xref: /linux/drivers/gpu/drm/xe/xe_guc_ct.c (revision e538109ac71d801d26776af5f3c54f548296c29c)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc_ct.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/circ_buf.h>
10 #include <linux/delay.h>
11 #include <linux/fault-inject.h>
12 
13 #include <kunit/static_stub.h>
14 
15 #include <drm/drm_managed.h>
16 
17 #include "abi/guc_actions_abi.h"
18 #include "abi/guc_actions_sriov_abi.h"
19 #include "abi/guc_klvs_abi.h"
20 #include "xe_bo.h"
21 #include "xe_devcoredump.h"
22 #include "xe_device.h"
23 #include "xe_gt.h"
24 #include "xe_gt_pagefault.h"
25 #include "xe_gt_printk.h"
26 #include "xe_gt_sriov_pf_control.h"
27 #include "xe_gt_sriov_pf_monitor.h"
28 #include "xe_gt_sriov_printk.h"
29 #include "xe_guc.h"
30 #include "xe_guc_log.h"
31 #include "xe_guc_relay.h"
32 #include "xe_guc_submit.h"
33 #include "xe_guc_tlb_inval.h"
34 #include "xe_map.h"
35 #include "xe_pm.h"
36 #include "xe_trace_guc.h"
37 
38 static void receive_g2h(struct xe_guc_ct *ct);
39 static void g2h_worker_func(struct work_struct *w);
40 static void safe_mode_worker_func(struct work_struct *w);
41 static void ct_exit_safe_mode(struct xe_guc_ct *ct);
42 static void guc_ct_change_state(struct xe_guc_ct *ct,
43 				enum xe_guc_ct_state state);
44 
45 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
46 enum {
47 	/* Internal states, not error conditions */
48 	CT_DEAD_STATE_REARM,			/* 0x0001 */
49 	CT_DEAD_STATE_CAPTURE,			/* 0x0002 */
50 
51 	/* Error conditions */
52 	CT_DEAD_SETUP,				/* 0x0004 */
53 	CT_DEAD_H2G_WRITE,			/* 0x0008 */
54 	CT_DEAD_H2G_HAS_ROOM,			/* 0x0010 */
55 	CT_DEAD_G2H_READ,			/* 0x0020 */
56 	CT_DEAD_G2H_RECV,			/* 0x0040 */
57 	CT_DEAD_G2H_RELEASE,			/* 0x0080 */
58 	CT_DEAD_DEADLOCK,			/* 0x0100 */
59 	CT_DEAD_PROCESS_FAILED,			/* 0x0200 */
60 	CT_DEAD_FAST_G2H,			/* 0x0400 */
61 	CT_DEAD_PARSE_G2H_RESPONSE,		/* 0x0800 */
62 	CT_DEAD_PARSE_G2H_UNKNOWN,		/* 0x1000 */
63 	CT_DEAD_PARSE_G2H_ORIGIN,		/* 0x2000 */
64 	CT_DEAD_PARSE_G2H_TYPE,			/* 0x4000 */
65 	CT_DEAD_CRASH,				/* 0x8000 */
66 };
67 
68 static void ct_dead_worker_func(struct work_struct *w);
69 static void ct_dead_capture(struct xe_guc_ct *ct, struct guc_ctb *ctb, u32 reason_code);
70 
71 #define CT_DEAD(ct, ctb, reason_code)		ct_dead_capture((ct), (ctb), CT_DEAD_##reason_code)
72 #else
73 #define CT_DEAD(ct, ctb, reason)			\
74 	do {						\
75 		struct guc_ctb *_ctb = (ctb);		\
76 		if (_ctb)				\
77 			_ctb->info.broken = true;	\
78 	} while (0)
79 #endif
80 
81 /* Used when a CT send wants to block and / or receive data */
82 struct g2h_fence {
83 	u32 *response_buffer;
84 	u32 seqno;
85 	u32 response_data;
86 	u16 response_len;
87 	u16 error;
88 	u16 hint;
89 	u16 reason;
90 	bool cancel;
91 	bool retry;
92 	bool fail;
93 	bool done;
94 };
95 
96 #define make_u64(hi, lo) ((u64)((u64)(u32)(hi) << 32 | (u32)(lo)))
97 
g2h_fence_init(struct g2h_fence * g2h_fence,u32 * response_buffer)98 static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer)
99 {
100 	memset(g2h_fence, 0, sizeof(*g2h_fence));
101 	g2h_fence->response_buffer = response_buffer;
102 	g2h_fence->seqno = ~0x0;
103 }
104 
g2h_fence_cancel(struct g2h_fence * g2h_fence)105 static void g2h_fence_cancel(struct g2h_fence *g2h_fence)
106 {
107 	g2h_fence->cancel = true;
108 	g2h_fence->fail = true;
109 	g2h_fence->done = true;
110 }
111 
g2h_fence_needs_alloc(struct g2h_fence * g2h_fence)112 static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence)
113 {
114 	return g2h_fence->seqno == ~0x0;
115 }
116 
117 static struct xe_guc *
ct_to_guc(struct xe_guc_ct * ct)118 ct_to_guc(struct xe_guc_ct *ct)
119 {
120 	return container_of(ct, struct xe_guc, ct);
121 }
122 
123 static struct xe_gt *
ct_to_gt(struct xe_guc_ct * ct)124 ct_to_gt(struct xe_guc_ct *ct)
125 {
126 	return container_of(ct, struct xe_gt, uc.guc.ct);
127 }
128 
129 static struct xe_device *
ct_to_xe(struct xe_guc_ct * ct)130 ct_to_xe(struct xe_guc_ct *ct)
131 {
132 	return gt_to_xe(ct_to_gt(ct));
133 }
134 
135 /**
136  * DOC: GuC CTB Blob
137  *
138  * We allocate single blob to hold both CTB descriptors and buffers:
139  *
140  *      +--------+-----------------------------------------------+------+
141  *      | offset | contents                                      | size |
142  *      +========+===============================================+======+
143  *      | 0x0000 | H2G CTB Descriptor (send)                     |      |
144  *      +--------+-----------------------------------------------+  4K  |
145  *      | 0x0800 | G2H CTB Descriptor (g2h)                      |      |
146  *      +--------+-----------------------------------------------+------+
147  *      | 0x1000 | H2G CT Buffer (send)                          | n*4K |
148  *      |        |                                               |      |
149  *      +--------+-----------------------------------------------+------+
150  *      | 0x1000 | G2H CT Buffer (g2h)                           | m*4K |
151  *      | + n*4K |                                               |      |
152  *      +--------+-----------------------------------------------+------+
153  *
154  * Size of each ``CT Buffer`` must be multiple of 4K.
155  * We don't expect too many messages in flight at any time, unless we are
156  * using the GuC submission. In that case each request requires a minimum
157  * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
158  * enough space to avoid backpressure on the driver. We increase the size
159  * of the receive buffer (relative to the send) to ensure a G2H response
160  * CTB has a landing spot.
161  *
162  * In addition to submissions, the G2H buffer needs to be able to hold
163  * enough space for recoverable page fault notifications. The number of
164  * page faults is interrupt driven and can be as much as the number of
165  * compute resources available. However, most of the actual work for these
166  * is in a separate page fault worker thread. Therefore we only need to
167  * make sure the queue has enough space to handle all of the submissions
168  * and responses and an extra buffer for incoming page faults.
169  */
170 
171 #define CTB_DESC_SIZE		ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
172 #define CTB_H2G_BUFFER_SIZE	(SZ_4K)
173 #define CTB_G2H_BUFFER_SIZE	(SZ_128K)
174 #define G2H_ROOM_BUFFER_SIZE	(CTB_G2H_BUFFER_SIZE / 2)
175 
176 /**
177  * xe_guc_ct_queue_proc_time_jiffies - Return maximum time to process a full
178  * CT command queue
179  * @ct: the &xe_guc_ct. Unused at this moment but will be used in the future.
180  *
181  * Observation is that a 4KiB buffer full of commands takes a little over a
182  * second to process. Use that to calculate maximum time to process a full CT
183  * command queue.
184  *
185  * Return: Maximum time to process a full CT queue in jiffies.
186  */
xe_guc_ct_queue_proc_time_jiffies(struct xe_guc_ct * ct)187 long xe_guc_ct_queue_proc_time_jiffies(struct xe_guc_ct *ct)
188 {
189 	BUILD_BUG_ON(!IS_ALIGNED(CTB_H2G_BUFFER_SIZE, SZ_4));
190 	return (CTB_H2G_BUFFER_SIZE / SZ_4K) * HZ;
191 }
192 
guc_ct_size(void)193 static size_t guc_ct_size(void)
194 {
195 	return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE +
196 		CTB_G2H_BUFFER_SIZE;
197 }
198 
guc_ct_fini(struct drm_device * drm,void * arg)199 static void guc_ct_fini(struct drm_device *drm, void *arg)
200 {
201 	struct xe_guc_ct *ct = arg;
202 
203 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
204 	cancel_work_sync(&ct->dead.worker);
205 #endif
206 	ct_exit_safe_mode(ct);
207 	destroy_workqueue(ct->g2h_wq);
208 	xa_destroy(&ct->fence_lookup);
209 }
210 
primelockdep(struct xe_guc_ct * ct)211 static void primelockdep(struct xe_guc_ct *ct)
212 {
213 	if (!IS_ENABLED(CONFIG_LOCKDEP))
214 		return;
215 
216 	fs_reclaim_acquire(GFP_KERNEL);
217 	might_lock(&ct->lock);
218 	fs_reclaim_release(GFP_KERNEL);
219 }
220 
xe_guc_ct_init_noalloc(struct xe_guc_ct * ct)221 int xe_guc_ct_init_noalloc(struct xe_guc_ct *ct)
222 {
223 	struct xe_device *xe = ct_to_xe(ct);
224 	struct xe_gt *gt = ct_to_gt(ct);
225 	int err;
226 
227 	xe_gt_assert(gt, !(guc_ct_size() % PAGE_SIZE));
228 
229 	err = drmm_mutex_init(&xe->drm, &ct->lock);
230 	if (err)
231 		return err;
232 
233 	primelockdep(ct);
234 
235 	ct->g2h_wq = alloc_ordered_workqueue("xe-g2h-wq", WQ_MEM_RECLAIM);
236 	if (!ct->g2h_wq)
237 		return -ENOMEM;
238 
239 	spin_lock_init(&ct->fast_lock);
240 	xa_init(&ct->fence_lookup);
241 	INIT_WORK(&ct->g2h_worker, g2h_worker_func);
242 	INIT_DELAYED_WORK(&ct->safe_mode_worker, safe_mode_worker_func);
243 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
244 	spin_lock_init(&ct->dead.lock);
245 	INIT_WORK(&ct->dead.worker, ct_dead_worker_func);
246 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_GUC)
247 	stack_depot_init();
248 #endif
249 #endif
250 	init_waitqueue_head(&ct->wq);
251 	init_waitqueue_head(&ct->g2h_fence_wq);
252 
253 	err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct);
254 	if (err)
255 		return err;
256 
257 	xe_gt_assert(gt, ct->state == XE_GUC_CT_STATE_NOT_INITIALIZED);
258 	ct->state = XE_GUC_CT_STATE_DISABLED;
259 	return 0;
260 }
261 ALLOW_ERROR_INJECTION(xe_guc_ct_init_noalloc, ERRNO); /* See xe_pci_probe() */
262 
guc_action_disable_ct(void * arg)263 static void guc_action_disable_ct(void *arg)
264 {
265 	struct xe_guc_ct *ct = arg;
266 
267 	guc_ct_change_state(ct, XE_GUC_CT_STATE_DISABLED);
268 }
269 
xe_guc_ct_init(struct xe_guc_ct * ct)270 int xe_guc_ct_init(struct xe_guc_ct *ct)
271 {
272 	struct xe_device *xe = ct_to_xe(ct);
273 	struct xe_gt *gt = ct_to_gt(ct);
274 	struct xe_tile *tile = gt_to_tile(gt);
275 	struct xe_bo *bo;
276 
277 	bo = xe_managed_bo_create_pin_map(xe, tile, guc_ct_size(),
278 					  XE_BO_FLAG_SYSTEM |
279 					  XE_BO_FLAG_GGTT |
280 					  XE_BO_FLAG_GGTT_INVALIDATE |
281 					  XE_BO_FLAG_PINNED_NORESTORE);
282 	if (IS_ERR(bo))
283 		return PTR_ERR(bo);
284 
285 	ct->bo = bo;
286 
287 	return devm_add_action_or_reset(xe->drm.dev, guc_action_disable_ct, ct);
288 }
289 ALLOW_ERROR_INJECTION(xe_guc_ct_init, ERRNO); /* See xe_pci_probe() */
290 
291 /**
292  * xe_guc_ct_init_post_hwconfig - Reinitialize the GuC CTB in VRAM
293  * @ct: the &xe_guc_ct
294  *
295  * Allocate a new BO in VRAM and free the previous BO that was allocated
296  * in system memory (SMEM). Applicable only for DGFX products.
