1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2020 Intel Corporation
4 */
5
6 #include "xe_migrate.h"
7
8 #include <linux/bitfield.h>
9 #include <linux/sizes.h>
10
11 #include <drm/drm_managed.h>
12 #include <drm/ttm/ttm_tt.h>
13 #include <uapi/drm/xe_drm.h>
14
15 #include <generated/xe_wa_oob.h>
16
17 #include "instructions/xe_gpu_commands.h"
18 #include "instructions/xe_mi_commands.h"
19 #include "regs/xe_gtt_defs.h"
20 #include "tests/xe_test.h"
21 #include "xe_assert.h"
22 #include "xe_bb.h"
23 #include "xe_bo.h"
24 #include "xe_exec_queue.h"
25 #include "xe_ggtt.h"
26 #include "xe_gt.h"
27 #include "xe_hw_engine.h"
28 #include "xe_lrc.h"
29 #include "xe_map.h"
30 #include "xe_mocs.h"
31 #include "xe_pt.h"
32 #include "xe_res_cursor.h"
33 #include "xe_sched_job.h"
34 #include "xe_sync.h"
35 #include "xe_trace_bo.h"
36 #include "xe_vm.h"
37
38 /**
39 * struct xe_migrate - migrate context.
40 */
41 struct xe_migrate {
42 /** @q: Default exec queue used for migration */
43 struct xe_exec_queue *q;
44 /** @tile: Backpointer to the tile this struct xe_migrate belongs to. */
45 struct xe_tile *tile;
46 /** @job_mutex: Timeline mutex for @eng. */
47 struct mutex job_mutex;
48 /** @pt_bo: Page-table buffer object. */
49 struct xe_bo *pt_bo;
50 /** @batch_base_ofs: VM offset of the migration batch buffer */
51 u64 batch_base_ofs;
52 /** @usm_batch_base_ofs: VM offset of the usm batch buffer */
53 u64 usm_batch_base_ofs;
54 /** @cleared_mem_ofs: VM offset of @cleared_bo. */
55 u64 cleared_mem_ofs;
56 /**
57 * @fence: dma-fence representing the last migration job batch.
58 * Protected by @job_mutex.
59 */
60 struct dma_fence *fence;
61 /**
62 * @vm_update_sa: For integrated, used to suballocate page-tables
63 * out of the pt_bo.
64 */
65 struct drm_suballoc_manager vm_update_sa;
66 /** @min_chunk_size: For dgfx, Minimum chunk size */
67 u64 min_chunk_size;
68 };
69
70 #define MAX_PREEMPTDISABLE_TRANSFER SZ_8M /* Around 1ms. */
71 #define MAX_CCS_LIMITED_TRANSFER SZ_4M /* XE_PAGE_SIZE * (FIELD_MAX(XE2_CCS_SIZE_MASK) + 1) */
72 #define NUM_KERNEL_PDE 15
73 #define NUM_PT_SLOTS 32
74 #define LEVEL0_PAGE_TABLE_ENCODE_SIZE SZ_2M
75 #define MAX_NUM_PTE 512
76 #define IDENTITY_OFFSET 256ULL
77
78 /*
79 * Although MI_STORE_DATA_IMM's "length" field is 10-bits, 0x3FE is the largest
80 * legal value accepted. Since that instruction field is always stored in
81 * (val-2) format, this translates to 0x400 dwords for the true maximum length
82 * of the instruction. Subtracting the instruction header (1 dword) and
83 * address (2 dwords), that leaves 0x3FD dwords (0x1FE qwords) for PTE values.
84 */
85 #define MAX_PTE_PER_SDI 0x1FE
86
87 /**
88 * xe_tile_migrate_exec_queue() - Get this tile's migrate exec queue.
89 * @tile: The tile.
90 *
91 * Returns the default migrate exec queue of this tile.
92 *
93 * Return: The default migrate exec queue
94 */
xe_tile_migrate_exec_queue(struct xe_tile * tile)95 struct xe_exec_queue *xe_tile_migrate_exec_queue(struct xe_tile *tile)
96 {
97 return tile->migrate->q;
98 }
99
xe_migrate_fini(void * arg)100 static void xe_migrate_fini(void *arg)
101 {
102 struct xe_migrate *m = arg;
103
104 xe_vm_lock(m->q->vm, false);
105 xe_bo_unpin(m->pt_bo);
106 xe_vm_unlock(m->q->vm);
107
108 dma_fence_put(m->fence);
109 xe_bo_put(m->pt_bo);
110 drm_suballoc_manager_fini(&m->vm_update_sa);
111 mutex_destroy(&m->job_mutex);
112 xe_vm_close_and_put(m->q->vm);
113 xe_exec_queue_put(m->q);
114 }
115
xe_migrate_vm_addr(u64 slot,u32 level)116 static u64 xe_migrate_vm_addr(u64 slot, u32 level)
117 {
118 XE_WARN_ON(slot >= NUM_PT_SLOTS);
119
120 /* First slot is reserved for mapping of PT bo and bb, start from 1 */
121 return (slot + 1ULL) << xe_pt_shift(level + 1);
122 }
123
xe_migrate_vram_ofs(struct xe_device * xe,u64 addr,bool is_comp_pte)124 static u64 xe_migrate_vram_ofs(struct xe_device *xe, u64 addr, bool is_comp_pte)
125 {
126 /*
127 * Remove the DPA to get a correct offset into identity table for the
128 * migrate offset
129 */
130 u64 identity_offset = IDENTITY_OFFSET;
131
132 if (GRAPHICS_VER(xe) >= 20 && is_comp_pte)
133 identity_offset += DIV_ROUND_UP_ULL(xe->mem.vram.actual_physical_size, SZ_1G);
134
135 addr -= xe->mem.vram.dpa_base;
136 return addr + (identity_offset << xe_pt_shift(2));
137 }
138
xe_migrate_program_identity(struct xe_device * xe,struct xe_vm * vm,struct xe_bo * bo,u64 map_ofs,u64 vram_offset,u16 pat_index,u64 pt_2m_ofs)139 static void xe_migrate_program_identity(struct xe_device *xe, struct xe_vm *vm, struct xe_bo *bo,
140 u64 map_ofs, u64 vram_offset, u16 pat_index, u64 pt_2m_ofs)
141 {
142 u64 pos, ofs, flags;
143 u64 entry;
144 /* XXX: Unclear if this should be usable_size? */
145 u64 vram_limit = xe->mem.vram.actual_physical_size +
146 xe->mem.vram.dpa_base;
147 u32 level = 2;
148
149 ofs = map_ofs + XE_PAGE_SIZE * level + vram_offset * 8;
150 flags = vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level,
151 true, 0);
152
153 xe_assert(xe, IS_ALIGNED(xe->mem.vram.usable_size, SZ_2M));
154
155 /*
156 * Use 1GB pages when possible, last chunk always use 2M
157 * pages as mixing reserved memory (stolen, WOCPM) with a single
158 * mapping is not allowed on certain platforms.
159 */
160 for (pos = xe->mem.vram.dpa_base; pos < vram_limit;
161 pos += SZ_1G, ofs += 8) {
162 if (pos + SZ_1G >= vram_limit) {
163 entry = vm->pt_ops->pde_encode_bo(bo, pt_2m_ofs,
164 pat_index);
165 xe_map_wr(xe, &bo->vmap, ofs, u64, entry);
166
167 flags = vm->pt_ops->pte_encode_addr(xe, 0,
168 pat_index,
169 level - 1,
170 true, 0);
171
172 for (ofs = pt_2m_ofs; pos < vram_limit;
173 pos += SZ_2M, ofs += 8)
174 xe_map_wr(xe, &bo->vmap, ofs, u64, pos | flags);
175 break; /* Ensure pos == vram_limit assert correct */
176 }
177
178 xe_map_wr(xe, &bo->vmap, ofs, u64, pos | flags);
179 }
180
181 xe_assert(xe, pos == vram_limit);
182 }
183
xe_migrate_prepare_vm(struct xe_tile * tile,struct xe_migrate * m,struct xe_vm * vm)184 static int xe_migrate_prepare_vm(struct xe_tile *tile, struct xe_migrate *m,
185 struct xe_vm *vm)
186 {
187 struct xe_device *xe = tile_to_xe(tile);
188 u16 pat_index = xe->pat.idx[XE_CACHE_WB];
189 u8 id = tile->id;
190 u32 num_entries = NUM_PT_SLOTS, num_level = vm->pt_root[id]->level;
191 #define VRAM_IDENTITY_MAP_COUNT 2
192 u32 num_setup = num_level + VRAM_IDENTITY_MAP_COUNT;
193 #undef VRAM_IDENTITY_MAP_COUNT
194 u32 map_ofs, level, i;
195 struct xe_bo *bo, *batch = tile->mem.kernel_bb_pool->bo;
196 u64 entry, pt29_ofs;
197
198 /* Can't bump NUM_PT_SLOTS too high */
199 BUILD_BUG_ON(NUM_PT_SLOTS > SZ_2M/XE_PAGE_SIZE);
200 /* Must be a multiple of 64K to support all platforms */
201 BUILD_BUG_ON(NUM_PT_SLOTS * XE_PAGE_SIZE % SZ_64K);
202 /* And one slot reserved for the 4KiB page table updates */
203 BUILD_BUG_ON(!(NUM_KERNEL_PDE & 1));
204
205 /* Need to be sure everything fits in the first PT, or create more */
206 xe_tile_assert(tile, m->batch_base_ofs + batch->size < SZ_2M);
207
208 bo = xe_bo_create_pin_map(vm->xe, tile, vm,
209 num_entries * XE_PAGE_SIZE,
210 ttm_bo_type_kernel,
211 XE_BO_FLAG_VRAM_IF_DGFX(tile) |
212 XE_BO_FLAG_PAGETABLE);
213 if (IS_ERR(bo))
214 return PTR_ERR(bo);
215
216 /* PT30 & PT31 reserved for 2M identity map */
217 pt29_ofs = bo->size - 3 * XE_PAGE_SIZE;
218 entry = vm->pt_ops->pde_encode_bo(bo, pt29_ofs, pat_index);
219 xe_pt_write(xe, &vm->pt_root[id]->bo->vmap, 0, entry);
220
221 map_ofs = (num_entries - num_setup) * XE_PAGE_SIZE;
222
223 /* Map the entire BO in our level 0 pt */
224 for (i = 0, level = 0; i < num_entries; level++) {
225 entry = vm->pt_ops->pte_encode_bo(bo, i * XE_PAGE_SIZE,
226 pat_index, 0);
227
228 xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, entry);
229
230 if (vm->flags & XE_VM_FLAG_64K)
231 i += 16;
232 else
233 i += 1;
234 }
235
236 if (!IS_DGFX(xe)) {
237 /* Write out batch too */
238 m->batch_base_ofs = NUM_PT_SLOTS * XE_PAGE_SIZE;
239 for (i = 0; i < batch->size;
240 i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE :
241 XE_PAGE_SIZE) {
242 entry = vm->pt_ops->pte_encode_bo(batch, i,
243 pat_index, 0);
244
245 xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64,
246 entry);
247 level++;
248 }
249 if (xe->info.has_usm) {
