1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 /*
28 * Virtual CPU management.
29 *
30 * VCPUs can be controlled in one of two ways; through the domain itself
31 * (psradm, p_online(), etc.), and via changes in xenstore (vcpu_config()).
32 * Unfortunately, the terminology is used in different ways; they work out as
33 * follows:
34 *
35 * P_ONLINE: the VCPU is up and running, taking interrupts and running threads
36 *
37 * P_OFFLINE: the VCPU is up and running, but quiesced (i.e. blocked in the
38 * hypervisor on the idle thread). It must be up since a downed VCPU cannot
39 * receive interrupts, and we require this for offline CPUs in Solaris.
40 *
41 * P_POWEROFF: the VCPU is down (we never called xen_vcpu_up(), or called
42 * xen_vcpu_down() for it). It can't take interrupts or run anything, though
43 * if it has run previously, its software state (cpu_t, machcpu structures, IPI
44 * event channels, etc.) will still exist.
45 *
46 * The hypervisor has two notions of CPU states as represented in the store:
47 *
48 * "offline": the VCPU is down. Corresponds to P_POWEROFF.
49 *
50 * "online": the VCPU is running. Corresponds to a CPU state other than
51 * P_POWEROFF.
52 *
53 * Currently, only a notification via xenstore can bring a CPU into a
54 * P_POWEROFF state, and only the domain can change between P_ONLINE, P_NOINTR,
55 * P_OFFLINE, etc. We need to be careful to treat xenstore notifications
56 * idempotently, as we'll get 'duplicate' entries when we resume a domain.
57 *
58 * Note that the xenstore configuration is strictly advisory, in that a domain
59 * can choose to ignore it and still power up a VCPU in the offline state. To
60 * play nice, we don't allow it. Thus, any attempt to power on/off a CPU is
61 * ENOTSUP from within Solaris.
62 *
63 * Powering off a VCPU and suspending the domain use similar code. The
64 * difficulty here is that we must ensure that each VCPU is in a stable
65 * state: it must have a saved PCB, and not be responding to interrupts
66 * (since we are just about to remove its ability to run on a real CPU,
67 * possibly forever). However, an offline CPU in Solaris can take
68 * cross-call interrupts, as mentioned, so we must go through a
69 * two-stage process. First, we use the standard Solaris pause_cpus().
70 * This ensures that all CPUs are either in mach_cpu_pause() or
71 * mach_cpu_idle(), and nothing will cross-call them.
72 *
73 * Powered-off-CPUs are already safe, as we own the cpu_lock needed to
74 * bring them back up, and in state CPU_PHASE_POWERED_OFF.
75 *
76 * Running CPUs are spinning in mach_cpu_pause() waiting for either
77 * PAUSE_IDLE or CPU_PHASE_WAIT_SAFE.
78 *
79 * Offline CPUs are either running the idle thread and periodically
80 * checking for CPU_PHASE_WAIT_SAFE, or blocked in the hypervisor.
81 *
82 * Thus, we set CPU_PHASE_WAIT_SAFE for every powered-on CPU, as well as
83 * poking them to make sure they're not blocked[1]. When every CPU has
84 * responded by reaching a safe state and setting CPU_PHASE_SAFE, we
85 * know we can suspend, or power-off a CPU, without problems.
86 *
87 * [1] note that we have to repeatedly poke offline CPUs: it's the only
88 * way to ensure that the CPU doesn't miss the state change before
89 * dropping into HYPERVISOR_block().
90 */
91
92 #include <sys/types.h>
93 #include <sys/systm.h>
94 #include <sys/param.h>
95 #include <sys/taskq.h>
96 #include <sys/cmn_err.h>
97 #include <sys/archsystm.h>
98 #include <sys/machsystm.h>
99 #include <sys/segments.h>
100 #include <sys/cpuvar.h>
101 #include <sys/x86_archext.h>
102 #include <sys/controlregs.h>
103 #include <sys/hypervisor.h>
104 #include <sys/xpv_panic.h>
105 #include <sys/mman.h>
106 #include <sys/psw.h>
107 #include <sys/cpu.h>
108 #include <sys/sunddi.h>
109 #include <util/sscanf.h>
110 #include <vm/hat_i86.h>
111 #include <vm/hat.h>
112 #include <vm/as.h>
113
114 #include <xen/public/io/xs_wire.h>
115 #include <xen/sys/xenbus_impl.h>
116 #include <xen/public/vcpu.h>
117
118 extern cpuset_t cpu_ready_set;
119
120 #define CPU_PHASE_NONE 0
121 #define CPU_PHASE_WAIT_SAFE 1
122 #define CPU_PHASE_SAFE 2
123 #define CPU_PHASE_POWERED_OFF 3
124
125 /*
126 * We can only poke CPUs during barrier enter 256 times a second at
127 * most.