297  *
298  * Return: 0 on success, or a negative errno on failure.
299  */
xe_guc_ct_init_post_hwconfig(struct xe_guc_ct * ct)300 int xe_guc_ct_init_post_hwconfig(struct xe_guc_ct *ct)
301 {
302 	struct xe_device *xe = ct_to_xe(ct);
303 	struct xe_gt *gt = ct_to_gt(ct);
304 	struct xe_tile *tile = gt_to_tile(gt);
305 	int ret;
306 
307 	xe_assert(xe, !xe_guc_ct_enabled(ct));
308 
309 	if (IS_DGFX(xe)) {
310 		ret = xe_managed_bo_reinit_in_vram(xe, tile, &ct->bo);
311 		if (ret)
312 			return ret;
313 	}
314 
315 	devm_remove_action(xe->drm.dev, guc_action_disable_ct, ct);
316 	return devm_add_action_or_reset(xe->drm.dev, guc_action_disable_ct, ct);
317 }
318 
319 #define desc_read(xe_, guc_ctb__, field_)			\
320 	xe_map_rd_field(xe_, &guc_ctb__->desc, 0,		\
321 			struct guc_ct_buffer_desc, field_)
322 
323 #define desc_write(xe_, guc_ctb__, field_, val_)		\
324 	xe_map_wr_field(xe_, &guc_ctb__->desc, 0,		\
325 			struct guc_ct_buffer_desc, field_, val_)
326 
guc_ct_ctb_h2g_init(struct xe_device * xe,struct guc_ctb * h2g,struct iosys_map * map)327 static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g,
328 				struct iosys_map *map)
329 {
330 	h2g->info.size = CTB_H2G_BUFFER_SIZE / sizeof(u32);
331 	h2g->info.resv_space = 0;
332 	h2g->info.tail = 0;
333 	h2g->info.head = 0;
334 	h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
335 				     h2g->info.size) -
336 			  h2g->info.resv_space;
337 	h2g->info.broken = false;
338 
339 	h2g->desc = *map;
340 	xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
341 
342 	h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2);
343 }
344 
guc_ct_ctb_g2h_init(struct xe_device * xe,struct guc_ctb * g2h,struct iosys_map * map)345 static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h,
346 				struct iosys_map *map)
347 {
348 	g2h->info.size = CTB_G2H_BUFFER_SIZE / sizeof(u32);
349 	g2h->info.resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32);
350 	g2h->info.head = 0;
351 	g2h->info.tail = 0;
352 	g2h->info.space = CIRC_SPACE(g2h->info.tail, g2h->info.head,
353 				     g2h->info.size) -
354 			  g2h->info.resv_space;
355 	g2h->info.broken = false;
356 
357 	g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE);
358 	xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
359 
360 	g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 +
361 					    CTB_H2G_BUFFER_SIZE);
362 }
363 
guc_ct_ctb_h2g_register(struct xe_guc_ct * ct)364 static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct)
365 {
366 	struct xe_guc *guc = ct_to_guc(ct);
367 	u32 desc_addr, ctb_addr, size;
368 	int err;
369 
370 	desc_addr = xe_bo_ggtt_addr(ct->bo);
371 	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2;
372 	size = ct->ctbs.h2g.info.size * sizeof(u32);
373 
374 	err = xe_guc_self_cfg64(guc,
375 				GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY,
376 				desc_addr);
377 	if (err)
378 		return err;
379 
380 	err = xe_guc_self_cfg64(guc,
381 				GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY,
382 				ctb_addr);
383 	if (err)
384 		return err;
385 
386 	return xe_guc_self_cfg32(guc,
387 				 GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY,
388 				 size);
389 }
390 
guc_ct_ctb_g2h_register(struct xe_guc_ct * ct)391 static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct)
392 {
393 	struct xe_guc *guc = ct_to_guc(ct);
394 	u32 desc_addr, ctb_addr, size;
395 	int err;
396 
397 	desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE;
398 	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 +
399 		CTB_H2G_BUFFER_SIZE;
400 	size = ct->ctbs.g2h.info.size * sizeof(u32);
401 
402 	err = xe_guc_self_cfg64(guc,
403 				GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY,
404 				desc_addr);
405 	if (err)
406 		return err;
407 
408 	err = xe_guc_self_cfg64(guc,
409 				GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY,
410 				ctb_addr);
411 	if (err)
412 		return err;
413 
414 	return xe_guc_self_cfg32(guc,
415 				 GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY,
416 				 size);
417 }
418 
guc_ct_control_toggle(struct xe_guc_ct * ct,bool enable)419 static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable)
420 {
421 	u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = {
422 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
423 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
424 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
425 			   GUC_ACTION_HOST2GUC_CONTROL_CTB),
426 		FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL,
427 			   enable ? GUC_CTB_CONTROL_ENABLE :
428 			   GUC_CTB_CONTROL_DISABLE),
429 	};
430 	int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request));
431 
432 	return ret > 0 ? -EPROTO : ret;
433 }
434 
guc_ct_change_state(struct xe_guc_ct * ct,enum xe_guc_ct_state state)435 static void guc_ct_change_state(struct xe_guc_ct *ct,
436 				enum xe_guc_ct_state state)
437 {
438 	struct xe_gt *gt = ct_to_gt(ct);
439 	struct g2h_fence *g2h_fence;
440 	unsigned long idx;
441 
442 	mutex_lock(&ct->lock);		/* Serialise dequeue_one_g2h() */
443 	spin_lock_irq(&ct->fast_lock);	/* Serialise CT fast-path */
444 
445 	xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding == 0 ||
446 		     state == XE_GUC_CT_STATE_STOPPED);
447 
448 	if (ct->g2h_outstanding)
449 		xe_pm_runtime_put(ct_to_xe(ct));
450 	ct->g2h_outstanding = 0;
451 	ct->state = state;
452 
453 	xe_gt_dbg(gt, "GuC CT communication channel %s\n",
454 		  state == XE_GUC_CT_STATE_STOPPED ? "stopped" :
455 		  str_enabled_disabled(state == XE_GUC_CT_STATE_ENABLED));
456 
457 	spin_unlock_irq(&ct->fast_lock);
458 
459 	/* cancel all in-flight send-recv requests */
460 	xa_for_each(&ct->fence_lookup, idx, g2h_fence)
461 		g2h_fence_cancel(g2h_fence);
462 
463 	/* make sure guc_ct_send_recv() will see g2h_fence changes */
464 	smp_mb();
465 	wake_up_all(&ct->g2h_fence_wq);
466 
467 	/*
468 	 * Lockdep doesn't like this under the fast lock and he destroy only
469 	 * needs to be serialized with the send path which ct lock provides.
470 	 */
471 	xa_destroy(&ct->fence_lookup);
472 
473 	mutex_unlock(&ct->lock);
474 }
475 
ct_needs_safe_mode(struct xe_guc_ct * ct)476 static bool ct_needs_safe_mode(struct xe_guc_ct *ct)
477 {
478 	return !pci_dev_msi_enabled(to_pci_dev(ct_to_xe(ct)->drm.dev));
479 }
480 
ct_restart_safe_mode_worker(struct xe_guc_ct * ct)481 static bool ct_restart_safe_mode_worker(struct xe_guc_ct *ct)
482 {
483 	if (!ct_needs_safe_mode(ct))
484 		return false;
485 
486 	queue_delayed_work(ct->g2h_wq, &ct->safe_mode_worker, HZ / 10);
487 	return true;
488 }
489 
safe_mode_worker_func(struct work_struct * w)490 static void safe_mode_worker_func(struct work_struct *w)
491 {
492 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, safe_mode_worker.work);
493 
494 	receive_g2h(ct);
495 
496 	if (!ct_restart_safe_mode_worker(ct))
497 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode canceled\n");
498 }
499 
ct_enter_safe_mode(struct xe_guc_ct * ct)500 static void ct_enter_safe_mode(struct xe_guc_ct *ct)
501 {
502 	if (ct_restart_safe_mode_worker(ct))
503 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode enabled\n");
504 }
505 
ct_exit_safe_mode(struct xe_guc_ct * ct)506 static void ct_exit_safe_mode(struct xe_guc_ct *ct)
507 {
508 	if (cancel_delayed_work_sync(&ct->safe_mode_worker))
509 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode disabled\n");
510 }
511 
xe_guc_ct_enable(struct xe_guc_ct * ct)512 int xe_guc_ct_enable(struct xe_guc_ct *ct)
513 {
514 	struct xe_device *xe = ct_to_xe(ct);
515 	struct xe_gt *gt = ct_to_gt(ct);
516 	int err;
517 
518 	xe_gt_assert(gt, !xe_guc_ct_enabled(ct));
519 
520 	xe_map_memset(xe, &ct->bo->vmap, 0, 0, xe_bo_size(ct->bo));
521 	guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap);
522 	guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap);
523 
524 	err = guc_ct_ctb_h2g_register(ct);
525 	if (err)
526 		goto err_out;
527 
528 	err = guc_ct_ctb_g2h_register(ct);
529 	if (err)
530 		goto err_out;
531 
532 	err = guc_ct_control_toggle(ct, true);
533 	if (err)
534 		goto err_out;
535 
536 	guc_ct_change_state(ct, XE_GUC_CT_STATE_ENABLED);
537 
538 	smp_mb();
539 	wake_up_all(&ct->wq);
540 
541 	if (ct_needs_safe_mode(ct))
542 		ct_enter_safe_mode(ct);
543 
544 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
545 	/*
546 	 * The CT has now been reset so the dumper can be re-armed
547 	 * after any existing dead state has been dumped.
548 	 */
549 	spin_lock_irq(&ct->dead.lock);
550 	if (ct->dead.reason) {
551 		ct->dead.reason |= (1 << CT_DEAD_STATE_REARM);
552 		queue_work(system_unbound_wq, &ct->dead.worker);
553 	}
554 	spin_unlock_irq(&ct->dead.lock);
555 #endif
556 
557 	return 0;
558 
559 err_out:
560 	xe_gt_err(gt, "Failed to enable GuC CT (%pe)\n", ERR_PTR(err));
561 	CT_DEAD(ct, NULL, SETUP);
562 
563 	return err;
564 }
565 
stop_g2h_handler(struct xe_guc_ct * ct)566 static void stop_g2h_handler(struct xe_guc_ct *ct)
567 {
568 	cancel_work_sync(&ct->g2h_worker);
569 }
570 
571 /**
572  * xe_guc_ct_disable - Set GuC to disabled state
573  * @ct: the &xe_guc_ct
574  *
575  * Set GuC CT to disabled state and stop g2h handler. No outstanding g2h expected
576  * in this transition.