250 xe_tile_assert(tile, batch->size == SZ_1M);
251
252 batch = tile->primary_gt->usm.bb_pool->bo;
253 m->usm_batch_base_ofs = m->batch_base_ofs + SZ_1M;
254 xe_tile_assert(tile, batch->size == SZ_512K);
255
256 for (i = 0; i < batch->size;
257 i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE :
258 XE_PAGE_SIZE) {
259 entry = vm->pt_ops->pte_encode_bo(batch, i,
260 pat_index, 0);
261
262 xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64,
263 entry);
264 level++;
265 }
266 }
267 } else {
268 u64 batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE);
269
270 m->batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr, false);
271
272 if (xe->info.has_usm) {
273 batch = tile->primary_gt->usm.bb_pool->bo;
274 batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE);
275 m->usm_batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr, false);
276 }
277 }
278
279 for (level = 1; level < num_level; level++) {
280 u32 flags = 0;
281
282 if (vm->flags & XE_VM_FLAG_64K && level == 1)
283 flags = XE_PDE_64K;
284
285 entry = vm->pt_ops->pde_encode_bo(bo, map_ofs + (u64)(level - 1) *
286 XE_PAGE_SIZE, pat_index);
287 xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level, u64,
288 entry | flags);
289 }
290
291 /* Write PDE's that point to our BO. */
292 for (i = 0; i < map_ofs / PAGE_SIZE; i++) {
293 entry = vm->pt_ops->pde_encode_bo(bo, (u64)i * XE_PAGE_SIZE,
294 pat_index);
295
296 xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE +
297 (i + 1) * 8, u64, entry);
298 }
299
300 /* Set up a 1GiB NULL mapping at 255GiB offset. */
301 level = 2;
302 xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level + 255 * 8, u64,
303 vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0)
304 | XE_PTE_NULL);
305 m->cleared_mem_ofs = (255ULL << xe_pt_shift(level));
306
307 /* Identity map the entire vram at 256GiB offset */
308 if (IS_DGFX(xe)) {
309 u64 pt30_ofs = bo->size - 2 * XE_PAGE_SIZE;
310
311 xe_migrate_program_identity(xe, vm, bo, map_ofs, IDENTITY_OFFSET,
312 pat_index, pt30_ofs);
313 xe_assert(xe, xe->mem.vram.actual_physical_size <=
314 (MAX_NUM_PTE - IDENTITY_OFFSET) * SZ_1G);
315
316 /*
317 * Identity map the entire vram for compressed pat_index for xe2+
318 * if flat ccs is enabled.
319 */
320 if (GRAPHICS_VER(xe) >= 20 && xe_device_has_flat_ccs(xe)) {
321 u16 comp_pat_index = xe->pat.idx[XE_CACHE_NONE_COMPRESSION];
322 u64 vram_offset = IDENTITY_OFFSET +
323 DIV_ROUND_UP_ULL(xe->mem.vram.actual_physical_size, SZ_1G);
324 u64 pt31_ofs = bo->size - XE_PAGE_SIZE;
325
326 xe_assert(xe, xe->mem.vram.actual_physical_size <= (MAX_NUM_PTE -
327 IDENTITY_OFFSET - IDENTITY_OFFSET / 2) * SZ_1G);
328 xe_migrate_program_identity(xe, vm, bo, map_ofs, vram_offset,
329 comp_pat_index, pt31_ofs);
330 }
331 }
332
333 /*
334 * Example layout created above, with root level = 3:
335 * [PT0...PT7]: kernel PT's for copy/clear; 64 or 4KiB PTE's
336 * [PT8]: Kernel PT for VM_BIND, 4 KiB PTE's
337 * [PT9...PT26]: Userspace PT's for VM_BIND, 4 KiB PTE's
338 * [PT27 = PDE 0] [PT28 = PDE 1] [PT29 = PDE 2] [PT30 & PT31 = 2M vram identity map]
339 *
340 * This makes the lowest part of the VM point to the pagetables.
341 * Hence the lowest 2M in the vm should point to itself, with a few writes
342 * and flushes, other parts of the VM can be used either for copying and
343 * clearing.
344 *
345 * For performance, the kernel reserves PDE's, so about 20 are left
346 * for async VM updates.
347 *
348 * To make it easier to work, each scratch PT is put in slot (1 + PT #)
349 * everywhere, this allows lockless updates to scratch pages by using
350 * the different addresses in VM.
351 */
352 #define NUM_VMUSA_UNIT_PER_PAGE 32
353 #define VM_SA_UPDATE_UNIT_SIZE (XE_PAGE_SIZE / NUM_VMUSA_UNIT_PER_PAGE)
354 #define NUM_VMUSA_WRITES_PER_UNIT (VM_SA_UPDATE_UNIT_SIZE / sizeof(u64))
355 drm_suballoc_manager_init(&m->vm_update_sa,
356 (size_t)(map_ofs / XE_PAGE_SIZE - NUM_KERNEL_PDE) *
357 NUM_VMUSA_UNIT_PER_PAGE, 0);
358
359 m->pt_bo = bo;
360 return 0;
361 }
362
363 /*
364 * Including the reserved copy engine is required to avoid deadlocks due to
365 * migrate jobs servicing the faults gets stuck behind the job that faulted.
366 */
xe_migrate_usm_logical_mask(struct xe_gt * gt)367 static u32 xe_migrate_usm_logical_mask(struct xe_gt *gt)
368 {
369 u32 logical_mask = 0;
370 struct xe_hw_engine *hwe;
371 enum xe_hw_engine_id id;
372
373 for_each_hw_engine(hwe, gt, id) {
374 if (hwe->class != XE_ENGINE_CLASS_COPY)
375 continue;
376
377 if (xe_gt_is_usm_hwe(gt, hwe))
378 logical_mask |= BIT(hwe->logical_instance);
379 }
380
381 return logical_mask;
382 }
383
xe_migrate_needs_ccs_emit(struct xe_device * xe)384 static bool xe_migrate_needs_ccs_emit(struct xe_device *xe)
385 {
386 return xe_device_has_flat_ccs(xe) && !(GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe));
387 }
388
389 /**
390 * xe_migrate_init() - Initialize a migrate context
391 * @tile: Back-pointer to the tile we're initializing for.
392 *
393 * Return: Pointer to a migrate context on success. Error pointer on error.
394 */
xe_migrate_init(struct xe_tile * tile)395 struct xe_migrate *xe_migrate_init(struct xe_tile *tile)
396 {
397 struct xe_device *xe = tile_to_xe(tile);
398 struct xe_gt *primary_gt = tile->primary_gt;
399 struct xe_migrate *m;
400 struct xe_vm *vm;
401 int err;
402
403 m = devm_kzalloc(xe->drm.dev, sizeof(*m), GFP_KERNEL);
404 if (!m)
405 return ERR_PTR(-ENOMEM);
406
407 m->tile = tile;
408
409 /* Special layout, prepared below.. */
410 vm = xe_vm_create(xe, XE_VM_FLAG_MIGRATION |
411 XE_VM_FLAG_SET_TILE_ID(tile));
412 if (IS_ERR(vm))
413 return ERR_CAST(vm);
414
415 xe_vm_lock(vm, false);
416 err = xe_migrate_prepare_vm(tile, m, vm);
417 xe_vm_unlock(vm);
418 if (err) {
419 xe_vm_close_and_put(vm);
420 return ERR_PTR(err);
421 }
422
423 if (xe->info.has_usm) {
424 struct xe_hw_engine *hwe = xe_gt_hw_engine(primary_gt,
425 XE_ENGINE_CLASS_COPY,
426 primary_gt->usm.reserved_bcs_instance,
427 false);
428 u32 logical_mask = xe_migrate_usm_logical_mask(primary_gt);
429
430 if (!hwe || !logical_mask)
431 return ERR_PTR(-EINVAL);
432
433 /*
434 * XXX: Currently only reserving 1 (likely slow) BCS instance on
435 * PVC, may want to revisit if performance is needed.
436 */
437 m->q = xe_exec_queue_create(xe, vm, logical_mask, 1, hwe,
438 EXEC_QUEUE_FLAG_KERNEL |
439 EXEC_QUEUE_FLAG_PERMANENT |
440 EXEC_QUEUE_FLAG_HIGH_PRIORITY, 0);
441 } else {
442 m->q = xe_exec_queue_create_class(xe, primary_gt, vm,
443 XE_ENGINE_CLASS_COPY,
444 EXEC_QUEUE_FLAG_KERNEL |
445 EXEC_QUEUE_FLAG_PERMANENT, 0);
446 }
447 if (IS_ERR(m->q)) {
448 xe_vm_close_and_put(vm);
449 return ERR_CAST(m->q);
450 }
451
452 mutex_init(&m->job_mutex);
453 fs_reclaim_acquire(GFP_KERNEL);
454 might_lock(&m->job_mutex);
455 fs_reclaim_release(GFP_KERNEL);
456
457 err = devm_add_action_or_reset(xe->drm.dev, xe_migrate_fini, m);
458 if (err)
459 return ERR_PTR(err);
460
461 if (IS_DGFX(xe)) {
462 if (xe_migrate_needs_ccs_emit(xe))
463 /* min chunk size corresponds to 4K of CCS Metadata */
464 m->min_chunk_size = SZ_4K * SZ_64K /
465 xe_device_ccs_bytes(xe, SZ_64K);
466 else
467 /* Somewhat arbitrary to avoid a huge amount of blits */
468 m->min_chunk_size = SZ_64K;
469 m->min_chunk_size = roundup_pow_of_two(m->min_chunk_size);
470 drm_dbg(&xe->drm, "Migrate min chunk size is 0x%08llx\n",
471 (unsigned long long)m->min_chunk_size);
472 }
473
474 return m;
475 }
476
max_mem_transfer_per_pass(struct xe_device * xe)477 static u64 max_mem_transfer_per_pass(struct xe_device *xe)
478 {
479 if (!IS_DGFX(xe) && xe_device_has_flat_ccs(xe))
480 return MAX_CCS_LIMITED_TRANSFER;
481
482 return MAX_PREEMPTDISABLE_TRANSFER;
483 }
484
xe_migrate_res_sizes(struct xe_migrate * m,struct xe_res_cursor * cur)485 static u64 xe_migrate_res_sizes(struct xe_migrate *m, struct xe_res_cursor *cur)
486 {
487 struct xe_device *xe = tile_to_xe(m->tile);
488 u64 size = min_t(u64, max_mem_transfer_per_pass(xe), cur->remaining);
489
490 if (mem_type_is_vram(cur->mem_type)) {
491 /*
492 * VRAM we want to blit in chunks with sizes aligned to
493 * min_chunk_size in order for the offset to CCS metadata to be
494 * page-aligned. If it's the last chunk it may be smaller.
