1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 /*
28 * xdf.c - Xen Virtual Block Device Driver
29 * TODO:
30 * - support alternate block size (currently only DEV_BSIZE supported)
31 * - revalidate geometry for removable devices
32 *
33 * This driver export solaris disk device nodes, accepts IO requests from
34 * those nodes, and services those requests by talking to a backend device
35 * in another domain.
36 *
37 * Communication with the backend device is done via a ringbuffer (which is
38 * managed via xvdi interfaces) and dma memory (which is managed via ddi
39 * interfaces).
40 *
41 * Communication with the backend device is dependant upon establishing a
42 * connection to the backend device. This connection process involves
43 * reading device configuration information from xenbus and publishing
44 * some frontend runtime configuration parameters via the xenbus (for
45 * consumption by the backend). Once we've published runtime configuration
46 * information via the xenbus, the backend device can enter the connected
47 * state and we'll enter the XD_CONNECTED state. But before we can allow
48 * random IO to begin, we need to do IO to the backend device to determine
49 * the device label and if flush operations are supported. Once this is
50 * done we enter the XD_READY state and can process any IO operations.
51 *
52 * We recieve notifications of xenbus state changes for the backend device
53 * (aka, the "other end") via the xdf_oe_change() callback. This callback
54 * is single threaded, meaning that we can't recieve new notification of
55 * other end state changes while we're processing an outstanding
56 * notification of an other end state change. There for we can't do any
57 * blocking operations from the xdf_oe_change() callback. This is why we
58 * have a seperate taskq (xdf_ready_tq) which exists to do the necessary
59 * IO to get us from the XD_CONNECTED to the XD_READY state. All IO
60 * generated by the xdf_ready_tq thread (xdf_ready_tq_thread) will go
61 * throught xdf_lb_rdwr(), which is a synchronous IO interface. IOs
62 * generated by the xdf_ready_tq_thread thread have priority over all
63 * other IO requests.
64 *
65 * We also communicate with the backend device via the xenbus "media-req"
66 * (XBP_MEDIA_REQ) property. For more information on this see the
67 * comments in blkif.h.
68 */
69
70 #include <io/xdf.h>
71
72 #include <sys/conf.h>
73 #include <sys/dkio.h>
74 #include <sys/promif.h>
75 #include <sys/sysmacros.h>
76 #include <sys/kstat.h>
77 #include <sys/mach_mmu.h>
78 #ifdef XPV_HVM_DRIVER
79 #include <sys/xpv_support.h>
80 #include <sys/sunndi.h>
81 #else /* !XPV_HVM_DRIVER */
82 #include <sys/evtchn_impl.h>
83 #endif /* !XPV_HVM_DRIVER */
84 #include <public/io/xenbus.h>
85 #include <xen/sys/xenbus_impl.h>
86 #include <sys/scsi/generic/inquiry.h>
87 #include <xen/io/blkif_impl.h>
88 #include <sys/fdio.h>
89 #include <sys/cdio.h>
90
91 /*
92 * DEBUG_EVAL can be used to include debug only statements without
93 * having to use '#ifdef DEBUG' statements
94 */
95 #ifdef DEBUG
96 #define DEBUG_EVAL(x) (x)
97 #else /* !DEBUG */
98 #define DEBUG_EVAL(x)
99 #endif /* !DEBUG */
100
101 #define XDF_DRAIN_MSEC_DELAY (50*1000) /* 00.05 sec */
102 #define XDF_DRAIN_RETRY_COUNT 200 /* 10.00 sec */
103
104 #define INVALID_DOMID ((domid_t)-1)
105 #define FLUSH_DISKCACHE 0x1
106 #define WRITE_BARRIER 0x2
107 #define DEFAULT_FLUSH_BLOCK 156 /* block to write to cause a cache flush */
108 #define USE_WRITE_BARRIER(vdp) \
109 ((vdp)->xdf_feature_barrier && !(vdp)->xdf_flush_supported)
110 #define USE_FLUSH_DISKCACHE(vdp) \
111 ((vdp)->xdf_feature_barrier && (vdp)->xdf_flush_supported)
112 #define IS_WRITE_BARRIER(vdp, bp) \
113 (!IS_READ(bp) && USE_WRITE_BARRIER(vdp) && \
114 ((bp)->b_un.b_addr == (vdp)->xdf_cache_flush_block))
115 #define IS_FLUSH_DISKCACHE(bp) \
116 (!IS_READ(bp) && USE_FLUSH_DISKCACHE(vdp) && ((bp)->b_bcount == 0))
117
118 #define VREQ_DONE(vreq) \
119 VOID2BOOLEAN(((vreq)->v_status == VREQ_DMAWIN_DONE) && \
120 (((vreq)->v_flush_diskcache == FLUSH_DISKCACHE) || \
121 (((vreq)->v_dmaw + 1) == (vreq)->v_ndmaws)))
122
123 #define BP_VREQ(bp) ((v_req_t *)((bp)->av_back))
124 #define BP_VREQ_SET(bp, vreq) (((bp)->av_back = (buf_t *)(vreq)))
125
126 extern int do_polled_io;
127
128 /* run-time tunables that we don't want the compiler to optimize away */
129 volatile int xdf_debug = 0;
130 volatile boolean_t xdf_barrier_flush_disable = B_FALSE;
131
132 /* per module globals */
133 major_t xdf_major;
134 static void *xdf_ssp;
135 static kmem_cache_t *xdf_vreq_cache;
136 static kmem_cache_t *xdf_gs_cache;
137 static int xdf_maxphys = XB_MAXPHYS;
138 static diskaddr_t xdf_flush_block = DEFAULT_FLUSH_BLOCK;
139 static int xdf_fbrewrites; /* flush block re-write count */
140
141 /* misc public functions (used by xdf_shell.c) */
142 int xdf_lb_rdwr(dev_info_t *, uchar_t, void *, diskaddr_t, size_t, void *);
143 int xdf_lb_getinfo(dev_info_t *, int, void *, void *);
144
145 /* misc private functions */
146 static void xdf_io_start(xdf_t *);
147
148 /* callbacks from commmon label */
149 static cmlb_tg_ops_t xdf_lb_ops = {
150 TG_DK_OPS_VERSION_1,
151 xdf_lb_rdwr,
152 xdf_lb_getinfo
153 };
154
155 /*
156 * I/O buffer DMA attributes
157 * Make sure: one DMA window contains BLKIF_MAX_SEGMENTS_PER_REQUEST at most
158 */
159 static ddi_dma_attr_t xb_dma_attr = {
160 DMA_ATTR_V0,
161 (uint64_t)0, /* lowest address */
162 (uint64_t)0xffffffffffffffff, /* highest usable address */
163 (uint64_t)0xffffff, /* DMA counter limit max */
164 (uint64_t)XB_BSIZE, /* alignment in bytes */
165 XB_BSIZE - 1, /* bitmap of burst sizes */
166 XB_BSIZE, /* min transfer */
167 (uint64_t)XB_MAX_XFER, /* maximum transfer */
168 (uint64_t)PAGEOFFSET, /* 1 page segment length */
169 BLKIF_MAX_SEGMENTS_PER_REQUEST, /* maximum number of segments */
170 XB_BSIZE, /* granularity */
171 0, /* flags (reserved) */
172 };
173
174 static ddi_device_acc_attr_t xc_acc_attr = {
175 DDI_DEVICE_ATTR_V0,
176 DDI_NEVERSWAP_ACC,
177 DDI_STRICTORDER_ACC
178 };
179
180 static void
xdf_timeout_handler(void * arg)181 xdf_timeout_handler(void *arg)
182 {
183 xdf_t *vdp = arg;
184
185 mutex_enter(&vdp->xdf_dev_lk);
186 vdp->xdf_timeout_id = 0;
187 mutex_exit(&vdp->xdf_dev_lk);
188
189 /* new timeout thread could be re-scheduled */
190 xdf_io_start(vdp);
191 }
192
193 /*
194 * callback func when DMA/GTE resources is available
195 *
196 * Note: we only register one callback function to grant table subsystem
197 * since we only have one 'struct gnttab_free_callback' in xdf_t.
198 */
199 static int
xdf_dmacallback(caddr_t arg)200 xdf_dmacallback(caddr_t arg)
201 {
202 xdf_t *vdp = (xdf_t *)arg;
203 ASSERT(vdp != NULL);
204
205 DPRINTF(DMA_DBG, ("xdf@%s: DMA callback started\n",
206 vdp->xdf_addr));
207
208 ddi_trigger_softintr(vdp->xdf_softintr_id);
209 return (DDI_DMA_CALLBACK_DONE);
210 }
211
212 static ge_slot_t *
gs_get(xdf_t * vdp,int isread)213 gs_get(xdf_t *vdp, int isread)
214 {
215 grant_ref_t gh;
216 ge_slot_t *gs;
217
218 /* try to alloc GTEs needed in this slot, first */
219 if (gnttab_alloc_grant_references(
220 BLKIF_MAX_SEGMENTS_PER_REQUEST, &gh) == -1) {
221 if (vdp->xdf_gnt_callback.next == NULL) {
222 SETDMACBON(vdp);
223 gnttab_request_free_callback(
224 &vdp->xdf_gnt_callback,
225 (void (*)(void *))xdf_dmacallback,
226 (void *)vdp,
227 BLKIF_MAX_SEGMENTS_PER_REQUEST);
228 }
229 return (NULL);
230 }
231
232 gs = kmem_cache_alloc(xdf_gs_cache, KM_NOSLEEP);
233 if (gs == NULL) {
234 gnttab_free_grant_references(gh);
235 if (vdp->xdf_timeout_id == 0)
236 /* restart I/O after one second */
237 vdp->xdf_timeout_id =
238 timeout(xdf_timeout_handler, vdp, hz);
239 return (NULL);
240 }
241
242 /* init gs_slot */
243 gs->gs_oeid = vdp->xdf_peer;
244 gs->gs_isread = isread;
245 gs->gs_ghead = gh;
246 gs->gs_ngrefs = 0;
247
248 return (gs);
249 }
250
251 static void
gs_free(ge_slot_t * gs)252 gs_free(ge_slot_t *gs)
253 {
254 int i;
255
256 /* release all grant table entry resources used in this slot */
257 for (i = 0; i < gs->gs_ngrefs; i++)
258 gnttab_end_foreign_access(gs->gs_ge[i], !gs->gs_isread, 0);
259 gnttab_free_grant_references(gs->gs_ghead);
260 list_remove(&gs->gs_vreq->v_gs, gs);
261 kmem_cache_free(xdf_gs_cache, gs);
262 }
263
264 static grant_ref_t
gs_grant(ge_slot_t * gs,mfn_t mfn)265 gs_grant(ge_slot_t *gs, mfn_t mfn)
266 {
267 grant_ref_t gr = gnttab_claim_grant_reference(&gs->gs_ghead);
268
269 ASSERT(gr != -1);
270 ASSERT(gs->gs_ngrefs < BLKIF_MAX_SEGMENTS_PER_REQUEST);
271 gs->gs_ge[gs->gs_ngrefs++] = gr;
272 gnttab_grant_foreign_access_ref(gr, gs->gs_oeid, mfn, !gs->gs_isread);
273
274 return (gr);
275 }
276
277 /*
278 * Alloc a vreq for this bp
279 * bp->av_back contains the pointer to the vreq upon return
280 */
281 static v_req_t *
vreq_get(xdf_t * vdp,buf_t * bp)282 vreq_get(xdf_t *vdp, buf_t *bp)
283 {
284 v_req_t *vreq = NULL;
285
286 ASSERT(BP_VREQ(bp) == NULL);
287
288 vreq = kmem_cache_alloc(xdf_vreq_cache, KM_NOSLEEP);
289 if (vreq == NULL) {
290 if (vdp->xdf_timeout_id == 0)
291 /* restart I/O after one second */
292 vdp->xdf_timeout_id =
293 timeout(xdf_timeout_handler, vdp, hz);
294 return (NULL);
295 }
296 bzero(vreq, sizeof (v_req_t));
297 list_create(&vreq->v_gs, sizeof (ge_slot_t),
298 offsetof(ge_slot_t, gs_vreq_link));
299 vreq->v_buf = bp;
300 vreq->v_status = VREQ_INIT;
301 vreq->v_runq = B_FALSE;
302 BP_VREQ_SET(bp, vreq);
303 /* init of other fields in vreq is up to the caller */
304
305 list_insert_head(&vdp->xdf_vreq_act, (void *)vreq);
306
307 return (vreq);
308 }
309
310 static void
vreq_free(xdf_t * vdp,v_req_t * vreq)311 vreq_free(xdf_t *vdp, v_req_t *vreq)
312 {
313 buf_t *bp = vreq->v_buf;
314
315 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
316 ASSERT(BP_VREQ(bp) == vreq);
317
318 list_remove(&vdp->xdf_vreq_act, vreq);
319
320 if (vreq->v_flush_diskcache == FLUSH_DISKCACHE)
321 goto done;
322
323 switch (vreq->v_status) {
324 case VREQ_DMAWIN_DONE:
325 case VREQ_GS_ALLOCED:
326 case VREQ_DMABUF_BOUND:
327 (void) ddi_dma_unbind_handle(vreq->v_dmahdl);
328 /*FALLTHRU*/
329 case VREQ_DMAMEM_ALLOCED:
330 if (!ALIGNED_XFER(bp)) {
331 ASSERT(vreq->v_abuf != NULL);
332 if (!IS_ERROR(bp) && IS_READ(bp))
333 bcopy(vreq->v_abuf, bp->b_un.b_addr,
334 bp->b_bcount);
335 ddi_dma_mem_free(&vreq->v_align);
336 }
337 /*FALLTHRU*/
338 case VREQ_MEMDMAHDL_ALLOCED:
339 if (!ALIGNED_XFER(bp))
340 ddi_dma_free_handle(&vreq->v_memdmahdl);
341 /*FALLTHRU*/
342 case VREQ_DMAHDL_ALLOCED:
343 ddi_dma_free_handle(&vreq->v_dmahdl);
344 break;
345 default:
346 break;
347 }
348 done:
349 ASSERT(!vreq->v_runq);
350 list_destroy(&vreq->v_gs);
351 kmem_cache_free(xdf_vreq_cache, vreq);
352 }
353
354 /*
355 * Snarf new data if our flush block was re-written
356 */
357 static void
check_fbwrite(xdf_t * vdp,buf_t * bp,daddr_t blkno)358 check_fbwrite(xdf_t *vdp, buf_t *bp, daddr_t blkno)
359 {
360 int nblks;
361 boolean_t mapin;
362
363 if (IS_WRITE_BARRIER(vdp, bp))
364 return; /* write was a flush write */
365
366 mapin = B_FALSE;
367 nblks = bp->b_bcount >> DEV_BSHIFT;
368 if (xdf_flush_block >= blkno && xdf_flush_block < (blkno + nblks)) {
369 xdf_fbrewrites++;
370 if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
371 mapin = B_TRUE;
372 bp_mapin(bp);
373 }
374 bcopy(bp->b_un.b_addr +
375 ((xdf_flush_block - blkno) << DEV_BSHIFT),
376 vdp->xdf_cache_flush_block, DEV_BSIZE);
377 if (mapin)
378 bp_mapout(bp);
379 }
380 }
381
382 /*
383 * Initalize the DMA and grant table resources for the buf
384 */
385 static int
vreq_setup(xdf_t * vdp,v_req_t * vreq)386 vreq_setup(xdf_t *vdp, v_req_t *vreq)
387 {
388 int rc;
389 ddi_dma_attr_t dmaattr;
390 uint_t ndcs, ndws;
391 ddi_dma_handle_t dh;
392 ddi_dma_handle_t mdh;
393 ddi_dma_cookie_t dc;
394 ddi_acc_handle_t abh;
395 caddr_t aba;
396 ge_slot_t *gs;
397 size_t bufsz;
398 off_t off;
399 size_t sz;
400 buf_t *bp = vreq->v_buf;
401 int dma_flags = (IS_READ(bp) ? DDI_DMA_READ : DDI_DMA_WRITE) |
402 DDI_DMA_STREAMING | DDI_DMA_PARTIAL;
403
404 switch (vreq->v_status) {
405 case VREQ_INIT:
406 if (IS_FLUSH_DISKCACHE(bp)) {
407 if ((gs = gs_get(vdp, IS_READ(bp))) == NULL) {
408 DPRINTF(DMA_DBG, ("xdf@%s: "
409 "get ge_slotfailed\n", vdp->xdf_addr));
410 return (DDI_FAILURE);
411 }
412 vreq->v_blkno = 0;
413 vreq->v_nslots = 1;
414 vreq->v_flush_diskcache = FLUSH_DISKCACHE;
415 vreq->v_status = VREQ_GS_ALLOCED;
416 gs->gs_vreq = vreq;
417 list_insert_head(&vreq->v_gs, gs);
418 return (DDI_SUCCESS);
419 }
420
421 if (IS_WRITE_BARRIER(vdp, bp))
422 vreq->v_flush_diskcache = WRITE_BARRIER;
423 vreq->v_blkno = bp->b_blkno +
424 (diskaddr_t)(uintptr_t)bp->b_private;
425 /* See if we wrote new data to our flush block */
426 if (!IS_READ(bp) && USE_WRITE_BARRIER(vdp))
427 check_fbwrite(vdp, bp, vreq->v_blkno);
428 vreq->v_status = VREQ_INIT_DONE;
429 /*FALLTHRU*/
430
431 case VREQ_INIT_DONE:
432 /*
433 * alloc DMA handle
434 */