577  */
xe_guc_ct_disable(struct xe_guc_ct * ct)578 void xe_guc_ct_disable(struct xe_guc_ct *ct)
579 {
580 	guc_ct_change_state(ct, XE_GUC_CT_STATE_DISABLED);
581 	ct_exit_safe_mode(ct);
582 	stop_g2h_handler(ct);
583 }
584 
585 /**
586  * xe_guc_ct_stop - Set GuC to stopped state
587  * @ct: the &xe_guc_ct
588  *
589  * Set GuC CT to stopped state, stop g2h handler, and clear any outstanding g2h
590  */
xe_guc_ct_stop(struct xe_guc_ct * ct)591 void xe_guc_ct_stop(struct xe_guc_ct *ct)
592 {
593 	if (!xe_guc_ct_initialized(ct))
594 		return;
595 
596 	guc_ct_change_state(ct, XE_GUC_CT_STATE_STOPPED);
597 	stop_g2h_handler(ct);
598 }
599 
h2g_has_room(struct xe_guc_ct * ct,u32 cmd_len)600 static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len)
601 {
602 	struct guc_ctb *h2g = &ct->ctbs.h2g;
603 
604 	lockdep_assert_held(&ct->lock);
605 
606 	if (cmd_len > h2g->info.space) {
607 		h2g->info.head = desc_read(ct_to_xe(ct), h2g, head);
608 
609 		if (h2g->info.head > h2g->info.size) {
610 			struct xe_device *xe = ct_to_xe(ct);
611 			u32 desc_status = desc_read(xe, h2g, status);
612 
613 			desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
614 
615 			xe_gt_err(ct_to_gt(ct), "CT: invalid head offset %u >= %u)\n",
616 				  h2g->info.head, h2g->info.size);
617 			CT_DEAD(ct, h2g, H2G_HAS_ROOM);
618 			return false;
619 		}
620 
621 		h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
622 					     h2g->info.size) -
623 				  h2g->info.resv_space;
624 		if (cmd_len > h2g->info.space)
625 			return false;
626 	}
627 
628 	return true;
629 }
630 
g2h_has_room(struct xe_guc_ct * ct,u32 g2h_len)631 static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len)
632 {
633 	if (!g2h_len)
634 		return true;
635 
636 	lockdep_assert_held(&ct->fast_lock);
637 
638 	return ct->ctbs.g2h.info.space > g2h_len;
639 }
640 
has_room(struct xe_guc_ct * ct,u32 cmd_len,u32 g2h_len)641 static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len)
642 {
643 	lockdep_assert_held(&ct->lock);
644 
645 	if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len))
646 		return -EBUSY;
647 
648 	return 0;
649 }
650 
h2g_reserve_space(struct xe_guc_ct * ct,u32 cmd_len)651 static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len)
652 {
653 	lockdep_assert_held(&ct->lock);
654 	ct->ctbs.h2g.info.space -= cmd_len;
655 }
656 
__g2h_reserve_space(struct xe_guc_ct * ct,u32 g2h_len,u32 num_g2h)657 static void __g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h)
658 {
659 	xe_gt_assert(ct_to_gt(ct), g2h_len <= ct->ctbs.g2h.info.space);
660 	xe_gt_assert(ct_to_gt(ct), (!g2h_len && !num_g2h) ||
661 		     (g2h_len && num_g2h));
662 
663 	if (g2h_len) {
664 		lockdep_assert_held(&ct->fast_lock);
665 
666 		if (!ct->g2h_outstanding)
667 			xe_pm_runtime_get_noresume(ct_to_xe(ct));
668 
669 		ct->ctbs.g2h.info.space -= g2h_len;
670 		ct->g2h_outstanding += num_g2h;
671 	}
672 }
673 
__g2h_release_space(struct xe_guc_ct * ct,u32 g2h_len)674 static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
675 {
676 	bool bad = false;
677 
678 	lockdep_assert_held(&ct->fast_lock);
679 
680 	bad = ct->ctbs.g2h.info.space + g2h_len >
681 		     ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space;
682 	bad |= !ct->g2h_outstanding;
683 
684 	if (bad) {
685 		xe_gt_err(ct_to_gt(ct), "Invalid G2H release: %d + %d vs %d - %d -> %d vs %d, outstanding = %d!\n",
686 			  ct->ctbs.g2h.info.space, g2h_len,
687 			  ct->ctbs.g2h.info.size, ct->ctbs.g2h.info.resv_space,
688 			  ct->ctbs.g2h.info.space + g2h_len,
689 			  ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space,
690 			  ct->g2h_outstanding);
691 		CT_DEAD(ct, &ct->ctbs.g2h, G2H_RELEASE);
692 		return;
693 	}
694 
695 	ct->ctbs.g2h.info.space += g2h_len;
696 	if (!--ct->g2h_outstanding)
697 		xe_pm_runtime_put(ct_to_xe(ct));
698 }
699 
g2h_release_space(struct xe_guc_ct * ct,u32 g2h_len)700 static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
701 {
702 	spin_lock_irq(&ct->fast_lock);
703 	__g2h_release_space(ct, g2h_len);
704 	spin_unlock_irq(&ct->fast_lock);
705 }
706 
707 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
fast_req_track(struct xe_guc_ct * ct,u16 fence,u16 action)708 static void fast_req_track(struct xe_guc_ct *ct, u16 fence, u16 action)
709 {
710 	unsigned int slot = fence % ARRAY_SIZE(ct->fast_req);
711 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_GUC)
712 	unsigned long entries[SZ_32];
713 	unsigned int n;
714 
715 	n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
716 
717 	/* May be called under spinlock, so avoid sleeping */
718 	ct->fast_req[slot].stack = stack_depot_save(entries, n, GFP_NOWAIT);
719 #endif
720 	ct->fast_req[slot].fence = fence;
721 	ct->fast_req[slot].action = action;
722 }
723 #else
fast_req_track(struct xe_guc_ct * ct,u16 fence,u16 action)724 static void fast_req_track(struct xe_guc_ct *ct, u16 fence, u16 action)
725 {
726 }
727 #endif
728 
729 /*
730  * The CT protocol accepts a 16 bits fence. This field is fully owned by the
731  * driver, the GuC will just copy it to the reply message. Since we need to
732  * be able to distinguish between replies to REQUEST and FAST_REQUEST messages,
733  * we use one bit of the seqno as an indicator for that and a rolling counter
734  * for the remaining 15 bits.
735  */
736 #define CT_SEQNO_MASK GENMASK(14, 0)
737 #define CT_SEQNO_UNTRACKED BIT(15)
next_ct_seqno(struct xe_guc_ct * ct,bool is_g2h_fence)738 static u16 next_ct_seqno(struct xe_guc_ct *ct, bool is_g2h_fence)
739 {
740 	u32 seqno = ct->fence_seqno++ & CT_SEQNO_MASK;
741 
742 	if (!is_g2h_fence)
743 		seqno |= CT_SEQNO_UNTRACKED;
744 
745 	return seqno;
746 }
747 
748 #define H2G_CT_HEADERS (GUC_CTB_HDR_LEN + 1) /* one DW CTB header and one DW HxG header */
749 
h2g_write(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 ct_fence_value,bool want_response)750 static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len,
751 		     u32 ct_fence_value, bool want_response)
752 {
753 	struct xe_device *xe = ct_to_xe(ct);
754 	struct xe_gt *gt = ct_to_gt(ct);
755 	struct guc_ctb *h2g = &ct->ctbs.h2g;
756 	u32 cmd[H2G_CT_HEADERS];
757 	u32 tail = h2g->info.tail;
758 	u32 full_len;
759 	struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds,
760 							 tail * sizeof(u32));
761 	u32 desc_status;
762 
763 	full_len = len + GUC_CTB_HDR_LEN;
764 
765 	lockdep_assert_held(&ct->lock);
766 	xe_gt_assert(gt, full_len <= GUC_CTB_MSG_MAX_LEN);
767 
768 	desc_status = desc_read(xe, h2g, status);
769 	if (desc_status) {
770 		xe_gt_err(gt, "CT write: non-zero status: %u\n", desc_status);
771 		goto corrupted;
772 	}
773 
774 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
775 		u32 desc_tail = desc_read(xe, h2g, tail);
776 		u32 desc_head = desc_read(xe, h2g, head);
777 
778 		if (tail != desc_tail) {
779 			desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_MISMATCH);
780 			xe_gt_err(gt, "CT write: tail was modified %u != %u\n", desc_tail, tail);
781 			goto corrupted;
782 		}
783 
784 		if (tail > h2g->info.size) {
785 			desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
786 			xe_gt_err(gt, "CT write: tail out of range: %u vs %u\n",
787 				  tail, h2g->info.size);
788 			goto corrupted;
789 		}
790 
791 		if (desc_head >= h2g->info.size) {
792 			desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
793 			xe_gt_err(gt, "CT write: invalid head offset %u >= %u)\n",
794 				  desc_head, h2g->info.size);
795 			goto corrupted;
796 		}
797 	}
798 
799 	/* Command will wrap, zero fill (NOPs), return and check credits again */
800 	if (tail + full_len > h2g->info.size) {
801 		xe_map_memset(xe, &map, 0, 0,
802 			      (h2g->info.size - tail) * sizeof(u32));
803 		h2g_reserve_space(ct, (h2g->info.size - tail));
804 		h2g->info.tail = 0;
805 		desc_write(xe, h2g, tail, h2g->info.tail);
806 
807 		return -EAGAIN;
808 	}
809 
810 	/*
811 	 * dw0: CT header (including fence)
812 	 * dw1: HXG header (including action code)
813 	 * dw2+: action data
814 	 */
815 	cmd[0] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
816 		FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
817 		FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value);
818 	if (want_response) {
819 		cmd[1] =
820 			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
821 			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
822 				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
823 	} else {
824 		fast_req_track(ct, ct_fence_value,
825 			       FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, action[0]));
826 
827 		cmd[1] =
828 			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_FAST_REQUEST) |
829 			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
830 				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
831 	}
832 
833 	/* H2G header in cmd[1] replaces action[0] so: */
834 	--len;
835 	++action;
836 
837 	/* Write H2G ensuring visible before descriptor update */
838 	xe_map_memcpy_to(xe, &map, 0, cmd, H2G_CT_HEADERS * sizeof(u32));
839 	xe_map_memcpy_to(xe, &map, H2G_CT_HEADERS * sizeof(u32), action, len * sizeof(u32));
840 	xe_device_wmb(xe);
841 
842 	/* Update local copies */
843 	h2g->info.tail = (tail + full_len) % h2g->info.size;
844 	h2g_reserve_space(ct, full_len);
845 
846 	/* Update descriptor */
847 	desc_write(xe, h2g, tail, h2g->info.tail);
848 
849 	trace_xe_guc_ctb_h2g(xe, gt->info.id, *(action - 1), full_len,
850 			     desc_read(xe, h2g, head), h2g->info.tail);
851 
852 	return 0;
853 
854 corrupted:
855 	CT_DEAD(ct, &ct->ctbs.h2g, H2G_WRITE);
856 	return -EPIPE;
857 }
858 
__guc_ct_send_locked(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h,struct g2h_fence * g2h_fence)859 static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action,
860 				u32 len, u32 g2h_len, u32 num_g2h,
861 				struct g2h_fence *g2h_fence)
862 {
863 	struct xe_gt *gt __maybe_unused = ct_to_gt(ct);
864 	u16 seqno;
865 	int ret;
866 
867 	xe_gt_assert(gt, xe_guc_ct_initialized(ct));
868 	xe_gt_assert(gt, !g2h_len || !g2h_fence);
869 	xe_gt_assert(gt, !num_g2h || !g2h_fence);
870 	xe_gt_assert(gt, !g2h_len || num_g2h);
871 	xe_gt_assert(gt, g2h_len || !num_g2h);
872 	lockdep_assert_held(&ct->lock);
873 
874 	if (unlikely(ct->ctbs.h2g.info.broken)) {
875 		ret = -EPIPE;
876 		goto out;
877 	}
878 
879 	if (ct->state == XE_GUC_CT_STATE_DISABLED) {
880 		ret = -ENODEV;
881 		goto out;
882 	}
883 
884 	if (ct->state == XE_GUC_CT_STATE_STOPPED) {
885 		ret = -ECANCELED;
886 		goto out;
887 	}
888 
889 	xe_gt_assert(gt, xe_guc_ct_enabled(ct));
890 
891 	if (g2h_fence) {
892 		g2h_len = GUC_CTB_HXG_MSG_MAX_LEN;
893 		num_g2h = 1;
894 
895 		if (g2h_fence_needs_alloc(g2h_fence)) {
896 			g2h_fence->seqno = next_ct_seqno(ct, true);
897 			ret = xa_err(xa_store(&ct->fence_lookup,
898 					      g2h_fence->seqno, g2h_fence,
899 					      GFP_ATOMIC));
900 			if (ret)
901 				goto out;
902 		}
903 
904 		seqno = g2h_fence->seqno;
905 	} else {
906 		seqno = next_ct_seqno(ct, false);
907 	}
908 
909 	if (g2h_len)
910 		spin_lock_irq(&ct->fast_lock);
911 retry:
912 	ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len);
913 	if (unlikely(ret))
914 		goto out_unlock;
915 
916 	ret = h2g_write(ct, action, len, seqno, !!g2h_fence);
917 	if (unlikely(ret)) {
918 		if (ret == -EAGAIN)
919 			goto retry;
920 		goto out_unlock;
921 	}
922 
923 	__g2h_reserve_space(ct, g2h_len, num_g2h);
924 	xe_guc_notify(ct_to_guc(ct));
925 out_unlock:
926 	if (g2h_len)
927 		spin_unlock_irq(&ct->fast_lock);
928 out:
929 	return ret;
930 }
931 
kick_reset(struct xe_guc_ct * ct)932 static void kick_reset(struct xe_guc_ct *ct)
933 {
934 	xe_gt_reset_async(ct_to_gt(ct));
935 }
936 
937 static int dequeue_one_g2h(struct xe_guc_ct *ct);
938 
guc_ct_send_locked(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h,struct g2h_fence * g2h_fence)939 static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
940 			      u32 g2h_len, u32 num_g2h,
941 			      struct g2h_fence *g2h_fence)
942 {
943 	struct xe_device *xe = ct_to_xe(ct);
944 	struct xe_gt *gt = ct_to_gt(ct);
945 	unsigned int sleep_period_ms = 1;
946 	int ret;
947 
948 	xe_gt_assert(gt, !g2h_len || !g2h_fence);
949 	lockdep_assert_held(&ct->lock);
950 	xe_device_assert_mem_access(ct_to_xe(ct));
951 
952 try_again:
953 	ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h,
954 				   g2h_fence);
955 
956 	/*
957 	 * We wait to try to restore credits for about 1 second before bailing.
