xref: /linux/drivers/gpu/drm/xe/xe_guc_ct.c (revision 42b16d3ac371a2fac9b6f08fd75f23f34ba3955a)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc_ct.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/circ_buf.h>
10 #include <linux/delay.h>
11 
12 #include <kunit/static_stub.h>
13 
14 #include <drm/drm_managed.h>
15 
16 #include "abi/guc_actions_abi.h"
17 #include "abi/guc_actions_sriov_abi.h"
18 #include "abi/guc_klvs_abi.h"
19 #include "xe_bo.h"
20 #include "xe_device.h"
21 #include "xe_gt.h"
22 #include "xe_gt_pagefault.h"
23 #include "xe_gt_printk.h"
24 #include "xe_gt_sriov_pf_control.h"
25 #include "xe_gt_sriov_pf_monitor.h"
26 #include "xe_gt_tlb_invalidation.h"
27 #include "xe_guc.h"
28 #include "xe_guc_relay.h"
29 #include "xe_guc_submit.h"
30 #include "xe_map.h"
31 #include "xe_pm.h"
32 #include "xe_trace_guc.h"
33 
34 /* Used when a CT send wants to block and / or receive data */
35 struct g2h_fence {
36 	u32 *response_buffer;
37 	u32 seqno;
38 	u32 response_data;
39 	u16 response_len;
40 	u16 error;
41 	u16 hint;
42 	u16 reason;
43 	bool retry;
44 	bool fail;
45 	bool done;
46 };
47 
g2h_fence_init(struct g2h_fence * g2h_fence,u32 * response_buffer)48 static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer)
49 {
50 	g2h_fence->response_buffer = response_buffer;
51 	g2h_fence->response_data = 0;
52 	g2h_fence->response_len = 0;
53 	g2h_fence->fail = false;
54 	g2h_fence->retry = false;
55 	g2h_fence->done = false;
56 	g2h_fence->seqno = ~0x0;
57 }
58 
g2h_fence_needs_alloc(struct g2h_fence * g2h_fence)59 static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence)
60 {
61 	return g2h_fence->seqno == ~0x0;
62 }
63 
64 static struct xe_guc *
ct_to_guc(struct xe_guc_ct * ct)65 ct_to_guc(struct xe_guc_ct *ct)
66 {
67 	return container_of(ct, struct xe_guc, ct);
68 }
69 
70 static struct xe_gt *
ct_to_gt(struct xe_guc_ct * ct)71 ct_to_gt(struct xe_guc_ct *ct)
72 {
73 	return container_of(ct, struct xe_gt, uc.guc.ct);
74 }
75 
76 static struct xe_device *
ct_to_xe(struct xe_guc_ct * ct)77 ct_to_xe(struct xe_guc_ct *ct)
78 {
79 	return gt_to_xe(ct_to_gt(ct));
80 }
81 
82 /**
83  * DOC: GuC CTB Blob
84  *
85  * We allocate single blob to hold both CTB descriptors and buffers:
86  *
87  *      +--------+-----------------------------------------------+------+
88  *      | offset | contents                                      | size |
89  *      +========+===============================================+======+
90  *      | 0x0000 | H2G CTB Descriptor (send)                     |      |
91  *      +--------+-----------------------------------------------+  4K  |
92  *      | 0x0800 | G2H CTB Descriptor (g2h)                      |      |
93  *      +--------+-----------------------------------------------+------+
94  *      | 0x1000 | H2G CT Buffer (send)                          | n*4K |
95  *      |        |                                               |      |
96  *      +--------+-----------------------------------------------+------+
97  *      | 0x1000 | G2H CT Buffer (g2h)                           | m*4K |
98  *      | + n*4K |                                               |      |
99  *      +--------+-----------------------------------------------+------+
100  *
101  * Size of each ``CT Buffer`` must be multiple of 4K.
102  * We don't expect too many messages in flight at any time, unless we are
103  * using the GuC submission. In that case each request requires a minimum
104  * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
105  * enough space to avoid backpressure on the driver. We increase the size
106  * of the receive buffer (relative to the send) to ensure a G2H response
107  * CTB has a landing spot.
108  *
109  * In addition to submissions, the G2H buffer needs to be able to hold
110  * enough space for recoverable page fault notifications. The number of
111  * page faults is interrupt driven and can be as much as the number of
112  * compute resources available. However, most of the actual work for these
113  * is in a separate page fault worker thread. Therefore we only need to
114  * make sure the queue has enough space to handle all of the submissions
115  * and responses and an extra buffer for incoming page faults.
116  */
117 
118 #define CTB_DESC_SIZE		ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
119 #define CTB_H2G_BUFFER_SIZE	(SZ_4K)
120 #define CTB_G2H_BUFFER_SIZE	(SZ_128K)
121 #define G2H_ROOM_BUFFER_SIZE	(CTB_G2H_BUFFER_SIZE / 2)
122 
123 /**
124  * xe_guc_ct_queue_proc_time_jiffies - Return maximum time to process a full
125  * CT command queue
126  * @ct: the &xe_guc_ct. Unused at this moment but will be used in the future.
127  *
128  * Observation is that a 4KiB buffer full of commands takes a little over a
129  * second to process. Use that to calculate maximum time to process a full CT
130  * command queue.
131  *
132  * Return: Maximum time to process a full CT queue in jiffies.
133  */
xe_guc_ct_queue_proc_time_jiffies(struct xe_guc_ct * ct)134 long xe_guc_ct_queue_proc_time_jiffies(struct xe_guc_ct *ct)
135 {
136 	BUILD_BUG_ON(!IS_ALIGNED(CTB_H2G_BUFFER_SIZE, SZ_4));
137 	return (CTB_H2G_BUFFER_SIZE / SZ_4K) * HZ;
138 }
139 
guc_ct_size(void)140 static size_t guc_ct_size(void)
141 {
142 	return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE +
143 		CTB_G2H_BUFFER_SIZE;
144 }
145 
guc_ct_fini(struct drm_device * drm,void * arg)146 static void guc_ct_fini(struct drm_device *drm, void *arg)
147 {
148 	struct xe_guc_ct *ct = arg;
149 
150 	destroy_workqueue(ct->g2h_wq);
151 	xa_destroy(&ct->fence_lookup);
152 }
153 
154 static void receive_g2h(struct xe_guc_ct *ct);
155 static void g2h_worker_func(struct work_struct *w);
156 static void safe_mode_worker_func(struct work_struct *w);
157 
primelockdep(struct xe_guc_ct * ct)158 static void primelockdep(struct xe_guc_ct *ct)
159 {
160 	if (!IS_ENABLED(CONFIG_LOCKDEP))
161 		return;
162 
163 	fs_reclaim_acquire(GFP_KERNEL);
164 	might_lock(&ct->lock);
165 	fs_reclaim_release(GFP_KERNEL);
166 }
167 
xe_guc_ct_init(struct xe_guc_ct * ct)168 int xe_guc_ct_init(struct xe_guc_ct *ct)
