xref: /linux/drivers/gpu/drm/xe/xe_device.c (revision 2c1ed907520c50326b8f604907a8478b27881a2e)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_device.h"
7 
8 #include <linux/aperture.h>
9 #include <linux/delay.h>
10 #include <linux/fault-inject.h>
11 #include <linux/units.h>
12 
13 #include <drm/drm_atomic_helper.h>
14 #include <drm/drm_client.h>
15 #include <drm/drm_gem_ttm_helper.h>
16 #include <drm/drm_ioctl.h>
17 #include <drm/drm_managed.h>
18 #include <drm/drm_print.h>
19 #include <uapi/drm/xe_drm.h>
20 
21 #include "display/xe_display.h"
22 #include "instructions/xe_gpu_commands.h"
23 #include "regs/xe_gt_regs.h"
24 #include "regs/xe_regs.h"
25 #include "xe_bo.h"
26 #include "xe_debugfs.h"
27 #include "xe_devcoredump.h"
28 #include "xe_dma_buf.h"
29 #include "xe_drm_client.h"
30 #include "xe_drv.h"
31 #include "xe_exec.h"
32 #include "xe_exec_queue.h"
33 #include "xe_force_wake.h"
34 #include "xe_ggtt.h"
35 #include "xe_gsc_proxy.h"
36 #include "xe_gt.h"
37 #include "xe_gt_mcr.h"
38 #include "xe_gt_printk.h"
39 #include "xe_gt_sriov_vf.h"
40 #include "xe_guc.h"
41 #include "xe_hw_engine_group.h"
42 #include "xe_hwmon.h"
43 #include "xe_irq.h"
44 #include "xe_memirq.h"
45 #include "xe_mmio.h"
46 #include "xe_module.h"
47 #include "xe_oa.h"
48 #include "xe_observation.h"
49 #include "xe_pat.h"
50 #include "xe_pcode.h"
51 #include "xe_pm.h"
52 #include "xe_query.h"
53 #include "xe_sriov.h"
54 #include "xe_tile.h"
55 #include "xe_ttm_stolen_mgr.h"
56 #include "xe_ttm_sys_mgr.h"
57 #include "xe_vm.h"
58 #include "xe_vram.h"
59 #include "xe_vsec.h"
60 #include "xe_wait_user_fence.h"
61 #include "xe_wa.h"
62 
63 #include <generated/xe_wa_oob.h>
64 
xe_file_open(struct drm_device * dev,struct drm_file * file)65 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
66 {
67 	struct xe_device *xe = to_xe_device(dev);
68 	struct xe_drm_client *client;
69 	struct xe_file *xef;
70 	int ret = -ENOMEM;
71 	struct task_struct *task = NULL;
72 
73 	xef = kzalloc(sizeof(*xef), GFP_KERNEL);
74 	if (!xef)
75 		return ret;
76 
77 	client = xe_drm_client_alloc();
78 	if (!client) {
79 		kfree(xef);
80 		return ret;
81 	}
82 
83 	xef->drm = file;
84 	xef->client = client;
85 	xef->xe = xe;
86 
87 	mutex_init(&xef->vm.lock);
88 	xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
89 
90 	mutex_init(&xef->exec_queue.lock);
91 	xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
92 
93 	file->driver_priv = xef;
94 	kref_init(&xef->refcount);
95 
96 	task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID);
97 	if (task) {
98 		xef->process_name = kstrdup(task->comm, GFP_KERNEL);
99 		xef->pid = task->pid;
100 		put_task_struct(task);
101 	}
102 
103 	return 0;
104 }
105 
xe_file_destroy(struct kref * ref)106 static void xe_file_destroy(struct kref *ref)
107 {
108 	struct xe_file *xef = container_of(ref, struct xe_file, refcount);
109 
110 	xa_destroy(&xef->exec_queue.xa);
111 	mutex_destroy(&xef->exec_queue.lock);
112 	xa_destroy(&xef->vm.xa);
113 	mutex_destroy(&xef->vm.lock);
114 
115 	xe_drm_client_put(xef->client);
116 	kfree(xef->process_name);
117 	kfree(xef);
118 }
119 
120 /**
121  * xe_file_get() - Take a reference to the xe file object
122  * @xef: Pointer to the xe file
123  *
124  * Anyone with a pointer to xef must take a reference to the xe file
125  * object using this call.