958 	 * In the case of H2G credits we have no choice but just to wait for the
959 	 * GuC to consume H2Gs in the channel so we use a wait / sleep loop. In
960 	 * the case of G2H we process any G2H in the channel, hopefully freeing
961 	 * credits as we consume the G2H messages.
962 	 */
963 	if (unlikely(ret == -EBUSY &&
964 		     !h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) {
965 		struct guc_ctb *h2g = &ct->ctbs.h2g;
966 
967 		if (sleep_period_ms == 1024)
968 			goto broken;
969 
970 		trace_xe_guc_ct_h2g_flow_control(xe, h2g->info.head, h2g->info.tail,
971 						 h2g->info.size,
972 						 h2g->info.space,
973 						 len + GUC_CTB_HDR_LEN);
974 		msleep(sleep_period_ms);
975 		sleep_period_ms <<= 1;
976 
977 		goto try_again;
978 	} else if (unlikely(ret == -EBUSY)) {
979 		struct xe_device *xe = ct_to_xe(ct);
980 		struct guc_ctb *g2h = &ct->ctbs.g2h;
981 
982 		trace_xe_guc_ct_g2h_flow_control(xe, g2h->info.head,
983 						 desc_read(xe, g2h, tail),
984 						 g2h->info.size,
985 						 g2h->info.space,
986 						 g2h_fence ?
987 						 GUC_CTB_HXG_MSG_MAX_LEN :
988 						 g2h_len);
989 
990 #define g2h_avail(ct)	\
991 	(desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.info.head)
992 		if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding ||
993 					g2h_avail(ct), HZ))
994 			goto broken;
995 #undef g2h_avail
996 
997 		ret = dequeue_one_g2h(ct);
998 		if (ret < 0) {
999 			if (ret != -ECANCELED)
1000 				xe_gt_err(ct_to_gt(ct), "CTB receive failed (%pe)",
1001 					  ERR_PTR(ret));
1002 			goto broken;
1003 		}
1004 
1005 		goto try_again;
1006 	}
1007 
1008 	return ret;
1009 
1010 broken:
1011 	xe_gt_err(gt, "No forward process on H2G, reset required\n");
1012 	CT_DEAD(ct, &ct->ctbs.h2g, DEADLOCK);
1013 
1014 	return -EDEADLK;
1015 }
1016 
guc_ct_send(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h,struct g2h_fence * g2h_fence)1017 static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
1018 		       u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence)
1019 {
1020 	int ret;
1021 
1022 	xe_gt_assert(ct_to_gt(ct), !g2h_len || !g2h_fence);
1023 
1024 	mutex_lock(&ct->lock);
1025 	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence);
1026 	mutex_unlock(&ct->lock);
1027 
1028 	return ret;
1029 }
1030 
xe_guc_ct_send(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h)1031 int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
1032 		   u32 g2h_len, u32 num_g2h)
1033 {
1034 	int ret;
1035 
1036 	ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL);
1037 	if (ret == -EDEADLK)
1038 		kick_reset(ct);
1039 
1040 	return ret;
1041 }
1042 
xe_guc_ct_send_locked(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h)1043 int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
1044 			  u32 g2h_len, u32 num_g2h)
1045 {
1046 	int ret;
1047 
1048 	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL);
1049 	if (ret == -EDEADLK)
1050 		kick_reset(ct);
1051 
1052 	return ret;
1053 }
1054 
xe_guc_ct_send_g2h_handler(struct xe_guc_ct * ct,const u32 * action,u32 len)1055 int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len)
1056 {
1057 	int ret;
1058 
1059 	lockdep_assert_held(&ct->lock);
1060 
1061 	ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL);
1062 	if (ret == -EDEADLK)
1063 		kick_reset(ct);
1064 
1065 	return ret;
1066 }
1067 
1068 /*
1069  * Check if a GT reset is in progress or will occur and if GT reset brought the
1070  * CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset.
1071  */
retry_failure(struct xe_guc_ct * ct,int ret)1072 static bool retry_failure(struct xe_guc_ct *ct, int ret)
1073 {
1074 	if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV))
1075 		return false;
1076 
1077 #define ct_alive(ct)	\
1078 	(xe_guc_ct_enabled(ct) && !ct->ctbs.h2g.info.broken && \
1079 	 !ct->ctbs.g2h.info.broken)
1080 	if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct), HZ * 5))
1081 		return false;
1082 #undef ct_alive
1083 
1084 	return true;
1085 }
1086 
1087 #define GUC_SEND_RETRY_LIMIT	50
1088 #define GUC_SEND_RETRY_MSLEEP	5
1089 
guc_ct_send_recv(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 * response_buffer,bool no_fail)1090 static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
1091 			    u32 *response_buffer, bool no_fail)
1092 {
1093 	struct xe_gt *gt = ct_to_gt(ct);
1094 	struct g2h_fence g2h_fence;
1095 	unsigned int retries = 0;
1096 	int ret = 0;
1097 
1098 	/*
1099 	 * We use a fence to implement blocking sends / receiving response data.
1100 	 * The seqno of the fence is sent in the H2G, returned in the G2H, and
1101 	 * an xarray is used as storage media with the seqno being to key.
1102 	 * Fields in the fence hold success, failure, retry status and the
1103 	 * response data. Safe to allocate on the stack as the xarray is the
1104 	 * only reference and it cannot be present after this function exits.
1105 	 */
1106 retry:
1107 	g2h_fence_init(&g2h_fence, response_buffer);
1108 retry_same_fence:
1109 	ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence);
1110 	if (unlikely(ret == -ENOMEM)) {
1111 		/* Retry allocation /w GFP_KERNEL */
1112 		ret = xa_err(xa_store(&ct->fence_lookup, g2h_fence.seqno,
1113 				      &g2h_fence, GFP_KERNEL));
1114 		if (ret)
1115 			return ret;
1116 
1117 		goto retry_same_fence;
1118 	} else if (unlikely(ret)) {
1119 		if (ret == -EDEADLK)
1120 			kick_reset(ct);
1121 
1122 		if (no_fail && retry_failure(ct, ret))
1123 			goto retry_same_fence;
1124 
1125 		if (!g2h_fence_needs_alloc(&g2h_fence))
1126 			xa_erase(&ct->fence_lookup, g2h_fence.seqno);
1127 
1128 		return ret;
1129 	}
1130 
1131 	ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ);
1132 	if (!ret) {
1133 		LNL_FLUSH_WORK(&ct->g2h_worker);
1134 		if (g2h_fence.done) {
1135 			xe_gt_warn(gt, "G2H fence %u, action %04x, done\n",
1136 				   g2h_fence.seqno, action[0]);
1137 			ret = 1;
1138 		}
1139 	}
1140 
1141 	/*
1142 	 * Ensure we serialize with completion side to prevent UAF with fence going out of scope on
1143 	 * the stack, since we have no clue if it will fire after the timeout before we can erase
1144 	 * from the xa. Also we have some dependent loads and stores below for which we need the
1145 	 * correct ordering, and we lack the needed barriers.
1146 	 */
1147 	mutex_lock(&ct->lock);
1148 	if (!ret) {
1149 		xe_gt_err(gt, "Timed out wait for G2H, fence %u, action %04x, done %s",
1150 			  g2h_fence.seqno, action[0], str_yes_no(g2h_fence.done));
1151 		xa_erase(&ct->fence_lookup, g2h_fence.seqno);
1152 		mutex_unlock(&ct->lock);
1153 		return -ETIME;
1154 	}
1155 
1156 	if (g2h_fence.retry) {
1157 		xe_gt_dbg(gt, "H2G action %#x retrying: reason %#x\n",
1158 			  action[0], g2h_fence.reason);
1159 		mutex_unlock(&ct->lock);
1160 		if (++retries > GUC_SEND_RETRY_LIMIT) {
1161 			xe_gt_err(gt, "H2G action %#x reached retry limit=%u, aborting\n",
1162 				  action[0], GUC_SEND_RETRY_LIMIT);
1163 			return -ELOOP;
1164 		}
1165 		msleep(GUC_SEND_RETRY_MSLEEP * retries);
1166 		goto retry;
1167 	}
1168 	if (g2h_fence.fail) {
1169 		if (g2h_fence.cancel) {
1170 			xe_gt_dbg(gt, "H2G request %#x canceled!\n", action[0]);
1171 			ret = -ECANCELED;
1172 			goto unlock;
1173 		}
1174 		xe_gt_err(gt, "H2G request %#x failed: error %#x hint %#x\n",
1175 			  action[0], g2h_fence.error, g2h_fence.hint);
1176 		ret = -EIO;
1177 	}
1178 
1179 	if (ret > 0)
1180 		ret = response_buffer ? g2h_fence.response_len : g2h_fence.response_data;
1181 
1182 unlock:
1183 	mutex_unlock(&ct->lock);
1184 
1185 	return ret;
1186 }
1187 
1188 /**
1189  * xe_guc_ct_send_recv - Send and receive HXG to the GuC
1190  * @ct: the &xe_guc_ct
1191  * @action: the dword array with `HXG Request`_ message (can't be NULL)
1192  * @len: length of the `HXG Request`_ message (in dwords, can't be 0)
1193  * @response_buffer: placeholder for the `HXG Response`_ message (can be NULL)
1194  *
1195  * Send a `HXG Request`_ message to the GuC over CT communication channel and
1196  * blocks until GuC replies with a `HXG Response`_ message.
