xref: /linux/arch/x86/xen/mmu_pv.c (revision 5d6ba5ab8582aa35c1ee98e47af28e6f6772596c)
1  // SPDX-License-Identifier: GPL-2.0
2  
3  /*
4   * Xen mmu operations
5   *
6   * This file contains the various mmu fetch and update operations.
7   * The most important job they must perform is the mapping between the
8   * domain's pfn and the overall machine mfns.
9   *
10   * Xen allows guests to directly update the pagetable, in a controlled
11   * fashion.  In other words, the guest modifies the same pagetable
12   * that the CPU actually uses, which eliminates the overhead of having
13   * a separate shadow pagetable.
14   *
15   * In order to allow this, it falls on the guest domain to map its
16   * notion of a "physical" pfn - which is just a domain-local linear
17   * address - into a real "machine address" which the CPU's MMU can
18   * use.
19   *
20   * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
21   * inserted directly into the pagetable.  When creating a new
22   * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
23   * when reading the content back with __(pgd|pmd|pte)_val, it converts
24   * the mfn back into a pfn.
25   *
26   * The other constraint is that all pages which make up a pagetable
27   * must be mapped read-only in the guest.  This prevents uncontrolled
28   * guest updates to the pagetable.  Xen strictly enforces this, and
29   * will disallow any pagetable update which will end up mapping a
30   * pagetable page RW, and will disallow using any writable page as a
31   * pagetable.
32   *
33   * Naively, when loading %cr3 with the base of a new pagetable, Xen
34   * would need to validate the whole pagetable before going on.
35   * Naturally, this is quite slow.  The solution is to "pin" a
36   * pagetable, which enforces all the constraints on the pagetable even
37   * when it is not actively in use.  This means that Xen can be assured
38   * that it is still valid when you do load it into %cr3, and doesn't
39   * need to revalidate it.
40   *
41   * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
42   */
43  #include <linux/sched/mm.h>
44  #include <linux/debugfs.h>
45  #include <linux/bug.h>
46  #include <linux/vmalloc.h>
47  #include <linux/export.h>
48  #include <linux/init.h>
49  #include <linux/gfp.h>
50  #include <linux/memblock.h>
51  #include <linux/seq_file.h>
52  #include <linux/crash_dump.h>
53  #include <linux/pgtable.h>
54  #ifdef CONFIG_KEXEC_CORE
55  #include <linux/kexec.h>
56  #endif
57  
58  #include <trace/events/xen.h>
59  
60  #include <asm/tlbflush.h>
61  #include <asm/fixmap.h>
62  #include <asm/mmu_context.h>
63  #include <asm/setup.h>
64  #include <asm/paravirt.h>
65  #include <asm/e820/api.h>
66  #include <asm/linkage.h>
67  #include <asm/page.h>
68  #include <asm/init.h>
69  #include <asm/memtype.h>
70  #include <asm/smp.h>
71  #include <asm/tlb.h>
72  
73  #include <asm/xen/hypercall.h>
74  #include <asm/xen/hypervisor.h>
75  
76  #include <xen/xen.h>
77  #include <xen/page.h>
78  #include <xen/interface/xen.h>
79  #include <xen/interface/hvm/hvm_op.h>
80  #include <xen/interface/version.h>
81  #include <xen/interface/memory.h>
82  #include <xen/hvc-console.h>
83  #include <xen/swiotlb-xen.h>
84  
85  #include "xen-ops.h"
86  
87  /*
88   * Prototypes for functions called via PV_CALLEE_SAVE_REGS_THUNK() in order
89   * to avoid warnings with "-Wmissing-prototypes".
90   */
91  pteval_t xen_pte_val(pte_t pte);
92  pgdval_t xen_pgd_val(pgd_t pgd);
93  pmdval_t xen_pmd_val(pmd_t pmd);
94  pudval_t xen_pud_val(pud_t pud);
95  p4dval_t xen_p4d_val(p4d_t p4d);
96  pte_t xen_make_pte(pteval_t pte);
97  pgd_t xen_make_pgd(pgdval_t pgd);
98  pmd_t xen_make_pmd(pmdval_t pmd);
99  pud_t xen_make_pud(pudval_t pud);
100  p4d_t xen_make_p4d(p4dval_t p4d);
101  pte_t xen_make_pte_init(pteval_t pte);
102  
103  #ifdef CONFIG_X86_VSYSCALL_EMULATION
104  /* l3 pud for userspace vsyscall mapping */
105  static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
106  #endif
107  
108  /*
109   * Protects atomic reservation decrease/increase against concurrent increases.
110   * Also protects non-atomic updates of current_pages and balloon lists.
111   */
112  static DEFINE_SPINLOCK(xen_reservation_lock);
113  
114  /* Protected by xen_reservation_lock. */
115  #define MIN_CONTIG_ORDER 9 /* 2MB */
116  static unsigned int discontig_frames_order = MIN_CONTIG_ORDER;
117  static unsigned long discontig_frames_early[1UL << MIN_CONTIG_ORDER] __initdata;
118  static unsigned long *discontig_frames __refdata = discontig_frames_early;
119  static bool discontig_frames_dyn;
120  
alloc_discontig_frames(unsigned int order)121  static int alloc_discontig_frames(unsigned int order)
122  {
123  	unsigned long *new_array, *old_array;
124  	unsigned int old_order;
125  	unsigned long flags;
126  
127  	BUG_ON(order < MIN_CONTIG_ORDER);
128  	BUILD_BUG_ON(sizeof(discontig_frames_early) != PAGE_SIZE);
129  
130  	new_array = (unsigned long *)__get_free_pages(GFP_KERNEL,
131  						      order - MIN_CONTIG_ORDER);
132  	if (!new_array)
133  		return -ENOMEM;
134  
135  	spin_lock_irqsave(&xen_reservation_lock, flags);
136  
137  	old_order = discontig_frames_order;
138  
139  	if (order > discontig_frames_order || !discontig_frames_dyn) {
140  		if (!discontig_frames_dyn)
141  			old_array = NULL;
142  		else
143  			old_array = discontig_frames;
144  
145  		discontig_frames = new_array;
146  		discontig_frames_order = order;
147  		discontig_frames_dyn = true;
148  	} else {
149  		old_array = new_array;
150  	}
151  
152  	spin_unlock_irqrestore(&xen_reservation_lock, flags);
153  
154  	free_pages((unsigned long)old_array, old_order - MIN_CONTIG_ORDER);
155  
156  	return 0;
157  }
158  
159  /*
160   * Note about cr3 (pagetable base) values:
161   *
162   * xen_cr3 contains the current logical cr3 value; it contains the
163   * last set cr3.  This may not be the current effective cr3, because
164   * its update may be being lazily deferred.  However, a vcpu looking
165   * at its own cr3 can use this value knowing that it everything will
166   * be self-consistent.
167   *
168   * xen_current_cr3 contains the actual vcpu cr3; it is set once the
169   * hypercall to set the vcpu cr3 is complete (so it may be a little
170   * out of date, but it will never be set early).  If one vcpu is
171   * looking at another vcpu's cr3 value, it should use this variable.
172   */
173  DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
174  static DEFINE_PER_CPU(unsigned long, xen_current_cr3);	/* actual vcpu cr3 */
175  
176  static phys_addr_t xen_pt_base, xen_pt_size __initdata;
177  
178  static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready);
179  
180  /*
181   * Just beyond the highest usermode address.  STACK_TOP_MAX has a
182   * redzone above it, so round it up to a PGD boundary.
183   */
184  #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
185  
make_lowmem_page_readonly(void * vaddr)186  void make_lowmem_page_readonly(void *vaddr)
187  {
188  	pte_t *pte, ptev;
189  	unsigned long address = (unsigned long)vaddr;
190  	unsigned int level;
191  
192  	pte = lookup_address(address, &level);
193  	if (pte == NULL)
194  		return;		/* vaddr missing */
195  
196  	ptev = pte_wrprotect(*pte);
197  
198  	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
199  		BUG();
200  }
201  
make_lowmem_page_readwrite(void * vaddr)202  void make_lowmem_page_readwrite(void *vaddr)
203  {
204  	pte_t *pte, ptev;
205  	unsigned long address = (unsigned long)vaddr;
206  	unsigned int level;
207  
208  	pte = lookup_address(address, &level);
209  	if (pte == NULL)
210  		return;		/* vaddr missing */
211  
212  	ptev = pte_mkwrite_novma(*pte);
213  
214  	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
215  		BUG();
216  }
217  
218  
219  /*
220   * During early boot all page table pages are pinned, but we do not have struct
221   * pages, so return true until struct pages are ready.
222   */
xen_page_pinned(void * ptr)223  static bool xen_page_pinned(void *ptr)
224  {
225  	if (static_branch_likely(&xen_struct_pages_ready)) {
226  		struct page *page = virt_to_page(ptr);
227  
228  		return PagePinned(page);
229  	}
230  	return true;
231  }
232  
xen_extend_mmu_update(const struct mmu_update * update)233  static void xen_extend_mmu_update(const struct mmu_update *update)
234  {
235  	struct multicall_space mcs;
236  	struct mmu_update *u;
237  
238  	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
239  
240  	if (mcs.mc != NULL) {
241  		mcs.mc->args[1]++;
242  	} else {
243  		mcs = __xen_mc_entry(sizeof(*u));
244  		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
245  	}
246  
247  	u = mcs.args;
248  	*u = *update;
249  }
250  
xen_extend_mmuext_op(const struct mmuext_op * op)251  static void xen_extend_mmuext_op(const struct mmuext_op *op)
252  {
253  	struct multicall_space mcs;
254  	struct mmuext_op *u;
255  
256  	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
257  
258  	if (mcs.mc != NULL) {
259  		mcs.mc->args[1]++;
260  	} else {
261  		mcs = __xen_mc_entry(sizeof(*u));
262  		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
263  	}
264  
265  	u = mcs.args;
266  	*u = *op;
267  }
268  
xen_set_pmd_hyper(pmd_t * ptr,pmd_t val)269  static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
270  {
271  	struct mmu_update u;
272  
273  	preempt_disable();
274  
275  	xen_mc_batch();
276  
277  	/* ptr may be ioremapped for 64-bit pagetable setup */
278  	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
279  	u.val = pmd_val_ma(val);
280  	xen_extend_mmu_update(&u);
281  
282  	xen_mc_issue(XEN_LAZY_MMU);
283  
284  	preempt_enable();
285  }
286  
xen_set_pmd(pmd_t * ptr,pmd_t val)287  static void xen_set_pmd(pmd_t *ptr, pmd_t val)
288  {
289  	trace_xen_mmu_set_pmd(ptr, val);
290  
291  	/* If page is not pinned, we can just update the entry
292  	   directly */
293  	if (!xen_page_pinned(ptr)) {
294  		*ptr = val;
295  		return;
296  	}
297  
298  	xen_set_pmd_hyper(ptr, val);
299  }
300  
301  /*
302   * Associate a virtual page frame with a given physical page frame
303   * and protection flags for that frame.
304   */
set_pte_mfn(unsigned long vaddr,unsigned long mfn,pgprot_t flags)305  void __init set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
306  {
307  	if (HYPERVISOR_update_va_mapping(vaddr, mfn_pte(mfn, flags),
308  					 UVMF_INVLPG))
309  		BUG();
310  }
311  
xen_batched_set_pte(pte_t * ptep,pte_t pteval)312  static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
313  {
314  	struct mmu_update u;
315  
316  	if (xen_get_lazy_mode() != XEN_LAZY_MMU)
317  		return false;
318  
319  	xen_mc_batch();
320  
321  	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
322  	u.val = pte_val_ma(pteval);
323  	xen_extend_mmu_update(&u);
324  
325  	xen_mc_issue(XEN_LAZY_MMU);
326  
327  	return true;
328  }
329  
__xen_set_pte(pte_t * ptep,pte_t pteval)330  static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
331  {
332  	if (!xen_batched_set_pte(ptep, pteval)) {
333  		/*
334  		 * Could call native_set_pte() here and trap and
335  		 * emulate the PTE write, but a hypercall is much cheaper.