126  *
127  * Return: xe file pointer
128  */
xe_file_get(struct xe_file * xef)129 struct xe_file *xe_file_get(struct xe_file *xef)
130 {
131 	kref_get(&xef->refcount);
132 	return xef;
133 }
134 
135 /**
136  * xe_file_put() - Drop a reference to the xe file object
137  * @xef: Pointer to the xe file
138  *
139  * Used to drop reference to the xef object
140  */
xe_file_put(struct xe_file * xef)141 void xe_file_put(struct xe_file *xef)
142 {
143 	kref_put(&xef->refcount, xe_file_destroy);
144 }
145 
xe_file_close(struct drm_device * dev,struct drm_file * file)146 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
147 {
148 	struct xe_device *xe = to_xe_device(dev);
149 	struct xe_file *xef = file->driver_priv;
150 	struct xe_vm *vm;
151 	struct xe_exec_queue *q;
152 	unsigned long idx;
153 
154 	xe_pm_runtime_get(xe);
155 
156 	/*
157 	 * No need for exec_queue.lock here as there is no contention for it
158 	 * when FD is closing as IOCTLs presumably can't be modifying the
159 	 * xarray. Taking exec_queue.lock here causes undue dependency on
160 	 * vm->lock taken during xe_exec_queue_kill().
161 	 */
162 	xa_for_each(&xef->exec_queue.xa, idx, q) {
163 		if (q->vm && q->hwe->hw_engine_group)
164 			xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
165 		xe_exec_queue_kill(q);
166 		xe_exec_queue_put(q);
167 	}
168 	xa_for_each(&xef->vm.xa, idx, vm)
169 		xe_vm_close_and_put(vm);
170 
171 	xe_file_put(xef);
172 
173 	xe_pm_runtime_put(xe);
174 }
175 
176 static const struct drm_ioctl_desc xe_ioctls[] = {
177 	DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
178 	DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
179 	DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
180 			  DRM_RENDER_ALLOW),
181 	DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
182 	DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
183 	DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
184 	DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
185 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
186 			  DRM_RENDER_ALLOW),
187 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
188 			  DRM_RENDER_ALLOW),
189 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
190 			  DRM_RENDER_ALLOW),
191 	DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
192 			  DRM_RENDER_ALLOW),
193 	DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
194 };
195 
xe_drm_ioctl(struct file * file,unsigned int cmd,unsigned long arg)196 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
197 {
198 	struct drm_file *file_priv = file->private_data;
199 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
200 	long ret;
201 
202 	if (xe_device_wedged(xe))
203 		return -ECANCELED;
204 
205 	ret = xe_pm_runtime_get_ioctl(xe);
206 	if (ret >= 0)
207 		ret = drm_ioctl(file, cmd, arg);
208 	xe_pm_runtime_put(xe);
209 
210 	return ret;
211 }
212 
213 #ifdef CONFIG_COMPAT
xe_drm_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)214 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
215 {
216 	struct drm_file *file_priv = file->private_data;
217 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
218 	long ret;
219 
220 	if (xe_device_wedged(xe))
221 		return -ECANCELED;
222 
223 	ret = xe_pm_runtime_get_ioctl(xe);
224 	if (ret >= 0)
225 		ret = drm_compat_ioctl(file, cmd, arg);
226 	xe_pm_runtime_put(xe);
227 
228 	return ret;
229 }
230 #else
231 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
232 #define xe_drm_compat_ioctl NULL
233 #endif
234 
235 static const struct file_operations xe_driver_fops = {
236 	.owner = THIS_MODULE,
237 	.open = drm_open,
238 	.release = drm_release_noglobal,
239 	.unlocked_ioctl = xe_drm_ioctl,
240 	.mmap = drm_gem_mmap,
241 	.poll = drm_poll,
242 	.read = drm_read,
243 	.compat_ioctl = xe_drm_compat_ioctl,
244 	.llseek = noop_llseek,
245 #ifdef CONFIG_PROC_FS
246 	.show_fdinfo = drm_show_fdinfo,
247 #endif
248 	.fop_flags = FOP_UNSIGNED_OFFSET,
249 };
250 
251 static struct drm_driver driver = {
252 	/* Don't use MTRRs here; the Xserver or userspace app should
253 	 * deal with them for Intel hardware.
