1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T
28 * All Rights Reserved
29 */
30
31 /*
32 * Portions of this source code were derived from Berkeley 4.3 BSD
33 * under license from the Regents of the University of California.
34 */
35
36
37 /*
38 * Implements a kernel based, client side RPC over Connection Oriented
39 * Transports (COTS).
40 */
41
42 /*
43 * Much of this file has been re-written to let NFS work better over slow
44 * transports. A description follows.
45 *
46 * One of the annoying things about kRPC/COTS is that it will temporarily
47 * create more than one connection between a client and server. This
48 * happens because when a connection is made, the end-points entry in the
49 * linked list of connections (headed by cm_hd), is removed so that other
50 * threads don't mess with it. Went ahead and bit the bullet by keeping
51 * the endpoint on the connection list and introducing state bits,
52 * condition variables etc. to the connection entry data structure (struct
53 * cm_xprt).
54 *
55 * Here is a summary of the changes to cm-xprt:
56 *
57 * x_ctime is the timestamp of when the endpoint was last
58 * connected or disconnected. If an end-point is ever disconnected
59 * or re-connected, then any outstanding RPC request is presumed
60 * lost, telling clnt_cots_kcallit that it needs to re-send the
61 * request, not just wait for the original request's reply to
62 * arrive.
63 *
64 * x_thread flag which tells us if a thread is doing a connection attempt.
65 *
66 * x_waitdis flag which tells us we are waiting a disconnect ACK.
67 *
68 * x_needdis flag which tells us we need to send a T_DISCONN_REQ
69 * to kill the connection.
70 *
71 * x_needrel flag which tells us we need to send a T_ORDREL_REQ to
72 * gracefully close the connection.
73 *
74 * #defined bitmasks for the all the b_* bits so that more
75 * efficient (and at times less clumsy) masks can be used to
76 * manipulated state in cases where multiple bits have to
77 * set/cleared/checked in the same critical section.
78 *
79 * x_conn_cv and x_dis-_cv are new condition variables to let
80 * threads knows when the connection attempt is done, and to let
81 * the connecting thread know when the disconnect handshake is
82 * done.
83 *
84 * Added the CONN_HOLD() macro so that all reference holds have the same
85 * look and feel.
86 *
87 * In the private (cku_private) portion of the client handle,
88 *
89 * cku_flags replaces the cku_sent a boolean. cku_flags keeps
90 * track of whether a request as been sent, and whether the
91 * client's handles call record is on the dispatch list (so that
92 * the reply can be matched by XID to the right client handle).
93 * The idea of CKU_ONQUEUE is that we can exit clnt_cots_kcallit()
94 * and still have the response find the right client handle so
95 * that the retry of CLNT_CALL() gets the result. Testing, found
96 * situations where if the timeout was increased, performance
97 * degraded. This was due to us hitting a window where the thread
98 * was back in rfscall() (probably printing server not responding)
99 * while the response came back but no place to put it.
100 *
101 * cku_ctime is just a cache of x_ctime. If they match,
102 * clnt_cots_kcallit() won't to send a retry (unless the maximum
103 * receive count limit as been reached). If the don't match, then
104 * we assume the request has been lost, and a retry of the request
105 * is needed.
106 *
107 * cku_recv_attempts counts the number of receive count attempts
108 * after one try is sent on the wire.
109 *
110 * Added the clnt_delay() routine so that interruptible and
111 * noninterruptible delays are possible.
112 *
113 * CLNT_MIN_TIMEOUT has been bumped to 10 seconds from 3. This is used to
114 * control how long the client delays before returned after getting
115 * ECONNREFUSED. At 3 seconds, 8 client threads per mount really does bash
116 * a server that may be booting and not yet started nfsd.
117 *
118 * CLNT_MAXRECV_WITHOUT_RETRY is a new macro (value of 3) (with a tunable)
119 * Why don't we just wait forever (receive an infinite # of times)?
120 * Because the server may have rebooted. More insidious is that some
121 * servers (ours) will drop NFS/TCP requests in some cases. This is bad,
122 * but it is a reality.
123 *
124 * The case of a server doing orderly release really messes up the
125 * client's recovery, especially if the server's TCP implementation is
126 * buggy. It was found was that the kRPC/COTS client was breaking some
127 * TPI rules, such as not waiting for the acknowledgement of a
128 * T_DISCON_REQ (hence the added case statements T_ERROR_ACK, T_OK_ACK and
129 * T_DISCON_REQ in clnt_dispatch_notifyall()).
130 *
131 * One of things that we've seen is that a kRPC TCP endpoint goes into
132 * TIMEWAIT and a thus a reconnect takes a long time to satisfy because
133 * that the TIMEWAIT state takes a while to finish. If a server sends a
134 * T_ORDREL_IND, there is little point in an RPC client doing a
135 * T_ORDREL_REQ, because the RPC request isn't going to make it (the
136 * server is saying that it won't accept any more data). So kRPC was
137 * changed to send a T_DISCON_REQ when we get a T_ORDREL_IND. So now the
138 * connection skips the TIMEWAIT state and goes straight to a bound state
139 * that kRPC can quickly switch to connected.
140 *
141 * Code that issues TPI request must use waitforack() to wait for the
142 * corresponding ack (assuming there is one) in any future modifications.
143 * This works around problems that may be introduced by breaking TPI rules
144 * (by submitting new calls before earlier requests have been acked) in the
145 * case of a signal or other early return. waitforack() depends on
146 * clnt_dispatch_notifyconn() to issue the wakeup when the ack
147 * arrives, so adding new TPI calls may require corresponding changes
148 * to clnt_dispatch_notifyconn(). Presently, the timeout period is based on
149 * CLNT_MIN_TIMEOUT which is 10 seconds. If you modify this value, be sure
150 * not to set it too low or TPI ACKS will be lost.
151 */
152
153 #include <sys/param.h>
154 #include <sys/types.h>
155 #include <sys/user.h>
156 #include <sys/systm.h>
157 #include <sys/sysmacros.h>
158 #include <sys/proc.h>
159 #include <sys/socket.h>
160 #include <sys/file.h>
161 #include <sys/stream.h>
162 #include <sys/strsubr.h>
163 #include <sys/stropts.h>
164 #include <sys/strsun.h>
165 #include <sys/timod.h>
166 #include <sys/tiuser.h>
167 #include <sys/tihdr.h>
168 #include <sys/t_kuser.h>
169 #include <sys/fcntl.h>
170 #include <sys/errno.h>
171 #include <sys/kmem.h>
172 #include <sys/debug.h>
173 #include <sys/systm.h>
174 #include <sys/kstat.h>
175 #include <sys/t_lock.h>
176 #include <sys/ddi.h>
177 #include <sys/cmn_err.h>
178 #include <sys/time.h>
179 #include <sys/isa_defs.h>
180 #include <sys/callb.h>
181 #include <sys/sunddi.h>
182 #include <sys/atomic.h>
183 #include <sys/sdt.h>
184
185 #include <netinet/in.h>
186 #include <netinet/tcp.h>
187
188 #include <rpc/types.h>
189 #include <rpc/xdr.h>
190 #include <rpc/auth.h>
191 #include <rpc/clnt.h>
192 #include <rpc/rpc_msg.h>
193
194 #define COTS_DEFAULT_ALLOCSIZE 2048
195
196 #define WIRE_HDR_SIZE 20 /* serialized call header, sans proc number */
197 #define MSG_OFFSET 128 /* offset of call into the mblk */
198
199 const char *kinet_ntop6(uchar_t *, char *, size_t);
200
201 static int clnt_cots_ksettimers(CLIENT *, struct rpc_timers *,
202 struct rpc_timers *, int, void(*)(int, int, caddr_t), caddr_t, uint32_t);
203 static enum clnt_stat clnt_cots_kcallit(CLIENT *, rpcproc_t, xdrproc_t,
204 caddr_t, xdrproc_t, caddr_t, struct timeval);
205 static void clnt_cots_kabort(CLIENT *);
206 static void clnt_cots_kerror(CLIENT *, struct rpc_err *);
207 static bool_t clnt_cots_kfreeres(CLIENT *, xdrproc_t, caddr_t);
208 static void clnt_cots_kdestroy(CLIENT *);
209 static bool_t clnt_cots_kcontrol(CLIENT *, int, char *);
210
211
212 /* List of transports managed by the connection manager. */
213 struct cm_xprt {
214 TIUSER *x_tiptr; /* transport handle */
215 queue_t *x_wq; /* send queue */
216 clock_t x_time; /* last time we handed this xprt out */
217 clock_t x_ctime; /* time we went to CONNECTED */
218 int x_tidu_size; /* TIDU size of this transport */
219 union {
220 struct {
221 unsigned int
222 #ifdef _BIT_FIELDS_HTOL
223 b_closing: 1, /* we've sent a ord rel on this conn */
224 b_dead: 1, /* transport is closed or disconn */
225 b_doomed: 1, /* too many conns, let this go idle */
226 b_connected: 1, /* this connection is connected */
227
228 b_ordrel: 1, /* do an orderly release? */
229 b_thread: 1, /* thread doing connect */
230 b_waitdis: 1, /* waiting for disconnect ACK */
231 b_needdis: 1, /* need T_DISCON_REQ */
232
233 b_needrel: 1, /* need T_ORDREL_REQ */
234 b_early_disc: 1, /* got a T_ORDREL_IND or T_DISCON_IND */
235 /* disconnect during connect */
236
237 b_pad: 22;
238
239 #endif
240
241 #ifdef _BIT_FIELDS_LTOH
242 b_pad: 22,
243
244 b_early_disc: 1, /* got a T_ORDREL_IND or T_DISCON_IND */
245 /* disconnect during connect */
246 b_needrel: 1, /* need T_ORDREL_REQ */
247
248 b_needdis: 1, /* need T_DISCON_REQ */
249 b_waitdis: 1, /* waiting for disconnect ACK */
250 b_thread: 1, /* thread doing connect */
251 b_ordrel: 1, /* do an orderly release? */
252
253 b_connected: 1, /* this connection is connected */
254 b_doomed: 1, /* too many conns, let this go idle */
255 b_dead: 1, /* transport is closed or disconn */
256 b_closing: 1; /* we've sent a ord rel on this conn */
257 #endif
258 } bit; unsigned int word;
259
260 #define x_closing x_state.bit.b_closing
261 #define x_dead x_state.bit.b_dead
262 #define x_doomed x_state.bit.b_doomed
263 #define x_connected x_state.bit.b_connected
264
265 #define x_ordrel x_state.bit.b_ordrel
266 #define x_thread x_state.bit.b_thread
267 #define x_waitdis x_state.bit.b_waitdis
268 #define x_needdis x_state.bit.b_needdis
269
270 #define x_needrel x_state.bit.b_needrel
271 #define x_early_disc x_state.bit.b_early_disc
272
273 #define x_state_flags x_state.word
274
275 #define X_CLOSING 0x80000000
276 #define X_DEAD 0x40000000
277 #define X_DOOMED 0x20000000
278 #define X_CONNECTED 0x10000000
279
280 #define X_ORDREL 0x08000000
281 #define X_THREAD 0x04000000
282 #define X_WAITDIS 0x02000000
283 #define X_NEEDDIS 0x01000000
284
285 #define X_NEEDREL 0x00800000
286 #define X_EARLYDISC 0x00400000
287
288 #define X_BADSTATES (X_CLOSING | X_DEAD | X_DOOMED)
289
290 } x_state;
291 int x_ref; /* number of users of this xprt */
292 int x_family; /* address family of transport */
293 dev_t x_rdev; /* device number of transport */
294 struct cm_xprt *x_next;
295
296 struct netbuf x_server; /* destination address */
297 struct netbuf x_src; /* src address (for retries) */
298 kmutex_t x_lock; /* lock on this entry */
299 kcondvar_t x_cv; /* to signal when can be closed */
300 kcondvar_t x_conn_cv; /* to signal when connection attempt */
301 /* is complete */
302 kstat_t *x_ksp;
303
304 kcondvar_t x_dis_cv; /* to signal when disconnect attempt */
305 /* is complete */
306 zoneid_t x_zoneid; /* zone this xprt belongs to */
307 };
308
309 typedef struct cm_kstat_xprt {
310 kstat_named_t x_wq;
311 kstat_named_t x_server;
312 kstat_named_t x_family;
313 kstat_named_t x_rdev;
314 kstat_named_t x_time;
315 kstat_named_t x_state;
316 kstat_named_t x_ref;
317 kstat_named_t x_port;
318 } cm_kstat_xprt_t;
319
320 static cm_kstat_xprt_t cm_kstat_template = {
321 { "write_queue", KSTAT_DATA_UINT32 },
322 { "server", KSTAT_DATA_STRING },
323 { "addr_family", KSTAT_DATA_UINT32 },
324 { "device", KSTAT_DATA_UINT32 },
325 { "time_stamp", KSTAT_DATA_UINT32 },
326 { "status", KSTAT_DATA_UINT32 },
327 { "ref_count", KSTAT_DATA_INT32 },
328 { "port", KSTAT_DATA_UINT32 },
329 };
330
331 /*
332 * The inverse of this is connmgr_release().
333 */
334 #define CONN_HOLD(Cm_entry) {\
335 mutex_enter(&(Cm_entry)->x_lock); \
336 (Cm_entry)->x_ref++; \
337 mutex_exit(&(Cm_entry)->x_lock); \
338 }
339
340
341 /*
342 * Private data per rpc handle. This structure is allocated by
343 * clnt_cots_kcreate, and freed by clnt_cots_kdestroy.
344 */
345 typedef struct cku_private_s {
346 CLIENT cku_client; /* client handle */
347 calllist_t cku_call; /* for dispatching calls */
348 struct rpc_err cku_err; /* error status */
349
350 struct netbuf cku_srcaddr; /* source address for retries */
351 int cku_addrfmly; /* for binding port */
352 struct netbuf cku_addr; /* remote address */
353 dev_t cku_device; /* device to use */
354 uint_t cku_flags;
355 #define CKU_ONQUEUE 0x1
356 #define CKU_SENT 0x2
357
358 bool_t cku_progress; /* for CLSET_PROGRESS */
359 uint32_t cku_xid; /* current XID */
360 clock_t cku_ctime; /* time stamp of when */
361 /* connection was created */
362 uint_t cku_recv_attempts;
363 XDR cku_outxdr; /* xdr routine for output */
364 XDR cku_inxdr; /* xdr routine for input */
365 char cku_rpchdr[WIRE_HDR_SIZE + 4];
366 /* pre-serialized rpc header */
367
368 uint_t cku_outbuflen; /* default output mblk length */
369 struct cred *cku_cred; /* credentials */
370 bool_t cku_nodelayonerr;
371 /* for CLSET_NODELAYONERR */
372 int cku_useresvport; /* Use reserved port */
373 struct rpc_cots_client *cku_stats; /* stats for zone */
374 } cku_private_t;
375
376 static struct cm_xprt *connmgr_wrapconnect(struct cm_xprt *,
377 const struct timeval *, struct netbuf *, int, struct netbuf *,
378 struct rpc_err *, bool_t, bool_t, cred_t *);
379
380 static bool_t connmgr_connect(struct cm_xprt *, queue_t *, struct netbuf *,
381 int, calllist_t *, int *, bool_t reconnect,
382 const struct timeval *, bool_t, cred_t *);
383
384 static void *connmgr_opt_getoff(mblk_t *mp, t_uscalar_t offset,
385 t_uscalar_t length, uint_t align_size);
386 static bool_t connmgr_setbufsz(calllist_t *e, queue_t *wq, cred_t *cr);
387 static bool_t connmgr_getopt_int(queue_t *wq, int level, int name, int *val,
388 calllist_t *e, cred_t *cr);
389 static bool_t connmgr_setopt_int(queue_t *wq, int level, int name, int val,
390 calllist_t *e, cred_t *cr);
391 static bool_t connmgr_setopt(queue_t *, int, int, calllist_t *, cred_t *cr);
392 static void connmgr_sndrel(struct cm_xprt *);
393 static void connmgr_snddis(struct cm_xprt *);
394 static void connmgr_close(struct cm_xprt *);
395 static void connmgr_release(struct cm_xprt *);
396 static struct cm_xprt *connmgr_wrapget(struct netbuf *, const struct timeval *,
397 cku_private_t *);
398
399 static struct cm_xprt *connmgr_get(struct netbuf *, const struct timeval *,
400 struct netbuf *, int, struct netbuf *, struct rpc_err *, dev_t,
401 bool_t, int, cred_t *);
402
403 static void connmgr_cancelconn(struct cm_xprt *);
404 static enum clnt_stat connmgr_cwait(struct cm_xprt *, const struct timeval *,
405 bool_t);
406 static void connmgr_dis_and_wait(struct cm_xprt *);
407
408 static int clnt_dispatch_send(queue_t *, mblk_t *, calllist_t *, uint_t,
409 uint_t);
410
411 static int clnt_delay(clock_t, bool_t);
412
413 static int waitforack(calllist_t *, t_scalar_t, const struct timeval *, bool_t);
414
415 /*
416 * Operations vector for TCP/IP based RPC
417 */
418 static struct clnt_ops tcp_ops = {
419 clnt_cots_kcallit, /* do rpc call */
420 clnt_cots_kabort, /* abort call */
421 clnt_cots_kerror, /* return error status */
422 clnt_cots_kfreeres, /* free results */
423 clnt_cots_kdestroy, /* destroy rpc handle */
424 clnt_cots_kcontrol, /* the ioctl() of rpc */
425 clnt_cots_ksettimers, /* set retry timers */
426 };
427
428 static int rpc_kstat_instance = 0; /* keeps the current instance */
429 /* number for the next kstat_create */
430
431 static struct cm_xprt *cm_hd = NULL;
432 static kmutex_t connmgr_lock; /* for connection mngr's list of transports */
433
434 extern kmutex_t clnt_max_msg_lock;
435
436 static calllist_t *clnt_pending = NULL;
437 extern kmutex_t clnt_pending_lock;
438
439 static int clnt_cots_hash_size = DEFAULT_HASH_SIZE;
440
441 static call_table_t *cots_call_ht;
442
443 static const struct rpc_cots_client {
444 kstat_named_t rccalls;
445 kstat_named_t rcbadcalls;
446 kstat_named_t rcbadxids;
447 kstat_named_t rctimeouts;
448 kstat_named_t rcnewcreds;
449 kstat_named_t rcbadverfs;
450 kstat_named_t rctimers;
451 kstat_named_t rccantconn;
452 kstat_named_t rcnomem;
453 kstat_named_t rcintrs;
454 } cots_rcstat_tmpl = {
455 { "calls", KSTAT_DATA_UINT64 },
456 { "badcalls", KSTAT_DATA_UINT64 },
457 { "badxids", KSTAT_DATA_UINT64 },
458 { "timeouts", KSTAT_DATA_UINT64 },
459 { "newcreds", KSTAT_DATA_UINT64 },
460 { "badverfs", KSTAT_DATA_UINT64 },
461 { "timers", KSTAT_DATA_UINT64 },
462 { "cantconn", KSTAT_DATA_UINT64 },
463 { "nomem", KSTAT_DATA_UINT64 },
464 { "interrupts", KSTAT_DATA_UINT64 }
465 };
466
467 #define COTSRCSTAT_INCR(p, x) \
468 atomic_inc_64(&(p)->x.value.ui64)
469
470 #define CLNT_MAX_CONNS 1 /* concurrent connections between clnt/srvr */
471 int clnt_max_conns = CLNT_MAX_CONNS;
472
473 #define CLNT_MIN_TIMEOUT 10 /* seconds to wait after we get a */
474 /* connection reset */
475 #define CLNT_MIN_CONNTIMEOUT 5 /* seconds to wait for a connection */
476
477
478 int clnt_cots_min_tout = CLNT_MIN_TIMEOUT;
479 int clnt_cots_min_conntout = CLNT_MIN_CONNTIMEOUT;
480
481 /*
482 * Limit the number of times we will attempt to receive a reply without
483 * re-sending a response.
