, tag))
295 		return;
296 
297 	/* clear the tag from the pag xarray */
298 	xfs_group_clear_mark(pag_group(pag), ici_tag_to_mark(tag));
299 	trace_xfs_perag_clear_inode_tag(pag, _RET_IP_);
300 }
301 
302 /*
303  * Find the next AG after @pag, or the first AG if @pag is NULL.
304  */
305 static struct xfs_perag *
306 xfs_perag_grab_next_tag(
307 	struct xfs_mount	*mp,
308 	struct xfs_perag	*pag,
309 	int			tag)
310 {
311 	return to_perag(xfs_group_grab_next_mark(mp,
312 			pag ? pag_group(pag) : NULL,
313 			ici_tag_to_mark(tag), XG_TYPE_AG));
314 }
315 
316 /*
317  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
318  * part of the structure. This is made more complex by the fact we store
319  * information about the on-disk values in the VFS inode and so we can't just
320  * overwrite the values unconditionally. Hence we save the parameters we
321  * need to retain across reinitialisation, and rewrite them into the VFS inode
322  * after reinitialisation even if it fails.
323  */
324 static int
325 xfs_reinit_inode(
326 	struct xfs_mount	*mp,
327 	struct inode		*inode)
328 {
329 	int			error;
330 	uint32_t		nlink = inode->i_nlink;
331 	uint32_t		generation = inode->i_generation;
332 	uint64_t		version = inode_peek_iversion(inode);
333 	umode_t			mode = inode->i_mode;
334 	dev_t			dev = inode->i_rdev;
335 	kuid_t			uid = inode->i_uid;
336 	kgid_t			gid = inode->i_gid;
337 	unsigned long		state = inode_state_read_once(inode);
338 
339 	error = inode_init_always(mp->m_super, inode);
340 
341 	set_nlink(inode, nlink);
342 	inode->i_generation = generation;
343 	inode_set_iversion_queried(inode, version);
344 	inode->i_mode = mode;
345 	inode->i_rdev = dev;
346 	inode->i_uid = uid;
347 	inode->i_gid = gid;
348 	inode_state_assign_raw(inode, state);
349 	mapping_set_folio_min_order(inode->i_mapping,
350 				    M_IGEO(mp)->min_folio_order);
351 	return error;
352 }
353 
354 /*
355  * Carefully nudge an inode whose VFS state has been torn down back into a
356  * usable state.  Drops the i_flags_lock and the rcu read lock.
357  */
358 static int
359 xfs_iget_recycle(
360 	struct xfs_perag	*pag,
361 	struct xfs_inode	*ip)
362 {
363 	struct xfs_mount	*mp = ip->i_mount;
364 	struct inode		*inode = VFS_I(ip);
365 	int			error;
366 
367 	trace_xfs_iget_recycle(ip);
368 
369 	ASSERT(!rwsem_is_locked(&inode->i_rwsem));
370 	error = xfs_reinit_inode(mp, inode);
371 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
372 	if (error) {
373 		/*
374 		 * Re-initializing the inode failed, and we are in deep
375 		 * trouble.  Try to re-add it to the reclaim list.
376 		 */
377 		rcu_read_lock();
378 		spin_lock(&ip->i_flags_lock);
379 		ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
380 		ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
381 		spin_unlock(&ip->i_flags_lock);
382 		rcu_read_unlock();
383 
384 		trace_xfs_iget_recycle_fail(ip);
385 		return error;
386 	}
387 
388 	spin_lock(&pag->pag_ici_lock);
389 	spin_lock(&ip->i_flags_lock);
390 
391 	/*
392 	 * Clear the per-lifetime state in the inode as we are now effectively
393 	 * a new inode and need to return to the initial state before reuse
394 	 * occurs.
395 	 */
396 	ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
397 	ip->i_flags |= XFS_INEW;
398 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
399 			XFS_ICI_RECLAIM_TAG);
400 	inode_state_assign_raw(inode, I_NEW);
401 	spin_unlock(&ip->i_flags_lock);
402 	spin_unlock(&pag->pag_ici_lock);
403 
404 	return 0;
405 }
406 
407 /*
408  * If we are allocating a new inode, then check what was returned is
409  * actually a free, empty inode. If we are not allocating an inode,
410  * then check we didn't find a free inode.
411  *
412  * Returns:
413  *	0		if the inode free state matches the lookup context
414  *	-ENOENT		if the inode is free and we are not allocating
415  *	-EFSCORRUPTED	if there is any state mismatch at all
416  */
417 static int
418 xfs_iget_check_free_state(
419 	struct xfs_inode	*ip,
420 	int			flags)
421 {
422 	if (flags & XFS_IGET_CREATE) {
423 		/* should be a free inode */
424 		if (VFS_I(ip)->i_mode != 0) {
425 			xfs_warn(ip->i_mount,
426 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
427 				ip->i_ino, VFS_I(ip)->i_mode);
428 			xfs_agno_mark_sick(ip->i_mount,
429 					XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
430 					XFS_SICK_AG_INOBT);
431 			return -EFSCORRUPTED;
432 		}
433 
434 		if (ip->i_nblocks != 0) {
435 			xfs_warn(ip->i_mount,
436 "Corruption detected! Free inode 0x%llx has blocks allocated!",
437 				ip->i_ino);
438 			xfs_agno_mark_sick(ip->i_mount,
439 					XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
440 					XFS_SICK_AG_INOBT);
441 			return -EFSCORRUPTED;
442 		}
443 		return 0;
444 	}
445 
446 	/* should be an allocated inode */
447 	if (VFS_I(ip)->i_mode == 0)
448 		return -ENOENT;
449 
450 	return 0;
451 }
452 
453 /* Make all pending inactivation work start immediately. */
454 static bool
455 xfs_inodegc_queue_all(
456 	struct xfs_mount	*mp)
457 {
458 	struct xfs_inodegc	*gc;
459 	int			cpu;
460 	bool			ret = false;
461 
462 	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
463 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
464 		if (!llist_empty(&gc->list)) {
465 			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
466 			ret = true;
467 		}
468 	}
469 
470 	return ret;
471 }
472 
473 /* Wait for all queued work and collect errors */
474 static int
475 xfs_inodegc_wait_all(
476 	struct xfs_mount	*mp)
477 {
478 	int			cpu;
479 	int			error = 0;
480 
481 	flush_workqueue(mp->m_inodegc_wq);
482 	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
483 		struct xfs_inodegc	*gc;
484 
485 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
486 		if (gc->error && !error)
487 			error = gc->error;
488 		gc->error = 0;
489 	}
490 
491 	return error;
492 }
493 
494 /*
495  * Check the validity of the inode we just found it the cache
496  */
497 static int
498 xfs_iget_cache_hit(
499 	struct xfs_perag	*pag,
500 	struct xfs_inode	*ip,
501 	xfs_ino_t		ino,
502 	int			flags,
503 	int			lock_flags) __releases(RCU)
504 {
505 	struct inode		*inode = VFS_I(ip);
506 	struct xfs_mount	*mp = ip->i_mount;
507 	int			error;
508 
509 	/*
510 	 * check for re-use of an inode within an RCU grace period due to the
511 	 * radix tree nodes not being updated yet. We monitor for this by
512 	 * setting the inode number to zero before freeing the inode structure.
513 	 * If the inode has been reallocated and set up, then the inode number
514 	 * will not match, so check for that, too.
515 	 */
516 	spin_lock(&ip->i_flags_lock);
517 	if (ip->i_ino != ino)
518 		goto out_skip;
519 
520 	/*
521 	 * If we are racing with another cache hit that is currently
522 	 * instantiating this inode or currently recycling it out of
523 	 * reclaimable state, wait for the initialisation to complete
524 	 * before continuing.
525 	 *
526 	 * If we're racing with the inactivation worker we also want to wait.
527 	 * If we're creating a new file, it's possible that the worker
528 	 * previously marked the inode as free on disk but hasn't finished
529 	 * updating the incore state yet.  The AGI buffer will be dirty and
530 	 * locked to the icreate transaction, so a synchronous push of the
531 	 * inodegc workers would result in deadlock.  For a regular iget, the
532 	 * worker is running already, so we might as well wait.
533 	 *
534 	 * XXX(hch): eventually we should do something equivalent to
535 	 *	     wait_on_inode to wait for these flags to be cleared
536 	 *	     instead of polling for it.
537 	 */
538 	if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
539 		goto out_skip;
540 
541 	if (ip->i_flags & XFS_NEED_INACTIVE) {
542 		/* Unlinked inodes cannot be re-grabbed. */
543 		if (VFS_I(ip)->i_nlink == 0) {
544 			error = -ENOENT;
545 			goto out_error;
546 		}
547 		goto out_inodegc_flush;
548 	}
549 
550 	/*
551 	 * Check the inode free state is valid. This also detects lookup
552 	 * racing with unlinks.