254 	 */
255 	.driver_features =
256 	    DRIVER_GEM |
257 	    DRIVER_RENDER | DRIVER_SYNCOBJ |
258 	    DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
259 	.open = xe_file_open,
260 	.postclose = xe_file_close,
261 
262 	.gem_prime_import = xe_gem_prime_import,
263 
264 	.dumb_create = xe_bo_dumb_create,
265 	.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
266 #ifdef CONFIG_PROC_FS
267 	.show_fdinfo = xe_drm_client_fdinfo,
268 #endif
269 	.ioctls = xe_ioctls,
270 	.num_ioctls = ARRAY_SIZE(xe_ioctls),
271 	.fops = &xe_driver_fops,
272 	.name = DRIVER_NAME,
273 	.desc = DRIVER_DESC,
274 	.major = DRIVER_MAJOR,
275 	.minor = DRIVER_MINOR,
276 	.patchlevel = DRIVER_PATCHLEVEL,
277 };
278 
xe_device_destroy(struct drm_device * dev,void * dummy)279 static void xe_device_destroy(struct drm_device *dev, void *dummy)
280 {
281 	struct xe_device *xe = to_xe_device(dev);
282 
283 	if (xe->preempt_fence_wq)
284 		destroy_workqueue(xe->preempt_fence_wq);
285 
286 	if (xe->ordered_wq)
287 		destroy_workqueue(xe->ordered_wq);
288 
289 	if (xe->unordered_wq)
290 		destroy_workqueue(xe->unordered_wq);
291 
292 	if (xe->destroy_wq)
293 		destroy_workqueue(xe->destroy_wq);
294 
295 	ttm_device_fini(&xe->ttm);
296 }
297 
xe_device_create(struct pci_dev * pdev,const struct pci_device_id * ent)298 struct xe_device *xe_device_create(struct pci_dev *pdev,
299 				   const struct pci_device_id *ent)
300 {
301 	struct xe_device *xe;
302 	int err;
303 
304 	xe_display_driver_set_hooks(&driver);
305 
306 	err = aperture_remove_conflicting_pci_devices(pdev, driver.name);
307 	if (err)
308 		return ERR_PTR(err);
309 
310 	xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
311 	if (IS_ERR(xe))
312 		return xe;
313 
314 	err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
315 			      xe->drm.anon_inode->i_mapping,
316 			      xe->drm.vma_offset_manager, false, false);
317 	if (WARN_ON(err))
318 		goto err;
319 
320 	err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
321 	if (err)
322 		goto err;
323 
324 	xe->info.devid = pdev->device;
325 	xe->info.revid = pdev->revision;
326 	xe->info.force_execlist = xe_modparam.force_execlist;
327 
328 	err = xe_irq_init(xe);
329 	if (err)
330 		goto err;
331 
332 	init_waitqueue_head(&xe->ufence_wq);
333 
334 	init_rwsem(&xe->usm.lock);
335 
336 	xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
337 
338 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
339 		/* Trigger a large asid and an early asid wrap. */
340 		u32 asid;
341 
342 		BUILD_BUG_ON(XE_MAX_ASID < 2);
343 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
344 				      XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
345 				      &xe->usm.next_asid, GFP_KERNEL);
346 		drm_WARN_ON(&xe->drm, err);
347 		if (err >= 0)
348 			xa_erase(&xe->usm.asid_to_vm, asid);
349 	}
350 
351 	spin_lock_init(&xe->pinned.lock);
352 	INIT_LIST_HEAD(&xe->pinned.kernel_bo_present);
353 	INIT_LIST_HEAD(&xe->pinned.external_vram);
354 	INIT_LIST_HEAD(&xe->pinned.evicted);
355 
356 	xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq",
357 						       WQ_MEM_RECLAIM);
358 	xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
359 	xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
360 	xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0);
361 	if (!xe->ordered_wq || !xe->unordered_wq ||
362 	    !xe->preempt_fence_wq || !xe->destroy_wq) {
363 		/*
364 		 * Cleanup done in xe_device_destroy via
365 		 * drmm_add_action_or_reset register above
366 		 */
367 		drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
368 		err = -ENOMEM;
369 		goto err;
370 	}
371 
372 	err = drmm_mutex_init(&xe->drm, &xe->pmt.lock);
373 	if (err)
374 		goto err;
375 
376 	err = xe_display_create(xe);
377 	if (WARN_ON(err))
378 		goto err;
379 
380 	return xe;
381 
382 err:
383 	return ERR_PTR(err);
384 }
385 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */
386 
xe_driver_flr_disabled(struct xe_device * xe)387 static bool xe_driver_flr_disabled(struct xe_device *xe)
388 {
389 	return xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS;
390 }
391 
392 /*
393  * The driver-initiated FLR is the highest level of reset that we can trigger
394  * from within the driver. It is different from the PCI FLR in that it doesn't
395  * fully reset the SGUnit and doesn't modify the PCI config space and therefore
396  * it doesn't require a re-enumeration of the PCI BARs. However, the