435 rc = ddi_dma_alloc_handle(vdp->xdf_dip, &xb_dma_attr,
436 xdf_dmacallback, (caddr_t)vdp, &dh);
437 if (rc != DDI_SUCCESS) {
438 SETDMACBON(vdp);
439 DPRINTF(DMA_DBG, ("xdf@%s: DMA handle alloc failed\n",
440 vdp->xdf_addr));
441 return (DDI_FAILURE);
442 }
443
444 vreq->v_dmahdl = dh;
445 vreq->v_status = VREQ_DMAHDL_ALLOCED;
446 /*FALLTHRU*/
447
448 case VREQ_DMAHDL_ALLOCED:
449 /*
450 * alloc dma handle for 512-byte aligned buf
451 */
452 if (!ALIGNED_XFER(bp)) {
453 /*
454 * XXPV: we need to temporarily enlarge the seg
455 * boundary and s/g length to work round CR6381968
456 */
457 dmaattr = xb_dma_attr;
458 dmaattr.dma_attr_seg = (uint64_t)-1;
459 dmaattr.dma_attr_sgllen = INT_MAX;
460 rc = ddi_dma_alloc_handle(vdp->xdf_dip, &dmaattr,
461 xdf_dmacallback, (caddr_t)vdp, &mdh);
462 if (rc != DDI_SUCCESS) {
463 SETDMACBON(vdp);
464 DPRINTF(DMA_DBG, ("xdf@%s: "
465 "unaligned buf DMAhandle alloc failed\n",
466 vdp->xdf_addr));
467 return (DDI_FAILURE);
468 }
469 vreq->v_memdmahdl = mdh;
470 vreq->v_status = VREQ_MEMDMAHDL_ALLOCED;
471 }
472 /*FALLTHRU*/
473
474 case VREQ_MEMDMAHDL_ALLOCED:
475 /*
476 * alloc 512-byte aligned buf
477 */
478 if (!ALIGNED_XFER(bp)) {
479 if (bp->b_flags & (B_PAGEIO | B_PHYS))
480 bp_mapin(bp);
481 rc = ddi_dma_mem_alloc(vreq->v_memdmahdl,
482 roundup(bp->b_bcount, XB_BSIZE), &xc_acc_attr,
483 DDI_DMA_STREAMING, xdf_dmacallback, (caddr_t)vdp,
484 &aba, &bufsz, &abh);
485 if (rc != DDI_SUCCESS) {
486 SETDMACBON(vdp);
487 DPRINTF(DMA_DBG, ("xdf@%s: "
488 "DMA mem allocation failed\n",
489 vdp->xdf_addr));
490 return (DDI_FAILURE);
491 }
492
493 vreq->v_abuf = aba;
494 vreq->v_align = abh;
495 vreq->v_status = VREQ_DMAMEM_ALLOCED;
496
497 ASSERT(bufsz >= bp->b_bcount);
498 if (!IS_READ(bp))
499 bcopy(bp->b_un.b_addr, vreq->v_abuf,
500 bp->b_bcount);
501 }
502 /*FALLTHRU*/
503
504 case VREQ_DMAMEM_ALLOCED:
505 /*
506 * dma bind
507 */
508 if (ALIGNED_XFER(bp)) {
509 rc = ddi_dma_buf_bind_handle(vreq->v_dmahdl, bp,
510 dma_flags, xdf_dmacallback, (caddr_t)vdp,
511 &dc, &ndcs);
512 } else {
513 rc = ddi_dma_addr_bind_handle(vreq->v_dmahdl,
514 NULL, vreq->v_abuf, bp->b_bcount, dma_flags,
515 xdf_dmacallback, (caddr_t)vdp, &dc, &ndcs);
516 }
517 if (rc == DDI_DMA_MAPPED || rc == DDI_DMA_PARTIAL_MAP) {
518 /* get num of dma windows */
519 if (rc == DDI_DMA_PARTIAL_MAP) {
520 rc = ddi_dma_numwin(vreq->v_dmahdl, &ndws);
521 ASSERT(rc == DDI_SUCCESS);
522 } else {
523 ndws = 1;
524 }
525 } else {
526 SETDMACBON(vdp);
527 DPRINTF(DMA_DBG, ("xdf@%s: DMA bind failed\n",
528 vdp->xdf_addr));
529 return (DDI_FAILURE);
530 }
531
532 vreq->v_dmac = dc;
533 vreq->v_dmaw = 0;
534 vreq->v_ndmacs = ndcs;
535 vreq->v_ndmaws = ndws;
536 vreq->v_nslots = ndws;
537 vreq->v_status = VREQ_DMABUF_BOUND;
538 /*FALLTHRU*/
539
540 case VREQ_DMABUF_BOUND:
541 /*
542 * get ge_slot, callback is set upon failure from gs_get(),
543 * if not set previously
544 */
545 if ((gs = gs_get(vdp, IS_READ(bp))) == NULL) {
546 DPRINTF(DMA_DBG, ("xdf@%s: get ge_slot failed\n",
547 vdp->xdf_addr));
548 return (DDI_FAILURE);
549 }
550
551 vreq->v_status = VREQ_GS_ALLOCED;
552 gs->gs_vreq = vreq;
553 list_insert_head(&vreq->v_gs, gs);
554 break;
555
556 case VREQ_GS_ALLOCED:
557 /* nothing need to be done */
558 break;
559
560 case VREQ_DMAWIN_DONE:
561 /*
562 * move to the next dma window
563 */
564 ASSERT((vreq->v_dmaw + 1) < vreq->v_ndmaws);
565
566 /* get a ge_slot for this DMA window */
567 if ((gs = gs_get(vdp, IS_READ(bp))) == NULL) {
568 DPRINTF(DMA_DBG, ("xdf@%s: get ge_slot failed\n",
569 vdp->xdf_addr));
570 return (DDI_FAILURE);
571 }
572
573 vreq->v_dmaw++;
574 VERIFY(ddi_dma_getwin(vreq->v_dmahdl, vreq->v_dmaw, &off, &sz,
575 &vreq->v_dmac, &vreq->v_ndmacs) == DDI_SUCCESS);
576 vreq->v_status = VREQ_GS_ALLOCED;
577 gs->gs_vreq = vreq;
578 list_insert_head(&vreq->v_gs, gs);
579 break;
580
581 default:
582 return (DDI_FAILURE);
583 }
584
585 return (DDI_SUCCESS);
586 }
587
588 static int
xdf_cmlb_attach(xdf_t * vdp)589 xdf_cmlb_attach(xdf_t *vdp)
590 {
591 dev_info_t *dip = vdp->xdf_dip;
592
593 return (cmlb_attach(dip, &xdf_lb_ops,
594 XD_IS_CD(vdp) ? DTYPE_RODIRECT : DTYPE_DIRECT,
595 XD_IS_RM(vdp),
596 B_TRUE,
597 XD_IS_CD(vdp) ? DDI_NT_CD_XVMD : DDI_NT_BLOCK_XVMD,
598 #if defined(XPV_HVM_DRIVER)
599 (XD_IS_CD(vdp) ? 0 : CMLB_CREATE_ALTSLICE_VTOC_16_DTYPE_DIRECT) |
600 CMLB_INTERNAL_MINOR_NODES,
601 #else /* !XPV_HVM_DRIVER */
602 XD_IS_CD(vdp) ? 0 : CMLB_FAKE_LABEL_ONE_PARTITION,
603 #endif /* !XPV_HVM_DRIVER */
604 vdp->xdf_vd_lbl, NULL));
605 }
606
607 static void
xdf_io_err(buf_t * bp,int err,size_t resid)608 xdf_io_err(buf_t *bp, int err, size_t resid)
609 {
610 bioerror(bp, err);
611 if (resid == 0)
612 bp->b_resid = bp->b_bcount;
613 biodone(bp);
614 }
615
616 static void
xdf_kstat_enter(xdf_t * vdp,buf_t * bp)617 xdf_kstat_enter(xdf_t *vdp, buf_t *bp)
618 {
619 v_req_t *vreq = BP_VREQ(bp);
620
621 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
622
623 if (vdp->xdf_xdev_iostat == NULL)
624 return;
625 if ((vreq != NULL) && vreq->v_runq) {
626 kstat_runq_enter(KSTAT_IO_PTR(vdp->xdf_xdev_iostat));
627 } else {
628 kstat_waitq_enter(KSTAT_IO_PTR(vdp->xdf_xdev_iostat));
629 }
630 }
631
632 static void
xdf_kstat_exit(xdf_t * vdp,buf_t * bp)633 xdf_kstat_exit(xdf_t *vdp, buf_t *bp)
634 {
635 v_req_t *vreq = BP_VREQ(bp);
636
637 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
638
639 if (vdp->xdf_xdev_iostat == NULL)
640 return;
641 if ((vreq != NULL) && vreq->v_runq) {
642 kstat_runq_exit(KSTAT_IO_PTR(vdp->xdf_xdev_iostat));
643 } else {
644 kstat_waitq_exit(KSTAT_IO_PTR(vdp->xdf_xdev_iostat));
645 }
646 }
647
648 static void
xdf_kstat_waitq_to_runq(xdf_t * vdp,buf_t * bp)649 xdf_kstat_waitq_to_runq(xdf_t *vdp, buf_t *bp)
650 {
651 v_req_t *vreq = BP_VREQ(bp);
652
653 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
654 ASSERT(!vreq->v_runq);
655
656 vreq->v_runq = B_TRUE;
657 if (vdp->xdf_xdev_iostat == NULL)
658 return;
659 kstat_waitq_to_runq(KSTAT_IO_PTR(vdp->xdf_xdev_iostat));
660 }
661
662 static void
xdf_kstat_runq_to_waitq(xdf_t * vdp,buf_t * bp)663 xdf_kstat_runq_to_waitq(xdf_t *vdp, buf_t *bp)
664 {
665 v_req_t *vreq = BP_VREQ(bp);
666
667 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
668 ASSERT(vreq->v_runq);
669
670 vreq->v_runq = B_FALSE;
671 if (vdp->xdf_xdev_iostat == NULL)
672 return;
673 kstat_runq_back_to_waitq(KSTAT_IO_PTR(vdp->xdf_xdev_iostat));
674 }
675
676 int
xdf_kstat_create(dev_info_t * dip,char * ks_module,int instance)677 xdf_kstat_create(dev_info_t *dip, char *ks_module, int instance)
678 {
679 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip);
680 kstat_t *kstat;
681 buf_t *bp;
682
683 if ((kstat = kstat_create(
684 ks_module, instance, NULL, "disk",
685 KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT)) == NULL)
686 return (-1);
687
688 /* See comment about locking in xdf_kstat_delete(). */
689 mutex_enter(&vdp->xdf_iostat_lk);
690 mutex_enter(&vdp->xdf_dev_lk);
691
692 /* only one kstat can exist at a time */
693 if (vdp->xdf_xdev_iostat != NULL) {
694 mutex_exit(&vdp->xdf_dev_lk);
695 mutex_exit(&vdp->xdf_iostat_lk);
696 kstat_delete(kstat);
697 return (-1);
698 }
699
700 vdp->xdf_xdev_iostat = kstat;
701 vdp->xdf_xdev_iostat->ks_lock = &vdp->xdf_dev_lk;
702 kstat_install(vdp->xdf_xdev_iostat);
703
704 /*
705 * Now that we've created a kstat, we need to update the waitq and
706 * runq counts for the kstat to reflect our current state.
707 *
708 * For a buf_t structure to be on the runq, it must have a ring
709 * buffer slot associated with it. To get a ring buffer slot the
710 * buf must first have a v_req_t and a ge_slot_t associated with it.
711 * Then when it is granted a ring buffer slot, v_runq will be set to
712 * true.
713 *
714 * For a buf_t structure to be on the waitq, it must not be on the
715 * runq. So to find all the buf_t's that should be on waitq, we
716 * walk the active buf list and add any buf_t's which aren't on the
717 * runq to the waitq.
718 */
719 bp = vdp->xdf_f_act;
720 while (bp != NULL) {
721 xdf_kstat_enter(vdp, bp);
722 bp = bp->av_forw;
723 }
724 if (vdp->xdf_ready_tq_bp != NULL)
725 xdf_kstat_enter(vdp, vdp->xdf_ready_tq_bp);
726
727 mutex_exit(&vdp->xdf_dev_lk);
728 mutex_exit(&vdp->xdf_iostat_lk);
729 return (0);
730 }
731
732 void
xdf_kstat_delete(dev_info_t * dip)733 xdf_kstat_delete(dev_info_t *dip)
734 {
735 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip);
736 kstat_t *kstat;
737 buf_t *bp;
738
739 /*
740 * The locking order here is xdf_iostat_lk and then xdf_dev_lk.
741 * xdf_dev_lk is used to protect the xdf_xdev_iostat pointer
742 * and the contents of the our kstat. xdf_iostat_lk is used
743 * to protect the allocation and freeing of the actual kstat.
744 * xdf_dev_lk can't be used for this purpose because kstat
745 * readers use it to access the contents of the kstat and
746 * hence it can't be held when calling kstat_delete().
747 */
748 mutex_enter(&vdp->xdf_iostat_lk);
749 mutex_enter(&vdp->xdf_dev_lk);
750
751 if (vdp->xdf_xdev_iostat == NULL) {
752 mutex_exit(&vdp->xdf_dev_lk);
753 mutex_exit(&vdp->xdf_iostat_lk);
754 return;
755 }
756
757 /*
758 * We're about to destroy the kstat structures, so it isn't really
759 * necessary to update the runq and waitq counts. But, since this
760 * isn't a hot code path we can afford to be a little pedantic and
761 * go ahead and decrement the runq and waitq kstat counters to zero
762 * before free'ing them. This helps us ensure that we've gotten all
763 * our accounting correct.
764 *
765 * For an explanation of how we determine which buffers go on the
766 * runq vs which go on the waitq, see the comments in
767 * xdf_kstat_create().
768 */
769 bp = vdp->xdf_f_act;
770 while (bp != NULL) {
771 xdf_kstat_exit(vdp, bp);
772 bp = bp->av_forw;
773 }
774 if (vdp->xdf_ready_tq_bp != NULL)
775 xdf_kstat_exit(vdp, vdp->xdf_ready_tq_bp);
776
777 kstat = vdp->xdf_xdev_iostat;
778 vdp->xdf_xdev_iostat = NULL;
779 mutex_exit(&vdp->xdf_dev_lk);
780 kstat_delete(kstat);
781 mutex_exit(&vdp->xdf_iostat_lk);
782 }
783
784 /*
785 * Add an IO requests onto the active queue.
786 *
787 * We have to detect IOs generated by xdf_ready_tq_thread. These IOs
788 * are used to establish a connection to the backend, so they recieve
789 * priority over all other IOs. Since xdf_ready_tq_thread only does
790 * synchronous IO, there can only be one xdf_ready_tq_thread request at any
791 * given time and we record the buf associated with that request in
792 * xdf_ready_tq_bp.
793 */
794 static void
xdf_bp_push(xdf_t * vdp,buf_t * bp)795 xdf_bp_push(xdf_t *vdp, buf_t *bp)
796 {
797 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
798 ASSERT(bp->av_forw == NULL);
799
800 xdf_kstat_enter(vdp, bp);
801
802 if (curthread == vdp->xdf_ready_tq_thread) {
803 /* new IO requests from the ready thread */
804 ASSERT(vdp->xdf_ready_tq_bp == NULL);
805 vdp->xdf_ready_tq_bp = bp;
806 return;
807 }
808
809 /* this is normal IO request */
810 ASSERT(bp != vdp->xdf_ready_tq_bp);
811
812 if (vdp->xdf_f_act == NULL) {
813 /* this is only only IO on the active queue */
814 ASSERT(vdp->xdf_l_act == NULL);
815 ASSERT(vdp->xdf_i_act == NULL);
816 vdp->xdf_f_act = vdp->xdf_l_act = vdp->xdf_i_act = bp;
817 return;
818 }
819
820 /* add this IO to the tail of the active queue */
821 vdp->xdf_l_act->av_forw = bp;
822 vdp->xdf_l_act = bp;
823 if (vdp->xdf_i_act == NULL)
824 vdp->xdf_i_act = bp;
825 }
826
827 static void
xdf_bp_pop(xdf_t * vdp,buf_t * bp)828 xdf_bp_pop(xdf_t *vdp, buf_t *bp)
829 {
830 buf_t *bp_iter;
831
832 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
833 ASSERT(VREQ_DONE(BP_VREQ(bp)));
834
835 if (vdp->xdf_ready_tq_bp == bp) {
836 /* we're done with a ready thread IO request */
837 ASSERT(bp->av_forw == NULL);
838 vdp->xdf_ready_tq_bp = NULL;
839 return;
840 }
841
842 /* we're done with a normal IO request */
843 ASSERT((bp->av_forw != NULL) || (bp == vdp->xdf_l_act));
844 ASSERT((bp->av_forw == NULL) || (bp != vdp->xdf_l_act));
845 ASSERT(VREQ_DONE(BP_VREQ(vdp->xdf_f_act)));
846 ASSERT(vdp->xdf_f_act != vdp->xdf_i_act);
847
848 if (bp == vdp->xdf_f_act) {
849 /* This IO was at the head of our active queue. */
850 vdp->xdf_f_act = bp->av_forw;
851 if (bp == vdp->xdf_l_act)
852 vdp->xdf_l_act = NULL;
853 } else {
854 /* There IO finished before some other pending IOs. */
855 bp_iter = vdp->xdf_f_act;
856 while (bp != bp_iter->av_forw) {
857 bp_iter = bp_iter->av_forw;
858 ASSERT(VREQ_DONE(BP_VREQ(bp_iter)));
859 ASSERT(bp_iter != vdp->xdf_i_act);
860 }
861 bp_iter->av_forw = bp->av_forw;
862 if (bp == vdp->xdf_l_act)
863 vdp->xdf_l_act = bp_iter;
864 }
865 bp->av_forw = NULL;
866 }
867
868 static buf_t *
xdf_bp_next(xdf_t * vdp)869 xdf_bp_next(xdf_t *vdp)
870 {
871 v_req_t *vreq;
872 buf_t *bp;
873
874 if (vdp->xdf_state == XD_CONNECTED) {
875 /*
876 * If we're in the XD_CONNECTED state, we only service IOs
877 * from the xdf_ready_tq_thread thread.