553 	 */
554 	error = xfs_iget_check_free_state(ip, flags);
555 	if (error)
556 		goto out_error;
557 
558 	/* Skip inodes that have no vfs state. */
559 	if ((flags & XFS_IGET_INCORE) &&
560 	    (ip->i_flags & XFS_IRECLAIMABLE))
561 		goto out_skip;
562 
563 	/* The inode fits the selection criteria; process it. */
564 	if (ip->i_flags & XFS_IRECLAIMABLE) {
565 		/*
566 		 * We need to make it look like the inode is being reclaimed to
567 		 * prevent the actual reclaim workers from stomping over us
568 		 * while we recycle the inode.  We can't clear the radix tree
569 		 * tag yet as it requires pag_ici_lock to be held exclusive.
570 		 */
571 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
572 			goto out_skip;
573 		ip->i_flags |= XFS_IRECLAIM;
574 		spin_unlock(&ip->i_flags_lock);
575 		rcu_read_unlock();
576 
577 		error = xfs_iget_recycle(pag, ip);
578 		if (error)
579 			return error;
580 	} else {
581 		/* If the VFS inode is being torn down, pause and try again. */
582 		if (!igrab(inode))
583 			goto out_skip;
584 
585 		/* We've got a live one. */
586 		spin_unlock(&ip->i_flags_lock);
587 		rcu_read_unlock();
588 		trace_xfs_iget_hit(ip);
589 	}
590 
591 	if (lock_flags != 0)
592 		xfs_ilock(ip, lock_flags);
593 
594 	if (!(flags & XFS_IGET_INCORE))
595 		xfs_iflags_clear(ip, XFS_ISTALE);
596 	XFS_STATS_INC(mp, xs_ig_found);
597 
598 	return 0;
599 
600 out_skip:
601 	trace_xfs_iget_skip(ip);
602 	XFS_STATS_INC(mp, xs_ig_frecycle);
603 	error = -EAGAIN;
604 out_error:
605 	spin_unlock(&ip->i_flags_lock);
606 	rcu_read_unlock();
607 	return error;
608 
609 out_inodegc_flush:
610 	spin_unlock(&ip->i_flags_lock);
611 	rcu_read_unlock();
612 	/*
613 	 * Do not wait for the workers, because the caller could hold an AGI
614 	 * buffer lock.  We're just going to sleep in a loop anyway.
615 	 */
616 	if (xfs_is_inodegc_enabled(mp))
617 		xfs_inodegc_queue_all(mp);
618 	return -EAGAIN;
619 }
620 
621 static int
622 xfs_iget_cache_miss(
623 	struct xfs_mount	*mp,
624 	struct xfs_perag	*pag,
625 	xfs_trans_t		*tp,
626 	xfs_ino_t		ino,
627 	struct xfs_inode	**ipp,
628 	int			flags,
629 	int			lock_flags)
630 {
631 	struct xfs_inode	*ip;
632 	int			error;
633 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
634 
635 	ip = xfs_inode_alloc(mp, ino);
636 	if (!ip)
637 		return -ENOMEM;
638 
639 	error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags);
640 	if (error)
641 		goto out_destroy;
642 
643 	/*
644 	 * For version 5 superblocks, if we are initialising a new inode, we
645 	 * simply build the new inode core with a random generation number.
646 	 *
647 	 * For version 4 (and older) superblocks, log recovery is dependent on
648 	 * the i_flushiter field being initialised from the current on-disk
649 	 * value and hence we must also read the inode off disk even when
650 	 * initializing new inodes.
651 	 */
652 	if (xfs_has_v3inodes(mp) && (flags & XFS_IGET_CREATE)) {
653 		VFS_I(ip)->i_generation = get_random_u32();
654 	} else {
655 		struct xfs_buf		*bp;
656 
657 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
658 		if (error)
659 			goto out_destroy;
660 
661 		error = xfs_inode_from_disk(ip,
662 				xfs_buf_offset(bp, ip->i_imap.im_boffset));
663 		if (!error)
664 			xfs_buf_set_ref(bp, XFS_INO_REF);
665 		else
666 			xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
667 		xfs_trans_brelse(tp, bp);
668 
669 		if (error)
670 			goto out_destroy;
671 	}
672 
673 	trace_xfs_iget_miss(ip);
674 
675 	/*
676 	 * Check the inode free state is valid. This also detects lookup
677 	 * racing with unlinks.
678 	 */
679 	error = xfs_iget_check_free_state(ip, flags);
680 	if (error)
681 		goto out_destroy;
682 
683 	/*
684 	 * Preload the radix tree so we can insert safely under the
685 	 * write spinlock. Note that we cannot sleep inside the preload
686 	 * region.
687 	 */
688 	if (radix_tree_preload(GFP_KERNEL | __GFP_NOLOCKDEP)) {
689 		error = -EAGAIN;
690 		goto out_destroy;
691 	}
692 
693 	/*
694 	 * Because the inode hasn't been added to the radix-tree yet it can't
695 	 * be found by another thread, so we can do the non-sleeping lock here.
696 	 */
697 	if (lock_flags) {
698 		if (!xfs_ilock_nowait(ip, lock_flags))
699 			BUG();
700 	}
701 
702 	/*
703 	 * These values must be set before inserting the inode into the radix
704 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
705 	 * RCU locking mechanism) can find it and that lookup must see that this
706 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
707 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
708 	 * memory barrier that ensures this detection works correctly at lookup
709 	 * time.
710 	 */
711 	if (flags & XFS_IGET_DONTCACHE)
712 		d_mark_dontcache(VFS_I(ip));
713 	ip->i_udquot = NULL;
714 	ip->i_gdquot = NULL;
715 	ip->i_pdquot = NULL;
716 	xfs_iflags_set(ip, XFS_INEW);
717 
718 	/* insert the new inode */
719 	spin_lock(&pag->pag_ici_lock);
720 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
721 	if (unlikely(error)) {
722 		WARN_ON(error != -EEXIST);
723 		XFS_STATS_INC(mp, xs_ig_dup);
724 		error = -EAGAIN;
725 		goto out_preload_end;
726 	}
727 	spin_unlock(&pag->pag_ici_lock);
728 	radix_tree_preload_end();
729 
730 	*ipp = ip;
731 	return 0;
732 
733 out_preload_end:
734 	spin_unlock(&pag->pag_ici_lock);
735 	radix_tree_preload_end();
736 	if (lock_flags)
737 		xfs_iunlock(ip, lock_flags);
738 out_destroy:
739 	__destroy_inode(VFS_I(ip));
740 	xfs_inode_free(ip);
741 	return error;
742 }
743 
744 /*
745  * Look up an inode by number in the given file system.  The inode is looked up
746  * in the cache held in each AG.  If the inode is found in the cache, initialise
747  * the vfs inode if necessary.
748  *
749  * If it is not in core, read it in from the file system's device, add it to the
750  * cache and initialise the vfs inode.
751  *
752  * The inode is locked according to the value of the lock_flags parameter.
753  * Inode lookup is only done during metadata operations and not as part of the
754  * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
755  */
756 int
757 xfs_iget(
758 	struct xfs_mount	*mp,
759 	struct xfs_trans	*tp,
760 	xfs_ino_t		ino,
761 	uint			flags,
762 	uint			lock_flags,
763 	struct xfs_inode	**ipp)
764 {
765 	struct xfs_inode	*ip;
766 	struct xfs_perag	*pag;
767 	xfs_agino_t		agino;
768 	int			error;
769 
770 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
771 
772 	/* reject inode numbers outside existing AGs */
773 	if (!xfs_verify_ino(mp, ino))
774 		return -EINVAL;
775 
776 	XFS_STATS_INC(mp, xs_ig_attempts);
777 
778 	/* get the perag structure and ensure that it's inode capable */
779 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
780 	agino = XFS_INO_TO_AGINO(mp, ino);
781 
782 again:
783 	error = 0;
784 	rcu_read_lock();
785 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
786 
787 	if (ip) {
788 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
789 		if (error)
790 			goto out_error_or_again;
791 	} else {
792 		rcu_read_unlock();
793 		if (flags & XFS_IGET_INCORE) {
794 			error = -ENODATA;
795 			goto out_error_or_again;
796 		}
797 		XFS_STATS_INC(mp, xs_ig_missed);
798 
799 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
800 							flags, lock_flags);
801 		if (error)
802 			goto out_error_or_again;
803 	}
804 	xfs_perag_put(pag);
805 
806 	*ipp = ip;
807 
808 	/*
809 	 * If we have a real type for an on-disk inode, we can setup the inode
810 	 * now.	 If it's a new inode being created, xfs_init_new_inode will
811 	 * handle it.