495 *
496 * Another constraint is that we need to limit the blit to
497 * the VRAM block size, unless size is smaller than
498 * min_chunk_size.
499 */
500 u64 chunk = max_t(u64, cur->size, m->min_chunk_size);
501
502 size = min_t(u64, size, chunk);
503 if (size > m->min_chunk_size)
504 size = round_down(size, m->min_chunk_size);
505 }
506
507 return size;
508 }
509
xe_migrate_allow_identity(u64 size,const struct xe_res_cursor * cur)510 static bool xe_migrate_allow_identity(u64 size, const struct xe_res_cursor *cur)
511 {
512 /* If the chunk is not fragmented, allow identity map. */
513 return cur->size >= size;
514 }
515
516 #define PTE_UPDATE_FLAG_IS_VRAM BIT(0)
517 #define PTE_UPDATE_FLAG_IS_COMP_PTE BIT(1)
518
pte_update_size(struct xe_migrate * m,u32 flags,struct ttm_resource * res,struct xe_res_cursor * cur,u64 * L0,u64 * L0_ofs,u32 * L0_pt,u32 cmd_size,u32 pt_ofs,u32 avail_pts)519 static u32 pte_update_size(struct xe_migrate *m,
520 u32 flags,
521 struct ttm_resource *res,
522 struct xe_res_cursor *cur,
523 u64 *L0, u64 *L0_ofs, u32 *L0_pt,
524 u32 cmd_size, u32 pt_ofs, u32 avail_pts)
525 {
526 u32 cmds = 0;
527 bool is_vram = PTE_UPDATE_FLAG_IS_VRAM & flags;
528 bool is_comp_pte = PTE_UPDATE_FLAG_IS_COMP_PTE & flags;
529
530 *L0_pt = pt_ofs;
531 if (is_vram && xe_migrate_allow_identity(*L0, cur)) {
532 /* Offset into identity map. */
533 *L0_ofs = xe_migrate_vram_ofs(tile_to_xe(m->tile),
534 cur->start + vram_region_gpu_offset(res),
535 is_comp_pte);
536 cmds += cmd_size;
537 } else {
538 /* Clip L0 to available size */
539 u64 size = min(*L0, (u64)avail_pts * SZ_2M);
540 u32 num_4k_pages = (size + XE_PAGE_SIZE - 1) >> XE_PTE_SHIFT;
541
542 *L0 = size;
543 *L0_ofs = xe_migrate_vm_addr(pt_ofs, 0);
544
545 /* MI_STORE_DATA_IMM */
546 cmds += 3 * DIV_ROUND_UP(num_4k_pages, MAX_PTE_PER_SDI);
547
548 /* PDE qwords */
549 cmds += num_4k_pages * 2;
550
551 /* Each chunk has a single blit command */
552 cmds += cmd_size;
553 }
554
555 return cmds;
556 }
557
emit_pte(struct xe_migrate * m,struct xe_bb * bb,u32 at_pt,bool is_vram,bool is_comp_pte,struct xe_res_cursor * cur,u32 size,struct ttm_resource * res)558 static void emit_pte(struct xe_migrate *m,
559 struct xe_bb *bb, u32 at_pt,
560 bool is_vram, bool is_comp_pte,
561 struct xe_res_cursor *cur,
562 u32 size, struct ttm_resource *res)
563 {
564 struct xe_device *xe = tile_to_xe(m->tile);
565 struct xe_vm *vm = m->q->vm;
566 u16 pat_index;
567 u32 ptes;
568 u64 ofs = (u64)at_pt * XE_PAGE_SIZE;
569 u64 cur_ofs;
570
571 /* Indirect access needs compression enabled uncached PAT index */
572 if (GRAPHICS_VERx100(xe) >= 2000)
573 pat_index = is_comp_pte ? xe->pat.idx[XE_CACHE_NONE_COMPRESSION] :
574 xe->pat.idx[XE_CACHE_WB];
575 else
576 pat_index = xe->pat.idx[XE_CACHE_WB];
577
578 ptes = DIV_ROUND_UP(size, XE_PAGE_SIZE);
579
580 while (ptes) {
581 u32 chunk = min(MAX_PTE_PER_SDI, ptes);
582
583 bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
584 bb->cs[bb->len++] = ofs;
585 bb->cs[bb->len++] = 0;
586
587 cur_ofs = ofs;
588 ofs += chunk * 8;
589 ptes -= chunk;
590
591 while (chunk--) {
592 u64 addr, flags = 0;
593 bool devmem = false;
594
595 addr = xe_res_dma(cur) & PAGE_MASK;
596 if (is_vram) {
597 if (vm->flags & XE_VM_FLAG_64K) {
598 u64 va = cur_ofs * XE_PAGE_SIZE / 8;
599
600 xe_assert(xe, (va & (SZ_64K - 1)) ==
601 (addr & (SZ_64K - 1)));
602
603 flags |= XE_PTE_PS64;
604 }
605
606 addr += vram_region_gpu_offset(res);
607 devmem = true;
608 }
609
610 addr = vm->pt_ops->pte_encode_addr(m->tile->xe,
611 addr, pat_index,
612 0, devmem, flags);
613 bb->cs[bb->len++] = lower_32_bits(addr);
614 bb->cs[bb->len++] = upper_32_bits(addr);
615
616 xe_res_next(cur, min_t(u32, size, PAGE_SIZE));
617 cur_ofs += 8;
618 }
619 }
620 }
621
622 #define EMIT_COPY_CCS_DW 5
emit_copy_ccs(struct xe_gt * gt,struct xe_bb * bb,u64 dst_ofs,bool dst_is_indirect,u64 src_ofs,bool src_is_indirect,u32 size)623 static void emit_copy_ccs(struct xe_gt *gt, struct xe_bb *bb,
624 u64 dst_ofs, bool dst_is_indirect,
625 u64 src_ofs, bool src_is_indirect,
626 u32 size)
627 {
628 struct xe_device *xe = gt_to_xe(gt);
629 u32 *cs = bb->cs + bb->len;
630 u32 num_ccs_blks;
631 u32 num_pages;
632 u32 ccs_copy_size;
633 u32 mocs;
634
635 if (GRAPHICS_VERx100(xe) >= 2000) {
636 num_pages = DIV_ROUND_UP(size, XE_PAGE_SIZE);
637 xe_gt_assert(gt, FIELD_FIT(XE2_CCS_SIZE_MASK, num_pages - 1));
638
639 ccs_copy_size = REG_FIELD_PREP(XE2_CCS_SIZE_MASK, num_pages - 1);
640 mocs = FIELD_PREP(XE2_XY_CTRL_SURF_MOCS_INDEX_MASK, gt->mocs.uc_index);
641
642 } else {
643 num_ccs_blks = DIV_ROUND_UP(xe_device_ccs_bytes(gt_to_xe(gt), size),
644 NUM_CCS_BYTES_PER_BLOCK);
645 xe_gt_assert(gt, FIELD_FIT(CCS_SIZE_MASK, num_ccs_blks - 1));
646
647 ccs_copy_size = REG_FIELD_PREP(CCS_SIZE_MASK, num_ccs_blks - 1);
648 mocs = FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, gt->mocs.uc_index);
649 }
650
651 *cs++ = XY_CTRL_SURF_COPY_BLT |
652 (src_is_indirect ? 0x0 : 0x1) << SRC_ACCESS_TYPE_SHIFT |
653 (dst_is_indirect ? 0x0 : 0x1) << DST_ACCESS_TYPE_SHIFT |
654 ccs_copy_size;
655 *cs++ = lower_32_bits(src_ofs);
656 *cs++ = upper_32_bits(src_ofs) | mocs;
657 *cs++ = lower_32_bits(dst_ofs);
658 *cs++ = upper_32_bits(dst_ofs) | mocs;
659
660 bb->len = cs - bb->cs;
661 }
662
663 #define EMIT_COPY_DW 10
emit_copy(struct xe_gt * gt,struct xe_bb * bb,u64 src_ofs,u64 dst_ofs,unsigned int size,unsigned int pitch)664 static void emit_copy(struct xe_gt *gt, struct xe_bb *bb,
665 u64 src_ofs, u64 dst_ofs, unsigned int size,
666 unsigned int pitch)
667 {
668 struct xe_device *xe = gt_to_xe(gt);
669 u32 mocs = 0;
670 u32 tile_y = 0;
671
672 xe_gt_assert(gt, !(pitch & 3));
673 xe_gt_assert(gt, size / pitch <= S16_MAX);
674 xe_gt_assert(gt, pitch / 4 <= S16_MAX);
675 xe_gt_assert(gt, pitch <= U16_MAX);
676
677 if (GRAPHICS_VER(xe) >= 20)
678 mocs = FIELD_PREP(XE2_XY_FAST_COPY_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index);
679
680 if (GRAPHICS_VERx100(xe) >= 1250)
681 tile_y = XY_FAST_COPY_BLT_D1_SRC_TILE4 | XY_FAST_COPY_BLT_D1_DST_TILE4;
682
683 bb->cs[bb->len++] = XY_FAST_COPY_BLT_CMD | (10 - 2);
684 bb->cs[bb->len++] = XY_FAST_COPY_BLT_DEPTH_32 | pitch | tile_y | mocs;
685 bb->cs[bb->len++] = 0;
686 bb->cs[bb->len++] = (size / pitch) << 16 | pitch / 4;
687 bb->cs[bb->len++] = lower_32_bits(dst_ofs);
688 bb->cs[bb->len++] = upper_32_bits(dst_ofs);
689 bb->cs[bb->len++] = 0;
690 bb->cs[bb->len++] = pitch | mocs;
691 bb->cs[bb->len++] = lower_32_bits(src_ofs);
692 bb->cs[bb->len++] = upper_32_bits(src_ofs);
693 }
694
xe_migrate_batch_base(struct xe_migrate * m,bool usm)695 static u64 xe_migrate_batch_base(struct xe_migrate *m, bool usm)
696 {
697 return usm ? m->usm_batch_base_ofs : m->batch_base_ofs;
698 }
699
xe_migrate_ccs_copy(struct xe_migrate * m,struct xe_bb * bb,u64 src_ofs,bool src_is_indirect,u64 dst_ofs,bool dst_is_indirect,u32 dst_size,u64 ccs_ofs,bool copy_ccs)700 static u32 xe_migrate_ccs_copy(struct xe_migrate *m,
701 struct xe_bb *bb,
702 u64 src_ofs, bool src_is_indirect,
703 u64 dst_ofs, bool dst_is_indirect, u32 dst_size,
704 u64 ccs_ofs, bool copy_ccs)
705 {
706 struct xe_gt *gt = m->tile->primary_gt;
707 u32 flush_flags = 0;
708
709 if (!copy_ccs && dst_is_indirect) {
710 /*
711 * If the src is already in vram, then it should already
712 * have been cleared by us, or has been populated by the
713 * user. Make sure we copy the CCS aux state as-is.