169 {
170 	struct xe_device *xe = ct_to_xe(ct);
171 	struct xe_gt *gt = ct_to_gt(ct);
172 	struct xe_tile *tile = gt_to_tile(gt);
173 	struct xe_bo *bo;
174 	int err;
175 
176 	xe_gt_assert(gt, !(guc_ct_size() % PAGE_SIZE));
177 
178 	ct->g2h_wq = alloc_ordered_workqueue("xe-g2h-wq", 0);
179 	if (!ct->g2h_wq)
180 		return -ENOMEM;
181 
182 	spin_lock_init(&ct->fast_lock);
183 	xa_init(&ct->fence_lookup);
184 	INIT_WORK(&ct->g2h_worker, g2h_worker_func);
185 	INIT_DELAYED_WORK(&ct->safe_mode_worker,  safe_mode_worker_func);
186 	init_waitqueue_head(&ct->wq);
187 	init_waitqueue_head(&ct->g2h_fence_wq);
188 
189 	err = drmm_mutex_init(&xe->drm, &ct->lock);
190 	if (err)
191 		return err;
192 
193 	primelockdep(ct);
194 
195 	bo = xe_managed_bo_create_pin_map(xe, tile, guc_ct_size(),
196 					  XE_BO_FLAG_SYSTEM |
197 					  XE_BO_FLAG_GGTT |
198 					  XE_BO_FLAG_GGTT_INVALIDATE);
199 	if (IS_ERR(bo))
200 		return PTR_ERR(bo);
201 
202 	ct->bo = bo;
203 
204 	err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct);
205 	if (err)
206 		return err;
207 
208 	xe_gt_assert(gt, ct->state == XE_GUC_CT_STATE_NOT_INITIALIZED);
209 	ct->state = XE_GUC_CT_STATE_DISABLED;
210 	return 0;
211 }
212 
213 #define desc_read(xe_, guc_ctb__, field_)			\
214 	xe_map_rd_field(xe_, &guc_ctb__->desc, 0,		\
215 			struct guc_ct_buffer_desc, field_)
216 
217 #define desc_write(xe_, guc_ctb__, field_, val_)		\
218 	xe_map_wr_field(xe_, &guc_ctb__->desc, 0,		\
219 			struct guc_ct_buffer_desc, field_, val_)
220 
guc_ct_ctb_h2g_init(struct xe_device * xe,struct guc_ctb * h2g,struct iosys_map * map)221 static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g,
222 				struct iosys_map *map)
223 {
224 	h2g->info.size = CTB_H2G_BUFFER_SIZE / sizeof(u32);
225 	h2g->info.resv_space = 0;
226 	h2g->info.tail = 0;
227 	h2g->info.head = 0;
228 	h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
229 				     h2g->info.size) -
230 			  h2g->info.resv_space;
231 	h2g->info.broken = false;
232 
233 	h2g->desc = *map;
234 	xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
235 
236 	h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2);
237 }
238 
guc_ct_ctb_g2h_init(struct xe_device * xe,struct guc_ctb * g2h,struct iosys_map * map)239 static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h,
240 				struct iosys_map *map)
241 {
242 	g2h->info.size = CTB_G2H_BUFFER_SIZE / sizeof(u32);
243 	g2h->info.resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32);
244 	g2h->info.head = 0;
245 	g2h->info.tail = 0;
246 	g2h->info.space = CIRC_SPACE(g2h->info.tail, g2h->info.head,
247 				     g2h->info.size) -
248 			  g2h->info.resv_space;
249 	g2h->info.broken = false;
250 
251 	g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE);
252 	xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
253 
254 	g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 +
255 					    CTB_H2G_BUFFER_SIZE);
256 }
257 
guc_ct_ctb_h2g_register(struct xe_guc_ct * ct)258 static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct)
259 {
260 	struct xe_guc *guc = ct_to_guc(ct);
261 	u32 desc_addr, ctb_addr, size;
262 	int err;
263 
264 	desc_addr = xe_bo_ggtt_addr(ct->bo);
265 	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2;
266 	size = ct->ctbs.h2g.info.size * sizeof(u32);
267 
268 	err = xe_guc_self_cfg64(guc,
269 				GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY,
270 				desc_addr);
271 	if (err)
272 		return err;
273 
274 	err = xe_guc_self_cfg64(guc,
275 				GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY,
276 				ctb_addr);
277 	if (err)
278 		return err;
279 
280 	return xe_guc_self_cfg32(guc,
281 				 GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY,
282 				 size);
283 }
284 
guc_ct_ctb_g2h_register(struct xe_guc_ct * ct)285 static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct)
286 {
287 	struct xe_guc *guc = ct_to_guc(ct);
288 	u32 desc_addr, ctb_addr, size;
289 	int err;
290 
291 	desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE;
292 	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 +
293 		CTB_H2G_BUFFER_SIZE;
294 	size = ct->ctbs.g2h.info.size * sizeof(u32);
295 
296 	err = xe_guc_self_cfg64(guc,
297 				GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY,
298 				desc_addr);
299 	if (err)
300 		return err;
301 
302 	err = xe_guc_self_cfg64(guc,
303 				GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY,
304 				ctb_addr);
305 	if (err)
306 		return err;
307 
308 	return xe_guc_self_cfg32(guc,
309 				 GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY,
310 				 size);
311 }
312 
guc_ct_control_toggle(struct xe_guc_ct * ct,bool enable)313 static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable)
314 {
315 	u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = {
316 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
317 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
318 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
319 			   GUC_ACTION_HOST2GUC_CONTROL_CTB),
320 		FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL,
321 			   enable ? GUC_CTB_CONTROL_ENABLE :
322 			   GUC_CTB_CONTROL_DISABLE),
323 	};
324 	int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request));
325 
326 	return ret > 0 ? -EPROTO : ret;
327 }
328 
xe_guc_ct_set_state(struct xe_guc_ct * ct,enum xe_guc_ct_state state)329 static void xe_guc_ct_set_state(struct xe_guc_ct *ct,
330 				enum xe_guc_ct_state state)
331 {
332 	mutex_lock(&ct->lock);		/* Serialise dequeue_one_g2h() */
333 	spin_lock_irq(&ct->fast_lock);	/* Serialise CT fast-path */
334 
335 	xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding == 0 ||
336 		     state == XE_GUC_CT_STATE_STOPPED);
337 
338 	if (ct->g2h_outstanding)
339 		xe_pm_runtime_put(ct_to_xe(ct));
340 	ct->g2h_outstanding = 0;
341 	ct->state = state;
342 
343 	spin_unlock_irq(&ct->fast_lock);
344 
345 	/*
346 	 * Lockdep doesn't like this under the fast lock and he destroy only
347 	 * needs to be serialized with the send path which ct lock provides.