128 */
129 #define POKE_TIMEOUT (NANOSEC / 256)
130
131 static taskq_t *cpu_config_tq;
132 static int cpu_phase[NCPU];
133
134 static void vcpu_config_event(struct xenbus_watch *, const char **, uint_t);
135 static int xen_vcpu_initialize(processorid_t, vcpu_guest_context_t *);
136
137 /*
138 * Return whether or not the vcpu is actually running on a pcpu
139 */
140 int
vcpu_on_pcpu(processorid_t cpu)141 vcpu_on_pcpu(processorid_t cpu)
142 {
143 struct vcpu_runstate_info runstate;
144 int ret = VCPU_STATE_UNKNOWN;
145
146 ASSERT(cpu < NCPU);
147 /*
148 * Don't bother with hypercall if we are asking about ourself
149 */
150 if (cpu == CPU->cpu_id)
151 return (VCPU_ON_PCPU);
152 if (HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info, cpu, &runstate) != 0)
153 goto out;
154
155 switch (runstate.state) {
156 case RUNSTATE_running:
157 ret = VCPU_ON_PCPU;
158 break;
159
160 case RUNSTATE_runnable:
161 case RUNSTATE_offline:
162 case RUNSTATE_blocked:
163 ret = VCPU_NOT_ON_PCPU;
164 break;
165
166 default:
167 break;
168 }
169
170 out:
171 return (ret);
172 }
173
174 /*
175 * These routines allocate any global state that might be needed
176 * while starting cpus. For virtual cpus, there is no such state.
177 */
178 int
mach_cpucontext_init(void)179 mach_cpucontext_init(void)
180 {
181 return (0);
182 }
183
184 void
do_cpu_config_watch(int state)185 do_cpu_config_watch(int state)
186 {
187 static struct xenbus_watch cpu_config_watch;
188
189 if (state != XENSTORE_UP)
190 return;
191 cpu_config_watch.node = "cpu";
192 cpu_config_watch.callback = vcpu_config_event;
193 if (register_xenbus_watch(&cpu_config_watch)) {
194 taskq_destroy(cpu_config_tq);
195 cmn_err(CE_WARN, "do_cpu_config_watch: "
196 "failed to set vcpu config watch");
197 }
198
199 }
200
201 /*
202 * This routine is called after all the "normal" MP startup has
203 * been done; a good place to start watching xen store for virtual
204 * cpu hot plug events.
205 */
206 void
mach_cpucontext_fini(void)207 mach_cpucontext_fini(void)
208 {
209
210 cpu_config_tq = taskq_create("vcpu config taskq", 1,
211 maxclsyspri - 1, 1, 1, TASKQ_PREPOPULATE);
212
213 (void) xs_register_xenbus_callback(do_cpu_config_watch);
214 }
215
216 /*
217 * Fill in the remaining CPU context and initialize it.
218 */
219 static int
mp_set_cpu_context(vcpu_guest_context_t * vgc,cpu_t * cp)220 mp_set_cpu_context(vcpu_guest_context_t *vgc, cpu_t *cp)
221 {
222 uint_t vec, iopl;
223
224 vgc->flags = VGCF_IN_KERNEL;
225
226 /*
227 * fpu_ctx we leave as zero; on first fault we'll store
228 * sse_initial into it anyway.
229 */
230
231 #if defined(__amd64)
232 vgc->user_regs.cs = KCS_SEL | SEL_KPL; /* force to ring 3 */
233 #else
234 vgc->user_regs.cs = KCS_SEL;
235 #endif
236 vgc->user_regs.ds = KDS_SEL;
237 vgc->user_regs.es = KDS_SEL;
238 vgc->user_regs.ss = KDS_SEL;
239 vgc->kernel_ss = KDS_SEL;
240
241 /*
242 * Allow I/O privilege level for Dom0 kernel.