397  * driver-initiated FLR does still cause a reset of both GT and display and a
398  * memory wipe of local and stolen memory, so recovery would require a full HW
399  * re-init and saving/restoring (or re-populating) the wiped memory. Since we
400  * perform the FLR as the very last action before releasing access to the HW
401  * during the driver release flow, we don't attempt recovery at all, because
402  * if/when a new instance of i915 is bound to the device it will do a full
403  * re-init anyway.
404  */
__xe_driver_flr(struct xe_device * xe)405 static void __xe_driver_flr(struct xe_device *xe)
406 {
407 	const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */
408 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
409 	int ret;
410 
411 	drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
412 
413 	/*
414 	 * Make sure any pending FLR requests have cleared by waiting for the
415 	 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
416 	 * to make sure it's not still set from a prior attempt (it's a write to
417 	 * clear bit).
418 	 * Note that we should never be in a situation where a previous attempt
419 	 * is still pending (unless the HW is totally dead), but better to be
420 	 * safe in case something unexpected happens
421 	 */
422 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
423 	if (ret) {
424 		drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
425 		return;
426 	}
427 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
428 
429 	/* Trigger the actual Driver-FLR */
430 	xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR);
431 
432 	/* Wait for hardware teardown to complete */
433 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
434 	if (ret) {
435 		drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
436 		return;
437 	}
438 
439 	/* Wait for hardware/firmware re-init to complete */
440 	ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
441 			     flr_timeout, NULL, false);
442 	if (ret) {
443 		drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
444 		return;
445 	}
446 
447 	/* Clear sticky completion status */
448 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
449 }
450 
xe_driver_flr(struct xe_device * xe)451 static void xe_driver_flr(struct xe_device *xe)
452 {
453 	if (xe_driver_flr_disabled(xe)) {
454 		drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n");
455 		return;
456 	}
457 
458 	__xe_driver_flr(xe);
459 }
460 
xe_driver_flr_fini(void * arg)461 static void xe_driver_flr_fini(void *arg)
462 {
463 	struct xe_device *xe = arg;
464 
465 	if (xe->needs_flr_on_fini)
466 		xe_driver_flr(xe);
467 }
468 
xe_device_sanitize(void * arg)469 static void xe_device_sanitize(void *arg)
470 {
471 	struct xe_device *xe = arg;
472 	struct xe_gt *gt;
473 	u8 id;
474 
475 	for_each_gt(gt, xe, id)
476 		xe_gt_sanitize(gt);
477 }
478 
xe_set_dma_info(struct xe_device * xe)479 static int xe_set_dma_info(struct xe_device *xe)
480 {
481 	unsigned int mask_size = xe->info.dma_mask_size;
482 	int err;
483 
484 	dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
485 
486 	err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
487 	if (err)
488 		goto mask_err;
489 
490 	err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
491 	if (err)
492 		goto mask_err;
493 
494 	return 0;
495 
496 mask_err:
497 	drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
498 	return err;
499 }
500 
verify_lmem_ready(struct xe_device * xe)501 static bool verify_lmem_ready(struct xe_device *xe)
502 {
503 	u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT;
504 
505 	return !!val;
506 }
507 
wait_for_lmem_ready(struct xe_device * xe)508 static int wait_for_lmem_ready(struct xe_device *xe)
509 {
510 	unsigned long timeout, start;
511 
512 	if (!IS_DGFX(xe))
513 		return 0;
514 
515 	if (IS_SRIOV_VF(xe))
516 		return 0;
517 
518 	if (verify_lmem_ready(xe))
519 		return 0;
520 
521 	drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
522 
523 	start = jiffies;
524 	timeout = start + secs_to_jiffies(60); /* 60 sec! */
525 
526 	do {
527 		if (signal_pending(current))
528 			return -EINTR;
529 
530 		/*
531 		 * The boot firmware initializes local memory and
532 		 * assesses its health. If memory training fails,
533 		 * the punit will have been instructed to keep the GT powered
534 		 * down.we won't be able to communicate with it
535 		 *
536 		 * If the status check is done before punit updates the register,
537 		 * it can lead to the system being unusable.