1197  *
1198  * For non-blocking communication with GuC use xe_guc_ct_send().
1199  *
1200  * Note: The size of &response_buffer must be at least GUC_CTB_MAX_DWORDS_.
1201  *
1202  * Return: response length (in dwords) if &response_buffer was not NULL, or
1203  *         DATA0 from `HXG Response`_ if &response_buffer was NULL, or
1204  *         a negative error code on failure.
1205  */
xe_guc_ct_send_recv(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 * response_buffer)1206 int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
1207 			u32 *response_buffer)
1208 {
1209 	KUNIT_STATIC_STUB_REDIRECT(xe_guc_ct_send_recv, ct, action, len, response_buffer);
1210 	return guc_ct_send_recv(ct, action, len, response_buffer, false);
1211 }
1212 ALLOW_ERROR_INJECTION(xe_guc_ct_send_recv, ERRNO);
1213 
xe_guc_ct_send_recv_no_fail(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 * response_buffer)1214 int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action,
1215 				u32 len, u32 *response_buffer)
1216 {
1217 	return guc_ct_send_recv(ct, action, len, response_buffer, true);
1218 }
1219 
msg_to_hxg(u32 * msg)1220 static u32 *msg_to_hxg(u32 *msg)
1221 {
1222 	return msg + GUC_CTB_MSG_MIN_LEN;
1223 }
1224 
msg_len_to_hxg_len(u32 len)1225 static u32 msg_len_to_hxg_len(u32 len)
1226 {
1227 	return len - GUC_CTB_MSG_MIN_LEN;
1228 }
1229 
parse_g2h_event(struct xe_guc_ct * ct,u32 * msg,u32 len)1230 static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len)
1231 {
1232 	u32 *hxg = msg_to_hxg(msg);
1233 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1234 
1235 	lockdep_assert_held(&ct->lock);
1236 
1237 	switch (action) {
1238 	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1239 	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1240 	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
1241 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1242 		g2h_release_space(ct, len);
1243 	}
1244 
1245 	return 0;
1246 }
1247 
guc_crash_process_msg(struct xe_guc_ct * ct,u32 action)1248 static int guc_crash_process_msg(struct xe_guc_ct *ct, u32 action)
1249 {
1250 	struct xe_gt *gt = ct_to_gt(ct);
1251 
1252 	if (action == XE_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED)
1253 		xe_gt_err(gt, "GuC Crash dump notification\n");
1254 	else if (action == XE_GUC_ACTION_NOTIFY_EXCEPTION)
1255 		xe_gt_err(gt, "GuC Exception notification\n");
1256 	else
1257 		xe_gt_err(gt, "Unknown GuC crash notification: 0x%04X\n", action);
1258 
1259 	CT_DEAD(ct, NULL, CRASH);
1260 
1261 	kick_reset(ct);
1262 
1263 	return 0;
1264 }
1265 
1266 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
fast_req_report(struct xe_guc_ct * ct,u16 fence)1267 static void fast_req_report(struct xe_guc_ct *ct, u16 fence)
1268 {
1269 	u16 fence_min = U16_MAX, fence_max = 0;
1270 	struct xe_gt *gt = ct_to_gt(ct);
1271 	bool found = false;
1272 	unsigned int n;
1273 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_GUC)
1274 	char *buf;
1275 #endif
1276 
1277 	lockdep_assert_held(&ct->lock);
1278 
1279 	for (n = 0; n < ARRAY_SIZE(ct->fast_req); n++) {
1280 		if (ct->fast_req[n].fence < fence_min)
1281 			fence_min = ct->fast_req[n].fence;
1282 		if (ct->fast_req[n].fence > fence_max)
1283 			fence_max = ct->fast_req[n].fence;
1284 
1285 		if (ct->fast_req[n].fence != fence)
1286 			continue;
1287 		found = true;
1288 
1289 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_GUC)
1290 		buf = kmalloc(SZ_4K, GFP_NOWAIT);
1291 		if (buf && stack_depot_snprint(ct->fast_req[n].stack, buf, SZ_4K, 0))
1292 			xe_gt_err(gt, "Fence 0x%x was used by action %#04x sent at:\n%s",
1293 				  fence, ct->fast_req[n].action, buf);
1294 		else
1295 			xe_gt_err(gt, "Fence 0x%x was used by action %#04x [failed to retrieve stack]\n",
1296 				  fence, ct->fast_req[n].action);
1297 		kfree(buf);
1298 #else
1299 		xe_gt_err(gt, "Fence 0x%x was used by action %#04x\n",
1300 			  fence, ct->fast_req[n].action);
1301 #endif
1302 		break;
1303 	}
1304 
1305 	if (!found)
1306 		xe_gt_warn(gt, "Fence 0x%x not found - tracking buffer wrapped? [range = 0x%x -> 0x%x, next = 0x%X]\n",
1307 			   fence, fence_min, fence_max, ct->fence_seqno);
1308 }
1309 #else
fast_req_report(struct xe_guc_ct * ct,u16 fence)1310 static void fast_req_report(struct xe_guc_ct *ct, u16 fence)
1311 {
1312 }
1313 #endif
1314 
parse_g2h_response(struct xe_guc_ct * ct,u32 * msg,u32 len)1315 static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len)
1316 {
1317 	struct xe_gt *gt =  ct_to_gt(ct);
1318 	u32 *hxg = msg_to_hxg(msg);
1319 	u32 hxg_len = msg_len_to_hxg_len(len);
1320 	u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]);
1321 	u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1322 	struct g2h_fence *g2h_fence;
1323 
1324 	lockdep_assert_held(&ct->lock);
1325 
1326 	/*
1327 	 * Fences for FAST_REQUEST messages are not tracked in ct->fence_lookup.
1328 	 * Those messages should never fail, so if we do get an error back it
1329 	 * means we're likely doing an illegal operation and the GuC is
1330 	 * rejecting it. We have no way to inform the code that submitted the
1331 	 * H2G that the message was rejected, so we need to escalate the
1332 	 * failure to trigger a reset.
1333 	 */
1334 	if (fence & CT_SEQNO_UNTRACKED) {
1335 		if (type == GUC_HXG_TYPE_RESPONSE_FAILURE)
1336 			xe_gt_err(gt, "FAST_REQ H2G fence 0x%x failed! e=0x%x, h=%u\n",
1337 				  fence,
1338 				  FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]),
1339 				  FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]));
1340 		else
1341 			xe_gt_err(gt, "unexpected response %u for FAST_REQ H2G fence 0x%x!\n",
1342 				  type, fence);
1343 
1344 		fast_req_report(ct, fence);
1345 
1346 		CT_DEAD(ct, NULL, PARSE_G2H_RESPONSE);
1347 
1348 		return -EPROTO;
1349 	}
1350 
1351 	g2h_fence = xa_erase(&ct->fence_lookup, fence);
1352 	if (unlikely(!g2h_fence)) {
1353 		/* Don't tear down channel, as send could've timed out */
1354 		/* CT_DEAD(ct, NULL, PARSE_G2H_UNKNOWN); */
1355 		xe_gt_warn(gt, "G2H fence (%u) not found!\n", fence);
1356 		g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
1357 		return 0;
1358 	}
1359 
1360 	xe_gt_assert(gt, fence == g2h_fence->seqno);
1361 
1362 	if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) {
1363 		g2h_fence->fail = true;
1364 		g2h_fence->error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]);
1365 		g2h_fence->hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]);
1366 	} else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
1367 		g2h_fence->retry = true;
1368 		g2h_fence->reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, hxg[0]);
1369 	} else if (g2h_fence->response_buffer) {
1370 		g2h_fence->response_len = hxg_len;
1371 		memcpy(g2h_fence->response_buffer, hxg, hxg_len * sizeof(u32));
1372 	} else {
1373 		g2h_fence->response_data = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, hxg[0]);
1374 	}
1375 
1376 	g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
1377 
1378 	g2h_fence->done = true;
1379 	smp_mb();
1380 
1381 	wake_up_all(&ct->g2h_fence_wq);
1382 
1383 	return 0;
1384 }
1385 
parse_g2h_msg(struct xe_guc_ct * ct,u32 * msg,u32 len)1386 static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
1387 {
1388 	struct xe_gt *gt = ct_to_gt(ct);
1389 	u32 *hxg = msg_to_hxg(msg);
1390 	u32 origin, type;
1391 	int ret;
1392 
1393 	lockdep_assert_held(&ct->lock);
1394 
1395 	origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]);
1396 	if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
1397 		xe_gt_err(gt, "G2H channel broken on read, origin=%u, reset required\n",
1398 			  origin);
1399 		CT_DEAD(ct, &ct->ctbs.g2h, PARSE_G2H_ORIGIN);
1400 
1401 		return -EPROTO;
1402 	}
1403 
1404 	type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1405 	switch (type) {
1406 	case GUC_HXG_TYPE_EVENT:
1407 		ret = parse_g2h_event(ct, msg, len);
1408 		break;
1409 	case GUC_HXG_TYPE_RESPONSE_SUCCESS:
1410 	case GUC_HXG_TYPE_RESPONSE_FAILURE:
1411 	case GUC_HXG_TYPE_NO_RESPONSE_RETRY:
1412 		ret = parse_g2h_response(ct, msg, len);
1413 		break;
1414 	default:
1415 		xe_gt_err(gt, "G2H channel broken on read, type=%u, reset required\n",
1416 			  type);
1417 		CT_DEAD(ct, &ct->ctbs.g2h, PARSE_G2H_TYPE);
1418 
1419 		ret = -EOPNOTSUPP;
1420 	}
1421 
1422 	return ret;
1423 }
1424 
process_g2h_msg(struct xe_guc_ct * ct,u32 * msg,u32 len)1425 static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
1426 {
1427 	struct xe_guc *guc = ct_to_guc(ct);
1428 	struct xe_gt *gt = ct_to_gt(ct);
1429 	u32 hxg_len = msg_len_to_hxg_len(len);
1430 	u32 *hxg = msg_to_hxg(msg);
1431 	u32 action, adj_len;
1432 	u32 *payload;
1433 	int ret = 0;
1434 
1435 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1436 		return 0;
1437 
1438 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1439 	payload = hxg + GUC_HXG_EVENT_MSG_MIN_LEN;
1440 	adj_len = hxg_len - GUC_HXG_EVENT_MSG_MIN_LEN;
1441 
1442 	switch (action) {
1443 	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1444 		ret = xe_guc_sched_done_handler(guc, payload, adj_len);
1445 		break;
1446 	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1447 		ret = xe_guc_deregister_done_handler(guc, payload, adj_len);
1448 		break;
1449 	case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
1450 		ret = xe_guc_exec_queue_reset_handler(guc, payload, adj_len);
1451 		break;
1452 	case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
1453 		ret = xe_guc_exec_queue_reset_failure_handler(guc, payload,
1454 							      adj_len);
1455 		break;
1456 	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
1457 		/* Selftest only at the moment */
1458 		break;
1459 	case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION:
1460 		ret = xe_guc_error_capture_handler(guc, payload, adj_len);
1461 		break;
1462 	case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE:
1463 		/* FIXME: Handle this */
1464 		break;
1465 	case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR:
1466 		ret = xe_guc_exec_queue_memory_cat_error_handler(guc, payload,
1467 								 adj_len);
1468 		break;
1469 	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1470 		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1471 		break;
1472 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1473 		ret = xe_guc_tlb_inval_done_handler(guc, payload, adj_len);
1474 		break;
1475 	case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY:
1476 		ret = xe_guc_access_counter_notify_handler(guc, payload,
1477 							   adj_len);
1478 		break;
1479 	case XE_GUC_ACTION_GUC2PF_RELAY_FROM_VF:
1480 		ret = xe_guc_relay_process_guc2pf(&guc->relay, hxg, hxg_len);
1481 		break;
1482 	case XE_GUC_ACTION_GUC2VF_RELAY_FROM_PF:
1483 		ret = xe_guc_relay_process_guc2vf(&guc->relay, hxg, hxg_len);
1484 		break;
1485 	case GUC_ACTION_GUC2PF_VF_STATE_NOTIFY:
1486 		ret = xe_gt_sriov_pf_control_process_guc2pf(gt, hxg, hxg_len);
1487 		break;
1488 	case GUC_ACTION_GUC2PF_ADVERSE_EVENT:
1489 		ret = xe_gt_sriov_pf_monitor_process_guc2pf(gt, hxg, hxg_len);
1490 		break;
1491 	case XE_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED:
1492 	case XE_GUC_ACTION_NOTIFY_EXCEPTION:
1493 		ret = guc_crash_process_msg(ct, action);
1494 		break;
1495 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
1496 	case XE_GUC_ACTION_TEST_G2G_RECV:
1497 		ret = xe_guc_g2g_test_notification(guc, payload, adj_len);
1498 		break;
1499 #endif
1500 	default:
1501 		xe_gt_err(gt, "unexpected G2H action 0x%04x\n", action);
1502 	}
1503 
1504 	if (ret) {
1505 		xe_gt_err(gt, "G2H action %#04x failed (%pe) len %u msg %*ph\n",
1506 			  action, ERR_PTR(ret), hxg_len, (int)sizeof(u32) * hxg_len, hxg);
1507 		CT_DEAD(ct, NULL, PROCESS_FAILED);
1508 	}
1509 
1510 	return 0;
1511 }
1512 
g2h_read(struct xe_guc_ct * ct,u32 * msg,bool fast_path)1513 static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path)
1514 {
1515 	struct xe_device *xe = ct_to_xe(ct);
1516 	struct xe_gt *gt = ct_to_gt(ct);
1517 	struct guc_ctb *g2h = &ct->ctbs.g2h;
1518 	u32 tail, head, len, desc_status;
1519 	s32 avail;
1520 	u32 action;
1521 	u32 *hxg;
1522 
1523 	xe_gt_assert(gt, xe_guc_ct_initialized(ct));
1524 	lockdep_assert_held(&ct->fast_lock);
1525 
1526 	if (ct->state == XE_GUC_CT_STATE_DISABLED)
1527 		return -ENODEV;
1528 
1529 	if (ct->state == XE_GUC_CT_STATE_STOPPED)
1530 		return -ECANCELED;
1531 
1532 	if (g2h->info.broken)
1533 		return -EPIPE;
1534 
1535 	xe_gt_assert(gt, xe_guc_ct_enabled(ct));
1536 
1537 	desc_status = desc_read(xe, g2h, status);
1538 	if (desc_status) {
1539 		if (desc_status & GUC_CTB_STATUS_DISABLED) {
1540 			/*
1541 			 * Potentially valid if a CLIENT_RESET request resulted in
1542 			 * contexts/engines being reset. But should never happen as
1543 			 * no contexts should be active when CLIENT_RESET is sent.
