1 /* SPDX-License-Identifier: MIT */
2 /*
3 * Copyright © 2021 Intel Corporation
4 */
5
6 #ifndef _XE_BO_H_
7 #define _XE_BO_H_
8
9 #include <drm/ttm/ttm_tt.h>
10
11 #include "xe_bo_types.h"
12 #include "xe_macros.h"
13 #include "xe_validation.h"
14 #include "xe_vm_types.h"
15 #include "xe_vm.h"
16 #include "xe_vram_types.h"
17
18 #define XE_DEFAULT_GTT_SIZE_MB 3072ULL /* 3GB by default */
19
20 #define XE_BO_FLAG_USER BIT(0)
21 /* The bits below need to be contiguous, or things break */
22 #define XE_BO_FLAG_SYSTEM BIT(1)
23 #define XE_BO_FLAG_VRAM0 BIT(2)
24 #define XE_BO_FLAG_VRAM1 BIT(3)
25 #define XE_BO_FLAG_VRAM_MASK (XE_BO_FLAG_VRAM0 | XE_BO_FLAG_VRAM1)
26 /* -- */
27 #define XE_BO_FLAG_STOLEN BIT(4)
28 #define XE_BO_FLAG_VRAM(vram) (XE_BO_FLAG_VRAM0 << ((vram)->id))
29 #define XE_BO_FLAG_VRAM_IF_DGFX(tile) (IS_DGFX(tile_to_xe(tile)) ? \
30 XE_BO_FLAG_VRAM((tile)->mem.vram) : \
31 XE_BO_FLAG_SYSTEM)
32 #define XE_BO_FLAG_GGTT BIT(5)
33 #define XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE BIT(6)
34 #define XE_BO_FLAG_PINNED BIT(7)
35 #define XE_BO_FLAG_NO_RESV_EVICT BIT(8)
36 #define XE_BO_FLAG_DEFER_BACKING BIT(9)
37 #define XE_BO_FLAG_SCANOUT BIT(10)
38 #define XE_BO_FLAG_FIXED_PLACEMENT BIT(11)
39 #define XE_BO_FLAG_PAGETABLE BIT(12)
40 #define XE_BO_FLAG_NEEDS_CPU_ACCESS BIT(13)
41 #define XE_BO_FLAG_NEEDS_UC BIT(14)
42 #define XE_BO_FLAG_NEEDS_64K BIT(15)
43 #define XE_BO_FLAG_NEEDS_2M BIT(16)
44 #define XE_BO_FLAG_GGTT_INVALIDATE BIT(17)
45 #define XE_BO_FLAG_PINNED_NORESTORE BIT(18)
46 #define XE_BO_FLAG_PINNED_LATE_RESTORE BIT(19)
47 #define XE_BO_FLAG_GGTT0 BIT(20)
48 #define XE_BO_FLAG_GGTT1 BIT(21)
49 #define XE_BO_FLAG_GGTT2 BIT(22)
50 #define XE_BO_FLAG_GGTT3 BIT(23)
51 #define XE_BO_FLAG_CPU_ADDR_MIRROR BIT(24)
52
53 /* this one is trigger internally only */
54 #define XE_BO_FLAG_INTERNAL_TEST BIT(30)
55 #define XE_BO_FLAG_INTERNAL_64K BIT(31)
56
57 #define XE_BO_FLAG_GGTT_ALL (XE_BO_FLAG_GGTT0 | \
58 XE_BO_FLAG_GGTT1 | \
59 XE_BO_FLAG_GGTT2 | \
60 XE_BO_FLAG_GGTT3)
61
62 #define XE_BO_FLAG_GGTTx(tile) \
63 (XE_BO_FLAG_GGTT0 << (tile)->id)
64
65 #define XE_PTE_SHIFT 12
66 #define XE_PAGE_SIZE (1 << XE_PTE_SHIFT)
67 #define XE_PTE_MASK (XE_PAGE_SIZE - 1)
68 #define XE_PDE_SHIFT (XE_PTE_SHIFT - 3)
69 #define XE_PDES (1 << XE_PDE_SHIFT)
70 #define XE_PDE_MASK (XE_PDES - 1)
71
72 #define XE_64K_PTE_SHIFT 16
73 #define XE_64K_PAGE_SIZE (1 << XE_64K_PTE_SHIFT)
74 #define XE_64K_PTE_MASK (XE_64K_PAGE_SIZE - 1)
75 #define XE_64K_PDE_MASK (XE_PDE_MASK >> 4)
76
77 #define XE_PL_SYSTEM TTM_PL_SYSTEM
78 #define XE_PL_TT TTM_PL_TT
79 #define XE_PL_VRAM0 TTM_PL_VRAM
80 #define XE_PL_VRAM1 (XE_PL_VRAM0 + 1)
81 #define XE_PL_STOLEN (TTM_NUM_MEM_TYPES - 1)
82
83 #define XE_BO_PROPS_INVALID (-1)
84
85 #define XE_PCI_BARRIER_MMAP_OFFSET (0x50 << XE_PTE_SHIFT)
86
87 struct sg_table;
88
89 struct xe_bo *xe_bo_alloc(void);
90 void xe_bo_free(struct xe_bo *bo);