812 	 */
813 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
814 		xfs_setup_existing_inode(ip);
815 	return 0;
816 
817 out_error_or_again:
818 	if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) &&
819 	    error == -EAGAIN) {
820 		delay(1);
821 		goto again;
822 	}
823 	xfs_perag_put(pag);
824 	return error;
825 }
826 
827 /*
828  * Get a metadata inode.
829  *
830  * The metafile type must match the file mode exactly, and for files in the
831  * metadata directory tree, it must match the inode's metatype exactly.
832  */
833 int
834 xfs_trans_metafile_iget(
835 	struct xfs_trans	*tp,
836 	xfs_ino_t		ino,
837 	enum xfs_metafile_type	metafile_type,
838 	struct xfs_inode	**ipp)
839 {
840 	struct xfs_mount	*mp = tp->t_mountp;
841 	struct xfs_inode	*ip;
842 	umode_t			mode;
843 	int			error;
844 
845 	error = xfs_iget(mp, tp, ino, 0, 0, &ip);
846 	if (error == -EFSCORRUPTED || error == -EINVAL)
847 		goto whine;
848 	if (error)
849 		return error;
850 
851 	if (VFS_I(ip)->i_nlink == 0)
852 		goto bad_rele;
853 
854 	if (metafile_type == XFS_METAFILE_DIR)
855 		mode = S_IFDIR;
856 	else
857 		mode = S_IFREG;
858 	if (inode_wrong_type(VFS_I(ip), mode))
859 		goto bad_rele;
860 	if (xfs_has_metadir(mp)) {
861 		if (!xfs_is_metadir_inode(ip))
862 			goto bad_rele;
863 		if (metafile_type != ip->i_metatype)
864 			goto bad_rele;
865 	}
866 
867 	*ipp = ip;
868 	return 0;
869 bad_rele:
870 	xfs_irele(ip);
871 whine:
872 	xfs_err(mp, "metadata inode 0x%llx type %u is corrupt", ino,
873 			metafile_type);
874 	xfs_fs_mark_sick(mp, XFS_SICK_FS_METADIR);
875 	return -EFSCORRUPTED;
876 }
877 
878 /* Grab a metadata file if the caller doesn't already have a transaction. */
879 int
880 xfs_metafile_iget(
881 	struct xfs_mount	*mp,
882 	xfs_ino_t		ino,
883 	enum xfs_metafile_type	metafile_type,
884 	struct xfs_inode	**ipp)
885 {
886 	struct xfs_trans	*tp;
887 	int			error;
888 
889 	tp = xfs_trans_alloc_empty(mp);
890 	error = xfs_trans_metafile_iget(tp, ino, metafile_type, ipp);
891 	xfs_trans_cancel(tp);
892 	return error;
893 }
894 
895 /*
896  * Grab the inode for reclaim exclusively.
897  *
898  * We have found this inode via a lookup under RCU, so the inode may have
899  * already been freed, or it may be in the process of being recycled by
900  * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
901  * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
902  * will not be set. Hence we need to check for both these flag conditions to
903  * avoid inodes that are no longer reclaim candidates.
904  *
905  * Note: checking for other state flags here, under the i_flags_lock or not, is
906  * racy and should be avoided. Those races should be resolved only after we have
907  * ensured that we are able to reclaim this inode and the world can see that we
908  * are going to reclaim it.
909  *
910  * Return true if we grabbed it, false otherwise.
911  */
912 static bool
913 xfs_reclaim_igrab(
914 	struct xfs_inode	*ip,
915 	struct xfs_icwalk	*icw)
916 {
917 	ASSERT(rcu_read_lock_held());
918 
919 	spin_lock(&ip->i_flags_lock);
920 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
921 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
922 		/* not a reclaim candidate. */
923 		spin_unlock(&ip->i_flags_lock);
924 		return false;
925 	}
926 
927 	/* Don't reclaim a sick inode unless the caller asked for it. */
928 	if (ip->i_sick &&
929 	    (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
930 		spin_unlock(&ip->i_flags_lock);
931 		return false;
932 	}
933 
934 	__xfs_iflags_set(ip, XFS_IRECLAIM);
935 	spin_unlock(&ip->i_flags_lock);
936 	return true;
937 }
938 
939 /*
940  * Inode reclaim is non-blocking, so the default action if progress cannot be
941  * made is to "requeue" the inode for reclaim by unlocking it and clearing the
942  * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
943  * blocking anymore and hence we can wait for the inode to be able to reclaim
944  * it.
945  *
946  * We do no IO here - if callers require inodes to be cleaned they must push the
947  * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
948  * done in the background in a non-blocking manner, and enables memory reclaim
949  * to make progress without blocking.
950  */
951 static void
952 xfs_reclaim_inode(
953 	struct xfs_inode	*ip,
954 	struct xfs_perag	*pag)
955 {
956 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
957 
958 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
959 		goto out;
960 	if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
961 		goto out_iunlock;
962 
963 	/*
964 	 * Check for log shutdown because aborting the inode can move the log
965 	 * tail and corrupt in memory state. This is fine if the log is shut
966 	 * down, but if the log is still active and only the mount is shut down
967 	 * then the in-memory log tail movement caused by the abort can be
968 	 * incorrectly propagated to disk.
969 	 */
970 	if (xlog_is_shutdown(ip->i_mount->m_log)) {
971 		xfs_iunpin_wait(ip);
972 		/*
973 		 * Avoid a ABBA deadlock on the inode cluster buffer vs
974 		 * concurrent xfs_ifree_cluster() trying to mark the inode
975 		 * stale. We don't need the inode locked to run the flush abort
976 		 * code, but the flush abort needs to lock the cluster buffer.
977 		 */
978 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
979 		xfs_iflush_shutdown_abort(ip);
980 		xfs_ilock(ip, XFS_ILOCK_EXCL);
981 		goto reclaim;
982 	}
983 	if (xfs_ipincount(ip))
984 		goto out_clear_flush;
985 	if (!xfs_inode_clean(ip))
986 		goto out_clear_flush;
987 
988 	xfs_iflags_clear(ip, XFS_IFLUSHING);
989 reclaim:
990 	trace_xfs_inode_reclaiming(ip);
991 
992 	/*
993 	 * Because we use RCU freeing we need to ensure the inode always appears
994 	 * to be reclaimed with an invalid inode number when in the free state.
995 	 * We do this as early as possible under the ILOCK so that
996 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
997 	 * detect races with us here. By doing this, we guarantee that once
998 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
999 	 * it will see either a valid inode that will serialise correctly, or it
1000 	 * will see an invalid inode that it can skip.
1001 	 */
1002 	spin_lock(&ip->i_flags_lock);
1003 	ip->i_flags = XFS_IRECLAIM;
1004 	ip->i_ino = 0;
1005 	ip->i_sick = 0;
1006 	ip->i_checked = 0;
1007 	spin_unlock(&ip->i_flags_lock);
1008 
1009 	ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL);
1010 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1011 
1012 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1013 	/*
1014 	 * Remove the inode from the per-AG radix tree.
1015 	 *
1016 	 * Because radix_tree_delete won't complain even if the item was never
1017 	 * added to the tree assert that it's been there before to catch
1018 	 * problems with the inode life time early on.
1019 	 */
1020 	spin_lock(&pag->pag_ici_lock);
1021 	if (!radix_tree_delete(&pag->pag_ici_root,
1022 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1023 		ASSERT(0);
1024 	xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
1025 	spin_unlock(&pag->pag_ici_lock);
1026 
1027 	/*
1028 	 * Here we do an (almost) spurious inode lock in order to coordinate
1029 	 * with inode cache radix tree lookups.  This is because the lookup
1030 	 * can reference the inodes in the cache without taking references.
1031 	 *
1032 	 * We make that OK here by ensuring that we wait until the inode is
1033 	 * unlocked after the lookup before we go ahead and free it.