336  		 */
337  		struct mmu_update u;
338  
339  		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
340  		u.val = pte_val_ma(pteval);
341  		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
342  	}
343  }
344  
xen_set_pte(pte_t * ptep,pte_t pteval)345  static void xen_set_pte(pte_t *ptep, pte_t pteval)
346  {
347  	trace_xen_mmu_set_pte(ptep, pteval);
348  	__xen_set_pte(ptep, pteval);
349  }
350  
xen_ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)351  static pte_t xen_ptep_modify_prot_start(struct vm_area_struct *vma,
352  					unsigned long addr, pte_t *ptep)
353  {
354  	/* Just return the pte as-is.  We preserve the bits on commit */
355  	trace_xen_mmu_ptep_modify_prot_start(vma->vm_mm, addr, ptep, *ptep);
356  	return *ptep;
357  }
358  
xen_ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte)359  static void xen_ptep_modify_prot_commit(struct vm_area_struct *vma,
360  					unsigned long addr,
361  					pte_t *ptep, pte_t pte)
362  {
363  	struct mmu_update u;
364  
365  	trace_xen_mmu_ptep_modify_prot_commit(vma->vm_mm, addr, ptep, pte);
366  	xen_mc_batch();
367  
368  	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
369  	u.val = pte_val_ma(pte);
370  	xen_extend_mmu_update(&u);
371  
372  	xen_mc_issue(XEN_LAZY_MMU);
373  }
374  
375  /* Assume pteval_t is equivalent to all the other *val_t types. */
pte_mfn_to_pfn(pteval_t val)376  static pteval_t pte_mfn_to_pfn(pteval_t val)
377  {
378  	if (val & _PAGE_PRESENT) {
379  		unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT;
380  		unsigned long pfn = mfn_to_pfn(mfn);
381  
382  		pteval_t flags = val & PTE_FLAGS_MASK;
383  		if (unlikely(pfn == ~0))
384  			val = flags & ~_PAGE_PRESENT;
385  		else
386  			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
387  	}
388  
389  	return val;
390  }
391  
pte_pfn_to_mfn(pteval_t val)392  static pteval_t pte_pfn_to_mfn(pteval_t val)
393  {
394  	if (val & _PAGE_PRESENT) {
395  		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
396  		pteval_t flags = val & PTE_FLAGS_MASK;
397  		unsigned long mfn;
398  
399  		mfn = __pfn_to_mfn(pfn);
400  
401  		/*
402  		 * If there's no mfn for the pfn, then just create an
403  		 * empty non-present pte.  Unfortunately this loses
404  		 * information about the original pfn, so
405  		 * pte_mfn_to_pfn is asymmetric.
406  		 */
407  		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
408  			mfn = 0;
409  			flags = 0;
410  		} else
411  			mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
412  		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
413  	}
414  
415  	return val;
416  }
417  
xen_pte_val(pte_t pte)418  __visible pteval_t xen_pte_val(pte_t pte)
419  {
420  	pteval_t pteval = pte.pte;
421  
422  	return pte_mfn_to_pfn(pteval);
423  }
424  PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
425  
xen_pgd_val(pgd_t pgd)426  __visible pgdval_t xen_pgd_val(pgd_t pgd)
427  {
428  	return pte_mfn_to_pfn(pgd.pgd);
429  }
430  PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
431  
xen_make_pte(pteval_t pte)432  __visible pte_t xen_make_pte(pteval_t pte)
433  {
434  	pte = pte_pfn_to_mfn(pte);
435  
436  	return native_make_pte(pte);
437  }
438  PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
439  
xen_make_pgd(pgdval_t pgd)440  __visible pgd_t xen_make_pgd(pgdval_t pgd)
441  {
442  	pgd = pte_pfn_to_mfn(pgd);
443  	return native_make_pgd(pgd);
444  }
445  PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
446  
xen_pmd_val(pmd_t pmd)447  __visible pmdval_t xen_pmd_val(pmd_t pmd)
448  {
449  	return pte_mfn_to_pfn(pmd.pmd);
450  }
451  PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
452  
xen_set_pud_hyper(pud_t * ptr,pud_t val)453  static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
454  {
455  	struct mmu_update u;
456  
457  	preempt_disable();
458  
459  	xen_mc_batch();
460  
461  	/* ptr may be ioremapped for 64-bit pagetable setup */
462  	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
463  	u.val = pud_val_ma(val);
464  	xen_extend_mmu_update(&u);
465  
466  	xen_mc_issue(XEN_LAZY_MMU);
467  
468  	preempt_enable();
469  }
470  
xen_set_pud(pud_t * ptr,pud_t val)471  static void xen_set_pud(pud_t *ptr, pud_t val)
472  {
473  	trace_xen_mmu_set_pud(ptr, val);
474  
475  	/* If page is not pinned, we can just update the entry
476  	   directly */
477  	if (!xen_page_pinned(ptr)) {
478  		*ptr = val;
479  		return;
480  	}
481  
482  	xen_set_pud_hyper(ptr, val);
483  }
484  
xen_make_pmd(pmdval_t pmd)485  __visible pmd_t xen_make_pmd(pmdval_t pmd)
486  {
487  	pmd = pte_pfn_to_mfn(pmd);
488  	return native_make_pmd(pmd);
489  }
490  PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
491  
xen_pud_val(pud_t pud)492  __visible pudval_t xen_pud_val(pud_t pud)
493  {
494  	return pte_mfn_to_pfn(pud.pud);
495  }
496  PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
497  
xen_make_pud(pudval_t pud)498  __visible pud_t xen_make_pud(pudval_t pud)
499  {
500  	pud = pte_pfn_to_mfn(pud);
501  
502  	return native_make_pud(pud);
503  }
504  PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
505  
xen_get_user_pgd(pgd_t * pgd)506  static pgd_t *xen_get_user_pgd(pgd_t *pgd)
507  {
508  	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
509  	unsigned offset = pgd - pgd_page;
510  	pgd_t *user_ptr = NULL;
511  
512  	if (offset < pgd_index(USER_LIMIT)) {
513  		struct page *page = virt_to_page(pgd_page);
514  		user_ptr = (pgd_t *)page->private;
515  		if (user_ptr)
516  			user_ptr += offset;
517  	}
518  
519  	return user_ptr;
520  }
521  
__xen_set_p4d_hyper(p4d_t * ptr,p4d_t val)522  static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
523  {
524  	struct mmu_update u;
525  
526  	u.ptr = virt_to_machine(ptr).maddr;
527  	u.val = p4d_val_ma(val);
528  	xen_extend_mmu_update(&u);
529  }
530  
531  /*
532   * Raw hypercall-based set_p4d, intended for in early boot before
533   * there's a page structure.  This implies:
534   *  1. The only existing pagetable is the kernel's
535   *  2. It is always pinned
536   *  3. It has no user pagetable attached to it
537   */
xen_set_p4d_hyper(p4d_t * ptr,p4d_t val)538  static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
539  {
540  	preempt_disable();
541  
542  	xen_mc_batch();
543  
544  	__xen_set_p4d_hyper(ptr, val);
545  
546  	xen_mc_issue(XEN_LAZY_MMU);
547  
548  	preempt_enable();
549  }
550  
xen_set_p4d(p4d_t * ptr,p4d_t val)551  static void xen_set_p4d(p4d_t *ptr, p4d_t val)
552  {
553  	pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
554  	pgd_t pgd_val;
555  
556  	trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
557  
558  	/* If page is not pinned, we can just update the entry
559  	   directly */
560  	if (!xen_page_pinned(ptr)) {
561  		*ptr = val;
562  		if (user_ptr) {
563  			WARN_ON(xen_page_pinned(user_ptr));
564  			pgd_val.pgd = p4d_val_ma(val);
565  			*user_ptr = pgd_val;
566  		}
567  		return;
568  	}
569  
570  	/* If it's pinned, then we can at least batch the kernel and
571  	   user updates together. */
572  	xen_mc_batch();
573  
574  	__xen_set_p4d_hyper(ptr, val);
575  	if (user_ptr)
576  		__xen_set_p4d_hyper((p4d_t *)user_ptr, val);
577  
578  	xen_mc_issue(XEN_LAZY_MMU);
579  }
580  
581  #if CONFIG_PGTABLE_LEVELS >= 5
xen_p4d_val(p4d_t p4d)582  __visible p4dval_t xen_p4d_val(p4d_t p4d)
583  {
584  	return pte_mfn_to_pfn(p4d.p4d);
585  }
586  PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val);
587  
xen_make_p4d(p4dval_t p4d)588  __visible p4d_t xen_make_p4d(p4dval_t p4d)
589  {
590  	p4d = pte_pfn_to_mfn(p4d);
591  
592  	return native_make_p4d(p4d);
593  }
594  PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d);
595  #endif  /* CONFIG_PGTABLE_LEVELS >= 5 */
596  
xen_pmd_walk(struct mm_struct * mm,pmd_t * pmd,void (* func)(struct mm_struct * mm,struct page *,enum pt_level),bool last,unsigned long limit)597  static void xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
598  			 void (*func)(struct mm_struct *mm, struct page *,
599  				      enum pt_level),
600  			 bool last, unsigned long limit)
601  {
602  	int i, nr;
603  
604  	nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
605  	for (i = 0; i < nr; i++) {
606  		if (!pmd_none(pmd[i]))
607  			(*func)(mm, pmd_page(pmd[i]), PT_PTE);
608  	}
609  }
610  
xen_pud_walk(struct mm_struct * mm,pud_t * pud,void (* func)(struct mm_struct * mm,struct page *,enum pt_level),bool last,unsigned long limit)611  static void xen_pud_walk(struct mm_struct *mm, pud_t *pud,
612  			 void (*func)(struct mm_struct *mm, struct page *,
613  				      enum pt_level),
614  			 bool last, unsigned long limit)
615  {
616  	int i, nr;
617  
618  	nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
619  	for (i = 0; i < nr; i++) {
620  		pmd_t *pmd;
621  
622  		if (pud_none(pud[i]))
623  			continue;
624  
625  		pmd = pmd_offset(&pud[i], 0);
626  		if (PTRS_PER_PMD > 1)
627  			(*func)(mm, virt_to_page(pmd), PT_PMD);
628  		xen_pmd_walk(mm, pmd, func, last && i == nr - 1, limit);
629  	}
630  }
631  
xen_p4d_walk(struct mm_struct * mm,p4d_t * p4d,void (* func)(struct mm_struct * mm,struct page *,enum pt_level),bool last,unsigned long limit)632  static void xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
633  			 void (*func)(struct mm_struct *mm, struct page *,
634  				      enum pt_level),
635  			 bool last, unsigned long limit)
636  {
637  	pud_t *pud;
638  
639  
640  	if (p4d_none(*p4d))
641  		return;
642  
643  	pud = pud_offset(p4d, 0);
644  	if (PTRS_PER_PUD > 1)
645  		(*func)(mm, virt_to_page(pud), PT_PUD);
646  	xen_pud_walk(mm, pud, func, last, limit);
647  }
648  
649  /*
650   * (Yet another) pagetable walker.  This one is intended for pinning a
651   * pagetable.  This means that it walks a pagetable and calls the
652   * callback function on each page it finds making up the page table,
653   * at every level.  It walks the entire pagetable, but it only bothers
654   * pinning pte pages which are below limit.  In the normal case this
655   * will be STACK_TOP_MAX, but at boot we need to pin up to
656   * FIXADDR_TOP.