348 	 */
349 	xa_destroy(&ct->fence_lookup);
350 
351 	mutex_unlock(&ct->lock);
352 }
353 
ct_needs_safe_mode(struct xe_guc_ct * ct)354 static bool ct_needs_safe_mode(struct xe_guc_ct *ct)
355 {
356 	return !pci_dev_msi_enabled(to_pci_dev(ct_to_xe(ct)->drm.dev));
357 }
358 
ct_restart_safe_mode_worker(struct xe_guc_ct * ct)359 static bool ct_restart_safe_mode_worker(struct xe_guc_ct *ct)
360 {
361 	if (!ct_needs_safe_mode(ct))
362 		return false;
363 
364 	queue_delayed_work(ct->g2h_wq, &ct->safe_mode_worker, HZ / 10);
365 	return true;
366 }
367 
safe_mode_worker_func(struct work_struct * w)368 static void safe_mode_worker_func(struct work_struct *w)
369 {
370 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, safe_mode_worker.work);
371 
372 	receive_g2h(ct);
373 
374 	if (!ct_restart_safe_mode_worker(ct))
375 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode canceled\n");
376 }
377 
ct_enter_safe_mode(struct xe_guc_ct * ct)378 static void ct_enter_safe_mode(struct xe_guc_ct *ct)
379 {
380 	if (ct_restart_safe_mode_worker(ct))
381 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode enabled\n");
382 }
383 
ct_exit_safe_mode(struct xe_guc_ct * ct)384 static void ct_exit_safe_mode(struct xe_guc_ct *ct)
385 {
386 	if (cancel_delayed_work_sync(&ct->safe_mode_worker))
387 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode disabled\n");
388 }
389 
xe_guc_ct_enable(struct xe_guc_ct * ct)390 int xe_guc_ct_enable(struct xe_guc_ct *ct)
391 {
392 	struct xe_device *xe = ct_to_xe(ct);
393 	struct xe_gt *gt = ct_to_gt(ct);
394 	int err;
395 
396 	xe_gt_assert(gt, !xe_guc_ct_enabled(ct));
397 
398 	guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap);
399 	guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap);
400 
401 	err = guc_ct_ctb_h2g_register(ct);
402 	if (err)
403 		goto err_out;
404 
405 	err = guc_ct_ctb_g2h_register(ct);
406 	if (err)
407 		goto err_out;
408 
409 	err = guc_ct_control_toggle(ct, true);
410 	if (err)
411 		goto err_out;
412 
413 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_ENABLED);
414 
415 	smp_mb();
416 	wake_up_all(&ct->wq);
417 	xe_gt_dbg(gt, "GuC CT communication channel enabled\n");
418 
419 	if (ct_needs_safe_mode(ct))
420 		ct_enter_safe_mode(ct);
421 
422 	return 0;
423 
424 err_out:
425 	xe_gt_err(gt, "Failed to enable GuC CT (%pe)\n", ERR_PTR(err));
426 
427 	return err;
428 }
429 
stop_g2h_handler(struct xe_guc_ct * ct)430 static void stop_g2h_handler(struct xe_guc_ct *ct)
431 {
432 	cancel_work_sync(&ct->g2h_worker);
433 }
434 
435 /**
436  * xe_guc_ct_disable - Set GuC to disabled state
437  * @ct: the &xe_guc_ct
438  *
439  * Set GuC CT to disabled state and stop g2h handler. No outstanding g2h expected
440  * in this transition.
441  */
xe_guc_ct_disable(struct xe_guc_ct * ct)442 void xe_guc_ct_disable(struct xe_guc_ct *ct)
443 {
444 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_DISABLED);
445 	ct_exit_safe_mode(ct);
446 	stop_g2h_handler(ct);
447 }
448 
449 /**
450  * xe_guc_ct_stop - Set GuC to stopped state
451  * @ct: the &xe_guc_ct
452  *
453  * Set GuC CT to stopped state, stop g2h handler, and clear any outstanding g2h
454  */
xe_guc_ct_stop(struct xe_guc_ct * ct)455 void xe_guc_ct_stop(struct xe_guc_ct *ct)
456 {
457 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_STOPPED);
458 	stop_g2h_handler(ct);
459 }
460 
h2g_has_room(struct xe_guc_ct * ct,u32 cmd_len)461 static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len)
462 {
463 	struct guc_ctb *h2g = &ct->ctbs.h2g;
464 
465 	lockdep_assert_held(&ct->lock);
466 
467 	if (cmd_len > h2g->info.space) {
468 		h2g->info.head = desc_read(ct_to_xe(ct), h2g, head);
469 		h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
470 					     h2g->info.size) -
471 				  h2g->info.resv_space;
472 		if (cmd_len > h2g->info.space)
473 			return false;
474 	}
475 
476 	return true;
477 }
478 
g2h_has_room(struct xe_guc_ct * ct,u32 g2h_len)479 static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len)
480 {
481 	if (!g2h_len)
482 		return true;
483 
484 	lockdep_assert_held(&ct->fast_lock);
485 
486 	return ct->ctbs.g2h.info.space > g2h_len;
487 }
488 
has_room(struct xe_guc_ct * ct,u32 cmd_len,u32 g2h_len)489 static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len)
490 {
491 	lockdep_assert_held(&ct->lock);
492 
493 	if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len))
494 		return -EBUSY;
495 
496 	return 0;
497 }
498 
h2g_reserve_space(struct xe_guc_ct * ct,u32 cmd_len)499 static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len)
500 {
501 	lockdep_assert_held(&ct->lock);
502 	ct->ctbs.h2g.info.space -= cmd_len;
503 }
504 
__g2h_reserve_space(struct xe_guc_ct * ct,u32 g2h_len,u32 num_g2h)505 static void __g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h)
506 {
507 	xe_gt_assert(ct_to_gt(ct), g2h_len <= ct->ctbs.g2h.info.space);
508 	xe_gt_assert(ct_to_gt(ct), (!g2h_len && !num_g2h) ||
509 		     (g2h_len && num_g2h));
510 
511 	if (g2h_len) {
512 		lockdep_assert_held(&ct->fast_lock);
513 
514 		if (!ct->g2h_outstanding)
515 			xe_pm_runtime_get_noresume(ct_to_xe(ct));
516 
517 		ct->ctbs.g2h.info.space -= g2h_len;
518 		ct->g2h_outstanding += num_g2h;
519 	}
520 }
521 
__g2h_release_space(struct xe_guc_ct * ct,u32 g2h_len)522 static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
523 {
524 	lockdep_assert_held(&ct->fast_lock);
525 	xe_gt_assert(ct_to_gt(ct), ct->ctbs.g2h.info.space + g2h_len <=
526 		     ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space);
527 	xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding);
528 
529 	ct->ctbs.g2h.info.space += g2h_len;
530 	if (!--ct->g2h_outstanding)
531 		xe_pm_runtime_put(ct_to_xe(ct));
532 }
533 
g2h_release_space(struct xe_guc_ct * ct,u32 g2h_len)534 static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
535 {
536 	spin_lock_irq(&ct->fast_lock);
537 	__g2h_release_space(ct, g2h_len);
538 	spin_unlock_irq(&ct->fast_lock);
539 }
540 
541 #define H2G_CT_HEADERS (GUC_CTB_HDR_LEN + 1) /* one DW CTB header and one DW HxG header */
542 
h2g_write(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 ct_fence_value,bool want_response)543 static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len,
544 		     u32 ct_fence_value, bool want_response)
545 {
546 	struct xe_device *xe = ct_to_xe(ct);
547 	struct xe_gt *gt = ct_to_gt(ct);
548 	struct guc_ctb *h2g = &ct->ctbs.h2g;
549 	u32 cmd[H2G_CT_HEADERS];
550 	u32 tail = h2g->info.tail;
551 	u32 full_len;
552 	struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds,
553 							 tail * sizeof(u32));
554 
555 	full_len = len + GUC_CTB_HDR_LEN;
556 
557 	lockdep_assert_held(&ct->lock);
558 	xe_gt_assert(gt, full_len <= GUC_CTB_MSG_MAX_LEN);
559 	xe_gt_assert(gt, tail <= h2g->info.size);
560 
561 	/* Command will wrap, zero fill (NOPs), return and check credits again */
562 	if (tail + full_len > h2g->info.size) {
563 		xe_map_memset(xe, &map, 0, 0,
564 			      (h2g->info.size - tail) * sizeof(u32));
565 		h2g_reserve_space(ct, (h2g->info.size - tail));
566 		h2g->info.tail = 0;
567 		desc_write(xe, h2g, tail, h2g->info.tail);
568 
569 		return -EAGAIN;
570 	}
571 
572 	/*
573 	 * dw0: CT header (including fence)
574 	 * dw1: HXG header (including action code)
575 	 * dw2+: action data
576 	 */
577 	cmd[0] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
578 		FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
579 		FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value);
580 	if (want_response) {
581 		cmd[1] =
582 			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
583 			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
584 				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
585 	} else {
586 		cmd[1] =
587 			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_FAST_REQUEST) |
588 			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
589 				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
590 	}
591 
592 	/* H2G header in cmd[1] replaces action[0] so: */
593 	--len;
594 	++action;
595 
596 	/* Write H2G ensuring visable before descriptor update */
597 	xe_map_memcpy_to(xe, &map, 0, cmd, H2G_CT_HEADERS * sizeof(u32));
598 	xe_map_memcpy_to(xe, &map, H2G_CT_HEADERS * sizeof(u32), action, len * sizeof(u32));
599 	xe_device_wmb(xe);
600 
601 	/* Update local copies */
602 	h2g->info.tail = (tail + full_len) % h2g->info.size;
603 	h2g_reserve_space(ct, full_len);
604 
605 	/* Update descriptor */
606 	desc_write(xe, h2g, tail, h2g->info.tail);
607 
608 	trace_xe_guc_ctb_h2g(xe, gt->info.id, *(action - 1), full_len,
609 			     desc_read(xe, h2g, head), h2g->info.tail);
610 
611 	return 0;
612 }
613 
614 /*
615  * The CT protocol accepts a 16 bits fence. This field is fully owned by the
616  * driver, the GuC will just copy it to the reply message. Since we need to
617  * be able to distinguish between replies to REQUEST and FAST_REQUEST messages,
618  * we use one bit of the seqno as an indicator for that and a rolling counter
619  * for the remaining 15 bits.