91
92 struct xe_bo *xe_bo_init_locked(struct xe_device *xe, struct xe_bo *bo,
93 struct xe_tile *tile, struct dma_resv *resv,
94 struct ttm_lru_bulk_move *bulk, size_t size,
95 u16 cpu_caching, enum ttm_bo_type type,
96 u32 flags, struct drm_exec *exec);
97 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile,
98 struct xe_vm *vm, size_t size,
99 enum ttm_bo_type type, u32 flags,
100 struct drm_exec *exec);
101 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_vm *vm, size_t size,
102 u16 cpu_caching, u32 flags, struct drm_exec *exec);
103 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
104 struct xe_vm *vm, size_t size,
105 enum ttm_bo_type type, u32 flags,
106 struct drm_exec *exec);
107 struct xe_bo *xe_bo_create_pin_map_novm(struct xe_device *xe, struct xe_tile *tile,
108 size_t size, enum ttm_bo_type type, u32 flags,
109 bool intr);
110 struct xe_bo *xe_bo_create_pin_range_novm(struct xe_device *xe, struct xe_tile *tile,
111 size_t size, u64 start, u64 end,
112 enum ttm_bo_type type, u32 flags);
113 struct xe_bo *
114 xe_bo_create_pin_map_at_novm(struct xe_device *xe, struct xe_tile *tile,
115 size_t size, u64 offset, enum ttm_bo_type type,
116 u32 flags, u64 alignment, bool intr);
117 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
118 size_t size, u32 flags);
119 void xe_managed_bo_unpin_map_no_vm(struct xe_bo *bo);
120 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
121 const void *data, size_t size, u32 flags);
122 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src);
123
124 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
125 u32 bo_flags);
126
ttm_to_xe_bo(const struct ttm_buffer_object * bo)127 static inline struct xe_bo *ttm_to_xe_bo(const struct ttm_buffer_object *bo)
128 {
129 return container_of(bo, struct xe_bo, ttm);
130 }
131
gem_to_xe_bo(const struct drm_gem_object * obj)132 static inline struct xe_bo *gem_to_xe_bo(const struct drm_gem_object *obj)
133 {
134 return container_of(obj, struct xe_bo, ttm.base);
135 }
136
137 #define xe_bo_device(bo) ttm_to_xe_device((bo)->ttm.bdev)
138
xe_bo_get(struct xe_bo * bo)139 static inline struct xe_bo *xe_bo_get(struct xe_bo *bo)
140 {
141 if (bo)
142 drm_gem_object_get(&bo->ttm.base);
143
144 return bo;
145 }
146
147 void xe_bo_put(struct xe_bo *bo);
148
149 /*
150 * xe_bo_get_unless_zero() - Conditionally obtain a GEM object refcount on an
151 * xe bo
152 * @bo: The bo for which we want to obtain a refcount.
153 *
154 * There is a short window between where the bo's GEM object refcount reaches
155 * zero and where we put the final ttm_bo reference. Code in the eviction- and
156 * shrinking path should therefore attempt to grab a gem object reference before
157 * trying to use members outside of the base class ttm object. This function is
158 * intended for that purpose. On successful return, this function must be paired
159 * with an xe_bo_put().