657   *
658   * We must skip the Xen hole in the middle of the address space, just after
659   * the big x86-64 virtual hole.
660   */
__xen_pgd_walk(struct mm_struct * mm,pgd_t * pgd,void (* func)(struct mm_struct * mm,struct page *,enum pt_level),unsigned long limit)661  static void __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
662  			   void (*func)(struct mm_struct *mm, struct page *,
663  					enum pt_level),
664  			   unsigned long limit)
665  {
666  	int i, nr;
667  	unsigned hole_low = 0, hole_high = 0;
668  
669  	/* The limit is the last byte to be touched */
670  	limit--;
671  	BUG_ON(limit >= FIXADDR_TOP);
672  
673  	/*
674  	 * 64-bit has a great big hole in the middle of the address
675  	 * space, which contains the Xen mappings.
676  	 */
677  	hole_low = pgd_index(GUARD_HOLE_BASE_ADDR);
678  	hole_high = pgd_index(GUARD_HOLE_END_ADDR);
679  
680  	nr = pgd_index(limit) + 1;
681  	for (i = 0; i < nr; i++) {
682  		p4d_t *p4d;
683  
684  		if (i >= hole_low && i < hole_high)
685  			continue;
686  
687  		if (pgd_none(pgd[i]))
688  			continue;
689  
690  		p4d = p4d_offset(&pgd[i], 0);
691  		xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
692  	}
693  
694  	/* Do the top level last, so that the callbacks can use it as
695  	   a cue to do final things like tlb flushes. */
696  	(*func)(mm, virt_to_page(pgd), PT_PGD);
697  }
698  
xen_pgd_walk(struct mm_struct * mm,void (* func)(struct mm_struct * mm,struct page *,enum pt_level),unsigned long limit)699  static void xen_pgd_walk(struct mm_struct *mm,
700  			 void (*func)(struct mm_struct *mm, struct page *,
701  				      enum pt_level),
702  			 unsigned long limit)
703  {
704  	__xen_pgd_walk(mm, mm->pgd, func, limit);
705  }
706  
707  /* If we're using split pte locks, then take the page's lock and
708     return a pointer to it.  Otherwise return NULL. */
xen_pte_lock(struct page * page,struct mm_struct * mm)709  static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
710  {
711  	spinlock_t *ptl = NULL;
712  
713  #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
714  	ptl = ptlock_ptr(page_ptdesc(page));
715  	spin_lock_nest_lock(ptl, &mm->page_table_lock);
716  #endif
717  
718  	return ptl;
719  }
720  
xen_pte_unlock(void * v)721  static void xen_pte_unlock(void *v)
722  {
723  	spinlock_t *ptl = v;
724  	spin_unlock(ptl);
725  }
726  
xen_do_pin(unsigned level,unsigned long pfn)727  static void xen_do_pin(unsigned level, unsigned long pfn)
728  {
729  	struct mmuext_op op;
730  
731  	op.cmd = level;
732  	op.arg1.mfn = pfn_to_mfn(pfn);
733  
734  	xen_extend_mmuext_op(&op);
735  }
736  
xen_pin_page(struct mm_struct * mm,struct page * page,enum pt_level level)737  static void xen_pin_page(struct mm_struct *mm, struct page *page,
738  			 enum pt_level level)
739  {
740  	unsigned pgfl = TestSetPagePinned(page);
741  
742  	if (!pgfl) {
743  		void *pt = lowmem_page_address(page);
744  		unsigned long pfn = page_to_pfn(page);
745  		struct multicall_space mcs = __xen_mc_entry(0);
746  		spinlock_t *ptl;
747  
748  		/*
749  		 * We need to hold the pagetable lock between the time
750  		 * we make the pagetable RO and when we actually pin
751  		 * it.  If we don't, then other users may come in and
752  		 * attempt to update the pagetable by writing it,
753  		 * which will fail because the memory is RO but not
754  		 * pinned, so Xen won't do the trap'n'emulate.
755  		 *
756  		 * If we're using split pte locks, we can't hold the
757  		 * entire pagetable's worth of locks during the
758  		 * traverse, because we may wrap the preempt count (8
759  		 * bits).  The solution is to mark RO and pin each PTE
760  		 * page while holding the lock.  This means the number
761  		 * of locks we end up holding is never more than a
762  		 * batch size (~32 entries, at present).
763  		 *
764  		 * If we're not using split pte locks, we needn't pin
765  		 * the PTE pages independently, because we're
766  		 * protected by the overall pagetable lock.
767  		 */
768  		ptl = NULL;
769  		if (level == PT_PTE)
770  			ptl = xen_pte_lock(page, mm);
771  
772  		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
773  					pfn_pte(pfn, PAGE_KERNEL_RO),
774  					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
775  
776  		if (ptl) {
777  			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
778  
779  			/* Queue a deferred unlock for when this batch
780  			   is completed. */
781  			xen_mc_callback(xen_pte_unlock, ptl);
782  		}
783  	}
784  }
785  
786  /* This is called just after a mm has been created, but it has not
787     been used yet.  We need to make sure that its pagetable is all
788     read-only, and can be pinned. */
__xen_pgd_pin(struct mm_struct * mm,pgd_t * pgd)789  static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
790  {
791  	pgd_t *user_pgd = xen_get_user_pgd(pgd);
792  
793  	trace_xen_mmu_pgd_pin(mm, pgd);
794  
795  	xen_mc_batch();
796  
797  	__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT);
798  
799  	xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
800  
801  	if (user_pgd) {
802  		xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
803  		xen_do_pin(MMUEXT_PIN_L4_TABLE,
804  			   PFN_DOWN(__pa(user_pgd)));
805  	}
806  
807  	xen_mc_issue(0);
808  }
809  
xen_pgd_pin(struct mm_struct * mm)810  static void xen_pgd_pin(struct mm_struct *mm)
811  {
812  	__xen_pgd_pin(mm, mm->pgd);
813  }
814  
815  /*
816   * On save, we need to pin all pagetables to make sure they get their
817   * mfns turned into pfns.  Search the list for any unpinned pgds and pin
818   * them (unpinned pgds are not currently in use, probably because the
819   * process is under construction or destruction).
820   *
821   * Expected to be called in stop_machine() ("equivalent to taking
822   * every spinlock in the system"), so the locking doesn't really
823   * matter all that much.
824   */
xen_mm_pin_all(void)825  void xen_mm_pin_all(void)
826  {
827  	struct page *page;
828  
829  	spin_lock(&init_mm.page_table_lock);
830  	spin_lock(&pgd_lock);
831  
832  	list_for_each_entry(page, &pgd_list, lru) {
833  		if (!PagePinned(page)) {
834  			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
835  			SetPageSavePinned(page);
836  		}
837  	}
838  
839  	spin_unlock(&pgd_lock);
840  	spin_unlock(&init_mm.page_table_lock);
841  }
842  
xen_mark_pinned(struct mm_struct * mm,struct page * page,enum pt_level level)843  static void __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
844  				   enum pt_level level)
845  {
846  	SetPagePinned(page);
847  }
848  
849  /*
850   * The init_mm pagetable is really pinned as soon as its created, but
851   * that's before we have page structures to store the bits.  So do all
852   * the book-keeping now once struct pages for allocated pages are
853   * initialized. This happens only after memblock_free_all() is called.
854   */
xen_after_bootmem(void)855  static void __init xen_after_bootmem(void)
856  {
857  	static_branch_enable(&xen_struct_pages_ready);
858  #ifdef CONFIG_X86_VSYSCALL_EMULATION
859  	SetPagePinned(virt_to_page(level3_user_vsyscall));
860  #endif
861  	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
862  
863  	if (alloc_discontig_frames(MIN_CONTIG_ORDER))
864  		BUG();
865  }
866  
xen_unpin_page(struct mm_struct * mm,struct page * page,enum pt_level level)867  static void xen_unpin_page(struct mm_struct *mm, struct page *page,
868  			   enum pt_level level)
869  {
870  	unsigned pgfl = TestClearPagePinned(page);
871  
872  	if (pgfl) {
873  		void *pt = lowmem_page_address(page);
874  		unsigned long pfn = page_to_pfn(page);
875  		spinlock_t *ptl = NULL;
876  		struct multicall_space mcs;
877  
878  		/*
879  		 * Do the converse to pin_page.  If we're using split
880  		 * pte locks, we must be holding the lock for while
881  		 * the pte page is unpinned but still RO to prevent
882  		 * concurrent updates from seeing it in this
883  		 * partially-pinned state.
884  		 */
885  		if (level == PT_PTE) {
886  			ptl = xen_pte_lock(page, mm);
887  
888  			if (ptl)
889  				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
890  		}
891  
892  		mcs = __xen_mc_entry(0);
893  
894  		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
895  					pfn_pte(pfn, PAGE_KERNEL),
896  					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
897  
898  		if (ptl) {
899  			/* unlock when batch completed */
900  			xen_mc_callback(xen_pte_unlock, ptl);
901  		}
902  	}
903  }
904  
905  /* Release a pagetables pages back as normal RW */
__xen_pgd_unpin(struct mm_struct * mm,pgd_t * pgd)906  static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
907  {
908  	pgd_t *user_pgd = xen_get_user_pgd(pgd);
909  
910  	trace_xen_mmu_pgd_unpin(mm, pgd);
911  
912  	xen_mc_batch();
913  
914  	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
915  
916  	if (user_pgd) {
917  		xen_do_pin(MMUEXT_UNPIN_TABLE,
918  			   PFN_DOWN(__pa(user_pgd)));
919  		xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
920  	}
921  
922  	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
923  
924  	xen_mc_issue(0);
925  }
926  
xen_pgd_unpin(struct mm_struct * mm)927  static void xen_pgd_unpin(struct mm_struct *mm)
928  {
929  	__xen_pgd_unpin(mm, mm->pgd);
930  }
931  
932  /*
933   * On resume, undo any pinning done at save, so that the rest of the
934   * kernel doesn't see any unexpected pinned pagetables.
935   */
xen_mm_unpin_all(void)936  void xen_mm_unpin_all(void)
937  {
938  	struct page *page;
939  
940  	spin_lock(&init_mm.page_table_lock);
941  	spin_lock(&pgd_lock);
942  
943  	list_for_each_entry(page, &pgd_list, lru) {
944  		if (PageSavePinned(page)) {
945  			BUG_ON(!PagePinned(page));
946  			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
947  			ClearPageSavePinned(page);
948  		}
949  	}
950  
951  	spin_unlock(&pgd_lock);
952  	spin_unlock(&init_mm.page_table_lock);
953  }
954  
xen_enter_mmap(struct mm_struct * mm)955  static void xen_enter_mmap(struct mm_struct *mm)
956  {
957  	spin_lock(&mm->page_table_lock);
958  	xen_pgd_pin(mm);
959  	spin_unlock(&mm->page_table_lock);
960  }
961  
drop_mm_ref_this_cpu(void * info)962  static void drop_mm_ref_this_cpu(void *info)
963  {
964  	struct mm_struct *mm = info;
965  
966  	if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm)
967  		leave_mm();
968  
969  	/*
970  	 * If this cpu still has a stale cr3 reference, then make sure
971  	 * it has been flushed.
972  	 */
973  	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
974  		xen_mc_flush();
975  }
976  
977  #ifdef CONFIG_SMP
978  /*
979   * Another cpu may still have their %cr3 pointing at the pagetable, so
980   * we need to repoint it somewhere else before we can unpin it.