484 */
485 #define CLNT_MAXRECV_WITHOUT_RETRY 3
486 uint_t clnt_cots_maxrecv = CLNT_MAXRECV_WITHOUT_RETRY;
487
488 uint_t *clnt_max_msg_sizep;
489 void (*clnt_stop_idle)(queue_t *wq);
490
491 #define ptoh(p) (&((p)->cku_client))
492 #define htop(h) ((cku_private_t *)((h)->cl_private))
493
494 /*
495 * Times to retry
496 */
497 #define REFRESHES 2 /* authentication refreshes */
498
499 /*
500 * The following is used to determine the global default behavior for
501 * COTS when binding to a local port.
502 *
503 * If the value is set to 1 the default will be to select a reserved
504 * (aka privileged) port, if the value is zero the default will be to
505 * use non-reserved ports. Users of kRPC may override this by using
506 * CLNT_CONTROL() and CLSET_BINDRESVPORT.
507 */
508 int clnt_cots_do_bindresvport = 1;
509
510 static zone_key_t zone_cots_key;
511
512 /*
513 * Defaults TCP send and receive buffer size for RPC connections.
514 * These values can be tuned by /etc/system.
515 */
516 int rpc_send_bufsz = 1024*1024;
517 int rpc_recv_bufsz = 1024*1024;
518 /*
519 * To use system-wide default for TCP send and receive buffer size,
520 * use /etc/system to set rpc_default_tcp_bufsz to 1:
521 *
522 * set rpcmod:rpc_default_tcp_bufsz=1
523 */
524 int rpc_default_tcp_bufsz = 0;
525
526 /*
527 * We need to do this after all kernel threads in the zone have exited.
528 */
529 /* ARGSUSED */
530 static void
clnt_zone_destroy(zoneid_t zoneid,void * unused)531 clnt_zone_destroy(zoneid_t zoneid, void *unused)
532 {
533 struct cm_xprt **cmp;
534 struct cm_xprt *cm_entry;
535 struct cm_xprt *freelist = NULL;
536
537 mutex_enter(&connmgr_lock);
538 cmp = &cm_hd;
539 while ((cm_entry = *cmp) != NULL) {
540 if (cm_entry->x_zoneid == zoneid) {
541 *cmp = cm_entry->x_next;
542 cm_entry->x_next = freelist;
543 freelist = cm_entry;
544 } else {
545 cmp = &cm_entry->x_next;
546 }
547 }
548 mutex_exit(&connmgr_lock);
549 while ((cm_entry = freelist) != NULL) {
550 freelist = cm_entry->x_next;
551 connmgr_close(cm_entry);
552 }
553 }
554
555 int
clnt_cots_kcreate(dev_t dev,struct netbuf * addr,int family,rpcprog_t prog,rpcvers_t vers,uint_t max_msgsize,cred_t * cred,CLIENT ** ncl)556 clnt_cots_kcreate(dev_t dev, struct netbuf *addr, int family, rpcprog_t prog,
557 rpcvers_t vers, uint_t max_msgsize, cred_t *cred, CLIENT **ncl)
558 {
559 CLIENT *h;
560 cku_private_t *p;
561 struct rpc_msg call_msg;
562 struct rpcstat *rpcstat;
563
564 RPCLOG(8, "clnt_cots_kcreate: prog %u\n", prog);
565
566 rpcstat = zone_getspecific(rpcstat_zone_key, rpc_zone());
567 ASSERT(rpcstat != NULL);
568
569 /* Allocate and intialize the client handle. */
570 p = kmem_zalloc(sizeof (*p), KM_SLEEP);
571
572 h = ptoh(p);
573
574 h->cl_private = (caddr_t)p;
575 h->cl_auth = authkern_create();
576 h->cl_ops = &tcp_ops;
577
578 cv_init(&p->cku_call.call_cv, NULL, CV_DEFAULT, NULL);
579 mutex_init(&p->cku_call.call_lock, NULL, MUTEX_DEFAULT, NULL);
580
581 /*
582 * If the current sanity check size in rpcmod is smaller
583 * than the size needed, then increase the sanity check.
584 */
585 if (max_msgsize != 0 && clnt_max_msg_sizep != NULL &&
586 max_msgsize > *clnt_max_msg_sizep) {
587 mutex_enter(&clnt_max_msg_lock);
588 if (max_msgsize > *clnt_max_msg_sizep)
589 *clnt_max_msg_sizep = max_msgsize;
590 mutex_exit(&clnt_max_msg_lock);
591 }
592
593 p->cku_outbuflen = COTS_DEFAULT_ALLOCSIZE;
594
595 /* Preserialize the call message header */
596
597 call_msg.rm_xid = 0;
598 call_msg.rm_direction = CALL;
599 call_msg.rm_call.cb_rpcvers = RPC_MSG_VERSION;
600 call_msg.rm_call.cb_prog = prog;
601 call_msg.rm_call.cb_vers = vers;
602
603 xdrmem_create(&p->cku_outxdr, p->cku_rpchdr, WIRE_HDR_SIZE, XDR_ENCODE);
604
605 if (!xdr_callhdr(&p->cku_outxdr, &call_msg)) {
606 RPCLOG0(1, "clnt_cots_kcreate - Fatal header serialization "
607 "error\n");
608 auth_destroy(h->cl_auth);
609 kmem_free(p, sizeof (cku_private_t));
610 RPCLOG0(1, "clnt_cots_kcreate: create failed error EINVAL\n");
611 return (EINVAL); /* XXX */
612 }
613
614 /*
615 * The zalloc initialized the fields below.
616 * p->cku_xid = 0;
617 * p->cku_flags = 0;
618 * p->cku_srcaddr.len = 0;
619 * p->cku_srcaddr.maxlen = 0;
620 */
621
622 p->cku_cred = cred;
623 p->cku_device = dev;
624 p->cku_addrfmly = family;
625 p->cku_addr.buf = kmem_zalloc(addr->maxlen, KM_SLEEP);
626 p->cku_addr.maxlen = addr->maxlen;
627 p->cku_addr.len = addr->len;
628 bcopy(addr->buf, p->cku_addr.buf, addr->len);
629 p->cku_stats = rpcstat->rpc_cots_client;
630 p->cku_useresvport = -1; /* value is has not been set */
631
632 *ncl = h;
633 return (0);
634 }
635
636 /*ARGSUSED*/
637 static void
clnt_cots_kabort(CLIENT * h)638 clnt_cots_kabort(CLIENT *h)
639 {
640 }
641
642 /*
643 * Return error info on this handle.
644 */
645 static void
clnt_cots_kerror(CLIENT * h,struct rpc_err * err)646 clnt_cots_kerror(CLIENT *h, struct rpc_err *err)
647 {
648 /* LINTED pointer alignment */
649 cku_private_t *p = htop(h);
650
651 *err = p->cku_err;
652 }
653
654 static bool_t
clnt_cots_kfreeres(CLIENT * h,xdrproc_t xdr_res,caddr_t res_ptr)655 clnt_cots_kfreeres(CLIENT *h, xdrproc_t xdr_res, caddr_t res_ptr)
656 {
657 /* LINTED pointer alignment */
658 cku_private_t *p = htop(h);
659 XDR *xdrs;
660
661 xdrs = &(p->cku_outxdr);
662 xdrs->x_op = XDR_FREE;
663 return ((*xdr_res)(xdrs, res_ptr));
664 }
665
666 static bool_t
clnt_cots_kcontrol(CLIENT * h,int cmd,char * arg)667 clnt_cots_kcontrol(CLIENT *h, int cmd, char *arg)
668 {
669 cku_private_t *p = htop(h);
670
671 switch (cmd) {
672 case CLSET_PROGRESS:
673 p->cku_progress = TRUE;
674 return (TRUE);
675
676 case CLSET_XID:
677 if (arg == NULL)
678 return (FALSE);
679
680 p->cku_xid = *((uint32_t *)arg);
681 return (TRUE);
682
683 case CLGET_XID:
684 if (arg == NULL)
685 return (FALSE);
686
687 *((uint32_t *)arg) = p->cku_xid;
688 return (TRUE);
689
690 case CLSET_NODELAYONERR:
691 if (arg == NULL)
692 return (FALSE);
693
694 if (*((bool_t *)arg) == TRUE) {
695 p->cku_nodelayonerr = TRUE;
696 return (TRUE);
697 }
698 if (*((bool_t *)arg) == FALSE) {
699 p->cku_nodelayonerr = FALSE;
700 return (TRUE);
701 }
702 return (FALSE);
703
704 case CLGET_NODELAYONERR:
705 if (arg == NULL)
706 return (FALSE);
707
708 *((bool_t *)arg) = p->cku_nodelayonerr;
709 return (TRUE);
710
711 case CLSET_BINDRESVPORT:
712 if (arg == NULL)
713 return (FALSE);
714
715 if (*(int *)arg != 1 && *(int *)arg != 0)
716 return (FALSE);
717
718 p->cku_useresvport = *(int *)arg;
719
720 return (TRUE);
721
722 case CLGET_BINDRESVPORT:
723 if (arg == NULL)
724 return (FALSE);
725
726 *(int *)arg = p->cku_useresvport;
727
728 return (TRUE);
729
730 default:
731 return (FALSE);
732 }
733 }
734
735 /*
736 * Destroy rpc handle. Frees the space used for output buffer,
737 * private data, and handle structure.
738 */
739 static void
clnt_cots_kdestroy(CLIENT * h)740 clnt_cots_kdestroy(CLIENT *h)
741 {
742 /* LINTED pointer alignment */
743 cku_private_t *p = htop(h);
744 calllist_t *call = &p->cku_call;
745
746 RPCLOG(8, "clnt_cots_kdestroy h: %p\n", (void *)h);
747 RPCLOG(8, "clnt_cots_kdestroy h: xid=0x%x\n", p->cku_xid);
748
749 if (p->cku_flags & CKU_ONQUEUE) {
750 RPCLOG(64, "clnt_cots_kdestroy h: removing call for xid 0x%x "
751 "from dispatch list\n", p->cku_xid);
752 call_table_remove(call);
753 }
754
755 if (call->call_reply)
756 freemsg(call->call_reply);
757 cv_destroy(&call->call_cv);
758 mutex_destroy(&call->call_lock);
759
760 kmem_free(p->cku_srcaddr.buf, p->cku_srcaddr.maxlen);
761 kmem_free(p->cku_addr.buf, p->cku_addr.maxlen);
762 kmem_free(p, sizeof (*p));
763 }
764
765 static int clnt_cots_pulls;
766 #define RM_HDR_SIZE 4 /* record mark header size */
767
768 /*
769 * Call remote procedure.
770 */
771 static enum clnt_stat
clnt_cots_kcallit(CLIENT * h,rpcproc_t procnum,xdrproc_t xdr_args,caddr_t argsp,xdrproc_t xdr_results,caddr_t resultsp,struct timeval wait)772 clnt_cots_kcallit(CLIENT *h, rpcproc_t procnum, xdrproc_t xdr_args,
773 caddr_t argsp, xdrproc_t xdr_results, caddr_t resultsp, struct timeval wait)
774 {
775 /* LINTED pointer alignment */
776 cku_private_t *p = htop(h);
777 calllist_t *call = &p->cku_call;
778 XDR *xdrs;
779 struct rpc_msg reply_msg;
780 mblk_t *mp;
781 #ifdef RPCDEBUG
782 clock_t time_sent;
783 #endif
784 struct netbuf *retryaddr;
785 struct cm_xprt *cm_entry = NULL;
786 queue_t *wq;
787 int len, waitsecs, max_waitsecs;
788 int mpsize;
789 int refreshes = REFRESHES;
790 int interrupted;
791 int tidu_size;
792 enum clnt_stat status;
793 struct timeval cwait;
794 bool_t delay_first = FALSE;
795 clock_t ticks, now;
796
797 RPCLOG(2, "clnt_cots_kcallit, procnum %u\n", procnum);
798 COTSRCSTAT_INCR(p->cku_stats, rccalls);
799
800 RPCLOG(2, "clnt_cots_kcallit: wait.tv_sec: %ld\n", wait.tv_sec);
801 RPCLOG(2, "clnt_cots_kcallit: wait.tv_usec: %ld\n", wait.tv_usec);
802 /*
803 * Bug ID 1240234:
804 * Look out for zero length timeouts. We don't want to
805 * wait zero seconds for a connection to be established.
806 */
807 if (wait.tv_sec < clnt_cots_min_conntout) {
808 cwait.tv_sec = clnt_cots_min_conntout;
809 cwait.tv_usec = 0;
810 RPCLOG(8, "clnt_cots_kcallit: wait.tv_sec (%ld) too low,",
811 wait.tv_sec);
812 RPCLOG(8, " setting to: %d\n", clnt_cots_min_conntout);
813 } else {
814 cwait = wait;
815 }
816
817 call_again:
818 if (cm_entry) {
819 connmgr_release(cm_entry);
820 cm_entry = NULL;
821 }
822
823 mp = NULL;
824
825 /*
826 * If the call is not a retry, allocate a new xid and cache it
827 * for future retries.
828 * Bug ID 1246045:
829 * Treat call as a retry for purposes of binding the source
830 * port only if we actually attempted to send anything on
831 * the previous call.
832 */
833 if (p->cku_xid == 0) {
834 p->cku_xid = alloc_xid();
835 call->call_zoneid = rpc_zoneid();
836
837 /*
838 * We need to ASSERT here that our xid != 0 because this
839 * determines whether or not our call record gets placed on
840 * the hash table or the linked list. By design, we mandate
841 * that RPC calls over cots must have xid's != 0, so we can
842 * ensure proper management of the hash table.
843 */
844 ASSERT(p->cku_xid != 0);
845
846 retryaddr = NULL;
847 p->cku_flags &= ~CKU_SENT;
848
849 if (p->cku_flags & CKU_ONQUEUE) {
850 RPCLOG(8, "clnt_cots_kcallit: new call, dequeuing old"
851 " one (%p)\n", (void *)call);
852 call_table_remove(call);
853 p->cku_flags &= ~CKU_ONQUEUE;
854 RPCLOG(64, "clnt_cots_kcallit: removing call from "
855 "dispatch list because xid was zero (now 0x%x)\n",
856 p->cku_xid);
857 }
858
859 if (call->call_reply != NULL) {
860 freemsg(call->call_reply);
861 call->call_reply = NULL;
862 }
863 } else if (p->cku_srcaddr.buf == NULL || p->cku_srcaddr.len == 0) {
864 retryaddr = NULL;
865
866 } else if (p->cku_flags & CKU_SENT) {
867 retryaddr = &p->cku_srcaddr;
868
869 } else {
870 /*
871 * Bug ID 1246045: Nothing was sent, so set retryaddr to
872 * NULL and let connmgr_get() bind to any source port it
873 * can get.
874 */
875 retryaddr = NULL;
876 }
877
878 RPCLOG(64, "clnt_cots_kcallit: xid = 0x%x", p->cku_xid);
879 RPCLOG(64, " flags = 0x%x\n", p->cku_flags);
880
881 p->cku_err.re_status = RPC_TIMEDOUT;
882 p->cku_err.re_errno = p->cku_err.re_terrno = 0;
883
884 cm_entry = connmgr_wrapget(retryaddr, &cwait, p);
885
886 if (cm_entry == NULL) {
887 RPCLOG(1, "clnt_cots_kcallit: can't connect status %s\n",
888 clnt_sperrno(p->cku_err.re_status));
889
890 /*
891 * The reasons why we fail to create a connection are
892 * varied. In most cases we don't want the caller to
893 * immediately retry. This could have one or more
894 * bad effects. This includes flooding the net with
895 * connect requests to ports with no listener; a hard
896 * kernel loop due to all the "reserved" TCP ports being
897 * in use.
898 */
899 delay_first = TRUE;
900
901 /*
902 * Even if we end up returning EINTR, we still count a
903 * a "can't connect", because the connection manager
904 * might have been committed to waiting for or timing out on
905 * a connection.
906 */
907 COTSRCSTAT_INCR(p->cku_stats, rccantconn);
908 switch (p->cku_err.re_status) {
909 case RPC_INTR:
910 p->cku_err.re_errno = EINTR;
911
912 /*
913 * No need to delay because a UNIX signal(2)
914 * interrupted us. The caller likely won't
915 * retry the CLNT_CALL() and even if it does,
916 * we assume the caller knows what it is doing.
917 */
918 delay_first = FALSE;
919 break;
920
921 case RPC_TIMEDOUT:
922 p->cku_err.re_errno = ETIMEDOUT;
923
924 /*
925 * No need to delay because timed out already
926 * on the connection request and assume that the
927 * transport time out is longer than our minimum
928 * timeout, or least not too much smaller.
929 */
930 delay_first = FALSE;
931 break;
932
933 case RPC_SYSTEMERROR:
934 case RPC_TLIERROR:
935 /*
936 * We want to delay here because a transient
937 * system error has a better chance of going away
938 * if we delay a bit. If it's not transient, then
939 * we don't want end up in a hard kernel loop
940 * due to retries.
941 */
942 ASSERT(p->cku_err.re_errno != 0);
943 break;
944
945
946 case RPC_CANTCONNECT:
947 /*
948 * RPC_CANTCONNECT is set on T_ERROR_ACK which
949 * implies some error down in the TCP layer or
950 * below. If cku_nodelayonerror is set then we
951 * assume the caller knows not to try too hard.