1034 	 */
1035 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1036 	ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
1037 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1038 	ASSERT(xfs_inode_clean(ip));
1039 
1040 	__xfs_inode_free(ip);
1041 	return;
1042 
1043 out_clear_flush:
1044 	xfs_iflags_clear(ip, XFS_IFLUSHING);
1045 out_iunlock:
1046 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1047 out:
1048 	xfs_iflags_clear(ip, XFS_IRECLAIM);
1049 }
1050 
1051 /* Reclaim sick inodes if we're unmounting or the fs went down. */
1052 static inline bool
1053 xfs_want_reclaim_sick(
1054 	struct xfs_mount	*mp)
1055 {
1056 	return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
1057 	       xfs_is_shutdown(mp);
1058 }
1059 
1060 void
1061 xfs_reclaim_inodes(
1062 	struct xfs_mount	*mp)
1063 {
1064 	struct xfs_icwalk	icw = {
1065 		.icw_flags	= 0,
1066 	};
1067 
1068 	if (xfs_want_reclaim_sick(mp))
1069 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1070 
1071 	while (xfs_group_marked(mp, XG_TYPE_AG, XFS_PERAG_RECLAIM_MARK)) {
1072 		xfs_ail_push_all_sync(mp->m_ail);
1073 		xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1074 	}
1075 }
1076 
1077 /*
1078  * The shrinker infrastructure determines how many inodes we should scan for
1079  * reclaim. We want as many clean inodes ready to reclaim as possible, so we
1080  * push the AIL here. We also want to proactively free up memory if we can to
1081  * minimise the amount of work memory reclaim has to do so we kick the
1082  * background reclaim if it isn't already scheduled.
1083  */
1084 long
1085 xfs_reclaim_inodes_nr(
1086 	struct xfs_mount	*mp,
1087 	unsigned long		nr_to_scan)
1088 {
1089 	struct xfs_icwalk	icw = {
1090 		.icw_flags	= XFS_ICWALK_FLAG_SCAN_LIMIT,
1091 		.icw_scan_limit	= min_t(unsigned long, LONG_MAX, nr_to_scan),
1092 	};
1093 
1094 	if (xfs_want_reclaim_sick(mp))
1095 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1096 
1097 	/* kick background reclaimer and push the AIL */
1098 	xfs_reclaim_work_queue(mp);
1099 	xfs_ail_push_all(mp->m_ail);
1100 
1101 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1102 	return 0;
1103 }
1104 
1105 /*
1106  * Return the number of reclaimable inodes in the filesystem for
1107  * the shrinker to determine how much to reclaim.
1108  */
1109 long
1110 xfs_reclaim_inodes_count(
1111 	struct xfs_mount	*mp)
1112 {
1113 	XA_STATE		(xas, &mp->m_groups[XG_TYPE_AG].xa, 0);
1114 	long			reclaimable = 0;
1115 	struct xfs_perag	*pag;
1116 
1117 	rcu_read_lock();
1118 	xas_for_each_marked(&xas, pag, ULONG_MAX, XFS_PERAG_RECLAIM_MARK) {
1119 		trace_xfs_reclaim_inodes_count(pag, _THIS_IP_);
1120 		reclaimable += pag->pag_ici_reclaimable;
1121 	}
1122 	rcu_read_unlock();
1123 
1124 	return reclaimable;
1125 }
1126 
1127 STATIC bool
1128 xfs_icwalk_match_id(
1129 	struct xfs_inode	*ip,
1130 	struct xfs_icwalk	*icw)
1131 {
1132 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1133 	    !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1134 		return false;
1135 
1136 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1137 	    !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1138 		return false;
1139 
1140 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1141 	    ip->i_projid != icw->icw_prid)
1142 		return false;
1143 
1144 	return true;
1145 }
1146 
1147 /*
1148  * A union-based inode filtering algorithm. Process the inode if any of the
1149  * criteria match. This is for global/internal scans only.
1150  */
1151 STATIC bool
1152 xfs_icwalk_match_id_union(
1153 	struct xfs_inode	*ip,
1154 	struct xfs_icwalk	*icw)
1155 {
1156 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1157 	    uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1158 		return true;
1159 
1160 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1161 	    gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1162 		return true;
1163 
1164 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1165 	    ip->i_projid == icw->icw_prid)
1166 		return true;
1167 
1168 	return false;
1169 }
1170 
1171 /*
1172  * Is this inode @ip eligible for eof/cow block reclamation, given some
1173  * filtering parameters @icw?  The inode is eligible if @icw is null or
1174  * if the predicate functions match.
1175  */
1176 static bool
1177 xfs_icwalk_match(
1178 	struct xfs_inode	*ip,
1179 	struct xfs_icwalk	*icw)
1180 {
1181 	bool			match;
1182 
1183 	if (!icw)
1184 		return true;
1185 
1186 	if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1187 		match = xfs_icwalk_match_id_union(ip, icw);
1188 	else
1189 		match = xfs_icwalk_match_id(ip, icw);
1190 	if (!match)
1191 		return false;
1192 
1193 	/* skip the inode if the file size is too small */
1194 	if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1195 	    XFS_ISIZE(ip) < icw->icw_min_file_size)
1196 		return false;
1197 
1198 	return true;
1199 }
1200 
1201 /*
1202  * This is a fast pass over the inode cache to try to get reclaim moving on as
1203  * many inodes as possible in a short period of time. It kicks itself every few
1204  * seconds, as well as being kicked by the inode cache shrinker when memory
1205  * goes low.
1206  */
1207 void
1208 xfs_reclaim_worker(
1209 	struct work_struct *work)
1210 {
1211 	struct xfs_mount *mp = container_of(to_delayed_work(work),
1212 					struct xfs_mount, m_reclaim_work);
1213 
1214 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1215 	xfs_reclaim_work_queue(mp);
1216 }
1217 
1218 STATIC int
1219 xfs_inode_free_eofblocks(
1220 	struct xfs_inode	*ip,
1221 	struct xfs_icwalk	*icw,
1222 	unsigned int		*lockflags)
1223 {
1224 	bool			wait;
1225 
1226 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1227 
1228 	if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1229 		return 0;
1230 
1231 	/*
1232 	 * If the mapping is dirty the operation can block and wait for some
1233 	 * time. Unless we are waiting, skip it.
1234 	 */
1235 	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1236 		return 0;
1237 
1238 	if (!xfs_icwalk_match(ip, icw))
1239 		return 0;
1240 
1241 	/*
1242 	 * If the caller is waiting, return -EAGAIN to keep the background
1243 	 * scanner moving and revisit the inode in a subsequent pass.
1244 	 */
1245 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1246 		if (wait)
1247 			return -EAGAIN;
1248 		return 0;
1249 	}
1250 	*lockflags |= XFS_IOLOCK_EXCL;
1251 
1252 	if (xfs_can_free_eofblocks(ip))
1253 		return xfs_free_eofblocks(ip);
1254 
1255 	/* inode could be preallocated */
1256 	trace_xfs_inode_free_eofblocks_invalid(ip);
1257 	xfs_inode_clear_eofblocks_tag(ip);
1258 	return 0;
1259 }
1260 
1261 static void
1262 xfs_blockgc_set_iflag(
1263 	struct xfs_inode	*ip,
1264 	unsigned long		iflag)
1265 {
1266 	struct xfs_mount	*mp = ip->i_mount;
1267 	struct xfs_perag	*pag;
1268 
1269 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1270 
1271 	/*
1272 	 * Don't bother locking the AG and looking up in the radix trees
1273 	 * if we already know that we have the tag set.
1274 	 */
1275 	if (ip->i_flags & iflag)
1276 		return;
1277 	spin_lock(&ip->i_flags_lock);
1278 	ip->i_flags |= iflag;
1279 	spin_unlock(&ip->i_flags_lock);
1280 
1281 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1282 	spin_lock(&pag->pag_ici_lock);
1283 
1284 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1285 			XFS_ICI_BLOCKGC_TAG);
1286 
1287 	spin_unlock(&pag->pag_ici_lock);
1288 	xfs_perag_put(pag);
1289 }
1290 
1291 void
1292 xfs_inode_set_eofblocks_tag(
1293 	xfs_inode_t	*ip)
1294 {
1295 	trace_xfs_inode_set_eofblocks_tag(ip);
1296 	return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1297 }
1298 
1299 static void
1300 xfs_blockgc_clear_iflag(
1301 	struct xfs_inode	*ip,
1302 	unsigned long		iflag)
1303 {
1304 	struct xfs_mount	*mp = ip->i_mount;
1305 	struct xfs_perag	*pag;
1306 	bool			clear_tag;
1307 
1308 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1309 
1310 	spin_lock(&ip->i_flags_lock);
1311 	ip->i_flags &= ~iflag;
1312 	clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1313 	spin_unlock(&ip->i_flags_lock);
1314 
1315 	if (!clear_tag)
1316 		return;
1317 
1318 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1319 	spin_lock(&pag->pag_ici_lock);
1320 
1321 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1322 			XFS_ICI_BLOCKGC_TAG);
1323 
1324 	spin_unlock(&pag->pag_ici_lock);
1325 	xfs_perag_put(pag);
1326 }
1327 
1328 void
1329 xfs_inode_clear_eofblocks_tag(
1330 	xfs_inode_t	*ip)
1331 {
1332 	trace_xfs_inode_clear_eofblocks_tag(ip);
1333 	return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1334 }
1335 
1336 /*
1337  * Prepare to free COW fork blocks from an inode.