981   */
xen_drop_mm_ref(struct mm_struct * mm)982  static void xen_drop_mm_ref(struct mm_struct *mm)
983  {
984  	cpumask_var_t mask;
985  	unsigned cpu;
986  
987  	drop_mm_ref_this_cpu(mm);
988  
989  	/* Get the "official" set of cpus referring to our pagetable. */
990  	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
991  		for_each_online_cpu(cpu) {
992  			if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
993  				continue;
994  			smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1);
995  		}
996  		return;
997  	}
998  
999  	/*
1000  	 * It's possible that a vcpu may have a stale reference to our
1001  	 * cr3, because its in lazy mode, and it hasn't yet flushed
1002  	 * its set of pending hypercalls yet.  In this case, we can
1003  	 * look at its actual current cr3 value, and force it to flush
1004  	 * if needed.
1005  	 */
1006  	cpumask_clear(mask);
1007  	for_each_online_cpu(cpu) {
1008  		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1009  			cpumask_set_cpu(cpu, mask);
1010  	}
1011  
1012  	smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1);
1013  	free_cpumask_var(mask);
1014  }
1015  #else
xen_drop_mm_ref(struct mm_struct * mm)1016  static void xen_drop_mm_ref(struct mm_struct *mm)
1017  {
1018  	drop_mm_ref_this_cpu(mm);
1019  }
1020  #endif
1021  
1022  /*
1023   * While a process runs, Xen pins its pagetables, which means that the
1024   * hypervisor forces it to be read-only, and it controls all updates
1025   * to it.  This means that all pagetable updates have to go via the
1026   * hypervisor, which is moderately expensive.
1027   *
1028   * Since we're pulling the pagetable down, we switch to use init_mm,
1029   * unpin old process pagetable and mark it all read-write, which
1030   * allows further operations on it to be simple memory accesses.
1031   *
1032   * The only subtle point is that another CPU may be still using the
1033   * pagetable because of lazy tlb flushing.  This means we need need to
1034   * switch all CPUs off this pagetable before we can unpin it.
1035   */
xen_exit_mmap(struct mm_struct * mm)1036  static void xen_exit_mmap(struct mm_struct *mm)
1037  {
1038  	get_cpu();		/* make sure we don't move around */
1039  	xen_drop_mm_ref(mm);
1040  	put_cpu();
1041  
1042  	spin_lock(&mm->page_table_lock);
1043  
1044  	/* pgd may not be pinned in the error exit path of execve */
1045  	if (xen_page_pinned(mm->pgd))
1046  		xen_pgd_unpin(mm);
1047  
1048  	spin_unlock(&mm->page_table_lock);
1049  }
1050  
1051  static void xen_post_allocator_init(void);
1052  
pin_pagetable_pfn(unsigned cmd,unsigned long pfn)1053  static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1054  {
1055  	struct mmuext_op op;
1056  
1057  	op.cmd = cmd;
1058  	op.arg1.mfn = pfn_to_mfn(pfn);
1059  	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1060  		BUG();
1061  }
1062  
xen_cleanhighmap(unsigned long vaddr,unsigned long vaddr_end)1063  static void __init xen_cleanhighmap(unsigned long vaddr,
1064  				    unsigned long vaddr_end)
1065  {
1066  	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1067  	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1068  
1069  	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
1070  	 * We include the PMD passed in on _both_ boundaries. */
1071  	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1072  			pmd++, vaddr += PMD_SIZE) {
1073  		if (pmd_none(*pmd))
1074  			continue;
1075  		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1076  			set_pmd(pmd, __pmd(0));
1077  	}
1078  	/* In case we did something silly, we should crash in this function
1079  	 * instead of somewhere later and be confusing. */
1080  	xen_mc_flush();
1081  }
1082  
1083  /*
1084   * Make a page range writeable and free it.
1085   */
xen_free_ro_pages(unsigned long paddr,unsigned long size)1086  static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1087  {
1088  	void *vaddr = __va(paddr);
1089  	void *vaddr_end = vaddr + size;
1090  
1091  	for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1092  		make_lowmem_page_readwrite(vaddr);
1093  
1094  	memblock_phys_free(paddr, size);
1095  }
1096  
xen_cleanmfnmap_free_pgtbl(void * pgtbl,bool unpin)1097  static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1098  {
1099  	unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1100  
1101  	if (unpin)
1102  		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1103  	ClearPagePinned(virt_to_page(__va(pa)));
1104  	xen_free_ro_pages(pa, PAGE_SIZE);
1105  }
1106  
xen_cleanmfnmap_pmd(pmd_t * pmd,bool unpin)1107  static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
1108  {
1109  	unsigned long pa;
1110  	pte_t *pte_tbl;
1111  	int i;
1112  
1113  	if (pmd_leaf(*pmd)) {
1114  		pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1115  		xen_free_ro_pages(pa, PMD_SIZE);
1116  		return;
1117  	}
1118  
1119  	pte_tbl = pte_offset_kernel(pmd, 0);
1120  	for (i = 0; i < PTRS_PER_PTE; i++) {
1121  		if (pte_none(pte_tbl[i]))
1122  			continue;
1123  		pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
1124  		xen_free_ro_pages(pa, PAGE_SIZE);
1125  	}
1126  	set_pmd(pmd, __pmd(0));
1127  	xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
1128  }
1129  
xen_cleanmfnmap_pud(pud_t * pud,bool unpin)1130  static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
1131  {
1132  	unsigned long pa;
1133  	pmd_t *pmd_tbl;
1134  	int i;
1135  
1136  	if (pud_leaf(*pud)) {
1137  		pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1138  		xen_free_ro_pages(pa, PUD_SIZE);
1139  		return;
1140  	}
1141  
1142  	pmd_tbl = pmd_offset(pud, 0);
1143  	for (i = 0; i < PTRS_PER_PMD; i++) {
1144  		if (pmd_none(pmd_tbl[i]))
1145  			continue;
1146  		xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
1147  	}
1148  	set_pud(pud, __pud(0));
1149  	xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
1150  }
1151  
xen_cleanmfnmap_p4d(p4d_t * p4d,bool unpin)1152  static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
1153  {
1154  	unsigned long pa;
1155  	pud_t *pud_tbl;
1156  	int i;
1157  
1158  	if (p4d_leaf(*p4d)) {
1159  		pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
1160  		xen_free_ro_pages(pa, P4D_SIZE);
1161  		return;
1162  	}
1163  
1164  	pud_tbl = pud_offset(p4d, 0);
1165  	for (i = 0; i < PTRS_PER_PUD; i++) {
1166  		if (pud_none(pud_tbl[i]))
1167  			continue;
1168  		xen_cleanmfnmap_pud(pud_tbl + i, unpin);
1169  	}
1170  	set_p4d(p4d, __p4d(0));
1171  	xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
1172  }
1173  
1174  /*
1175   * Since it is well isolated we can (and since it is perhaps large we should)
1176   * also free the page tables mapping the initial P->M table.
1177   */
xen_cleanmfnmap(unsigned long vaddr)1178  static void __init xen_cleanmfnmap(unsigned long vaddr)
1179  {
1180  	pgd_t *pgd;
1181  	p4d_t *p4d;
1182  	bool unpin;
1183  
1184  	unpin = (vaddr == 2 * PGDIR_SIZE);
1185  	vaddr &= PMD_MASK;
1186  	pgd = pgd_offset_k(vaddr);
1187  	p4d = p4d_offset(pgd, 0);
1188  	if (!p4d_none(*p4d))
1189  		xen_cleanmfnmap_p4d(p4d, unpin);
1190  }
1191  
xen_pagetable_p2m_free(void)1192  static void __init xen_pagetable_p2m_free(void)
1193  {
1194  	unsigned long size;
1195  	unsigned long addr;
1196  
1197  	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1198  
1199  	/* No memory or already called. */
1200  	if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1201  		return;
1202  
1203  	/* using __ka address and sticking INVALID_P2M_ENTRY! */
1204  	memset((void *)xen_start_info->mfn_list, 0xff, size);
1205  
1206  	addr = xen_start_info->mfn_list;
1207  	/*
1208  	 * We could be in __ka space.
1209  	 * We roundup to the PMD, which means that if anybody at this stage is
1210  	 * using the __ka address of xen_start_info or
1211  	 * xen_start_info->shared_info they are in going to crash. Fortunately
1212  	 * we have already revectored in xen_setup_kernel_pagetable.
1213  	 */
1214  	size = roundup(size, PMD_SIZE);
1215  
1216  	if (addr >= __START_KERNEL_map) {
1217  		xen_cleanhighmap(addr, addr + size);
1218  		size = PAGE_ALIGN(xen_start_info->nr_pages *
1219  				  sizeof(unsigned long));
1220  		memblock_free((void *)addr, size);
1221  	} else {
1222  		xen_cleanmfnmap(addr);
1223  	}
1224  }
1225  
xen_pagetable_cleanhighmap(void)1226  static void __init xen_pagetable_cleanhighmap(void)
1227  {
1228  	unsigned long size;
1229  	unsigned long addr;
1230  
1231  	/* At this stage, cleanup_highmap has already cleaned __ka space
1232  	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1233  	 * the ramdisk). We continue on, erasing PMD entries that point to page
1234  	 * tables - do note that they are accessible at this stage via __va.
1235  	 * As Xen is aligning the memory end to a 4MB boundary, for good
1236  	 * measure we also round up to PMD_SIZE * 2 - which means that if
1237  	 * anybody is using __ka address to the initial boot-stack - and try
1238  	 * to use it - they are going to crash. The xen_start_info has been
1239  	 * taken care of already in xen_setup_kernel_pagetable. */
1240  	addr = xen_start_info->pt_base;
1241  	size = xen_start_info->nr_pt_frames * PAGE_SIZE;
1242  
1243  	xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2));
1244  	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1245  }
1246  
xen_pagetable_p2m_setup(void)1247  static void __init xen_pagetable_p2m_setup(void)
1248  {
1249  	xen_vmalloc_p2m_tree();
1250  
1251  	xen_pagetable_p2m_free();
1252  
1253  	xen_pagetable_cleanhighmap();
1254  
1255  	/* And revector! Bye bye old array */
1256  	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1257  }
1258  
xen_pagetable_init(void)1259  static void __init xen_pagetable_init(void)
1260  {
1261  	/*
1262  	 * The majority of further PTE writes is to pagetables already
1263  	 * announced as such to Xen. Hence it is more efficient to use
1264  	 * hypercalls for these updates.