878 */
879 if ((bp = vdp->xdf_ready_tq_bp) == NULL)
880 return (NULL);
881 if (((vreq = BP_VREQ(bp)) == NULL) || (!VREQ_DONE(vreq)))
882 return (bp);
883 return (NULL);
884 }
885
886 /* if we're not in the XD_CONNECTED or XD_READY state we can't do IO */
887 if (vdp->xdf_state != XD_READY)
888 return (NULL);
889
890 ASSERT(vdp->xdf_ready_tq_bp == NULL);
891 for (;;) {
892 if ((bp = vdp->xdf_i_act) == NULL)
893 return (NULL);
894 if (((vreq = BP_VREQ(bp)) == NULL) || (!VREQ_DONE(vreq)))
895 return (bp);
896
897 /* advance the active buf index pointer */
898 vdp->xdf_i_act = bp->av_forw;
899 }
900 }
901
902 static void
xdf_io_fini(xdf_t * vdp,uint64_t id,int bioerr)903 xdf_io_fini(xdf_t *vdp, uint64_t id, int bioerr)
904 {
905 ge_slot_t *gs = (ge_slot_t *)(uintptr_t)id;
906 v_req_t *vreq = gs->gs_vreq;
907 buf_t *bp = vreq->v_buf;
908
909 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
910 ASSERT(BP_VREQ(bp) == vreq);
911
912 gs_free(gs);
913
914 if (bioerr != 0)
915 bioerror(bp, bioerr);
916 ASSERT(vreq->v_nslots > 0);
917 if (--vreq->v_nslots > 0)
918 return;
919
920 /* remove this IO from our active queue */
921 xdf_bp_pop(vdp, bp);
922
923 ASSERT(vreq->v_runq);
924 xdf_kstat_exit(vdp, bp);
925 vreq->v_runq = B_FALSE;
926 vreq_free(vdp, vreq);
927
928 if (IS_ERROR(bp)) {
929 xdf_io_err(bp, geterror(bp), 0);
930 } else if (bp->b_resid != 0) {
931 /* Partial transfers are an error */
932 xdf_io_err(bp, EIO, bp->b_resid);
933 } else {
934 biodone(bp);
935 }
936 }
937
938 /*
939 * xdf interrupt handler
940 */
941 static uint_t
xdf_intr_locked(xdf_t * vdp)942 xdf_intr_locked(xdf_t *vdp)
943 {
944 xendev_ring_t *xbr;
945 blkif_response_t *resp;
946 int bioerr;
947 uint64_t id;
948 uint8_t op;
949 uint16_t status;
950 ddi_acc_handle_t acchdl;
951
952 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
953
954 if ((xbr = vdp->xdf_xb_ring) == NULL)
955 return (DDI_INTR_UNCLAIMED);
956
957 acchdl = vdp->xdf_xb_ring_hdl;
958
959 /*
960 * complete all requests which have a response
961 */
962 while (resp = xvdi_ring_get_response(xbr)) {
963 id = ddi_get64(acchdl, &resp->id);
964 op = ddi_get8(acchdl, &resp->operation);
965 status = ddi_get16(acchdl, (uint16_t *)&resp->status);
966 DPRINTF(INTR_DBG, ("resp: op %d id %"PRIu64" status %d\n",
967 op, id, status));
968
969 if (status != BLKIF_RSP_OKAY) {
970 DPRINTF(IO_DBG, ("xdf@%s: I/O error while %s",
971 vdp->xdf_addr,
972 (op == BLKIF_OP_READ) ? "reading" : "writing"));
973 bioerr = EIO;
974 } else {
975 bioerr = 0;
976 }
977
978 xdf_io_fini(vdp, id, bioerr);
979 }
980 return (DDI_INTR_CLAIMED);
981 }
982
983 /*
984 * xdf_intr runs at PIL 5, so no one else can grab xdf_dev_lk and
985 * block at a lower pil.
986 */
987 static uint_t
xdf_intr(caddr_t arg)988 xdf_intr(caddr_t arg)
989 {
990 xdf_t *vdp = (xdf_t *)arg;
991 int rv;
992
993 mutex_enter(&vdp->xdf_dev_lk);
994 rv = xdf_intr_locked(vdp);
995 mutex_exit(&vdp->xdf_dev_lk);
996
997 if (!do_polled_io)
998 xdf_io_start(vdp);
999
1000 return (rv);
1001 }
1002
1003 static void
xdf_ring_push(xdf_t * vdp)1004 xdf_ring_push(xdf_t *vdp)
1005 {
1006 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
1007
1008 if (vdp->xdf_xb_ring == NULL)
1009 return;
1010
1011 if (xvdi_ring_push_request(vdp->xdf_xb_ring)) {
1012 DPRINTF(IO_DBG, (
1013 "xdf@%s: xdf_ring_push: sent request(s) to backend\n",
1014 vdp->xdf_addr));
1015 }
1016
1017 if (xvdi_get_evtchn(vdp->xdf_dip) != INVALID_EVTCHN)
1018 xvdi_notify_oe(vdp->xdf_dip);
1019 }
1020
1021 static int
xdf_ring_drain_locked(xdf_t * vdp)1022 xdf_ring_drain_locked(xdf_t *vdp)
1023 {
1024 int pollc, rv = 0;
1025
1026 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
1027
1028 if (xdf_debug & SUSRES_DBG)
1029 xen_printf("xdf_ring_drain: start\n");
1030
1031 for (pollc = 0; pollc < XDF_DRAIN_RETRY_COUNT; pollc++) {
1032 if (vdp->xdf_xb_ring == NULL)
1033 goto out;
1034
1035 if (xvdi_ring_has_unconsumed_responses(vdp->xdf_xb_ring))
1036 (void) xdf_intr_locked(vdp);
1037 if (!xvdi_ring_has_incomp_request(vdp->xdf_xb_ring))
1038 goto out;
1039 xdf_ring_push(vdp);
1040
1041 /* file-backed devices can be slow */
1042 mutex_exit(&vdp->xdf_dev_lk);
1043 #ifdef XPV_HVM_DRIVER
1044 (void) HYPERVISOR_yield();
1045 #endif /* XPV_HVM_DRIVER */
1046 delay(drv_usectohz(XDF_DRAIN_MSEC_DELAY));
1047 mutex_enter(&vdp->xdf_dev_lk);
1048 }
1049 cmn_err(CE_WARN, "xdf@%s: xdf_ring_drain: timeout", vdp->xdf_addr);
1050
1051 out:
1052 if (vdp->xdf_xb_ring != NULL) {
1053 if (xvdi_ring_has_incomp_request(vdp->xdf_xb_ring) ||
1054 xvdi_ring_has_unconsumed_responses(vdp->xdf_xb_ring))
1055 rv = EIO;
1056 }
1057 if (xdf_debug & SUSRES_DBG)
1058 xen_printf("xdf@%s: xdf_ring_drain: end, err=%d\n",
1059 vdp->xdf_addr, rv);
1060 return (rv);
1061 }
1062
1063 static int
xdf_ring_drain(xdf_t * vdp)1064 xdf_ring_drain(xdf_t *vdp)
1065 {
1066 int rv;
1067 mutex_enter(&vdp->xdf_dev_lk);
1068 rv = xdf_ring_drain_locked(vdp);
1069 mutex_exit(&vdp->xdf_dev_lk);
1070 return (rv);
1071 }
1072
1073 /*
1074 * Destroy all v_req_t, grant table entries, and our ring buffer.
1075 */
1076 static void
xdf_ring_destroy(xdf_t * vdp)1077 xdf_ring_destroy(xdf_t *vdp)
1078 {
1079 v_req_t *vreq;
1080 buf_t *bp;
1081 ge_slot_t *gs;
1082
1083 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk));
1084 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
1085
1086 if ((vdp->xdf_state != XD_INIT) &&
1087 (vdp->xdf_state != XD_CONNECTED) &&
1088 (vdp->xdf_state != XD_READY)) {
1089 ASSERT(vdp->xdf_xb_ring == NULL);
1090 ASSERT(vdp->xdf_xb_ring_hdl == NULL);
1091 ASSERT(vdp->xdf_peer == INVALID_DOMID);
1092 ASSERT(vdp->xdf_evtchn == INVALID_EVTCHN);
1093 ASSERT(list_is_empty(&vdp->xdf_vreq_act));
1094 return;
1095 }
1096
1097 /*
1098 * We don't want to recieve async notifications from the backend
1099 * when it finishes processing ring entries.
1100 */
1101 #ifdef XPV_HVM_DRIVER
1102 ec_unbind_evtchn(vdp->xdf_evtchn);
1103 #else /* !XPV_HVM_DRIVER */
1104 (void) ddi_remove_intr(vdp->xdf_dip, 0, NULL);
1105 #endif /* !XPV_HVM_DRIVER */
1106
1107 /*
1108 * Drain any requests in the ring. We need to do this before we
1109 * can free grant table entries, because if active ring entries
1110 * point to grants, then the backend could be trying to access
1111 * those grants.
1112 */
1113 (void) xdf_ring_drain_locked(vdp);
1114
1115 /* We're done talking to the backend so free up our event channel */
1116 xvdi_free_evtchn(vdp->xdf_dip);
1117 vdp->xdf_evtchn = INVALID_EVTCHN;
1118
1119 while ((vreq = list_head(&vdp->xdf_vreq_act)) != NULL) {
1120 bp = vreq->v_buf;
1121 ASSERT(BP_VREQ(bp) == vreq);
1122
1123 /* Free up any grant table entries associaed with this IO */
1124 while ((gs = list_head(&vreq->v_gs)) != NULL)
1125 gs_free(gs);
1126
1127 /* If this IO was on the runq, move it back to the waitq. */
1128 if (vreq->v_runq)
1129 xdf_kstat_runq_to_waitq(vdp, bp);
1130
1131 /*
1132 * Reset any buf IO state since we're going to re-issue the
1133 * IO when we reconnect.
1134 */
1135 vreq_free(vdp, vreq);
1136 BP_VREQ_SET(bp, NULL);
1137 bioerror(bp, 0);
1138 }
1139
1140 /* reset the active queue index pointer */
1141 vdp->xdf_i_act = vdp->xdf_f_act;
1142
1143 /* Destroy the ring */
1144 xvdi_free_ring(vdp->xdf_xb_ring);
1145 vdp->xdf_xb_ring = NULL;
1146 vdp->xdf_xb_ring_hdl = NULL;
1147 vdp->xdf_peer = INVALID_DOMID;
1148 }
1149
1150 void
xdfmin(struct buf * bp)1151 xdfmin(struct buf *bp)
1152 {
1153 if (bp->b_bcount > xdf_maxphys)
1154 bp->b_bcount = xdf_maxphys;
1155 }
1156
1157 /*
1158 * Check if we have a pending "eject" media request.
1159 */
1160 static int
xdf_eject_pending(xdf_t * vdp)1161 xdf_eject_pending(xdf_t *vdp)
1162 {
1163 dev_info_t *dip = vdp->xdf_dip;
1164 char *xsname, *str;
1165
1166 if (!vdp->xdf_media_req_supported)
1167 return (B_FALSE);
1168
1169 if (((xsname = xvdi_get_xsname(dip)) == NULL) ||
1170 (xenbus_read_str(xsname, XBP_MEDIA_REQ, &str) != 0))
1171 return (B_FALSE);
1172
1173 if (strcmp(str, XBV_MEDIA_REQ_EJECT) != 0) {
1174 strfree(str);
1175 return (B_FALSE);
1176 }
1177 strfree(str);
1178 return (B_TRUE);
1179 }
1180
1181 /*
1182 * Generate a media request.
1183 */
1184 static int
xdf_media_req(xdf_t * vdp,char * req,boolean_t media_required)1185 xdf_media_req(xdf_t *vdp, char *req, boolean_t media_required)
1186 {
1187 dev_info_t *dip = vdp->xdf_dip;
1188 char *xsname;
1189
1190 /*
1191 * we can't be holding xdf_dev_lk because xenbus_printf() can
1192 * block while waiting for a PIL 1 interrupt message. this
1193 * would cause a deadlock with xdf_intr() which needs to grab
1194 * xdf_dev_lk as well and runs at PIL 5.
1195 */
1196 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk));
1197 ASSERT(MUTEX_NOT_HELD(&vdp->xdf_dev_lk));
1198
1199 if ((xsname = xvdi_get_xsname(dip)) == NULL)
1200 return (ENXIO);
1201
1202 /* Check if we support media requests */
1203 if (!XD_IS_CD(vdp) || !vdp->xdf_media_req_supported)
1204 return (ENOTTY);
1205
1206 /* If an eject is pending then don't allow any new requests */
1207 if (xdf_eject_pending(vdp))
1208 return (ENXIO);
1209
1210 /* Make sure that there is media present */
1211 if (media_required && (vdp->xdf_xdev_nblocks == 0))
1212 return (ENXIO);
1213
1214 /* We only allow operations when the device is ready and connected */
1215 if (vdp->xdf_state != XD_READY)
1216 return (EIO);
1217
1218 if (xenbus_printf(XBT_NULL, xsname, XBP_MEDIA_REQ, "%s", req) != 0)
1219 return (EIO);
1220
1221 return (0);
1222 }
1223
1224 /*
1225 * populate a single blkif_request_t w/ a buf
1226 */
1227 static void
xdf_process_rreq(xdf_t * vdp,struct buf * bp,blkif_request_t * rreq)1228 xdf_process_rreq(xdf_t *vdp, struct buf *bp, blkif_request_t *rreq)
1229 {
1230 grant_ref_t gr;
1231 uint8_t fsect, lsect;
1232 size_t bcnt;
1233 paddr_t dma_addr;
1234 off_t blk_off;
1235 dev_info_t *dip = vdp->xdf_dip;
1236 blkif_vdev_t vdev = xvdi_get_vdevnum(dip);
1237 v_req_t *vreq = BP_VREQ(bp);
1238 uint64_t blkno = vreq->v_blkno;
1239 uint_t ndmacs = vreq->v_ndmacs;
1240 ddi_acc_handle_t acchdl = vdp->xdf_xb_ring_hdl;
1241 int seg = 0;
1242 int isread = IS_READ(bp);
1243 ge_slot_t *gs = list_head(&vreq->v_gs);
1244
1245 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
1246 ASSERT(vreq->v_status == VREQ_GS_ALLOCED);
1247
1248 if (isread)
1249 ddi_put8(acchdl, &rreq->operation, BLKIF_OP_READ);
1250 else {
1251 switch (vreq->v_flush_diskcache) {
1252 case FLUSH_DISKCACHE:
1253 ddi_put8(acchdl, &rreq->operation,
1254 BLKIF_OP_FLUSH_DISKCACHE);
1255 ddi_put16(acchdl, &rreq->handle, vdev);
1256 ddi_put64(acchdl, &rreq->id,
1257 (uint64_t)(uintptr_t)(gs));
1258 ddi_put8(acchdl, &rreq->nr_segments, 0);
1259 vreq->v_status = VREQ_DMAWIN_DONE;
1260 return;
1261 case WRITE_BARRIER:
1262 ddi_put8(acchdl, &rreq->operation,
1263 BLKIF_OP_WRITE_BARRIER);
1264 break;
1265 default:
1266 if (!vdp->xdf_wce)
1267 ddi_put8(acchdl, &rreq->operation,
1268 BLKIF_OP_WRITE_BARRIER);
1269 else
1270 ddi_put8(acchdl, &rreq->operation,
1271 BLKIF_OP_WRITE);
1272 break;
1273 }
1274 }
1275
1276 ddi_put16(acchdl, &rreq->handle, vdev);
1277 ddi_put64(acchdl, &rreq->sector_number, blkno);
1278 ddi_put64(acchdl, &rreq->id, (uint64_t)(uintptr_t)(gs));
1279
1280 /*
1281 * loop until all segments are populated or no more dma cookie in buf
1282 */
1283 for (;;) {
1284 /*
1285 * Each segment of a blkif request can transfer up to
1286 * one 4K page of data.
1287 */
1288 bcnt = vreq->v_dmac.dmac_size;
1289 dma_addr = vreq->v_dmac.dmac_laddress;
1290 blk_off = (uint_t)((paddr_t)XB_SEGOFFSET & dma_addr);
1291 fsect = blk_off >> XB_BSHIFT;
1292 lsect = fsect + (bcnt >> XB_BSHIFT) - 1;
1293
1294 ASSERT(bcnt <= PAGESIZE);
1295 ASSERT((bcnt % XB_BSIZE) == 0);
1296 ASSERT((blk_off & XB_BMASK) == 0);
1297 ASSERT(fsect < XB_MAX_SEGLEN / XB_BSIZE &&
1298 lsect < XB_MAX_SEGLEN / XB_BSIZE);
1299
1300 gr = gs_grant(gs, PATOMA(dma_addr) >> PAGESHIFT);
1301 ddi_put32(acchdl, &rreq->seg[seg].gref, gr);
1302 ddi_put8(acchdl, &rreq->seg[seg].first_sect, fsect);
1303 ddi_put8(acchdl, &rreq->seg[seg].last_sect, lsect);
1304
1305 DPRINTF(IO_DBG, (
1306 "xdf@%s: seg%d: dmacS %lu blk_off %ld\n",
1307 vdp->xdf_addr, seg, vreq->v_dmac.dmac_size, blk_off));
1308 DPRINTF(IO_DBG, (
1309 "xdf@%s: seg%d: fs %d ls %d gr %d dma 0x%"PRIx64"\n",
1310 vdp->xdf_addr, seg, fsect, lsect, gr, dma_addr));
1311
1312 blkno += (bcnt >> XB_BSHIFT);
1313 seg++;
1314 ASSERT(seg <= BLKIF_MAX_SEGMENTS_PER_REQUEST);
1315 if (--ndmacs) {
1316 ddi_dma_nextcookie(vreq->v_dmahdl, &vreq->v_dmac);
1317 continue;
1318 }
1319
1320 vreq->v_status = VREQ_DMAWIN_DONE;
1321 vreq->v_blkno = blkno;
1322 break;
1323 }
1324 ddi_put8(acchdl, &rreq->nr_segments, seg);
1325 DPRINTF(IO_DBG, (
1326 "xdf@%s: xdf_process_rreq: request id=%"PRIx64" ready\n",
1327 vdp->xdf_addr, rreq->id));
1328 }
1329
1330 static void
xdf_io_start(xdf_t * vdp)1331 xdf_io_start(xdf_t *vdp)
1332 {
1333 struct buf *bp;
1334 v_req_t *vreq;
1335 blkif_request_t *rreq;
1336 boolean_t rreqready = B_FALSE;
1337
1338 mutex_enter(&vdp->xdf_dev_lk);
1339
1340 /*
1341 * Populate the ring request(s). Loop until there is no buf to
1342 * transfer or no free slot available in I/O ring.
1343 */
1344 for (;;) {
1345 /* don't start any new IO if we're suspending */
1346 if (vdp->xdf_suspending)
1347 break;
1348 if ((bp = xdf_bp_next(vdp)) == NULL)
1349 break;
1350
1351 /* if the buf doesn't already have a vreq, allocate one */
1352 if (((vreq = BP_VREQ(bp)) == NULL) &&
1353 ((vreq = vreq_get(vdp, bp)) == NULL))
1354 break;
1355
1356 /* alloc DMA/GTE resources */
1357 if (vreq_setup(vdp, vreq) != DDI_SUCCESS)
1358 break;
1359
1360 /* get next blkif_request in the ring */
1361 if ((rreq = xvdi_ring_get_request(vdp->xdf_xb_ring)) == NULL)
1362 break;
1363 bzero(rreq, sizeof (blkif_request_t));
1364 rreqready = B_TRUE;
1365
1366 /* populate blkif_request with this buf */
1367 xdf_process_rreq(vdp, bp, rreq);
1368
1369 /*
1370 * This buffer/vreq pair is has been allocated a ring buffer
1371 * resources, so if it isn't already in our runq, add it.
1372 */
1373 if (!vreq->v_runq)
1374 xdf_kstat_waitq_to_runq(vdp, bp);
1375 }
1376
1377 /* Send the request(s) to the backend */
1378 if (rreqready)
1379 xdf_ring_push(vdp);
1380
1381 mutex_exit(&vdp->xdf_dev_lk);
1382 }
1383
1384
1385 /* check if partition is open, -1 - check all partitions on the disk */
1386 static boolean_t
xdf_isopen(xdf_t * vdp,int partition)1387 xdf_isopen(xdf_t *vdp, int partition)
1388 {
1389 int i;
1390 ulong_t parbit;
1391 boolean_t rval = B_FALSE;
1392
1393 ASSERT((partition == -1) ||
1394 ((partition >= 0) || (partition < XDF_PEXT)));
1395
1396 if (partition == -1)
1397 parbit = (ulong_t)-1;
1398 else
1399 parbit = 1 << partition;
1400
1401 for (i = 0; i < OTYPCNT; i++) {
1402 if (vdp->xdf_vd_open[i] & parbit)
1403 rval = B_TRUE;
1404 }
1405
1406 return (rval);
1407 }
1408
1409 /*
1410 * The connection should never be closed as long as someone is holding
1411 * us open, there is pending IO, or someone is waiting waiting for a
1412 * connection.