1338  */
1339 static bool
1340 xfs_prep_free_cowblocks(
1341 	struct xfs_inode	*ip,
1342 	struct xfs_icwalk	*icw)
1343 {
1344 	bool			sync;
1345 
1346 	sync = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1347 
1348 	/*
1349 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1350 	 * possible the inode was fully unshared since it was originally tagged.
1351 	 */
1352 	if (!xfs_inode_has_cow_data(ip)) {
1353 		trace_xfs_inode_free_cowblocks_invalid(ip);
1354 		xfs_inode_clear_cowblocks_tag(ip);
1355 		return false;
1356 	}
1357 
1358 	/*
1359 	 * A cowblocks trim of an inode can have a significant effect on
1360 	 * fragmentation even when a reasonable COW extent size hint is set.
1361 	 * Therefore, we prefer to not process cowblocks unless they are clean
1362 	 * and idle. We can never process a cowblocks inode that is dirty or has
1363 	 * in-flight I/O under any circumstances, because outstanding writeback
1364 	 * or dio expects targeted COW fork blocks exist through write
1365 	 * completion where they can be remapped into the data fork.
1366 	 *
1367 	 * Therefore, the heuristic used here is to never process inodes
1368 	 * currently opened for write from background (i.e. non-sync) scans. For
1369 	 * sync scans, use the pagecache/dio state of the inode to ensure we
1370 	 * never free COW fork blocks out from under pending I/O.
1371 	 */
1372 	if (!sync && inode_is_open_for_write(VFS_I(ip)))
1373 		return false;
1374 	return xfs_can_free_cowblocks(ip);
1375 }
1376 
1377 /*
1378  * Automatic CoW Reservation Freeing
1379  *
1380  * These functions automatically garbage collect leftover CoW reservations
1381  * that were made on behalf of a cowextsize hint when we start to run out
1382  * of quota or when the reservations sit around for too long.  If the file
1383  * has dirty pages or is undergoing writeback, its CoW reservations will
1384  * be retained.
1385  *
1386  * The actual garbage collection piggybacks off the same code that runs
1387  * the speculative EOF preallocation garbage collector.
1388  */
1389 STATIC int
1390 xfs_inode_free_cowblocks(
1391 	struct xfs_inode	*ip,
1392 	struct xfs_icwalk	*icw,
1393 	unsigned int		*lockflags)
1394 {
1395 	bool			wait;
1396 	int			ret = 0;
1397 
1398 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1399 
1400 	if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1401 		return 0;
1402 
1403 	if (!xfs_prep_free_cowblocks(ip, icw))
1404 		return 0;
1405 
1406 	if (!xfs_icwalk_match(ip, icw))
1407 		return 0;
1408 
1409 	/*
1410 	 * If the caller is waiting, return -EAGAIN to keep the background
1411 	 * scanner moving and revisit the inode in a subsequent pass.
1412 	 */
1413 	if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1414 	    !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1415 		if (wait)
1416 			return -EAGAIN;
1417 		return 0;
1418 	}
1419 	*lockflags |= XFS_IOLOCK_EXCL;
1420 
1421 	if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1422 		if (wait)
1423 			return -EAGAIN;
1424 		return 0;
1425 	}
1426 	*lockflags |= XFS_MMAPLOCK_EXCL;
1427 
1428 	/*
1429 	 * Check again, nobody else should be able to dirty blocks or change
1430 	 * the reflink iflag now that we have the first two locks held.
1431 	 */
1432 	if (xfs_prep_free_cowblocks(ip, icw))
1433 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1434 	return ret;
1435 }
1436 
1437 void
1438 xfs_inode_set_cowblocks_tag(
1439 	xfs_inode_t	*ip)
1440 {
1441 	trace_xfs_inode_set_cowblocks_tag(ip);
1442 	return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1443 }
1444 
1445 void
1446 xfs_inode_clear_cowblocks_tag(
1447 	xfs_inode_t	*ip)
1448 {
1449 	trace_xfs_inode_clear_cowblocks_tag(ip);
1450 	return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1451 }
1452 
1453 /* Disable post-EOF and CoW block auto-reclamation. */
1454 void
1455 xfs_blockgc_stop(
1456 	struct xfs_mount	*mp)
1457 {
1458 	struct xfs_perag	*pag = NULL;
1459 
1460 	if (!xfs_clear_blockgc_enabled(mp))
1461 		return;
1462 
1463 	while ((pag = xfs_perag_next(mp, pag)))
1464 		cancel_delayed_work_sync(&pag->pag_blockgc_work);
1465 	trace_xfs_blockgc_stop(mp, __return_address);
1466 }
1467 
1468 /* Enable post-EOF and CoW block auto-reclamation. */
1469 void
1470 xfs_blockgc_start(
1471 	struct xfs_mount	*mp)
1472 {
1473 	struct xfs_perag	*pag = NULL;
1474 
1475 	if (xfs_set_blockgc_enabled(mp))
1476 		return;
1477 
1478 	trace_xfs_blockgc_start(mp, __return_address);
1479 	while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
1480 		xfs_blockgc_queue(pag);
1481 }
1482 
1483 /* Don't try to run block gc on an inode that's in any of these states. */
1484 #define XFS_BLOCKGC_NOGRAB_IFLAGS	(XFS_INEW | \
1485 					 XFS_NEED_INACTIVE | \
1486 					 XFS_INACTIVATING | \
1487 					 XFS_IRECLAIMABLE | \
1488 					 XFS_IRECLAIM)
1489 /*
1490  * Decide if the given @ip is eligible for garbage collection of speculative
1491  * preallocations, and grab it if so.  Returns true if it's ready to go or
1492  * false if we should just ignore it.
1493  */
1494 static bool
1495 xfs_blockgc_igrab(
1496 	struct xfs_inode	*ip)
1497 {
1498 	struct inode		*inode = VFS_I(ip);
1499 
1500 	ASSERT(rcu_read_lock_held());
1501 
1502 	/* Check for stale RCU freed inode */
1503 	spin_lock(&ip->i_flags_lock);
1504 	if (!ip->i_ino)
1505 		goto out_unlock_noent;
1506 
1507 	if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1508 		goto out_unlock_noent;
1509 	spin_unlock(&ip->i_flags_lock);
1510 
1511 	/* nothing to sync during shutdown */
1512 	if (xfs_is_shutdown(ip->i_mount))
1513 		return false;
1514 
1515 	/* If we can't grab the inode, it must on it's way to reclaim. */
1516 	if (!igrab(inode))
1517 		return false;
1518 
1519 	/* inode is valid */
1520 	return true;
1521 
1522 out_unlock_noent:
1523 	spin_unlock(&ip->i_flags_lock);
1524 	return false;
1525 }
1526 
1527 /* Scan one incore inode for block preallocations that we can remove. */
1528 static int
1529 xfs_blockgc_scan_inode(
1530 	struct xfs_inode	*ip,
1531 	struct xfs_icwalk	*icw)
1532 {
1533 	unsigned int		lockflags = 0;
1534 	int			error;
1535 
1536 	error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1537 	if (error)
1538 		goto unlock;
1539 
1540 	error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1541 unlock:
1542 	if (lockflags)
1543 		xfs_iunlock(ip, lockflags);
1544 	xfs_irele(ip);
1545 	return error;
1546 }
1547 
1548 /* Background worker that trims preallocated space. */
1549 void
1550 xfs_blockgc_worker(
1551 	struct work_struct	*work)
1552 {
1553 	struct xfs_perag	*pag = container_of(to_delayed_work(work),
1554 					struct xfs_perag, pag_blockgc_work);
1555 	struct xfs_mount	*mp = pag_mount(pag);
1556 	int			error;
1557 
1558 	trace_xfs_blockgc_worker(mp, __return_address);
1559 
1560 	error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1561 	if (error)
1562 		xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1563 				pag_agno(pag), error);
1564 	xfs_blockgc_queue(pag);
1565 }
1566 
1567 /*
1568  * Try to free space in the filesystem by purging inactive inodes, eofblocks
1569  * and cowblocks.
1570  */
1571 int
1572 xfs_blockgc_free_space(
1573 	struct xfs_mount	*mp,
1574 	struct xfs_icwalk	*icw)
1575 {
1576 	int			error;
1577 
1578 	trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1579 
1580 	error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1581 	if (error)
1582 		return error;
1583 
1584 	return xfs_inodegc_flush(mp);
1585 }
1586 
1587 /*
1588  * Reclaim all the free space that we can by scheduling the background blockgc
1589  * and inodegc workers immediately and waiting for them all to clear.