952 */
953 RPCLOG0(8, "clnt_cots_kcallit: connection failed,");
954 RPCLOG0(8, " re_status=RPC_CANTCONNECT,");
955 RPCLOG(8, " re_errno=%d,", p->cku_err.re_errno);
956 RPCLOG(8, " cku_nodelayonerr=%d", p->cku_nodelayonerr);
957 if (p->cku_nodelayonerr == TRUE)
958 delay_first = FALSE;
959
960 p->cku_err.re_errno = EIO;
961
962 break;
963
964 case RPC_XPRTFAILED:
965 /*
966 * We want to delay here because we likely
967 * got a refused connection.
968 */
969 if (p->cku_err.re_errno == 0)
970 p->cku_err.re_errno = EIO;
971
972 RPCLOG(1, "clnt_cots_kcallit: transport failed: %d\n",
973 p->cku_err.re_errno);
974
975 break;
976
977 default:
978 /*
979 * We delay here because it is better to err
980 * on the side of caution. If we got here then
981 * status could have been RPC_SUCCESS, but we
982 * know that we did not get a connection, so
983 * force the rpc status to RPC_CANTCONNECT.
984 */
985 p->cku_err.re_status = RPC_CANTCONNECT;
986 p->cku_err.re_errno = EIO;
987 break;
988 }
989 if (delay_first == TRUE)
990 ticks = clnt_cots_min_tout * drv_usectohz(1000000);
991 goto cots_done;
992 }
993
994 /*
995 * If we've never sent any request on this connection (send count
996 * is zero, or the connection has been reset), cache the
997 * the connection's create time and send a request (possibly a retry)
998 */
999 if ((p->cku_flags & CKU_SENT) == 0 ||
1000 p->cku_ctime != cm_entry->x_ctime) {
1001 p->cku_ctime = cm_entry->x_ctime;
1002
1003 } else if ((p->cku_flags & CKU_SENT) && (p->cku_flags & CKU_ONQUEUE) &&
1004 (call->call_reply != NULL ||
1005 p->cku_recv_attempts < clnt_cots_maxrecv)) {
1006
1007 /*
1008 * If we've sent a request and our call is on the dispatch
1009 * queue and we haven't made too many receive attempts, then
1010 * don't re-send, just receive.
1011 */
1012 p->cku_recv_attempts++;
1013 goto read_again;
1014 }
1015
1016 /*
1017 * Now we create the RPC request in a STREAMS message. We have to do
1018 * this after the call to connmgr_get so that we have the correct
1019 * TIDU size for the transport.
1020 */
1021 tidu_size = cm_entry->x_tidu_size;
1022 len = MSG_OFFSET + MAX(tidu_size, RM_HDR_SIZE + WIRE_HDR_SIZE);
1023
1024 while ((mp = allocb(len, BPRI_MED)) == NULL) {
1025 if (strwaitbuf(len, BPRI_MED)) {
1026 p->cku_err.re_status = RPC_SYSTEMERROR;
1027 p->cku_err.re_errno = ENOSR;
1028 COTSRCSTAT_INCR(p->cku_stats, rcnomem);
1029 goto cots_done;
1030 }
1031 }
1032 xdrs = &p->cku_outxdr;
1033 xdrmblk_init(xdrs, mp, XDR_ENCODE, tidu_size);
1034 mpsize = MBLKSIZE(mp);
1035 ASSERT(mpsize >= len);
1036 ASSERT(mp->b_rptr == mp->b_datap->db_base);
1037
1038 /*
1039 * If the size of mblk is not appreciably larger than what we
1040 * asked, then resize the mblk to exactly len bytes. The reason for
1041 * this: suppose len is 1600 bytes, the tidu is 1460 bytes
1042 * (from TCP over ethernet), and the arguments to the RPC require
1043 * 2800 bytes. Ideally we want the protocol to render two
1044 * ~1400 byte segments over the wire. However if allocb() gives us a 2k
1045 * mblk, and we allocate a second mblk for the remainder, the protocol
1046 * module may generate 3 segments over the wire:
1047 * 1460 bytes for the first, 448 (2048 - 1600) for the second, and
1048 * 892 for the third. If we "waste" 448 bytes in the first mblk,
1049 * the XDR encoding will generate two ~1400 byte mblks, and the
1050 * protocol module is more likely to produce properly sized segments.
1051 */
1052 if ((mpsize >> 1) <= len)
1053 mp->b_rptr += (mpsize - len);
1054
1055 /*
1056 * Adjust b_rptr to reserve space for the non-data protocol headers
1057 * any downstream modules might like to add, and for the
1058 * record marking header.
1059 */
1060 mp->b_rptr += (MSG_OFFSET + RM_HDR_SIZE);
1061
1062 if (h->cl_auth->ah_cred.oa_flavor != RPCSEC_GSS) {
1063 /* Copy in the preserialized RPC header information. */
1064 bcopy(p->cku_rpchdr, mp->b_rptr, WIRE_HDR_SIZE);
1065
1066 /* Use XDR_SETPOS() to set the b_wptr to past the RPC header. */
1067 XDR_SETPOS(xdrs, (uint_t)(mp->b_rptr - mp->b_datap->db_base +
1068 WIRE_HDR_SIZE));
1069
1070 ASSERT((mp->b_wptr - mp->b_rptr) == WIRE_HDR_SIZE);
1071
1072 /* Serialize the procedure number and the arguments. */
1073 if ((!XDR_PUTINT32(xdrs, (int32_t *)&procnum)) ||
1074 (!AUTH_MARSHALL(h->cl_auth, xdrs, p->cku_cred)) ||
1075 (!(*xdr_args)(xdrs, argsp))) {
1076 p->cku_err.re_status = RPC_CANTENCODEARGS;
1077 p->cku_err.re_errno = EIO;
1078 goto cots_done;
1079 }
1080
1081 (*(uint32_t *)(mp->b_rptr)) = p->cku_xid;
1082 } else {
1083 uint32_t *uproc = (uint32_t *)&p->cku_rpchdr[WIRE_HDR_SIZE];
1084 IXDR_PUT_U_INT32(uproc, procnum);
1085
1086 (*(uint32_t *)(&p->cku_rpchdr[0])) = p->cku_xid;
1087
1088 /* Use XDR_SETPOS() to set the b_wptr. */
1089 XDR_SETPOS(xdrs, (uint_t)(mp->b_rptr - mp->b_datap->db_base));
1090
1091 /* Serialize the procedure number and the arguments. */
1092 if (!AUTH_WRAP(h->cl_auth, p->cku_rpchdr, WIRE_HDR_SIZE+4,
1093 xdrs, xdr_args, argsp)) {
1094 p->cku_err.re_status = RPC_CANTENCODEARGS;
1095 p->cku_err.re_errno = EIO;
1096 goto cots_done;
1097 }
1098 }
1099
1100 RPCLOG(2, "clnt_cots_kcallit: connected, sending call, tidu_size %d\n",
1101 tidu_size);
1102
1103 wq = cm_entry->x_wq;
1104 waitsecs = 0;
1105
1106 dispatch_again:
1107 status = clnt_dispatch_send(wq, mp, call, p->cku_xid,
1108 (p->cku_flags & CKU_ONQUEUE));
1109
1110 if ((status == RPC_CANTSEND) && (call->call_reason == ENOBUFS)) {
1111 /*
1112 * QFULL condition, allow some time for queue to drain
1113 * and try again. Give up after waiting for all timeout
1114 * specified for the call, or zone is going away.
1115 */
1116 max_waitsecs = wait.tv_sec ? wait.tv_sec : clnt_cots_min_tout;
1117 if ((waitsecs++ < max_waitsecs) &&
1118 !(zone_status_get(curproc->p_zone) >=
1119 ZONE_IS_SHUTTING_DOWN)) {
1120
1121 /* wait 1 sec for queue to drain */
1122 if (clnt_delay(drv_usectohz(1000000),
1123 h->cl_nosignal) == EINTR) {
1124 p->cku_err.re_errno = EINTR;
1125 p->cku_err.re_status = RPC_INTR;
1126
1127 goto cots_done;
1128 }
1129
1130 /* and try again */
1131 goto dispatch_again;
1132 }
1133 p->cku_err.re_status = status;
1134 p->cku_err.re_errno = call->call_reason;
1135 DTRACE_PROBE(krpc__e__clntcots__kcallit__cantsend);
1136
1137 goto cots_done;
1138 }
1139
1140 if (waitsecs) {
1141 /* adjust timeout to account for time wait to send */
1142 wait.tv_sec -= waitsecs;
1143 if (wait.tv_sec < 0) {
1144 /* pick up reply on next retry */
1145 wait.tv_sec = 0;
1146 }
1147 DTRACE_PROBE2(clnt_cots__sendwait, CLIENT *, h,
1148 int, waitsecs);
1149 }
1150
1151 RPCLOG(64, "clnt_cots_kcallit: sent call for xid 0x%x\n",
1152 (uint_t)p->cku_xid);
1153 p->cku_flags = (CKU_ONQUEUE|CKU_SENT);
1154 p->cku_recv_attempts = 1;
1155
1156 #ifdef RPCDEBUG
1157 time_sent = ddi_get_lbolt();
1158 #endif
1159
1160 /*
1161 * Wait for a reply or a timeout. If there is no error or timeout,
1162 * (both indicated by call_status), call->call_reply will contain
1163 * the RPC reply message.
1164 */
1165 read_again:
1166 mutex_enter(&call->call_lock);
1167 interrupted = 0;
1168 if (call->call_status == RPC_TIMEDOUT) {
1169 /*
1170 * Indicate that the lwp is not to be stopped while waiting
1171 * for this network traffic. This is to avoid deadlock while
1172 * debugging a process via /proc and also to avoid recursive
1173 * mutex_enter()s due to NFS page faults while stopping
1174 * (NFS holds locks when it calls here).
1175 */
1176 clock_t cv_wait_ret;
1177 clock_t timout;
1178 clock_t oldlbolt;
1179
1180 klwp_t *lwp = ttolwp(curthread);
1181
1182 if (lwp != NULL)
1183 lwp->lwp_nostop++;
1184
1185 oldlbolt = ddi_get_lbolt();
1186 timout = wait.tv_sec * drv_usectohz(1000000) +
1187 drv_usectohz(wait.tv_usec) + oldlbolt;
1188 /*
1189 * Iterate until the call_status is changed to something
1190 * other that RPC_TIMEDOUT, or if cv_timedwait_sig() returns
1191 * something <=0 zero. The latter means that we timed
1192 * out.
1193 */
1194 if (h->cl_nosignal)
1195 while ((cv_wait_ret = cv_timedwait(&call->call_cv,
1196 &call->call_lock, timout)) > 0 &&
1197 call->call_status == RPC_TIMEDOUT)
1198 ;
1199 else
1200 while ((cv_wait_ret = cv_timedwait_sig(
1201 &call->call_cv,
1202 &call->call_lock, timout)) > 0 &&
1203 call->call_status == RPC_TIMEDOUT)
1204 ;
1205
1206 switch (cv_wait_ret) {
1207 case 0:
1208 /*
1209 * If we got out of the above loop with
1210 * cv_timedwait_sig() returning 0, then we were
1211 * interrupted regardless what call_status is.
1212 */
1213 interrupted = 1;
1214 break;
1215 case -1:
1216 /* cv_timedwait_sig() timed out */
1217 break;
1218 default:
1219
1220 /*
1221 * We were cv_signaled(). If we didn't
1222 * get a successful call_status and returned
1223 * before time expired, delay up to clnt_cots_min_tout
1224 * seconds so that the caller doesn't immediately
1225 * try to call us again and thus force the
1226 * same condition that got us here (such
1227 * as a RPC_XPRTFAILED due to the server not
1228 * listening on the end-point.
1229 */
1230 if (call->call_status != RPC_SUCCESS) {
1231 clock_t curlbolt;
1232 clock_t diff;
1233
1234 curlbolt = ddi_get_lbolt();
1235 ticks = clnt_cots_min_tout *
1236 drv_usectohz(1000000);
1237 diff = curlbolt - oldlbolt;
1238 if (diff < ticks) {
1239 delay_first = TRUE;
1240 if (diff > 0)
1241 ticks -= diff;
1242 }
1243 }
1244 break;
1245 }
1246
1247 if (lwp != NULL)
1248 lwp->lwp_nostop--;
1249 }
1250 /*
1251 * Get the reply message, if any. This will be freed at the end
1252 * whether or not an error occurred.
1253 */
1254 mp = call->call_reply;
1255 call->call_reply = NULL;
1256
1257 /*
1258 * call_err is the error info when the call is on dispatch queue.
1259 * cku_err is the error info returned to the caller.
1260 * Sync cku_err with call_err for local message processing.
1261 */
1262
1263 status = call->call_status;
1264 p->cku_err = call->call_err;
1265 mutex_exit(&call->call_lock);
1266
1267 if (status != RPC_SUCCESS) {
1268 switch (status) {
1269 case RPC_TIMEDOUT:
1270 now = ddi_get_lbolt();
1271 if (interrupted) {
1272 COTSRCSTAT_INCR(p->cku_stats, rcintrs);
1273 p->cku_err.re_status = RPC_INTR;
1274 p->cku_err.re_errno = EINTR;
1275 RPCLOG(1, "clnt_cots_kcallit: xid 0x%x",
1276 p->cku_xid);
1277 RPCLOG(1, "signal interrupted at %ld", now);
1278 RPCLOG(1, ", was sent at %ld\n", time_sent);
1279 } else {
1280 COTSRCSTAT_INCR(p->cku_stats, rctimeouts);
1281 p->cku_err.re_errno = ETIMEDOUT;
1282 RPCLOG(1, "clnt_cots_kcallit: timed out at %ld",
1283 now);
1284 RPCLOG(1, ", was sent at %ld\n", time_sent);
1285 }
1286 break;
1287
1288 case RPC_XPRTFAILED:
1289 if (p->cku_err.re_errno == 0)
1290 p->cku_err.re_errno = EIO;
1291
1292 RPCLOG(1, "clnt_cots_kcallit: transport failed: %d\n",
1293 p->cku_err.re_errno);
1294 break;
1295
1296 case RPC_SYSTEMERROR:
1297 ASSERT(p->cku_err.re_errno);
1298 RPCLOG(1, "clnt_cots_kcallit: system error: %d\n",
1299 p->cku_err.re_errno);
1300 break;
1301
1302 default:
1303 p->cku_err.re_status = RPC_SYSTEMERROR;
1304 p->cku_err.re_errno = EIO;
1305 RPCLOG(1, "clnt_cots_kcallit: error: %s\n",
1306 clnt_sperrno(status));
1307 break;
1308 }
1309 if (p->cku_err.re_status != RPC_TIMEDOUT) {
1310
1311 if (p->cku_flags & CKU_ONQUEUE) {
1312 call_table_remove(call);
1313 p->cku_flags &= ~CKU_ONQUEUE;
1314 }
1315
1316 RPCLOG(64, "clnt_cots_kcallit: non TIMEOUT so xid 0x%x "
1317 "taken off dispatch list\n", p->cku_xid);
1318 if (call->call_reply) {
1319 freemsg(call->call_reply);
1320 call->call_reply = NULL;
1321 }
1322 } else if (wait.tv_sec != 0) {
1323 /*
1324 * We've sent the request over TCP and so we have
1325 * every reason to believe it will get
1326 * delivered. In which case returning a timeout is not
1327 * appropriate.
1328 */
1329 if (p->cku_progress == TRUE &&
1330 p->cku_recv_attempts < clnt_cots_maxrecv) {
1331 p->cku_err.re_status = RPC_INPROGRESS;
1332 }
1333 }
1334 goto cots_done;
1335 }
1336
1337 xdrs = &p->cku_inxdr;
1338 xdrmblk_init(xdrs, mp, XDR_DECODE, 0);
1339
1340 reply_msg.rm_direction = REPLY;
1341 reply_msg.rm_reply.rp_stat = MSG_ACCEPTED;
1342 reply_msg.acpted_rply.ar_stat = SUCCESS;
1343
1344 reply_msg.acpted_rply.ar_verf = _null_auth;
1345 /*
1346 * xdr_results will be done in AUTH_UNWRAP.
1347 */
1348 reply_msg.acpted_rply.ar_results.where = NULL;
1349 reply_msg.acpted_rply.ar_results.proc = xdr_void;
1350
1351 if (xdr_replymsg(xdrs, &reply_msg)) {
1352 enum clnt_stat re_status;
1353
1354 _seterr_reply(&reply_msg, &p->cku_err);
1355
1356 re_status = p->cku_err.re_status;
1357 if (re_status == RPC_SUCCESS) {
1358 /*
1359 * Reply is good, check auth.
1360 */
1361 if (!AUTH_VALIDATE(h->cl_auth,
1362 &reply_msg.acpted_rply.ar_verf)) {
1363 COTSRCSTAT_INCR(p->cku_stats, rcbadverfs);
1364 RPCLOG0(1, "clnt_cots_kcallit: validation "
1365 "failure\n");
1366 freemsg(mp);
1367 (void) xdr_rpc_free_verifier(xdrs, &reply_msg);
1368 mutex_enter(&call->call_lock);
1369 if (call->call_reply == NULL)
1370 call->call_status = RPC_TIMEDOUT;
1371 mutex_exit(&call->call_lock);
1372 goto read_again;
1373 } else if (!AUTH_UNWRAP(h->cl_auth, xdrs,
1374 xdr_results, resultsp)) {
1375 RPCLOG0(1, "clnt_cots_kcallit: validation "
1376 "failure (unwrap)\n");
1377 p->cku_err.re_status = RPC_CANTDECODERES;
1378 p->cku_err.re_errno = EIO;
1379 }
1380 } else {
1381 /* set errno in case we can't recover */
1382 if (re_status != RPC_VERSMISMATCH &&
1383 re_status != RPC_AUTHERROR &&
1384 re_status != RPC_PROGVERSMISMATCH)
1385 p->cku_err.re_errno = EIO;
1386
1387 if (re_status == RPC_AUTHERROR) {
1388 /*
1389 * Maybe our credential need to be refreshed
1390 */
1391 if (cm_entry) {
1392 /*
1393 * There is the potential that the
1394 * cm_entry has/will be marked dead,
1395 * so drop the connection altogether,
1396 * force REFRESH to establish new
1397 * connection.