1413 */
1414 static boolean_t
xdf_busy(xdf_t * vdp)1415 xdf_busy(xdf_t *vdp)
1416 {
1417 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
1418
1419 if ((vdp->xdf_xb_ring != NULL) &&
1420 xvdi_ring_has_unconsumed_responses(vdp->xdf_xb_ring)) {
1421 ASSERT(vdp->xdf_state != XD_CLOSED);
1422 return (B_TRUE);
1423 }
1424
1425 if (!list_is_empty(&vdp->xdf_vreq_act) || (vdp->xdf_f_act != NULL)) {
1426 ASSERT(vdp->xdf_state != XD_CLOSED);
1427 return (B_TRUE);
1428 }
1429
1430 if (xdf_isopen(vdp, -1)) {
1431 ASSERT(vdp->xdf_state != XD_CLOSED);
1432 return (B_TRUE);
1433 }
1434
1435 if (vdp->xdf_connect_req > 0) {
1436 ASSERT(vdp->xdf_state != XD_CLOSED);
1437 return (B_TRUE);
1438 }
1439
1440 return (B_FALSE);
1441 }
1442
1443 static void
xdf_set_state(xdf_t * vdp,xdf_state_t new_state)1444 xdf_set_state(xdf_t *vdp, xdf_state_t new_state)
1445 {
1446 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk));
1447 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
1448 DPRINTF(DDI_DBG, ("xdf@%s: state change %d -> %d\n",
1449 vdp->xdf_addr, vdp->xdf_state, new_state));
1450 vdp->xdf_state = new_state;
1451 cv_broadcast(&vdp->xdf_dev_cv);
1452 }
1453
1454 static void
xdf_disconnect(xdf_t * vdp,xdf_state_t new_state,boolean_t quiet)1455 xdf_disconnect(xdf_t *vdp, xdf_state_t new_state, boolean_t quiet)
1456 {
1457 dev_info_t *dip = vdp->xdf_dip;
1458 boolean_t busy;
1459
1460 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk));
1461 ASSERT(MUTEX_NOT_HELD(&vdp->xdf_dev_lk));
1462 ASSERT((new_state == XD_UNKNOWN) || (new_state == XD_CLOSED));
1463
1464 /* Check if we're already there. */
1465 if (vdp->xdf_state == new_state)
1466 return;
1467
1468 mutex_enter(&vdp->xdf_dev_lk);
1469 busy = xdf_busy(vdp);
1470
1471 /* If we're already closed then there's nothing todo. */
1472 if (vdp->xdf_state == XD_CLOSED) {
1473 ASSERT(!busy);
1474 xdf_set_state(vdp, new_state);
1475 mutex_exit(&vdp->xdf_dev_lk);
1476 return;
1477 }
1478
1479 #ifdef DEBUG
1480 /* UhOh. Warn the user that something bad has happened. */
1481 if (!quiet && busy && (vdp->xdf_state == XD_READY) &&
1482 (vdp->xdf_xdev_nblocks != 0)) {
1483 cmn_err(CE_WARN, "xdf@%s: disconnected while in use",
1484 vdp->xdf_addr);
1485 }
1486 #endif /* DEBUG */
1487
1488 xdf_ring_destroy(vdp);
1489
1490 /* If we're busy then we can only go into the unknown state */
1491 xdf_set_state(vdp, (busy) ? XD_UNKNOWN : new_state);
1492 mutex_exit(&vdp->xdf_dev_lk);
1493
1494 /* if we're closed now, let the other end know */
1495 if (vdp->xdf_state == XD_CLOSED)
1496 (void) xvdi_switch_state(dip, XBT_NULL, XenbusStateClosed);
1497 }
1498
1499
1500 /*
1501 * Kick-off connect process
1502 * Status should be XD_UNKNOWN or XD_CLOSED
1503 * On success, status will be changed to XD_INIT
1504 * On error, it will be changed to XD_UNKNOWN
1505 */
1506 static int
xdf_setstate_init(xdf_t * vdp)1507 xdf_setstate_init(xdf_t *vdp)
1508 {
1509 dev_info_t *dip = vdp->xdf_dip;
1510 xenbus_transaction_t xbt;
1511 grant_ref_t gref;
1512 char *xsname, *str;
1513 int rv;
1514
1515 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk));
1516 ASSERT(MUTEX_NOT_HELD(&vdp->xdf_dev_lk));
1517 ASSERT((vdp->xdf_state == XD_UNKNOWN) ||
1518 (vdp->xdf_state == XD_CLOSED));
1519
1520 DPRINTF(DDI_DBG,
1521 ("xdf@%s: starting connection process\n", vdp->xdf_addr));
1522
1523 /*
1524 * If an eject is pending then don't allow a new connection.
1525 * (Only the backend can clear media request eject request.)
1526 */
1527 if (xdf_eject_pending(vdp))
1528 return (DDI_FAILURE);
1529
1530 if ((xsname = xvdi_get_xsname(dip)) == NULL)
1531 goto errout;
1532
1533 if ((vdp->xdf_peer = xvdi_get_oeid(dip)) == INVALID_DOMID)
1534 goto errout;
1535
1536 (void) xvdi_switch_state(dip, XBT_NULL, XenbusStateInitialising);
1537
1538 /*
1539 * Sanity check for the existance of the xenbus device-type property.
1540 * This property might not exist if we our xenbus device nodes was
1541 * force destroyed while we were still connected to the backend.
1542 */
1543 if (xenbus_read_str(xsname, XBP_DEV_TYPE, &str) != 0)
1544 goto errout;
1545 strfree(str);
1546
1547 if (xvdi_alloc_evtchn(dip) != DDI_SUCCESS)
1548 goto errout;
1549
1550 vdp->xdf_evtchn = xvdi_get_evtchn(dip);
1551 #ifdef XPV_HVM_DRIVER
1552 ec_bind_evtchn_to_handler(vdp->xdf_evtchn, IPL_VBD, xdf_intr, vdp);
1553 #else /* !XPV_HVM_DRIVER */
1554 if (ddi_add_intr(dip, 0, NULL, NULL, xdf_intr, (caddr_t)vdp) !=
1555 DDI_SUCCESS) {
1556 cmn_err(CE_WARN, "xdf@%s: xdf_setstate_init: "
1557 "failed to add intr handler", vdp->xdf_addr);
1558 goto errout1;
1559 }
1560 #endif /* !XPV_HVM_DRIVER */
1561
1562 if (xvdi_alloc_ring(dip, BLKIF_RING_SIZE,
1563 sizeof (union blkif_sring_entry), &gref, &vdp->xdf_xb_ring) !=
1564 DDI_SUCCESS) {
1565 cmn_err(CE_WARN, "xdf@%s: failed to alloc comm ring",
1566 vdp->xdf_addr);
1567 goto errout2;
1568 }
1569 vdp->xdf_xb_ring_hdl = vdp->xdf_xb_ring->xr_acc_hdl; /* ugly!! */
1570
1571 /*
1572 * Write into xenstore the info needed by backend
1573 */
1574 trans_retry:
1575 if (xenbus_transaction_start(&xbt)) {
1576 cmn_err(CE_WARN, "xdf@%s: failed to start transaction",
1577 vdp->xdf_addr);
1578 xvdi_fatal_error(dip, EIO, "connect transaction init");
1579 goto fail_trans;
1580 }
1581
1582 /*
1583 * XBP_PROTOCOL is written by the domain builder in the case of PV
1584 * domains. However, it is not written for HVM domains, so let's
1585 * write it here.
1586 */
1587 if (((rv = xenbus_printf(xbt, xsname,
1588 XBP_MEDIA_REQ, "%s", XBV_MEDIA_REQ_NONE)) != 0) ||
1589 ((rv = xenbus_printf(xbt, xsname,
1590 XBP_RING_REF, "%u", gref)) != 0) ||
1591 ((rv = xenbus_printf(xbt, xsname,
1592 XBP_EVENT_CHAN, "%u", vdp->xdf_evtchn)) != 0) ||
1593 ((rv = xenbus_printf(xbt, xsname,
1594 XBP_PROTOCOL, "%s", XEN_IO_PROTO_ABI_NATIVE)) != 0) ||
1595 ((rv = xvdi_switch_state(dip, xbt, XenbusStateInitialised)) > 0)) {
1596 (void) xenbus_transaction_end(xbt, 1);
1597 xvdi_fatal_error(dip, rv, "connect transaction setup");
1598 goto fail_trans;
1599 }
1600
1601 /* kick-off connect process */
1602 if (rv = xenbus_transaction_end(xbt, 0)) {
1603 if (rv == EAGAIN)
1604 goto trans_retry;
1605 xvdi_fatal_error(dip, rv, "connect transaction commit");
1606 goto fail_trans;
1607 }
1608
1609 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk));
1610 mutex_enter(&vdp->xdf_dev_lk);
1611 xdf_set_state(vdp, XD_INIT);
1612 mutex_exit(&vdp->xdf_dev_lk);
1613
1614 return (DDI_SUCCESS);
1615
1616 fail_trans:
1617 xvdi_free_ring(vdp->xdf_xb_ring);
1618 errout2:
1619 #ifdef XPV_HVM_DRIVER
1620 ec_unbind_evtchn(vdp->xdf_evtchn);
1621 #else /* !XPV_HVM_DRIVER */
1622 (void) ddi_remove_intr(vdp->xdf_dip, 0, NULL);
1623 #endif /* !XPV_HVM_DRIVER */
1624 errout1:
1625 xvdi_free_evtchn(dip);
1626 vdp->xdf_evtchn = INVALID_EVTCHN;
1627 errout:
1628 xdf_disconnect(vdp, XD_UNKNOWN, B_FALSE);
1629 cmn_err(CE_WARN, "xdf@%s: failed to start connection to backend",
1630 vdp->xdf_addr);
1631 return (DDI_FAILURE);
1632 }
1633
1634 int
xdf_get_flush_block(xdf_t * vdp)1635 xdf_get_flush_block(xdf_t *vdp)
1636 {
1637 /*
1638 * Get a DEV_BSIZE aligned bufer
1639 */
1640 vdp->xdf_flush_mem = kmem_alloc(vdp->xdf_xdev_secsize * 2, KM_SLEEP);
1641 vdp->xdf_cache_flush_block =
1642 (char *)P2ROUNDUP((uintptr_t)(vdp->xdf_flush_mem),
1643 (int)vdp->xdf_xdev_secsize);
1644
1645 if (xdf_lb_rdwr(vdp->xdf_dip, TG_READ, vdp->xdf_cache_flush_block,
1646 xdf_flush_block, vdp->xdf_xdev_secsize, NULL) != 0)
1647 return (DDI_FAILURE);
1648 return (DDI_SUCCESS);
1649 }
1650
1651 static void
xdf_setstate_ready(void * arg)1652 xdf_setstate_ready(void *arg)
1653 {
1654 xdf_t *vdp = (xdf_t *)arg;
1655
1656 vdp->xdf_ready_tq_thread = curthread;
1657
1658 /*
1659 * We've created all the minor nodes via cmlb_attach() using default
1660 * value in xdf_attach() to make it possible to block in xdf_open(),
1661 * in case there's anyone (say, booting thread) ever trying to open
1662 * it before connected to backend. We will refresh all those minor
1663 * nodes w/ latest info we've got now when we are almost connected.
1664 */
1665 mutex_enter(&vdp->xdf_dev_lk);
1666 if (vdp->xdf_cmbl_reattach) {
1667 vdp->xdf_cmbl_reattach = B_FALSE;
1668
1669 mutex_exit(&vdp->xdf_dev_lk);
1670 if (xdf_cmlb_attach(vdp) != 0) {
1671 xdf_disconnect(vdp, XD_UNKNOWN, B_FALSE);
1672 return;
1673 }
1674 mutex_enter(&vdp->xdf_dev_lk);
1675 }
1676
1677 /* If we're not still trying to get to the ready state, then bail. */
1678 if (vdp->xdf_state != XD_CONNECTED) {
1679 mutex_exit(&vdp->xdf_dev_lk);
1680 return;
1681 }
1682 mutex_exit(&vdp->xdf_dev_lk);
1683
1684 /*
1685 * If backend has feature-barrier, see if it supports disk
1686 * cache flush op.
1687 */
1688 vdp->xdf_flush_supported = B_FALSE;
1689 if (vdp->xdf_feature_barrier) {
1690 /*
1691 * Pretend we already know flush is supported so probe
1692 * will attempt the correct op.
1693 */
1694 vdp->xdf_flush_supported = B_TRUE;
1695 if (xdf_lb_rdwr(vdp->xdf_dip, TG_WRITE, NULL, 0, 0, 0) == 0) {
1696 vdp->xdf_flush_supported = B_TRUE;
1697 } else {
1698 vdp->xdf_flush_supported = B_FALSE;
1699 /*
1700 * If the other end does not support the cache flush op
1701 * then we must use a barrier-write to force disk
1702 * cache flushing. Barrier writes require that a data
1703 * block actually be written.
1704 * Cache a block to barrier-write when we are
1705 * asked to perform a flush.
1706 * XXX - would it be better to just copy 1 block
1707 * (512 bytes) from whatever write we did last
1708 * and rewrite that block?
1709 */
1710 if (xdf_get_flush_block(vdp) != DDI_SUCCESS) {
1711 xdf_disconnect(vdp, XD_UNKNOWN, B_FALSE);
1712 return;
1713 }
1714 }
1715 }
1716
1717 mutex_enter(&vdp->xdf_cb_lk);
1718 mutex_enter(&vdp->xdf_dev_lk);
1719 if (vdp->xdf_state == XD_CONNECTED)
1720 xdf_set_state(vdp, XD_READY);
1721 mutex_exit(&vdp->xdf_dev_lk);
1722
1723 /* Restart any currently queued up io */
1724 xdf_io_start(vdp);
1725
1726 mutex_exit(&vdp->xdf_cb_lk);
1727 }
1728
1729 /*
1730 * synthetic geometry
1731 */
1732 #define XDF_NSECTS 256
1733 #define XDF_NHEADS 16
1734
1735 static void
xdf_synthetic_pgeom(dev_info_t * dip,cmlb_geom_t * geomp)1736 xdf_synthetic_pgeom(dev_info_t *dip, cmlb_geom_t *geomp)
1737 {
1738 xdf_t *vdp;
1739 uint_t ncyl;
1740
1741 vdp = ddi_get_soft_state(xdf_ssp, ddi_get_instance(dip));
1742
1743 ncyl = vdp->xdf_xdev_nblocks / (XDF_NHEADS * XDF_NSECTS);
1744
1745 bzero(geomp, sizeof (*geomp));
1746 geomp->g_ncyl = ncyl == 0 ? 1 : ncyl;
1747 geomp->g_acyl = 0;
1748 geomp->g_nhead = XDF_NHEADS;
1749 geomp->g_nsect = XDF_NSECTS;
1750 geomp->g_secsize = vdp->xdf_xdev_secsize;
1751 geomp->g_capacity = vdp->xdf_xdev_nblocks;
1752 geomp->g_intrlv = 0;
1753 geomp->g_rpm = 7200;
1754 }
1755
1756 /*
1757 * Finish other initialization after we've connected to backend
1758 * Status should be XD_INIT before calling this routine
1759 * On success, status should be changed to XD_CONNECTED.
1760 * On error, status should stay XD_INIT
1761 */
1762 static int
xdf_setstate_connected(xdf_t * vdp)1763 xdf_setstate_connected(xdf_t *vdp)
1764 {
1765 dev_info_t *dip = vdp->xdf_dip;
1766 cmlb_geom_t pgeom;
1767 diskaddr_t nblocks = 0;
1768 uint_t secsize = 0;
1769 char *oename, *xsname, *str;
1770 uint_t dinfo;
1771
1772 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk));
1773 ASSERT(MUTEX_NOT_HELD(&vdp->xdf_dev_lk));
1774 ASSERT(vdp->xdf_state == XD_INIT);
1775
1776 if (((xsname = xvdi_get_xsname(dip)) == NULL) ||
1777 ((oename = xvdi_get_oename(dip)) == NULL))
1778 return (DDI_FAILURE);
1779
1780 /* Make sure the other end is XenbusStateConnected */
1781 if (xenbus_read_driver_state(oename) != XenbusStateConnected)
1782 return (DDI_FAILURE);
1783
1784 /* Determine if feature barrier is supported by backend */
1785 if (!(vdp->xdf_feature_barrier = xenbus_exists(oename, XBP_FB)))
1786 cmn_err(CE_NOTE, "!xdf@%s: feature-barrier not supported",
1787 vdp->xdf_addr);
1788
1789 /*
1790 * Probe backend. Read the device size into xdf_xdev_nblocks
1791 * and set the VDISK_READONLY, VDISK_CDROM, and VDISK_REMOVABLE
1792 * flags in xdf_dinfo. If the emulated device type is "cdrom",
1793 * we always set VDISK_CDROM, regardless of if it's present in
1794 * the xenbus info parameter.
1795 */
1796 if (xenbus_gather(XBT_NULL, oename,
1797 XBP_SECTORS, "%"SCNu64, &nblocks,
1798 XBP_SECTOR_SIZE, "%u", &secsize,
1799 XBP_INFO, "%u", &dinfo,
1800 NULL) != 0) {
1801 cmn_err(CE_WARN, "xdf@%s: xdf_setstate_connected: "
1802 "cannot read backend info", vdp->xdf_addr);
1803 return (DDI_FAILURE);
1804 }
1805 if (xenbus_read_str(xsname, XBP_DEV_TYPE, &str) != 0) {
1806 cmn_err(CE_WARN, "xdf@%s: cannot read device-type",
1807 vdp->xdf_addr);
1808 return (DDI_FAILURE);
1809 }
1810 if (strcmp(str, XBV_DEV_TYPE_CD) == 0)
1811 dinfo |= VDISK_CDROM;
1812 strfree(str);
1813
1814 if (secsize == 0 || !(ISP2(secsize / DEV_BSIZE)))
1815 secsize = DEV_BSIZE;
1816 vdp->xdf_xdev_nblocks = nblocks;
1817 vdp->xdf_xdev_secsize = secsize;
1818 #ifdef _ILP32
1819 if (vdp->xdf_xdev_nblocks > DK_MAX_BLOCKS) {
1820 cmn_err(CE_WARN, "xdf@%s: xdf_setstate_connected: "
1821 "backend disk device too large with %llu blocks for"
1822 " 32-bit kernel", vdp->xdf_addr, vdp->xdf_xdev_nblocks);
1823 xvdi_fatal_error(dip, EFBIG, "reading backend info");
1824 return (DDI_FAILURE);
1825 }
1826 #endif
1827
1828 /*
1829 * If the physical geometry for a fixed disk has been explicity
1830 * set then make sure that the specified physical geometry isn't
1831 * larger than the device we connected to.