1590  */
1591 int
1592 xfs_blockgc_flush_all(
1593 	struct xfs_mount	*mp)
1594 {
1595 	struct xfs_perag	*pag = NULL;
1596 
1597 	trace_xfs_blockgc_flush_all(mp, __return_address);
1598 
1599 	/*
1600 	 * For each blockgc worker, move its queue time up to now.  If it wasn't
1601 	 * queued, it will not be requeued.  Then flush whatever is left.
1602 	 */
1603 	while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
1604 		mod_delayed_work(mp->m_blockgc_wq, &pag->pag_blockgc_work, 0);
1605 
1606 	while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
1607 		flush_delayed_work(&pag->pag_blockgc_work);
1608 
1609 	return xfs_inodegc_flush(mp);
1610 }
1611 
1612 /*
1613  * Run cow/eofblocks scans on the supplied dquots.  We don't know exactly which
1614  * quota caused an allocation failure, so we make a best effort by including
1615  * each quota under low free space conditions (less than 1% free space) in the
1616  * scan.
1617  *
1618  * Callers must not hold any inode's ILOCK.  If requesting a synchronous scan
1619  * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1620  * MMAPLOCK.
1621  */
1622 int
1623 xfs_blockgc_free_dquots(
1624 	struct xfs_mount	*mp,
1625 	struct xfs_dquot	*udqp,
1626 	struct xfs_dquot	*gdqp,
1627 	struct xfs_dquot	*pdqp,
1628 	unsigned int		iwalk_flags)
1629 {
1630 	struct xfs_icwalk	icw = {0};
1631 	bool			do_work = false;
1632 
1633 	if (!udqp && !gdqp && !pdqp)
1634 		return 0;
1635 
1636 	/*
1637 	 * Run a scan to free blocks using the union filter to cover all
1638 	 * applicable quotas in a single scan.
1639 	 */
1640 	icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1641 
1642 	if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1643 		icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1644 		icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1645 		do_work = true;
1646 	}
1647 
1648 	if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1649 		icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1650 		icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1651 		do_work = true;
1652 	}
1653 
1654 	if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1655 		icw.icw_prid = pdqp->q_id;
1656 		icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1657 		do_work = true;
1658 	}
1659 
1660 	if (!do_work)
1661 		return 0;
1662 
1663 	return xfs_blockgc_free_space(mp, &icw);
1664 }
1665 
1666 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1667 int
1668 xfs_blockgc_free_quota(
1669 	struct xfs_inode	*ip,
1670 	unsigned int		iwalk_flags)
1671 {
1672 	return xfs_blockgc_free_dquots(ip->i_mount,
1673 			xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1674 			xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1675 			xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1676 }
1677 
1678 /* XFS Inode Cache Walking Code */
1679 
1680 /*
1681  * The inode lookup is done in batches to keep the amount of lock traffic and
1682  * radix tree lookups to a minimum. The batch size is a trade off between
1683  * lookup reduction and stack usage. This is in the reclaim path, so we can't
1684  * be too greedy.
1685  */
1686 #define XFS_LOOKUP_BATCH	32
1687 
1688 
1689 /*
1690  * Decide if we want to grab this inode in anticipation of doing work towards
1691  * the goal.
1692  */
1693 static inline bool
1694 xfs_icwalk_igrab(
1695 	enum xfs_icwalk_goal	goal,
1696 	struct xfs_inode	*ip,
1697 	struct xfs_icwalk	*icw)
1698 {
1699 	switch (goal) {
1700 	case XFS_ICWALK_BLOCKGC:
1701 		return xfs_blockgc_igrab(ip);
1702 	case XFS_ICWALK_RECLAIM:
1703 		return xfs_reclaim_igrab(ip, icw);
1704 	default:
1705 		return false;
1706 	}
1707 }
1708 
1709 /*
1710  * Process an inode.  Each processing function must handle any state changes
1711  * made by the icwalk igrab function.  Return -EAGAIN to skip an inode.
1712  */
1713 static inline int
1714 xfs_icwalk_process_inode(
1715 	enum xfs_icwalk_goal	goal,
1716 	struct xfs_inode	*ip,
1717 	struct xfs_perag	*pag,
1718 	struct xfs_icwalk	*icw)
1719 {
1720 	int			error = 0;
1721 
1722 	switch (goal) {
1723 	case XFS_ICWALK_BLOCKGC:
1724 		error = xfs_blockgc_scan_inode(ip, icw);
1725 		break;
1726 	case XFS_ICWALK_RECLAIM:
1727 		xfs_reclaim_inode(ip, pag);
1728 		break;
1729 	}
1730 	return error;
1731 }
1732 
1733 /*
1734  * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1735  * process them in some manner.
1736  */
1737 static int
1738 xfs_icwalk_ag(
1739 	struct xfs_perag	*pag,
1740 	enum xfs_icwalk_goal	goal,
1741 	struct xfs_icwalk	*icw)
1742 {
1743 	struct xfs_mount	*mp = pag_mount(pag);
1744 	uint32_t		first_index;
1745 	int			last_error = 0;
1746 	int			skipped;
1747 	bool			done;
1748 	int			nr_found;
1749 
1750 restart:
1751 	done = false;
1752 	skipped = 0;
1753 	if (goal == XFS_ICWALK_RECLAIM)
1754 		first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1755 	else
1756 		first_index = 0;
1757 	nr_found = 0;
1758 	do {
1759 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1760 		int		error = 0;
1761 		int		i;
1762 
1763 		rcu_read_lock();
1764 
1765 		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1766 				(void **) batch, first_index,
1767 				XFS_LOOKUP_BATCH, goal);
1768 		if (!nr_found) {
1769 			done = true;
1770 			rcu_read_unlock();
1771 			break;
1772 		}
1773 
1774 		/*
1775 		 * Grab the inodes before we drop the lock. if we found
1776 		 * nothing, nr == 0 and the loop will be skipped.
1777 		 */
1778 		for (i = 0; i < nr_found; i++) {
1779 			struct xfs_inode *ip = batch[i];
1780 
1781 			if (done || !xfs_icwalk_igrab(goal, ip, icw))
1782 				batch[i] = NULL;
1783 
1784 			/*
1785 			 * Update the index for the next lookup. Catch
1786 			 * overflows into the next AG range which can occur if
1787 			 * we have inodes in the last block of the AG and we
1788 			 * are currently pointing to the last inode.
1789 			 *
1790 			 * Because we may see inodes that are from the wrong AG
1791 			 * due to RCU freeing and reallocation, only update the
1792 			 * index if it lies in this AG. It was a race that lead
1793 			 * us to see this inode, so another lookup from the
1794 			 * same index will not find it again.
1795 			 */
1796 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag_agno(pag))
1797 				continue;
1798 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1799 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1800 				done = true;
1801 		}
1802 
1803 		/* unlock now we've grabbed the inodes. */
1804 		rcu_read_unlock();
1805 
1806 		for (i = 0; i < nr_found; i++) {
1807 			if (!batch[i])
1808 				continue;
1809 			error = xfs_icwalk_process_inode(goal, batch[i], pag,
1810 					icw);
1811 			if (error == -EAGAIN) {
1812 				skipped++;
1813 				continue;
1814 			}
1815 			if (error && last_error != -EFSCORRUPTED)
1816 				last_error = error;
1817 		}
1818 
1819 		/* bail out if the filesystem is corrupted.  */
1820 		if (error == -EFSCORRUPTED)
1821 			break;
1822 
1823 		cond_resched();
1824 
1825 		if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1826 			icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1827 			if (icw->icw_scan_limit <= 0)
1828 				break;
1829 		}
1830 	} while (nr_found && !done);
1831 
1832 	if (goal == XFS_ICWALK_RECLAIM) {
1833 		if (done)
1834 			first_index = 0;
1835 		WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1836 	}
1837 
1838 	if (skipped) {
1839 		delay(1);
1840 		goto restart;
1841 	}
1842 	return last_error;
1843 }
1844 
1845 /* Walk all incore inodes to achieve a given goal. */
1846 static int
1847 xfs_icwalk(
1848 	struct xfs_mount	*mp,
1849 	enum xfs_icwalk_goal	goal,
1850 	struct xfs_icwalk	*icw)
1851 {
1852 	struct xfs_perag	*pag = NULL;
1853 	int			error = 0;
1854 	int			last_error = 0;
1855 
1856 	while ((pag = xfs_perag_grab_next_tag(mp, pag, goal))) {
1857 		error = xfs_icwalk_ag(pag, goal, icw);
1858 		if (error) {
1859 			last_error = error;
1860 			if (error == -EFSCORRUPTED) {
1861 				xfs_perag_rele(pag);
1862 				break;
1863 			}
1864 		}
1865 	}
1866 	return last_error;
1867 	BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1868 }
1869 
1870 #ifdef DEBUG
1871 static void
1872 xfs_check_delalloc(
1873 	struct xfs_inode	*ip,
1874 	int			whichfork)
1875 {
1876 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
1877 	struct xfs_bmbt_irec	got;
1878 	struct xfs_iext_cursor	icur;
1879 
1880 	if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1881 		return;
1882 	do {
1883 		if (isnullstartblock(got.br_startblock)) {
1884 			xfs_warn(ip->i_mount,
1885 	"ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1886 				ip->i_ino,
1887 				whichfork == XFS_DATA_FORK ? "data" : "cow",
1888 				got.br_startoff, got.br_blockcount);
1889 		}
1890 	} while (xfs_iext_next_extent(ifp, &icur, &got));
1891 }
1892 #else
1893 #define xfs_check_delalloc(ip, whichfork)	do { } while (0)
1894 #endif
1895 
1896 /* Schedule the inode for reclaim. */
1897 static void
1898 xfs_inodegc_set_reclaimable(
1899 	struct xfs_inode	*ip)
1900 {
1901 	struct xfs_mount	*mp = ip->i_mount;
1902 	struct xfs_perag	*pag;
1903 
1904 	if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1905 		xfs_check_delalloc(ip, XFS_DATA_FORK);
1906 		xfs_check_delalloc(ip, XFS_COW_FORK);
1907 		ASSERT(0);
1908 	}
1909 
1910 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1911 	spin_lock(&pag->pag_ici_lock);
1912 	spin_lock(&ip->i_flags_lock);
1913 
1914 	trace_xfs_inode_set_reclaimable(ip);
1915 	ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1916 	ip->i_flags |= XFS_IRECLAIMABLE;
1917 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1918 			XFS_ICI_RECLAIM_TAG);
1919 
1920 	spin_unlock(&ip->i_flags_lock);
1921 	spin_unlock(&pag->pag_ici_lock);
1922 	xfs_perag_put(pag);
1923 }
1924 
1925 /*
1926  * Free all speculative preallocations and possibly even the inode itself.