160 *
161 * Return: @bo on success, NULL on failure.
162 */
xe_bo_get_unless_zero(struct xe_bo * bo)163 static inline __must_check struct xe_bo *xe_bo_get_unless_zero(struct xe_bo *bo)
164 {
165 if (!bo || !kref_get_unless_zero(&bo->ttm.base.refcount))
166 return NULL;
167
168 return bo;
169 }
170
__xe_bo_unset_bulk_move(struct xe_bo * bo)171 static inline void __xe_bo_unset_bulk_move(struct xe_bo *bo)
172 {
173 if (bo)
174 ttm_bo_set_bulk_move(&bo->ttm, NULL);
175 }
176
xe_bo_assert_held(struct xe_bo * bo)177 static inline void xe_bo_assert_held(struct xe_bo *bo)
178 {
179 if (bo)
180 dma_resv_assert_held((bo)->ttm.base.resv);
181 }
182
183 int xe_bo_lock(struct xe_bo *bo, bool intr);
184
185 void xe_bo_unlock(struct xe_bo *bo);
186
xe_bo_unlock_vm_held(struct xe_bo * bo)187 static inline void xe_bo_unlock_vm_held(struct xe_bo *bo)
188 {
189 if (bo) {
190 XE_WARN_ON(bo->vm && bo->ttm.base.resv != xe_vm_resv(bo->vm));
191 if (bo->vm)
192 xe_vm_assert_held(bo->vm);
193 else
194 dma_resv_unlock(bo->ttm.base.resv);
195 }
196 }
197
198 int xe_bo_pin_external(struct xe_bo *bo, bool in_place, struct drm_exec *exec);
199 int xe_bo_pin(struct xe_bo *bo, struct drm_exec *exec);
200 void xe_bo_unpin_external(struct xe_bo *bo);
201 void xe_bo_unpin(struct xe_bo *bo);
202 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict,
203 struct drm_exec *exec);
204
xe_bo_is_pinned(struct xe_bo * bo)205 static inline bool xe_bo_is_pinned(struct xe_bo *bo)
206 {
207 return bo->ttm.pin_count;
208 }
209
xe_bo_is_protected(const struct xe_bo * bo)210 static inline bool xe_bo_is_protected(const struct xe_bo *bo)
211 {
212 return bo->pxp_key_instance;
213 }
214
xe_bo_unpin_map_no_vm(struct xe_bo * bo)215 static inline void xe_bo_unpin_map_no_vm(struct xe_bo *bo)
216 {
217 if (likely(bo)) {
218 xe_bo_lock(bo, false);
219 xe_bo_unpin(bo);
220 xe_bo_unlock(bo);
221
222 xe_bo_put(bo);
223 }
224 }
225
226 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo);
227 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size);
228 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size);
229
230 static inline dma_addr_t
xe_bo_main_addr(struct xe_bo * bo,size_t page_size)231 xe_bo_main_addr(struct xe_bo *bo, size_t page_size)
232 {
233 return xe_bo_addr(bo, 0, page_size);
234 }
235
236 /**
237 * xe_bo_size() - Xe BO size
238 * @bo: The bo object.
239 *
240 * Simple helper to return Xe BO's size.