1832 */
1833 if (vdp->xdf_pgeom_fixed &&
1834 (vdp->xdf_pgeom.g_capacity > vdp->xdf_xdev_nblocks)) {
1835 cmn_err(CE_WARN,
1836 "xdf@%s: connect failed, fixed geometry too large",
1837 vdp->xdf_addr);
1838 return (DDI_FAILURE);
1839 }
1840
1841 vdp->xdf_media_req_supported = xenbus_exists(oename, XBP_MEDIA_REQ_SUP);
1842
1843 /* mark vbd is ready for I/O */
1844 mutex_enter(&vdp->xdf_dev_lk);
1845 xdf_set_state(vdp, XD_CONNECTED);
1846
1847 /* check if the cmlb label should be updated */
1848 xdf_synthetic_pgeom(dip, &pgeom);
1849 if ((vdp->xdf_dinfo != dinfo) ||
1850 (!vdp->xdf_pgeom_fixed &&
1851 (memcmp(&vdp->xdf_pgeom, &pgeom, sizeof (pgeom)) != 0))) {
1852 vdp->xdf_cmbl_reattach = B_TRUE;
1853
1854 vdp->xdf_dinfo = dinfo;
1855 if (!vdp->xdf_pgeom_fixed)
1856 vdp->xdf_pgeom = pgeom;
1857 }
1858
1859 if (XD_IS_CD(vdp) || XD_IS_RM(vdp)) {
1860 if (vdp->xdf_xdev_nblocks == 0) {
1861 vdp->xdf_mstate = DKIO_EJECTED;
1862 cv_broadcast(&vdp->xdf_mstate_cv);
1863 } else {
1864 vdp->xdf_mstate = DKIO_INSERTED;
1865 cv_broadcast(&vdp->xdf_mstate_cv);
1866 }
1867 } else {
1868 if (vdp->xdf_mstate != DKIO_NONE) {
1869 vdp->xdf_mstate = DKIO_NONE;
1870 cv_broadcast(&vdp->xdf_mstate_cv);
1871 }
1872 }
1873
1874 mutex_exit(&vdp->xdf_dev_lk);
1875
1876 cmn_err(CE_CONT, "?xdf@%s: %"PRIu64" blocks", vdp->xdf_addr,
1877 (uint64_t)vdp->xdf_xdev_nblocks);
1878
1879 /* Restart any currently queued up io */
1880 xdf_io_start(vdp);
1881
1882 /*
1883 * To get to the ready state we have to do IO to the backend device,
1884 * but we can't initiate IO from the other end change callback thread
1885 * (which is the current context we're executing in.) This is because
1886 * if the other end disconnects while we're doing IO from the callback
1887 * thread, then we can't recieve that disconnect event and we hang
1888 * waiting for an IO that can never complete.
1889 */
1890 (void) ddi_taskq_dispatch(vdp->xdf_ready_tq, xdf_setstate_ready, vdp,
1891 DDI_SLEEP);
1892
1893 (void) xvdi_switch_state(dip, XBT_NULL, XenbusStateConnected);
1894 return (DDI_SUCCESS);
1895 }
1896
1897 /*ARGSUSED*/
1898 static void
xdf_oe_change(dev_info_t * dip,ddi_eventcookie_t id,void * arg,void * impl_data)1899 xdf_oe_change(dev_info_t *dip, ddi_eventcookie_t id, void *arg, void *impl_data)
1900 {
1901 XenbusState new_state = *(XenbusState *)impl_data;
1902 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip);
1903
1904 DPRINTF(DDI_DBG, ("xdf@%s: otherend state change to %d!\n",
1905 vdp->xdf_addr, new_state));
1906
1907 mutex_enter(&vdp->xdf_cb_lk);
1908
1909 /* We assume that this callback is single threaded */
1910 ASSERT(vdp->xdf_oe_change_thread == NULL);
1911 DEBUG_EVAL(vdp->xdf_oe_change_thread = curthread);
1912
1913 /* ignore any backend state changes if we're suspending/suspended */
1914 if (vdp->xdf_suspending || (vdp->xdf_state == XD_SUSPEND)) {
1915 DEBUG_EVAL(vdp->xdf_oe_change_thread = NULL);
1916 mutex_exit(&vdp->xdf_cb_lk);
1917 return;
1918 }
1919
1920 switch (new_state) {
1921 case XenbusStateUnknown:
1922 case XenbusStateInitialising:
1923 case XenbusStateInitWait:
1924 case XenbusStateInitialised:
1925 if (vdp->xdf_state == XD_INIT)
1926 break;
1927
1928 xdf_disconnect(vdp, XD_UNKNOWN, B_FALSE);
1929 if (xdf_setstate_init(vdp) != DDI_SUCCESS)
1930 break;
1931 ASSERT(vdp->xdf_state == XD_INIT);
1932 break;
1933
1934 case XenbusStateConnected:
1935 if ((vdp->xdf_state == XD_CONNECTED) ||
1936 (vdp->xdf_state == XD_READY))
1937 break;
1938
1939 if (vdp->xdf_state != XD_INIT) {
1940 xdf_disconnect(vdp, XD_UNKNOWN, B_FALSE);
1941 if (xdf_setstate_init(vdp) != DDI_SUCCESS)
1942 break;
1943 ASSERT(vdp->xdf_state == XD_INIT);
1944 }
1945
1946 if (xdf_setstate_connected(vdp) != DDI_SUCCESS) {
1947 xdf_disconnect(vdp, XD_UNKNOWN, B_FALSE);
1948 break;
1949 }
1950 ASSERT(vdp->xdf_state == XD_CONNECTED);
1951 break;
1952
1953 case XenbusStateClosing:
1954 if (xdf_isopen(vdp, -1)) {
1955 cmn_err(CE_NOTE,
1956 "xdf@%s: hot-unplug failed, still in use",
1957 vdp->xdf_addr);
1958 break;
1959 }
1960 /*FALLTHROUGH*/
1961 case XenbusStateClosed:
1962 xdf_disconnect(vdp, XD_CLOSED, B_FALSE);
1963 break;
1964 }
1965
1966 /* notify anybody waiting for oe state change */
1967 cv_broadcast(&vdp->xdf_dev_cv);
1968 DEBUG_EVAL(vdp->xdf_oe_change_thread = NULL);
1969 mutex_exit(&vdp->xdf_cb_lk);
1970 }
1971
1972 static int
xdf_connect_locked(xdf_t * vdp,boolean_t wait)1973 xdf_connect_locked(xdf_t *vdp, boolean_t wait)
1974 {
1975 int rv, timeouts = 0, reset = 20;
1976
1977 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk));
1978 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
1979
1980 /* we can't connect once we're in the closed state */
1981 if (vdp->xdf_state == XD_CLOSED)
1982 return (XD_CLOSED);
1983
1984 vdp->xdf_connect_req++;
1985 while (vdp->xdf_state != XD_READY) {
1986 mutex_exit(&vdp->xdf_dev_lk);
1987
1988 /* only one thread at a time can be the connection thread */
1989 if (vdp->xdf_connect_thread == NULL)
1990 vdp->xdf_connect_thread = curthread;
1991
1992 if (vdp->xdf_connect_thread == curthread) {
1993 if ((timeouts > 0) && ((timeouts % reset) == 0)) {
1994 /*
1995 * If we haven't establised a connection
1996 * within the reset time, then disconnect
1997 * so we can try again, and double the reset
1998 * time. The reset time starts at 2 sec.
1999 */
2000 (void) xdf_disconnect(vdp, XD_UNKNOWN, B_TRUE);
2001 reset *= 2;
2002 }
2003 if (vdp->xdf_state == XD_UNKNOWN)
2004 (void) xdf_setstate_init(vdp);
2005 if (vdp->xdf_state == XD_INIT)
2006 (void) xdf_setstate_connected(vdp);
2007 }
2008
2009 mutex_enter(&vdp->xdf_dev_lk);
2010 if (!wait || (vdp->xdf_state == XD_READY))
2011 goto out;
2012
2013 mutex_exit((&vdp->xdf_cb_lk));
2014 if (vdp->xdf_connect_thread != curthread) {
2015 rv = cv_wait_sig(&vdp->xdf_dev_cv, &vdp->xdf_dev_lk);
2016 } else {
2017 /* delay for 0.1 sec */
2018 rv = cv_reltimedwait_sig(&vdp->xdf_dev_cv,
2019 &vdp->xdf_dev_lk, drv_usectohz(100*1000),
2020 TR_CLOCK_TICK);
2021 if (rv == -1)
2022 timeouts++;
2023 }
2024 mutex_exit((&vdp->xdf_dev_lk));
2025 mutex_enter((&vdp->xdf_cb_lk));
2026 mutex_enter((&vdp->xdf_dev_lk));
2027 if (rv == 0)
2028 goto out;
2029 }
2030
2031 out:
2032 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk));
2033 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk));
2034
2035 if (vdp->xdf_connect_thread == curthread) {
2036 /*
2037 * wake up someone else so they can become the connection
2038 * thread.
2039 */
2040 cv_signal(&vdp->xdf_dev_cv);
2041 vdp->xdf_connect_thread = NULL;
2042 }
2043
2044 /* Try to lock the media */
2045 mutex_exit((&vdp->xdf_dev_lk));
2046 (void) xdf_media_req(vdp, XBV_MEDIA_REQ_LOCK, B_TRUE);
2047 mutex_enter((&vdp->xdf_dev_lk));
2048
2049 vdp->xdf_connect_req--;
2050 return (vdp->xdf_state);
2051 }
2052
2053 static uint_t
xdf_iorestart(caddr_t arg)2054 xdf_iorestart(caddr_t arg)
2055 {
2056 xdf_t *vdp = (xdf_t *)arg;
2057
2058 ASSERT(vdp != NULL);
2059
2060 mutex_enter(&vdp->xdf_dev_lk);
2061 ASSERT(ISDMACBON(vdp));
2062 SETDMACBOFF(vdp);
2063 mutex_exit(&vdp->xdf_dev_lk);
2064
2065 xdf_io_start(vdp);
2066
2067 return (DDI_INTR_CLAIMED);
2068 }
2069
2070 #if defined(XPV_HVM_DRIVER)
2071
2072 typedef struct xdf_hvm_entry {
2073 list_node_t xdf_he_list;
2074 char *xdf_he_path;
2075 dev_info_t *xdf_he_dip;
2076 } xdf_hvm_entry_t;
2077
2078 static list_t xdf_hvm_list;
2079 static kmutex_t xdf_hvm_list_lock;
2080
2081 static xdf_hvm_entry_t *
i_xdf_hvm_find(const char * path,dev_info_t * dip)2082 i_xdf_hvm_find(const char *path, dev_info_t *dip)
2083 {
2084 xdf_hvm_entry_t *i;
2085
2086 ASSERT((path != NULL) || (dip != NULL));
2087 ASSERT(MUTEX_HELD(&xdf_hvm_list_lock));
2088
2089 i = list_head(&xdf_hvm_list);
2090 while (i != NULL) {
2091 if ((path != NULL) && strcmp(i->xdf_he_path, path) != 0) {
2092 i = list_next(&xdf_hvm_list, i);
2093 continue;
2094 }
2095 if ((dip != NULL) && (i->xdf_he_dip != dip)) {
2096 i = list_next(&xdf_hvm_list, i);
2097 continue;
2098 }
2099 break;
2100 }
2101 return (i);
2102 }
2103
2104 dev_info_t *
xdf_hvm_hold(const char * path)2105 xdf_hvm_hold(const char *path)
2106 {
2107 xdf_hvm_entry_t *i;
2108 dev_info_t *dip;
2109
2110 mutex_enter(&xdf_hvm_list_lock);
2111 i = i_xdf_hvm_find(path, NULL);
2112 if (i == NULL) {
2113 mutex_exit(&xdf_hvm_list_lock);
2114 return (B_FALSE);
2115 }
2116 ndi_hold_devi(dip = i->xdf_he_dip);
2117 mutex_exit(&xdf_hvm_list_lock);
2118 return (dip);
2119 }
2120
2121 static void
xdf_hvm_add(dev_info_t * dip)2122 xdf_hvm_add(dev_info_t *dip)
2123 {
2124 xdf_hvm_entry_t *i;
2125 char *path;
2126
2127 /* figure out the path for the dip */
2128 path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
2129 (void) ddi_pathname(dip, path);
2130
2131 i = kmem_alloc(sizeof (*i), KM_SLEEP);
2132 i->xdf_he_dip = dip;
2133 i->xdf_he_path = i_ddi_strdup(path, KM_SLEEP);
2134
2135 mutex_enter(&xdf_hvm_list_lock);
2136 ASSERT(i_xdf_hvm_find(path, NULL) == NULL);
2137 ASSERT(i_xdf_hvm_find(NULL, dip) == NULL);
2138 list_insert_head(&xdf_hvm_list, i);
2139 mutex_exit(&xdf_hvm_list_lock);
2140
2141 kmem_free(path, MAXPATHLEN);
2142 }
2143
2144 static void
xdf_hvm_rm(dev_info_t * dip)2145 xdf_hvm_rm(dev_info_t *dip)
2146 {
2147 xdf_hvm_entry_t *i;
2148
2149 mutex_enter(&xdf_hvm_list_lock);
2150 VERIFY((i = i_xdf_hvm_find(NULL, dip)) != NULL);
2151 list_remove(&xdf_hvm_list, i);
2152 mutex_exit(&xdf_hvm_list_lock);
2153
2154 kmem_free(i->xdf_he_path, strlen(i->xdf_he_path) + 1);
2155 kmem_free(i, sizeof (*i));
2156 }
2157
2158 static void
xdf_hvm_init(void)2159 xdf_hvm_init(void)
2160 {
2161 list_create(&xdf_hvm_list, sizeof (xdf_hvm_entry_t),
2162 offsetof(xdf_hvm_entry_t, xdf_he_list));
2163 mutex_init(&xdf_hvm_list_lock, NULL, MUTEX_DEFAULT, NULL);
2164 }
2165
2166 static void
xdf_hvm_fini(void)2167 xdf_hvm_fini(void)
2168 {
2169 ASSERT(list_head(&xdf_hvm_list) == NULL);
2170 list_destroy(&xdf_hvm_list);
2171 mutex_destroy(&xdf_hvm_list_lock);
2172 }
2173
2174 boolean_t
xdf_hvm_connect(dev_info_t * dip)2175 xdf_hvm_connect(dev_info_t *dip)
2176 {
2177 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip);
2178 char *oename, *str;
2179 int rv;
2180
2181 mutex_enter(&vdp->xdf_cb_lk);
2182
2183 /*
2184 * Before try to establish a connection we need to wait for the
2185 * backend hotplug scripts to have run. Once they are run the
2186 * "<oename>/hotplug-status" property will be set to "connected".
2187 */
2188 for (;;) {
2189 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk));
2190
2191 /*
2192 * Get the xenbus path to the backend device. Note that
2193 * we can't cache this path (and we look it up on each pass
2194 * through this loop) because it could change during
2195 * suspend, resume, and migration operations.
2196 */
2197 if ((oename = xvdi_get_oename(dip)) == NULL) {
2198 mutex_exit(&vdp->xdf_cb_lk);
2199 return (B_FALSE);
2200 }
2201
2202 str = NULL;
2203 if ((xenbus_read_str(oename, XBP_HP_STATUS, &str) == 0) &&
2204 (strcmp(str, XBV_HP_STATUS_CONN) == 0))
2205 break;
2206
2207 if (str != NULL)
2208 strfree(str);
2209
2210 /* wait for an update to "<oename>/hotplug-status" */
2211 if (cv_wait_sig(&vdp->xdf_hp_status_cv, &vdp->xdf_cb_lk) == 0) {
2212 /* we got interrupted by a signal */
2213 mutex_exit(&vdp->xdf_cb_lk);
2214 return (B_FALSE);
2215 }
2216 }
2217
2218 /* Good news. The backend hotplug scripts have been run. */
2219 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk));
2220 ASSERT(strcmp(str, XBV_HP_STATUS_CONN) == 0);
2221 strfree(str);
2222
2223 /*
2224 * If we're emulating a cd device and if the backend doesn't support
2225 * media request opreations, then we're not going to bother trying
2226 * to establish a connection for a couple reasons. First off, media
2227 * requests support is required to support operations like eject and
2228 * media locking. Second, other backend platforms like Linux don't
2229 * support hvm pv cdrom access. They don't even have a backend pv
2230 * driver for cdrom device nodes, so we don't want to block forever
2231 * waiting for a connection to a backend driver that doesn't exist.
2232 */
2233 if (XD_IS_CD(vdp) && !xenbus_exists(oename, XBP_MEDIA_REQ_SUP)) {
2234 mutex_exit(&vdp->xdf_cb_lk);
2235 return (B_FALSE);
2236 }
2237
2238 mutex_enter(&vdp->xdf_dev_lk);
2239 rv = xdf_connect_locked(vdp, B_TRUE);
2240 mutex_exit(&vdp->xdf_dev_lk);
2241 mutex_exit(&vdp->xdf_cb_lk);
2242
2243 return ((rv == XD_READY) ? B_TRUE : B_FALSE);
2244 }
2245
2246 int
xdf_hvm_setpgeom(dev_info_t * dip,cmlb_geom_t * geomp)2247 xdf_hvm_setpgeom(dev_info_t *dip, cmlb_geom_t *geomp)
2248 {
2249 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip);
2250
2251 /* sanity check the requested physical geometry */
2252 mutex_enter(&vdp->xdf_dev_lk);
2253 if ((geomp->g_secsize != XB_BSIZE) ||
2254 (geomp->g_capacity == 0)) {
2255 mutex_exit(&vdp->xdf_dev_lk);
2256 return (EINVAL);
2257 }
2258
2259 /*
2260 * If we've already connected to the backend device then make sure
2261 * we're not defining a physical geometry larger than our backend
2262 * device.