1265  	 */
1266  	pv_ops.mmu.set_pte = __xen_set_pte;
1267  
1268  	paging_init();
1269  	xen_post_allocator_init();
1270  
1271  	xen_pagetable_p2m_setup();
1272  
1273  	/* Allocate and initialize top and mid mfn levels for p2m structure */
1274  	xen_build_mfn_list_list();
1275  
1276  	/* Remap memory freed due to conflicts with E820 map */
1277  	xen_remap_memory();
1278  	xen_setup_mfn_list_list();
1279  }
1280  
xen_write_cr2(unsigned long cr2)1281  static noinstr void xen_write_cr2(unsigned long cr2)
1282  {
1283  	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1284  }
1285  
xen_flush_tlb(void)1286  static noinline void xen_flush_tlb(void)
1287  {
1288  	struct mmuext_op *op;
1289  	struct multicall_space mcs;
1290  
1291  	preempt_disable();
1292  
1293  	mcs = xen_mc_entry(sizeof(*op));
1294  
1295  	op = mcs.args;
1296  	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1297  	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1298  
1299  	xen_mc_issue(XEN_LAZY_MMU);
1300  
1301  	preempt_enable();
1302  }
1303  
xen_flush_tlb_one_user(unsigned long addr)1304  static void xen_flush_tlb_one_user(unsigned long addr)
1305  {
1306  	struct mmuext_op *op;
1307  	struct multicall_space mcs;
1308  
1309  	trace_xen_mmu_flush_tlb_one_user(addr);
1310  
1311  	preempt_disable();
1312  
1313  	mcs = xen_mc_entry(sizeof(*op));
1314  	op = mcs.args;
1315  	op->cmd = MMUEXT_INVLPG_LOCAL;
1316  	op->arg1.linear_addr = addr & PAGE_MASK;
1317  	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1318  
1319  	xen_mc_issue(XEN_LAZY_MMU);
1320  
1321  	preempt_enable();
1322  }
1323  
xen_flush_tlb_multi(const struct cpumask * cpus,const struct flush_tlb_info * info)1324  static void xen_flush_tlb_multi(const struct cpumask *cpus,
1325  				const struct flush_tlb_info *info)
1326  {
1327  	struct {
1328  		struct mmuext_op op;
1329  		DECLARE_BITMAP(mask, NR_CPUS);
1330  	} *args;
1331  	struct multicall_space mcs;
1332  	const size_t mc_entry_size = sizeof(args->op) +
1333  		sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus());
1334  
1335  	trace_xen_mmu_flush_tlb_multi(cpus, info->mm, info->start, info->end);
1336  
1337  	if (cpumask_empty(cpus))
1338  		return;		/* nothing to do */
1339  
1340  	mcs = xen_mc_entry(mc_entry_size);
1341  	args = mcs.args;
1342  	args->op.arg2.vcpumask = to_cpumask(args->mask);
1343  
1344  	/* Remove any offline CPUs */
1345  	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1346  
1347  	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1348  	if (info->end != TLB_FLUSH_ALL &&
1349  	    (info->end - info->start) <= PAGE_SIZE) {
1350  		args->op.cmd = MMUEXT_INVLPG_MULTI;
1351  		args->op.arg1.linear_addr = info->start;
1352  	}
1353  
1354  	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1355  
1356  	xen_mc_issue(XEN_LAZY_MMU);
1357  }
1358  
xen_read_cr3(void)1359  static unsigned long xen_read_cr3(void)
1360  {
1361  	return this_cpu_read(xen_cr3);
1362  }
1363  
set_current_cr3(void * v)1364  static void set_current_cr3(void *v)
1365  {
1366  	this_cpu_write(xen_current_cr3, (unsigned long)v);
1367  }
1368  
__xen_write_cr3(bool kernel,unsigned long cr3)1369  static void __xen_write_cr3(bool kernel, unsigned long cr3)
1370  {
1371  	struct mmuext_op op;
1372  	unsigned long mfn;
1373  
1374  	trace_xen_mmu_write_cr3(kernel, cr3);
1375  
1376  	if (cr3)
1377  		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1378  	else
1379  		mfn = 0;
1380  
1381  	WARN_ON(mfn == 0 && kernel);
1382  
1383  	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1384  	op.arg1.mfn = mfn;
1385  
1386  	xen_extend_mmuext_op(&op);
1387  
1388  	if (kernel) {
1389  		this_cpu_write(xen_cr3, cr3);
1390  
1391  		/* Update xen_current_cr3 once the batch has actually
1392  		   been submitted. */
1393  		xen_mc_callback(set_current_cr3, (void *)cr3);
1394  	}
1395  }
xen_write_cr3(unsigned long cr3)1396  static void xen_write_cr3(unsigned long cr3)
1397  {
1398  	pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1399  
1400  	BUG_ON(preemptible());
1401  
1402  	xen_mc_batch();  /* disables interrupts */
1403  
1404  	/* Update while interrupts are disabled, so its atomic with
1405  	   respect to ipis */
1406  	this_cpu_write(xen_cr3, cr3);
1407  
1408  	__xen_write_cr3(true, cr3);
1409  
1410  	if (user_pgd)
1411  		__xen_write_cr3(false, __pa(user_pgd));
1412  	else
1413  		__xen_write_cr3(false, 0);
1414  
1415  	xen_mc_issue(XEN_LAZY_CPU);  /* interrupts restored */
1416  }
1417  
1418  /*
1419   * At the start of the day - when Xen launches a guest, it has already
1420   * built pagetables for the guest. We diligently look over them
1421   * in xen_setup_kernel_pagetable and graft as appropriate them in the
1422   * init_top_pgt and its friends. Then when we are happy we load
1423   * the new init_top_pgt - and continue on.
1424   *
1425   * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1426   * up the rest of the pagetables. When it has completed it loads the cr3.
1427   * N.B. that baremetal would start at 'start_kernel' (and the early
1428   * #PF handler would create bootstrap pagetables) - so we are running
1429   * with the same assumptions as what to do when write_cr3 is executed
1430   * at this point.
1431   *
1432   * Since there are no user-page tables at all, we have two variants
1433   * of xen_write_cr3 - the early bootup (this one), and the late one
1434   * (xen_write_cr3). The reason we have to do that is that in 64-bit
1435   * the Linux kernel and user-space are both in ring 3 while the
1436   * hypervisor is in ring 0.
1437   */
xen_write_cr3_init(unsigned long cr3)1438  static void __init xen_write_cr3_init(unsigned long cr3)
1439  {
1440  	BUG_ON(preemptible());
1441  
1442  	xen_mc_batch();  /* disables interrupts */
1443  
1444  	/* Update while interrupts are disabled, so its atomic with
1445  	   respect to ipis */
1446  	this_cpu_write(xen_cr3, cr3);
1447  
1448  	__xen_write_cr3(true, cr3);
1449  
1450  	xen_mc_issue(XEN_LAZY_CPU);  /* interrupts restored */
1451  }
1452  
xen_pgd_alloc(struct mm_struct * mm)1453  static int xen_pgd_alloc(struct mm_struct *mm)
1454  {
1455  	pgd_t *pgd = mm->pgd;
1456  	struct page *page = virt_to_page(pgd);
1457  	pgd_t *user_pgd;
1458  	int ret = -ENOMEM;
1459  
1460  	BUG_ON(PagePinned(virt_to_page(pgd)));
1461  	BUG_ON(page->private != 0);
1462  
1463  	user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1464  	page->private = (unsigned long)user_pgd;
1465  
1466  	if (user_pgd != NULL) {
1467  #ifdef CONFIG_X86_VSYSCALL_EMULATION
1468  		user_pgd[pgd_index(VSYSCALL_ADDR)] =
1469  			__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1470  #endif
1471  		ret = 0;
1472  	}
1473  
1474  	BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1475  
1476  	return ret;
1477  }
1478  
xen_pgd_free(struct mm_struct * mm,pgd_t * pgd)1479  static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1480  {
1481  	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1482  
1483  	if (user_pgd)
1484  		free_page((unsigned long)user_pgd);
1485  }
1486  
1487  /*
1488   * Init-time set_pte while constructing initial pagetables, which
1489   * doesn't allow RO page table pages to be remapped RW.
1490   *
1491   * If there is no MFN for this PFN then this page is initially
1492   * ballooned out so clear the PTE (as in decrease_reservation() in
1493   * drivers/xen/balloon.c).
1494   *
1495   * Many of these PTE updates are done on unpinned and writable pages
1496   * and doing a hypercall for these is unnecessary and expensive.  At
1497   * this point it is rarely possible to tell if a page is pinned, so
1498   * mostly write the PTE directly and rely on Xen trapping and
1499   * emulating any updates as necessary.
1500   */
xen_set_pte_init(pte_t * ptep,pte_t pte)1501  static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1502  {
1503  	if (unlikely(is_early_ioremap_ptep(ptep)))
1504  		__xen_set_pte(ptep, pte);
1505  	else
1506  		native_set_pte(ptep, pte);
1507  }
1508  
xen_make_pte_init(pteval_t pte)1509  __visible pte_t xen_make_pte_init(pteval_t pte)
1510  {
1511  	unsigned long pfn;
1512  
1513  	/*
1514  	 * Pages belonging to the initial p2m list mapped outside the default
1515  	 * address range must be mapped read-only. This region contains the
1516  	 * page tables for mapping the p2m list, too, and page tables MUST be
1517  	 * mapped read-only.
1518  	 */
1519  	pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1520  	if (xen_start_info->mfn_list < __START_KERNEL_map &&
1521  	    pfn >= xen_start_info->first_p2m_pfn &&
1522  	    pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1523  		pte &= ~_PAGE_RW;
1524  
1525  	pte = pte_pfn_to_mfn(pte);
1526  	return native_make_pte(pte);
1527  }
1528  PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1529  
1530  /* Early in boot, while setting up the initial pagetable, assume
1531     everything is pinned. */
xen_alloc_pte_init(struct mm_struct * mm,unsigned long pfn)1532  static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1533  {
1534  #ifdef CONFIG_FLATMEM
1535  	BUG_ON(mem_map);	/* should only be used early */
1536  #endif
1537  	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1538  	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1539  }
1540  
1541  /* Used for pmd and pud */
xen_alloc_pmd_init(struct mm_struct * mm,unsigned long pfn)1542  static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1543  {
1544  #ifdef CONFIG_FLATMEM
1545  	BUG_ON(mem_map);	/* should only be used early */
1546  #endif
1547  	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1548  }
1549  
1550  /* Early release_pte assumes that all pts are pinned, since there's
1551     only init_mm and anything attached to that is pinned. */
xen_release_pte_init(unsigned long pfn)1552  static void __init xen_release_pte_init(unsigned long pfn)
1553  {
1554  	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1555  	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1556  }
1557  
xen_release_pmd_init(unsigned long pfn)1558  static void __init xen_release_pmd_init(unsigned long pfn)
1559  {
1560  	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1561  }
1562  
__pin_pagetable_pfn(unsigned cmd,unsigned long pfn)1563  static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1564  {
1565  	struct multicall_space mcs;
1566  	struct mmuext_op *op;
1567  
1568  	mcs = __xen_mc_entry(sizeof(*op));
1569  	op = mcs.args;
1570  	op->cmd = cmd;
1571  	op->arg1.mfn = pfn_to_mfn(pfn);
1572  
1573  	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1574  }
1575  
__set_pfn_prot(unsigned long pfn,pgprot_t prot)1576  static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1577  {
1578  	struct multicall_space mcs;
1579  	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1580  
1581  	mcs = __xen_mc_entry(0);
1582  	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1583  				pfn_pte(pfn, prot), 0);
1584  }
1585  
1586  /* This needs to make sure the new pte page is pinned iff its being
1587     attached to a pinned pagetable. */
xen_alloc_ptpage(struct mm_struct * mm,unsigned long pfn,unsigned level)1588  static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1589  				    unsigned level)
1590  {
1591  	bool pinned = xen_page_pinned(mm->pgd);
1592  
1593  	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1594  
1595  	if (pinned) {
1596  		struct page *page = pfn_to_page(pfn);
1597  
1598  		pinned = false;
1599  		if (static_branch_likely(&xen_struct_pages_ready)) {
1600  			pinned = PagePinned(page);
1601  			SetPagePinned(page);
1602  		}
1603  
1604  		xen_mc_batch();
1605  
1606  		__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1607  
1608  		if (level == PT_PTE && IS_ENABLED(CONFIG_SPLIT_PTE_PTLOCKS) &&
1609  		    !pinned)
1610  			__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1611  
1612  		xen_mc_issue(XEN_LAZY_MMU);
1613  	}
1614  }
1615  
xen_alloc_pte(struct mm_struct * mm,unsigned long pfn)1616  static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1617  {
1618  	xen_alloc_ptpage(mm, pfn, PT_PTE);
1619  }
1620  
xen_alloc_pmd(struct mm_struct * mm,unsigned long pfn)1621  static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1622  {
1623  	xen_alloc_ptpage(mm, pfn, PT_PMD);
1624  }
1625  
1626  /* This should never happen until we're OK to use struct page */
xen_release_ptpage(unsigned long pfn,unsigned level)1627  static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1628  {
1629  	struct page *page = pfn_to_page(pfn);
1630  	bool pinned = PagePinned(page);
1631  
1632  	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1633  
1634  	if (pinned) {
1635  		xen_mc_batch();
1636  
1637  		if (level == PT_PTE && IS_ENABLED(CONFIG_SPLIT_PTE_PTLOCKS))
1638  			__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1639  
1640  		__set_pfn_prot(pfn, PAGE_KERNEL);
1641  
1642  		xen_mc_issue(XEN_LAZY_MMU);
1643  
1644  		ClearPagePinned(page);
1645  	}
1646  }
1647  
xen_release_pte(unsigned long pfn)1648  static void xen_release_pte(unsigned long pfn)
1649  {
1650  	xen_release_ptpage(pfn, PT_PTE);
1651  }
1652  
xen_release_pmd(unsigned long pfn)1653  static void xen_release_pmd(unsigned long pfn)
1654  {
1655  	xen_release_ptpage(pfn, PT_PMD);
1656  }
1657  
xen_alloc_pud(struct mm_struct * mm,unsigned long pfn)1658  static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1659  {
1660  	xen_alloc_ptpage(mm, pfn, PT_PUD);
1661  }
1662  
xen_release_pud(unsigned long pfn)1663  static void xen_release_pud(unsigned long pfn)
1664  {
1665  	xen_release_ptpage(pfn, PT_PUD);
1666  }
1667  
1668  /*
1669   * Like __va(), but returns address in the kernel mapping (which is
1670   * all we have until the physical memory mapping has been set up.