714 *
715 * Otherwise if the bo doesn't have any CCS metadata attached,
716 * we still need to clear it for security reasons.
717 */
718 u64 ccs_src_ofs = src_is_indirect ? src_ofs : m->cleared_mem_ofs;
719
720 emit_copy_ccs(gt, bb,
721 dst_ofs, true,
722 ccs_src_ofs, src_is_indirect, dst_size);
723
724 flush_flags = MI_FLUSH_DW_CCS;
725 } else if (copy_ccs) {
726 if (!src_is_indirect)
727 src_ofs = ccs_ofs;
728 else if (!dst_is_indirect)
729 dst_ofs = ccs_ofs;
730
731 xe_gt_assert(gt, src_is_indirect || dst_is_indirect);
732
733 emit_copy_ccs(gt, bb, dst_ofs, dst_is_indirect, src_ofs,
734 src_is_indirect, dst_size);
735 if (dst_is_indirect)
736 flush_flags = MI_FLUSH_DW_CCS;
737 }
738
739 return flush_flags;
740 }
741
742 /**
743 * xe_migrate_copy() - Copy content of TTM resources.
744 * @m: The migration context.
745 * @src_bo: The buffer object @src is currently bound to.
746 * @dst_bo: If copying between resources created for the same bo, set this to
747 * the same value as @src_bo. If copying between buffer objects, set it to
748 * the buffer object @dst is currently bound to.
749 * @src: The source TTM resource.
750 * @dst: The dst TTM resource.
751 * @copy_only_ccs: If true copy only CCS metadata
752 *
753 * Copies the contents of @src to @dst: On flat CCS devices,
754 * the CCS metadata is copied as well if needed, or if not present,
755 * the CCS metadata of @dst is cleared for security reasons.
756 *
757 * Return: Pointer to a dma_fence representing the last copy batch, or
758 * an error pointer on failure. If there is a failure, any copy operation
759 * started by the function call has been synced.
760 */
xe_migrate_copy(struct xe_migrate * m,struct xe_bo * src_bo,struct xe_bo * dst_bo,struct ttm_resource * src,struct ttm_resource * dst,bool copy_only_ccs)761 struct dma_fence *xe_migrate_copy(struct xe_migrate *m,
762 struct xe_bo *src_bo,
763 struct xe_bo *dst_bo,
764 struct ttm_resource *src,
765 struct ttm_resource *dst,
766 bool copy_only_ccs)
767 {
768 struct xe_gt *gt = m->tile->primary_gt;
769 struct xe_device *xe = gt_to_xe(gt);
770 struct dma_fence *fence = NULL;
771 u64 size = src_bo->size;
772 struct xe_res_cursor src_it, dst_it, ccs_it;
773 u64 src_L0_ofs, dst_L0_ofs;
774 u32 src_L0_pt, dst_L0_pt;
775 u64 src_L0, dst_L0;
776 int pass = 0;
777 int err;
778 bool src_is_pltt = src->mem_type == XE_PL_TT;
779 bool dst_is_pltt = dst->mem_type == XE_PL_TT;
780 bool src_is_vram = mem_type_is_vram(src->mem_type);
781 bool dst_is_vram = mem_type_is_vram(dst->mem_type);
782 bool type_device = src_bo->ttm.type == ttm_bo_type_device;
783 bool needs_ccs_emit = type_device && xe_migrate_needs_ccs_emit(xe);
784 bool copy_ccs = xe_device_has_flat_ccs(xe) &&
785 xe_bo_needs_ccs_pages(src_bo) && xe_bo_needs_ccs_pages(dst_bo);
786 bool copy_system_ccs = copy_ccs && (!src_is_vram || !dst_is_vram);
787 bool use_comp_pat = type_device && xe_device_has_flat_ccs(xe) &&
788 GRAPHICS_VER(xe) >= 20 && src_is_vram && !dst_is_vram;
789
790 /* Copying CCS between two different BOs is not supported yet. */
791 if (XE_WARN_ON(copy_ccs && src_bo != dst_bo))
792 return ERR_PTR(-EINVAL);
793
794 if (src_bo != dst_bo && XE_WARN_ON(src_bo->size != dst_bo->size))
795 return ERR_PTR(-EINVAL);
796
797 if (!src_is_vram)
798 xe_res_first_sg(xe_bo_sg(src_bo), 0, size, &src_it);
799 else
800 xe_res_first(src, 0, size, &src_it);
801 if (!dst_is_vram)
802 xe_res_first_sg(xe_bo_sg(dst_bo), 0, size, &dst_it);
803 else
804 xe_res_first(dst, 0, size, &dst_it);
805
806 if (copy_system_ccs)
807 xe_res_first_sg(xe_bo_sg(src_bo), xe_bo_ccs_pages_start(src_bo),
808 PAGE_ALIGN(xe_device_ccs_bytes(xe, size)),
809 &ccs_it);
810
811 while (size) {
812 u32 batch_size = 2; /* arb_clear() + MI_BATCH_BUFFER_END */
813 struct xe_sched_job *job;
814 struct xe_bb *bb;
815 u32 flush_flags = 0;
816 u32 update_idx;
817 u64 ccs_ofs, ccs_size;
818 u32 ccs_pt;
819 u32 pte_flags;
820
821 bool usm = xe->info.has_usm;
822 u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE;
823
824 src_L0 = xe_migrate_res_sizes(m, &src_it);
825 dst_L0 = xe_migrate_res_sizes(m, &dst_it);
826
827 drm_dbg(&xe->drm, "Pass %u, sizes: %llu & %llu\n",
828 pass++, src_L0, dst_L0);
829
830 src_L0 = min(src_L0, dst_L0);
831
832 pte_flags = src_is_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0;
833 pte_flags |= use_comp_pat ? PTE_UPDATE_FLAG_IS_COMP_PTE : 0;
834 batch_size += pte_update_size(m, pte_flags, src, &src_it, &src_L0,
835 &src_L0_ofs, &src_L0_pt, 0, 0,
836 avail_pts);
837
838 pte_flags = dst_is_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0;
839 batch_size += pte_update_size(m, pte_flags, dst, &dst_it, &src_L0,
840 &dst_L0_ofs, &dst_L0_pt, 0,
841 avail_pts, avail_pts);
842
843 if (copy_system_ccs) {
844 xe_assert(xe, type_device);
845 ccs_size = xe_device_ccs_bytes(xe, src_L0);
846 batch_size += pte_update_size(m, 0, NULL, &ccs_it, &ccs_size,
847 &ccs_ofs, &ccs_pt, 0,
848 2 * avail_pts,
849 avail_pts);
850 xe_assert(xe, IS_ALIGNED(ccs_it.start, PAGE_SIZE));
851 }
852
853 /* Add copy commands size here */
854 batch_size += ((copy_only_ccs) ? 0 : EMIT_COPY_DW) +
855 ((needs_ccs_emit ? EMIT_COPY_CCS_DW : 0));
856
857 bb = xe_bb_new(gt, batch_size, usm);
858 if (IS_ERR(bb)) {
859 err = PTR_ERR(bb);
860 goto err_sync;
861 }
862
863 if (src_is_vram && xe_migrate_allow_identity(src_L0, &src_it))
864 xe_res_next(&src_it, src_L0);
865 else
866 emit_pte(m, bb, src_L0_pt, src_is_vram, copy_system_ccs,
867 &src_it, src_L0, src);
868
869 if (dst_is_vram && xe_migrate_allow_identity(src_L0, &dst_it))
870 xe_res_next(&dst_it, src_L0);
871 else
872 emit_pte(m, bb, dst_L0_pt, dst_is_vram, copy_system_ccs,
873 &dst_it, src_L0, dst);
874
875 if (copy_system_ccs)
876 emit_pte(m, bb, ccs_pt, false, false, &ccs_it, ccs_size, src);
877
878 bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
879 update_idx = bb->len;
880
881 if (!copy_only_ccs)
882 emit_copy(gt, bb, src_L0_ofs, dst_L0_ofs, src_L0, XE_PAGE_SIZE);
883
884 if (needs_ccs_emit)
885 flush_flags = xe_migrate_ccs_copy(m, bb, src_L0_ofs,
886 IS_DGFX(xe) ? src_is_vram : src_is_pltt,
887 dst_L0_ofs,
888 IS_DGFX(xe) ? dst_is_vram : dst_is_pltt,
889 src_L0, ccs_ofs, copy_ccs);
890
891 job = xe_bb_create_migration_job(m->q, bb,
892 xe_migrate_batch_base(m, usm),
893 update_idx);
894 if (IS_ERR(job)) {
895 err = PTR_ERR(job);
896 goto err;
897 }
898
899 xe_sched_job_add_migrate_flush(job, flush_flags);
900 if (!fence) {
901 err = xe_sched_job_add_deps(job, src_bo->ttm.base.resv,
902 DMA_RESV_USAGE_BOOKKEEP);
903 if (!err && src_bo != dst_bo)
904 err = xe_sched_job_add_deps(job, dst_bo->ttm.base.resv,
905 DMA_RESV_USAGE_BOOKKEEP);
906 if (err)
907 goto err_job;
908 }
909
910 mutex_lock(&m->job_mutex);
911 xe_sched_job_arm(job);
912 dma_fence_put(fence);
913 fence = dma_fence_get(&job->drm.s_fence->finished);
914 xe_sched_job_push(job);
915
916 dma_fence_put(m->fence);
917 m->fence = dma_fence_get(fence);
918
919 mutex_unlock(&m->job_mutex);
920
921 xe_bb_free(bb, fence);
922 size -= src_L0;
923 continue;
924
925 err_job:
926 xe_sched_job_put(job);
927 err:
928 xe_bb_free(bb, NULL);
929
930 err_sync:
931 /* Sync partial copy if any. FIXME: under job_mutex? */
932 if (fence) {
933 dma_fence_wait(fence, false);
934 dma_fence_put(fence);
935 }
936
937 return ERR_PTR(err);
938 }
939