538 		 * use a timeout and defer the probe to prevent this.
539 		 */
540 		if (time_after(jiffies, timeout)) {
541 			drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
542 			return -EPROBE_DEFER;
543 		}
544 
545 		msleep(20);
546 
547 	} while (!verify_lmem_ready(xe));
548 
549 	drm_dbg(&xe->drm, "lmem ready after %ums",
550 		jiffies_to_msecs(jiffies - start));
551 
552 	return 0;
553 }
554 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */
555 
update_device_info(struct xe_device * xe)556 static void update_device_info(struct xe_device *xe)
557 {
558 	/* disable features that are not available/applicable to VFs */
559 	if (IS_SRIOV_VF(xe)) {
560 		xe->info.probe_display = 0;
561 		xe->info.has_heci_gscfi = 0;
562 		xe->info.skip_guc_pc = 1;
563 		xe->info.skip_pcode = 1;
564 	}
565 }
566 
567 /**
568  * xe_device_probe_early: Device early probe
569  * @xe: xe device instance
570  *
571  * Initialize MMIO resources that don't require any
572  * knowledge about tile count. Also initialize pcode and
573  * check vram initialization on root tile.
574  *
575  * Return: 0 on success, error code on failure
576  */
xe_device_probe_early(struct xe_device * xe)577 int xe_device_probe_early(struct xe_device *xe)
578 {
579 	int err;
580 
581 	err = xe_mmio_init(xe);
582 	if (err)
583 		return err;
584 
585 	xe_sriov_probe_early(xe);
586 
587 	update_device_info(xe);
588 
589 	err = xe_pcode_probe_early(xe);
590 	if (err)
591 		return err;
592 
593 	err = wait_for_lmem_ready(xe);
594 	if (err)
595 		return err;
596 
597 	xe->wedged.mode = xe_modparam.wedged_mode;
598 
599 	return 0;
600 }
601 
probe_has_flat_ccs(struct xe_device * xe)602 static int probe_has_flat_ccs(struct xe_device *xe)
603 {
604 	struct xe_gt *gt;
605 	unsigned int fw_ref;
606 	u32 reg;
607 
608 	/* Always enabled/disabled, no runtime check to do */
609 	if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe))
610 		return 0;
611 
612 	gt = xe_root_mmio_gt(xe);
613 
614 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
615 	if (!fw_ref)
616 		return -ETIMEDOUT;
617 
618 	reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
619 	xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
620 
621 	if (!xe->info.has_flat_ccs)
622 		drm_dbg(&xe->drm,
623 			"Flat CCS has been disabled in bios, May lead to performance impact");
624 
625 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
626 	return 0;
627 }
628 
xe_device_probe(struct xe_device * xe)629 int xe_device_probe(struct xe_device *xe)
630 {
631 	struct xe_tile *tile;
632 	struct xe_gt *gt;
633 	int err;
634 	u8 last_gt;
635 	u8 id;
636 
637 	xe_pat_init_early(xe);
638 
639 	err = xe_sriov_init(xe);
640 	if (err)
641 		return err;
642 
643 	xe->info.mem_region_mask = 1;
644 	err = xe_display_init_nommio(xe);
645 	if (err)
646 		return err;
647 
648 	err = xe_set_dma_info(xe);
649 	if (err)
650 		return err;
651 
652 	err = xe_mmio_probe_tiles(xe);
653 	if (err)
654 		return err;
655 
656 	xe_ttm_sys_mgr_init(xe);
657 
658 	for_each_gt(gt, xe, id) {
659 		err = xe_gt_init_early(gt);
660 		if (err)
661 			return err;
662 
663 		/*
664 		 * Only after this point can GT-specific MMIO operations
665 		 * (including things like communication with the GuC)
666 		 * be performed.