1671   */
__ka(phys_addr_t paddr)1672  static void * __init __ka(phys_addr_t paddr)
1673  {
1674  	return (void *)(paddr + __START_KERNEL_map);
1675  }
1676  
1677  /* Convert a machine address to physical address */
m2p(phys_addr_t maddr)1678  static unsigned long __init m2p(phys_addr_t maddr)
1679  {
1680  	phys_addr_t paddr;
1681  
1682  	maddr &= XEN_PTE_MFN_MASK;
1683  	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1684  
1685  	return paddr;
1686  }
1687  
1688  /* Convert a machine address to kernel virtual */
m2v(phys_addr_t maddr)1689  static void * __init m2v(phys_addr_t maddr)
1690  {
1691  	return __ka(m2p(maddr));
1692  }
1693  
1694  /* Set the page permissions on an identity-mapped pages */
set_page_prot_flags(void * addr,pgprot_t prot,unsigned long flags)1695  static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1696  				       unsigned long flags)
1697  {
1698  	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1699  	pte_t pte = pfn_pte(pfn, prot);
1700  
1701  	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1702  		BUG();
1703  }
set_page_prot(void * addr,pgprot_t prot)1704  static void __init set_page_prot(void *addr, pgprot_t prot)
1705  {
1706  	return set_page_prot_flags(addr, prot, UVMF_NONE);
1707  }
1708  
xen_setup_machphys_mapping(void)1709  void __init xen_setup_machphys_mapping(void)
1710  {
1711  	struct xen_machphys_mapping mapping;
1712  
1713  	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1714  		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1715  		machine_to_phys_nr = mapping.max_mfn + 1;
1716  	} else {
1717  		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1718  	}
1719  }
1720  
convert_pfn_mfn(void * v)1721  static void __init convert_pfn_mfn(void *v)
1722  {
1723  	pte_t *pte = v;
1724  	int i;
1725  
1726  	/* All levels are converted the same way, so just treat them
1727  	   as ptes. */
1728  	for (i = 0; i < PTRS_PER_PTE; i++)
1729  		pte[i] = xen_make_pte(pte[i].pte);
1730  }
check_pt_base(unsigned long * pt_base,unsigned long * pt_end,unsigned long addr)1731  static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1732  				 unsigned long addr)
1733  {
1734  	if (*pt_base == PFN_DOWN(__pa(addr))) {
1735  		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1736  		clear_page((void *)addr);
1737  		(*pt_base)++;
1738  	}
1739  	if (*pt_end == PFN_DOWN(__pa(addr))) {
1740  		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1741  		clear_page((void *)addr);
1742  		(*pt_end)--;
1743  	}
1744  }
1745  /*
1746   * Set up the initial kernel pagetable.
1747   *
1748   * We can construct this by grafting the Xen provided pagetable into
1749   * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1750   * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
1751   * kernel has a physical mapping to start with - but that's enough to
1752   * get __va working.  We need to fill in the rest of the physical
1753   * mapping once some sort of allocator has been set up.
1754   */
xen_setup_kernel_pagetable(pgd_t * pgd,unsigned long max_pfn)1755  void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1756  {
1757  	pud_t *l3;
1758  	pmd_t *l2;
1759  	unsigned long addr[3];
1760  	unsigned long pt_base, pt_end;
1761  	unsigned i;
1762  
1763  	/* max_pfn_mapped is the last pfn mapped in the initial memory
1764  	 * mappings. Considering that on Xen after the kernel mappings we
1765  	 * have the mappings of some pages that don't exist in pfn space, we
1766  	 * set max_pfn_mapped to the last real pfn mapped. */
1767  	if (xen_start_info->mfn_list < __START_KERNEL_map)
1768  		max_pfn_mapped = xen_start_info->first_p2m_pfn;
1769  	else
1770  		max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1771  
1772  	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1773  	pt_end = pt_base + xen_start_info->nr_pt_frames;
1774  
1775  	/* Zap identity mapping */
1776  	init_top_pgt[0] = __pgd(0);
1777  
1778  	/* Pre-constructed entries are in pfn, so convert to mfn */
1779  	/* L4[273] -> level3_ident_pgt  */
1780  	/* L4[511] -> level3_kernel_pgt */
1781  	convert_pfn_mfn(init_top_pgt);
1782  
1783  	/* L3_i[0] -> level2_ident_pgt */
1784  	convert_pfn_mfn(level3_ident_pgt);
1785  	/* L3_k[510] -> level2_kernel_pgt */
1786  	/* L3_k[511] -> level2_fixmap_pgt */
1787  	convert_pfn_mfn(level3_kernel_pgt);
1788  
1789  	/* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */
1790  	convert_pfn_mfn(level2_fixmap_pgt);
1791  
1792  	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1793  	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1794  	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1795  
1796  	addr[0] = (unsigned long)pgd;
1797  	addr[1] = (unsigned long)l3;
1798  	addr[2] = (unsigned long)l2;
1799  	/* Graft it onto L4[273][0]. Note that we creating an aliasing problem:
1800  	 * Both L4[273][0] and L4[511][510] have entries that point to the same
1801  	 * L2 (PMD) tables. Meaning that if you modify it in __va space
1802  	 * it will be also modified in the __ka space! (But if you just
1803  	 * modify the PMD table to point to other PTE's or none, then you
1804  	 * are OK - which is what cleanup_highmap does) */
1805  	copy_page(level2_ident_pgt, l2);
1806  	/* Graft it onto L4[511][510] */
1807  	copy_page(level2_kernel_pgt, l2);
1808  
1809  	/*
1810  	 * Zap execute permission from the ident map. Due to the sharing of
1811  	 * L1 entries we need to do this in the L2.
1812  	 */
1813  	if (__supported_pte_mask & _PAGE_NX) {
1814  		for (i = 0; i < PTRS_PER_PMD; ++i) {
1815  			if (pmd_none(level2_ident_pgt[i]))
1816  				continue;
1817  			level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX);
1818  		}
1819  	}
1820  
1821  	/* Copy the initial P->M table mappings if necessary. */
1822  	i = pgd_index(xen_start_info->mfn_list);
1823  	if (i && i < pgd_index(__START_KERNEL_map))
1824  		init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1825  
1826  	/* Make pagetable pieces RO */
1827  	set_page_prot(init_top_pgt, PAGE_KERNEL_RO);
1828  	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1829  	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1830  	set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1831  	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1832  	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1833  
1834  	for (i = 0; i < FIXMAP_PMD_NUM; i++) {
1835  		set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE,
1836  			      PAGE_KERNEL_RO);
1837  	}
1838  
1839  	/* Pin down new L4 */
1840  	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1841  			  PFN_DOWN(__pa_symbol(init_top_pgt)));
1842  
1843  	/* Unpin Xen-provided one */
1844  	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1845  
1846  #ifdef CONFIG_X86_VSYSCALL_EMULATION
1847  	/* Pin user vsyscall L3 */
1848  	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1849  	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1850  			  PFN_DOWN(__pa_symbol(level3_user_vsyscall)));
1851  #endif
1852  
1853  	/*
1854  	 * At this stage there can be no user pgd, and no page structure to
1855  	 * attach it to, so make sure we just set kernel pgd.
1856  	 */
1857  	xen_mc_batch();
1858  	__xen_write_cr3(true, __pa(init_top_pgt));
1859  	xen_mc_issue(XEN_LAZY_CPU);
1860  
1861  	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
1862  	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1863  	 * the initial domain. For guests using the toolstack, they are in:
1864  	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1865  	 * rip out the [L4] (pgd), but for guests we shave off three pages.
1866  	 */
1867  	for (i = 0; i < ARRAY_SIZE(addr); i++)
1868  		check_pt_base(&pt_base, &pt_end, addr[i]);
1869  
1870  	/* Our (by three pages) smaller Xen pagetable that we are using */
1871  	xen_pt_base = PFN_PHYS(pt_base);
1872  	xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
1873  	memblock_reserve(xen_pt_base, xen_pt_size);
1874  
1875  	/* Revector the xen_start_info */
1876  	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1877  }
1878  
1879  /*
1880   * Read a value from a physical address.
1881   */
xen_read_phys_ulong(phys_addr_t addr)1882  static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
1883  {
1884  	unsigned long *vaddr;
1885  	unsigned long val;
1886  
1887  	vaddr = early_memremap_ro(addr, sizeof(val));
1888  	val = *vaddr;
1889  	early_memunmap(vaddr, sizeof(val));
1890  	return val;
1891  }
1892  
1893  /*
1894   * Translate a virtual address to a physical one without relying on mapped
1895   * page tables. Don't rely on big pages being aligned in (guest) physical
1896   * space!
1897   */
xen_early_virt_to_phys(unsigned long vaddr)1898  static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
1899  {
1900  	phys_addr_t pa;
1901  	pgd_t pgd;
1902  	pud_t pud;
1903  	pmd_t pmd;
1904  	pte_t pte;
1905  
1906  	pa = read_cr3_pa();
1907  	pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
1908  						       sizeof(pgd)));
1909  	if (!pgd_present(pgd))
1910  		return 0;
1911  
1912  	pa = pgd_val(pgd) & PTE_PFN_MASK;
1913  	pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
1914  						       sizeof(pud)));
1915  	if (!pud_present(pud))
1916  		return 0;
1917  	pa = pud_val(pud) & PTE_PFN_MASK;
1918  	if (pud_leaf(pud))
1919  		return pa + (vaddr & ~PUD_MASK);
1920  
1921  	pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
1922  						       sizeof(pmd)));
1923  	if (!pmd_present(pmd))
1924  		return 0;
1925  	pa = pmd_val(pmd) & PTE_PFN_MASK;
1926  	if (pmd_leaf(pmd))
1927  		return pa + (vaddr & ~PMD_MASK);
1928  
1929  	pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
1930  						       sizeof(pte)));
1931  	if (!pte_present(pte))
1932  		return 0;
1933  	pa = pte_pfn(pte) << PAGE_SHIFT;
1934  
1935  	return pa | (vaddr & ~PAGE_MASK);
1936  }
1937  
1938  /*
1939   * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
1940   * this area.