620  */
621 #define CT_SEQNO_MASK GENMASK(14, 0)
622 #define CT_SEQNO_UNTRACKED BIT(15)
next_ct_seqno(struct xe_guc_ct * ct,bool is_g2h_fence)623 static u16 next_ct_seqno(struct xe_guc_ct *ct, bool is_g2h_fence)
624 {
625 	u32 seqno = ct->fence_seqno++ & CT_SEQNO_MASK;
626 
627 	if (!is_g2h_fence)
628 		seqno |= CT_SEQNO_UNTRACKED;
629 
630 	return seqno;
631 }
632 
__guc_ct_send_locked(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h,struct g2h_fence * g2h_fence)633 static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action,
634 				u32 len, u32 g2h_len, u32 num_g2h,
635 				struct g2h_fence *g2h_fence)
636 {
637 	struct xe_gt *gt __maybe_unused = ct_to_gt(ct);
638 	u16 seqno;
639 	int ret;
640 
641 	xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED);
642 	xe_gt_assert(gt, !g2h_len || !g2h_fence);
643 	xe_gt_assert(gt, !num_g2h || !g2h_fence);
644 	xe_gt_assert(gt, !g2h_len || num_g2h);
645 	xe_gt_assert(gt, g2h_len || !num_g2h);
646 	lockdep_assert_held(&ct->lock);
647 
648 	if (unlikely(ct->ctbs.h2g.info.broken)) {
649 		ret = -EPIPE;
650 		goto out;
651 	}
652 
653 	if (ct->state == XE_GUC_CT_STATE_DISABLED) {
654 		ret = -ENODEV;
655 		goto out;
656 	}
657 
658 	if (ct->state == XE_GUC_CT_STATE_STOPPED) {
659 		ret = -ECANCELED;
660 		goto out;
661 	}
662 
663 	xe_gt_assert(gt, xe_guc_ct_enabled(ct));
664 
665 	if (g2h_fence) {
666 		g2h_len = GUC_CTB_HXG_MSG_MAX_LEN;
667 		num_g2h = 1;
668 
669 		if (g2h_fence_needs_alloc(g2h_fence)) {
670 			void *ptr;
671 
672 			g2h_fence->seqno = next_ct_seqno(ct, true);
673 			ptr = xa_store(&ct->fence_lookup,
674 				       g2h_fence->seqno,
675 				       g2h_fence, GFP_ATOMIC);
676 			if (IS_ERR(ptr)) {
677 				ret = PTR_ERR(ptr);
678 				goto out;
679 			}
680 		}
681 
682 		seqno = g2h_fence->seqno;
683 	} else {
684 		seqno = next_ct_seqno(ct, false);
685 	}
686 
687 	if (g2h_len)
688 		spin_lock_irq(&ct->fast_lock);
689 retry:
690 	ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len);
691 	if (unlikely(ret))
692 		goto out_unlock;
693 
694 	ret = h2g_write(ct, action, len, seqno, !!g2h_fence);
695 	if (unlikely(ret)) {
696 		if (ret == -EAGAIN)
697 			goto retry;
698 		goto out_unlock;
699 	}
700 
701 	__g2h_reserve_space(ct, g2h_len, num_g2h);
702 	xe_guc_notify(ct_to_guc(ct));
703 out_unlock:
704 	if (g2h_len)
705 		spin_unlock_irq(&ct->fast_lock);
706 out:
707 	return ret;
708 }
709 
kick_reset(struct xe_guc_ct * ct)710 static void kick_reset(struct xe_guc_ct *ct)
711 {
712 	xe_gt_reset_async(ct_to_gt(ct));
713 }
714 
715 static int dequeue_one_g2h(struct xe_guc_ct *ct);
716 
guc_ct_send_locked(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h,struct g2h_fence * g2h_fence)717 static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
718 			      u32 g2h_len, u32 num_g2h,
719 			      struct g2h_fence *g2h_fence)
720 {
721 	struct xe_device *xe = ct_to_xe(ct);
722 	struct xe_gt *gt = ct_to_gt(ct);
723 	struct drm_printer p = xe_gt_info_printer(gt);
724 	unsigned int sleep_period_ms = 1;
725 	int ret;
726 
727 	xe_gt_assert(gt, !g2h_len || !g2h_fence);
728 	lockdep_assert_held(&ct->lock);
729 	xe_device_assert_mem_access(ct_to_xe(ct));
730 
731 try_again:
732 	ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h,
733 				   g2h_fence);
734 
735 	/*
736 	 * We wait to try to restore credits for about 1 second before bailing.
737 	 * In the case of H2G credits we have no choice but just to wait for the
738 	 * GuC to consume H2Gs in the channel so we use a wait / sleep loop. In
739 	 * the case of G2H we process any G2H in the channel, hopefully freeing
740 	 * credits as we consume the G2H messages.
741 	 */
742 	if (unlikely(ret == -EBUSY &&
743 		     !h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) {
744 		struct guc_ctb *h2g = &ct->ctbs.h2g;
745 
746 		if (sleep_period_ms == 1024)
747 			goto broken;
748 
749 		trace_xe_guc_ct_h2g_flow_control(xe, h2g->info.head, h2g->info.tail,
750 						 h2g->info.size,
751 						 h2g->info.space,
752 						 len + GUC_CTB_HDR_LEN);
753 		msleep(sleep_period_ms);
754 		sleep_period_ms <<= 1;
755 
756 		goto try_again;
757 	} else if (unlikely(ret == -EBUSY)) {
758 		struct xe_device *xe = ct_to_xe(ct);
759 		struct guc_ctb *g2h = &ct->ctbs.g2h;
760 
761 		trace_xe_guc_ct_g2h_flow_control(xe, g2h->info.head,
762 						 desc_read(xe, g2h, tail),
763 						 g2h->info.size,
764 						 g2h->info.space,
765 						 g2h_fence ?