667 		 */
668 		xe_gt_mmio_init(gt);
669 	}
670 
671 	for_each_tile(tile, xe, id) {
672 		if (IS_SRIOV_VF(xe)) {
673 			xe_guc_comm_init_early(&tile->primary_gt->uc.guc);
674 			err = xe_gt_sriov_vf_bootstrap(tile->primary_gt);
675 			if (err)
676 				return err;
677 			err = xe_gt_sriov_vf_query_config(tile->primary_gt);
678 			if (err)
679 				return err;
680 		}
681 		err = xe_ggtt_init_early(tile->mem.ggtt);
682 		if (err)
683 			return err;
684 		err = xe_memirq_init(&tile->memirq);
685 		if (err)
686 			return err;
687 	}
688 
689 	for_each_gt(gt, xe, id) {
690 		err = xe_gt_init_hwconfig(gt);
691 		if (err)
692 			return err;
693 	}
694 
695 	err = xe_devcoredump_init(xe);
696 	if (err)
697 		return err;
698 	err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
699 	if (err)
700 		return err;
701 
702 	err = xe_display_init_noirq(xe);
703 	if (err)
704 		return err;
705 
706 	err = xe_irq_install(xe);
707 	if (err)
708 		goto err;
709 
710 	err = probe_has_flat_ccs(xe);
711 	if (err)
712 		goto err;
713 
714 	err = xe_vram_probe(xe);
715 	if (err)
716 		goto err;
717 
718 	for_each_tile(tile, xe, id) {
719 		err = xe_tile_init_noalloc(tile);
720 		if (err)
721 			goto err;
722 	}
723 
724 	/* Allocate and map stolen after potential VRAM resize */
725 	xe_ttm_stolen_mgr_init(xe);
726 
727 	/*
728 	 * Now that GT is initialized (TTM in particular),
729 	 * we can try to init display, and inherit the initial fb.
730 	 * This is the reason the first allocation needs to be done
731 	 * inside display.
732 	 */
733 	err = xe_display_init_noaccel(xe);
734 	if (err)
735 		goto err;
736 
737 	for_each_gt(gt, xe, id) {
738 		last_gt = id;
739 
740 		err = xe_gt_init(gt);
741 		if (err)
742 			goto err_fini_gt;
743 	}
744 
745 	xe_heci_gsc_init(xe);
746 
747 	err = xe_oa_init(xe);
748 	if (err)
749 		goto err_fini_gt;
750 
751 	err = xe_display_init(xe);
752 	if (err)
753 		goto err_fini_oa;
754 
755 	err = drm_dev_register(&xe->drm, 0);
756 	if (err)
757 		goto err_fini_display;
758 
759 	xe_display_register(xe);
760 
761 	xe_oa_register(xe);
762 
763 	xe_debugfs_register(xe);
764 
765 	xe_hwmon_register(xe);
766 
767 	for_each_gt(gt, xe, id)
768 		xe_gt_sanitize_freq(gt);
769 
770 	xe_vsec_init(xe);
771 
772 	return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
773 
774 err_fini_display:
775 	xe_display_driver_remove(xe);
776 
777 err_fini_oa:
778 	xe_oa_fini(xe);
779 
780 err_fini_gt:
781 	for_each_gt(gt, xe, id) {
782 		if (id < last_gt)
783 			xe_gt_remove(gt);
784 		else
785 			break;
786 	}
787 
788 err:
789 	xe_display_fini(xe);
790 	return err;
791 }
792 
xe_device_remove_display(struct xe_device * xe)793 static void xe_device_remove_display(struct xe_device *xe)
794 {
795 	xe_display_unregister(xe);
796 
797 	drm_dev_unplug(&xe->drm);
798 	xe_display_driver_remove(xe);
799 }
800 
xe_device_remove(struct xe_device * xe)801 void xe_device_remove(struct xe_device *xe)
802 {
803 	struct xe_gt *gt;
804 	u8 id;
805 
806 	xe_oa_unregister(xe);
807 
808 	xe_device_remove_display(xe);
809 
810 	xe_display_fini(xe);
811 