241 *
242 * Return: Xe BO's size
243 */
xe_bo_size(struct xe_bo * bo)244 static inline size_t xe_bo_size(struct xe_bo *bo)
245 {
246 return bo->ttm.base.size;
247 }
248
249 static inline u32
__xe_bo_ggtt_addr(struct xe_bo * bo,u8 tile_id)250 __xe_bo_ggtt_addr(struct xe_bo *bo, u8 tile_id)
251 {
252 struct xe_ggtt_node *ggtt_node = bo->ggtt_node[tile_id];
253
254 if (XE_WARN_ON(!ggtt_node))
255 return 0;
256
257 XE_WARN_ON(ggtt_node->base.size > xe_bo_size(bo));
258 XE_WARN_ON(ggtt_node->base.start + ggtt_node->base.size > (1ull << 32));
259 return ggtt_node->base.start;
260 }
261
262 static inline u32
xe_bo_ggtt_addr(struct xe_bo * bo)263 xe_bo_ggtt_addr(struct xe_bo *bo)
264 {
265 xe_assert(xe_bo_device(bo), bo->tile);
266
267 return __xe_bo_ggtt_addr(bo, bo->tile->id);
268 }
269
270 int xe_bo_vmap(struct xe_bo *bo);
271 void xe_bo_vunmap(struct xe_bo *bo);
272 int xe_bo_read(struct xe_bo *bo, u64 offset, void *dst, int size);
273
274 bool mem_type_is_vram(u32 mem_type);
275 bool xe_bo_is_vram(struct xe_bo *bo);
276 bool xe_bo_is_stolen(struct xe_bo *bo);
277 bool xe_bo_is_stolen_devmem(struct xe_bo *bo);
278 bool xe_bo_is_vm_bound(struct xe_bo *bo);
279 bool xe_bo_has_single_placement(struct xe_bo *bo);
280 uint64_t vram_region_gpu_offset(struct ttm_resource *res);
281
282 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type);
283
284 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type, struct ttm_operation_ctx *ctc,
285 struct drm_exec *exec);
286 int xe_bo_evict(struct xe_bo *bo, struct drm_exec *exec);
287
288 int xe_bo_evict_pinned(struct xe_bo *bo);
289 int xe_bo_notifier_prepare_pinned(struct xe_bo *bo);
290 int xe_bo_notifier_unprepare_pinned(struct xe_bo *bo);
291 int xe_bo_restore_pinned(struct xe_bo *bo);
292
293 int xe_bo_dma_unmap_pinned(struct xe_bo *bo);
294
295 extern const struct ttm_device_funcs xe_ttm_funcs;
296 extern const char *const xe_mem_type_to_name[];
297
298 int xe_gem_create_ioctl(struct drm_device *dev, void *data,
299 struct drm_file *file);
300 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
301 struct drm_file *file);
302 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo);
303
304 int xe_bo_dumb_create(struct drm_file *file_priv,
305 struct drm_device *dev,
306 struct drm_mode_create_dumb *args);
307
308 bool xe_bo_needs_ccs_pages(struct xe_bo *bo);
309
xe_bo_ccs_pages_start(struct xe_bo * bo)310 static inline size_t xe_bo_ccs_pages_start(struct xe_bo *bo)
311 {
312 return PAGE_ALIGN(xe_bo_size(bo));
313 }
314
315 /**
316 * xe_bo_has_valid_ccs_bb - Check if CCS's BBs were setup for the BO.
317 * @bo: the &xe_bo to check
318 *
319 * The CCS's BBs should only be setup by the driver VF, but it is safe
320 * to call this function also by non-VF driver.
321 *
322 * Return: true iff the CCS's BBs are setup, false otherwise.
323 */
xe_bo_has_valid_ccs_bb(struct xe_bo * bo)324 static inline bool xe_bo_has_valid_ccs_bb(struct xe_bo *bo)
325 {
326 return bo->bb_ccs[XE_SRIOV_VF_CCS_READ_CTX] &&
327 bo->bb_ccs[XE_SRIOV_VF_CCS_WRITE_CTX];
328 }
329
xe_bo_has_pages(struct xe_bo * bo)330 static inline bool xe_bo_has_pages(struct xe_bo *bo)
331 {
332 if ((bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) ||
333 xe_bo_is_vram(bo))
334 return true;
335
336 return false;
337 }
338
339 void __xe_bo_release_dummy(struct kref *kref);
340
341 /**
342 * xe_bo_put_deferred() - Put a buffer object with delayed final freeing
343 * @bo: The bo to put.
344 * @deferred: List to which to add the buffer object if we cannot put, or
345 * NULL if the function is to put unconditionally.
346 *
347 * Since the final freeing of an object includes both sleeping and (!)
348 * memory allocation in the dma_resv individualization, it's not ok
349 * to put an object from atomic context nor from within a held lock
350 * tainted by reclaim. In such situations we want to defer the final
351 * freeing until we've exited the restricting context, or in the worst
352 * case to a workqueue.