766 						 GUC_CTB_HXG_MSG_MAX_LEN :
767 						 g2h_len);
768 
769 #define g2h_avail(ct)	\
770 	(desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.info.head)
771 		if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding ||
772 					g2h_avail(ct), HZ))
773 			goto broken;
774 #undef g2h_avail
775 
776 		if (dequeue_one_g2h(ct) < 0)
777 			goto broken;
778 
779 		goto try_again;
780 	}
781 
782 	return ret;
783 
784 broken:
785 	xe_gt_err(gt, "No forward process on H2G, reset required\n");
786 	xe_guc_ct_print(ct, &p, true);
787 	ct->ctbs.h2g.info.broken = true;
788 
789 	return -EDEADLK;
790 }
791 
guc_ct_send(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h,struct g2h_fence * g2h_fence)792 static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
793 		       u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence)
794 {
795 	int ret;
796 
797 	xe_gt_assert(ct_to_gt(ct), !g2h_len || !g2h_fence);
798 
799 	mutex_lock(&ct->lock);
800 	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence);
801 	mutex_unlock(&ct->lock);
802 
803 	return ret;
804 }
805 
xe_guc_ct_send(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h)806 int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
807 		   u32 g2h_len, u32 num_g2h)
808 {
809 	int ret;
810 
811 	ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL);
812 	if (ret == -EDEADLK)
813 		kick_reset(ct);
814 
815 	return ret;
816 }
817 
xe_guc_ct_send_locked(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h)818 int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
819 			  u32 g2h_len, u32 num_g2h)
820 {
821 	int ret;
822 
823 	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL);
824 	if (ret == -EDEADLK)
825 		kick_reset(ct);
826 
827 	return ret;
828 }
829 
xe_guc_ct_send_g2h_handler(struct xe_guc_ct * ct,const u32 * action,u32 len)830 int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len)
831 {
832 	int ret;
833 
834 	lockdep_assert_held(&ct->lock);
835 
836 	ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL);
837 	if (ret == -EDEADLK)
838 		kick_reset(ct);
839 
840 	return ret;
841 }
842 
843 /*
844  * Check if a GT reset is in progress or will occur and if GT reset brought the
845  * CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset.
846  */
retry_failure(struct xe_guc_ct * ct,int ret)847 static bool retry_failure(struct xe_guc_ct *ct, int ret)
848 {
849 	if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV))
850 		return false;
851 
852 #define ct_alive(ct)	\
853 	(xe_guc_ct_enabled(ct) && !ct->ctbs.h2g.info.broken && \
854 	 !ct->ctbs.g2h.info.broken)
855 	if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct),  HZ * 5))
856 		return false;
857 #undef ct_alive
858 
859 	return true;
860 }
861 
guc_ct_send_recv(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 * response_buffer,bool no_fail)862 static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
863 			    u32 *response_buffer, bool no_fail)
864 {
865 	struct xe_gt *gt = ct_to_gt(ct);
866 	struct g2h_fence g2h_fence;
867 	int ret = 0;
868 
869 	/*
870 	 * We use a fence to implement blocking sends / receiving response data.
871 	 * The seqno of the fence is sent in the H2G, returned in the G2H, and
872 	 * an xarray is used as storage media with the seqno being to key.
873 	 * Fields in the fence hold success, failure, retry status and the
874 	 * response data. Safe to allocate on the stack as the xarray is the
875 	 * only reference and it cannot be present after this function exits.
876 	 */
877 retry:
878 	g2h_fence_init(&g2h_fence, response_buffer);
879 retry_same_fence:
880 	ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence);
881 	if (unlikely(ret == -ENOMEM)) {
882 		void *ptr;
883 
884 		/* Retry allocation /w GFP_KERNEL */
885 		ptr = xa_store(&ct->fence_lookup,
886 			       g2h_fence.seqno,
887 			       &g2h_fence, GFP_KERNEL);
888 		if (IS_ERR(ptr))
889 			return PTR_ERR(ptr);
890 
891 		goto retry_same_fence;
892 	} else if (unlikely(ret)) {
893 		if (ret == -EDEADLK)
894 			kick_reset(ct);
895 
896 		if (no_fail && retry_failure(ct, ret))
897 			goto retry_same_fence;
898 
899 		if (!g2h_fence_needs_alloc(&g2h_fence))
900 			xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno);
901 
902 		return ret;
903 	}
904 
905 	ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ);
906 	if (!ret) {
907 		xe_gt_err(gt, "Timed out wait for G2H, fence %u, action %04x",
908 			  g2h_fence.seqno, action[0]);
909 		xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno);
910 		return -ETIME;
911 	}
912 
913 	if (g2h_fence.retry) {
914 		xe_gt_dbg(gt, "H2G action %#x retrying: reason %#x\n",
915 			  action[0], g2h_fence.reason);
916 		goto retry;
917 	}
918 	if (g2h_fence.fail) {
919 		xe_gt_err(gt, "H2G request %#x failed: error %#x hint %#x\n",
920 			  action[0], g2h_fence.error, g2h_fence.hint);
921 		ret = -EIO;
922 	}
923 
924 	return ret > 0 ? response_buffer ? g2h_fence.response_len : g2h_fence.response_data : ret;
925 }
926 
927 /**
928  * xe_guc_ct_send_recv - Send and receive HXG to the GuC
929  * @ct: the &xe_guc_ct
930  * @action: the dword array with `HXG Request`_ message (can't be NULL)
931  * @len: length of the `HXG Request`_ message (in dwords, can't be 0)
932  * @response_buffer: placeholder for the `HXG Response`_ message (can be NULL)
933  *
934  * Send a `HXG Request`_ message to the GuC over CT communication channel and
935  * blocks until GuC replies with a `HXG Response`_ message.
936  *
937  * For non-blocking communication with GuC use xe_guc_ct_send().
938  *
939  * Note: The size of &response_buffer must be at least GUC_CTB_MAX_DWORDS_.
940  *
941  * Return: response length (in dwords) if &response_buffer was not NULL, or
942  *         DATA0 from `HXG Response`_ if &response_buffer was NULL, or
943  *         a negative error code on failure.
944  */
xe_guc_ct_send_recv(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 * response_buffer)945 int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
946 			u32 *response_buffer)
947 {
948 	KUNIT_STATIC_STUB_REDIRECT(xe_guc_ct_send_recv, ct, action, len, response_buffer);
949 	return guc_ct_send_recv(ct, action, len, response_buffer, false);
950 }
951 
xe_guc_ct_send_recv_no_fail(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 * response_buffer)952 int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action,
953 				u32 len, u32 *response_buffer)
954 {
955 	return guc_ct_send_recv(ct, action, len, response_buffer, true);
956 }
957 
msg_to_hxg(u32 * msg)958 static u32 *msg_to_hxg(u32 *msg)
959 {
960 	return msg + GUC_CTB_MSG_MIN_LEN;
961 }
962 
msg_len_to_hxg_len(u32 len)963 static u32 msg_len_to_hxg_len(u32 len)
964 {
965 	return len - GUC_CTB_MSG_MIN_LEN;
966 }
967 
parse_g2h_event(struct xe_guc_ct * ct,u32 * msg,u32 len)968 static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len)
969 {
970 	u32 *hxg = msg_to_hxg(msg);
971 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
972 
973 	lockdep_assert_held(&ct->lock);
974 
975 	switch (action) {
976 	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
977 	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
978 	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
979 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
980 		g2h_release_space(ct, len);
981 	}
982 
983 	return 0;
984 }
985 
parse_g2h_response(struct xe_guc_ct * ct,u32 * msg,u32 len)986 static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len)
987 {
988 	struct xe_gt *gt =  ct_to_gt(ct);
989 	u32 *hxg = msg_to_hxg(msg);
990 	u32 hxg_len = msg_len_to_hxg_len(len);
991 	u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]);
992 	u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
993 	struct g2h_fence *g2h_fence;
994 
995 	lockdep_assert_held(&ct->lock);
996 
997 	/*
998 	 * Fences for FAST_REQUEST messages are not tracked in ct->fence_lookup.
999 	 * Those messages should never fail, so if we do get an error back it
1000 	 * means we're likely doing an illegal operation and the GuC is
1001 	 * rejecting it. We have no way to inform the code that submitted the
1002 	 * H2G that the message was rejected, so we need to escalate the
1003 	 * failure to trigger a reset.