1398 */
1399 connmgr_cancelconn(cm_entry);
1400 cm_entry = NULL;
1401 }
1402
1403 (void) xdr_rpc_free_verifier(xdrs,
1404 &reply_msg);
1405
1406 if (p->cku_flags & CKU_ONQUEUE) {
1407 call_table_remove(call);
1408 p->cku_flags &= ~CKU_ONQUEUE;
1409 }
1410 RPCLOG(64,
1411 "clnt_cots_kcallit: AUTH_ERROR, xid"
1412 " 0x%x removed off dispatch list\n",
1413 p->cku_xid);
1414 if (call->call_reply) {
1415 freemsg(call->call_reply);
1416 call->call_reply = NULL;
1417 }
1418
1419 if ((refreshes > 0) &&
1420 AUTH_REFRESH(h->cl_auth, &reply_msg,
1421 p->cku_cred)) {
1422 refreshes--;
1423 freemsg(mp);
1424 mp = NULL;
1425
1426 COTSRCSTAT_INCR(p->cku_stats,
1427 rcbadcalls);
1428 COTSRCSTAT_INCR(p->cku_stats,
1429 rcnewcreds);
1430 goto call_again;
1431 }
1432
1433 /*
1434 * We have used the client handle to
1435 * do an AUTH_REFRESH and the RPC status may
1436 * be set to RPC_SUCCESS; Let's make sure to
1437 * set it to RPC_AUTHERROR.
1438 */
1439 p->cku_err.re_status = RPC_AUTHERROR;
1440
1441 /*
1442 * Map recoverable and unrecoverable
1443 * authentication errors to appropriate errno
1444 */
1445 switch (p->cku_err.re_why) {
1446 case AUTH_TOOWEAK:
1447 /*
1448 * This could be a failure where the
1449 * server requires use of a reserved
1450 * port, check and optionally set the
1451 * client handle useresvport trying
1452 * one more time. Next go round we
1453 * fall out with the tooweak error.
1454 */
1455 if (p->cku_useresvport != 1) {
1456 p->cku_useresvport = 1;
1457 p->cku_xid = 0;
1458 freemsg(mp);
1459 mp = NULL;
1460 goto call_again;
1461 }
1462 /* FALLTHRU */
1463 case AUTH_BADCRED:
1464 case AUTH_BADVERF:
1465 case AUTH_INVALIDRESP:
1466 case AUTH_FAILED:
1467 case RPCSEC_GSS_NOCRED:
1468 case RPCSEC_GSS_FAILED:
1469 p->cku_err.re_errno = EACCES;
1470 break;
1471 case AUTH_REJECTEDCRED:
1472 case AUTH_REJECTEDVERF:
1473 default: p->cku_err.re_errno = EIO;
1474 break;
1475 }
1476 RPCLOG(1, "clnt_cots_kcallit : authentication"
1477 " failed with RPC_AUTHERROR of type %d\n",
1478 (int)p->cku_err.re_why);
1479 goto cots_done;
1480 }
1481 }
1482 } else {
1483 /* reply didn't decode properly. */
1484 p->cku_err.re_status = RPC_CANTDECODERES;
1485 p->cku_err.re_errno = EIO;
1486 RPCLOG0(1, "clnt_cots_kcallit: decode failure\n");
1487 }
1488
1489 (void) xdr_rpc_free_verifier(xdrs, &reply_msg);
1490
1491 if (p->cku_flags & CKU_ONQUEUE) {
1492 call_table_remove(call);
1493 p->cku_flags &= ~CKU_ONQUEUE;
1494 }
1495
1496 RPCLOG(64, "clnt_cots_kcallit: xid 0x%x taken off dispatch list",
1497 p->cku_xid);
1498 RPCLOG(64, " status is %s\n", clnt_sperrno(p->cku_err.re_status));
1499 cots_done:
1500 if (cm_entry)
1501 connmgr_release(cm_entry);
1502
1503 if (mp != NULL)
1504 freemsg(mp);
1505 if ((p->cku_flags & CKU_ONQUEUE) == 0 && call->call_reply) {
1506 freemsg(call->call_reply);
1507 call->call_reply = NULL;
1508 }
1509 if (p->cku_err.re_status != RPC_SUCCESS) {
1510 RPCLOG0(1, "clnt_cots_kcallit: tail-end failure\n");
1511 COTSRCSTAT_INCR(p->cku_stats, rcbadcalls);
1512 }
1513
1514 /*
1515 * No point in delaying if the zone is going away.
1516 */
1517 if (delay_first == TRUE &&
1518 !(zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN)) {
1519 if (clnt_delay(ticks, h->cl_nosignal) == EINTR) {
1520 p->cku_err.re_errno = EINTR;
1521 p->cku_err.re_status = RPC_INTR;
1522 }
1523 }
1524 return (p->cku_err.re_status);
1525 }
1526
1527 /*
1528 * Kinit routine for cots. This sets up the correct operations in
1529 * the client handle, as the handle may have previously been a clts
1530 * handle, and clears the xid field so there is no way a new call
1531 * could be mistaken for a retry. It also sets in the handle the
1532 * information that is passed at create/kinit time but needed at
1533 * call time, as cots creates the transport at call time - device,
1534 * address of the server, protocol family.
1535 */
1536 void
clnt_cots_kinit(CLIENT * h,dev_t dev,int family,struct netbuf * addr,int max_msgsize,cred_t * cred)1537 clnt_cots_kinit(CLIENT *h, dev_t dev, int family, struct netbuf *addr,
1538 int max_msgsize, cred_t *cred)
1539 {
1540 /* LINTED pointer alignment */
1541 cku_private_t *p = htop(h);
1542 calllist_t *call = &p->cku_call;
1543
1544 h->cl_ops = &tcp_ops;
1545 if (p->cku_flags & CKU_ONQUEUE) {
1546 call_table_remove(call);
1547 p->cku_flags &= ~CKU_ONQUEUE;
1548 RPCLOG(64, "clnt_cots_kinit: removing call for xid 0x%x from"
1549 " dispatch list\n", p->cku_xid);
1550 }
1551
1552 if (call->call_reply != NULL) {
1553 freemsg(call->call_reply);
1554 call->call_reply = NULL;
1555 }
1556
1557 call->call_bucket = NULL;
1558 call->call_hash = 0;
1559
1560 /*
1561 * We don't clear cku_flags here, because clnt_cots_kcallit()
1562 * takes care of handling the cku_flags reset.
1563 */
1564 p->cku_xid = 0;
1565 p->cku_device = dev;
1566 p->cku_addrfmly = family;
1567 p->cku_cred = cred;
1568
1569 if (p->cku_addr.maxlen < addr->len) {
1570 if (p->cku_addr.maxlen != 0 && p->cku_addr.buf != NULL)
1571 kmem_free(p->cku_addr.buf, p->cku_addr.maxlen);
1572 p->cku_addr.buf = kmem_zalloc(addr->maxlen, KM_SLEEP);
1573 p->cku_addr.maxlen = addr->maxlen;
1574 }
1575
1576 p->cku_addr.len = addr->len;
1577 bcopy(addr->buf, p->cku_addr.buf, addr->len);
1578
1579 /*
1580 * If the current sanity check size in rpcmod is smaller
1581 * than the size needed, then increase the sanity check.
1582 */
1583 if (max_msgsize != 0 && clnt_max_msg_sizep != NULL &&
1584 max_msgsize > *clnt_max_msg_sizep) {
1585 mutex_enter(&clnt_max_msg_lock);
1586 if (max_msgsize > *clnt_max_msg_sizep)
1587 *clnt_max_msg_sizep = max_msgsize;
1588 mutex_exit(&clnt_max_msg_lock);
1589 }
1590 }
1591
1592 /*
1593 * ksettimers is a no-op for cots, with the exception of setting the xid.
1594 */
1595 /* ARGSUSED */
1596 static int
clnt_cots_ksettimers(CLIENT * h,struct rpc_timers * t,struct rpc_timers * all,int minimum,void (* feedback)(int,int,caddr_t),caddr_t arg,uint32_t xid)1597 clnt_cots_ksettimers(CLIENT *h, struct rpc_timers *t, struct rpc_timers *all,
1598 int minimum, void (*feedback)(int, int, caddr_t), caddr_t arg,
1599 uint32_t xid)
1600 {
1601 /* LINTED pointer alignment */
1602 cku_private_t *p = htop(h);
1603
1604 if (xid)
1605 p->cku_xid = xid;
1606 COTSRCSTAT_INCR(p->cku_stats, rctimers);
1607 return (0);
1608 }
1609
1610 extern void rpc_poptimod(struct vnode *);
1611 extern int kstr_push(struct vnode *, char *);
1612
1613 int
conn_kstat_update(kstat_t * ksp,int rw)1614 conn_kstat_update(kstat_t *ksp, int rw)
1615 {
1616 struct cm_xprt *cm_entry;
1617 struct cm_kstat_xprt *cm_ksp_data;
1618 uchar_t *b;
1619 char *fbuf;
1620
1621 if (rw == KSTAT_WRITE)
1622 return (EACCES);
1623 if (ksp == NULL || ksp->ks_private == NULL)
1624 return (EIO);
1625 cm_entry = (struct cm_xprt *)ksp->ks_private;
1626 cm_ksp_data = (struct cm_kstat_xprt *)ksp->ks_data;
1627
1628 cm_ksp_data->x_wq.value.ui32 = (uint32_t)(uintptr_t)cm_entry->x_wq;
1629 cm_ksp_data->x_family.value.ui32 = cm_entry->x_family;
1630 cm_ksp_data->x_rdev.value.ui32 = (uint32_t)cm_entry->x_rdev;
1631 cm_ksp_data->x_time.value.ui32 = cm_entry->x_time;
1632 cm_ksp_data->x_ref.value.ui32 = cm_entry->x_ref;
1633 cm_ksp_data->x_state.value.ui32 = cm_entry->x_state_flags;
1634
1635 if (cm_entry->x_server.buf) {
1636 fbuf = cm_ksp_data->x_server.value.str.addr.ptr;
1637 if (cm_entry->x_family == AF_INET &&
1638 cm_entry->x_server.len ==
1639 sizeof (struct sockaddr_in)) {
1640 struct sockaddr_in *sa;
1641 sa = (struct sockaddr_in *)
1642 cm_entry->x_server.buf;
1643 b = (uchar_t *)&sa->sin_addr;
1644 (void) sprintf(fbuf,
1645 "%03d.%03d.%03d.%03d", b[0] & 0xFF, b[1] & 0xFF,
1646 b[2] & 0xFF, b[3] & 0xFF);
1647 cm_ksp_data->x_port.value.ui32 =
1648 (uint32_t)sa->sin_port;
1649 } else if (cm_entry->x_family == AF_INET6 &&
1650 cm_entry->x_server.len >=
1651 sizeof (struct sockaddr_in6)) {
1652 /* extract server IP address & port */
1653 struct sockaddr_in6 *sin6;
1654 sin6 = (struct sockaddr_in6 *)cm_entry->x_server.buf;
1655 (void) kinet_ntop6((uchar_t *)&sin6->sin6_addr, fbuf,
1656 INET6_ADDRSTRLEN);
1657 cm_ksp_data->x_port.value.ui32 = sin6->sin6_port;
1658 } else {
1659 struct sockaddr_in *sa;
1660
1661 sa = (struct sockaddr_in *)cm_entry->x_server.buf;
1662 b = (uchar_t *)&sa->sin_addr;
1663 (void) sprintf(fbuf,
1664 "%03d.%03d.%03d.%03d", b[0] & 0xFF, b[1] & 0xFF,
1665 b[2] & 0xFF, b[3] & 0xFF);
1666 }
1667 KSTAT_NAMED_STR_BUFLEN(&cm_ksp_data->x_server) =
1668 strlen(fbuf) + 1;
1669 }
1670
1671 return (0);
1672 }
1673
1674
1675 /*
1676 * We want a version of delay which is interruptible by a UNIX signal
1677 * Return EINTR if an interrupt occured.
1678 */
1679 static int
clnt_delay(clock_t ticks,bool_t nosignal)1680 clnt_delay(clock_t ticks, bool_t nosignal)
1681 {
1682 if (nosignal == TRUE) {
1683 delay(ticks);
1684 return (0);
1685 }
1686 return (delay_sig(ticks));
1687 }
1688
1689 /*
1690 * Wait for a connection until a timeout, or until we are
1691 * signalled that there has been a connection state change.
1692 */
1693 static enum clnt_stat
connmgr_cwait(struct cm_xprt * cm_entry,const struct timeval * waitp,bool_t nosignal)1694 connmgr_cwait(struct cm_xprt *cm_entry, const struct timeval *waitp,
1695 bool_t nosignal)
1696 {
1697 bool_t interrupted;
1698 clock_t timout, cv_stat;
1699 enum clnt_stat clstat;
1700 unsigned int old_state;
1701
1702 ASSERT(MUTEX_HELD(&connmgr_lock));
1703 /*
1704 * We wait for the transport connection to be made, or an
1705 * indication that it could not be made.
1706 */
1707 clstat = RPC_TIMEDOUT;
1708 interrupted = FALSE;
1709
1710 old_state = cm_entry->x_state_flags;
1711 /*
1712 * Now loop until cv_timedwait{_sig} returns because of
1713 * a signal(0) or timeout(-1) or cv_signal(>0). But it may be
1714 * cv_signalled for various other reasons too. So loop
1715 * until there is a state change on the connection.
1716 */
1717
1718 timout = waitp->tv_sec * drv_usectohz(1000000) +
1719 drv_usectohz(waitp->tv_usec) + ddi_get_lbolt();
1720
1721 if (nosignal) {
1722 while ((cv_stat = cv_timedwait(&cm_entry->x_conn_cv,
1723 &connmgr_lock, timout)) > 0 &&
1724 cm_entry->x_state_flags == old_state)
1725 ;
1726 } else {
1727 while ((cv_stat = cv_timedwait_sig(&cm_entry->x_conn_cv,
1728 &connmgr_lock, timout)) > 0 &&
1729 cm_entry->x_state_flags == old_state)
1730 ;
1731
1732 if (cv_stat == 0) /* got intr signal? */
1733 interrupted = TRUE;
1734 }
1735
1736 if ((cm_entry->x_state_flags & (X_BADSTATES|X_CONNECTED)) ==
1737 X_CONNECTED) {
1738 clstat = RPC_SUCCESS;
1739 } else {
1740 if (interrupted == TRUE)
1741 clstat = RPC_INTR;
1742 RPCLOG(1, "connmgr_cwait: can't connect, error: %s\n",
1743 clnt_sperrno(clstat));
1744 }
1745
1746 return (clstat);
1747 }
1748
1749 /*
1750 * Primary interface for how RPC grabs a connection.
1751 */
1752 static struct cm_xprt *
connmgr_wrapget(struct netbuf * retryaddr,const struct timeval * waitp,cku_private_t * p)1753 connmgr_wrapget(
1754 struct netbuf *retryaddr,
1755 const struct timeval *waitp,
1756 cku_private_t *p)
1757 {
1758 struct cm_xprt *cm_entry;
1759
1760 cm_entry = connmgr_get(retryaddr, waitp, &p->cku_addr, p->cku_addrfmly,
1761 &p->cku_srcaddr, &p->cku_err, p->cku_device,
1762 p->cku_client.cl_nosignal, p->cku_useresvport, p->cku_cred);
1763
1764 if (cm_entry == NULL) {
1765 /*
1766 * Re-map the call status to RPC_INTR if the err code is
1767 * EINTR. This can happen if calls status is RPC_TLIERROR.
1768 * However, don't re-map if signalling has been turned off.
1769 * XXX Really need to create a separate thread whenever
1770 * there isn't an existing connection.
1771 */
1772 if (p->cku_err.re_errno == EINTR) {
1773 if (p->cku_client.cl_nosignal == TRUE)
1774 p->cku_err.re_errno = EIO;
1775 else
1776 p->cku_err.re_status = RPC_INTR;
1777 }
1778 }
1779
1780 return (cm_entry);
1781 }
1782
1783 /*
1784 * Obtains a transport to the server specified in addr. If a suitable transport
1785 * does not already exist in the list of cached transports, a new connection
1786 * is created, connected, and added to the list. The connection is for sending
1787 * only - the reply message may come back on another transport connection.
1788 *
1789 * To implement round-robin load balancing with multiple client connections,
1790 * the last entry on the list is always selected. Once the entry is selected
1791 * it's re-inserted to the head of the list.
1792 */
1793 static struct cm_xprt *
connmgr_get(struct netbuf * retryaddr,const struct timeval * waitp,struct netbuf * destaddr,int addrfmly,struct netbuf * srcaddr,struct rpc_err * rpcerr,dev_t device,bool_t nosignal,int useresvport,cred_t * cr)1794 connmgr_get(
1795 struct netbuf *retryaddr,
1796 const struct timeval *waitp, /* changed to a ptr to converse stack */
1797 struct netbuf *destaddr,
1798 int addrfmly,
1799 struct netbuf *srcaddr,
1800 struct rpc_err *rpcerr,
1801 dev_t device,
1802 bool_t nosignal,
1803 int useresvport,
1804 cred_t *cr)
1805 {
1806 struct cm_xprt *cm_entry;
1807 struct cm_xprt *lru_entry;
1808 struct cm_xprt **cmp, **prev;
1809 queue_t *wq;
1810 TIUSER *tiptr;
1811 int i;
1812 int retval;
1813 int tidu_size;
1814 bool_t connected;
1815 zoneid_t zoneid = rpc_zoneid();
1816
1817 /*
1818 * If the call is not a retry, look for a transport entry that
1819 * goes to the server of interest.
1820 */
1821 mutex_enter(&connmgr_lock);
1822
1823 if (retryaddr == NULL) {
1824 use_new_conn:
1825 i = 0;
1826 cm_entry = lru_entry = NULL;
1827
1828 prev = cmp = &cm_hd;
1829 while ((cm_entry = *cmp) != NULL) {
1830 ASSERT(cm_entry != cm_entry->x_next);
1831 /*
1832 * Garbage collect conections that are marked
1833 * for needs disconnect.
1834 */
1835 if (cm_entry->x_needdis) {
1836 CONN_HOLD(cm_entry);
1837 connmgr_dis_and_wait(cm_entry);
1838 connmgr_release(cm_entry);
1839 /*
1840 * connmgr_lock could have been
1841 * dropped for the disconnect
1842 * processing so start over.
1843 */
1844 goto use_new_conn;
1845 }
1846
1847 /*
1848 * Garbage collect the dead connections that have
1849 * no threads working on them.
1850 */
1851 if ((cm_entry->x_state_flags & (X_DEAD|X_THREAD)) ==
1852 X_DEAD) {
1853 mutex_enter(&cm_entry->x_lock);
1854 if (cm_entry->x_ref != 0) {
1855 /*
1856 * Currently in use.
1857 * Cleanup later.
1858 */
1859 cmp = &cm_entry->x_next;
1860 mutex_exit(&cm_entry->x_lock);
1861 continue;
1862 }
1863 mutex_exit(&cm_entry->x_lock);
1864 *cmp = cm_entry->x_next;
1865 mutex_exit(&connmgr_lock);
1866 connmgr_close(cm_entry);
1867 mutex_enter(&connmgr_lock);
1868 goto use_new_conn;
1869 }
1870
1871
1872 if ((cm_entry->x_state_flags & X_BADSTATES) == 0 &&
1873 cm_entry->x_zoneid == zoneid &&
1874 cm_entry->x_rdev == device &&
1875 destaddr->len == cm_entry->x_server.len &&
1876 bcmp(destaddr->buf, cm_entry->x_server.buf,
1877 destaddr->len) == 0) {
1878 /*
1879 * If the matching entry isn't connected,
1880 * attempt to reconnect it.