243 */
244 if (DOMAIN_IS_INITDOMAIN(xen_info))
245 iopl = (PS_IOPL & 0x1000); /* ring 1 */
246 else
247 iopl = 0;
248
249 #if defined(__amd64)
250 vgc->user_regs.fs = 0;
251 vgc->user_regs.gs = 0;
252 vgc->user_regs.rflags = F_OFF | iopl;
253 #elif defined(__i386)
254 vgc->user_regs.fs = KFS_SEL;
255 vgc->user_regs.gs = KGS_SEL;
256 vgc->user_regs.eflags = F_OFF | iopl;
257 vgc->event_callback_cs = vgc->user_regs.cs;
258 vgc->failsafe_callback_cs = vgc->user_regs.cs;
259 #endif
260
261 /*
262 * Initialize the trap_info_t from the IDT
263 */
264 #if !defined(__lint)
265 ASSERT(NIDT == sizeof (vgc->trap_ctxt) / sizeof (vgc->trap_ctxt[0]));
266 #endif
267 for (vec = 0; vec < NIDT; vec++) {
268 trap_info_t *ti = &vgc->trap_ctxt[vec];
269
270 if (xen_idt_to_trap_info(vec,
271 &cp->cpu_m.mcpu_idt[vec], ti) == 0) {
272 ti->cs = KCS_SEL;
273 ti->vector = vec;
274 }
275 }
276
277 /*
278 * No LDT
279 */
280
281 /*
282 * (We assert in various places that the GDT is (a) aligned on a
283 * page boundary and (b) one page long, so this really should fit..)
284 */
285 #ifdef CRASH_XEN
286 vgc->gdt_frames[0] = pa_to_ma(mmu_btop(cp->cpu_m.mcpu_gdtpa));
287 #else
288 vgc->gdt_frames[0] = pfn_to_mfn(mmu_btop(cp->cpu_m.mcpu_gdtpa));
289 #endif
290 vgc->gdt_ents = NGDT;
291
292 vgc->ctrlreg[0] = CR0_ENABLE_FPU_FLAGS(getcr0());
293
294 #if defined(__i386)
295 if (mmu.pae_hat)
296 vgc->ctrlreg[3] =
297 xen_pfn_to_cr3(pfn_to_mfn(kas.a_hat->hat_htable->ht_pfn));
298 else
299 #endif
300 vgc->ctrlreg[3] =
301 pa_to_ma(mmu_ptob(kas.a_hat->hat_htable->ht_pfn));
302
303 vgc->ctrlreg[4] = getcr4();
304
305 vgc->event_callback_eip = (uintptr_t)xen_callback;
306 vgc->failsafe_callback_eip = (uintptr_t)xen_failsafe_callback;
307 vgc->flags |= VGCF_failsafe_disables_events;
308
309 #if defined(__amd64)
310 /*
311 * XXPV should this be moved to init_cpu_syscall?
312 */
313 vgc->syscall_callback_eip = (uintptr_t)sys_syscall;
314 vgc->flags |= VGCF_syscall_disables_events;
315
316 ASSERT(vgc->user_regs.gs == 0);
317 vgc->gs_base_kernel = (uintptr_t)cp;
318 #endif
319
320 return (xen_vcpu_initialize(cp->cpu_id, vgc));
321 }
322
323 /*
324 * Create a guest virtual cpu context so that the virtual cpu
325 * springs into life in the domain just about to call mp_startup()
326 *
327 * Virtual CPUs must be initialized once in the lifetime of the domain;
328 * after that subsequent attempts to start them will fail with X_EEXIST.
329 *
330 * Thus 'alloc' -really- creates and initializes the virtual
331 * CPU context just once. Once the initialisation succeeds, we never
332 * free it, nor the regular cpu_t to which it refers.
333 */
334 void *
mach_cpucontext_alloc(struct cpu * cp)335 mach_cpucontext_alloc(struct cpu *cp)
336 {
337 kthread_t *tp = cp->cpu_thread;
338 vcpu_guest_context_t vgc;
339
340 int err = 1;
341
342 /*
343 * First, augment the incoming cpu structure
344 * - vcpu pointer reference
345 * - pending event storage area
346 * - physical address of GDT
347 */
348 cp->cpu_m.mcpu_vcpu_info =
349 &HYPERVISOR_shared_info->vcpu_info[cp->cpu_id];
350 cp->cpu_m.mcpu_evt_pend = kmem_zalloc(
351 sizeof (struct xen_evt_data), KM_SLEEP);
352 cp->cpu_m.mcpu_gdtpa =
353 mmu_ptob(hat_getpfnum(kas.a_hat, (caddr_t)cp->cpu_gdt));
354
355 if ((err = xen_gdt_setprot(cp, PROT_READ)) != 0)
356 goto done;
357
358 /*
359 * Now set up the vcpu context so that we can start this vcpu
360 * in the kernel at tp->t_pc (mp_startup). Note that the
361 * thread will thread_exit() shortly after performing the
362 * initialization; in particular, we will *never* take a
363 * privilege transition on this thread.