1544 			 */
1545 			xe_gt_err(gt, "CT read: unexpected G2H after GuC has stopped!\n");
1546 			desc_status &= ~GUC_CTB_STATUS_DISABLED;
1547 		}
1548 
1549 		if (desc_status) {
1550 			xe_gt_err(gt, "CT read: non-zero status: %u\n", desc_status);
1551 			goto corrupted;
1552 		}
1553 	}
1554 
1555 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
1556 		u32 desc_tail = desc_read(xe, g2h, tail);
1557 		/*
1558 		u32 desc_head = desc_read(xe, g2h, head);
1559 
1560 		 * info.head and desc_head are updated back-to-back at the end of
1561 		 * this function and nowhere else. Hence, they cannot be different
1562 		 * unless two g2h_read calls are running concurrently. Which is not
1563 		 * possible because it is guarded by ct->fast_lock. And yet, some
1564 		 * discrete platforms are regularly hitting this error :(.
1565 		 *
1566 		 * desc_head rolling backwards shouldn't cause any noticeable
1567 		 * problems - just a delay in GuC being allowed to proceed past that
1568 		 * point in the queue. So for now, just disable the error until it
1569 		 * can be root caused.
1570 		 *
1571 		if (g2h->info.head != desc_head) {
1572 			desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_MISMATCH);
1573 			xe_gt_err(gt, "CT read: head was modified %u != %u\n",
1574 				  desc_head, g2h->info.head);
1575 			goto corrupted;
1576 		}
1577 		 */
1578 
1579 		if (g2h->info.head > g2h->info.size) {
1580 			desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
1581 			xe_gt_err(gt, "CT read: head out of range: %u vs %u\n",
1582 				  g2h->info.head, g2h->info.size);
1583 			goto corrupted;
1584 		}
1585 
1586 		if (desc_tail >= g2h->info.size) {
1587 			desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
1588 			xe_gt_err(gt, "CT read: invalid tail offset %u >= %u)\n",
1589 				  desc_tail, g2h->info.size);
1590 			goto corrupted;
1591 		}
1592 	}
1593 
1594 	/* Calculate DW available to read */
1595 	tail = desc_read(xe, g2h, tail);
1596 	avail = tail - g2h->info.head;
1597 	if (unlikely(avail == 0))
1598 		return 0;
1599 
1600 	if (avail < 0)
1601 		avail += g2h->info.size;
1602 
1603 	/* Read header */
1604 	xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->info.head,
1605 			   sizeof(u32));
1606 	len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN;
1607 	if (len > avail) {
1608 		xe_gt_err(gt, "G2H channel broken on read, avail=%d, len=%d, reset required\n",
1609 			  avail, len);
1610 		goto corrupted;
1611 	}
1612 
1613 	head = (g2h->info.head + 1) % g2h->info.size;
1614 	avail = len - 1;
1615 
1616 	/* Read G2H message */
1617 	if (avail + head > g2h->info.size) {
1618 		u32 avail_til_wrap = g2h->info.size - head;
1619 
1620 		xe_map_memcpy_from(xe, msg + 1,
1621 				   &g2h->cmds, sizeof(u32) * head,
1622 				   avail_til_wrap * sizeof(u32));
1623 		xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap,
1624 				   &g2h->cmds, 0,
1625 				   (avail - avail_til_wrap) * sizeof(u32));
1626 	} else {
1627 		xe_map_memcpy_from(xe, msg + 1,
1628 				   &g2h->cmds, sizeof(u32) * head,
1629 				   avail * sizeof(u32));
1630 	}
1631 
1632 	hxg = msg_to_hxg(msg);
1633 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1634 
1635 	if (fast_path) {
1636 		if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1637 			return 0;
1638 
1639 		switch (action) {
1640 		case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1641 		case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1642 			break;	/* Process these in fast-path */
1643 		default:
1644 			return 0;
1645 		}
1646 	}
1647 
1648 	/* Update local / descriptor header */
1649 	g2h->info.head = (head + avail) % g2h->info.size;
1650 	desc_write(xe, g2h, head, g2h->info.head);
1651 
1652 	trace_xe_guc_ctb_g2h(xe, ct_to_gt(ct)->info.id,
1653 			     action, len, g2h->info.head, tail);
1654 
1655 	return len;
1656 
1657 corrupted:
1658 	CT_DEAD(ct, &ct->ctbs.g2h, G2H_READ);
1659 	return -EPROTO;
1660 }
1661 
g2h_fast_path(struct xe_guc_ct * ct,u32 * msg,u32 len)1662 static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len)
1663 {
1664 	struct xe_gt *gt = ct_to_gt(ct);
1665 	struct xe_guc *guc = ct_to_guc(ct);
1666 	u32 hxg_len = msg_len_to_hxg_len(len);
1667 	u32 *hxg = msg_to_hxg(msg);
1668 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1669 	u32 *payload = hxg + GUC_HXG_MSG_MIN_LEN;
1670 	u32 adj_len = hxg_len - GUC_HXG_MSG_MIN_LEN;
1671 	int ret = 0;
1672 
1673 	switch (action) {
1674 	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1675 		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1676 		break;
1677 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1678 		__g2h_release_space(ct, len);
1679 		ret = xe_guc_tlb_inval_done_handler(guc, payload, adj_len);
1680 		break;
1681 	default:
1682 		xe_gt_warn(gt, "NOT_POSSIBLE");
1683 	}
1684 
1685 	if (ret) {
1686 		xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n",
1687 			  action, ERR_PTR(ret));
1688 		CT_DEAD(ct, NULL, FAST_G2H);
1689 	}
1690 }
1691 
1692 /**
1693  * xe_guc_ct_fast_path - process critical G2H in the IRQ handler
1694  * @ct: GuC CT object
1695  *
1696  * Anything related to page faults is critical for performance, process these
1697  * critical G2H in the IRQ. This is safe as these handlers either just wake up
1698  * waiters or queue another worker.
1699  */
xe_guc_ct_fast_path(struct xe_guc_ct * ct)1700 void xe_guc_ct_fast_path(struct xe_guc_ct *ct)
1701 {
1702 	struct xe_device *xe = ct_to_xe(ct);
1703 	bool ongoing;
1704 	int len;
1705 
1706 	ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
1707 	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1708 		return;
1709 
1710 	spin_lock(&ct->fast_lock);
1711 	do {
1712 		len = g2h_read(ct, ct->fast_msg, true);
1713 		if (len > 0)
1714 			g2h_fast_path(ct, ct->fast_msg, len);
1715 	} while (len > 0);
1716 	spin_unlock(&ct->fast_lock);
1717 
1718 	if (ongoing)
1719 		xe_pm_runtime_put(xe);
1720 }
1721 
1722 /* Returns less than zero on error, 0 on done, 1 on more available */
dequeue_one_g2h(struct xe_guc_ct * ct)1723 static int dequeue_one_g2h(struct xe_guc_ct *ct)
1724 {
1725 	int len;
1726 	int ret;
1727 
1728 	lockdep_assert_held(&ct->lock);
1729 
1730 	spin_lock_irq(&ct->fast_lock);
1731 	len = g2h_read(ct, ct->msg, false);
1732 	spin_unlock_irq(&ct->fast_lock);
1733 	if (len <= 0)
1734 		return len;
1735 
1736 	ret = parse_g2h_msg(ct, ct->msg, len);
1737 	if (unlikely(ret < 0))
1738 		return ret;
1739 
1740 	ret = process_g2h_msg(ct, ct->msg, len);
1741 	if (unlikely(ret < 0))
1742 		return ret;
1743 
1744 	return 1;
1745 }
1746 
receive_g2h(struct xe_guc_ct * ct)1747 static void receive_g2h(struct xe_guc_ct *ct)
1748 {
1749 	bool ongoing;
1750 	int ret;
1751 
1752 	/*
1753 	 * Normal users must always hold mem_access.ref around CT calls. However
1754 	 * during the runtime pm callbacks we rely on CT to talk to the GuC, but
1755 	 * at this stage we can't rely on mem_access.ref and even the
1756 	 * callback_task will be different than current.  For such cases we just
1757 	 * need to ensure we always process the responses from any blocking
1758 	 * ct_send requests or where we otherwise expect some response when
1759 	 * initiated from those callbacks (which will need to wait for the below
1760 	 * dequeue_one_g2h()).  The dequeue_one_g2h() will gracefully fail if
1761 	 * the device has suspended to the point that the CT communication has
1762 	 * been disabled.
1763 	 *
1764 	 * If we are inside the runtime pm callback, we can be the only task
1765 	 * still issuing CT requests (since that requires having the
1766 	 * mem_access.ref).  It seems like it might in theory be possible to
1767 	 * receive unsolicited events from the GuC just as we are
1768 	 * suspending-resuming, but those will currently anyway be lost when
1769 	 * eventually exiting from suspend, hence no need to wake up the device
1770 	 * here. If we ever need something stronger than get_if_ongoing() then
1771 	 * we need to be careful with blocking the pm callbacks from getting CT
1772 	 * responses, if the worker here is blocked on those callbacks
1773 	 * completing, creating a deadlock.