1881 */
1882 if (cm_entry->x_connected == FALSE) {
1883 /*
1884 * We don't go through trying
1885 * to find the least recently
1886 * used connected because
1887 * connmgr_reconnect() briefly
1888 * dropped the connmgr_lock,
1889 * allowing a window for our
1890 * accounting to be messed up.
1891 * In any case, a re-connected
1892 * connection is as good as
1893 * a LRU connection.
1894 */
1895 return (connmgr_wrapconnect(cm_entry,
1896 waitp, destaddr, addrfmly, srcaddr,
1897 rpcerr, TRUE, nosignal, cr));
1898 }
1899 i++;
1900
1901 /* keep track of the last entry */
1902 lru_entry = cm_entry;
1903 prev = cmp;
1904 }
1905 cmp = &cm_entry->x_next;
1906 }
1907
1908 if (i > clnt_max_conns) {
1909 RPCLOG(8, "connmgr_get: too many conns, dooming entry"
1910 " %p\n", (void *)lru_entry->x_tiptr);
1911 lru_entry->x_doomed = TRUE;
1912 goto use_new_conn;
1913 }
1914
1915 /*
1916 * If we are at the maximum number of connections to
1917 * the server, hand back the least recently used one.
1918 */
1919 if (i == clnt_max_conns) {
1920 /*
1921 * Copy into the handle the source address of
1922 * the connection, which we will use in case of
1923 * a later retry.
1924 */
1925 if (srcaddr->len != lru_entry->x_src.len) {
1926 if (srcaddr->len > 0)
1927 kmem_free(srcaddr->buf,
1928 srcaddr->maxlen);
1929 srcaddr->buf = kmem_zalloc(
1930 lru_entry->x_src.len, KM_SLEEP);
1931 srcaddr->maxlen = srcaddr->len =
1932 lru_entry->x_src.len;
1933 }
1934 bcopy(lru_entry->x_src.buf, srcaddr->buf, srcaddr->len);
1935 RPCLOG(2, "connmgr_get: call going out on %p\n",
1936 (void *)lru_entry);
1937 lru_entry->x_time = ddi_get_lbolt();
1938 CONN_HOLD(lru_entry);
1939
1940 if ((i > 1) && (prev != &cm_hd)) {
1941 /*
1942 * remove and re-insert entry at head of list.
1943 */
1944 *prev = lru_entry->x_next;
1945 lru_entry->x_next = cm_hd;
1946 cm_hd = lru_entry;
1947 }
1948
1949 mutex_exit(&connmgr_lock);
1950 return (lru_entry);
1951 }
1952
1953 } else {
1954 /*
1955 * This is the retry case (retryaddr != NULL). Retries must
1956 * be sent on the same source port as the original call.
1957 */
1958
1959 /*
1960 * Walk the list looking for a connection with a source address
1961 * that matches the retry address.
1962 */
1963 start_retry_loop:
1964 cmp = &cm_hd;
1965 while ((cm_entry = *cmp) != NULL) {
1966 ASSERT(cm_entry != cm_entry->x_next);
1967
1968 /*
1969 * determine if this connection matches the passed
1970 * in retry address. If it does not match, advance
1971 * to the next element on the list.
1972 */
1973 if (zoneid != cm_entry->x_zoneid ||
1974 device != cm_entry->x_rdev ||
1975 retryaddr->len != cm_entry->x_src.len ||
1976 bcmp(retryaddr->buf, cm_entry->x_src.buf,
1977 retryaddr->len) != 0) {
1978 cmp = &cm_entry->x_next;
1979 continue;
1980 }
1981 /*
1982 * Garbage collect conections that are marked
1983 * for needs disconnect.
1984 */
1985 if (cm_entry->x_needdis) {
1986 CONN_HOLD(cm_entry);
1987 connmgr_dis_and_wait(cm_entry);
1988 connmgr_release(cm_entry);
1989 /*
1990 * connmgr_lock could have been
1991 * dropped for the disconnect
1992 * processing so start over.
1993 */
1994 goto start_retry_loop;
1995 }
1996 /*
1997 * Garbage collect the dead connections that have
1998 * no threads working on them.
1999 */
2000 if ((cm_entry->x_state_flags & (X_DEAD|X_THREAD)) ==
2001 X_DEAD) {
2002 mutex_enter(&cm_entry->x_lock);
2003 if (cm_entry->x_ref != 0) {
2004 /*
2005 * Currently in use.
2006 * Cleanup later.
2007 */
2008 cmp = &cm_entry->x_next;
2009 mutex_exit(&cm_entry->x_lock);
2010 continue;
2011 }
2012 mutex_exit(&cm_entry->x_lock);
2013 *cmp = cm_entry->x_next;
2014 mutex_exit(&connmgr_lock);
2015 connmgr_close(cm_entry);
2016 mutex_enter(&connmgr_lock);
2017 goto start_retry_loop;
2018 }
2019
2020 /*
2021 * Sanity check: if the connection with our source
2022 * port is going to some other server, something went
2023 * wrong, as we never delete connections (i.e. release
2024 * ports) unless they have been idle. In this case,
2025 * it is probably better to send the call out using
2026 * a new source address than to fail it altogether,
2027 * since that port may never be released.
2028 */
2029 if (destaddr->len != cm_entry->x_server.len ||
2030 bcmp(destaddr->buf, cm_entry->x_server.buf,
2031 destaddr->len) != 0) {
2032 RPCLOG(1, "connmgr_get: tiptr %p"
2033 " is going to a different server"
2034 " with the port that belongs"
2035 " to us!\n", (void *)cm_entry->x_tiptr);
2036 retryaddr = NULL;
2037 goto use_new_conn;
2038 }
2039
2040 /*
2041 * If the connection of interest is not connected and we
2042 * can't reconnect it, then the server is probably
2043 * still down. Return NULL to the caller and let it
2044 * retry later if it wants to. We have a delay so the
2045 * machine doesn't go into a tight retry loop. If the
2046 * entry was already connected, or the reconnected was
2047 * successful, return this entry.
2048 */
2049 if (cm_entry->x_connected == FALSE) {
2050 return (connmgr_wrapconnect(cm_entry,
2051 waitp, destaddr, addrfmly, NULL,
2052 rpcerr, TRUE, nosignal, cr));
2053 } else {
2054 CONN_HOLD(cm_entry);
2055
2056 cm_entry->x_time = ddi_get_lbolt();
2057 mutex_exit(&connmgr_lock);
2058 RPCLOG(2, "connmgr_get: found old "
2059 "transport %p for retry\n",
2060 (void *)cm_entry);
2061 return (cm_entry);
2062 }
2063 }
2064
2065 /*
2066 * We cannot find an entry in the list for this retry.
2067 * Either the entry has been removed temporarily to be
2068 * reconnected by another thread, or the original call
2069 * got a port but never got connected,
2070 * and hence the transport never got put in the
2071 * list. Fall through to the "create new connection" code -
2072 * the former case will fail there trying to rebind the port,
2073 * and the later case (and any other pathological cases) will
2074 * rebind and reconnect and not hang the client machine.
2075 */
2076 RPCLOG0(8, "connmgr_get: no entry in list for retry\n");
2077 }
2078 /*
2079 * Set up a transport entry in the connection manager's list.
2080 */
2081 cm_entry = (struct cm_xprt *)
2082 kmem_zalloc(sizeof (struct cm_xprt), KM_SLEEP);
2083
2084 cm_entry->x_server.buf = kmem_zalloc(destaddr->len, KM_SLEEP);
2085 bcopy(destaddr->buf, cm_entry->x_server.buf, destaddr->len);
2086 cm_entry->x_server.len = cm_entry->x_server.maxlen = destaddr->len;
2087
2088 cm_entry->x_state_flags = X_THREAD;
2089 cm_entry->x_ref = 1;
2090 cm_entry->x_family = addrfmly;
2091 cm_entry->x_rdev = device;
2092 cm_entry->x_zoneid = zoneid;
2093 mutex_init(&cm_entry->x_lock, NULL, MUTEX_DEFAULT, NULL);
2094 cv_init(&cm_entry->x_cv, NULL, CV_DEFAULT, NULL);
2095 cv_init(&cm_entry->x_conn_cv, NULL, CV_DEFAULT, NULL);
2096 cv_init(&cm_entry->x_dis_cv, NULL, CV_DEFAULT, NULL);
2097
2098 /*
2099 * Note that we add this partially initialized entry to the
2100 * connection list. This is so that we don't have connections to
2101 * the same server.
2102 *
2103 * Note that x_src is not initialized at this point. This is because
2104 * retryaddr might be NULL in which case x_src is whatever
2105 * t_kbind/bindresvport gives us. If another thread wants a
2106 * connection to the same server, seemingly we have an issue, but we
2107 * don't. If the other thread comes in with retryaddr == NULL, then it
2108 * will never look at x_src, and it will end up waiting in
2109 * connmgr_cwait() for the first thread to finish the connection
2110 * attempt. If the other thread comes in with retryaddr != NULL, then
2111 * that means there was a request sent on a connection, in which case
2112 * the the connection should already exist. Thus the first thread
2113 * never gets here ... it finds the connection it its server in the
2114 * connection list.
2115 *
2116 * But even if theory is wrong, in the retryaddr != NULL case, the 2nd
2117 * thread will skip us because x_src.len == 0.
2118 */
2119 cm_entry->x_next = cm_hd;
2120 cm_hd = cm_entry;
2121 mutex_exit(&connmgr_lock);
2122
2123 /*
2124 * Either we didn't find an entry to the server of interest, or we
2125 * don't have the maximum number of connections to that server -
2126 * create a new connection.
2127 */
2128 RPCLOG0(8, "connmgr_get: creating new connection\n");
2129 rpcerr->re_status = RPC_TLIERROR;
2130
2131 i = t_kopen(NULL, device, FREAD|FWRITE|FNDELAY, &tiptr, zone_kcred());
2132 if (i) {
2133 RPCLOG(1, "connmgr_get: can't open cots device, error %d\n", i);
2134 rpcerr->re_errno = i;
2135 connmgr_cancelconn(cm_entry);
2136 return (NULL);
2137 }
2138 rpc_poptimod(tiptr->fp->f_vnode);
2139
2140 if (i = strioctl(tiptr->fp->f_vnode, I_PUSH, (intptr_t)"rpcmod", 0,
2141 K_TO_K, kcred, &retval)) {
2142 RPCLOG(1, "connmgr_get: can't push cots module, %d\n", i);
2143 (void) t_kclose(tiptr, 1);
2144 rpcerr->re_errno = i;
2145 connmgr_cancelconn(cm_entry);
2146 return (NULL);
2147 }
2148
2149 if (i = strioctl(tiptr->fp->f_vnode, RPC_CLIENT, 0, 0, K_TO_K,
2150 kcred, &retval)) {
2151 RPCLOG(1, "connmgr_get: can't set client status with cots "
2152 "module, %d\n", i);
2153 (void) t_kclose(tiptr, 1);
2154 rpcerr->re_errno = i;
2155 connmgr_cancelconn(cm_entry);
2156 return (NULL);
2157 }
2158
2159 mutex_enter(&connmgr_lock);
2160
2161 wq = tiptr->fp->f_vnode->v_stream->sd_wrq->q_next;
2162 cm_entry->x_wq = wq;
2163
2164 mutex_exit(&connmgr_lock);
2165
2166 if (i = strioctl(tiptr->fp->f_vnode, I_PUSH, (intptr_t)"timod", 0,
2167 K_TO_K, kcred, &retval)) {
2168 RPCLOG(1, "connmgr_get: can't push timod, %d\n", i);
2169 (void) t_kclose(tiptr, 1);
2170 rpcerr->re_errno = i;
2171 connmgr_cancelconn(cm_entry);
2172 return (NULL);
2173 }
2174
2175 /*
2176 * If the caller has not specified reserved port usage then
2177 * take the system default.
2178 */
2179 if (useresvport == -1)
2180 useresvport = clnt_cots_do_bindresvport;
2181
2182 if ((useresvport || retryaddr != NULL) &&
2183 (addrfmly == AF_INET || addrfmly == AF_INET6)) {
2184 bool_t alloc_src = FALSE;
2185
2186 if (srcaddr->len != destaddr->len) {
2187 kmem_free(srcaddr->buf, srcaddr->maxlen);
2188 srcaddr->buf = kmem_zalloc(destaddr->len, KM_SLEEP);
2189 srcaddr->maxlen = destaddr->len;
2190 srcaddr->len = destaddr->len;
2191 alloc_src = TRUE;
2192 }
2193
2194 if ((i = bindresvport(tiptr, retryaddr, srcaddr, TRUE)) != 0) {
2195 (void) t_kclose(tiptr, 1);
2196 RPCLOG(1, "connmgr_get: couldn't bind, retryaddr: "
2197 "%p\n", (void *)retryaddr);
2198
2199 /*
2200 * 1225408: If we allocated a source address, then it
2201 * is either garbage or all zeroes. In that case
2202 * we need to clear srcaddr.
2203 */
2204 if (alloc_src == TRUE) {
2205 kmem_free(srcaddr->buf, srcaddr->maxlen);
2206 srcaddr->maxlen = srcaddr->len = 0;
2207 srcaddr->buf = NULL;
2208 }
2209 rpcerr->re_errno = i;
2210 connmgr_cancelconn(cm_entry);
2211 return (NULL);
2212 }
2213 } else {
2214 if ((i = t_kbind(tiptr, NULL, NULL)) != 0) {
2215 RPCLOG(1, "clnt_cots_kcreate: t_kbind: %d\n", i);
2216 (void) t_kclose(tiptr, 1);
2217 rpcerr->re_errno = i;
2218 connmgr_cancelconn(cm_entry);
2219 return (NULL);
2220 }
2221 }
2222
2223 {
2224 /*
2225 * Keep the kernel stack lean. Don't move this call
2226 * declaration to the top of this function because a
2227 * call is declared in connmgr_wrapconnect()
2228 */
2229 calllist_t call;
2230
2231 bzero(&call, sizeof (call));
2232 cv_init(&call.call_cv, NULL, CV_DEFAULT, NULL);
2233
2234 /*
2235 * This is a bound end-point so don't close it's stream.
2236 */
2237 connected = connmgr_connect(cm_entry, wq, destaddr, addrfmly,
2238 &call, &tidu_size, FALSE, waitp, nosignal, cr);
2239 *rpcerr = call.call_err;
2240 cv_destroy(&call.call_cv);
2241
2242 }
2243
2244 mutex_enter(&connmgr_lock);
2245
2246 /*
2247 * Set up a transport entry in the connection manager's list.
2248 */
2249 cm_entry->x_src.buf = kmem_zalloc(srcaddr->len, KM_SLEEP);
2250 bcopy(srcaddr->buf, cm_entry->x_src.buf, srcaddr->len);
2251 cm_entry->x_src.len = cm_entry->x_src.maxlen = srcaddr->len;
2252
2253 cm_entry->x_tiptr = tiptr;
2254 cm_entry->x_time = ddi_get_lbolt();
2255
2256 if (tiptr->tp_info.servtype == T_COTS_ORD)
2257 cm_entry->x_ordrel = TRUE;
2258 else
2259 cm_entry->x_ordrel = FALSE;
2260
2261 cm_entry->x_tidu_size = tidu_size;
2262
2263 if (cm_entry->x_early_disc) {
2264 /*
2265 * We need to check if a disconnect request has come
2266 * while we are connected, if so, then we need to
2267 * set rpcerr->re_status appropriately before returning
2268 * NULL to caller.
2269 */
2270 if (rpcerr->re_status == RPC_SUCCESS)
2271 rpcerr->re_status = RPC_XPRTFAILED;
2272 cm_entry->x_connected = FALSE;
2273 } else
2274 cm_entry->x_connected = connected;
2275
2276 /*
2277 * There could be a discrepancy here such that
2278 * x_early_disc is TRUE yet connected is TRUE as well
2279 * and the connection is actually connected. In that case
2280 * lets be conservative and declare the connection as not
2281 * connected.
2282 */
2283 cm_entry->x_early_disc = FALSE;
2284 cm_entry->x_needdis = (cm_entry->x_connected == FALSE);
2285 cm_entry->x_ctime = ddi_get_lbolt();
2286
2287 /*
2288 * Notify any threads waiting that the connection attempt is done.
2289 */
2290 cm_entry->x_thread = FALSE;
2291 cv_broadcast(&cm_entry->x_conn_cv);
2292
2293 if (cm_entry->x_connected == FALSE) {
2294 mutex_exit(&connmgr_lock);
2295 connmgr_release(cm_entry);
2296 return (NULL);
2297 }
2298
2299 mutex_exit(&connmgr_lock);
2300
2301 return (cm_entry);
2302 }
2303
2304 /*
2305 * Keep the cm_xprt entry on the connecton list when making a connection. This
2306 * is to prevent multiple connections to a slow server from appearing.
2307 * We use the bit field x_thread to tell if a thread is doing a connection
2308 * which keeps other interested threads from messing with connection.
2309 * Those other threads just wait if x_thread is set.
2310 *
2311 * If x_thread is not set, then we do the actual work of connecting via
2312 * connmgr_connect().
2313 *
2314 * mutex convention: called with connmgr_lock held, returns with it released.
2315 */
2316 static struct cm_xprt *
connmgr_wrapconnect(struct cm_xprt * cm_entry,const struct timeval * waitp,struct netbuf * destaddr,int addrfmly,struct netbuf * srcaddr,struct rpc_err * rpcerr,bool_t reconnect,bool_t nosignal,cred_t * cr)2317 connmgr_wrapconnect(
2318 struct cm_xprt *cm_entry,
2319 const struct timeval *waitp,
2320 struct netbuf *destaddr,
2321 int addrfmly,
2322 struct netbuf *srcaddr,
2323 struct rpc_err *rpcerr,
2324 bool_t reconnect,
2325 bool_t nosignal,
2326 cred_t *cr)
2327 {
2328 ASSERT(MUTEX_HELD(&connmgr_lock));
2329 /*
2330 * Hold this entry as we are about to drop connmgr_lock.
2331 */
2332 CONN_HOLD(cm_entry);
2333
2334 /*
2335 * If there is a thread already making a connection for us, then
2336 * wait for it to complete the connection.