812 	xe_oa_fini(xe);
813 
814 	xe_heci_gsc_fini(xe);
815 
816 	for_each_gt(gt, xe, id)
817 		xe_gt_remove(gt);
818 }
819 
xe_device_shutdown(struct xe_device * xe)820 void xe_device_shutdown(struct xe_device *xe)
821 {
822 	struct xe_gt *gt;
823 	u8 id;
824 
825 	drm_dbg(&xe->drm, "Shutting down device\n");
826 
827 	if (xe_driver_flr_disabled(xe)) {
828 		xe_display_pm_shutdown(xe);
829 
830 		xe_irq_suspend(xe);
831 
832 		for_each_gt(gt, xe, id)
833 			xe_gt_shutdown(gt);
834 
835 		xe_display_pm_shutdown_late(xe);
836 	} else {
837 		/* BOOM! */
838 		__xe_driver_flr(xe);
839 	}
840 }
841 
842 /**
843  * xe_device_wmb() - Device specific write memory barrier
844  * @xe: the &xe_device
845  *
846  * While wmb() is sufficient for a barrier if we use system memory, on discrete
847  * platforms with device memory we additionally need to issue a register write.
848  * Since it doesn't matter which register we write to, use the read-only VF_CAP
849  * register that is also marked as accessible by the VFs.
850  */
xe_device_wmb(struct xe_device * xe)851 void xe_device_wmb(struct xe_device *xe)
852 {
853 	wmb();
854 	if (IS_DGFX(xe))
855 		xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0);
856 }
857 
858 /**
859  * xe_device_td_flush() - Flush transient L3 cache entries
860  * @xe: The device
861  *
862  * Display engine has direct access to memory and is never coherent with L3/L4
863  * caches (or CPU caches), however KMD is responsible for specifically flushing
864  * transient L3 GPU cache entries prior to the flip sequence to ensure scanout
865  * can happen from such a surface without seeing corruption.
866  *
867  * Display surfaces can be tagged as transient by mapping it using one of the
868  * various L3:XD PAT index modes on Xe2.
869  *
870  * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
871  * at the end of each submission via PIPE_CONTROL for compute/render, since SA
872  * Media is not coherent with L3 and we want to support render-vs-media
873  * usescases. For other engines like copy/blt the HW internally forces uncached
874  * behaviour, hence why we can skip the TDF on such platforms.
875  */
xe_device_td_flush(struct xe_device * xe)876 void xe_device_td_flush(struct xe_device *xe)
877 {
878 	struct xe_gt *gt;
879 	unsigned int fw_ref;
880 	u8 id;
881 
882 	if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
883 		return;
884 
885 	if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) {
886 		xe_device_l2_flush(xe);
887 		return;
888 	}
889 
890 	for_each_gt(gt, xe, id) {
891 		if (xe_gt_is_media_type(gt))
892 			continue;
893 
894 		fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
895 		if (!fw_ref)
896 			return;
897 
898 		xe_mmio_write32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
899 		/*
900 		 * FIXME: We can likely do better here with our choice of
901 		 * timeout. Currently we just assume the worst case, i.e. 150us,
902 		 * which is believed to be sufficient to cover the worst case
903 		 * scenario on current platforms if all cache entries are
904 		 * transient and need to be flushed..