940 return fence;
941 }
942
emit_clear_link_copy(struct xe_gt * gt,struct xe_bb * bb,u64 src_ofs,u32 size,u32 pitch)943 static void emit_clear_link_copy(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs,
944 u32 size, u32 pitch)
945 {
946 struct xe_device *xe = gt_to_xe(gt);
947 u32 *cs = bb->cs + bb->len;
948 u32 len = PVC_MEM_SET_CMD_LEN_DW;
949
950 *cs++ = PVC_MEM_SET_CMD | PVC_MEM_SET_MATRIX | (len - 2);
951 *cs++ = pitch - 1;
952 *cs++ = (size / pitch) - 1;
953 *cs++ = pitch - 1;
954 *cs++ = lower_32_bits(src_ofs);
955 *cs++ = upper_32_bits(src_ofs);
956 if (GRAPHICS_VERx100(xe) >= 2000)
957 *cs++ = FIELD_PREP(XE2_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index);
958 else
959 *cs++ = FIELD_PREP(PVC_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index);
960
961 xe_gt_assert(gt, cs - bb->cs == len + bb->len);
962
963 bb->len += len;
964 }
965
emit_clear_main_copy(struct xe_gt * gt,struct xe_bb * bb,u64 src_ofs,u32 size,u32 pitch,bool is_vram)966 static void emit_clear_main_copy(struct xe_gt *gt, struct xe_bb *bb,
967 u64 src_ofs, u32 size, u32 pitch, bool is_vram)
968 {
969 struct xe_device *xe = gt_to_xe(gt);
970 u32 *cs = bb->cs + bb->len;
971 u32 len = XY_FAST_COLOR_BLT_DW;
972
973 if (GRAPHICS_VERx100(xe) < 1250)
974 len = 11;
975
976 *cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 |
977 (len - 2);
978 if (GRAPHICS_VERx100(xe) >= 2000)
979 *cs++ = FIELD_PREP(XE2_XY_FAST_COLOR_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index) |
980 (pitch - 1);
981 else
982 *cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, gt->mocs.uc_index) |
983 (pitch - 1);
984 *cs++ = 0;
985 *cs++ = (size / pitch) << 16 | pitch / 4;
986 *cs++ = lower_32_bits(src_ofs);
987 *cs++ = upper_32_bits(src_ofs);
988 *cs++ = (is_vram ? 0x0 : 0x1) << XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT;
989 *cs++ = 0;
990 *cs++ = 0;
991 *cs++ = 0;
992 *cs++ = 0;
993
994 if (len > 11) {
995 *cs++ = 0;
996 *cs++ = 0;
997 *cs++ = 0;
998 *cs++ = 0;
999 *cs++ = 0;
1000 }
1001
1002 xe_gt_assert(gt, cs - bb->cs == len + bb->len);
1003
1004 bb->len += len;
1005 }
1006
has_service_copy_support(struct xe_gt * gt)1007 static bool has_service_copy_support(struct xe_gt *gt)
1008 {
1009 /*
1010 * What we care about is whether the architecture was designed with
1011 * service copy functionality (specifically the new MEM_SET / MEM_COPY
1012 * instructions) so check the architectural engine list rather than the
1013 * actual list since these instructions are usable on BCS0 even if
1014 * all of the actual service copy engines (BCS1-BCS8) have been fused
1015 * off.
1016 */
1017 return gt->info.engine_mask & GENMASK(XE_HW_ENGINE_BCS8,
1018 XE_HW_ENGINE_BCS1);
1019 }
1020
emit_clear_cmd_len(struct xe_gt * gt)1021 static u32 emit_clear_cmd_len(struct xe_gt *gt)
1022 {
1023 if (has_service_copy_support(gt))
1024 return PVC_MEM_SET_CMD_LEN_DW;
1025 else
1026 return XY_FAST_COLOR_BLT_DW;
1027 }
1028
emit_clear(struct xe_gt * gt,struct xe_bb * bb,u64 src_ofs,u32 size,u32 pitch,bool is_vram)1029 static void emit_clear(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs,
1030 u32 size, u32 pitch, bool is_vram)
1031 {
1032 if (has_service_copy_support(gt))
1033 emit_clear_link_copy(gt, bb, src_ofs, size, pitch);
1034 else
1035 emit_clear_main_copy(gt, bb, src_ofs, size, pitch,
1036 is_vram);
1037 }
1038
1039 /**
1040 * xe_migrate_clear() - Copy content of TTM resources.
1041 * @m: The migration context.
1042 * @bo: The buffer object @dst is currently bound to.
1043 * @dst: The dst TTM resource to be cleared.
1044 * @clear_flags: flags to specify which data to clear: CCS, BO, or both.
1045 *
1046 * Clear the contents of @dst to zero when XE_MIGRATE_CLEAR_FLAG_BO_DATA is set.
1047 * On flat CCS devices, the CCS metadata is cleared to zero with XE_MIGRATE_CLEAR_FLAG_CCS_DATA.
1048 * Set XE_MIGRATE_CLEAR_FLAG_FULL to clear bo as well as CCS metadata.
1049 * TODO: Eliminate the @bo argument.
1050 *
1051 * Return: Pointer to a dma_fence representing the last clear batch, or
1052 * an error pointer on failure. If there is a failure, any clear operation
1053 * started by the function call has been synced.
1054 */
xe_migrate_clear(struct xe_migrate * m,struct xe_bo * bo,struct ttm_resource * dst,u32 clear_flags)1055 struct dma_fence *xe_migrate_clear(struct xe_migrate *m,
1056 struct xe_bo *bo,
1057 struct ttm_resource *dst,
1058 u32 clear_flags)
1059 {
1060 bool clear_vram = mem_type_is_vram(dst->mem_type);
1061 bool clear_bo_data = XE_MIGRATE_CLEAR_FLAG_BO_DATA & clear_flags;
1062 bool clear_ccs = XE_MIGRATE_CLEAR_FLAG_CCS_DATA & clear_flags;
1063 struct xe_gt *gt = m->tile->primary_gt;
1064 struct xe_device *xe = gt_to_xe(gt);
1065 bool clear_only_system_ccs = false;
1066 struct dma_fence *fence = NULL;
1067 u64 size = bo->size;
1068 struct xe_res_cursor src_it;
1069 struct ttm_resource *src = dst;
1070 int err;
1071
1072 if (WARN_ON(!clear_bo_data && !clear_ccs))
1073 return NULL;
1074
1075 if (!clear_bo_data && clear_ccs && !IS_DGFX(xe))
1076 clear_only_system_ccs = true;
1077
1078 if (!clear_vram)
1079 xe_res_first_sg(xe_bo_sg(bo), 0, bo->size, &src_it);
1080 else
1081 xe_res_first(src, 0, bo->size, &src_it);
1082
1083 while (size) {
1084 u64 clear_L0_ofs;
1085 u32 clear_L0_pt;
1086 u32 flush_flags = 0;
1087 u64 clear_L0;
1088 struct xe_sched_job *job;
1089 struct xe_bb *bb;
1090 u32 batch_size, update_idx;
1091 u32 pte_flags;
1092
1093 bool usm = xe->info.has_usm;
1094 u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE;
1095
1096 clear_L0 = xe_migrate_res_sizes(m, &src_it);
1097
1098 /* Calculate final sizes and batch size.. */
1099 pte_flags = clear_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0;
1100 batch_size = 2 +
1101 pte_update_size(m, pte_flags, src, &src_it,
1102 &clear_L0, &clear_L0_ofs, &clear_L0_pt,
1103 clear_bo_data ? emit_clear_cmd_len(gt) : 0, 0,
1104 avail_pts);
1105
1106 if (xe_migrate_needs_ccs_emit(xe))
1107 batch_size += EMIT_COPY_CCS_DW;
1108
1109 /* Clear commands */
1110
1111 if (WARN_ON_ONCE(!clear_L0))
1112 break;
1113
1114 bb = xe_bb_new(gt, batch_size, usm);
1115 if (IS_ERR(bb)) {
1116 err = PTR_ERR(bb);
1117 goto err_sync;
1118 }
1119
1120 size -= clear_L0;
1121 /* Preemption is enabled again by the ring ops. */
1122 if (clear_vram && xe_migrate_allow_identity(clear_L0, &src_it))
1123 xe_res_next(&src_it, clear_L0);
1124 else
1125 emit_pte(m, bb, clear_L0_pt, clear_vram, clear_only_system_ccs,
1126 &src_it, clear_L0, dst);
1127
1128 bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1129 update_idx = bb->len;
1130
1131 if (clear_bo_data)
1132 emit_clear(gt, bb, clear_L0_ofs, clear_L0, XE_PAGE_SIZE, clear_vram);
1133
1134 if (xe_migrate_needs_ccs_emit(xe)) {
1135 emit_copy_ccs(gt, bb, clear_L0_ofs, true,
1136 m->cleared_mem_ofs, false, clear_L0);
1137 flush_flags = MI_FLUSH_DW_CCS;
1138 }
1139
1140 job = xe_bb_create_migration_job(m->q, bb,
1141 xe_migrate_batch_base(m, usm),
1142 update_idx);
1143 if (IS_ERR(job)) {
1144 err = PTR_ERR(job);
1145 goto err;
1146 }
1147
1148 xe_sched_job_add_migrate_flush(job, flush_flags);
1149 if (!fence) {
1150 /*
1151 * There can't be anything userspace related at this
1152 * point, so we just need to respect any potential move
1153 * fences, which are always tracked as
1154 * DMA_RESV_USAGE_KERNEL.