1927  * This is the last chance to make changes to an otherwise unreferenced file
1928  * before incore reclamation happens.
1929  */
1930 static int
1931 xfs_inodegc_inactivate(
1932 	struct xfs_inode	*ip)
1933 {
1934 	int			error;
1935 
1936 	trace_xfs_inode_inactivating(ip);
1937 	error = xfs_inactive(ip);
1938 	xfs_inodegc_set_reclaimable(ip);
1939 	return error;
1940 
1941 }
1942 
1943 void
1944 xfs_inodegc_worker(
1945 	struct work_struct	*work)
1946 {
1947 	struct xfs_inodegc	*gc = container_of(to_delayed_work(work),
1948 						struct xfs_inodegc, work);
1949 	struct llist_node	*node = llist_del_all(&gc->list);
1950 	struct xfs_inode	*ip, *n;
1951 	struct xfs_mount	*mp = gc->mp;
1952 	unsigned int		nofs_flag;
1953 
1954 	/*
1955 	 * Clear the cpu mask bit and ensure that we have seen the latest
1956 	 * update of the gc structure associated with this CPU. This matches
1957 	 * with the release semantics used when setting the cpumask bit in
1958 	 * xfs_inodegc_queue.
1959 	 */
1960 	cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask);
1961 	smp_mb__after_atomic();
1962 
1963 	WRITE_ONCE(gc->items, 0);
1964 
1965 	if (!node)
1966 		return;
1967 
1968 	/*
1969 	 * We can allocate memory here while doing writeback on behalf of
1970 	 * memory reclaim.  To avoid memory allocation deadlocks set the
1971 	 * task-wide nofs context for the following operations.
1972 	 */
1973 	nofs_flag = memalloc_nofs_save();
1974 
1975 	ip = llist_entry(node, struct xfs_inode, i_gclist);
1976 	trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits));
1977 
1978 	WRITE_ONCE(gc->shrinker_hits, 0);
1979 	llist_for_each_entry_safe(ip, n, node, i_gclist) {
1980 		int	error;
1981 
1982 		xfs_iflags_set(ip, XFS_INACTIVATING);
1983 		error = xfs_inodegc_inactivate(ip);
1984 		if (error && !gc->error)
1985 			gc->error = error;
1986 	}
1987 
1988 	memalloc_nofs_restore(nofs_flag);
1989 }
1990 
1991 /*
1992  * Expedite all pending inodegc work to run immediately. This does not wait for
1993  * completion of the work.
1994  */
1995 void
1996 xfs_inodegc_push(
1997 	struct xfs_mount	*mp)
1998 {
1999 	if (!xfs_is_inodegc_enabled(mp))
2000 		return;
2001 	trace_xfs_inodegc_push(mp, __return_address);
2002 	xfs_inodegc_queue_all(mp);
2003 }
2004 
2005 /*
2006  * Force all currently queued inode inactivation work to run immediately and
2007  * wait for the work to finish.
2008  */
2009 int
2010 xfs_inodegc_flush(
2011 	struct xfs_mount	*mp)
2012 {
2013 	xfs_inodegc_push(mp);
2014 	trace_xfs_inodegc_flush(mp, __return_address);
2015 	return xfs_inodegc_wait_all(mp);
2016 }
2017 
2018 /*
2019  * Flush all the pending work and then disable the inode inactivation background
2020  * workers and wait for them to stop.  Caller must hold sb->s_umount to
2021  * coordinate changes in the inodegc_enabled state.
2022  */
2023 void
2024 xfs_inodegc_stop(
2025 	struct xfs_mount	*mp)
2026 {
2027 	bool			rerun;
2028 
2029 	if (!xfs_clear_inodegc_enabled(mp))
2030 		return;
2031 
2032 	/*
2033 	 * Drain all pending inodegc work, including inodes that could be
2034 	 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan
2035 	 * threads that sample the inodegc state just prior to us clearing it.
2036 	 * The inodegc flag state prevents new threads from queuing more
2037 	 * inodes, so we queue pending work items and flush the workqueue until
2038 	 * all inodegc lists are empty.  IOWs, we cannot use drain_workqueue
2039 	 * here because it does not allow other unserialized mechanisms to
2040 	 * reschedule inodegc work while this draining is in progress.
2041 	 */
2042 	xfs_inodegc_queue_all(mp);
2043 	do {
2044 		flush_workqueue(mp->m_inodegc_wq);
2045 		rerun = xfs_inodegc_queue_all(mp);
2046 	} while (rerun);
2047 
2048 	trace_xfs_inodegc_stop(mp, __return_address);
2049 }
2050 
2051 /*
2052  * Enable the inode inactivation background workers and schedule deferred inode
2053  * inactivation work if there is any.  Caller must hold sb->s_umount to
2054  * coordinate changes in the inodegc_enabled state.
2055  */
2056 void
2057 xfs_inodegc_start(
2058 	struct xfs_mount	*mp)
2059 {
2060 	if (xfs_set_inodegc_enabled(mp))
2061 		return;
2062 
2063 	trace_xfs_inodegc_start(mp, __return_address);
2064 	xfs_inodegc_queue_all(mp);
2065 }
2066 
2067 #ifdef CONFIG_XFS_RT
2068 static inline bool
2069 xfs_inodegc_want_queue_rt_file(
2070 	struct xfs_inode	*ip)
2071 {
2072 	struct xfs_mount	*mp = ip->i_mount;
2073 
2074 	if (!XFS_IS_REALTIME_INODE(ip) || xfs_has_zoned(mp))
2075 		return false;
2076 
2077 	if (xfs_compare_freecounter(mp, XC_FREE_RTEXTENTS,
2078 				mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
2079 				XFS_FDBLOCKS_BATCH) < 0)
2080 		return true;
2081 
2082 	return false;
2083 }
2084 #else
2085 # define xfs_inodegc_want_queue_rt_file(ip)	(false)
2086 #endif /* CONFIG_XFS_RT */
2087 
2088 /*
2089  * Schedule the inactivation worker when:
2090  *
2091  *  - We've accumulated more than one inode cluster buffer's worth of inodes.
2092  *  - There is less than 5% free space left.
2093  *  - Any of the quotas for this inode are near an enforcement limit.