1774 	 */
1775 	ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
1776 	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1777 		return;
1778 
1779 	do {
1780 		mutex_lock(&ct->lock);
1781 		ret = dequeue_one_g2h(ct);
1782 		mutex_unlock(&ct->lock);
1783 
1784 		if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) {
1785 			xe_gt_err(ct_to_gt(ct), "CT dequeue failed: %d", ret);
1786 			CT_DEAD(ct, NULL, G2H_RECV);
1787 			kick_reset(ct);
1788 		}
1789 	} while (ret == 1);
1790 
1791 	if (ongoing)
1792 		xe_pm_runtime_put(ct_to_xe(ct));
1793 }
1794 
g2h_worker_func(struct work_struct * w)1795 static void g2h_worker_func(struct work_struct *w)
1796 {
1797 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker);
1798 
1799 	receive_g2h(ct);
1800 }
1801 
xe_fixup_u64_in_cmds(struct xe_device * xe,struct iosys_map * cmds,u32 size,u32 idx,s64 shift)1802 static void xe_fixup_u64_in_cmds(struct xe_device *xe, struct iosys_map *cmds,
1803 				 u32 size, u32 idx, s64 shift)
1804 {
1805 	u32 hi, lo;
1806 	u64 offset;
1807 
1808 	lo = xe_map_rd_ring_u32(xe, cmds, idx, size);
1809 	hi = xe_map_rd_ring_u32(xe, cmds, idx + 1, size);
1810 	offset = make_u64(hi, lo);
1811 	offset += shift;
1812 	lo = lower_32_bits(offset);
1813 	hi = upper_32_bits(offset);
1814 	xe_map_wr_ring_u32(xe, cmds, idx, size, lo);
1815 	xe_map_wr_ring_u32(xe, cmds, idx + 1, size, hi);
1816 }
1817 
1818 /*
1819  * Shift any GGTT addresses within a single message left within CTB from
1820  * before post-migration recovery.
1821  * @ct: pointer to CT struct of the target GuC
1822  * @cmds: iomap buffer containing CT messages
1823  * @head: start of the target message within the buffer
1824  * @len: length of the target message
1825  * @size: size of the commands buffer
1826  * @shift: the address shift to be added to each GGTT reference
1827  * Return: true if the message was fixed or needed no fixups, false on failure
1828  */
ct_fixup_ggtt_in_message(struct xe_guc_ct * ct,struct iosys_map * cmds,u32 head,u32 len,u32 size,s64 shift)1829 static bool ct_fixup_ggtt_in_message(struct xe_guc_ct *ct,
1830 				     struct iosys_map *cmds, u32 head,
1831 				     u32 len, u32 size, s64 shift)
1832 {
1833 	struct xe_gt *gt = ct_to_gt(ct);
1834 	struct xe_device *xe = ct_to_xe(ct);
1835 	u32 msg[GUC_HXG_MSG_MIN_LEN];
1836 	u32 action, i, n;
1837 
1838 	xe_gt_assert(gt, len >= GUC_HXG_MSG_MIN_LEN);
1839 
1840 	msg[0] = xe_map_rd_ring_u32(xe, cmds, head, size);
1841 	action = FIELD_GET(GUC_HXG_REQUEST_MSG_0_ACTION, msg[0]);
1842 
1843 	xe_gt_sriov_dbg_verbose(gt, "fixing H2G %#x\n", action);
1844 
1845 	switch (action) {
1846 	case XE_GUC_ACTION_REGISTER_CONTEXT:
1847 		if (len != XE_GUC_REGISTER_CONTEXT_MSG_LEN)
1848 			goto err_len;
1849 		xe_fixup_u64_in_cmds(xe, cmds, size, head +
1850 				     XE_GUC_REGISTER_CONTEXT_DATA_5_WQ_DESC_ADDR_LOWER,
1851 				     shift);
1852 		xe_fixup_u64_in_cmds(xe, cmds, size, head +
1853 				     XE_GUC_REGISTER_CONTEXT_DATA_7_WQ_BUF_BASE_LOWER,
1854 				     shift);
1855 		xe_fixup_u64_in_cmds(xe, cmds, size, head +
1856 				     XE_GUC_REGISTER_CONTEXT_DATA_10_HW_LRC_ADDR, shift);
1857 		break;
1858 	case XE_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC:
1859 		if (len < XE_GUC_REGISTER_CONTEXT_MULTI_LRC_MSG_MIN_LEN)
1860 			goto err_len;
1861 		n = xe_map_rd_ring_u32(xe, cmds, head +
1862 				       XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_10_NUM_CTXS, size);
1863 		if (len != XE_GUC_REGISTER_CONTEXT_MULTI_LRC_MSG_MIN_LEN + 2 * n)
1864 			goto err_len;
1865 		xe_fixup_u64_in_cmds(xe, cmds, size, head +
1866 				     XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_5_WQ_DESC_ADDR_LOWER,
1867 				     shift);
1868 		xe_fixup_u64_in_cmds(xe, cmds, size, head +
1869 				     XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_7_WQ_BUF_BASE_LOWER,
1870 				     shift);
1871 		for (i = 0; i < n; i++)
1872 			xe_fixup_u64_in_cmds(xe, cmds, size, head +
1873 					     XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_11_HW_LRC_ADDR
1874 					     + 2 * i, shift);
1875 		break;
1876 	default:
1877 		break;
1878 	}
1879 	return true;
1880 
1881 err_len:
1882 	xe_gt_err(gt, "Skipped G2G %#x message fixups, unexpected length (%u)\n", action, len);
1883 	return false;
1884 }
1885 
1886 /*
1887  * Apply fixups to the next outgoing CT message within given CTB
1888  * @ct: the &xe_guc_ct struct instance representing the target GuC
1889  * @h2g: the &guc_ctb struct instance of the target buffer
1890  * @shift: shift to be added to all GGTT addresses within the CTB
1891  * @mhead: pointer to an integer storing message start position; the
1892  *   position is changed to next message before this function return
1893  * @avail: size of the area available for parsing, that is length
1894  *   of all remaining messages stored within the CTB
1895  * Return: size of the area available for parsing after one message
1896  *   has been parsed, that is length remaining from the updated mhead
1897  */
ct_fixup_ggtt_in_buffer(struct xe_guc_ct * ct,struct guc_ctb * h2g,s64 shift,u32 * mhead,s32 avail)1898 static int ct_fixup_ggtt_in_buffer(struct xe_guc_ct *ct, struct guc_ctb *h2g,
1899 				   s64 shift, u32 *mhead, s32 avail)
1900 {
1901 	struct xe_gt *gt = ct_to_gt(ct);
1902 	struct xe_device *xe = ct_to_xe(ct);
1903 	u32 msg[GUC_HXG_MSG_MIN_LEN];
1904 	u32 size = h2g->info.size;
1905 	u32 head = *mhead;
1906 	u32 len;
1907 
1908 	xe_gt_assert(gt, avail >= (s32)GUC_CTB_MSG_MIN_LEN);
1909 
1910 	/* Read header */
1911 	msg[0] = xe_map_rd_ring_u32(xe, &h2g->cmds, head, size);
1912 	len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN;
1913 
1914 	if (unlikely(len > (u32)avail)) {
1915 		xe_gt_err(gt, "H2G channel broken on read, avail=%d, len=%d, fixups skipped\n",
1916 			  avail, len);
1917 		return 0;
1918 	}
1919 
1920 	head = (head + GUC_CTB_MSG_MIN_LEN) % size;
1921 	if (!ct_fixup_ggtt_in_message(ct, &h2g->cmds, head, msg_len_to_hxg_len(len), size, shift))
1922 		return 0;
1923 	*mhead = (head + msg_len_to_hxg_len(len)) % size;
1924 
1925 	return avail - len;
1926 }
1927 
1928 /**
1929  * xe_guc_ct_fixup_messages_with_ggtt - Fixup any pending H2G CTB messages
1930  * @ct: pointer to CT struct of the target GuC
1931  * @ggtt_shift: shift to be added to all GGTT addresses within the CTB
1932  *
1933  * Messages in GuC to Host CTB are owned by GuC and any fixups in them
1934  * are made by GuC. But content of the Host to GuC CTB is owned by the
1935  * KMD, so fixups to GGTT references in any pending messages need to be
1936  * applied here.
1937  * This function updates GGTT offsets in payloads of pending H2G CTB
1938  * messages (messages which were not consumed by GuC before the VF got
1939  * paused).
1940  */
xe_guc_ct_fixup_messages_with_ggtt(struct xe_guc_ct * ct,s64 ggtt_shift)1941 void xe_guc_ct_fixup_messages_with_ggtt(struct xe_guc_ct *ct, s64 ggtt_shift)
1942 {
1943 	struct guc_ctb *h2g = &ct->ctbs.h2g;
1944 	struct xe_guc *guc = ct_to_guc(ct);
1945 	struct xe_gt *gt = guc_to_gt(guc);
1946 	u32 head, tail, size;
1947 	s32 avail;
1948 
1949 	if (unlikely(h2g->info.broken))
1950 		return;
1951 
1952 	h2g->info.head = desc_read(ct_to_xe(ct), h2g, head);
1953 	head = h2g->info.head;
1954 	tail = READ_ONCE(h2g->info.tail);
1955 	size = h2g->info.size;
1956 
1957 	if (unlikely(head > size))
1958 		goto corrupted;
1959 
1960 	if (unlikely(tail >= size))
1961 		goto corrupted;
1962 
1963 	avail = tail - head;
1964 
1965 	/* beware of buffer wrap case */
1966 	if (unlikely(avail < 0))
1967 		avail += size;
1968 	xe_gt_dbg(gt, "available %d (%u:%u:%u)\n", avail, head, tail, size);
1969 	xe_gt_assert(gt, avail >= 0);
1970 
1971 	while (avail > 0)
1972 		avail = ct_fixup_ggtt_in_buffer(ct, h2g, ggtt_shift, &head, avail);
1973 
1974 	return;
1975 
1976 corrupted:
1977 	xe_gt_err(gt, "Corrupted H2G descriptor head=%u tail=%u size=%u, fixups not applied\n",
1978 		  head, tail, size);
1979 	h2g->info.broken = true;
1980 }
1981 
guc_ct_snapshot_alloc(struct xe_guc_ct * ct,bool atomic,bool want_ctb)1982 static struct xe_guc_ct_snapshot *guc_ct_snapshot_alloc(struct xe_guc_ct *ct, bool atomic,
1983 							bool want_ctb)
1984 {
1985 	struct xe_guc_ct_snapshot *snapshot;
1986 
1987 	snapshot = kzalloc(sizeof(*snapshot), atomic ? GFP_ATOMIC : GFP_KERNEL);
1988 	if (!snapshot)
1989 		return NULL;
1990 
1991 	if (ct->bo && want_ctb) {
1992 		snapshot->ctb_size = xe_bo_size(ct->bo);
1993 		snapshot->ctb = kmalloc(snapshot->ctb_size, atomic ? GFP_ATOMIC : GFP_KERNEL);
1994 	}
1995 
1996 	return snapshot;
1997 }
1998 
guc_ctb_snapshot_capture(struct xe_device * xe,struct guc_ctb * ctb,struct guc_ctb_snapshot * snapshot)1999 static void guc_ctb_snapshot_capture(struct xe_device *xe, struct guc_ctb *ctb,
2000 				     struct guc_ctb_snapshot *snapshot)
2001 {
2002 	xe_map_memcpy_from(xe, &snapshot->desc, &ctb->desc, 0,
2003 			   sizeof(struct guc_ct_buffer_desc));
2004 	memcpy(&snapshot->info, &ctb->info, sizeof(struct guc_ctb_info));
2005 }
2006 
guc_ctb_snapshot_print(struct guc_ctb_snapshot * snapshot,struct drm_printer * p)2007 static void guc_ctb_snapshot_print(struct guc_ctb_snapshot *snapshot,
2008 				   struct drm_printer *p)
2009 {
2010 	drm_printf(p, "\tsize: %d\n", snapshot->info.size);
2011 	drm_printf(p, "\tresv_space: %d\n", snapshot->info.resv_space);
2012 	drm_printf(p, "\thead: %d\n", snapshot->info.head);
2013 	drm_printf(p, "\ttail: %d\n", snapshot->info.tail);
2014 	drm_printf(p, "\tspace: %d\n", snapshot->info.space);
2015 	drm_printf(p, "\tbroken: %d\n", snapshot->info.broken);
2016 	drm_printf(p, "\thead (memory): %d\n", snapshot->desc.head);
2017 	drm_printf(p, "\ttail (memory): %d\n", snapshot->desc.tail);
2018 	drm_printf(p, "\tstatus (memory): 0x%x\n", snapshot->desc.status);
2019 }
2020 
guc_ct_snapshot_capture(struct xe_guc_ct * ct,bool atomic,bool want_ctb)2021 static struct xe_guc_ct_snapshot *guc_ct_snapshot_capture(struct xe_guc_ct *ct, bool atomic,
2022 							  bool want_ctb)
2023 {
2024 	struct xe_device *xe = ct_to_xe(ct);
2025 	struct xe_guc_ct_snapshot *snapshot;
2026 
2027 	snapshot = guc_ct_snapshot_alloc(ct, atomic, want_ctb);
2028 	if (!snapshot) {
2029 		xe_gt_err(ct_to_gt(ct), "Skipping CTB snapshot entirely.\n");
2030 		return NULL;
2031 	}
2032 
2033 	if (xe_guc_ct_enabled(ct) || ct->state == XE_GUC_CT_STATE_STOPPED) {
2034 		snapshot->ct_enabled = true;
2035 		snapshot->g2h_outstanding = READ_ONCE(ct->g2h_outstanding);
2036 		guc_ctb_snapshot_capture(xe, &ct->ctbs.h2g, &snapshot->h2g);
2037 		guc_ctb_snapshot_capture(xe, &ct->ctbs.g2h, &snapshot->g2h);
2038 	}
2039 
2040 	if (ct->bo && snapshot->ctb)
2041 		xe_map_memcpy_from(xe, snapshot->ctb, &ct->bo->vmap, 0, snapshot->ctb_size);
2042 
2043 	return snapshot;
2044 }
2045 
2046 /**
2047  * xe_guc_ct_snapshot_capture - Take a quick snapshot of the CT state.