1004 	 */
1005 	if (fence & CT_SEQNO_UNTRACKED) {
1006 		if (type == GUC_HXG_TYPE_RESPONSE_FAILURE)
1007 			xe_gt_err(gt, "FAST_REQ H2G fence 0x%x failed! e=0x%x, h=%u\n",
1008 				  fence,
1009 				  FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]),
1010 				  FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]));
1011 		else
1012 			xe_gt_err(gt, "unexpected response %u for FAST_REQ H2G fence 0x%x!\n",
1013 				  type, fence);
1014 
1015 		return -EPROTO;
1016 	}
1017 
1018 	g2h_fence = xa_erase(&ct->fence_lookup, fence);
1019 	if (unlikely(!g2h_fence)) {
1020 		/* Don't tear down channel, as send could've timed out */
1021 		xe_gt_warn(gt, "G2H fence (%u) not found!\n", fence);
1022 		g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
1023 		return 0;
1024 	}
1025 
1026 	xe_gt_assert(gt, fence == g2h_fence->seqno);
1027 
1028 	if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) {
1029 		g2h_fence->fail = true;
1030 		g2h_fence->error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]);
1031 		g2h_fence->hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]);
1032 	} else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
1033 		g2h_fence->retry = true;
1034 		g2h_fence->reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, hxg[0]);
1035 	} else if (g2h_fence->response_buffer) {
1036 		g2h_fence->response_len = hxg_len;
1037 		memcpy(g2h_fence->response_buffer, hxg, hxg_len * sizeof(u32));
1038 	} else {
1039 		g2h_fence->response_data = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, hxg[0]);
1040 	}
1041 
1042 	g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
1043 
1044 	g2h_fence->done = true;
1045 	smp_mb();
1046 
1047 	wake_up_all(&ct->g2h_fence_wq);
1048 
1049 	return 0;
1050 }
1051 
parse_g2h_msg(struct xe_guc_ct * ct,u32 * msg,u32 len)1052 static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
1053 {
1054 	struct xe_gt *gt = ct_to_gt(ct);
1055 	u32 *hxg = msg_to_hxg(msg);
1056 	u32 origin, type;
1057 	int ret;
1058 
1059 	lockdep_assert_held(&ct->lock);
1060 
1061 	origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]);
1062 	if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
1063 		xe_gt_err(gt, "G2H channel broken on read, origin=%u, reset required\n",
1064 			  origin);
1065 		ct->ctbs.g2h.info.broken = true;
1066 
1067 		return -EPROTO;
1068 	}
1069 
1070 	type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1071 	switch (type) {
1072 	case GUC_HXG_TYPE_EVENT:
1073 		ret = parse_g2h_event(ct, msg, len);
1074 		break;
1075 	case GUC_HXG_TYPE_RESPONSE_SUCCESS:
1076 	case GUC_HXG_TYPE_RESPONSE_FAILURE:
1077 	case GUC_HXG_TYPE_NO_RESPONSE_RETRY:
1078 		ret = parse_g2h_response(ct, msg, len);
1079 		break;
1080 	default:
1081 		xe_gt_err(gt, "G2H channel broken on read, type=%u, reset required\n",
1082 			  type);
1083 		ct->ctbs.g2h.info.broken = true;
1084 
1085 		ret = -EOPNOTSUPP;
1086 	}
1087 
1088 	return ret;
1089 }
1090 
process_g2h_msg(struct xe_guc_ct * ct,u32 * msg,u32 len)1091 static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
1092 {
1093 	struct xe_guc *guc = ct_to_guc(ct);
1094 	struct xe_gt *gt = ct_to_gt(ct);
1095 	u32 hxg_len = msg_len_to_hxg_len(len);
1096 	u32 *hxg = msg_to_hxg(msg);
1097 	u32 action, adj_len;
1098 	u32 *payload;
1099 	int ret = 0;
1100 
1101 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1102 		return 0;
1103 
1104 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1105 	payload = hxg + GUC_HXG_EVENT_MSG_MIN_LEN;
1106 	adj_len = hxg_len - GUC_HXG_EVENT_MSG_MIN_LEN;
1107 
1108 	switch (action) {
1109 	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1110 		ret = xe_guc_sched_done_handler(guc, payload, adj_len);
1111 		break;
1112 	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1113 		ret = xe_guc_deregister_done_handler(guc, payload, adj_len);
1114 		break;
1115 	case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
1116 		ret = xe_guc_exec_queue_reset_handler(guc, payload, adj_len);
1117 		break;
1118 	case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
1119 		ret = xe_guc_exec_queue_reset_failure_handler(guc, payload,
1120 							      adj_len);
1121 		break;
1122 	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
1123 		/* Selftest only at the moment */
1124 		break;
1125 	case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION:
1126 	case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE:
1127 		/* FIXME: Handle this */
1128 		break;
1129 	case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR:
1130 		ret = xe_guc_exec_queue_memory_cat_error_handler(guc, payload,
1131 								 adj_len);
1132 		break;
1133 	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1134 		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1135 		break;
1136 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1137 		ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
1138 							   adj_len);
1139 		break;
1140 	case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY:
1141 		ret = xe_guc_access_counter_notify_handler(guc, payload,
1142 							   adj_len);
1143 		break;
1144 	case XE_GUC_ACTION_GUC2PF_RELAY_FROM_VF:
1145 		ret = xe_guc_relay_process_guc2pf(&guc->relay, hxg, hxg_len);
1146 		break;
1147 	case XE_GUC_ACTION_GUC2VF_RELAY_FROM_PF:
1148 		ret = xe_guc_relay_process_guc2vf(&guc->relay, hxg, hxg_len);
1149 		break;
1150 	case GUC_ACTION_GUC2PF_VF_STATE_NOTIFY:
1151 		ret = xe_gt_sriov_pf_control_process_guc2pf(gt, hxg, hxg_len);
1152 		break;
1153 	case GUC_ACTION_GUC2PF_ADVERSE_EVENT:
1154 		ret = xe_gt_sriov_pf_monitor_process_guc2pf(gt, hxg, hxg_len);
1155 		break;
1156 	default:
1157 		xe_gt_err(gt, "unexpected G2H action 0x%04x\n", action);
1158 	}
1159 
1160 	if (ret)
1161 		xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n",
1162 			  action, ERR_PTR(ret));
1163 
1164 	return 0;
1165 }
1166 
g2h_read(struct xe_guc_ct * ct,u32 * msg,bool fast_path)1167 static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path)
1168 {
1169 	struct xe_device *xe = ct_to_xe(ct);
1170 	struct xe_gt *gt = ct_to_gt(ct);
1171 	struct guc_ctb *g2h = &ct->ctbs.g2h;
1172 	u32 tail, head, len;
1173 	s32 avail;
1174 	u32 action;
1175 	u32 *hxg;
1176 
1177 	xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED);
1178 	lockdep_assert_held(&ct->fast_lock);
1179 
1180 	if (ct->state == XE_GUC_CT_STATE_DISABLED)
1181 		return -ENODEV;
1182 