2094  */
2095 static inline bool
2096 xfs_inodegc_want_queue_work(
2097 	struct xfs_inode	*ip,
2098 	unsigned int		items)
2099 {
2100 	struct xfs_mount	*mp = ip->i_mount;
2101 
2102 	if (items > mp->m_ino_geo.inodes_per_cluster)
2103 		return true;
2104 
2105 	if (xfs_compare_freecounter(mp, XC_FREE_BLOCKS,
2106 				mp->m_low_space[XFS_LOWSP_5_PCNT],
2107 				XFS_FDBLOCKS_BATCH) < 0)
2108 		return true;
2109 
2110 	if (xfs_inodegc_want_queue_rt_file(ip))
2111 		return true;
2112 
2113 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
2114 		return true;
2115 
2116 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
2117 		return true;
2118 
2119 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
2120 		return true;
2121 
2122 	return false;
2123 }
2124 
2125 /*
2126  * Upper bound on the number of inodes in each AG that can be queued for
2127  * inactivation at any given time, to avoid monopolizing the workqueue.
2128  */
2129 #define XFS_INODEGC_MAX_BACKLOG		(4 * XFS_INODES_PER_CHUNK)
2130 
2131 /*
2132  * Make the frontend wait for inactivations when:
2133  *
2134  *  - Memory shrinkers queued the inactivation worker and it hasn't finished.
2135  *  - The queue depth exceeds the maximum allowable percpu backlog.
2136  *
2137  * Note: If we are in a NOFS context here (e.g. current thread is running a
2138  * transaction) the we don't want to block here as inodegc progress may require
2139  * filesystem resources we hold to make progress and that could result in a
2140  * deadlock. Hence we skip out of here if we are in a scoped NOFS context.
2141  */
2142 static inline bool
2143 xfs_inodegc_want_flush_work(
2144 	struct xfs_inode	*ip,
2145 	unsigned int		items,
2146 	unsigned int		shrinker_hits)
2147 {
2148 	if (current->flags & PF_MEMALLOC_NOFS)
2149 		return false;
2150 
2151 	if (shrinker_hits > 0)
2152 		return true;
2153 
2154 	if (items > XFS_INODEGC_MAX_BACKLOG)
2155 		return true;
2156 
2157 	return false;
2158 }
2159 
2160 /*
2161  * Queue a background inactivation worker if there are inodes that need to be
2162  * inactivated and higher level xfs code hasn't disabled the background
2163  * workers.
2164  */
2165 static void
2166 xfs_inodegc_queue(
2167 	struct xfs_inode	*ip)
2168 {
2169 	struct xfs_mount	*mp = ip->i_mount;
2170 	struct xfs_inodegc	*gc;
2171 	int			items;
2172 	unsigned int		shrinker_hits;
2173 	unsigned int		cpu_nr;
2174 	unsigned long		queue_delay = 1;
2175 
2176 	trace_xfs_inode_set_need_inactive(ip);
2177 	spin_lock(&ip->i_flags_lock);
2178 	ip->i_flags |= XFS_NEED_INACTIVE;
2179 	spin_unlock(&ip->i_flags_lock);
2180 
2181 	cpu_nr = get_cpu();
2182 	gc = this_cpu_ptr(mp->m_inodegc);
2183 	llist_add(&ip->i_gclist, &gc->list);
2184 	items = READ_ONCE(gc->items);
2185 	WRITE_ONCE(gc->items, items + 1);
2186 	shrinker_hits = READ_ONCE(gc->shrinker_hits);
2187 
2188 	/*
2189 	 * Ensure the list add is always seen by anyone who finds the cpumask
2190 	 * bit set. This effectively gives the cpumask bit set operation
2191 	 * release ordering semantics.
2192 	 */
2193 	smp_mb__before_atomic();
2194 	if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask))
2195 		cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask);
2196 
2197 	/*
2198 	 * We queue the work while holding the current CPU so that the work
2199 	 * is scheduled to run on this CPU.
2200 	 */
2201 	if (!xfs_is_inodegc_enabled(mp)) {
2202 		put_cpu();
2203 		return;
2204 	}
2205 
2206 	if (xfs_inodegc_want_queue_work(ip, items))
2207 		queue_delay = 0;
2208 
2209 	trace_xfs_inodegc_queue(mp, __return_address);
2210 	mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work,
2211 			queue_delay);
2212 	put_cpu();
2213 
2214 	if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2215 		trace_xfs_inodegc_throttle(mp, __return_address);
2216 		flush_delayed_work(&gc->work);
2217 	}
2218 }
2219 
2220 /*
2221  * We set the inode flag atomically with the radix tree tag.  Once we get tag
2222  * lookups on the radix tree, this inode flag can go away.
2223  *
2224  * We always use background reclaim here because even if the inode is clean, it
2225  * still may be under IO and hence we have wait for IO completion to occur
2226  * before we can reclaim the inode. The background reclaim path handles this
2227  * more efficiently than we can here, so simply let background reclaim tear down
2228  * all inodes.
2229  */
2230 void
2231 xfs_inode_mark_reclaimable(
2232 	struct xfs_inode	*ip)
2233 {
2234 	struct xfs_mount	*mp = ip->i_mount;
2235 	bool			need_inactive;
2236 
2237 	XFS_STATS_INC(mp, vn_reclaim);
2238 
2239 	/*
2240 	 * We should never get here with any of the reclaim flags already set.
2241 	 */
2242 	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2243 
2244 	need_inactive = xfs_inode_needs_inactive(ip);
2245 	if (need_inactive) {
2246 		xfs_inodegc_queue(ip);
2247 		return;
2248 	}
2249 
2250 	/* Going straight to reclaim, so drop the dquots. */
2251 	xfs_qm_dqdetach(ip);
2252 	xfs_inodegc_set_reclaimable(ip);
2253 }
2254 
2255 /*
2256  * Register a phony shrinker so that we can run background inodegc sooner when
2257  * there's memory pressure.  Inactivation does not itself free any memory but
2258  * it does make inodes reclaimable, which eventually frees memory.
2259  *
2260  * The count function, seek value, and batch value are crafted to trigger the
2261  * scan function during the second round of scanning.  Hopefully this means
2262  * that we reclaimed enough memory that initiating metadata transactions won't
2263  * make things worse.
2264  */
2265 #define XFS_INODEGC_SHRINKER_COUNT	(1UL << DEF_PRIORITY)
2266 #define XFS_INODEGC_SHRINKER_BATCH	((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2267 
2268 static unsigned long
2269 xfs_inodegc_shrinker_count(
2270 	struct shrinker		*shrink,
2271 	struct shrink_control	*sc)
2272 {
2273 	struct xfs_mount	*mp = shrink->private_data;
2274 	struct xfs_inodegc	*gc;
2275 	int			cpu;
2276 
2277 	if (!xfs_is_inodegc_enabled(mp))
2278 		return 0;
2279 
2280 	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2281 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2282 		if (!llist_empty(&gc->list))
2283 			return XFS_INODEGC_SHRINKER_COUNT;
2284 	}
2285 
2286 	return 0;
2287 }
2288 
2289 static unsigned long
2290 xfs_inodegc_shrinker_scan(
2291 	struct shrinker		*shrink,
2292 	struct shrink_control	*sc)
2293 {
2294 	struct xfs_mount	*mp = shrink->private_data;
2295 	struct xfs_inodegc	*gc;
2296 	int			cpu;
2297 	bool			no_items = true;
2298 
2299 	if (!xfs_is_inodegc_enabled(mp))
2300 		return SHRINK_STOP;
2301 
2302 	trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2303 
2304 	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2305 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2306 		if (!llist_empty(&gc->list)) {
2307 			unsigned int	h = READ_ONCE(gc->shrinker_hits);
2308 
2309 			WRITE_ONCE(gc->shrinker_hits, h + 1);
2310 			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
2311 			no_items = false;
2312 		}
2313 	}
2314 
2315 	/*
2316 	 * If there are no inodes to inactivate, we don't want the shrinker
2317 	 * to think there's deferred work to call us back about.
2318 	 */
2319 	if (no_items)
2320 		return LONG_MAX;
2321 
2322 	return SHRINK_STOP;
2323 }
2324 
2325 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2326 int
2327 xfs_inodegc_register_shrinker(
2328 	struct xfs_mount	*mp)
2329 {
2330 	mp->m_inodegc_shrinker = shrinker_alloc(SHRINKER_NONSLAB,
2331 						"xfs-inodegc:%s",
2332 						mp->m_super->s_id);
2333 	if (!mp->m_inodegc_shrinker)
2334 		return -ENOMEM;
2335 
2336 	mp->m_inodegc_shrinker->count_objects = xfs_inodegc_shrinker_count;
2337 	mp->m_inodegc_shrinker->scan_objects = xfs_inodegc_shrinker_scan;
2338 	mp->m_inodegc_shrinker->seeks = 0;
2339 	mp->m_inodegc_shrinker->batch = XFS_INODEGC_SHRINKER_BATCH;
2340 	mp->m_inodegc_shrinker->private_data = mp;
2341 
2342 	shrinker_register(mp->m_inodegc_shrinker);
2343 
2344 	return 0;
2345 }
2346