364 */
365
366 bzero(&vgc, sizeof (vgc));
367
368 #ifdef __amd64
369 vgc.user_regs.rip = tp->t_pc;
370 vgc.user_regs.rsp = tp->t_sp;
371 vgc.user_regs.rbp = tp->t_sp - 2 * sizeof (greg_t);
372 #else
373 vgc.user_regs.eip = tp->t_pc;
374 vgc.user_regs.esp = tp->t_sp;
375 vgc.user_regs.ebp = tp->t_sp - 2 * sizeof (greg_t);
376 #endif
377 /*
378 * XXPV Fix resume, if Russ didn't already fix it.
379 *
380 * Note that resume unconditionally puts t->t_stk + sizeof (regs)
381 * into kernel_sp via HYPERVISOR_stack_switch. This anticipates
382 * that only lwps take traps that switch to the kernel stack;
383 * part of creating an lwp adjusts the stack by subtracting
384 * sizeof (struct regs) off t_stk.
385 *
386 * The more interesting question is, why do we do all the work
387 * of a fully fledged lwp for a plain thread? In particular
388 * we don't have to call HYPERVISOR_stack_switch for lwp-less threads
389 * or futz with the LDT. This should probably all be done with
390 * an lwp context operator to keep pure thread context switch fast.
391 */
392 vgc.kernel_sp = (ulong_t)tp->t_stk;
393
394 err = mp_set_cpu_context(&vgc, cp);
395
396 done:
397 if (err) {
398 mach_cpucontext_free(cp, NULL, err);
399 return (NULL);
400 }
401 return (cp);
402 }
403
404 /*
405 * By the time we are called either we have successfully started
406 * the cpu, or our attempt to start it has failed.
407 */
408
409 /*ARGSUSED*/
410 void
mach_cpucontext_free(struct cpu * cp,void * arg,int err)411 mach_cpucontext_free(struct cpu *cp, void *arg, int err)
412 {
413 switch (err) {
414 case 0:
415 break;
416 case ETIMEDOUT:
417 /*
418 * The vcpu context is loaded into the hypervisor, and
419 * we've tried to start it, but the vcpu has not been set
420 * running yet, for whatever reason. We arrange to -not-
421 * free any data structures it may be referencing. In
422 * particular, we've already told the hypervisor about
423 * the GDT, and so we can't map it read-write again.
424 */
425 break;
426 default:
427 (void) xen_gdt_setprot(cp, PROT_READ | PROT_WRITE);
428 kmem_free(cp->cpu_m.mcpu_evt_pend,
429 sizeof (struct xen_evt_data));
430 break;
431 }
432 }
433
434 /*
435 * Reset this CPU's context. Clear out any pending evtchn data, since event
436 * channel numbers will all change when we resume.
437 */
438 void
mach_cpucontext_reset(cpu_t * cp)439 mach_cpucontext_reset(cpu_t *cp)
440 {
441 bzero(cp->cpu_m.mcpu_evt_pend, sizeof (struct xen_evt_data));
442 /* mcpu_intr_pending ? */
443 }
444
445 static void
pcb_to_user_regs(label_t * pcb,vcpu_guest_context_t * vgc)446 pcb_to_user_regs(label_t *pcb, vcpu_guest_context_t *vgc)
447 {
448 #ifdef __amd64
449 vgc->user_regs.rip = pcb->val[REG_LABEL_PC];
450 vgc->user_regs.rsp = pcb->val[REG_LABEL_SP];
451 vgc->user_regs.rbp = pcb->val[REG_LABEL_BP];
452 vgc->user_regs.rbx = pcb->val[REG_LABEL_RBX];
453 vgc->user_regs.r12 = pcb->val[REG_LABEL_R12];
454 vgc->user_regs.r13 = pcb->val[REG_LABEL_R13];
455 vgc->user_regs.r14 = pcb->val[REG_LABEL_R14];
456 vgc->user_regs.r15 = pcb->val[REG_LABEL_R15];
457 #else /* __amd64 */
458 vgc->user_regs.eip = pcb->val[REG_LABEL_PC];
459 vgc->user_regs.esp = pcb->val[REG_LABEL_SP];
460 vgc->user_regs.ebp = pcb->val[REG_LABEL_BP];
461 vgc->user_regs.ebx = pcb->val[REG_LABEL_EBX];
462 vgc->user_regs.esi = pcb->val[REG_LABEL_ESI];
463 vgc->user_regs.edi = pcb->val[REG_LABEL_EDI];
464 #endif /* __amd64 */
465 }
466
467 /*
468 * Restore the context of a CPU during resume. This context is always
469 * inside enter_safe_phase(), below.