1941   */
xen_relocate_p2m(void)1942  void __init xen_relocate_p2m(void)
1943  {
1944  	phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
1945  	unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
1946  	int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
1947  	pte_t *pt;
1948  	pmd_t *pmd;
1949  	pud_t *pud;
1950  	pgd_t *pgd;
1951  	unsigned long *new_p2m;
1952  
1953  	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1954  	n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
1955  	n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
1956  	n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
1957  	n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
1958  	n_frames = n_pte + n_pt + n_pmd + n_pud;
1959  
1960  	new_area = xen_find_free_area(PFN_PHYS(n_frames));
1961  	if (!new_area) {
1962  		xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
1963  		BUG();
1964  	}
1965  
1966  	/*
1967  	 * Setup the page tables for addressing the new p2m list.
1968  	 * We have asked the hypervisor to map the p2m list at the user address
1969  	 * PUD_SIZE. It may have done so, or it may have used a kernel space
1970  	 * address depending on the Xen version.
1971  	 * To avoid any possible virtual address collision, just use
1972  	 * 2 * PUD_SIZE for the new area.
1973  	 */
1974  	pud_phys = new_area;
1975  	pmd_phys = pud_phys + PFN_PHYS(n_pud);
1976  	pt_phys = pmd_phys + PFN_PHYS(n_pmd);
1977  	p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
1978  
1979  	pgd = __va(read_cr3_pa());
1980  	new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
1981  	for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
1982  		pud = early_memremap(pud_phys, PAGE_SIZE);
1983  		clear_page(pud);
1984  		for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
1985  				idx_pmd++) {
1986  			pmd = early_memremap(pmd_phys, PAGE_SIZE);
1987  			clear_page(pmd);
1988  			for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
1989  					idx_pt++) {
1990  				pt = early_memremap(pt_phys, PAGE_SIZE);
1991  				clear_page(pt);
1992  				for (idx_pte = 0;
1993  				     idx_pte < min(n_pte, PTRS_PER_PTE);
1994  				     idx_pte++) {
1995  					pt[idx_pte] = pfn_pte(p2m_pfn,
1996  							      PAGE_KERNEL);
1997  					p2m_pfn++;
1998  				}
1999  				n_pte -= PTRS_PER_PTE;
2000  				early_memunmap(pt, PAGE_SIZE);
2001  				make_lowmem_page_readonly(__va(pt_phys));
2002  				pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
2003  						PFN_DOWN(pt_phys));
2004  				pmd[idx_pt] = __pmd(_PAGE_TABLE | pt_phys);
2005  				pt_phys += PAGE_SIZE;
2006  			}
2007  			n_pt -= PTRS_PER_PMD;
2008  			early_memunmap(pmd, PAGE_SIZE);
2009  			make_lowmem_page_readonly(__va(pmd_phys));
2010  			pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
2011  					PFN_DOWN(pmd_phys));
2012  			pud[idx_pmd] = __pud(_PAGE_TABLE | pmd_phys);
2013  			pmd_phys += PAGE_SIZE;
2014  		}
2015  		n_pmd -= PTRS_PER_PUD;
2016  		early_memunmap(pud, PAGE_SIZE);
2017  		make_lowmem_page_readonly(__va(pud_phys));
2018  		pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
2019  		set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
2020  		pud_phys += PAGE_SIZE;
2021  	}
2022  
2023  	/* Now copy the old p2m info to the new area. */
2024  	memcpy(new_p2m, xen_p2m_addr, size);
2025  	xen_p2m_addr = new_p2m;
2026  
2027  	/* Release the old p2m list and set new list info. */
2028  	p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
2029  	BUG_ON(!p2m_pfn);
2030  	p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
2031  
2032  	if (xen_start_info->mfn_list < __START_KERNEL_map) {
2033  		pfn = xen_start_info->first_p2m_pfn;
2034  		pfn_end = xen_start_info->first_p2m_pfn +
2035  			  xen_start_info->nr_p2m_frames;
2036  		set_pgd(pgd + 1, __pgd(0));
2037  	} else {
2038  		pfn = p2m_pfn;
2039  		pfn_end = p2m_pfn_end;
2040  	}
2041  
2042  	memblock_phys_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
2043  	while (pfn < pfn_end) {
2044  		if (pfn == p2m_pfn) {
2045  			pfn = p2m_pfn_end;
2046  			continue;
2047  		}
2048  		make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
2049  		pfn++;
2050  	}
2051  
2052  	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2053  	xen_start_info->first_p2m_pfn =  PFN_DOWN(new_area);
2054  	xen_start_info->nr_p2m_frames = n_frames;
2055  }
2056  
xen_reserve_special_pages(void)2057  void __init xen_reserve_special_pages(void)
2058  {
2059  	phys_addr_t paddr;
2060  
2061  	memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2062  	if (xen_start_info->store_mfn) {
2063  		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2064  		memblock_reserve(paddr, PAGE_SIZE);
2065  	}
2066  	if (!xen_initial_domain()) {
2067  		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2068  		memblock_reserve(paddr, PAGE_SIZE);
2069  	}
2070  }
2071  
xen_pt_check_e820(void)2072  void __init xen_pt_check_e820(void)
2073  {
2074  	xen_chk_is_e820_usable(xen_pt_base, xen_pt_size, "page table");
2075  }
2076  
2077  static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2078  
xen_set_fixmap(unsigned idx,phys_addr_t phys,pgprot_t prot)2079  static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2080  {
2081  	pte_t pte;
2082  	unsigned long vaddr;
2083  
2084  	phys >>= PAGE_SHIFT;
2085  
2086  	switch (idx) {
2087  	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2088  #ifdef CONFIG_X86_VSYSCALL_EMULATION
2089  	case VSYSCALL_PAGE:
2090  #endif
2091  		/* All local page mappings */
2092  		pte = pfn_pte(phys, prot);
2093  		break;
2094  
2095  #ifdef CONFIG_X86_LOCAL_APIC
2096  	case FIX_APIC_BASE:	/* maps dummy local APIC */
2097  		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2098  		break;
2099  #endif
2100  
2101  #ifdef CONFIG_X86_IO_APIC
2102  	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2103  		/*
2104  		 * We just don't map the IO APIC - all access is via
2105  		 * hypercalls.  Keep the address in the pte for reference.
2106  		 */
2107  		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2108  		break;
2109  #endif
2110  
2111  	case FIX_PARAVIRT_BOOTMAP:
2112  		/* This is an MFN, but it isn't an IO mapping from the
2113  		   IO domain */
2114  		pte = mfn_pte(phys, prot);
2115  		break;
2116  
2117  	default:
2118  		/* By default, set_fixmap is used for hardware mappings */
2119  		pte = mfn_pte(phys, prot);
2120  		break;
2121  	}
2122  
2123  	vaddr = __fix_to_virt(idx);
2124  	if (HYPERVISOR_update_va_mapping(vaddr, pte, UVMF_INVLPG))
2125  		BUG();
2126  
2127  #ifdef CONFIG_X86_VSYSCALL_EMULATION
2128  	/* Replicate changes to map the vsyscall page into the user
2129  	   pagetable vsyscall mapping. */
2130  	if (idx == VSYSCALL_PAGE)
2131  		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2132  #endif
2133  }
2134  
xen_enter_lazy_mmu(void)2135  static void xen_enter_lazy_mmu(void)
2136  {
2137  	enter_lazy(XEN_LAZY_MMU);
2138  }
2139  
xen_flush_lazy_mmu(void)2140  static void xen_flush_lazy_mmu(void)
2141  {
2142  	preempt_disable();
2143  
2144  	if (xen_get_lazy_mode() == XEN_LAZY_MMU) {
2145  		arch_leave_lazy_mmu_mode();
2146  		arch_enter_lazy_mmu_mode();
2147  	}
2148  
2149  	preempt_enable();
2150  }
2151  
xen_post_allocator_init(void)2152  static void __init xen_post_allocator_init(void)
2153  {
2154  	pv_ops.mmu.set_pte = xen_set_pte;
2155  	pv_ops.mmu.set_pmd = xen_set_pmd;
2156  	pv_ops.mmu.set_pud = xen_set_pud;
2157  	pv_ops.mmu.set_p4d = xen_set_p4d;
2158  
2159  	/* This will work as long as patching hasn't happened yet
2160  	   (which it hasn't) */
2161  	pv_ops.mmu.alloc_pte = xen_alloc_pte;
2162  	pv_ops.mmu.alloc_pmd = xen_alloc_pmd;
2163  	pv_ops.mmu.release_pte = xen_release_pte;
2164  	pv_ops.mmu.release_pmd = xen_release_pmd;
2165  	pv_ops.mmu.alloc_pud = xen_alloc_pud;
2166  	pv_ops.mmu.release_pud = xen_release_pud;
2167  	pv_ops.mmu.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2168  
2169  	pv_ops.mmu.write_cr3 = &xen_write_cr3;
2170  }
2171  
xen_leave_lazy_mmu(void)2172  static void xen_leave_lazy_mmu(void)
2173  {
2174  	preempt_disable();
2175  	xen_mc_flush();
2176  	leave_lazy(XEN_LAZY_MMU);
2177  	preempt_enable();
2178  }
2179  
2180  static const typeof(pv_ops) xen_mmu_ops __initconst = {
2181  	.mmu = {
2182  		.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2),
2183  		.write_cr2 = xen_write_cr2,
2184  
2185  		.read_cr3 = xen_read_cr3,
2186  		.write_cr3 = xen_write_cr3_init,
2187  
2188  		.flush_tlb_user = xen_flush_tlb,
2189  		.flush_tlb_kernel = xen_flush_tlb,
2190  		.flush_tlb_one_user = xen_flush_tlb_one_user,
2191  		.flush_tlb_multi = xen_flush_tlb_multi,
2192  
2193  		.pgd_alloc = xen_pgd_alloc,
2194  		.pgd_free = xen_pgd_free,
2195  
2196  		.alloc_pte = xen_alloc_pte_init,
2197  		.release_pte = xen_release_pte_init,
2198  		.alloc_pmd = xen_alloc_pmd_init,
2199  		.release_pmd = xen_release_pmd_init,
2200  
2201  		.set_pte = xen_set_pte_init,
2202  		.set_pmd = xen_set_pmd_hyper,
2203  
2204  		.ptep_modify_prot_start = xen_ptep_modify_prot_start,
2205  		.ptep_modify_prot_commit = xen_ptep_modify_prot_commit,
2206  
2207  		.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2208  		.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2209  
2210  		.make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2211  		.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2212  
2213  		.set_pud = xen_set_pud_hyper,
2214  
2215  		.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2216  		.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2217  
2218  		.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2219  		.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2220  		.set_p4d = xen_set_p4d_hyper,
2221  
2222  		.alloc_pud = xen_alloc_pmd_init,
2223  		.release_pud = xen_release_pmd_init,
2224  
2225  #if CONFIG_PGTABLE_LEVELS >= 5
2226  		.p4d_val = PV_CALLEE_SAVE(xen_p4d_val),
2227  		.make_p4d = PV_CALLEE_SAVE(xen_make_p4d),
2228  #endif
2229  
2230  		.enter_mmap = xen_enter_mmap,
2231  		.exit_mmap = xen_exit_mmap,
2232  
2233  		.lazy_mode = {
2234  			.enter = xen_enter_lazy_mmu,
2235  			.leave = xen_leave_lazy_mmu,
2236  			.flush = xen_flush_lazy_mmu,
2237  		},
2238  
2239  		.set_fixmap = xen_set_fixmap,
2240  	},
2241  };
2242  
xen_init_mmu_ops(void)2243  void __init xen_init_mmu_ops(void)
2244  {
2245  	x86_init.paging.pagetable_init = xen_pagetable_init;
2246  	x86_init.hyper.init_after_bootmem = xen_after_bootmem;
2247  
2248  	pv_ops.mmu = xen_mmu_ops.mmu;
2249  
2250  	memset(dummy_mapping, 0xff, PAGE_SIZE);
2251  }
2252  
2253  #define VOID_PTE (mfn_pte(0, __pgprot(0)))
xen_zap_pfn_range(unsigned long vaddr,unsigned int order,unsigned long * in_frames,unsigned long * out_frames)2254  static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2255  				unsigned long *in_frames,
2256  				unsigned long *out_frames)
2257  {
2258  	int i;
2259  	struct multicall_space mcs;
2260  
2261  	xen_mc_batch();
2262  	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2263  		mcs = __xen_mc_entry(0);
2264  
2265  		if (in_frames)
2266  			in_frames[i] = virt_to_mfn((void *)vaddr);
2267  
2268  		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2269  		__set_phys_to_machine(virt_to_pfn((void *)vaddr), INVALID_P2M_ENTRY);
2270  
2271  		if (out_frames)
2272  			out_frames[i] = virt_to_pfn((void *)vaddr);
2273  	}
2274  	xen_mc_issue(0);
2275  }
2276  
2277  /*
2278   * Update the pfn-to-mfn mappings for a virtual address range, either to
2279   * point to an array of mfns, or contiguously from a single starting
2280   * mfn.