1183 	if (ct->state == XE_GUC_CT_STATE_STOPPED)
1184 		return -ECANCELED;
1185 
1186 	if (g2h->info.broken)
1187 		return -EPIPE;
1188 
1189 	xe_gt_assert(gt, xe_guc_ct_enabled(ct));
1190 
1191 	/* Calculate DW available to read */
1192 	tail = desc_read(xe, g2h, tail);
1193 	avail = tail - g2h->info.head;
1194 	if (unlikely(avail == 0))
1195 		return 0;
1196 
1197 	if (avail < 0)
1198 		avail += g2h->info.size;
1199 
1200 	/* Read header */
1201 	xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->info.head,
1202 			   sizeof(u32));
1203 	len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN;
1204 	if (len > avail) {
1205 		xe_gt_err(gt, "G2H channel broken on read, avail=%d, len=%d, reset required\n",
1206 			  avail, len);
1207 		g2h->info.broken = true;
1208 
1209 		return -EPROTO;
1210 	}
1211 
1212 	head = (g2h->info.head + 1) % g2h->info.size;
1213 	avail = len - 1;
1214 
1215 	/* Read G2H message */
1216 	if (avail + head > g2h->info.size) {
1217 		u32 avail_til_wrap = g2h->info.size - head;
1218 
1219 		xe_map_memcpy_from(xe, msg + 1,
1220 				   &g2h->cmds, sizeof(u32) * head,
1221 				   avail_til_wrap * sizeof(u32));
1222 		xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap,
1223 				   &g2h->cmds, 0,
1224 				   (avail - avail_til_wrap) * sizeof(u32));
1225 	} else {
1226 		xe_map_memcpy_from(xe, msg + 1,
1227 				   &g2h->cmds, sizeof(u32) * head,
1228 				   avail * sizeof(u32));
1229 	}
1230 
1231 	hxg = msg_to_hxg(msg);
1232 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1233 
1234 	if (fast_path) {
1235 		if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1236 			return 0;
1237 
1238 		switch (action) {
1239 		case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1240 		case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1241 			break;	/* Process these in fast-path */
1242 		default:
1243 			return 0;
1244 		}
1245 	}
1246 
1247 	/* Update local / descriptor header */
1248 	g2h->info.head = (head + avail) % g2h->info.size;
1249 	desc_write(xe, g2h, head, g2h->info.head);
1250 
1251 	trace_xe_guc_ctb_g2h(xe, ct_to_gt(ct)->info.id,
1252 			     action, len, g2h->info.head, tail);
1253 
1254 	return len;
1255 }
1256 
g2h_fast_path(struct xe_guc_ct * ct,u32 * msg,u32 len)1257 static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len)
1258 {
1259 	struct xe_gt *gt = ct_to_gt(ct);
1260 	struct xe_guc *guc = ct_to_guc(ct);
1261 	u32 hxg_len = msg_len_to_hxg_len(len);
1262 	u32 *hxg = msg_to_hxg(msg);
1263 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1264 	u32 *payload = hxg + GUC_HXG_MSG_MIN_LEN;
1265 	u32 adj_len = hxg_len - GUC_HXG_MSG_MIN_LEN;
1266 	int ret = 0;
1267 
1268 	switch (action) {
1269 	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1270 		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1271 		break;
1272 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1273 		__g2h_release_space(ct, len);
1274 		ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
1275 							   adj_len);
1276 		break;
1277 	default:
1278 		xe_gt_warn(gt, "NOT_POSSIBLE");
1279 	}
1280 
1281 	if (ret)
1282 		xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n",
1283 			  action, ERR_PTR(ret));
1284 }
1285 
1286 /**
1287  * xe_guc_ct_fast_path - process critical G2H in the IRQ handler
1288  * @ct: GuC CT object
1289  *
1290  * Anything related to page faults is critical for performance, process these
1291  * critical G2H in the IRQ. This is safe as these handlers either just wake up
1292  * waiters or queue another worker.
1293  */
xe_guc_ct_fast_path(struct xe_guc_ct * ct)1294 void xe_guc_ct_fast_path(struct xe_guc_ct *ct)
1295 {
1296 	struct xe_device *xe = ct_to_xe(ct);
1297 	bool ongoing;
1298 	int len;
1299 
1300 	ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
1301 	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1302 		return;
1303 
1304 	spin_lock(&ct->fast_lock);
1305 	do {
1306 		len = g2h_read(ct, ct->fast_msg, true);
1307 		if (len > 0)
1308 			g2h_fast_path(ct, ct->fast_msg, len);
1309 	} while (len > 0);
1310 	spin_unlock(&ct->fast_lock);
1311 
1312 	if (ongoing)
1313 		xe_pm_runtime_put(xe);
1314 }
1315 
1316 /* Returns less than zero on error, 0 on done, 1 on more available */
dequeue_one_g2h(struct xe_guc_ct * ct)1317 static int dequeue_one_g2h(struct xe_guc_ct *ct)
1318 {
1319 	int len;
1320 	int ret;
1321 
1322 	lockdep_assert_held(&ct->lock);
1323 
1324 	spin_lock_irq(&ct->fast_lock);
1325 	len = g2h_read(ct, ct->msg, false);
1326 	spin_unlock_irq(&ct->fast_lock);
1327 	if (len <= 0)
1328 		return len;
1329 
1330 	ret = parse_g2h_msg(ct, ct->msg, len);
1331 	if (unlikely(ret < 0))
1332 		return ret;
1333 
1334 	ret = process_g2h_msg(ct, ct->msg, len);
1335 	if (unlikely(ret < 0))
1336 		return ret;
1337 
1338 	return 1;
1339 }
1340 
receive_g2h(struct xe_guc_ct * ct)1341 static void receive_g2h(struct xe_guc_ct *ct)
1342 {
1343 	struct xe_gt *gt = ct_to_gt(ct);
1344 	bool ongoing;
1345 	int ret;
1346 
1347 	/*
1348 	 * Normal users must always hold mem_access.ref around CT calls. However
1349 	 * during the runtime pm callbacks we rely on CT to talk to the GuC, but
1350 	 * at this stage we can't rely on mem_access.ref and even the
1351 	 * callback_task will be different than current.  For such cases we just
1352 	 * need to ensure we always process the responses from any blocking
1353 	 * ct_send requests or where we otherwise expect some response when
1354 	 * initiated from those callbacks (which will need to wait for the below
1355 	 * dequeue_one_g2h()).  The dequeue_one_g2h() will gracefully fail if
1356 	 * the device has suspended to the point that the CT communication has
1357 	 * been disabled.
1358 	 *
1359 	 * If we are inside the runtime pm callback, we can be the only task
1360 	 * still issuing CT requests (since that requires having the
1361 	 * mem_access.ref).  It seems like it might in theory be possible to
1362 	 * receive unsolicited events from the GuC just as we are
1363 	 * suspending-resuming, but those will currently anyway be lost when
1364 	 * eventually exiting from suspend, hence no need to wake up the device
1365 	 * here. If we ever need something stronger than get_if_ongoing() then
1366 	 * we need to be careful with blocking the pm callbacks from getting CT
1367 	 * responses, if the worker here is blocked on those callbacks
1368 	 * completing, creating a deadlock.