470 */
471 void
mach_cpucontext_restore(cpu_t * cp)472 mach_cpucontext_restore(cpu_t *cp)
473 {
474 vcpu_guest_context_t vgc;
475 int err;
476
477 ASSERT(cp->cpu_thread == cp->cpu_pause_thread ||
478 cp->cpu_thread == cp->cpu_idle_thread);
479
480 bzero(&vgc, sizeof (vgc));
481
482 pcb_to_user_regs(&cp->cpu_thread->t_pcb, &vgc);
483
484 /*
485 * We're emulating a longjmp() here: in particular, we need to bump the
486 * stack pointer to account for the pop of xIP that returning from
487 * longjmp() normally would do, and set the return value in xAX to 1.
488 */
489 #ifdef __amd64
490 vgc.user_regs.rax = 1;
491 vgc.user_regs.rsp += sizeof (ulong_t);
492 #else
493 vgc.user_regs.eax = 1;
494 vgc.user_regs.esp += sizeof (ulong_t);
495 #endif
496
497 vgc.kernel_sp = cp->cpu_thread->t_sp;
498
499 err = mp_set_cpu_context(&vgc, cp);
500
501 ASSERT(err == 0);
502 }
503
504 /*
505 * Reach a point at which the CPU can be safely powered-off or
506 * suspended. Nothing can wake this CPU out of the loop.
507 */
508 static void
enter_safe_phase(void)509 enter_safe_phase(void)
510 {
511 ulong_t flags = intr_clear();
512
513 if (setjmp(&curthread->t_pcb) == 0) {
514 cpu_phase[CPU->cpu_id] = CPU_PHASE_SAFE;
515 while (cpu_phase[CPU->cpu_id] == CPU_PHASE_SAFE)
516 SMT_PAUSE();
517 }
518
519 ASSERT(!interrupts_enabled());
520
521 intr_restore(flags);
522 }
523
524 /*
525 * Offline CPUs run this code even under a pause_cpus(), so we must
526 * check if we need to enter the safe phase.
527 */
528 void
mach_cpu_idle(void)529 mach_cpu_idle(void)
530 {
531 if (IN_XPV_PANIC()) {
532 xpv_panic_halt();
533 } else {
534 (void) HYPERVISOR_block();
535 if (cpu_phase[CPU->cpu_id] == CPU_PHASE_WAIT_SAFE)
536 enter_safe_phase();
537 }
538 }
539
540 /*
541 * Spin until either start_cpus() wakes us up, or we get a request to
542 * enter the safe phase (followed by a later start_cpus()).
543 */
544 void
mach_cpu_pause(volatile char * safe)545 mach_cpu_pause(volatile char *safe)
546 {
547 *safe = PAUSE_WAIT;
548 membar_enter();
549
550 while (*safe != PAUSE_IDLE) {
551 if (cpu_phase[CPU->cpu_id] == CPU_PHASE_WAIT_SAFE)
552 enter_safe_phase();
553 SMT_PAUSE();
554 }
555 }
556
557 void
mach_cpu_halt(char * msg)558 mach_cpu_halt(char *msg)
559 {
560 if (msg)
561 prom_printf("%s\n", msg);
562 (void) xen_vcpu_down(CPU->cpu_id);
563 }
564
565 /*ARGSUSED*/
566 int
mp_cpu_poweron(struct cpu * cp)567 mp_cpu_poweron(struct cpu *cp)
568 {
569 return (ENOTSUP);
570 }
571
572 /*ARGSUSED*/
573 int
mp_cpu_poweroff(struct cpu * cp)574 mp_cpu_poweroff(struct cpu *cp)
575 {
576 return (ENOTSUP);
577 }
578
579 void
mp_enter_barrier(void)580 mp_enter_barrier(void)
581 {
582 hrtime_t last_poke_time = 0;
583 int poke_allowed = 0;
584 int done = 0;
585 int i;
586
587 ASSERT(MUTEX_HELD(&cpu_lock));
588
589 pause_cpus(NULL, NULL);
590
591 while (!done) {
592 done = 1;
593 poke_allowed = 0;
594
595 if (xpv_gethrtime() - last_poke_time > POKE_TIMEOUT) {
596 last_poke_time = xpv_gethrtime();
597 poke_allowed = 1;
598 }
599
600 for (i = 0; i < NCPU; i++) {
601 cpu_t *cp = cpu_get(i);
602
603 if (cp == NULL || cp == CPU)
604 continue;
605
606 switch (cpu_phase[i]) {
607 case CPU_PHASE_NONE:
608 cpu_phase[i] = CPU_PHASE_WAIT_SAFE;
609 poke_cpu(i);
610 done = 0;
611 break;
612
613 case CPU_PHASE_WAIT_SAFE:
614 if (poke_allowed)
615 poke_cpu(i);
616 done = 0;
617 break;
618
619 case CPU_PHASE_SAFE:
620 case CPU_PHASE_POWERED_OFF:
621 break;
622 }
623 }
624
625 SMT_PAUSE();
626 }
627 }
628
629 void
mp_leave_barrier(void)630 mp_leave_barrier(void)
631 {
632 int i;
633
634 ASSERT(MUTEX_HELD(&cpu_lock));
635
636 for (i = 0; i < NCPU; i++) {
637 cpu_t *cp = cpu_get(i);
638
639 if (cp == NULL || cp == CPU)
640 continue;
641
642 switch (cpu_phase[i]) {
643 /*
644 * If we see a CPU in one of these phases, something has
645 * gone badly wrong with the guarantees
646 * mp_enter_barrier() is supposed to provide. Rather
647 * than attempt to stumble along (and since we can't
648 * panic properly in this context), we tell the
649 * hypervisor we've crashed.