2263 */
2264 if ((vdp->xdf_xdev_nblocks != 0) &&
2265 (geomp->g_capacity > vdp->xdf_xdev_nblocks)) {
2266 mutex_exit(&vdp->xdf_dev_lk);
2267 return (EINVAL);
2268 }
2269
2270 bzero(&vdp->xdf_pgeom, sizeof (vdp->xdf_pgeom));
2271 vdp->xdf_pgeom.g_ncyl = geomp->g_ncyl;
2272 vdp->xdf_pgeom.g_acyl = geomp->g_acyl;
2273 vdp->xdf_pgeom.g_nhead = geomp->g_nhead;
2274 vdp->xdf_pgeom.g_nsect = geomp->g_nsect;
2275 vdp->xdf_pgeom.g_secsize = geomp->g_secsize;
2276 vdp->xdf_pgeom.g_capacity = geomp->g_capacity;
2277 vdp->xdf_pgeom.g_intrlv = geomp->g_intrlv;
2278 vdp->xdf_pgeom.g_rpm = geomp->g_rpm;
2279
2280 vdp->xdf_pgeom_fixed = B_TRUE;
2281 mutex_exit(&vdp->xdf_dev_lk);
2282
2283 /* force a re-validation */
2284 cmlb_invalidate(vdp->xdf_vd_lbl, NULL);
2285
2286 return (0);
2287 }
2288
2289 boolean_t
xdf_is_cd(dev_info_t * dip)2290 xdf_is_cd(dev_info_t *dip)
2291 {
2292 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip);
2293 boolean_t rv;
2294
2295 mutex_enter(&vdp->xdf_cb_lk);
2296 rv = XD_IS_CD(vdp);
2297 mutex_exit(&vdp->xdf_cb_lk);
2298 return (rv);
2299 }
2300
2301 boolean_t
xdf_is_rm(dev_info_t * dip)2302 xdf_is_rm(dev_info_t *dip)
2303 {
2304 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip);
2305 boolean_t rv;
2306
2307 mutex_enter(&vdp->xdf_cb_lk);
2308 rv = XD_IS_RM(vdp);
2309 mutex_exit(&vdp->xdf_cb_lk);
2310 return (rv);
2311 }
2312
2313 boolean_t
xdf_media_req_supported(dev_info_t * dip)2314 xdf_media_req_supported(dev_info_t *dip)
2315 {
2316 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip);
2317 boolean_t rv;
2318
2319 mutex_enter(&vdp->xdf_cb_lk);
2320 rv = vdp->xdf_media_req_supported;
2321 mutex_exit(&vdp->xdf_cb_lk);
2322 return (rv);
2323 }
2324
2325 #endif /* XPV_HVM_DRIVER */
2326
2327 static int
xdf_lb_getcap(dev_info_t * dip,diskaddr_t * capp)2328 xdf_lb_getcap(dev_info_t *dip, diskaddr_t *capp)
2329 {
2330 xdf_t *vdp;
2331 vdp = ddi_get_soft_state(xdf_ssp, ddi_get_instance(dip));
2332
2333 if (vdp == NULL)
2334 return (ENXIO);
2335
2336 mutex_enter(&vdp->xdf_dev_lk);
2337 *capp = vdp->xdf_pgeom.g_capacity;
2338 DPRINTF(LBL_DBG, ("xdf@%s:capacity %llu\n", vdp->xdf_addr, *capp));
2339 mutex_exit(&vdp->xdf_dev_lk);
2340 return (0);
2341 }
2342
2343 static int
xdf_lb_getpgeom(dev_info_t * dip,cmlb_geom_t * geomp)2344 xdf_lb_getpgeom(dev_info_t *dip, cmlb_geom_t *geomp)
2345 {
2346 xdf_t *vdp;
2347
2348 if ((vdp = ddi_get_soft_state(xdf_ssp, ddi_get_instance(dip))) == NULL)
2349 return (ENXIO);
2350 *geomp = vdp->xdf_pgeom;
2351 return (0);
2352 }
2353
2354 /*
2355 * No real HBA, no geometry available from it
2356 */
2357 /*ARGSUSED*/
2358 static int
xdf_lb_getvgeom(dev_info_t * dip,cmlb_geom_t * geomp)2359 xdf_lb_getvgeom(dev_info_t *dip, cmlb_geom_t *geomp)
2360 {
2361 return (EINVAL);
2362 }
2363
2364 static int
xdf_lb_getattribute(dev_info_t * dip,tg_attribute_t * tgattributep)2365 xdf_lb_getattribute(dev_info_t *dip, tg_attribute_t *tgattributep)
2366 {
2367 xdf_t *vdp;
2368
2369 if (!(vdp = ddi_get_soft_state(xdf_ssp, ddi_get_instance(dip))))
2370 return (ENXIO);
2371
2372 if (XD_IS_RO(vdp))
2373 tgattributep->media_is_writable = 0;
2374 else
2375 tgattributep->media_is_writable = 1;
2376 tgattributep->media_is_rotational = 0;
2377 return (0);
2378 }
2379
2380 /* ARGSUSED3 */
2381 int
xdf_lb_getinfo(dev_info_t * dip,int cmd,void * arg,void * tg_cookie)2382 xdf_lb_getinfo(dev_info_t *dip, int cmd, void *arg, void *tg_cookie)
2383 {
2384 int instance;
2385 xdf_t *vdp;
2386
2387 instance = ddi_get_instance(dip);
2388
2389 if ((vdp = ddi_get_soft_state(xdf_ssp, instance)) == NULL)
2390 return (ENXIO);
2391
2392 switch (cmd) {
2393 case TG_GETPHYGEOM:
2394 return (xdf_lb_getpgeom(dip, (cmlb_geom_t *)arg));
2395 case TG_GETVIRTGEOM:
2396 return (xdf_lb_getvgeom(dip, (cmlb_geom_t *)arg));
2397 case TG_GETCAPACITY:
2398 return (xdf_lb_getcap(dip, (diskaddr_t *)arg));
2399 case TG_GETBLOCKSIZE:
2400 mutex_enter(&vdp->xdf_cb_lk);
2401 *(uint32_t *)arg = vdp->xdf_xdev_secsize;
2402 mutex_exit(&vdp->xdf_cb_lk);
2403 return (0);
2404 case TG_GETATTR:
2405 return (xdf_lb_getattribute(dip, (tg_attribute_t *)arg));
2406 default:
2407 return (ENOTTY);
2408 }
2409 }
2410
2411 /* ARGSUSED5 */
2412 int
xdf_lb_rdwr(dev_info_t * dip,uchar_t cmd,void * bufp,diskaddr_t start,size_t reqlen,void * tg_cookie)2413 xdf_lb_rdwr(dev_info_t *dip, uchar_t cmd, void *bufp,
2414 diskaddr_t start, size_t reqlen, void *tg_cookie)
2415 {
2416 xdf_t *vdp;
2417 struct buf *bp;
2418 int err = 0;
2419
2420 vdp = ddi_get_soft_state(xdf_ssp, ddi_get_instance(dip));
2421
2422 /* We don't allow IO from the oe_change callback thread */
2423 ASSERT(curthread != vdp->xdf_oe_change_thread);
2424
2425 if ((start + ((reqlen / (vdp->xdf_xdev_secsize / DEV_BSIZE))
2426 >> DEV_BSHIFT)) > vdp->xdf_pgeom.g_capacity)
2427 return (EINVAL);
2428
2429 bp = getrbuf(KM_SLEEP);
2430 if (cmd == TG_READ)
2431 bp->b_flags = B_BUSY | B_READ;
2432 else
2433 bp->b_flags = B_BUSY | B_WRITE;
2434
2435 bp->b_un.b_addr = bufp;
2436 bp->b_bcount = reqlen;
2437 bp->b_blkno = start * (vdp->xdf_xdev_secsize / DEV_BSIZE);
2438 bp->b_edev = DDI_DEV_T_NONE; /* don't have dev_t */
2439
2440 mutex_enter(&vdp->xdf_dev_lk);
2441 xdf_bp_push(vdp, bp);
2442 mutex_exit(&vdp->xdf_dev_lk);
2443 xdf_io_start(vdp);
2444 if (curthread == vdp->xdf_ready_tq_thread)
2445 (void) xdf_ring_drain(vdp);
2446 err = biowait(bp);
2447 ASSERT(bp->b_flags & B_DONE);
2448 freerbuf(bp);
2449 return (err);
2450 }
2451
2452 /*
2453 * Lock the current media. Set the media state to "lock".
2454 * (Media locks are only respected by the backend driver.)
2455 */
2456 static int
xdf_ioctl_mlock(xdf_t * vdp)2457 xdf_ioctl_mlock(xdf_t *vdp)
2458 {
2459 int rv;
2460 mutex_enter(&vdp->xdf_cb_lk);
2461 rv = xdf_media_req(vdp, XBV_MEDIA_REQ_LOCK, B_TRUE);
2462 mutex_exit(&vdp->xdf_cb_lk);
2463 return (rv);
2464 }
2465
2466 /*
2467 * Release a media lock. Set the media state to "none".
2468 */
2469 static int
xdf_ioctl_munlock(xdf_t * vdp)2470 xdf_ioctl_munlock(xdf_t *vdp)
2471 {
2472 int rv;
2473 mutex_enter(&vdp->xdf_cb_lk);
2474 rv = xdf_media_req(vdp, XBV_MEDIA_REQ_NONE, B_TRUE);
2475 mutex_exit(&vdp->xdf_cb_lk);
2476 return (rv);
2477 }
2478
2479 /*
2480 * Eject the current media. Ignores any media locks. (Media locks
2481 * are only for benifit of the the backend.)
2482 */
2483 static int
xdf_ioctl_eject(xdf_t * vdp)2484 xdf_ioctl_eject(xdf_t *vdp)
2485 {
2486 int rv;
2487
2488 mutex_enter(&vdp->xdf_cb_lk);
2489 if ((rv = xdf_media_req(vdp, XBV_MEDIA_REQ_EJECT, B_FALSE)) != 0) {
2490 mutex_exit(&vdp->xdf_cb_lk);
2491 return (rv);
2492 }
2493
2494 /*
2495 * We've set the media requests xenbus parameter to eject, so now
2496 * disconnect from the backend, wait for the backend to clear
2497 * the media requets xenbus paramter, and then we can reconnect
2498 * to the backend.
2499 */
2500 (void) xdf_disconnect(vdp, XD_UNKNOWN, B_TRUE);
2501 mutex_enter(&vdp->xdf_dev_lk);
2502 if (xdf_connect_locked(vdp, B_TRUE) != XD_READY) {
2503 mutex_exit(&vdp->xdf_dev_lk);
2504 mutex_exit(&vdp->xdf_cb_lk);
2505 return (EIO);
2506 }
2507 mutex_exit(&vdp->xdf_dev_lk);
2508 mutex_exit(&vdp->xdf_cb_lk);
2509 return (0);
2510 }
2511
2512 /*
2513 * Watch for media state changes. This can be an insertion of a device
2514 * (triggered by a 'xm block-configure' request in another domain) or
2515 * the ejection of a device (triggered by a local "eject" operation).
2516 * For a full description of the DKIOCSTATE ioctl behavior see dkio(7I).
2517 */
2518 static int
xdf_dkstate(xdf_t * vdp,enum dkio_state mstate)2519 xdf_dkstate(xdf_t *vdp, enum dkio_state mstate)
2520 {
2521 enum dkio_state prev_state;
2522
2523 mutex_enter(&vdp->xdf_cb_lk);
2524 prev_state = vdp->xdf_mstate;
2525
2526 if (vdp->xdf_mstate == mstate) {
2527 while (vdp->xdf_mstate == prev_state) {
2528 if (cv_wait_sig(&vdp->xdf_mstate_cv,
2529 &vdp->xdf_cb_lk) == 0) {
2530 mutex_exit(&vdp->xdf_cb_lk);
2531 return (EINTR);
2532 }
2533 }
2534 }
2535
2536 if ((prev_state != DKIO_INSERTED) &&
2537 (vdp->xdf_mstate == DKIO_INSERTED)) {
2538 (void) xdf_media_req(vdp, XBV_MEDIA_REQ_LOCK, B_TRUE);
2539 mutex_exit(&vdp->xdf_cb_lk);
2540 return (0);
2541 }
2542
2543 mutex_exit(&vdp->xdf_cb_lk);
2544 return (0);
2545 }
2546
2547 /*ARGSUSED*/
2548 static int
xdf_ioctl(dev_t dev,int cmd,intptr_t arg,int mode,cred_t * credp,int * rvalp)2549 xdf_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
2550 int *rvalp)
2551 {
2552 minor_t minor = getminor(dev);
2553 int part = XDF_PART(minor);
2554 xdf_t *vdp;
2555 int rv;
2556
2557 if (((vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor))) == NULL) ||
2558 (!xdf_isopen(vdp, part)))
2559 return (ENXIO);
2560
2561 DPRINTF(IOCTL_DBG, ("xdf@%s:ioctl: cmd %d (0x%x)\n",
2562 vdp->xdf_addr, cmd, cmd));
2563
2564 switch (cmd) {
2565 default:
2566 return (ENOTTY);
2567 case DKIOCG_PHYGEOM:
2568 case DKIOCG_VIRTGEOM:
2569 case DKIOCGGEOM:
2570 case DKIOCSGEOM:
2571 case DKIOCGAPART:
2572 case DKIOCSAPART:
2573 case DKIOCGVTOC:
2574 case DKIOCSVTOC:
2575 case DKIOCPARTINFO:
2576 case DKIOCGEXTVTOC:
2577 case DKIOCSEXTVTOC:
2578 case DKIOCEXTPARTINFO:
2579 case DKIOCGMBOOT:
2580 case DKIOCSMBOOT:
2581 case DKIOCGETEFI:
2582 case DKIOCSETEFI:
2583 case DKIOCSETEXTPART:
2584 case DKIOCPARTITION:
2585 return (cmlb_ioctl(vdp->xdf_vd_lbl, dev, cmd, arg, mode, credp,
2586 rvalp, NULL));
2587 case FDEJECT:
2588 case DKIOCEJECT:
2589 case CDROMEJECT:
2590 return (xdf_ioctl_eject(vdp));
2591 case DKIOCLOCK:
2592 return (xdf_ioctl_mlock(vdp));
2593 case DKIOCUNLOCK:
2594 return (xdf_ioctl_munlock(vdp));
2595 case CDROMREADOFFSET: {
2596 int offset = 0;
2597 if (!XD_IS_CD(vdp))
2598 return (ENOTTY);
2599 if (ddi_copyout(&offset, (void *)arg, sizeof (int), mode))
2600 return (EFAULT);
2601 return (0);
2602 }
2603 case DKIOCGMEDIAINFO: {
2604 struct dk_minfo media_info;
2605
2606 media_info.dki_lbsize = vdp->xdf_xdev_secsize;
2607 media_info.dki_capacity = vdp->xdf_pgeom.g_capacity;
2608 if (XD_IS_CD(vdp))
2609 media_info.dki_media_type = DK_CDROM;
2610 else
2611 media_info.dki_media_type = DK_FIXED_DISK;
2612
2613 if (ddi_copyout(&media_info, (void *)arg,
2614 sizeof (struct dk_minfo), mode))
2615 return (EFAULT);
2616 return (0);
2617 }
2618 case DKIOCINFO: {
2619 struct dk_cinfo info;
2620
2621 /* controller information */
2622 if (XD_IS_CD(vdp))
2623 info.dki_ctype = DKC_CDROM;
2624 else
2625 info.dki_ctype = DKC_VBD;
2626
2627 info.dki_cnum = 0;
2628 (void) strncpy((char *)(&info.dki_cname), "xdf", 8);
2629
2630 /* unit information */
2631 info.dki_unit = ddi_get_instance(vdp->xdf_dip);
2632 (void) strncpy((char *)(&info.dki_dname), "xdf", 8);
2633 info.dki_flags = DKI_FMTVOL;
2634 info.dki_partition = part;
2635 info.dki_maxtransfer = maxphys / DEV_BSIZE;
2636 info.dki_addr = 0;
2637 info.dki_space = 0;
2638 info.dki_prio = 0;
2639 info.dki_vec = 0;
2640
2641 if (ddi_copyout(&info, (void *)arg, sizeof (info), mode))
2642 return (EFAULT);
2643 return (0);
2644 }
2645 case DKIOCSTATE: {
2646 enum dkio_state mstate;
2647
2648 if (ddi_copyin((void *)arg, &mstate,
2649 sizeof (mstate), mode) != 0)
2650 return (EFAULT);
2651 if ((rv = xdf_dkstate(vdp, mstate)) != 0)
2652 return (rv);
2653 mstate = vdp->xdf_mstate;
2654 if (ddi_copyout(&mstate, (void *)arg,
2655 sizeof (mstate), mode) != 0)
2656 return (EFAULT);
2657 return (0);
2658 }
2659 case DKIOCREMOVABLE: {
2660 int i = BOOLEAN2VOID(XD_IS_RM(vdp));
2661 if (ddi_copyout(&i, (caddr_t)arg, sizeof (i), mode))
2662 return (EFAULT);
2663 return (0);
2664 }
2665 case DKIOCGETWCE: {
2666 int i = BOOLEAN2VOID(XD_IS_RM(vdp));
2667 if (ddi_copyout(&i, (void *)arg, sizeof (i), mode))
2668 return (EFAULT);
2669 return (0);
2670 }
2671 case DKIOCSETWCE: {
2672 int i;
2673 if (ddi_copyin((void *)arg, &i, sizeof (i), mode))
2674 return (EFAULT);
2675 vdp->xdf_wce = VOID2BOOLEAN(i);
2676 return (0);
2677 }
2678 case DKIOCFLUSHWRITECACHE: {
2679 struct dk_callback *dkc = (struct dk_callback *)arg;
2680
2681 if (vdp->xdf_flush_supported) {
2682 rv = xdf_lb_rdwr(vdp->xdf_dip, TG_WRITE,
2683 NULL, 0, 0, (void *)dev);
2684 } else if (vdp->xdf_feature_barrier &&
2685 !xdf_barrier_flush_disable) {
2686 rv = xdf_lb_rdwr(vdp->xdf_dip, TG_WRITE,
2687 vdp->xdf_cache_flush_block, xdf_flush_block,
2688 vdp->xdf_xdev_secsize, (void *)dev);
2689 } else {
2690 return (ENOTTY);
2691 }
2692 if ((mode & FKIOCTL) && (dkc != NULL) &&
2693 (dkc->dkc_callback != NULL)) {
2694 (*dkc->dkc_callback)(dkc->dkc_cookie, rv);
2695 /* need to return 0 after calling callback */
2696 rv = 0;
2697 }
2698 return (rv);
2699 }
2700 }
2701 /*NOTREACHED*/
2702 }
2703
2704 static int
xdf_strategy(struct buf * bp)2705 xdf_strategy(struct buf *bp)
2706 {
2707 xdf_t *vdp;
2708 minor_t minor;
2709 diskaddr_t p_blkct, p_blkst;
2710 daddr_t blkno;
2711 ulong_t nblks;
2712 int part;
2713
2714 minor = getminor(bp->b_edev);
2715 part = XDF_PART(minor);
2716 vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor));
2717
2718 mutex_enter(&vdp->xdf_dev_lk);
2719 if (!xdf_isopen(vdp, part)) {
2720 mutex_exit(&vdp->xdf_dev_lk);
2721 xdf_io_err(bp, ENXIO, 0);
2722 return (0);
2723 }
2724
2725 /* We don't allow IO from the oe_change callback thread */
2726 ASSERT(curthread != vdp->xdf_oe_change_thread);
2727
2728 /* Check for writes to a read only device */
2729 if (!IS_READ(bp) && XD_IS_RO(vdp)) {
2730 mutex_exit(&vdp->xdf_dev_lk);
2731 xdf_io_err(bp, EROFS, 0);
2732 return (0);
2733 }
2734
2735 /* Check if this I/O is accessing a partition or the entire disk */
2736 if ((long)bp->b_private == XB_SLICE_NONE) {
2737 /* This I/O is using an absolute offset */
2738 p_blkct = vdp->xdf_xdev_nblocks;
2739 p_blkst = 0;
2740 } else {
2741 /* This I/O is using a partition relative offset */
2742 mutex_exit(&vdp->xdf_dev_lk);
2743 if (cmlb_partinfo(vdp->xdf_vd_lbl, part, &p_blkct,
2744 &p_blkst, NULL, NULL, NULL)) {
2745 xdf_io_err(bp, ENXIO, 0);
2746 return (0);
2747 }
2748 mutex_enter(&vdp->xdf_dev_lk);
2749 }
2750
2751 /*
2752 * Adjust the real blkno and bcount according to the underline
2753 * physical sector size.