2048  * @ct: GuC CT object.
2049  *
2050  * This can be printed out in a later stage like during dev_coredump
2051  * analysis. This is safe to be called during atomic context.
2052  *
2053  * Returns: a GuC CT snapshot object that must be freed by the caller
2054  * by using `xe_guc_ct_snapshot_free`.
2055  */
xe_guc_ct_snapshot_capture(struct xe_guc_ct * ct)2056 struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_capture(struct xe_guc_ct *ct)
2057 {
2058 	return guc_ct_snapshot_capture(ct, true, true);
2059 }
2060 
2061 /**
2062  * xe_guc_ct_snapshot_print - Print out a given GuC CT snapshot.
2063  * @snapshot: GuC CT snapshot object.
2064  * @p: drm_printer where it will be printed out.
2065  *
2066  * This function prints out a given GuC CT snapshot object.
2067  */
xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot * snapshot,struct drm_printer * p)2068 void xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot *snapshot,
2069 			      struct drm_printer *p)
2070 {
2071 	if (!snapshot)
2072 		return;
2073 
2074 	if (snapshot->ct_enabled) {
2075 		drm_puts(p, "H2G CTB (all sizes in DW):\n");
2076 		guc_ctb_snapshot_print(&snapshot->h2g, p);
2077 
2078 		drm_puts(p, "G2H CTB (all sizes in DW):\n");
2079 		guc_ctb_snapshot_print(&snapshot->g2h, p);
2080 		drm_printf(p, "\tg2h outstanding: %d\n",
2081 			   snapshot->g2h_outstanding);
2082 
2083 		if (snapshot->ctb) {
2084 			drm_printf(p, "[CTB].length: 0x%zx\n", snapshot->ctb_size);
2085 			xe_print_blob_ascii85(p, "[CTB].data", '\n',
2086 					      snapshot->ctb, 0, snapshot->ctb_size);
2087 		}
2088 	} else {
2089 		drm_puts(p, "CT disabled\n");
2090 	}
2091 }
2092 
2093 /**
2094  * xe_guc_ct_snapshot_free - Free all allocated objects for a given snapshot.
2095  * @snapshot: GuC CT snapshot object.
2096  *
2097  * This function free all the memory that needed to be allocated at capture
2098  * time.
2099  */
xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot * snapshot)2100 void xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot *snapshot)
2101 {
2102 	if (!snapshot)
2103 		return;
2104 
2105 	kfree(snapshot->ctb);
2106 	kfree(snapshot);
2107 }
2108 
2109 /**
2110  * xe_guc_ct_print - GuC CT Print.
2111  * @ct: GuC CT.
2112  * @p: drm_printer where it will be printed out.
2113  * @want_ctb: Should the full CTB content be dumped (vs just the headers)
2114  *
2115  * This function will quickly capture a snapshot of the CT state
2116  * and immediately print it out.
2117  */
xe_guc_ct_print(struct xe_guc_ct * ct,struct drm_printer * p,bool want_ctb)2118 void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p, bool want_ctb)
2119 {
2120 	struct xe_guc_ct_snapshot *snapshot;
2121 
2122 	snapshot = guc_ct_snapshot_capture(ct, false, want_ctb);
2123 	xe_guc_ct_snapshot_print(snapshot, p);
2124 	xe_guc_ct_snapshot_free(snapshot);
2125 }
2126 
2127 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
2128 
2129 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2130 /*
2131  * This is a helper function which assists the driver in identifying if a fault
2132  * injection test is currently active, allowing it to reduce unnecessary debug
2133  * output. Typically, the function returns zero, but the fault injection
2134  * framework can alter this to return an error. Since faults are injected
2135  * through this function, it's important to ensure the compiler doesn't optimize
2136  * it into an inline function. To avoid such optimization, the 'noinline'
2137  * attribute is applied. Compiler optimizes the static function defined in the
2138  * header file as an inline function.
2139  */
xe_is_injection_active(void)2140 noinline int xe_is_injection_active(void) { return 0; }
2141 ALLOW_ERROR_INJECTION(xe_is_injection_active, ERRNO);
2142 #else
xe_is_injection_active(void)2143 int xe_is_injection_active(void) { return 0; }
2144 #endif
2145 
ct_dead_capture(struct xe_guc_ct * ct,struct guc_ctb * ctb,u32 reason_code)2146 static void ct_dead_capture(struct xe_guc_ct *ct, struct guc_ctb *ctb, u32 reason_code)
2147 {
2148 	struct xe_guc_log_snapshot *snapshot_log;
2149 	struct xe_guc_ct_snapshot *snapshot_ct;
2150 	struct xe_guc *guc = ct_to_guc(ct);
2151 	unsigned long flags;
2152 	bool have_capture;
2153 
2154 	if (ctb)
2155 		ctb->info.broken = true;
2156 	/*
2157 	 * Huge dump is getting generated when injecting error for guc CT/MMIO
2158 	 * functions. So, let us suppress the dump when fault is injected.
2159 	 */
2160 	if (xe_is_injection_active())
2161 		return;
2162 
2163 	/* Ignore further errors after the first dump until a reset */
2164 	if (ct->dead.reported)
2165 		return;
2166 
2167 	spin_lock_irqsave(&ct->dead.lock, flags);
2168 
2169 	/* And only capture one dump at a time */
2170 	have_capture = ct->dead.reason & (1 << CT_DEAD_STATE_CAPTURE);
2171 	ct->dead.reason |= (1 << reason_code) |
2172 			   (1 << CT_DEAD_STATE_CAPTURE);
2173 
2174 	spin_unlock_irqrestore(&ct->dead.lock, flags);
2175 
2176 	if (have_capture)
2177 		return;
2178 
2179 	snapshot_log = xe_guc_log_snapshot_capture(&guc->log, true);
2180 	snapshot_ct = xe_guc_ct_snapshot_capture((ct));
2181 
2182 	spin_lock_irqsave(&ct->dead.lock, flags);
2183 
2184 	if (ct->dead.snapshot_log || ct->dead.snapshot_ct) {
2185 		xe_gt_err(ct_to_gt(ct), "Got unexpected dead CT capture!\n");
2186 		xe_guc_log_snapshot_free(snapshot_log);
2187 		xe_guc_ct_snapshot_free(snapshot_ct);
2188 	} else {
2189 		ct->dead.snapshot_log = snapshot_log;
2190 		ct->dead.snapshot_ct = snapshot_ct;
2191 	}
2192 
2193 	spin_unlock_irqrestore(&ct->dead.lock, flags);
2194 
2195 	queue_work(system_unbound_wq, &(ct)->dead.worker);
2196 }
2197 
ct_dead_print(struct xe_dead_ct * dead)2198 static void ct_dead_print(struct xe_dead_ct *dead)
2199 {
2200 	struct xe_guc_ct *ct = container_of(dead, struct xe_guc_ct, dead);
2201 	struct xe_device *xe = ct_to_xe(ct);
2202 	struct xe_gt *gt = ct_to_gt(ct);
2203 	static int g_count;
2204 	struct drm_printer ip = xe_gt_info_printer(gt);
2205 	struct drm_printer lp = drm_line_printer(&ip, "Capture", ++g_count);
2206 
2207 	if (!dead->reason) {
2208 		xe_gt_err(gt, "CTB is dead for no reason!?\n");
2209 		return;
2210 	}
2211 
2212 	/* Can't generate a genuine core dump at this point, so just do the good bits */
2213 	drm_puts(&lp, "**** Xe Device Coredump ****\n");
2214 	drm_printf(&lp, "Reason: CTB is dead - 0x%X\n", dead->reason);
2215 	xe_device_snapshot_print(xe, &lp);
2216 
2217 	drm_printf(&lp, "**** GT #%d ****\n", gt->info.id);
2218 	drm_printf(&lp, "\tTile: %d\n", gt->tile->id);
2219 
2220 	drm_puts(&lp, "**** GuC Log ****\n");
2221 	xe_guc_log_snapshot_print(dead->snapshot_log, &lp);
2222 
2223 	drm_puts(&lp, "**** GuC CT ****\n");
2224 	xe_guc_ct_snapshot_print(dead->snapshot_ct, &lp);
2225 
2226 	drm_puts(&lp, "Done.\n");
2227 }
2228 
ct_dead_worker_func(struct work_struct * w)2229 static void ct_dead_worker_func(struct work_struct *w)
2230 {
2231 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, dead.worker);
2232 
2233 	if (!ct->dead.reported) {
2234 		ct->dead.reported = true;
2235 		ct_dead_print(&ct->dead);
2236 	}
2237 
2238 	spin_lock_irq(&ct->dead.lock);
2239 
2240 	xe_guc_log_snapshot_free(ct->dead.snapshot_log);
2241 	ct->dead.snapshot_log = NULL;
2242 	xe_guc_ct_snapshot_free(ct->dead.snapshot_ct);
2243 	ct->dead.snapshot_ct = NULL;
2244 
2245 	if (ct->dead.reason & (1 << CT_DEAD_STATE_REARM)) {
2246 		/* A reset has occurred so re-arm the error reporting */
2247 		ct->dead.reason = 0;
2248 		ct->dead.reported = false;
2249 	}
2250 
2251 	spin_unlock_irq(&ct->dead.lock);
2252 }
2253 #endif
2254