650 */
651 case CPU_PHASE_NONE:
652 case CPU_PHASE_WAIT_SAFE:
653 (void) HYPERVISOR_shutdown(SHUTDOWN_crash);
654 break;
655
656 case CPU_PHASE_POWERED_OFF:
657 break;
658
659 case CPU_PHASE_SAFE:
660 cpu_phase[i] = CPU_PHASE_NONE;
661 }
662 }
663
664 start_cpus();
665 }
666
667 static int
poweroff_vcpu(struct cpu * cp)668 poweroff_vcpu(struct cpu *cp)
669 {
670 int error;
671
672 ASSERT(MUTEX_HELD(&cpu_lock));
673
674 ASSERT(CPU->cpu_id != cp->cpu_id);
675 ASSERT(cp->cpu_flags & CPU_QUIESCED);
676
677 mp_enter_barrier();
678
679 if ((error = xen_vcpu_down(cp->cpu_id)) == 0) {
680 ASSERT(cpu_phase[cp->cpu_id] == CPU_PHASE_SAFE);
681
682 CPUSET_DEL(cpu_ready_set, cp->cpu_id);
683
684 cp->cpu_flags |= CPU_POWEROFF | CPU_OFFLINE;
685 cp->cpu_flags &=
686 ~(CPU_RUNNING | CPU_READY | CPU_EXISTS | CPU_ENABLE);
687
688 cpu_phase[cp->cpu_id] = CPU_PHASE_POWERED_OFF;
689
690 cpu_set_state(cp);
691 }
692
693 mp_leave_barrier();
694
695 return (error);
696 }
697
698 static int
vcpu_config_poweroff(processorid_t id)699 vcpu_config_poweroff(processorid_t id)
700 {
701 int oldstate;
702 int error;
703 cpu_t *cp;
704
705 mutex_enter(&cpu_lock);
706
707 if ((cp = cpu_get(id)) == NULL) {
708 mutex_exit(&cpu_lock);
709 return (ESRCH);
710 }
711
712 if (cpu_get_state(cp) == P_POWEROFF) {
713 mutex_exit(&cpu_lock);
714 return (0);
715 }
716
717 mutex_exit(&cpu_lock);
718
719 do {
720 error = p_online_internal(id, P_OFFLINE,
721 &oldstate);
722
723 if (error != 0)
724 break;
725
726 /*
727 * So we just changed it to P_OFFLINE. But then we dropped
728 * cpu_lock, so now it is possible for another thread to change
729 * the cpu back to a different, non-quiesced state e.g.
730 * P_ONLINE.
731 */
732 mutex_enter(&cpu_lock);
733 if ((cp = cpu_get(id)) == NULL)
734 error = ESRCH;
735 else {
736 if (cp->cpu_flags & CPU_QUIESCED)
737 error = poweroff_vcpu(cp);
738 else
739 error = EBUSY;
740 }
741 mutex_exit(&cpu_lock);
742 } while (error == EBUSY);
743
744 return (error);
745 }
746
747 /*
748 * Add a new virtual cpu to the domain.
749 */
750 static int
vcpu_config_new(processorid_t id)751 vcpu_config_new(processorid_t id)
752 {
753 extern int start_cpu(processorid_t);
754 int error;
755
756 if (ncpus == 1) {
757 printf("cannot (yet) add cpus to a single-cpu domain\n");
758 return (ENOTSUP);
759 }
760
761 affinity_set(CPU_CURRENT);
762 error = start_cpu(id);
763 affinity_clear();
764 return (error);
765 }
766
767 static int
poweron_vcpu(struct cpu * cp)768 poweron_vcpu(struct cpu *cp)
769 {
770 int error;
771
772 ASSERT(MUTEX_HELD(&cpu_lock));
773
774 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, cp->cpu_id, NULL) != 0) {
775 printf("poweron_vcpu: vcpu%d is not available!\n",
776 cp->cpu_id);
777 return (ENXIO);
778 }
779
780 if ((error = xen_vcpu_up(cp->cpu_id)) == 0) {
781 CPUSET_ADD(cpu_ready_set, cp->cpu_id);
782 cp->cpu_flags |= CPU_EXISTS | CPU_READY | CPU_RUNNING;
783 cp->cpu_flags &= ~CPU_POWEROFF;
784 /*
785 * There are some nasty races possible here.