2281   */
xen_remap_exchanged_ptes(unsigned long vaddr,int order,unsigned long * mfns,unsigned long first_mfn)2282  static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2283  				     unsigned long *mfns,
2284  				     unsigned long first_mfn)
2285  {
2286  	unsigned i, limit;
2287  	unsigned long mfn;
2288  
2289  	xen_mc_batch();
2290  
2291  	limit = 1u << order;
2292  	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2293  		struct multicall_space mcs;
2294  		unsigned flags;
2295  
2296  		mcs = __xen_mc_entry(0);
2297  		if (mfns)
2298  			mfn = mfns[i];
2299  		else
2300  			mfn = first_mfn + i;
2301  
2302  		if (i < (limit - 1))
2303  			flags = 0;
2304  		else {
2305  			if (order == 0)
2306  				flags = UVMF_INVLPG | UVMF_ALL;
2307  			else
2308  				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2309  		}
2310  
2311  		MULTI_update_va_mapping(mcs.mc, vaddr,
2312  				mfn_pte(mfn, PAGE_KERNEL), flags);
2313  
2314  		set_phys_to_machine(virt_to_pfn((void *)vaddr), mfn);
2315  	}
2316  
2317  	xen_mc_issue(0);
2318  }
2319  
2320  /*
2321   * Perform the hypercall to exchange a region of our pfns to point to
2322   * memory with the required contiguous alignment.  Takes the pfns as
2323   * input, and populates mfns as output.
2324   *
2325   * Returns a success code indicating whether the hypervisor was able to
2326   * satisfy the request or not.
2327   */
xen_exchange_memory(unsigned long extents_in,unsigned int order_in,unsigned long * pfns_in,unsigned long extents_out,unsigned int order_out,unsigned long * mfns_out,unsigned int address_bits)2328  static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2329  			       unsigned long *pfns_in,
2330  			       unsigned long extents_out,
2331  			       unsigned int order_out,
2332  			       unsigned long *mfns_out,
2333  			       unsigned int address_bits)
2334  {
2335  	long rc;
2336  	int success;
2337  
2338  	struct xen_memory_exchange exchange = {
2339  		.in = {
2340  			.nr_extents   = extents_in,
2341  			.extent_order = order_in,
2342  			.extent_start = pfns_in,
2343  			.domid        = DOMID_SELF
2344  		},
2345  		.out = {
2346  			.nr_extents   = extents_out,
2347  			.extent_order = order_out,
2348  			.extent_start = mfns_out,
2349  			.address_bits = address_bits,
2350  			.domid        = DOMID_SELF
2351  		}
2352  	};
2353  
2354  	BUG_ON(extents_in << order_in != extents_out << order_out);
2355  
2356  	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2357  	success = (exchange.nr_exchanged == extents_in);
2358  
2359  	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2360  	BUG_ON(success && (rc != 0));
2361  
2362  	return success;
2363  }
2364  
xen_create_contiguous_region(phys_addr_t pstart,unsigned int order,unsigned int address_bits,dma_addr_t * dma_handle)2365  int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2366  				 unsigned int address_bits,
2367  				 dma_addr_t *dma_handle)
2368  {
2369  	unsigned long *in_frames, out_frame;
2370  	unsigned long  flags;
2371  	int            success;
2372  	unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2373  
2374  	if (unlikely(order > discontig_frames_order)) {
2375  		if (!discontig_frames_dyn)
2376  			return -ENOMEM;
2377  
2378  		if (alloc_discontig_frames(order))
2379  			return -ENOMEM;
2380  	}
2381  
2382  	memset((void *) vstart, 0, PAGE_SIZE << order);
2383  
2384  	spin_lock_irqsave(&xen_reservation_lock, flags);
2385  
2386  	in_frames = discontig_frames;
2387  
2388  	/* 1. Zap current PTEs, remembering MFNs. */
2389  	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2390  
2391  	/* 2. Get a new contiguous memory extent. */
2392  	out_frame = virt_to_pfn((void *)vstart);
2393  	success = xen_exchange_memory(1UL << order, 0, in_frames,
2394  				      1, order, &out_frame,
2395  				      address_bits);
2396  
2397  	/* 3. Map the new extent in place of old pages. */
2398  	if (success)
2399  		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2400  	else
2401  		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2402  
2403  	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2404  
2405  	*dma_handle = virt_to_machine(vstart).maddr;
2406  	return success ? 0 : -ENOMEM;
2407  }
2408  
xen_destroy_contiguous_region(phys_addr_t pstart,unsigned int order)2409  void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2410  {
2411  	unsigned long *out_frames, in_frame;
2412  	unsigned long  flags;
2413  	int success;
2414  	unsigned long vstart;
2415  
2416  	if (unlikely(order > discontig_frames_order))
2417  		return;
2418  
2419  	vstart = (unsigned long)phys_to_virt(pstart);
2420  	memset((void *) vstart, 0, PAGE_SIZE << order);
2421  
2422  	spin_lock_irqsave(&xen_reservation_lock, flags);
2423  
2424  	out_frames = discontig_frames;
2425  
2426  	/* 1. Find start MFN of contiguous extent. */
2427  	in_frame = virt_to_mfn((void *)vstart);
2428  
2429  	/* 2. Zap current PTEs. */
2430  	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2431  
2432  	/* 3. Do the exchange for non-contiguous MFNs. */
2433  	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2434  					0, out_frames, 0);
2435  
2436  	/* 4. Map new pages in place of old pages. */
2437  	if (success)
2438  		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2439  	else
2440  		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2441  
2442  	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2443  }
2444  
xen_flush_tlb_all(void)2445  static noinline void xen_flush_tlb_all(void)
2446  {
2447  	struct mmuext_op *op;
2448  	struct multicall_space mcs;
2449  
2450  	preempt_disable();
2451  
2452  	mcs = xen_mc_entry(sizeof(*op));
2453  
2454  	op = mcs.args;
2455  	op->cmd = MMUEXT_TLB_FLUSH_ALL;
2456  	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
2457  
2458  	xen_mc_issue(XEN_LAZY_MMU);
2459  
2460  	preempt_enable();
2461  }
2462  
2463  #define REMAP_BATCH_SIZE 16
2464  
2465  struct remap_data {
2466  	xen_pfn_t *pfn;
2467  	bool contiguous;
2468  	bool no_translate;
2469  	pgprot_t prot;
2470  	struct mmu_update *mmu_update;
2471  };
2472  
remap_area_pfn_pte_fn(pte_t * ptep,unsigned long addr,void * data)2473  static int remap_area_pfn_pte_fn(pte_t *ptep, unsigned long addr, void *data)
2474  {
2475  	struct remap_data *rmd = data;
2476  	pte_t pte = pte_mkspecial(mfn_pte(*rmd->pfn, rmd->prot));
2477  
2478  	/*
2479  	 * If we have a contiguous range, just update the pfn itself,
2480  	 * else update pointer to be "next pfn".
2481  	 */
2482  	if (rmd->contiguous)
2483  		(*rmd->pfn)++;
2484  	else
2485  		rmd->pfn++;
2486  
2487  	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2488  	rmd->mmu_update->ptr |= rmd->no_translate ?
2489  		MMU_PT_UPDATE_NO_TRANSLATE :
2490  		MMU_NORMAL_PT_UPDATE;
2491  	rmd->mmu_update->val = pte_val_ma(pte);
2492  	rmd->mmu_update++;
2493  
2494  	return 0;
2495  }
2496  
xen_remap_pfn(struct vm_area_struct * vma,unsigned long addr,xen_pfn_t * pfn,int nr,int * err_ptr,pgprot_t prot,unsigned int domid,bool no_translate)2497  int xen_remap_pfn(struct vm_area_struct *vma, unsigned long addr,
2498  		  xen_pfn_t *pfn, int nr, int *err_ptr, pgprot_t prot,
2499  		  unsigned int domid, bool no_translate)
2500  {
2501  	int err = 0;
2502  	struct remap_data rmd;
2503  	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2504  	unsigned long range;
2505  	int mapped = 0;
2506  
2507  	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2508  
2509  	rmd.pfn = pfn;
2510  	rmd.prot = prot;
2511  	/*
2512  	 * We use the err_ptr to indicate if there we are doing a contiguous
2513  	 * mapping or a discontiguous mapping.
2514  	 */
2515  	rmd.contiguous = !err_ptr;
2516  	rmd.no_translate = no_translate;
2517  
2518  	while (nr) {
2519  		int index = 0;
2520  		int done = 0;
2521  		int batch = min(REMAP_BATCH_SIZE, nr);
2522  		int batch_left = batch;
2523  
2524  		range = (unsigned long)batch << PAGE_SHIFT;
2525  
2526  		rmd.mmu_update = mmu_update;
2527  		err = apply_to_page_range(vma->vm_mm, addr, range,
2528  					  remap_area_pfn_pte_fn, &rmd);
2529  		if (err)
2530  			goto out;
2531  
2532  		/*
2533  		 * We record the error for each page that gives an error, but
2534  		 * continue mapping until the whole set is done
2535  		 */
2536  		do {
2537  			int i;
2538  
2539  			err = HYPERVISOR_mmu_update(&mmu_update[index],
2540  						    batch_left, &done, domid);
2541  
2542  			/*
2543  			 * @err_ptr may be the same buffer as @gfn, so
2544  			 * only clear it after each chunk of @gfn is
2545  			 * used.
2546  			 */
2547  			if (err_ptr) {
2548  				for (i = index; i < index + done; i++)
2549  					err_ptr[i] = 0;
2550  			}
2551  			if (err < 0) {
2552  				if (!err_ptr)
2553  					goto out;
2554  				err_ptr[i] = err;
2555  				done++; /* Skip failed frame. */
2556  			} else
2557  				mapped += done;
2558  			batch_left -= done;
2559  			index += done;
2560  		} while (batch_left);
2561  
2562  		nr -= batch;
2563  		addr += range;
2564  		if (err_ptr)
2565  			err_ptr += batch;
2566  		cond_resched();
2567  	}
2568  out:
2569  
2570  	xen_flush_tlb_all();
2571  
2572  	return err < 0 ? err : mapped;
2573  }
2574  EXPORT_SYMBOL_GPL(xen_remap_pfn);
2575  
2576  #ifdef CONFIG_VMCORE_INFO
paddr_vmcoreinfo_note(void)2577  phys_addr_t paddr_vmcoreinfo_note(void)
2578  {
2579  	if (xen_pv_domain())
2580  		return virt_to_machine(vmcoreinfo_note).maddr;
2581  	else
2582  		return __pa(vmcoreinfo_note);
2583  }
2584  #endif /* CONFIG_KEXEC_CORE */
2585