1155 */
1156 err = xe_sched_job_add_deps(job, bo->ttm.base.resv,
1157 DMA_RESV_USAGE_KERNEL);
1158 if (err)
1159 goto err_job;
1160 }
1161
1162 mutex_lock(&m->job_mutex);
1163 xe_sched_job_arm(job);
1164 dma_fence_put(fence);
1165 fence = dma_fence_get(&job->drm.s_fence->finished);
1166 xe_sched_job_push(job);
1167
1168 dma_fence_put(m->fence);
1169 m->fence = dma_fence_get(fence);
1170
1171 mutex_unlock(&m->job_mutex);
1172
1173 xe_bb_free(bb, fence);
1174 continue;
1175
1176 err_job:
1177 xe_sched_job_put(job);
1178 err:
1179 xe_bb_free(bb, NULL);
1180 err_sync:
1181 /* Sync partial copies if any. FIXME: job_mutex? */
1182 if (fence) {
1183 dma_fence_wait(fence, false);
1184 dma_fence_put(fence);
1185 }
1186
1187 return ERR_PTR(err);
1188 }
1189
1190 if (clear_ccs)
1191 bo->ccs_cleared = true;
1192
1193 return fence;
1194 }
1195
write_pgtable(struct xe_tile * tile,struct xe_bb * bb,u64 ppgtt_ofs,const struct xe_vm_pgtable_update_op * pt_op,const struct xe_vm_pgtable_update * update,struct xe_migrate_pt_update * pt_update)1196 static void write_pgtable(struct xe_tile *tile, struct xe_bb *bb, u64 ppgtt_ofs,
1197 const struct xe_vm_pgtable_update_op *pt_op,
1198 const struct xe_vm_pgtable_update *update,
1199 struct xe_migrate_pt_update *pt_update)
1200 {
1201 const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
1202 u32 chunk;
1203 u32 ofs = update->ofs, size = update->qwords;
1204
1205 /*
1206 * If we have 512 entries (max), we would populate it ourselves,
1207 * and update the PDE above it to the new pointer.
1208 * The only time this can only happen if we have to update the top
1209 * PDE. This requires a BO that is almost vm->size big.
1210 *
1211 * This shouldn't be possible in practice.. might change when 16K
1212 * pages are used. Hence the assert.
1213 */
1214 xe_tile_assert(tile, update->qwords < MAX_NUM_PTE);
1215 if (!ppgtt_ofs)
1216 ppgtt_ofs = xe_migrate_vram_ofs(tile_to_xe(tile),
1217 xe_bo_addr(update->pt_bo, 0,
1218 XE_PAGE_SIZE), false);
1219
1220 do {
1221 u64 addr = ppgtt_ofs + ofs * 8;
1222
1223 chunk = min(size, MAX_PTE_PER_SDI);
1224
1225 /* Ensure populatefn can do memset64 by aligning bb->cs */
1226 if (!(bb->len & 1))
1227 bb->cs[bb->len++] = MI_NOOP;
1228
1229 bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
1230 bb->cs[bb->len++] = lower_32_bits(addr);
1231 bb->cs[bb->len++] = upper_32_bits(addr);
1232 if (pt_op->bind)
1233 ops->populate(pt_update, tile, NULL, bb->cs + bb->len,
1234 ofs, chunk, update);
1235 else
1236 ops->clear(pt_update, tile, NULL, bb->cs + bb->len,
1237 ofs, chunk, update);
1238
1239 bb->len += chunk * 2;
1240 ofs += chunk;
1241 size -= chunk;
1242 } while (size);
1243 }
1244
xe_migrate_get_vm(struct xe_migrate * m)1245 struct xe_vm *xe_migrate_get_vm(struct xe_migrate *m)
1246 {
1247 return xe_vm_get(m->q->vm);
1248 }
1249
1250 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
1251 struct migrate_test_params {
1252 struct xe_test_priv base;
1253 bool force_gpu;
1254 };
1255
1256 #define to_migrate_test_params(_priv) \
1257 container_of(_priv, struct migrate_test_params, base)
1258 #endif
1259
1260 static struct dma_fence *
xe_migrate_update_pgtables_cpu(struct xe_migrate * m,struct xe_migrate_pt_update * pt_update)1261 xe_migrate_update_pgtables_cpu(struct xe_migrate *m,
1262 struct xe_migrate_pt_update *pt_update)
1263 {
1264 XE_TEST_DECLARE(struct migrate_test_params *test =
1265 to_migrate_test_params
1266 (xe_cur_kunit_priv(XE_TEST_LIVE_MIGRATE));)
1267 const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
1268 struct xe_vm *vm = pt_update->vops->vm;
1269 struct xe_vm_pgtable_update_ops *pt_update_ops =
1270 &pt_update->vops->pt_update_ops[pt_update->tile_id];
1271 int err;
1272 u32 i, j;
1273
1274 if (XE_TEST_ONLY(test && test->force_gpu))
1275 return ERR_PTR(-ETIME);
1276
1277 if (ops->pre_commit) {
1278 pt_update->job = NULL;
1279 err = ops->pre_commit(pt_update);
1280 if (err)
1281 return ERR_PTR(err);
1282 }
1283
1284 for (i = 0; i < pt_update_ops->num_ops; ++i) {
1285 const struct xe_vm_pgtable_update_op *pt_op =
1286 &pt_update_ops->ops[i];
1287
1288 for (j = 0; j < pt_op->num_entries; j++) {
1289 const struct xe_vm_pgtable_update *update =
1290 &pt_op->entries[j];
1291
1292 if (pt_op->bind)
1293 ops->populate(pt_update, m->tile,
1294 &update->pt_bo->vmap, NULL,
1295 update->ofs, update->qwords,
1296 update);
1297 else
1298 ops->clear(pt_update, m->tile,
1299 &update->pt_bo->vmap, NULL,
1300 update->ofs, update->qwords, update);
1301 }
1302 }
1303
1304 trace_xe_vm_cpu_bind(vm);
1305 xe_device_wmb(vm->xe);
1306
1307 return dma_fence_get_stub();
1308 }
1309
1310 static struct dma_fence *
__xe_migrate_update_pgtables(struct xe_migrate * m,struct xe_migrate_pt_update * pt_update,struct xe_vm_pgtable_update_ops * pt_update_ops)1311 __xe_migrate_update_pgtables(struct xe_migrate *m,
1312 struct xe_migrate_pt_update *pt_update,
1313 struct xe_vm_pgtable_update_ops *pt_update_ops)
1314 {
1315 const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
1316 struct xe_tile *tile = m->tile;
1317 struct xe_gt *gt = tile->primary_gt;
1318 struct xe_device *xe = tile_to_xe(tile);
1319 struct xe_sched_job *job;
1320 struct dma_fence *fence;
1321 struct drm_suballoc *sa_bo = NULL;
1322 struct xe_bb *bb;
1323 u32 i, j, batch_size = 0, ppgtt_ofs, update_idx, page_ofs = 0;
1324 u32 num_updates = 0, current_update = 0;
1325 u64 addr;
1326 int err = 0;
1327 bool is_migrate = pt_update_ops->q == m->q;
1328 bool usm = is_migrate && xe->info.has_usm;
1329
1330 for (i = 0; i < pt_update_ops->num_ops; ++i) {
1331 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i];
1332 struct xe_vm_pgtable_update *updates = pt_op->entries;
1333
1334 num_updates += pt_op->num_entries;
1335 for (j = 0; j < pt_op->num_entries; ++j) {
1336 u32 num_cmds = DIV_ROUND_UP(updates[j].qwords,
1337 MAX_PTE_PER_SDI);
1338
1339 /* align noop + MI_STORE_DATA_IMM cmd prefix */
1340 batch_size += 4 * num_cmds + updates[j].qwords * 2;
1341 }
1342 }
1343
1344 /* fixed + PTE entries */
1345 if (IS_DGFX(xe))
1346 batch_size += 2;
1347 else
1348 batch_size += 6 * (num_updates / MAX_PTE_PER_SDI + 1) +
1349 num_updates * 2;
1350
1351 bb = xe_bb_new(gt, batch_size, usm);
1352 if (IS_ERR(bb))
1353 return ERR_CAST(bb);
1354
1355 /* For sysmem PTE's, need to map them in our hole.. */
1356 if (!IS_DGFX(xe)) {
1357 u16 pat_index = xe->pat.idx[XE_CACHE_WB];
1358 u32 ptes, ofs;
1359
1360 ppgtt_ofs = NUM_KERNEL_PDE - 1;
1361 if (!is_migrate) {
1362 u32 num_units = DIV_ROUND_UP(num_updates,
1363 NUM_VMUSA_WRITES_PER_UNIT);
1364
1365 if (num_units > m->vm_update_sa.size) {
1366 err = -ENOBUFS;
1367 goto err_bb;
1368 }
1369 sa_bo = drm_suballoc_new(&m->vm_update_sa, num_units,
1370 GFP_KERNEL, true, 0);
1371 if (IS_ERR(sa_bo)) {
1372 err = PTR_ERR(sa_bo);
1373 goto err_bb;
1374 }
1375
1376 ppgtt_ofs = NUM_KERNEL_PDE +
1377 (drm_suballoc_soffset(sa_bo) /
1378 NUM_VMUSA_UNIT_PER_PAGE);
1379 page_ofs = (drm_suballoc_soffset(sa_bo) %
1380 NUM_VMUSA_UNIT_PER_PAGE) *
1381 VM_SA_UPDATE_UNIT_SIZE;
1382 }
1383
1384 /* Map our PT's to gtt */
1385 i = 0;
1386 j = 0;
1387 ptes = num_updates;
1388 ofs = ppgtt_ofs * XE_PAGE_SIZE + page_ofs;
1389 while (ptes) {
1390 u32 chunk = min(MAX_PTE_PER_SDI, ptes);
1391 u32 idx = 0;
1392
1393 bb->cs[bb->len++] = MI_STORE_DATA_IMM |
1394 MI_SDI_NUM_QW(chunk);
1395 bb->cs[bb->len++] = ofs;
1396 bb->cs[bb->len++] = 0; /* upper_32_bits */
1397
1398 for (; i < pt_update_ops->num_ops; ++i) {