786 * Tell the vcpu it's up one more time.
787 * XXPV Is this enough? Is this safe?
788 */
789 (void) xen_vcpu_up(cp->cpu_id);
790
791 cpu_phase[cp->cpu_id] = CPU_PHASE_NONE;
792
793 cpu_set_state(cp);
794 }
795 return (error);
796 }
797
798 static int
vcpu_config_poweron(processorid_t id)799 vcpu_config_poweron(processorid_t id)
800 {
801 cpu_t *cp;
802 int oldstate;
803 int error;
804
805 if (id >= ncpus)
806 return (vcpu_config_new(id));
807
808 mutex_enter(&cpu_lock);
809
810 if ((cp = cpu_get(id)) == NULL) {
811 mutex_exit(&cpu_lock);
812 return (ESRCH);
813 }
814
815 if (cpu_get_state(cp) != P_POWEROFF) {
816 mutex_exit(&cpu_lock);
817 return (0);
818 }
819
820 if ((error = poweron_vcpu(cp)) != 0) {
821 mutex_exit(&cpu_lock);
822 return (error);
823 }
824
825 mutex_exit(&cpu_lock);
826
827 return (p_online_internal(id, P_ONLINE, &oldstate));
828 }
829
830 #define REPORT_LEN 128
831
832 static void
vcpu_config_report(processorid_t id,uint_t newstate,int error)833 vcpu_config_report(processorid_t id, uint_t newstate, int error)
834 {
835 char *report = kmem_alloc(REPORT_LEN, KM_SLEEP);
836 size_t len;
837 char *ps;
838
839 switch (newstate) {
840 case P_ONLINE:
841 ps = PS_ONLINE;
842 break;
843 case P_POWEROFF:
844 ps = PS_POWEROFF;
845 break;
846 default:
847 cmn_err(CE_PANIC, "unknown state %u\n", newstate);
848 break;
849 }
850
851 len = snprintf(report, REPORT_LEN,
852 "cpu%d: externally initiated %s", id, ps);
853
854 if (!error) {
855 cmn_err(CE_CONT, "!%s\n", report);
856 kmem_free(report, REPORT_LEN);
857 return;
858 }
859
860 len += snprintf(report + len, REPORT_LEN - len,
861 " failed, error %d: ", error);
862 switch (error) {
863 case EEXIST:
864 len += snprintf(report + len, REPORT_LEN - len,
865 "cpu already %s", ps ? ps : "?");
866 break;
867 case ESRCH:
868 len += snprintf(report + len, REPORT_LEN - len,
869 "cpu not found");
870 break;
871 case EINVAL:
872 case EALREADY:
873 break;
874 case EPERM:
875 len += snprintf(report + len, REPORT_LEN - len,
876 "insufficient privilege (0x%x)", id);
877 break;
878 case EBUSY:
879 switch (newstate) {
880 case P_ONLINE:
881 /*
882 * This return comes from mp_cpu_start -
883 * we cannot 'start' the boot CPU.