2754 */
2755 blkno = bp->b_blkno / (vdp->xdf_xdev_secsize / XB_BSIZE);
2756
2757 /* check for a starting block beyond the disk or partition limit */
2758 if (blkno > p_blkct) {
2759 DPRINTF(IO_DBG, ("xdf@%s: block %lld exceeds VBD size %"PRIu64,
2760 vdp->xdf_addr, (longlong_t)blkno, (uint64_t)p_blkct));
2761 mutex_exit(&vdp->xdf_dev_lk);
2762 xdf_io_err(bp, EINVAL, 0);
2763 return (0);
2764 }
2765
2766 /* Legacy: don't set error flag at this case */
2767 if (blkno == p_blkct) {
2768 mutex_exit(&vdp->xdf_dev_lk);
2769 bp->b_resid = bp->b_bcount;
2770 biodone(bp);
2771 return (0);
2772 }
2773
2774 /* sanitize the input buf */
2775 bioerror(bp, 0);
2776 bp->b_resid = 0;
2777 bp->av_back = bp->av_forw = NULL;
2778
2779 /* Adjust for partial transfer, this will result in an error later */
2780 if (vdp->xdf_xdev_secsize != 0 &&
2781 vdp->xdf_xdev_secsize != XB_BSIZE) {
2782 nblks = bp->b_bcount / vdp->xdf_xdev_secsize;
2783 } else {
2784 nblks = bp->b_bcount >> XB_BSHIFT;
2785 }
2786
2787 if ((blkno + nblks) > p_blkct) {
2788 if (vdp->xdf_xdev_secsize != 0 &&
2789 vdp->xdf_xdev_secsize != XB_BSIZE) {
2790 bp->b_resid =
2791 ((blkno + nblks) - p_blkct) *
2792 vdp->xdf_xdev_secsize;
2793 } else {
2794 bp->b_resid =
2795 ((blkno + nblks) - p_blkct) <<
2796 XB_BSHIFT;
2797 }
2798 bp->b_bcount -= bp->b_resid;
2799 }
2800
2801 DPRINTF(IO_DBG, ("xdf@%s: strategy blk %lld len %lu\n",
2802 vdp->xdf_addr, (longlong_t)blkno, (ulong_t)bp->b_bcount));
2803
2804 /* Fix up the buf struct */
2805 bp->b_flags |= B_BUSY;
2806 bp->b_private = (void *)(uintptr_t)p_blkst;
2807
2808 xdf_bp_push(vdp, bp);
2809 mutex_exit(&vdp->xdf_dev_lk);
2810 xdf_io_start(vdp);
2811 if (do_polled_io)
2812 (void) xdf_ring_drain(vdp);
2813 return (0);
2814 }
2815
2816 /*ARGSUSED*/
2817 static int
xdf_read(dev_t dev,struct uio * uiop,cred_t * credp)2818 xdf_read(dev_t dev, struct uio *uiop, cred_t *credp)
2819 {
2820 xdf_t *vdp;
2821 minor_t minor;
2822 diskaddr_t p_blkcnt;
2823 int part;
2824
2825 minor = getminor(dev);
2826 if ((vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor))) == NULL)
2827 return (ENXIO);
2828
2829 DPRINTF(IO_DBG, ("xdf@%s: read offset 0x%"PRIx64"\n",
2830 vdp->xdf_addr, (int64_t)uiop->uio_offset));
2831
2832 part = XDF_PART(minor);
2833 if (!xdf_isopen(vdp, part))
2834 return (ENXIO);
2835
2836 if (cmlb_partinfo(vdp->xdf_vd_lbl, part, &p_blkcnt,
2837 NULL, NULL, NULL, NULL))
2838 return (ENXIO);
2839
2840 if (uiop->uio_loffset >= XB_DTOB(p_blkcnt, vdp))
2841 return (ENOSPC);
2842
2843 if (U_INVAL(uiop))
2844 return (EINVAL);
2845
2846 return (physio(xdf_strategy, NULL, dev, B_READ, xdfmin, uiop));
2847 }
2848
2849 /*ARGSUSED*/
2850 static int
xdf_write(dev_t dev,struct uio * uiop,cred_t * credp)2851 xdf_write(dev_t dev, struct uio *uiop, cred_t *credp)
2852 {
2853 xdf_t *vdp;
2854 minor_t minor;
2855 diskaddr_t p_blkcnt;
2856 int part;
2857
2858 minor = getminor(dev);
2859 if ((vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor))) == NULL)
2860 return (ENXIO);
2861
2862 DPRINTF(IO_DBG, ("xdf@%s: write offset 0x%"PRIx64"\n",
2863 vdp->xdf_addr, (int64_t)uiop->uio_offset));
2864
2865 part = XDF_PART(minor);
2866 if (!xdf_isopen(vdp, part))
2867 return (ENXIO);
2868
2869 if (cmlb_partinfo(vdp->xdf_vd_lbl, part, &p_blkcnt,
2870 NULL, NULL, NULL, NULL))
2871 return (ENXIO);
2872
2873 if (uiop->uio_loffset >= XB_DTOB(p_blkcnt, vdp))
2874 return (ENOSPC);
2875
2876 if (U_INVAL(uiop))
2877 return (EINVAL);
2878
2879 return (physio(xdf_strategy, NULL, dev, B_WRITE, xdfmin, uiop));
2880 }
2881
2882 /*ARGSUSED*/
2883 static int
xdf_aread(dev_t dev,struct aio_req * aiop,cred_t * credp)2884 xdf_aread(dev_t dev, struct aio_req *aiop, cred_t *credp)
2885 {
2886 xdf_t *vdp;
2887 minor_t minor;
2888 struct uio *uiop = aiop->aio_uio;
2889 diskaddr_t p_blkcnt;
2890 int part;
2891
2892 minor = getminor(dev);
2893 if ((vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor))) == NULL)
2894 return (ENXIO);
2895
2896 part = XDF_PART(minor);
2897 if (!xdf_isopen(vdp, part))
2898 return (ENXIO);
2899
2900 if (cmlb_partinfo(vdp->xdf_vd_lbl, part, &p_blkcnt,
2901 NULL, NULL, NULL, NULL))
2902 return (ENXIO);
2903
2904 if (uiop->uio_loffset >= XB_DTOB(p_blkcnt, vdp))
2905 return (ENOSPC);
2906
2907 if (U_INVAL(uiop))
2908 return (EINVAL);
2909
2910 return (aphysio(xdf_strategy, anocancel, dev, B_READ, xdfmin, aiop));
2911 }
2912
2913 /*ARGSUSED*/
2914 static int
xdf_awrite(dev_t dev,struct aio_req * aiop,cred_t * credp)2915 xdf_awrite(dev_t dev, struct aio_req *aiop, cred_t *credp)
2916 {
2917 xdf_t *vdp;
2918 minor_t minor;
2919 struct uio *uiop = aiop->aio_uio;
2920 diskaddr_t p_blkcnt;
2921 int part;
2922
2923 minor = getminor(dev);
2924 if ((vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor))) == NULL)
2925 return (ENXIO);
2926
2927 part = XDF_PART(minor);
2928 if (!xdf_isopen(vdp, part))
2929 return (ENXIO);
2930
2931 if (cmlb_partinfo(vdp->xdf_vd_lbl, part, &p_blkcnt,
2932 NULL, NULL, NULL, NULL))
2933 return (ENXIO);
2934
2935 if (uiop->uio_loffset >= XB_DTOB(p_blkcnt, vdp))
2936 return (ENOSPC);
2937
2938 if (U_INVAL(uiop))
2939 return (EINVAL);
2940
2941 return (aphysio(xdf_strategy, anocancel, dev, B_WRITE, xdfmin, aiop));
2942 }
2943
2944 static int
xdf_dump(dev_t dev,caddr_t addr,daddr_t blkno,int nblk)2945 xdf_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
2946 {
2947 struct buf dumpbuf, *dbp = &dumpbuf;
2948 xdf_t *vdp;
2949 minor_t minor;
2950 int err = 0;
2951 int part;
2952 diskaddr_t p_blkcnt, p_blkst;
2953
2954 minor = getminor(dev);
2955 if ((vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor))) == NULL)
2956 return (ENXIO);
2957
2958 DPRINTF(IO_DBG, ("xdf@%s: dump addr (0x%p) blk (%ld) nblks (%d)\n",
2959 vdp->xdf_addr, (void *)addr, blkno, nblk));
2960
2961 /* We don't allow IO from the oe_change callback thread */
2962 ASSERT(curthread != vdp->xdf_oe_change_thread);
2963
2964 part = XDF_PART(minor);
2965 if (!xdf_isopen(vdp, part))
2966 return (ENXIO);
2967
2968 if (cmlb_partinfo(vdp->xdf_vd_lbl, part, &p_blkcnt, &p_blkst,
2969 NULL, NULL, NULL))
2970 return (ENXIO);
2971
2972 if ((blkno + nblk) >
2973 (p_blkcnt * (vdp->xdf_xdev_secsize / XB_BSIZE))) {
2974 cmn_err(CE_WARN, "xdf@%s: block %ld exceeds VBD size %"PRIu64,
2975 vdp->xdf_addr, (daddr_t)((blkno + nblk) /
2976 (vdp->xdf_xdev_secsize / XB_BSIZE)), (uint64_t)p_blkcnt);
2977 return (EINVAL);
2978 }
2979
2980 bioinit(dbp);
2981 dbp->b_flags = B_BUSY;
2982 dbp->b_un.b_addr = addr;
2983 dbp->b_bcount = nblk << DEV_BSHIFT;
2984 dbp->b_blkno = blkno;
2985 dbp->b_edev = dev;
2986 dbp->b_private = (void *)(uintptr_t)p_blkst;
2987
2988 mutex_enter(&vdp->xdf_dev_lk);
2989 xdf_bp_push(vdp, dbp);
2990 mutex_exit(&vdp->xdf_dev_lk);
2991 xdf_io_start(vdp);
2992 err = xdf_ring_drain(vdp);
2993 biofini(dbp);
2994 return (err);
2995 }
2996
2997 /*ARGSUSED*/
2998 static int
xdf_close(dev_t dev,int flag,int otyp,struct cred * credp)2999 xdf_close(dev_t dev, int flag, int otyp, struct cred *credp)
3000 {
3001 minor_t minor;
3002 xdf_t *vdp;
3003 int part;
3004 ulong_t parbit;
3005
3006 minor = getminor(dev);
3007 if ((vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor))) == NULL)
3008 return (ENXIO);
3009
3010 mutex_enter(&vdp->xdf_dev_lk);
3011 part = XDF_PART(minor);
3012 if (!xdf_isopen(vdp, part)) {
3013 mutex_exit(&vdp->xdf_dev_lk);
3014 return (ENXIO);
3015 }
3016 parbit = 1 << part;
3017
3018 ASSERT((vdp->xdf_vd_open[otyp] & parbit) != 0);
3019 if (otyp == OTYP_LYR) {
3020 ASSERT(vdp->xdf_vd_lyropen[part] > 0);
3021 if (--vdp->xdf_vd_lyropen[part] == 0)
3022 vdp->xdf_vd_open[otyp] &= ~parbit;
3023 } else {
3024 vdp->xdf_vd_open[otyp] &= ~parbit;
3025 }
3026 vdp->xdf_vd_exclopen &= ~parbit;
3027
3028 mutex_exit(&vdp->xdf_dev_lk);
3029 return (0);
3030 }
3031
3032 static int
xdf_open(dev_t * devp,int flag,int otyp,cred_t * credp)3033 xdf_open(dev_t *devp, int flag, int otyp, cred_t *credp)
3034 {
3035 minor_t minor;
3036 xdf_t *vdp;
3037 int part;
3038 ulong_t parbit;
3039 diskaddr_t p_blkct = 0;
3040 boolean_t firstopen;
3041 boolean_t nodelay;
3042
3043 minor = getminor(*devp);
3044 if ((vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor))) == NULL)
3045 return (ENXIO);
3046
3047 nodelay = (flag & (FNDELAY | FNONBLOCK));
3048
3049 DPRINTF(DDI_DBG, ("xdf@%s: opening\n", vdp->xdf_addr));
3050
3051 /* do cv_wait until connected or failed */
3052 mutex_enter(&vdp->xdf_cb_lk);
3053 mutex_enter(&vdp->xdf_dev_lk);
3054 if (!nodelay && (xdf_connect_locked(vdp, B_TRUE) != XD_READY)) {
3055 mutex_exit(&vdp->xdf_dev_lk);
3056 mutex_exit(&vdp->xdf_cb_lk);
3057 return (ENXIO);
3058 }
3059 mutex_exit(&vdp->xdf_cb_lk);
3060
3061 if ((flag & FWRITE) && XD_IS_RO(vdp)) {
3062 mutex_exit(&vdp->xdf_dev_lk);
3063 return (EROFS);
3064 }
3065
3066 part = XDF_PART(minor);
3067 parbit = 1 << part;
3068 if ((vdp->xdf_vd_exclopen & parbit) ||
3069 ((flag & FEXCL) && xdf_isopen(vdp, part))) {
3070 mutex_exit(&vdp->xdf_dev_lk);
3071 return (EBUSY);
3072 }
3073
3074 /* are we the first one to open this node? */
3075 firstopen = !xdf_isopen(vdp, -1);
3076
3077 if (otyp == OTYP_LYR)
3078 vdp->xdf_vd_lyropen[part]++;
3079
3080 vdp->xdf_vd_open[otyp] |= parbit;
3081
3082 if (flag & FEXCL)
3083 vdp->xdf_vd_exclopen |= parbit;
3084
3085 mutex_exit(&vdp->xdf_dev_lk);
3086
3087 /* force a re-validation */
3088 if (firstopen)
3089 cmlb_invalidate(vdp->xdf_vd_lbl, NULL);
3090
3091 /* If this is a non-blocking open then we're done */
3092 if (nodelay)
3093 return (0);
3094
3095 /*
3096 * This is a blocking open, so we require:
3097 * - that the disk have a valid label on it
3098 * - that the size of the partition that we're opening is non-zero
3099 */
3100 if ((cmlb_partinfo(vdp->xdf_vd_lbl, part, &p_blkct,
3101 NULL, NULL, NULL, NULL) != 0) || (p_blkct == 0)) {
3102 (void) xdf_close(*devp, flag, otyp, credp);
3103 return (ENXIO);
3104 }
3105
3106 return (0);
3107 }
3108
3109 /*ARGSUSED*/
3110 static void
xdf_watch_hp_status_cb(dev_info_t * dip,const char * path,void * arg)3111 xdf_watch_hp_status_cb(dev_info_t *dip, const char *path, void *arg)
3112 {
3113 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip);
3114 cv_broadcast(&vdp->xdf_hp_status_cv);
3115 }
3116
3117 static int
xdf_prop_op(dev_t dev,dev_info_t * dip,ddi_prop_op_t prop_op,int flags,char * name,caddr_t valuep,int * lengthp)3118 xdf_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int flags,
3119 char *name, caddr_t valuep, int *lengthp)
3120 {
3121 xdf_t *vdp = ddi_get_soft_state(xdf_ssp, ddi_get_instance(dip));
3122
3123 /*
3124 * Sanity check that if a dev_t or dip were specified that they
3125 * correspond to this device driver. On debug kernels we'll
3126 * panic and on non-debug kernels we'll return failure.