2337 */
2338 if (cm_entry->x_thread == TRUE) {
2339 rpcerr->re_status = connmgr_cwait(cm_entry, waitp, nosignal);
2340
2341 if (rpcerr->re_status != RPC_SUCCESS) {
2342 mutex_exit(&connmgr_lock);
2343 connmgr_release(cm_entry);
2344 return (NULL);
2345 }
2346 } else {
2347 bool_t connected;
2348 calllist_t call;
2349
2350 cm_entry->x_thread = TRUE;
2351
2352 while (cm_entry->x_needrel == TRUE) {
2353 cm_entry->x_needrel = FALSE;
2354
2355 connmgr_sndrel(cm_entry);
2356 delay(drv_usectohz(1000000));
2357
2358 mutex_enter(&connmgr_lock);
2359 }
2360
2361 /*
2362 * If we need to send a T_DISCON_REQ, send one.
2363 */
2364 connmgr_dis_and_wait(cm_entry);
2365
2366 mutex_exit(&connmgr_lock);
2367
2368 bzero(&call, sizeof (call));
2369 cv_init(&call.call_cv, NULL, CV_DEFAULT, NULL);
2370
2371 connected = connmgr_connect(cm_entry, cm_entry->x_wq,
2372 destaddr, addrfmly, &call, &cm_entry->x_tidu_size,
2373 reconnect, waitp, nosignal, cr);
2374
2375 *rpcerr = call.call_err;
2376 cv_destroy(&call.call_cv);
2377
2378 mutex_enter(&connmgr_lock);
2379
2380
2381 if (cm_entry->x_early_disc) {
2382 /*
2383 * We need to check if a disconnect request has come
2384 * while we are connected, if so, then we need to
2385 * set rpcerr->re_status appropriately before returning
2386 * NULL to caller.
2387 */
2388 if (rpcerr->re_status == RPC_SUCCESS)
2389 rpcerr->re_status = RPC_XPRTFAILED;
2390 cm_entry->x_connected = FALSE;
2391 } else
2392 cm_entry->x_connected = connected;
2393
2394 /*
2395 * There could be a discrepancy here such that
2396 * x_early_disc is TRUE yet connected is TRUE as well
2397 * and the connection is actually connected. In that case
2398 * lets be conservative and declare the connection as not
2399 * connected.
2400 */
2401
2402 cm_entry->x_early_disc = FALSE;
2403 cm_entry->x_needdis = (cm_entry->x_connected == FALSE);
2404
2405
2406 /*
2407 * connmgr_connect() may have given up before the connection
2408 * actually timed out. So ensure that before the next
2409 * connection attempt we do a disconnect.
2410 */
2411 cm_entry->x_ctime = ddi_get_lbolt();
2412 cm_entry->x_thread = FALSE;
2413
2414 cv_broadcast(&cm_entry->x_conn_cv);
2415
2416 if (cm_entry->x_connected == FALSE) {
2417 mutex_exit(&connmgr_lock);
2418 connmgr_release(cm_entry);
2419 return (NULL);
2420 }
2421 }
2422
2423 if (srcaddr != NULL) {
2424 /*
2425 * Copy into the handle the
2426 * source address of the
2427 * connection, which we will use
2428 * in case of a later retry.
2429 */
2430 if (srcaddr->len != cm_entry->x_src.len) {
2431 if (srcaddr->maxlen > 0)
2432 kmem_free(srcaddr->buf, srcaddr->maxlen);
2433 srcaddr->buf = kmem_zalloc(cm_entry->x_src.len,
2434 KM_SLEEP);
2435 srcaddr->maxlen = srcaddr->len =
2436 cm_entry->x_src.len;
2437 }
2438 bcopy(cm_entry->x_src.buf, srcaddr->buf, srcaddr->len);
2439 }
2440 cm_entry->x_time = ddi_get_lbolt();
2441 mutex_exit(&connmgr_lock);
2442 return (cm_entry);
2443 }
2444
2445 /*
2446 * If we need to send a T_DISCON_REQ, send one.
2447 */
2448 static void
connmgr_dis_and_wait(struct cm_xprt * cm_entry)2449 connmgr_dis_and_wait(struct cm_xprt *cm_entry)
2450 {
2451 ASSERT(MUTEX_HELD(&connmgr_lock));
2452 for (;;) {
2453 while (cm_entry->x_needdis == TRUE) {
2454 RPCLOG(8, "connmgr_dis_and_wait: need "
2455 "T_DISCON_REQ for connection 0x%p\n",
2456 (void *)cm_entry);
2457 cm_entry->x_needdis = FALSE;
2458 cm_entry->x_waitdis = TRUE;
2459
2460 connmgr_snddis(cm_entry);
2461
2462 mutex_enter(&connmgr_lock);
2463 }
2464
2465 if (cm_entry->x_waitdis == TRUE) {
2466 clock_t timout;
2467
2468 RPCLOG(8, "connmgr_dis_and_wait waiting for "
2469 "T_DISCON_REQ's ACK for connection %p\n",
2470 (void *)cm_entry);
2471
2472 timout = clnt_cots_min_conntout * drv_usectohz(1000000);
2473
2474 /*
2475 * The TPI spec says that the T_DISCON_REQ
2476 * will get acknowledged, but in practice
2477 * the ACK may never get sent. So don't
2478 * block forever.
2479 */
2480 (void) cv_reltimedwait(&cm_entry->x_dis_cv,
2481 &connmgr_lock, timout, TR_CLOCK_TICK);
2482 }
2483 /*
2484 * If we got the ACK, break. If we didn't,
2485 * then send another T_DISCON_REQ.
2486 */
2487 if (cm_entry->x_waitdis == FALSE) {
2488 break;
2489 } else {
2490 RPCLOG(8, "connmgr_dis_and_wait: did"
2491 "not get T_DISCON_REQ's ACK for "
2492 "connection %p\n", (void *)cm_entry);
2493 cm_entry->x_needdis = TRUE;
2494 }
2495 }
2496 }
2497
2498 static void
connmgr_cancelconn(struct cm_xprt * cm_entry)2499 connmgr_cancelconn(struct cm_xprt *cm_entry)
2500 {
2501 /*
2502 * Mark the connection table entry as dead; the next thread that
2503 * goes through connmgr_release() will notice this and deal with it.
2504 */
2505 mutex_enter(&connmgr_lock);
2506 cm_entry->x_dead = TRUE;
2507
2508 /*
2509 * Notify any threads waiting for the connection that it isn't
2510 * going to happen.
2511 */
2512 cm_entry->x_thread = FALSE;
2513 cv_broadcast(&cm_entry->x_conn_cv);
2514 mutex_exit(&connmgr_lock);
2515
2516 connmgr_release(cm_entry);
2517 }
2518
2519 static void
connmgr_close(struct cm_xprt * cm_entry)2520 connmgr_close(struct cm_xprt *cm_entry)
2521 {
2522 mutex_enter(&cm_entry->x_lock);
2523 while (cm_entry->x_ref != 0) {
2524 /*
2525 * Must be a noninterruptible wait.
2526 */
2527 cv_wait(&cm_entry->x_cv, &cm_entry->x_lock);
2528 }
2529
2530 if (cm_entry->x_tiptr != NULL)
2531 (void) t_kclose(cm_entry->x_tiptr, 1);
2532
2533 mutex_exit(&cm_entry->x_lock);
2534 if (cm_entry->x_ksp != NULL) {
2535 mutex_enter(&connmgr_lock);
2536 cm_entry->x_ksp->ks_private = NULL;
2537 mutex_exit(&connmgr_lock);
2538
2539 /*
2540 * Must free the buffer we allocated for the
2541 * server address in the update function
2542 */
2543 if (((struct cm_kstat_xprt *)(cm_entry->x_ksp->ks_data))->
2544 x_server.value.str.addr.ptr != NULL)
2545 kmem_free(((struct cm_kstat_xprt *)(cm_entry->x_ksp->
2546 ks_data))->x_server.value.str.addr.ptr,
2547 INET6_ADDRSTRLEN);
2548 kmem_free(cm_entry->x_ksp->ks_data,
2549 cm_entry->x_ksp->ks_data_size);
2550 kstat_delete(cm_entry->x_ksp);
2551 }
2552
2553 mutex_destroy(&cm_entry->x_lock);
2554 cv_destroy(&cm_entry->x_cv);
2555 cv_destroy(&cm_entry->x_conn_cv);
2556 cv_destroy(&cm_entry->x_dis_cv);
2557
2558 if (cm_entry->x_server.buf != NULL)
2559 kmem_free(cm_entry->x_server.buf, cm_entry->x_server.maxlen);
2560 if (cm_entry->x_src.buf != NULL)
2561 kmem_free(cm_entry->x_src.buf, cm_entry->x_src.maxlen);
2562 kmem_free(cm_entry, sizeof (struct cm_xprt));
2563 }
2564
2565 /*
2566 * Called by KRPC after sending the call message to release the connection
2567 * it was using.
2568 */
2569 static void
connmgr_release(struct cm_xprt * cm_entry)2570 connmgr_release(struct cm_xprt *cm_entry)
2571 {
2572 mutex_enter(&cm_entry->x_lock);
2573 cm_entry->x_ref--;
2574 if (cm_entry->x_ref == 0)
2575 cv_signal(&cm_entry->x_cv);
2576 mutex_exit(&cm_entry->x_lock);
2577 }
2578
2579 /*
2580 * Set TCP receive and xmit buffer size for RPC connections.
2581 */
2582 static bool_t
connmgr_setbufsz(calllist_t * e,queue_t * wq,cred_t * cr)2583 connmgr_setbufsz(calllist_t *e, queue_t *wq, cred_t *cr)
2584 {
2585 int ok = FALSE;
2586 int val;
2587
2588 if (rpc_default_tcp_bufsz)
2589 return (FALSE);
2590
2591 /*
2592 * Only set new buffer size if it's larger than the system
2593 * default buffer size. If smaller buffer size is needed
2594 * then use /etc/system to set rpc_default_tcp_bufsz to 1.
2595 */
2596 ok = connmgr_getopt_int(wq, SOL_SOCKET, SO_RCVBUF, &val, e, cr);
2597 if ((ok == TRUE) && (val < rpc_send_bufsz)) {
2598 ok = connmgr_setopt_int(wq, SOL_SOCKET, SO_RCVBUF,
2599 rpc_send_bufsz, e, cr);
2600 DTRACE_PROBE2(krpc__i__connmgr_rcvbufsz,
2601 int, ok, calllist_t *, e);
2602 }
2603
2604 ok = connmgr_getopt_int(wq, SOL_SOCKET, SO_SNDBUF, &val, e, cr);
2605 if ((ok == TRUE) && (val < rpc_recv_bufsz)) {
2606 ok = connmgr_setopt_int(wq, SOL_SOCKET, SO_SNDBUF,
2607 rpc_recv_bufsz, e, cr);
2608 DTRACE_PROBE2(krpc__i__connmgr_sndbufsz,
2609 int, ok, calllist_t *, e);
2610 }
2611 return (TRUE);
2612 }
2613
2614 /*
2615 * Given an open stream, connect to the remote. Returns true if connected,
2616 * false otherwise.
2617 */
2618 static bool_t
connmgr_connect(struct cm_xprt * cm_entry,queue_t * wq,struct netbuf * addr,int addrfmly,calllist_t * e,int * tidu_ptr,bool_t reconnect,const struct timeval * waitp,bool_t nosignal,cred_t * cr)2619 connmgr_connect(
2620 struct cm_xprt *cm_entry,
2621 queue_t *wq,
2622 struct netbuf *addr,
2623 int addrfmly,
2624 calllist_t *e,
2625 int *tidu_ptr,
2626 bool_t reconnect,
2627 const struct timeval *waitp,
2628 bool_t nosignal,
2629 cred_t *cr)
2630 {
2631 mblk_t *mp;
2632 struct T_conn_req *tcr;
2633 struct T_info_ack *tinfo;
2634 int interrupted, error;
2635 int tidu_size, kstat_instance;
2636
2637 /* if it's a reconnect, flush any lingering data messages */
2638 if (reconnect)
2639 (void) putctl1(wq, M_FLUSH, FLUSHRW);
2640
2641 /*
2642 * Note: if the receiver uses SCM_UCRED/getpeerucred the pid will
2643 * appear as -1.
2644 */
2645 mp = allocb_cred(sizeof (*tcr) + addr->len, cr, NOPID);
2646 if (mp == NULL) {
2647 /*
2648 * This is unfortunate, but we need to look up the stats for
2649 * this zone to increment the "memory allocation failed"
2650 * counter. curproc->p_zone is safe since we're initiating a
2651 * connection and not in some strange streams context.
2652 */
2653 struct rpcstat *rpcstat;
2654
2655 rpcstat = zone_getspecific(rpcstat_zone_key, rpc_zone());
2656 ASSERT(rpcstat != NULL);
2657
2658 RPCLOG0(1, "connmgr_connect: cannot alloc mp for "
2659 "sending conn request\n");
2660 COTSRCSTAT_INCR(rpcstat->rpc_cots_client, rcnomem);
2661 e->call_status = RPC_SYSTEMERROR;
2662 e->call_reason = ENOSR;
2663 return (FALSE);
2664 }
2665
2666 /* Set TCP buffer size for RPC connections if needed */
2667 if (addrfmly == AF_INET || addrfmly == AF_INET6)
2668 (void) connmgr_setbufsz(e, wq, cr);
2669
2670 mp->b_datap->db_type = M_PROTO;
2671 tcr = (struct T_conn_req *)mp->b_rptr;
2672 bzero(tcr, sizeof (*tcr));
2673 tcr->PRIM_type = T_CONN_REQ;
2674 tcr->DEST_length = addr->len;
2675 tcr->DEST_offset = sizeof (struct T_conn_req);
2676 mp->b_wptr = mp->b_rptr + sizeof (*tcr);
2677
2678 bcopy(addr->buf, mp->b_wptr, tcr->DEST_length);
2679 mp->b_wptr += tcr->DEST_length;
2680
2681 RPCLOG(8, "connmgr_connect: sending conn request on queue "
2682 "%p", (void *)wq);
2683 RPCLOG(8, " call %p\n", (void *)wq);
2684 /*
2685 * We use the entry in the handle that is normally used for
2686 * waiting for RPC replies to wait for the connection accept.
2687 */
2688 if (clnt_dispatch_send(wq, mp, e, 0, 0) != RPC_SUCCESS) {
2689 DTRACE_PROBE(krpc__e__connmgr__connect__cantsend);
2690 freemsg(mp);
2691 return (FALSE);
2692 }
2693
2694 mutex_enter(&clnt_pending_lock);
2695
2696 /*
2697 * We wait for the transport connection to be made, or an
2698 * indication that it could not be made.
2699 */
2700 interrupted = 0;
2701
2702 /*
2703 * waitforack should have been called with T_OK_ACK, but the
2704 * present implementation needs to be passed T_INFO_ACK to
2705 * work correctly.
2706 */
2707 error = waitforack(e, T_INFO_ACK, waitp, nosignal);
2708 if (error == EINTR)
2709 interrupted = 1;
2710 if (zone_status_get(curproc->p_zone) >= ZONE_IS_EMPTY) {
2711 /*
2712 * No time to lose; we essentially have been signaled to
2713 * quit.
2714 */
2715 interrupted = 1;
2716 }
2717 #ifdef RPCDEBUG
2718 if (error == ETIME)
2719 RPCLOG0(8, "connmgr_connect: giving up "
2720 "on connection attempt; "
2721 "clnt_dispatch notifyconn "
2722 "diagnostic 'no one waiting for "
2723 "connection' should not be "
2724 "unexpected\n");
2725 #endif
2726 if (e->call_prev)
2727 e->call_prev->call_next = e->call_next;
2728 else
2729 clnt_pending = e->call_next;
2730 if (e->call_next)
2731 e->call_next->call_prev = e->call_prev;
2732 mutex_exit(&clnt_pending_lock);
2733
2734 if (e->call_status != RPC_SUCCESS || error != 0) {
2735 if (interrupted)
2736 e->call_status = RPC_INTR;
2737 else if (error == ETIME)
2738 e->call_status = RPC_TIMEDOUT;
2739 else if (error == EPROTO) {
2740 e->call_status = RPC_SYSTEMERROR;
2741 e->call_reason = EPROTO;
2742 }
2743
2744 RPCLOG(8, "connmgr_connect: can't connect, status: "
2745 "%s\n", clnt_sperrno(e->call_status));
2746
2747 if (e->call_reply) {
2748 freemsg(e->call_reply);
2749 e->call_reply = NULL;
2750 }
2751
2752 return (FALSE);
2753 }
2754 /*
2755 * The result of the "connection accept" is a T_info_ack
2756 * in the call_reply field.
2757 */
2758 ASSERT(e->call_reply != NULL);
2759 mp = e->call_reply;
2760 e->call_reply = NULL;
2761 tinfo = (struct T_info_ack *)mp->b_rptr;
2762
2763 tidu_size = tinfo->TIDU_size;
2764 tidu_size -= (tidu_size % BYTES_PER_XDR_UNIT);
2765 if (tidu_size > COTS_DEFAULT_ALLOCSIZE || (tidu_size <= 0))
2766 tidu_size = COTS_DEFAULT_ALLOCSIZE;
2767 *tidu_ptr = tidu_size;
2768
2769 freemsg(mp);
2770
2771 /*
2772 * Set up the pertinent options. NODELAY is so the transport doesn't
2773 * buffer up RPC messages on either end. This may not be valid for
2774 * all transports. Failure to set this option is not cause to
2775 * bail out so we return success anyway. Note that lack of NODELAY
2776 * or some other way to flush the message on both ends will cause
2777 * lots of retries and terrible performance.
2778 */
2779 if (addrfmly == AF_INET || addrfmly == AF_INET6) {
2780 (void) connmgr_setopt(wq, IPPROTO_TCP, TCP_NODELAY, e, cr);
2781 if (e->call_status == RPC_XPRTFAILED)
2782 return (FALSE);
2783 }
2784
2785 /*
2786 * Since we have a connection, we now need to figure out if
2787 * we need to create a kstat. If x_ksp is not NULL then we
2788 * are reusing a connection and so we do not need to create
2789 * another kstat -- lets just return.
2790 */
2791 if (cm_entry->x_ksp != NULL)
2792 return (TRUE);
2793
2794 /*
2795 * We need to increment rpc_kstat_instance atomically to prevent
2796 * two kstats being created with the same instance.