884 */
885 len += snprintf(report + len, REPORT_LEN - len,
886 "already running");
887 break;
888 case P_POWEROFF:
889 len += snprintf(report + len, REPORT_LEN - len,
890 "bound lwps?");
891 break;
892 default:
893 break;
894 }
895 default:
896 break;
897 }
898
899 cmn_err(CE_CONT, "%s\n", report);
900 kmem_free(report, REPORT_LEN);
901 }
902
903 static void
vcpu_config(void * arg)904 vcpu_config(void *arg)
905 {
906 int id = (int)(uintptr_t)arg;
907 int error;
908 char dir[16];
909 char *state;
910
911 if ((uint_t)id >= max_ncpus) {
912 cmn_err(CE_WARN,
913 "vcpu_config: cpu%d does not fit in this domain", id);
914 return;
915 }
916
917 (void) snprintf(dir, sizeof (dir), "cpu/%d", id);
918 state = kmem_alloc(MAXPATHLEN, KM_SLEEP);
919 if (xenbus_scanf(XBT_NULL, dir, "availability", "%s", state) == 0) {
920 if (strcmp(state, "online") == 0) {
921 error = vcpu_config_poweron(id);
922 vcpu_config_report(id, P_ONLINE, error);
923 } else if (strcmp(state, "offline") == 0) {
924 error = vcpu_config_poweroff(id);
925 vcpu_config_report(id, P_POWEROFF, error);
926 } else {
927 cmn_err(CE_WARN,
928 "cpu%d: unknown target state '%s'", id, state);
929 }
930 } else
931 cmn_err(CE_WARN,
932 "cpu%d: unable to read target state from xenstore", id);
933
934 kmem_free(state, MAXPATHLEN);
935 }
936
937 /*ARGSUSED*/
938 static void
vcpu_config_event(struct xenbus_watch * watch,const char ** vec,uint_t len)939 vcpu_config_event(struct xenbus_watch *watch, const char **vec, uint_t len)
940 {
941 const char *path = vec[XS_WATCH_PATH];
942 processorid_t id;
943 char *s;
944
945 if ((s = strstr(path, "cpu/")) != NULL &&
946 sscanf(s, "cpu/%d", &id) == 1) {
947 /*
948 * Run the virtual CPU configuration on a separate thread to
949 * avoid blocking on this event for too long (and for now,
950 * to ensure configuration requests are serialized.)
951 */
952 (void) taskq_dispatch(cpu_config_tq,
953 vcpu_config, (void *)(uintptr_t)id, 0);
954 }
955 }
956
957 static int
xen_vcpu_initialize(processorid_t id,vcpu_guest_context_t * vgc)958 xen_vcpu_initialize(processorid_t id, vcpu_guest_context_t *vgc)
959 {
960 int err;
961
962 if ((err = HYPERVISOR_vcpu_op(VCPUOP_initialise, id, vgc)) != 0) {
963 char *str;
964 int level = CE_WARN;
965
966 switch (err) {
967 case -X_EINVAL:
968 /*
969 * This interface squashes multiple error sources
970 * to one error code. In particular, an X_EINVAL
971 * code can mean:
972 *
973 * - the vcpu id is out of range
974 * - cs or ss are in ring 0
975 * - cr3 is wrong
976 * - an entry in the new gdt is above the
977 * reserved entry
978 * - a frame underneath the new gdt is bad
979 */
980 str = "something is wrong :(";
981 break;
982 case -X_ENOENT:
983 str = "no such cpu";
984 break;
985 case -X_ENOMEM:
986 str = "no mem to copy ctxt";
987 break;
988 case -X_EFAULT:
989 str = "bad address";
990 break;
991 case -X_EEXIST:
992 /*
993 * Hmm. This error is returned if the vcpu has already
994 * been initialized once before in the lifetime of this
995 * domain. This is a logic error in the kernel.
996 */
997 level = CE_PANIC;
998 str = "already initialized";
999 break;
1000 default:
1001 level = CE_PANIC;
1002 str = "<unexpected>";
1003 break;
1004 }
1005
1006 cmn_err(level, "vcpu%d: failed to init: error %d: %s",
1007 id, -err, str);
1008 }
1009 return (err);
1010 }
1011
1012 long
xen_vcpu_up(processorid_t id)1013 xen_vcpu_up(processorid_t id)
1014 {
1015 long err;
1016
1017 if ((err = HYPERVISOR_vcpu_op(VCPUOP_up, id, NULL)) != 0) {
1018 char *str;
1019
1020 switch (err) {
1021 case -X_ENOENT:
1022 str = "no such cpu";
1023 break;
1024 case -X_EINVAL:
1025 /*
1026 * Perhaps this is diagnostic overkill.
1027 */
1028 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) < 0)
1029 str = "bad cpuid";
1030 else
1031 str = "not initialized";
1032 break;
1033 default:
1034 str = "<unexpected>";
1035 break;
1036 }
1037
1038 printf("vcpu%d: failed to start: error %d: %s\n",
1039 id, -(int)err, str);
1040 return (EBFONT); /* deliberately silly */
1041 }
1042 return (err);
1043 }
1044
1045 long
xen_vcpu_down(processorid_t id)1046 xen_vcpu_down(processorid_t id)
1047 {
1048 long err;
1049
1050 if ((err = HYPERVISOR_vcpu_op(VCPUOP_down, id, NULL)) != 0) {
1051 /*
1052 * X_ENOENT: no such cpu
1053 * X_EINVAL: bad cpuid
1054 */
1055 panic("vcpu%d: failed to stop: error %d", id, -(int)err);
1056 }
1057
1058 return (err);
1059 }
1060