3127 */
3128 ASSERT(ddi_driver_major(dip) == xdf_major);
3129 ASSERT((dev == DDI_DEV_T_ANY) || (getmajor(dev) == xdf_major));
3130 if ((ddi_driver_major(dip) != xdf_major) ||
3131 ((dev != DDI_DEV_T_ANY) && (getmajor(dev) != xdf_major)))
3132 return (DDI_PROP_NOT_FOUND);
3133
3134 if (vdp == NULL)
3135 return (ddi_prop_op(dev, dip, prop_op, flags,
3136 name, valuep, lengthp));
3137
3138 return (cmlb_prop_op(vdp->xdf_vd_lbl,
3139 dev, dip, prop_op, flags, name, valuep, lengthp,
3140 XDF_PART(getminor(dev)), NULL));
3141 }
3142
3143 /*ARGSUSED*/
3144 static int
xdf_getinfo(dev_info_t * dip,ddi_info_cmd_t cmd,void * arg,void ** rp)3145 xdf_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **rp)
3146 {
3147 int instance = XDF_INST(getminor((dev_t)arg));
3148 xdf_t *vbdp;
3149
3150 switch (cmd) {
3151 case DDI_INFO_DEVT2DEVINFO:
3152 if ((vbdp = ddi_get_soft_state(xdf_ssp, instance)) == NULL) {
3153 *rp = NULL;
3154 return (DDI_FAILURE);
3155 }
3156 *rp = vbdp->xdf_dip;
3157 return (DDI_SUCCESS);
3158
3159 case DDI_INFO_DEVT2INSTANCE:
3160 *rp = (void *)(uintptr_t)instance;
3161 return (DDI_SUCCESS);
3162
3163 default:
3164 return (DDI_FAILURE);
3165 }
3166 }
3167
3168 /*ARGSUSED*/
3169 static int
xdf_resume(dev_info_t * dip)3170 xdf_resume(dev_info_t *dip)
3171 {
3172 xdf_t *vdp;
3173 char *oename;
3174
3175 if ((vdp = ddi_get_soft_state(xdf_ssp, ddi_get_instance(dip))) == NULL)
3176 goto err;
3177
3178 if (xdf_debug & SUSRES_DBG)
3179 xen_printf("xdf@%s: xdf_resume\n", vdp->xdf_addr);
3180
3181 mutex_enter(&vdp->xdf_cb_lk);
3182
3183 if (xvdi_resume(dip) != DDI_SUCCESS) {
3184 mutex_exit(&vdp->xdf_cb_lk);
3185 goto err;
3186 }
3187
3188 if (((oename = xvdi_get_oename(dip)) == NULL) ||
3189 (xvdi_add_xb_watch_handler(dip, oename, XBP_HP_STATUS,
3190 xdf_watch_hp_status_cb, NULL) != DDI_SUCCESS)) {
3191 mutex_exit(&vdp->xdf_cb_lk);
3192 goto err;
3193 }
3194
3195 mutex_enter(&vdp->xdf_dev_lk);
3196 ASSERT(vdp->xdf_state != XD_READY);
3197 xdf_set_state(vdp, XD_UNKNOWN);
3198 mutex_exit(&vdp->xdf_dev_lk);
3199
3200 if (xdf_setstate_init(vdp) != DDI_SUCCESS) {
3201 mutex_exit(&vdp->xdf_cb_lk);
3202 goto err;
3203 }
3204
3205 mutex_exit(&vdp->xdf_cb_lk);
3206
3207 if (xdf_debug & SUSRES_DBG)
3208 xen_printf("xdf@%s: xdf_resume: done\n", vdp->xdf_addr);
3209 return (DDI_SUCCESS);
3210 err:
3211 if (xdf_debug & SUSRES_DBG)
3212 xen_printf("xdf@%s: xdf_resume: fail\n", vdp->xdf_addr);
3213 return (DDI_FAILURE);
3214 }
3215
3216 static int
xdf_attach(dev_info_t * dip,ddi_attach_cmd_t cmd)3217 xdf_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
3218 {
3219 int n, instance = ddi_get_instance(dip);
3220 ddi_iblock_cookie_t ibc, softibc;
3221 boolean_t dev_iscd = B_FALSE;
3222 xdf_t *vdp;
3223 char *oename, *xsname, *str;
3224
3225 if ((n = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_NOTPROM,
3226 "xdf_debug", 0)) != 0)
3227 xdf_debug = n;
3228
3229 switch (cmd) {
3230 case DDI_RESUME:
3231 return (xdf_resume(dip));
3232 case DDI_ATTACH:
3233 break;
3234 default:
3235 return (DDI_FAILURE);
3236 }
3237 /* DDI_ATTACH */
3238
3239 if (((xsname = xvdi_get_xsname(dip)) == NULL) ||
3240 ((oename = xvdi_get_oename(dip)) == NULL))
3241 return (DDI_FAILURE);
3242
3243 /*
3244 * Disable auto-detach. This is necessary so that we don't get
3245 * detached while we're disconnected from the back end.
3246 */
3247 if ((ddi_prop_update_int(DDI_DEV_T_NONE, dip,
3248 DDI_NO_AUTODETACH, 1) != DDI_PROP_SUCCESS))
3249 return (DDI_FAILURE);
3250
3251 /* driver handles kernel-issued IOCTLs */
3252 if (ddi_prop_create(DDI_DEV_T_NONE, dip,
3253 DDI_PROP_CANSLEEP, DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS)
3254 return (DDI_FAILURE);
3255
3256 if (ddi_get_iblock_cookie(dip, 0, &ibc) != DDI_SUCCESS)
3257 return (DDI_FAILURE);
3258
3259 if (ddi_get_soft_iblock_cookie(dip,
3260 DDI_SOFTINT_LOW, &softibc) != DDI_SUCCESS)
3261 return (DDI_FAILURE);
3262
3263 if (xenbus_read_str(xsname, XBP_DEV_TYPE, &str) != 0) {
3264 cmn_err(CE_WARN, "xdf@%s: cannot read device-type",
3265 ddi_get_name_addr(dip));
3266 return (DDI_FAILURE);
3267 }
3268 if (strcmp(str, XBV_DEV_TYPE_CD) == 0)
3269 dev_iscd = B_TRUE;
3270 strfree(str);
3271
3272 if (ddi_soft_state_zalloc(xdf_ssp, instance) != DDI_SUCCESS)
3273 return (DDI_FAILURE);
3274
3275 DPRINTF(DDI_DBG, ("xdf@%s: attaching\n", ddi_get_name_addr(dip)));
3276 vdp = ddi_get_soft_state(xdf_ssp, instance);
3277 ddi_set_driver_private(dip, vdp);
3278 vdp->xdf_dip = dip;
3279 vdp->xdf_addr = ddi_get_name_addr(dip);
3280 vdp->xdf_suspending = B_FALSE;
3281 vdp->xdf_media_req_supported = B_FALSE;
3282 vdp->xdf_peer = INVALID_DOMID;
3283 vdp->xdf_evtchn = INVALID_EVTCHN;
3284 list_create(&vdp->xdf_vreq_act, sizeof (v_req_t),
3285 offsetof(v_req_t, v_link));
3286 cv_init(&vdp->xdf_dev_cv, NULL, CV_DEFAULT, NULL);
3287 cv_init(&vdp->xdf_hp_status_cv, NULL, CV_DEFAULT, NULL);
3288 cv_init(&vdp->xdf_mstate_cv, NULL, CV_DEFAULT, NULL);
3289 mutex_init(&vdp->xdf_dev_lk, NULL, MUTEX_DRIVER, (void *)ibc);
3290 mutex_init(&vdp->xdf_cb_lk, NULL, MUTEX_DRIVER, (void *)ibc);
3291 mutex_init(&vdp->xdf_iostat_lk, NULL, MUTEX_DRIVER, (void *)ibc);
3292 vdp->xdf_cmbl_reattach = B_TRUE;
3293 if (dev_iscd) {
3294 vdp->xdf_dinfo |= VDISK_CDROM;
3295 vdp->xdf_mstate = DKIO_EJECTED;
3296 } else {
3297 vdp->xdf_mstate = DKIO_NONE;
3298 }
3299
3300 if ((vdp->xdf_ready_tq = ddi_taskq_create(dip, "xdf_ready_tq",
3301 1, TASKQ_DEFAULTPRI, 0)) == NULL)
3302 goto errout0;
3303
3304 if (xvdi_add_xb_watch_handler(dip, oename, XBP_HP_STATUS,
3305 xdf_watch_hp_status_cb, NULL) != DDI_SUCCESS)
3306 goto errout0;
3307
3308 if (ddi_add_softintr(dip, DDI_SOFTINT_LOW, &vdp->xdf_softintr_id,
3309 &softibc, NULL, xdf_iorestart, (caddr_t)vdp) != DDI_SUCCESS) {
3310 cmn_err(CE_WARN, "xdf@%s: failed to add softintr",
3311 ddi_get_name_addr(dip));
3312 goto errout0;
3313 }
3314
3315 /*
3316 * Initialize the physical geometry stucture. Note that currently
3317 * we don't know the size of the backend device so the number
3318 * of blocks on the device will be initialized to zero. Once
3319 * we connect to the backend device we'll update the physical
3320 * geometry to reflect the real size of the device.
3321 */
3322 xdf_synthetic_pgeom(dip, &vdp->xdf_pgeom);
3323 vdp->xdf_pgeom_fixed = B_FALSE;
3324
3325 /*
3326 * create default device minor nodes: non-removable disk
3327 * we will adjust minor nodes after we are connected w/ backend
3328 */
3329 cmlb_alloc_handle(&vdp->xdf_vd_lbl);
3330 if (xdf_cmlb_attach(vdp) != 0) {
3331 cmn_err(CE_WARN,
3332 "xdf@%s: attach failed, cmlb attach failed",
3333 ddi_get_name_addr(dip));
3334 goto errout0;
3335 }
3336
3337 /*
3338 * We ship with cache-enabled disks
3339 */
3340 vdp->xdf_wce = B_TRUE;
3341
3342 mutex_enter(&vdp->xdf_cb_lk);
3343 /* Watch backend XenbusState change */
3344 if (xvdi_add_event_handler(dip,
3345 XS_OE_STATE, xdf_oe_change, NULL) != DDI_SUCCESS) {
3346 mutex_exit(&vdp->xdf_cb_lk);
3347 goto errout0;
3348 }
3349
3350 if (xdf_setstate_init(vdp) != DDI_SUCCESS) {
3351 cmn_err(CE_WARN, "xdf@%s: start connection failed",
3352 ddi_get_name_addr(dip));
3353 mutex_exit(&vdp->xdf_cb_lk);
3354 goto errout1;
3355 }
3356 mutex_exit(&vdp->xdf_cb_lk);
3357
3358 #if defined(XPV_HVM_DRIVER)
3359
3360 xdf_hvm_add(dip);
3361
3362 /* Report our version to dom0. */
3363 if (xenbus_printf(XBT_NULL, "guest/xdf", "version", "%d",
3364 HVMPV_XDF_VERS))
3365 cmn_err(CE_WARN, "xdf: couldn't write version\n");
3366
3367 #else /* !XPV_HVM_DRIVER */
3368
3369 /* create kstat for iostat(1M) */
3370 if (xdf_kstat_create(dip, "xdf", instance) != 0) {
3371 cmn_err(CE_WARN, "xdf@%s: failed to create kstat",
3372 ddi_get_name_addr(dip));
3373 goto errout1;
3374 }
3375
3376 #endif /* !XPV_HVM_DRIVER */
3377
3378 ddi_report_dev(dip);
3379 DPRINTF(DDI_DBG, ("xdf@%s: attached\n", vdp->xdf_addr));
3380 return (DDI_SUCCESS);
3381
3382 errout1:
3383 (void) xvdi_switch_state(vdp->xdf_dip, XBT_NULL, XenbusStateClosed);
3384 xvdi_remove_event_handler(dip, XS_OE_STATE);
3385 errout0:
3386 if (vdp->xdf_vd_lbl != NULL) {
3387 cmlb_detach(vdp->xdf_vd_lbl, NULL);
3388 cmlb_free_handle(&vdp->xdf_vd_lbl);
3389 vdp->xdf_vd_lbl = NULL;
3390 }
3391 if (vdp->xdf_softintr_id != NULL)
3392 ddi_remove_softintr(vdp->xdf_softintr_id);
3393 xvdi_remove_xb_watch_handlers(dip);
3394 if (vdp->xdf_ready_tq != NULL)
3395 ddi_taskq_destroy(vdp->xdf_ready_tq);
3396 mutex_destroy(&vdp->xdf_cb_lk);
3397 mutex_destroy(&vdp->xdf_dev_lk);
3398 cv_destroy(&vdp->xdf_dev_cv);
3399 cv_destroy(&vdp->xdf_hp_status_cv);
3400 ddi_soft_state_free(xdf_ssp, instance);
3401 ddi_set_driver_private(dip, NULL);
3402 ddi_prop_remove_all(dip);
3403 cmn_err(CE_WARN, "xdf@%s: attach failed", ddi_get_name_addr(dip));
3404 return (DDI_FAILURE);
3405 }
3406
3407 static int
xdf_suspend(dev_info_t * dip)3408 xdf_suspend(dev_info_t *dip)
3409 {
3410 int instance = ddi_get_instance(dip);
3411 xdf_t *vdp;
3412
3413 if ((vdp = ddi_get_soft_state(xdf_ssp, instance)) == NULL)
3414 return (DDI_FAILURE);
3415
3416 if (xdf_debug & SUSRES_DBG)
3417 xen_printf("xdf@%s: xdf_suspend\n", vdp->xdf_addr);
3418
3419 xvdi_suspend(dip);
3420
3421 mutex_enter(&vdp->xdf_cb_lk);
3422 mutex_enter(&vdp->xdf_dev_lk);
3423
3424 vdp->xdf_suspending = B_TRUE;
3425 xdf_ring_destroy(vdp);
3426 xdf_set_state(vdp, XD_SUSPEND);
3427 vdp->xdf_suspending = B_FALSE;
3428
3429 mutex_exit(&vdp->xdf_dev_lk);
3430 mutex_exit(&vdp->xdf_cb_lk);
3431
3432 if (xdf_debug & SUSRES_DBG)
3433 xen_printf("xdf@%s: xdf_suspend: done\n", vdp->xdf_addr);
3434
3435 return (DDI_SUCCESS);
3436 }
3437
3438 static int
xdf_detach(dev_info_t * dip,ddi_detach_cmd_t cmd)3439 xdf_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3440 {
3441 xdf_t *vdp;
3442 int instance;
3443
3444 switch (cmd) {
3445
3446 case DDI_PM_SUSPEND:
3447 break;
3448
3449 case DDI_SUSPEND:
3450 return (xdf_suspend(dip));
3451
3452 case DDI_DETACH:
3453 break;
3454
3455 default:
3456 return (DDI_FAILURE);
3457 }
3458
3459 instance = ddi_get_instance(dip);
3460 DPRINTF(DDI_DBG, ("xdf@%s: detaching\n", ddi_get_name_addr(dip)));
3461 vdp = ddi_get_soft_state(xdf_ssp, instance);
3462
3463 if (vdp == NULL)
3464 return (DDI_FAILURE);
3465
3466 mutex_enter(&vdp->xdf_cb_lk);
3467 xdf_disconnect(vdp, XD_CLOSED, B_FALSE);
3468 if (vdp->xdf_state != XD_CLOSED) {
3469 mutex_exit(&vdp->xdf_cb_lk);
3470 return (DDI_FAILURE);
3471 }
3472 mutex_exit(&vdp->xdf_cb_lk);
3473
3474 ASSERT(!ISDMACBON(vdp));
3475
3476 #if defined(XPV_HVM_DRIVER)
3477 xdf_hvm_rm(dip);
3478 #endif /* XPV_HVM_DRIVER */
3479
3480 if (vdp->xdf_timeout_id != 0)
3481 (void) untimeout(vdp->xdf_timeout_id);
3482
3483 xvdi_remove_event_handler(dip, XS_OE_STATE);
3484 ddi_taskq_destroy(vdp->xdf_ready_tq);
3485
3486 cmlb_detach(vdp->xdf_vd_lbl, NULL);
3487 cmlb_free_handle(&vdp->xdf_vd_lbl);
3488
3489 /* we'll support backend running in domU later */
3490 #ifdef DOMU_BACKEND
3491 (void) xvdi_post_event(dip, XEN_HP_REMOVE);
3492 #endif
3493
3494 list_destroy(&vdp->xdf_vreq_act);
3495 ddi_prop_remove_all(dip);
3496 xdf_kstat_delete(dip);
3497 ddi_remove_softintr(vdp->xdf_softintr_id);
3498 xvdi_remove_xb_watch_handlers(dip);
3499 ddi_set_driver_private(dip, NULL);
3500 cv_destroy(&vdp->xdf_dev_cv);
3501 mutex_destroy(&vdp->xdf_cb_lk);
3502 mutex_destroy(&vdp->xdf_dev_lk);
3503 if (vdp->xdf_cache_flush_block != NULL)
3504 kmem_free(vdp->xdf_flush_mem, 2 * vdp->xdf_xdev_secsize);
3505 ddi_soft_state_free(xdf_ssp, instance);
3506 return (DDI_SUCCESS);
3507 }
3508
3509 /*
3510 * Driver linkage structures.
3511 */
3512 static struct cb_ops xdf_cbops = {
3513 xdf_open,
3514 xdf_close,
3515 xdf_strategy,
3516 nodev,
3517 xdf_dump,
3518 xdf_read,
3519 xdf_write,
3520 xdf_ioctl,
3521 nodev,
3522 nodev,
3523 nodev,
3524 nochpoll,
3525 xdf_prop_op,
3526 NULL,
3527 D_MP | D_NEW | D_64BIT,
3528 CB_REV,
3529 xdf_aread,
3530 xdf_awrite
3531 };
3532
3533 struct dev_ops xdf_devops = {
3534 DEVO_REV, /* devo_rev */
3535 0, /* devo_refcnt */
3536 xdf_getinfo, /* devo_getinfo */
3537 nulldev, /* devo_identify */
3538 nulldev, /* devo_probe */
3539 xdf_attach, /* devo_attach */
3540 xdf_detach, /* devo_detach */
3541 nodev, /* devo_reset */
3542 &xdf_cbops, /* devo_cb_ops */
3543 NULL, /* devo_bus_ops */
3544 NULL, /* devo_power */
3545 ddi_quiesce_not_supported, /* devo_quiesce */
3546 };
3547
3548 /*
3549 * Module linkage structures.
3550 */
3551 static struct modldrv modldrv = {
3552 &mod_driverops, /* Type of module. This one is a driver */
3553 "virtual block driver", /* short description */
3554 &xdf_devops /* driver specific ops */
3555 };
3556
3557 static struct modlinkage xdf_modlinkage = {
3558 MODREV_1, (void *)&modldrv, NULL
3559 };
3560
3561 /*
3562 * standard module entry points
3563 */
3564 int
_init(void)3565 _init(void)
3566 {
3567 int rc;
3568
3569 xdf_major = ddi_name_to_major("xdf");
3570 if (xdf_major == (major_t)-1)
3571 return (EINVAL);
3572
3573 if ((rc = ddi_soft_state_init(&xdf_ssp, sizeof (xdf_t), 0)) != 0)
3574 return (rc);
3575
3576 xdf_vreq_cache = kmem_cache_create("xdf_vreq_cache",
3577 sizeof (v_req_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3578 xdf_gs_cache = kmem_cache_create("xdf_gs_cache",
3579 sizeof (ge_slot_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3580
3581 #if defined(XPV_HVM_DRIVER)
3582 xdf_hvm_init();
3583 #endif /* XPV_HVM_DRIVER */
3584
3585 if ((rc = mod_install(&xdf_modlinkage)) != 0) {
3586 #if defined(XPV_HVM_DRIVER)
3587 xdf_hvm_fini();
3588 #endif /* XPV_HVM_DRIVER */
3589 kmem_cache_destroy(xdf_vreq_cache);
3590 kmem_cache_destroy(xdf_gs_cache);
3591 ddi_soft_state_fini(&xdf_ssp);
3592 return (rc);
3593 }
3594
3595 return (rc);
3596 }
3597
3598 int
_fini(void)3599 _fini(void)
3600 {
3601 int err;
3602 if ((err = mod_remove(&xdf_modlinkage)) != 0)
3603 return (err);
3604
3605 #if defined(XPV_HVM_DRIVER)
3606 xdf_hvm_fini();
3607 #endif /* XPV_HVM_DRIVER */
3608
3609 kmem_cache_destroy(xdf_vreq_cache);
3610 kmem_cache_destroy(xdf_gs_cache);
3611 ddi_soft_state_fini(&xdf_ssp);
3612
3613 return (0);
3614 }
3615
3616 int
_info(struct modinfo * modinfop)3617 _info(struct modinfo *modinfop)
3618 {
3619 return (mod_info(&xdf_modlinkage, modinfop));
3620 }
3621