353 * This function either puts the object if possible without the refcount
354 * reaching zero, or adds it to the @deferred list if that was not possible.
355 * The caller needs to follow up with a call to xe_bo_put_commit() to actually
356 * put the bo iff this function returns true. It's safe to always
357 * follow up with a call to xe_bo_put_commit().
358 * TODO: It's TTM that is the villain here. Perhaps TTM should add an
359 * interface like this.
360 *
361 * Return: true if @bo was the first object put on the @freed list,
362 * false otherwise.
363 */
364 static inline bool
xe_bo_put_deferred(struct xe_bo * bo,struct llist_head * deferred)365 xe_bo_put_deferred(struct xe_bo *bo, struct llist_head *deferred)
366 {
367 if (!deferred) {
368 xe_bo_put(bo);
369 return false;
370 }
371
372 if (!kref_put(&bo->ttm.base.refcount, __xe_bo_release_dummy))
373 return false;
374
375 return llist_add(&bo->freed, deferred);
376 }
377
378 void xe_bo_put_commit(struct llist_head *deferred);
379
380 /**
381 * xe_bo_put_async() - Put BO async
382 * @bo: The bo to put.
383 *
384 * Put BO async, the final put is deferred to a worker to exit an IRQ context.
385 */
386 static inline void
xe_bo_put_async(struct xe_bo * bo)387 xe_bo_put_async(struct xe_bo *bo)
388 {
389 struct xe_bo_dev *bo_device = &xe_bo_device(bo)->bo_device;
390
391 if (xe_bo_put_deferred(bo, &bo_device->async_list))
392 schedule_work(&bo_device->async_free);
393 }
394
395 void xe_bo_dev_init(struct xe_bo_dev *bo_device);
396
397 void xe_bo_dev_fini(struct xe_bo_dev *bo_device);
398
399 struct sg_table *xe_bo_sg(struct xe_bo *bo);
400
401 /*
402 * xe_sg_segment_size() - Provides upper limit for sg segment size.
403 * @dev: device pointer
404 *
405 * Returns the maximum segment size for the 'struct scatterlist'
406 * elements.
407 */
xe_sg_segment_size(struct device * dev)408 static inline unsigned int xe_sg_segment_size(struct device *dev)
409 {
410 struct scatterlist __maybe_unused sg;
411 size_t max = BIT_ULL(sizeof(sg.length) * 8) - 1;
412
413 max = min_t(size_t, max, dma_max_mapping_size(dev));
414
415 /*
416 * The iommu_dma_map_sg() function ensures iova allocation doesn't
417 * cross dma segment boundary. It does so by padding some sg elements.
418 * This can cause overflow, ending up with sg->length being set to 0.
419 * Avoid this by ensuring maximum segment size is half of 'max'
420 * rounded down to PAGE_SIZE.
421 */
422 return round_down(max / 2, PAGE_SIZE);
423 }
424
425 /**
426 * struct xe_bo_shrink_flags - flags governing the shrink behaviour.
427 * @purge: Only purging allowed. Don't shrink if bo not purgeable.
428 * @writeback: Attempt to immediately move content to swap.
429 */
430 struct xe_bo_shrink_flags {
431 u32 purge : 1;
432 u32 writeback : 1;
433 };
434
435 long xe_bo_shrink(struct ttm_operation_ctx *ctx, struct ttm_buffer_object *bo,
436 const struct xe_bo_shrink_flags flags,
437 unsigned long *scanned);
438
439 /**
440 * xe_bo_is_mem_type - Whether the bo currently resides in the given
441 * TTM memory type
442 * @bo: The bo to check.
443 * @mem_type: The TTM memory type.
444 *
445 * Return: true iff the bo resides in @mem_type, false otherwise.
446 */
xe_bo_is_mem_type(struct xe_bo * bo,u32 mem_type)447 static inline bool xe_bo_is_mem_type(struct xe_bo *bo, u32 mem_type)
448 {
449 xe_bo_assert_held(bo);
450 return bo->ttm.resource->mem_type == mem_type;
451 }
452 #endif
453