2797 */
2798 kstat_instance = atomic_inc_32_nv((uint32_t *)&rpc_kstat_instance);
2799
2800 if ((cm_entry->x_ksp = kstat_create_zone("unix", kstat_instance,
2801 "rpc_cots_connections", "rpc", KSTAT_TYPE_NAMED,
2802 (uint_t)(sizeof (cm_kstat_xprt_t) / sizeof (kstat_named_t)),
2803 KSTAT_FLAG_VIRTUAL, cm_entry->x_zoneid)) == NULL) {
2804 return (TRUE);
2805 }
2806
2807 cm_entry->x_ksp->ks_lock = &connmgr_lock;
2808 cm_entry->x_ksp->ks_private = cm_entry;
2809 cm_entry->x_ksp->ks_data_size = ((INET6_ADDRSTRLEN * sizeof (char))
2810 + sizeof (cm_kstat_template));
2811 cm_entry->x_ksp->ks_data = kmem_alloc(cm_entry->x_ksp->ks_data_size,
2812 KM_SLEEP);
2813 bcopy(&cm_kstat_template, cm_entry->x_ksp->ks_data,
2814 cm_entry->x_ksp->ks_data_size);
2815 ((struct cm_kstat_xprt *)(cm_entry->x_ksp->ks_data))->
2816 x_server.value.str.addr.ptr =
2817 kmem_alloc(INET6_ADDRSTRLEN, KM_SLEEP);
2818
2819 cm_entry->x_ksp->ks_update = conn_kstat_update;
2820 kstat_install(cm_entry->x_ksp);
2821 return (TRUE);
2822 }
2823
2824 /*
2825 * Verify that the specified offset falls within the mblk and
2826 * that the resulting pointer is aligned.
2827 * Returns NULL if not.
2828 *
2829 * code from fs/sockfs/socksubr.c
2830 */
2831 static void *
connmgr_opt_getoff(mblk_t * mp,t_uscalar_t offset,t_uscalar_t length,uint_t align_size)2832 connmgr_opt_getoff(mblk_t *mp, t_uscalar_t offset,
2833 t_uscalar_t length, uint_t align_size)
2834 {
2835 uintptr_t ptr1, ptr2;
2836
2837 ASSERT(mp && mp->b_wptr >= mp->b_rptr);
2838 ptr1 = (uintptr_t)mp->b_rptr + offset;
2839 ptr2 = (uintptr_t)ptr1 + length;
2840 if (ptr1 < (uintptr_t)mp->b_rptr || ptr2 > (uintptr_t)mp->b_wptr) {
2841 return (NULL);
2842 }
2843 if ((ptr1 & (align_size - 1)) != 0) {
2844 return (NULL);
2845 }
2846 return ((void *)ptr1);
2847 }
2848
2849 static bool_t
connmgr_getopt_int(queue_t * wq,int level,int name,int * val,calllist_t * e,cred_t * cr)2850 connmgr_getopt_int(queue_t *wq, int level, int name, int *val,
2851 calllist_t *e, cred_t *cr)
2852 {
2853 mblk_t *mp;
2854 struct opthdr *opt, *opt_res;
2855 struct T_optmgmt_req *tor;
2856 struct T_optmgmt_ack *opt_ack;
2857 struct timeval waitp;
2858 int error;
2859
2860 mp = allocb_cred(sizeof (struct T_optmgmt_req) +
2861 sizeof (struct opthdr) + sizeof (int), cr, NOPID);
2862 if (mp == NULL)
2863 return (FALSE);
2864
2865 mp->b_datap->db_type = M_PROTO;
2866 tor = (struct T_optmgmt_req *)(mp->b_rptr);
2867 tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
2868 tor->MGMT_flags = T_CURRENT;
2869 tor->OPT_length = sizeof (struct opthdr) + sizeof (int);
2870 tor->OPT_offset = sizeof (struct T_optmgmt_req);
2871
2872 opt = (struct opthdr *)(mp->b_rptr + sizeof (struct T_optmgmt_req));
2873 opt->level = level;
2874 opt->name = name;
2875 opt->len = sizeof (int);
2876 mp->b_wptr += sizeof (struct T_optmgmt_req) + sizeof (struct opthdr) +
2877 sizeof (int);
2878
2879 /*
2880 * We will use this connection regardless
2881 * of whether or not the option is readable.
2882 */
2883 if (clnt_dispatch_send(wq, mp, e, 0, 0) != RPC_SUCCESS) {
2884 DTRACE_PROBE(krpc__e__connmgr__getopt__cantsend);
2885 freemsg(mp);
2886 return (FALSE);
2887 }
2888
2889 mutex_enter(&clnt_pending_lock);
2890
2891 waitp.tv_sec = clnt_cots_min_conntout;
2892 waitp.tv_usec = 0;
2893 error = waitforack(e, T_OPTMGMT_ACK, &waitp, 1);
2894
2895 if (e->call_prev)
2896 e->call_prev->call_next = e->call_next;
2897 else
2898 clnt_pending = e->call_next;
2899 if (e->call_next)
2900 e->call_next->call_prev = e->call_prev;
2901 mutex_exit(&clnt_pending_lock);
2902
2903 /* get reply message */
2904 mp = e->call_reply;
2905 e->call_reply = NULL;
2906
2907 if ((!mp) || (e->call_status != RPC_SUCCESS) || (error != 0)) {
2908
2909 DTRACE_PROBE4(krpc__e__connmgr_getopt, int, name,
2910 int, e->call_status, int, error, mblk_t *, mp);
2911
2912 if (mp)
2913 freemsg(mp);
2914 return (FALSE);
2915 }
2916
2917 opt_ack = (struct T_optmgmt_ack *)mp->b_rptr;
2918 opt_res = (struct opthdr *)connmgr_opt_getoff(mp, opt_ack->OPT_offset,
2919 opt_ack->OPT_length, __TPI_ALIGN_SIZE);
2920
2921 if (!opt_res) {
2922 DTRACE_PROBE4(krpc__e__connmgr_optres, mblk_t *, mp, int, name,
2923 int, opt_ack->OPT_offset, int, opt_ack->OPT_length);
2924 freemsg(mp);
2925 return (FALSE);
2926 }
2927 *val = *(int *)&opt_res[1];
2928
2929 DTRACE_PROBE2(connmgr_getopt__ok, int, name, int, *val);
2930
2931 freemsg(mp);
2932 return (TRUE);
2933 }
2934
2935 /*
2936 * Called by connmgr_connect to set an option on the new stream.
2937 */
2938 static bool_t
connmgr_setopt_int(queue_t * wq,int level,int name,int val,calllist_t * e,cred_t * cr)2939 connmgr_setopt_int(queue_t *wq, int level, int name, int val,
2940 calllist_t *e, cred_t *cr)
2941 {
2942 mblk_t *mp;
2943 struct opthdr *opt;
2944 struct T_optmgmt_req *tor;
2945 struct timeval waitp;
2946 int error;
2947
2948 mp = allocb_cred(sizeof (struct T_optmgmt_req) +
2949 sizeof (struct opthdr) + sizeof (int), cr, NOPID);
2950 if (mp == NULL) {
2951 RPCLOG0(1, "connmgr_setopt: cannot alloc mp for option "
2952 "request\n");
2953 return (FALSE);
2954 }
2955
2956 mp->b_datap->db_type = M_PROTO;
2957 tor = (struct T_optmgmt_req *)(mp->b_rptr);
2958 tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
2959 tor->MGMT_flags = T_NEGOTIATE;
2960 tor->OPT_length = sizeof (struct opthdr) + sizeof (int);
2961 tor->OPT_offset = sizeof (struct T_optmgmt_req);
2962
2963 opt = (struct opthdr *)(mp->b_rptr + sizeof (struct T_optmgmt_req));
2964 opt->level = level;
2965 opt->name = name;
2966 opt->len = sizeof (int);
2967 *(int *)((char *)opt + sizeof (*opt)) = val;
2968 mp->b_wptr += sizeof (struct T_optmgmt_req) + sizeof (struct opthdr) +
2969 sizeof (int);
2970
2971 /*
2972 * We will use this connection regardless
2973 * of whether or not the option is settable.
2974 */
2975 if (clnt_dispatch_send(wq, mp, e, 0, 0) != RPC_SUCCESS) {
2976 DTRACE_PROBE(krpc__e__connmgr__setopt__cantsend);
2977 freemsg(mp);
2978 return (FALSE);
2979 }
2980
2981 mutex_enter(&clnt_pending_lock);
2982
2983 waitp.tv_sec = clnt_cots_min_conntout;
2984 waitp.tv_usec = 0;
2985 error = waitforack(e, T_OPTMGMT_ACK, &waitp, 1);
2986
2987 if (e->call_prev)
2988 e->call_prev->call_next = e->call_next;
2989 else
2990 clnt_pending = e->call_next;
2991 if (e->call_next)
2992 e->call_next->call_prev = e->call_prev;
2993 mutex_exit(&clnt_pending_lock);
2994
2995 if (e->call_reply != NULL) {
2996 freemsg(e->call_reply);
2997 e->call_reply = NULL;
2998 }
2999
3000 if (e->call_status != RPC_SUCCESS || error != 0) {
3001 RPCLOG(1, "connmgr_setopt: can't set option: %d\n", name);
3002 return (FALSE);
3003 }
3004 RPCLOG(8, "connmgr_setopt: successfully set option: %d\n", name);
3005 return (TRUE);
3006 }
3007
3008 static bool_t
connmgr_setopt(queue_t * wq,int level,int name,calllist_t * e,cred_t * cr)3009 connmgr_setopt(queue_t *wq, int level, int name, calllist_t *e, cred_t *cr)
3010 {
3011 return (connmgr_setopt_int(wq, level, name, 1, e, cr));
3012 }
3013
3014 #ifdef DEBUG
3015
3016 /*
3017 * This is a knob to let us force code coverage in allocation failure
3018 * case.
3019 */
3020 static int connmgr_failsnd;
3021 #define CONN_SND_ALLOC(Size, Pri) \
3022 ((connmgr_failsnd-- > 0) ? NULL : allocb(Size, Pri))
3023
3024 #else
3025
3026 #define CONN_SND_ALLOC(Size, Pri) allocb(Size, Pri)
3027
3028 #endif
3029
3030 /*
3031 * Sends an orderly release on the specified queue.
3032 * Entered with connmgr_lock. Exited without connmgr_lock
3033 */
3034 static void
connmgr_sndrel(struct cm_xprt * cm_entry)3035 connmgr_sndrel(struct cm_xprt *cm_entry)
3036 {
3037 struct T_ordrel_req *torr;
3038 mblk_t *mp;
3039 queue_t *q = cm_entry->x_wq;
3040 ASSERT(MUTEX_HELD(&connmgr_lock));
3041 mp = CONN_SND_ALLOC(sizeof (struct T_ordrel_req), BPRI_LO);
3042 if (mp == NULL) {
3043 cm_entry->x_needrel = TRUE;
3044 mutex_exit(&connmgr_lock);
3045 RPCLOG(1, "connmgr_sndrel: cannot alloc mp for sending ordrel "
3046 "to queue %p\n", (void *)q);
3047 return;
3048 }
3049 mutex_exit(&connmgr_lock);
3050
3051 mp->b_datap->db_type = M_PROTO;
3052 torr = (struct T_ordrel_req *)(mp->b_rptr);
3053 torr->PRIM_type = T_ORDREL_REQ;
3054 mp->b_wptr = mp->b_rptr + sizeof (struct T_ordrel_req);
3055
3056 RPCLOG(8, "connmgr_sndrel: sending ordrel to queue %p\n", (void *)q);
3057 put(q, mp);
3058 }
3059
3060 /*
3061 * Sends an disconnect on the specified queue.
3062 * Entered with connmgr_lock. Exited without connmgr_lock
3063 */
3064 static void
connmgr_snddis(struct cm_xprt * cm_entry)3065 connmgr_snddis(struct cm_xprt *cm_entry)
3066 {
3067 struct T_discon_req *tdis;
3068 mblk_t *mp;
3069 queue_t *q = cm_entry->x_wq;
3070
3071 ASSERT(MUTEX_HELD(&connmgr_lock));
3072 mp = CONN_SND_ALLOC(sizeof (*tdis), BPRI_LO);
3073 if (mp == NULL) {
3074 cm_entry->x_needdis = TRUE;
3075 mutex_exit(&connmgr_lock);
3076 RPCLOG(1, "connmgr_snddis: cannot alloc mp for sending discon "
3077 "to queue %p\n", (void *)q);
3078 return;
3079 }
3080 mutex_exit(&connmgr_lock);
3081
3082 mp->b_datap->db_type = M_PROTO;
3083 tdis = (struct T_discon_req *)mp->b_rptr;
3084 tdis->PRIM_type = T_DISCON_REQ;
3085 mp->b_wptr = mp->b_rptr + sizeof (*tdis);
3086
3087 RPCLOG(8, "connmgr_snddis: sending discon to queue %p\n", (void *)q);
3088 put(q, mp);
3089 }
3090
3091 /*
3092 * Sets up the entry for receiving replies, and calls rpcmod's write put proc
3093 * (through put) to send the call.
3094 */
3095 static int
clnt_dispatch_send(queue_t * q,mblk_t * mp,calllist_t * e,uint_t xid,uint_t queue_flag)3096 clnt_dispatch_send(queue_t *q, mblk_t *mp, calllist_t *e, uint_t xid,
3097 uint_t queue_flag)
3098 {
3099 ASSERT(e != NULL);
3100
3101 e->call_status = RPC_TIMEDOUT; /* optimistic, eh? */
3102 e->call_reason = 0;
3103 e->call_wq = q;
3104 e->call_xid = xid;
3105 e->call_notified = FALSE;
3106
3107 if (!canput(q)) {
3108 e->call_status = RPC_CANTSEND;
3109 e->call_reason = ENOBUFS;
3110 return (RPC_CANTSEND);
3111 }
3112
3113 /*
3114 * If queue_flag is set then the calllist_t is already on the hash
3115 * queue. In this case just send the message and return.
3116 */
3117 if (queue_flag) {
3118 put(q, mp);
3119 return (RPC_SUCCESS);
3120
3121 }
3122
3123 /*
3124 * Set up calls for RPC requests (with XID != 0) on the hash
3125 * queue for fast lookups and place other calls (i.e.
3126 * connection management) on the linked list.
3127 */
3128 if (xid != 0) {
3129 RPCLOG(64, "clnt_dispatch_send: putting xid 0x%x on "
3130 "dispatch list\n", xid);
3131 e->call_hash = call_hash(xid, clnt_cots_hash_size);
3132 e->call_bucket = &cots_call_ht[e->call_hash];
3133 call_table_enter(e);
3134 } else {
3135 mutex_enter(&clnt_pending_lock);
3136 if (clnt_pending)
3137 clnt_pending->call_prev = e;
3138 e->call_next = clnt_pending;
3139 e->call_prev = NULL;
3140 clnt_pending = e;
3141 mutex_exit(&clnt_pending_lock);
3142 }
3143
3144 put(q, mp);
3145 return (RPC_SUCCESS);
3146 }
3147
3148 /*
3149 * Called by rpcmod to notify a client with a clnt_pending call that its reply
3150 * has arrived. If we can't find a client waiting for this reply, we log
3151 * the error and return.
3152 */
3153 bool_t
clnt_dispatch_notify(mblk_t * mp,zoneid_t zoneid)3154 clnt_dispatch_notify(mblk_t *mp, zoneid_t zoneid)
3155 {
3156 calllist_t *e = NULL;
3157 call_table_t *chtp;
3158 uint32_t xid;
3159 uint_t hash;
3160
3161 if ((IS_P2ALIGNED(mp->b_rptr, sizeof (uint32_t))) &&
3162 (mp->b_wptr - mp->b_rptr) >= sizeof (xid))
3163 xid = *((uint32_t *)mp->b_rptr);
3164 else {
3165 int i = 0;
3166 unsigned char *p = (unsigned char *)&xid;
3167 unsigned char *rptr;
3168 mblk_t *tmp = mp;
3169
3170 /*
3171 * Copy the xid, byte-by-byte into xid.
3172 */
3173 while (tmp) {
3174 rptr = tmp->b_rptr;
3175 while (rptr < tmp->b_wptr) {
3176 *p++ = *rptr++;
3177 if (++i >= sizeof (xid))
3178 goto done_xid_copy;
3179 }
3180 tmp = tmp->b_cont;
3181 }
3182
3183 /*
3184 * If we got here, we ran out of mblk space before the
3185 * xid could be copied.
3186 */
3187 ASSERT(tmp == NULL && i < sizeof (xid));
3188
3189 RPCLOG0(1,
3190 "clnt_dispatch_notify: message less than size of xid\n");
3191 return (FALSE);
3192
3193 }
3194 done_xid_copy:
3195
3196 hash = call_hash(xid, clnt_cots_hash_size);
3197 chtp = &cots_call_ht[hash];
3198 /* call_table_find returns with the hash bucket locked */
3199 call_table_find(chtp, xid, e);
3200
3201 if (e != NULL) {
3202 /*
3203 * Found thread waiting for this reply
3204 */
3205 mutex_enter(&e->call_lock);
3206
3207 /*
3208 * verify that the reply is coming in on
3209 * the same zone that it was sent from.
3210 */
3211 if (e->call_zoneid != zoneid) {
3212 mutex_exit(&e->call_lock);
3213 mutex_exit(&chtp->ct_lock);
3214 RPCLOG0(1, "clnt_dispatch_notify: incorrect zoneid\n");
3215 return (FALSE);
3216 }
3217
3218 if (e->call_reply)
3219 /*
3220 * This can happen under the following scenario:
3221 * clnt_cots_kcallit() times out on the response,
3222 * rfscall() repeats the CLNT_CALL() with
3223 * the same xid, clnt_cots_kcallit() sends the retry,
3224 * thereby putting the clnt handle on the pending list,
3225 * the first response arrives, signalling the thread
3226 * in clnt_cots_kcallit(). Before that thread is
3227 * dispatched, the second response arrives as well,
3228 * and clnt_dispatch_notify still finds the handle on
3229 * the pending list, with call_reply set. So free the
3230 * old reply now.
3231 *
3232 * It is also possible for a response intended for
3233 * an RPC call with a different xid to reside here.
3234 * This can happen if the thread that owned this
3235 * client handle prior to the current owner bailed
3236 * out and left its call record on the dispatch
3237 * queue. A window exists where the response can
3238 * arrive before the current owner dispatches its
3239 * RPC call.
3240 *
3241 * In any case, this is the very last point where we
3242 * can safely check the call_reply field before
3243 * placing the new response there.
3244 */
3245 freemsg(e->call_reply);
3246 e->call_reply = mp;
3247 e->call_status = RPC_SUCCESS;
3248 e->call_notified = TRUE;
3249 cv_signal(&e->call_cv);
3250 mutex_exit(&e->call_lock);
3251 mutex_exit(&chtp->ct_lock);
3252 return (TRUE);
3253 } else {
3254 zone_t *zone;
3255 struct rpcstat *rpcstat;
3256
3257 mutex_exit(&chtp->ct_lock);
3258 RPCLOG(65, "clnt_dispatch_notify: no caller for reply 0x%x\n",
3259 xid);
3260 /*
3261 * This is unfortunate, but we need to lookup the zone so we
3262 * can increment its "rcbadxids" counter.