905 		 */
906 		if (xe_mmio_wait32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
907 				   150, NULL, false))
908 			xe_gt_err_once(gt, "TD flush timeout\n");
909 
910 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
911 	}
912 }
913 
xe_device_l2_flush(struct xe_device * xe)914 void xe_device_l2_flush(struct xe_device *xe)
915 {
916 	struct xe_gt *gt;
917 	unsigned int fw_ref;
918 
919 	gt = xe_root_mmio_gt(xe);
920 
921 	if (!XE_WA(gt, 16023588340))
922 		return;
923 
924 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
925 	if (!fw_ref)
926 		return;
927 
928 	spin_lock(&gt->global_invl_lock);
929 	xe_mmio_write32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1);
930 
931 	if (xe_mmio_wait32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true))
932 		xe_gt_err_once(gt, "Global invalidation timeout\n");
933 	spin_unlock(&gt->global_invl_lock);
934 
935 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
936 }
937 
xe_device_ccs_bytes(struct xe_device * xe,u64 size)938 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
939 {
940 	return xe_device_has_flat_ccs(xe) ?
941 		DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
942 }
943 
944 /**
945  * xe_device_assert_mem_access - Inspect the current runtime_pm state.
946  * @xe: xe device instance
947  *
948  * To be used before any kind of memory access. It will splat a debug warning
949  * if the device is currently sleeping. But it doesn't guarantee in any way
950  * that the device is going to remain awake. Xe PM runtime get and put
951  * functions might be added to the outer bound of the memory access, while
952  * this check is intended for inner usage to splat some warning if the worst
953  * case has just happened.
954  */
xe_device_assert_mem_access(struct xe_device * xe)955 void xe_device_assert_mem_access(struct xe_device *xe)
956 {
957 	xe_assert(xe, !xe_pm_runtime_suspended(xe));
958 }
959 
xe_device_snapshot_print(struct xe_device * xe,struct drm_printer * p)960 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
961 {
962 	struct xe_gt *gt;
963 	u8 id;
964 
965 	drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
966 	drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
967 
968 	for_each_gt(gt, xe, id) {
969 		drm_printf(p, "GT id: %u\n", id);
970 		drm_printf(p, "\tTile: %u\n", gt->tile->id);
971 		drm_printf(p, "\tType: %s\n",
972 			   gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
973 		drm_printf(p, "\tIP ver: %u.%u.%u\n",
974 			   REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
975 			   REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
976 			   REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
977 		drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
978 	}
979 }
980 
xe_device_canonicalize_addr(struct xe_device * xe,u64 address)981 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
982 {
983 	return sign_extend64(address, xe->info.va_bits - 1);
984 }
985 
xe_device_uncanonicalize_addr(struct xe_device * xe,u64 address)986 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
987 {
988 	return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
989 }
990 
xe_device_wedged_fini(struct drm_device * drm,void * arg)991 static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
992 {
993 	struct xe_device *xe = arg;
994 
995 	xe_pm_runtime_put(xe);
996 }
997 
998 /**
999  * xe_device_declare_wedged - Declare device wedged
1000  * @xe: xe device instance
1001  *
1002  * This is a final state that can only be cleared with a module
1003  * re-probe (unbind + bind).
1004  * In this state every IOCTL will be blocked so the GT cannot be used.
1005  * In general it will be called upon any critical error such as gt reset
1006  * failure or guc loading failure.
1007  * If xe.wedged module parameter is set to 2, this function will be called
1008  * on every single execution timeout (a.k.a. GPU hang) right after devcoredump
1009  * snapshot capture. In this mode, GT reset won't be attempted so the state of
1010  * the issue is preserved for further debugging.
1011  */
xe_device_declare_wedged(struct xe_device * xe)1012 void xe_device_declare_wedged(struct xe_device *xe)
1013 {
1014 	struct xe_gt *gt;
1015 	u8 id;
1016 
1017 	if (xe->wedged.mode == 0) {
1018 		drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
1019 		return;
1020 	}
1021 
1022 	xe_pm_runtime_get_noresume(xe);
1023 
1024 	if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
1025 		drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
1026 		return;
1027 	}
1028 
1029 	if (!atomic_xchg(&xe->wedged.flag, 1)) {
1030 		xe->needs_flr_on_fini = true;
1031 		drm_err(&xe->drm,
1032 			"CRITICAL: Xe has declared device %s as wedged.\n"
1033 			"IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
1034 			"Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
1035 			dev_name(xe->drm.dev));
1036 	}
1037 
1038 	for_each_gt(gt, xe, id)
1039 		xe_gt_declare_wedged(gt);
1040 }
1041