1399 struct xe_vm_pgtable_update_op *pt_op =
1400 &pt_update_ops->ops[i];
1401 struct xe_vm_pgtable_update *updates = pt_op->entries;
1402
1403 for (; j < pt_op->num_entries; ++j, ++current_update, ++idx) {
1404 struct xe_vm *vm = pt_update->vops->vm;
1405 struct xe_bo *pt_bo = updates[j].pt_bo;
1406
1407 if (idx == chunk)
1408 goto next_cmd;
1409
1410 xe_tile_assert(tile, pt_bo->size == SZ_4K);
1411
1412 /* Map a PT at most once */
1413 if (pt_bo->update_index < 0)
1414 pt_bo->update_index = current_update;
1415
1416 addr = vm->pt_ops->pte_encode_bo(pt_bo, 0,
1417 pat_index, 0);
1418 bb->cs[bb->len++] = lower_32_bits(addr);
1419 bb->cs[bb->len++] = upper_32_bits(addr);
1420 }
1421
1422 j = 0;
1423 }
1424
1425 next_cmd:
1426 ptes -= chunk;
1427 ofs += chunk * sizeof(u64);
1428 }
1429
1430 bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1431 update_idx = bb->len;
1432
1433 addr = xe_migrate_vm_addr(ppgtt_ofs, 0) +
1434 (page_ofs / sizeof(u64)) * XE_PAGE_SIZE;
1435 for (i = 0; i < pt_update_ops->num_ops; ++i) {
1436 struct xe_vm_pgtable_update_op *pt_op =
1437 &pt_update_ops->ops[i];
1438 struct xe_vm_pgtable_update *updates = pt_op->entries;
1439
1440 for (j = 0; j < pt_op->num_entries; ++j) {
1441 struct xe_bo *pt_bo = updates[j].pt_bo;
1442
1443 write_pgtable(tile, bb, addr +
1444 pt_bo->update_index * XE_PAGE_SIZE,
1445 pt_op, &updates[j], pt_update);
1446 }
1447 }
1448 } else {
1449 /* phys pages, no preamble required */
1450 bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1451 update_idx = bb->len;
1452
1453 for (i = 0; i < pt_update_ops->num_ops; ++i) {
1454 struct xe_vm_pgtable_update_op *pt_op =
1455 &pt_update_ops->ops[i];
1456 struct xe_vm_pgtable_update *updates = pt_op->entries;
1457
1458 for (j = 0; j < pt_op->num_entries; ++j)
1459 write_pgtable(tile, bb, 0, pt_op, &updates[j],
1460 pt_update);
1461 }
1462 }
1463
1464 job = xe_bb_create_migration_job(pt_update_ops->q, bb,
1465 xe_migrate_batch_base(m, usm),
1466 update_idx);
1467 if (IS_ERR(job)) {
1468 err = PTR_ERR(job);
1469 goto err_sa;
1470 }
1471
1472 if (ops->pre_commit) {
1473 pt_update->job = job;
1474 err = ops->pre_commit(pt_update);
1475 if (err)
1476 goto err_job;
1477 }
1478 if (is_migrate)
1479 mutex_lock(&m->job_mutex);
1480
1481 xe_sched_job_arm(job);
1482 fence = dma_fence_get(&job->drm.s_fence->finished);
1483 xe_sched_job_push(job);
1484
1485 if (is_migrate)
1486 mutex_unlock(&m->job_mutex);
1487
1488 xe_bb_free(bb, fence);
1489 drm_suballoc_free(sa_bo, fence);
1490
1491 return fence;
1492
1493 err_job:
1494 xe_sched_job_put(job);
1495 err_sa:
1496 drm_suballoc_free(sa_bo, NULL);
1497 err_bb:
1498 xe_bb_free(bb, NULL);
1499 return ERR_PTR(err);
1500 }
1501
1502 /**
1503 * xe_migrate_update_pgtables() - Pipelined page-table update
1504 * @m: The migrate context.
1505 * @pt_update: PT update arguments
1506 *
1507 * Perform a pipelined page-table update. The update descriptors are typically
1508 * built under the same lock critical section as a call to this function. If
1509 * using the default engine for the updates, they will be performed in the
1510 * order they grab the job_mutex. If different engines are used, external
1511 * synchronization is needed for overlapping updates to maintain page-table
1512 * consistency. Note that the meaning of "overlapping" is that the updates
1513 * touch the same page-table, which might be a higher-level page-directory.
1514 * If no pipelining is needed, then updates may be performed by the cpu.
1515 *
1516 * Return: A dma_fence that, when signaled, indicates the update completion.
1517 */
1518 struct dma_fence *
xe_migrate_update_pgtables(struct xe_migrate * m,struct xe_migrate_pt_update * pt_update)1519 xe_migrate_update_pgtables(struct xe_migrate *m,
1520 struct xe_migrate_pt_update *pt_update)
1521
1522 {
1523 struct xe_vm_pgtable_update_ops *pt_update_ops =
1524 &pt_update->vops->pt_update_ops[pt_update->tile_id];
1525 struct dma_fence *fence;
1526
1527 fence = xe_migrate_update_pgtables_cpu(m, pt_update);
1528
1529 /* -ETIME indicates a job is needed, anything else is legit error */
1530 if (!IS_ERR(fence) || PTR_ERR(fence) != -ETIME)
1531 return fence;
1532
1533 return __xe_migrate_update_pgtables(m, pt_update, pt_update_ops);
1534 }
1535
1536 /**
1537 * xe_migrate_wait() - Complete all operations using the xe_migrate context
1538 * @m: Migrate context to wait for.
1539 *
1540 * Waits until the GPU no longer uses the migrate context's default engine
1541 * or its page-table objects. FIXME: What about separate page-table update
1542 * engines?
1543 */
xe_migrate_wait(struct xe_migrate * m)1544 void xe_migrate_wait(struct xe_migrate *m)
1545 {
1546 if (m->fence)
1547 dma_fence_wait(m->fence, false);
1548 }
1549
pte_update_cmd_size(u64 size)1550 static u32 pte_update_cmd_size(u64 size)
1551 {
1552 u32 num_dword;
1553 u64 entries = DIV_U64_ROUND_UP(size, XE_PAGE_SIZE);
1554
1555 XE_WARN_ON(size > MAX_PREEMPTDISABLE_TRANSFER);
1556 /*
1557 * MI_STORE_DATA_IMM command is used to update page table. Each
1558 * instruction can update maximumly 0x1ff pte entries. To update
1559 * n (n <= 0x1ff) pte entries, we need:
1560 * 1 dword for the MI_STORE_DATA_IMM command header (opcode etc)
1561 * 2 dword for the page table's physical location
1562 * 2*n dword for value of pte to fill (each pte entry is 2 dwords)
1563 */
1564 num_dword = (1 + 2) * DIV_U64_ROUND_UP(entries, 0x1ff);
1565 num_dword += entries * 2;
1566
1567 return num_dword;
1568 }
1569
build_pt_update_batch_sram(struct xe_migrate * m,struct xe_bb * bb,u32 pt_offset,dma_addr_t * sram_addr,u32 size)1570 static void build_pt_update_batch_sram(struct xe_migrate *m,
1571 struct xe_bb *bb, u32 pt_offset,
1572 dma_addr_t *sram_addr, u32 size)
1573 {
1574 u16 pat_index = tile_to_xe(m->tile)->pat.idx[XE_CACHE_WB];
1575 u32 ptes;
1576 int i = 0;
1577
1578 ptes = DIV_ROUND_UP(size, XE_PAGE_SIZE);
1579 while (ptes) {
1580 u32 chunk = min(0x1ffU, ptes);
1581
1582 bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
1583 bb->cs[bb->len++] = pt_offset;
1584 bb->cs[bb->len++] = 0;
1585
1586 pt_offset += chunk * 8;
1587 ptes -= chunk;
1588
1589 while (chunk--) {
1590 u64 addr = sram_addr[i++] & PAGE_MASK;
1591
1592 xe_tile_assert(m->tile, addr);
1593 addr = m->q->vm->pt_ops->pte_encode_addr(m->tile->xe,
1594 addr, pat_index,
1595 0, false, 0);
1596 bb->cs[bb->len++] = lower_32_bits(addr);
1597 bb->cs[bb->len++] = upper_32_bits(addr);
1598 }
1599 }
1600 }
1601
1602 enum xe_migrate_copy_dir {
1603 XE_MIGRATE_COPY_TO_VRAM,
1604 XE_MIGRATE_COPY_TO_SRAM,
1605 };
1606
1607 #define XE_CACHELINE_BYTES 64ull
1608 #define XE_CACHELINE_MASK (XE_CACHELINE_BYTES - 1)
1609
xe_migrate_vram(struct xe_migrate * m,unsigned long len,unsigned long sram_offset,dma_addr_t * sram_addr,u64 vram_addr,const enum xe_migrate_copy_dir dir)1610 static struct dma_fence *xe_migrate_vram(struct xe_migrate *m,
1611 unsigned long len,
1612 unsigned long sram_offset,
1613 dma_addr_t *sram_addr, u64 vram_addr,
1614 const enum xe_migrate_copy_dir dir)
1615 {
1616 struct xe_gt *gt = m->tile->primary_gt;
1617 struct xe_device *xe = gt_to_xe(gt);
1618 bool use_usm_batch = xe->info.has_usm;
1619 struct dma_fence *fence = NULL;
1620 u32 batch_size = 2;
1621 u64 src_L0_ofs, dst_L0_ofs;
1622 struct xe_sched_job *job;
1623 struct xe_bb *bb;
1624 u32 update_idx, pt_slot = 0;
1625 unsigned long npages = DIV_ROUND_UP(len + sram_offset, PAGE_SIZE);
1626 unsigned int pitch = len >= PAGE_SIZE && !(len & ~PAGE_MASK) ?