3263 */
3264 zone = zone_find_by_id(zoneid);
3265 if (zone == NULL) {
3266 /*
3267 * The zone went away...
3268 */
3269 return (FALSE);
3270 }
3271 rpcstat = zone_getspecific(rpcstat_zone_key, zone);
3272 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
3273 /*
3274 * Not interested
3275 */
3276 zone_rele(zone);
3277 return (FALSE);
3278 }
3279 COTSRCSTAT_INCR(rpcstat->rpc_cots_client, rcbadxids);
3280 zone_rele(zone);
3281 }
3282 return (FALSE);
3283 }
3284
3285 /*
3286 * Called by rpcmod when a non-data indication arrives. The ones in which we
3287 * are interested are connection indications and options acks. We dispatch
3288 * based on the queue the indication came in on. If we are not interested in
3289 * what came in, we return false to rpcmod, who will then pass it upstream.
3290 */
3291 bool_t
clnt_dispatch_notifyconn(queue_t * q,mblk_t * mp)3292 clnt_dispatch_notifyconn(queue_t *q, mblk_t *mp)
3293 {
3294 calllist_t *e;
3295 int type;
3296
3297 ASSERT((q->q_flag & QREADR) == 0);
3298
3299 type = ((union T_primitives *)mp->b_rptr)->type;
3300 RPCLOG(8, "clnt_dispatch_notifyconn: prim type: [%s]\n",
3301 rpc_tpiprim2name(type));
3302 mutex_enter(&clnt_pending_lock);
3303 for (e = clnt_pending; /* NO CONDITION */; e = e->call_next) {
3304 if (e == NULL) {
3305 mutex_exit(&clnt_pending_lock);
3306 RPCLOG(1, "clnt_dispatch_notifyconn: no one waiting "
3307 "for connection on queue 0x%p\n", (void *)q);
3308 return (FALSE);
3309 }
3310 if (e->call_wq == q)
3311 break;
3312 }
3313
3314 switch (type) {
3315 case T_CONN_CON:
3316 /*
3317 * The transport is now connected, send a T_INFO_REQ to get
3318 * the tidu size.
3319 */
3320 mutex_exit(&clnt_pending_lock);
3321 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
3322 sizeof (struct T_info_req));
3323 mp->b_rptr = mp->b_datap->db_base;
3324 ((union T_primitives *)mp->b_rptr)->type = T_INFO_REQ;
3325 mp->b_wptr = mp->b_rptr + sizeof (struct T_info_req);
3326 mp->b_datap->db_type = M_PCPROTO;
3327 put(q, mp);
3328 return (TRUE);
3329 case T_INFO_ACK:
3330 case T_OPTMGMT_ACK:
3331 e->call_status = RPC_SUCCESS;
3332 e->call_reply = mp;
3333 e->call_notified = TRUE;
3334 cv_signal(&e->call_cv);
3335 break;
3336 case T_ERROR_ACK:
3337 e->call_status = RPC_CANTCONNECT;
3338 e->call_reply = mp;
3339 e->call_notified = TRUE;
3340 cv_signal(&e->call_cv);
3341 break;
3342 case T_OK_ACK:
3343 /*
3344 * Great, but we are really waiting for a T_CONN_CON
3345 */
3346 freemsg(mp);
3347 break;
3348 default:
3349 mutex_exit(&clnt_pending_lock);
3350 RPCLOG(1, "clnt_dispatch_notifyconn: bad type %d\n", type);
3351 return (FALSE);
3352 }
3353
3354 mutex_exit(&clnt_pending_lock);
3355 return (TRUE);
3356 }
3357
3358 /*
3359 * Called by rpcmod when the transport is (or should be) going away. Informs
3360 * all callers waiting for replies and marks the entry in the connection
3361 * manager's list as unconnected, and either closing (close handshake in
3362 * progress) or dead.
3363 */
3364 void
clnt_dispatch_notifyall(queue_t * q,int32_t msg_type,int32_t reason)3365 clnt_dispatch_notifyall(queue_t *q, int32_t msg_type, int32_t reason)
3366 {
3367 calllist_t *e;
3368 call_table_t *ctp;
3369 struct cm_xprt *cm_entry;
3370 int have_connmgr_lock;
3371 int i;
3372
3373 ASSERT((q->q_flag & QREADR) == 0);
3374
3375 RPCLOG(1, "clnt_dispatch_notifyall on queue %p", (void *)q);
3376 RPCLOG(1, " received a notifcation prim type [%s]",
3377 rpc_tpiprim2name(msg_type));
3378 RPCLOG(1, " and reason %d\n", reason);
3379
3380 /*
3381 * Find the transport entry in the connection manager's list, close
3382 * the transport and delete the entry. In the case where rpcmod's
3383 * idle timer goes off, it sends us a T_ORDREL_REQ, indicating we
3384 * should gracefully close the connection.
3385 */
3386 have_connmgr_lock = 1;
3387 mutex_enter(&connmgr_lock);
3388 for (cm_entry = cm_hd; cm_entry; cm_entry = cm_entry->x_next) {
3389 ASSERT(cm_entry != cm_entry->x_next);
3390 if (cm_entry->x_wq == q) {
3391 ASSERT(MUTEX_HELD(&connmgr_lock));
3392 ASSERT(have_connmgr_lock == 1);
3393 switch (msg_type) {
3394 case T_ORDREL_REQ:
3395
3396 if (cm_entry->x_dead) {
3397 RPCLOG(1, "idle timeout on dead "
3398 "connection: %p\n",
3399 (void *)cm_entry);
3400 if (clnt_stop_idle != NULL)
3401 (*clnt_stop_idle)(q);
3402 break;
3403 }
3404
3405 /*
3406 * Only mark the connection as dead if it is
3407 * connected and idle.
3408 * An unconnected connection has probably
3409 * gone idle because the server is down,
3410 * and when it comes back up there will be
3411 * retries that need to use that connection.
3412 */
3413 if (cm_entry->x_connected ||
3414 cm_entry->x_doomed) {
3415 if (cm_entry->x_ordrel) {
3416 if (cm_entry->x_closing ==
3417 TRUE) {
3418 /*
3419 * The connection is
3420 * obviously wedged due
3421 * to a bug or problem
3422 * with the transport.
3423 * Mark it as dead.
3424 * Otherwise we can
3425 * leak connections.
3426 */
3427 cm_entry->x_dead = TRUE;
3428 mutex_exit(
3429 &connmgr_lock);
3430 have_connmgr_lock = 0;
3431 if (clnt_stop_idle !=
3432 NULL)
3433 (*clnt_stop_idle)(q);
3434 break;
3435 }
3436 cm_entry->x_closing = TRUE;
3437 connmgr_sndrel(cm_entry);
3438 have_connmgr_lock = 0;
3439 } else {
3440 cm_entry->x_dead = TRUE;
3441 mutex_exit(&connmgr_lock);
3442 have_connmgr_lock = 0;
3443 if (clnt_stop_idle != NULL)
3444 (*clnt_stop_idle)(q);
3445 }
3446 } else {
3447 /*
3448 * We don't mark the connection
3449 * as dead, but we turn off the
3450 * idle timer.
3451 */
3452 mutex_exit(&connmgr_lock);
3453 have_connmgr_lock = 0;
3454 if (clnt_stop_idle != NULL)
3455 (*clnt_stop_idle)(q);
3456 RPCLOG(1, "clnt_dispatch_notifyall:"
3457 " ignoring timeout from rpcmod"
3458 " (q %p) because we are not "
3459 " connected\n", (void *)q);
3460 }
3461 break;
3462 case T_ORDREL_IND:
3463 /*
3464 * If this entry is marked closing, then we are
3465 * completing a close handshake, and the
3466 * connection is dead. Otherwise, the server is
3467 * trying to close. Since the server will not
3468 * be sending any more RPC replies, we abort
3469 * the connection, including flushing
3470 * any RPC requests that are in-transit.
3471 * In either case, mark the entry as dead so
3472 * that it can be closed by the connection
3473 * manager's garbage collector.
3474 */
3475 cm_entry->x_dead = TRUE;
3476 if (cm_entry->x_closing) {
3477 mutex_exit(&connmgr_lock);
3478 have_connmgr_lock = 0;
3479 if (clnt_stop_idle != NULL)
3480 (*clnt_stop_idle)(q);
3481 } else {
3482 /*
3483 * if we're getting a disconnect
3484 * before we've finished our
3485 * connect attempt, mark it for
3486 * later processing
3487 */
3488 if (cm_entry->x_thread)
3489 cm_entry->x_early_disc = TRUE;
3490 else
3491 cm_entry->x_connected = FALSE;
3492 cm_entry->x_waitdis = TRUE;
3493 connmgr_snddis(cm_entry);
3494 have_connmgr_lock = 0;
3495 }
3496 break;
3497
3498 case T_ERROR_ACK:
3499 case T_OK_ACK:
3500 cm_entry->x_waitdis = FALSE;
3501 cv_signal(&cm_entry->x_dis_cv);
3502 mutex_exit(&connmgr_lock);
3503 return;
3504
3505 case T_DISCON_REQ:
3506 if (cm_entry->x_thread)
3507 cm_entry->x_early_disc = TRUE;
3508 else
3509 cm_entry->x_connected = FALSE;
3510 cm_entry->x_waitdis = TRUE;
3511
3512 connmgr_snddis(cm_entry);
3513 have_connmgr_lock = 0;
3514 break;
3515
3516 case T_DISCON_IND:
3517 default:
3518 /*
3519 * if we're getting a disconnect before
3520 * we've finished our connect attempt,
3521 * mark it for later processing
3522 */
3523 if (cm_entry->x_closing) {
3524 cm_entry->x_dead = TRUE;
3525 mutex_exit(&connmgr_lock);
3526 have_connmgr_lock = 0;
3527 if (clnt_stop_idle != NULL)
3528 (*clnt_stop_idle)(q);
3529 } else {
3530 if (cm_entry->x_thread) {
3531 cm_entry->x_early_disc = TRUE;
3532 } else {
3533 cm_entry->x_dead = TRUE;
3534 cm_entry->x_connected = FALSE;
3535 }
3536 }
3537 break;
3538 }
3539 break;
3540 }
3541 }
3542
3543 if (have_connmgr_lock)
3544 mutex_exit(&connmgr_lock);
3545
3546 if (msg_type == T_ERROR_ACK || msg_type == T_OK_ACK) {
3547 RPCLOG(1, "clnt_dispatch_notifyall: (wq %p) could not find "
3548 "connmgr entry for discon ack\n", (void *)q);
3549 return;
3550 }
3551
3552 /*
3553 * Then kick all the clnt_pending calls out of their wait. There
3554 * should be no clnt_pending calls in the case of rpcmod's idle
3555 * timer firing.
3556 */
3557 for (i = 0; i < clnt_cots_hash_size; i++) {
3558 ctp = &cots_call_ht[i];
3559 mutex_enter(&ctp->ct_lock);
3560 for (e = ctp->ct_call_next;
3561 e != (calllist_t *)ctp;
3562 e = e->call_next) {
3563 if (e->call_wq == q && e->call_notified == FALSE) {
3564 RPCLOG(1,
3565 "clnt_dispatch_notifyall for queue %p ",
3566 (void *)q);
3567 RPCLOG(1, "aborting clnt_pending call %p\n",
3568 (void *)e);
3569
3570 if (msg_type == T_DISCON_IND)
3571 e->call_reason = reason;
3572 e->call_notified = TRUE;
3573 e->call_status = RPC_XPRTFAILED;
3574 cv_signal(&e->call_cv);
3575 }
3576 }
3577 mutex_exit(&ctp->ct_lock);
3578 }
3579
3580 mutex_enter(&clnt_pending_lock);
3581 for (e = clnt_pending; e; e = e->call_next) {
3582 /*
3583 * Only signal those RPC handles that haven't been
3584 * signalled yet. Otherwise we can get a bogus call_reason.
3585 * This can happen if thread A is making a call over a
3586 * connection. If the server is killed, it will cause
3587 * reset, and reason will default to EIO as a result of
3588 * a T_ORDREL_IND. Thread B then attempts to recreate
3589 * the connection but gets a T_DISCON_IND. If we set the
3590 * call_reason code for all threads, then if thread A
3591 * hasn't been dispatched yet, it will get the wrong
3592 * reason. The bogus call_reason can make it harder to
3593 * discriminate between calls that fail because the
3594 * connection attempt failed versus those where the call
3595 * may have been executed on the server.
3596 */
3597 if (e->call_wq == q && e->call_notified == FALSE) {
3598 RPCLOG(1, "clnt_dispatch_notifyall for queue %p ",
3599 (void *)q);
3600 RPCLOG(1, " aborting clnt_pending call %p\n",
3601 (void *)e);
3602
3603 if (msg_type == T_DISCON_IND)
3604 e->call_reason = reason;
3605 e->call_notified = TRUE;
3606 /*
3607 * Let the caller timeout, else he will retry
3608 * immediately.
3609 */
3610 e->call_status = RPC_XPRTFAILED;
3611
3612 /*
3613 * We used to just signal those threads
3614 * waiting for a connection, (call_xid = 0).
3615 * That meant that threads waiting for a response
3616 * waited till their timeout expired. This
3617 * could be a long time if they've specified a
3618 * maximum timeout. (2^31 - 1). So we
3619 * Signal all threads now.
3620 */
3621 cv_signal(&e->call_cv);
3622 }
3623 }
3624 mutex_exit(&clnt_pending_lock);
3625 }
3626
3627
3628 /*ARGSUSED*/
3629 /*
3630 * after resuming a system that's been suspended for longer than the
3631 * NFS server's idle timeout (svc_idle_timeout for Solaris 2), rfscall()
3632 * generates "NFS server X not responding" and "NFS server X ok" messages;
3633 * here we reset inet connections to cause a re-connect and avoid those
3634 * NFS messages. see 4045054
3635 */
3636 boolean_t
connmgr_cpr_reset(void * arg,int code)3637 connmgr_cpr_reset(void *arg, int code)
3638 {
3639 struct cm_xprt *cxp;
3640
3641 if (code == CB_CODE_CPR_CHKPT)
3642 return (B_TRUE);
3643
3644 if (mutex_tryenter(&connmgr_lock) == 0)
3645 return (B_FALSE);
3646 for (cxp = cm_hd; cxp; cxp = cxp->x_next) {
3647 if ((cxp->x_family == AF_INET || cxp->x_family == AF_INET6) &&
3648 cxp->x_connected == TRUE) {
3649 if (cxp->x_thread)
3650 cxp->x_early_disc = TRUE;
3651 else
3652 cxp->x_connected = FALSE;
3653 cxp->x_needdis = TRUE;
3654 }
3655 }
3656 mutex_exit(&connmgr_lock);
3657 return (B_TRUE);
3658 }
3659
3660 void
clnt_cots_stats_init(zoneid_t zoneid,struct rpc_cots_client ** statsp)3661 clnt_cots_stats_init(zoneid_t zoneid, struct rpc_cots_client **statsp)
3662 {
3663
3664 *statsp = (struct rpc_cots_client *)rpcstat_zone_init_common(zoneid,
3665 "unix", "rpc_cots_client", (const kstat_named_t *)&cots_rcstat_tmpl,
3666 sizeof (cots_rcstat_tmpl));
3667 }
3668
3669 void
clnt_cots_stats_fini(zoneid_t zoneid,struct rpc_cots_client ** statsp)3670 clnt_cots_stats_fini(zoneid_t zoneid, struct rpc_cots_client **statsp)
3671 {
3672 rpcstat_zone_fini_common(zoneid, "unix", "rpc_cots_client");
3673 kmem_free(*statsp, sizeof (cots_rcstat_tmpl));
3674 }
3675
3676 void
clnt_cots_init(void)3677 clnt_cots_init(void)
3678 {
3679 mutex_init(&connmgr_lock, NULL, MUTEX_DEFAULT, NULL);
3680 mutex_init(&clnt_pending_lock, NULL, MUTEX_DEFAULT, NULL);
3681
3682 if (clnt_cots_hash_size < DEFAULT_MIN_HASH_SIZE)
3683 clnt_cots_hash_size = DEFAULT_MIN_HASH_SIZE;
3684
3685 cots_call_ht = call_table_init(clnt_cots_hash_size);
3686 zone_key_create(&zone_cots_key, NULL, NULL, clnt_zone_destroy);
3687 }
3688
3689 void
clnt_cots_fini(void)3690 clnt_cots_fini(void)
3691 {
3692 (void) zone_key_delete(zone_cots_key);
3693 }
3694
3695 /*
3696 * Wait for TPI ack, returns success only if expected ack is received
3697 * within timeout period.
3698 */
3699
3700 static int
waitforack(calllist_t * e,t_scalar_t ack_prim,const struct timeval * waitp,bool_t nosignal)3701 waitforack(calllist_t *e, t_scalar_t ack_prim, const struct timeval *waitp,
3702 bool_t nosignal)
3703 {
3704 union T_primitives *tpr;
3705 clock_t timout;
3706 int cv_stat = 1;
3707
3708 ASSERT(MUTEX_HELD(&clnt_pending_lock));
3709 while (e->call_reply == NULL) {
3710 if (waitp != NULL) {
3711 timout = waitp->tv_sec * drv_usectohz(MICROSEC) +
3712 drv_usectohz(waitp->tv_usec);
3713 if (nosignal)
3714 cv_stat = cv_reltimedwait(&e->call_cv,
3715 &clnt_pending_lock, timout, TR_CLOCK_TICK);
3716 else
3717 cv_stat = cv_reltimedwait_sig(&e->call_cv,
3718 &clnt_pending_lock, timout, TR_CLOCK_TICK);
3719 } else {
3720 if (nosignal)
3721 cv_wait(&e->call_cv, &clnt_pending_lock);
3722 else
3723 cv_stat = cv_wait_sig(&e->call_cv,
3724 &clnt_pending_lock);
3725 }
3726 if (cv_stat == -1)
3727 return (ETIME);
3728 if (cv_stat == 0)
3729 return (EINTR);
3730 /*
3731 * if we received an error from the server and we know a reply
3732 * is not going to be sent, do not wait for the full timeout,
3733 * return now.
3734 */
3735 if (e->call_status == RPC_XPRTFAILED)
3736 return (e->call_reason);
3737 }
3738 tpr = (union T_primitives *)e->call_reply->b_rptr;
3739 if (tpr->type == ack_prim)
3740 return (0); /* Success */
3741
3742 if (tpr->type == T_ERROR_ACK) {
3743 if (tpr->error_ack.TLI_error == TSYSERR)
3744 return (tpr->error_ack.UNIX_error);
3745 else
3746 return (t_tlitosyserr(tpr->error_ack.TLI_error));
3747 }
3748
3749 return (EPROTO); /* unknown or unexpected primitive */
3750 }
3751