1369 	 */
1370 	ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
1371 	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1372 		return;
1373 
1374 	do {
1375 		mutex_lock(&ct->lock);
1376 		ret = dequeue_one_g2h(ct);
1377 		mutex_unlock(&ct->lock);
1378 
1379 		if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) {
1380 			struct drm_printer p = xe_gt_info_printer(gt);
1381 
1382 			xe_guc_ct_print(ct, &p, false);
1383 			kick_reset(ct);
1384 		}
1385 	} while (ret == 1);
1386 
1387 	if (ongoing)
1388 		xe_pm_runtime_put(ct_to_xe(ct));
1389 }
1390 
g2h_worker_func(struct work_struct * w)1391 static void g2h_worker_func(struct work_struct *w)
1392 {
1393 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker);
1394 
1395 	receive_g2h(ct);
1396 }
1397 
guc_ctb_snapshot_capture(struct xe_device * xe,struct guc_ctb * ctb,struct guc_ctb_snapshot * snapshot,bool atomic)1398 static void guc_ctb_snapshot_capture(struct xe_device *xe, struct guc_ctb *ctb,
1399 				     struct guc_ctb_snapshot *snapshot,
1400 				     bool atomic)
1401 {
1402 	u32 head, tail;
1403 
1404 	xe_map_memcpy_from(xe, &snapshot->desc, &ctb->desc, 0,
1405 			   sizeof(struct guc_ct_buffer_desc));
1406 	memcpy(&snapshot->info, &ctb->info, sizeof(struct guc_ctb_info));
1407 
1408 	snapshot->cmds = kmalloc_array(ctb->info.size, sizeof(u32),
1409 				       atomic ? GFP_ATOMIC : GFP_KERNEL);
1410 
1411 	if (!snapshot->cmds) {
1412 		drm_err(&xe->drm, "Skipping CTB commands snapshot. Only CTB info will be available.\n");
1413 		return;
1414 	}
1415 
1416 	head = snapshot->desc.head;
1417 	tail = snapshot->desc.tail;
1418 
1419 	if (head != tail) {
1420 		struct iosys_map map =
1421 			IOSYS_MAP_INIT_OFFSET(&ctb->cmds, head * sizeof(u32));
1422 
1423 		while (head != tail) {
1424 			snapshot->cmds[head] = xe_map_rd(xe, &map, 0, u32);
1425 			++head;
1426 			if (head == ctb->info.size) {
1427 				head = 0;
1428 				map = ctb->cmds;
1429 			} else {
1430 				iosys_map_incr(&map, sizeof(u32));
1431 			}
1432 		}
1433 	}
1434 }
1435 
guc_ctb_snapshot_print(struct guc_ctb_snapshot * snapshot,struct drm_printer * p)1436 static void guc_ctb_snapshot_print(struct guc_ctb_snapshot *snapshot,
1437 				   struct drm_printer *p)
1438 {
1439 	u32 head, tail;
1440 
1441 	drm_printf(p, "\tsize: %d\n", snapshot->info.size);
1442 	drm_printf(p, "\tresv_space: %d\n", snapshot->info.resv_space);
1443 	drm_printf(p, "\thead: %d\n", snapshot->info.head);
1444 	drm_printf(p, "\ttail: %d\n", snapshot->info.tail);
1445 	drm_printf(p, "\tspace: %d\n", snapshot->info.space);
1446 	drm_printf(p, "\tbroken: %d\n", snapshot->info.broken);
1447 	drm_printf(p, "\thead (memory): %d\n", snapshot->desc.head);
1448 	drm_printf(p, "\ttail (memory): %d\n", snapshot->desc.tail);
1449 	drm_printf(p, "\tstatus (memory): 0x%x\n", snapshot->desc.status);
1450 
1451 	if (!snapshot->cmds)
1452 		return;
1453 
1454 	head = snapshot->desc.head;
1455 	tail = snapshot->desc.tail;
1456 
1457 	while (head != tail) {
1458 		drm_printf(p, "\tcmd[%d]: 0x%08x\n", head,
1459 			   snapshot->cmds[head]);
1460 		++head;
1461 		if (head == snapshot->info.size)
1462 			head = 0;
1463 	}
1464 }
1465 
guc_ctb_snapshot_free(struct guc_ctb_snapshot * snapshot)1466 static void guc_ctb_snapshot_free(struct guc_ctb_snapshot *snapshot)
1467 {
1468 	kfree(snapshot->cmds);
1469 }
1470 
1471 /**
1472  * xe_guc_ct_snapshot_capture - Take a quick snapshot of the CT state.
1473  * @ct: GuC CT object.
1474  * @atomic: Boolean to indicate if this is called from atomic context like
1475  * reset or CTB handler or from some regular path like debugfs.
1476  *
1477  * This can be printed out in a later stage like during dev_coredump
1478  * analysis.
1479  *
1480  * Returns: a GuC CT snapshot object that must be freed by the caller
1481  * by using `xe_guc_ct_snapshot_free`.
1482  */
xe_guc_ct_snapshot_capture(struct xe_guc_ct * ct,bool atomic)1483 struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_capture(struct xe_guc_ct *ct,
1484 						      bool atomic)
1485 {
1486 	struct xe_device *xe = ct_to_xe(ct);
1487 	struct xe_guc_ct_snapshot *snapshot;
1488 
1489 	snapshot = kzalloc(sizeof(*snapshot),
1490 			   atomic ? GFP_ATOMIC : GFP_KERNEL);
1491 
1492 	if (!snapshot) {
1493 		drm_err(&xe->drm, "Skipping CTB snapshot entirely.\n");
1494 		return NULL;
1495 	}
1496 
1497 	if (xe_guc_ct_enabled(ct) || ct->state == XE_GUC_CT_STATE_STOPPED) {
1498 		snapshot->ct_enabled = true;
1499 		snapshot->g2h_outstanding = READ_ONCE(ct->g2h_outstanding);
1500 		guc_ctb_snapshot_capture(xe, &ct->ctbs.h2g,
1501 					 &snapshot->h2g, atomic);
1502 		guc_ctb_snapshot_capture(xe, &ct->ctbs.g2h,
1503 					 &snapshot->g2h, atomic);
1504 	}
1505 
1506 	return snapshot;
1507 }
1508 
1509 /**
1510  * xe_guc_ct_snapshot_print - Print out a given GuC CT snapshot.
1511  * @snapshot: GuC CT snapshot object.
1512  * @p: drm_printer where it will be printed out.
1513  *
1514  * This function prints out a given GuC CT snapshot object.
1515  */
xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot * snapshot,struct drm_printer * p)1516 void xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot *snapshot,
1517 			      struct drm_printer *p)
1518 {
1519 	if (!snapshot)
1520 		return;
1521 
1522 	if (snapshot->ct_enabled) {
1523 		drm_puts(p, "H2G CTB (all sizes in DW):\n");
1524 		guc_ctb_snapshot_print(&snapshot->h2g, p);
1525 
1526 		drm_puts(p, "\nG2H CTB (all sizes in DW):\n");
1527 		guc_ctb_snapshot_print(&snapshot->g2h, p);
1528 
1529 		drm_printf(p, "\tg2h outstanding: %d\n",
1530 			   snapshot->g2h_outstanding);
1531 	} else {
1532 		drm_puts(p, "CT disabled\n");
1533 	}
1534 }
1535 
1536 /**
1537  * xe_guc_ct_snapshot_free - Free all allocated objects for a given snapshot.
1538  * @snapshot: GuC CT snapshot object.
1539  *
1540  * This function free all the memory that needed to be allocated at capture
1541  * time.
1542  */
xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot * snapshot)1543 void xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot *snapshot)
1544 {
1545 	if (!snapshot)
1546 		return;
1547 
1548 	guc_ctb_snapshot_free(&snapshot->h2g);
1549 	guc_ctb_snapshot_free(&snapshot->g2h);
1550 	kfree(snapshot);
1551 }
1552 
1553 /**
1554  * xe_guc_ct_print - GuC CT Print.
1555  * @ct: GuC CT.
1556  * @p: drm_printer where it will be printed out.
1557  * @atomic: Boolean to indicate if this is called from atomic context like
1558  * reset or CTB handler or from some regular path like debugfs.
1559  *
1560  * This function quickly capture a snapshot and immediately print it out.
1561  */
xe_guc_ct_print(struct xe_guc_ct * ct,struct drm_printer * p,bool atomic)1562 void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p, bool atomic)
1563 {
1564 	struct xe_guc_ct_snapshot *snapshot;
1565 
1566 	snapshot = xe_guc_ct_snapshot_capture(ct, atomic);
1567 	xe_guc_ct_snapshot_print(snapshot, p);
1568 	xe_guc_ct_snapshot_free(snapshot);
1569 }
1570