1627 PAGE_SIZE : 4;
1628 int err;
1629
1630 if (drm_WARN_ON(&xe->drm, (len & XE_CACHELINE_MASK) ||
1631 (sram_offset | vram_addr) & XE_CACHELINE_MASK))
1632 return ERR_PTR(-EOPNOTSUPP);
1633
1634 xe_assert(xe, npages * PAGE_SIZE <= MAX_PREEMPTDISABLE_TRANSFER);
1635
1636 batch_size += pte_update_cmd_size(len);
1637 batch_size += EMIT_COPY_DW;
1638
1639 bb = xe_bb_new(gt, batch_size, use_usm_batch);
1640 if (IS_ERR(bb)) {
1641 err = PTR_ERR(bb);
1642 return ERR_PTR(err);
1643 }
1644
1645 build_pt_update_batch_sram(m, bb, pt_slot * XE_PAGE_SIZE,
1646 sram_addr, len + sram_offset);
1647
1648 if (dir == XE_MIGRATE_COPY_TO_VRAM) {
1649 src_L0_ofs = xe_migrate_vm_addr(pt_slot, 0) + sram_offset;
1650 dst_L0_ofs = xe_migrate_vram_ofs(xe, vram_addr, false);
1651
1652 } else {
1653 src_L0_ofs = xe_migrate_vram_ofs(xe, vram_addr, false);
1654 dst_L0_ofs = xe_migrate_vm_addr(pt_slot, 0) + sram_offset;
1655 }
1656
1657 bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1658 update_idx = bb->len;
1659
1660 emit_copy(gt, bb, src_L0_ofs, dst_L0_ofs, len, pitch);
1661
1662 job = xe_bb_create_migration_job(m->q, bb,
1663 xe_migrate_batch_base(m, use_usm_batch),
1664 update_idx);
1665 if (IS_ERR(job)) {
1666 err = PTR_ERR(job);
1667 goto err;
1668 }
1669
1670 xe_sched_job_add_migrate_flush(job, 0);
1671
1672 mutex_lock(&m->job_mutex);
1673 xe_sched_job_arm(job);
1674 fence = dma_fence_get(&job->drm.s_fence->finished);
1675 xe_sched_job_push(job);
1676
1677 dma_fence_put(m->fence);
1678 m->fence = dma_fence_get(fence);
1679 mutex_unlock(&m->job_mutex);
1680
1681 xe_bb_free(bb, fence);
1682
1683 return fence;
1684
1685 err:
1686 xe_bb_free(bb, NULL);
1687
1688 return ERR_PTR(err);
1689 }
1690
1691 /**
1692 * xe_migrate_to_vram() - Migrate to VRAM
1693 * @m: The migration context.
1694 * @npages: Number of pages to migrate.
1695 * @src_addr: Array of dma addresses (source of migrate)
1696 * @dst_addr: Device physical address of VRAM (destination of migrate)
1697 *
1698 * Copy from an array dma addresses to a VRAM device physical address
1699 *
1700 * Return: dma fence for migrate to signal completion on succees, ERR_PTR on
1701 * failure
1702 */
xe_migrate_to_vram(struct xe_migrate * m,unsigned long npages,dma_addr_t * src_addr,u64 dst_addr)1703 struct dma_fence *xe_migrate_to_vram(struct xe_migrate *m,
1704 unsigned long npages,
1705 dma_addr_t *src_addr,
1706 u64 dst_addr)
1707 {
1708 return xe_migrate_vram(m, npages * PAGE_SIZE, 0, src_addr, dst_addr,
1709 XE_MIGRATE_COPY_TO_VRAM);
1710 }
1711
1712 /**
1713 * xe_migrate_from_vram() - Migrate from VRAM
1714 * @m: The migration context.
1715 * @npages: Number of pages to migrate.
1716 * @src_addr: Device physical address of VRAM (source of migrate)
1717 * @dst_addr: Array of dma addresses (destination of migrate)
1718 *
1719 * Copy from a VRAM device physical address to an array dma addresses
1720 *
1721 * Return: dma fence for migrate to signal completion on succees, ERR_PTR on
1722 * failure
1723 */
xe_migrate_from_vram(struct xe_migrate * m,unsigned long npages,u64 src_addr,dma_addr_t * dst_addr)1724 struct dma_fence *xe_migrate_from_vram(struct xe_migrate *m,
1725 unsigned long npages,
1726 u64 src_addr,
1727 dma_addr_t *dst_addr)
1728 {
1729 return xe_migrate_vram(m, npages * PAGE_SIZE, 0, dst_addr, src_addr,
1730 XE_MIGRATE_COPY_TO_SRAM);
1731 }
1732
xe_migrate_dma_unmap(struct xe_device * xe,dma_addr_t * dma_addr,int len,int write)1733 static void xe_migrate_dma_unmap(struct xe_device *xe, dma_addr_t *dma_addr,
1734 int len, int write)
1735 {
1736 unsigned long i, npages = DIV_ROUND_UP(len, PAGE_SIZE);
1737
1738 for (i = 0; i < npages; ++i) {
1739 if (!dma_addr[i])
1740 break;
1741
1742 dma_unmap_page(xe->drm.dev, dma_addr[i], PAGE_SIZE,
1743 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1744 }
1745 kfree(dma_addr);
1746 }
1747
xe_migrate_dma_map(struct xe_device * xe,void * buf,int len,int write)1748 static dma_addr_t *xe_migrate_dma_map(struct xe_device *xe,
1749 void *buf, int len, int write)
1750 {
1751 dma_addr_t *dma_addr;
1752 unsigned long i, npages = DIV_ROUND_UP(len, PAGE_SIZE);
1753
1754 dma_addr = kcalloc(npages, sizeof(*dma_addr), GFP_KERNEL);
1755 if (!dma_addr)
1756 return ERR_PTR(-ENOMEM);
1757
1758 for (i = 0; i < npages; ++i) {
1759 dma_addr_t addr;
1760 struct page *page;
1761
1762 if (is_vmalloc_addr(buf))
1763 page = vmalloc_to_page(buf);
1764 else
1765 page = virt_to_page(buf);
1766
1767 addr = dma_map_page(xe->drm.dev,
1768 page, 0, PAGE_SIZE,
1769 write ? DMA_TO_DEVICE :
1770 DMA_FROM_DEVICE);
1771 if (dma_mapping_error(xe->drm.dev, addr))
1772 goto err_fault;
1773
1774 dma_addr[i] = addr;
1775 buf += PAGE_SIZE;
1776 }
1777
1778 return dma_addr;
1779
1780 err_fault:
1781 xe_migrate_dma_unmap(xe, dma_addr, len, write);
1782 return ERR_PTR(-EFAULT);
1783 }
1784
1785 /**
1786 * xe_migrate_access_memory - Access memory of a BO via GPU
1787 *
1788 * @m: The migration context.
1789 * @bo: buffer object
1790 * @offset: access offset into buffer object
1791 * @buf: pointer to caller memory to read into or write from
1792 * @len: length of access
1793 * @write: write access
1794 *
1795 * Access memory of a BO via GPU either reading in or writing from a passed in
1796 * pointer. Pointer is dma mapped for GPU access and GPU commands are issued to
1797 * read to or write from pointer.
1798 *
1799 * Returns:
1800 * 0 if successful, negative error code on failure.
1801 */
xe_migrate_access_memory(struct xe_migrate * m,struct xe_bo * bo,unsigned long offset,void * buf,int len,int write)1802 int xe_migrate_access_memory(struct xe_migrate *m, struct xe_bo *bo,
1803 unsigned long offset, void *buf, int len,
1804 int write)
1805 {
1806 struct xe_tile *tile = m->tile;
1807 struct xe_device *xe = tile_to_xe(tile);
1808 struct xe_res_cursor cursor;
1809 struct dma_fence *fence = NULL;
1810 dma_addr_t *dma_addr;
1811 unsigned long page_offset = (unsigned long)buf & ~PAGE_MASK;
1812 int bytes_left = len, current_page = 0;
1813 void *orig_buf = buf;
1814
1815 xe_bo_assert_held(bo);
1816
1817 /* Use bounce buffer for small access and unaligned access */
1818 if (len & XE_CACHELINE_MASK ||
1819 ((uintptr_t)buf | offset) & XE_CACHELINE_MASK) {
1820 int buf_offset = 0;
1821
1822 /*
1823 * Less than ideal for large unaligned access but this should be
1824 * fairly rare, can fixup if this becomes common.
1825 */
1826 do {
1827 u8 bounce[XE_CACHELINE_BYTES];
1828 void *ptr = (void *)bounce;
1829 int err;
1830 int copy_bytes = min_t(int, bytes_left,
1831 XE_CACHELINE_BYTES -
1832 (offset & XE_CACHELINE_MASK));
1833 int ptr_offset = offset & XE_CACHELINE_MASK;
1834
1835 err = xe_migrate_access_memory(m, bo,
1836 offset &
1837 ~XE_CACHELINE_MASK,
1838 (void *)ptr,
1839 sizeof(bounce), 0);
1840 if (err)
1841 return err;
1842
1843 if (write) {
1844 memcpy(ptr + ptr_offset, buf + buf_offset, copy_bytes);
1845
1846 err = xe_migrate_access_memory(m, bo,
1847 offset & ~XE_CACHELINE_MASK,
1848 (void *)ptr,
1849 sizeof(bounce), 0);
1850 if (err)
1851 return err;
1852 } else {
1853 memcpy(buf + buf_offset, ptr + ptr_offset,
1854 copy_bytes);
1855 }
1856
1857 bytes_left -= copy_bytes;
1858 buf_offset += copy_bytes;
1859 offset += copy_bytes;
1860 } while (bytes_left);
1861
1862 return 0;
1863 }
1864
1865 dma_addr = xe_migrate_dma_map(xe, buf, len + page_offset, write);
1866 if (IS_ERR(dma_addr))
1867 return PTR_ERR(dma_addr);
1868
1869 xe_res_first(bo->ttm.resource, offset, bo->size - offset, &cursor);
1870
1871 do {
1872 struct dma_fence *__fence;
1873 u64 vram_addr = vram_region_gpu_offset(bo->ttm.resource) +
1874 cursor.start;
1875 int current_bytes;
1876
1877 if (cursor.size > MAX_PREEMPTDISABLE_TRANSFER)
1878 current_bytes = min_t(int, bytes_left,
1879 MAX_PREEMPTDISABLE_TRANSFER);
1880 else
1881 current_bytes = min_t(int, bytes_left, cursor.size);
1882
1883 if (fence)
1884 dma_fence_put(fence);
1885
1886 __fence = xe_migrate_vram(m, current_bytes,
1887 (unsigned long)buf & ~PAGE_MASK,
1888 dma_addr + current_page,
1889 vram_addr, write ?
1890 XE_MIGRATE_COPY_TO_VRAM :
1891 XE_MIGRATE_COPY_TO_SRAM);
1892 if (IS_ERR(__fence)) {
1893 if (fence)
1894 dma_fence_wait(fence, false);
1895 fence = __fence;
1896 goto out_err;
1897 }
1898 fence = __fence;
1899
1900 buf += current_bytes;
1901 offset += current_bytes;
1902 current_page = (int)(buf - orig_buf) / PAGE_SIZE;
1903 bytes_left -= current_bytes;
1904 if (bytes_left)
1905 xe_res_next(&cursor, current_bytes);
1906 } while (bytes_left);
1907
1908 dma_fence_wait(fence, false);
1909 dma_fence_put(fence);
1910
1911 out_err:
1912 xe_migrate_dma_unmap(xe, dma_addr, len + page_offset, write);
1913 return IS_ERR(fence) ? PTR_ERR(fence) : 0;
1914 }
1915
1916 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
1917 #include "tests/xe_migrate.c"
1918 #endif
1919