xref: /linux/arch/x86/events/core.c (revision 547c5775a742d9c83891b629b75d1d4c8e88d8c0)
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
32 
33 #include <asm/apic.h>
34 #include <asm/stacktrace.h>
35 #include <asm/msr.h>
36 #include <asm/nmi.h>
37 #include <asm/smp.h>
38 #include <asm/alternative.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/timer.h>
42 #include <asm/desc.h>
43 #include <asm/ldt.h>
44 #include <asm/unwind.h>
45 #include <asm/uprobes.h>
46 #include <asm/ibt.h>
47 
48 #include "perf_event.h"
49 
50 struct x86_pmu x86_pmu __read_mostly;
51 static struct pmu pmu;
52 
53 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
54 	.enabled = 1,
55 	.pmu = &pmu,
56 };
57 
58 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
59 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
60 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
61 
62 /*
63  * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
64  * from just a typename, as opposed to an actual function.
65  */
66 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
67 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
68 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
69 DEFINE_STATIC_CALL_NULL(x86_pmu_enable,	     *x86_pmu.enable);
70 DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
71 
72 DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign);
73 
74 DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
75 DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
76 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
77 
78 DEFINE_STATIC_CALL_NULL(x86_pmu_set_period,   *x86_pmu.set_period);
79 DEFINE_STATIC_CALL_NULL(x86_pmu_update,       *x86_pmu.update);
80 DEFINE_STATIC_CALL_NULL(x86_pmu_limit_period, *x86_pmu.limit_period);
81 
82 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
83 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
84 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
85 
86 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
87 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
88 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
89 
90 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
91 
92 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
93 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
94 
95 DEFINE_STATIC_CALL_NULL(x86_pmu_filter, *x86_pmu.filter);
96 
97 DEFINE_STATIC_CALL_NULL(x86_pmu_late_setup, *x86_pmu.late_setup);
98 
99 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_enable, *x86_pmu.pebs_enable);
100 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_disable, *x86_pmu.pebs_disable);
101 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_enable_all, *x86_pmu.pebs_enable_all);
102 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_disable_all, *x86_pmu.pebs_disable_all);
103 
104 /*
105  * This one is magic, it will get called even when PMU init fails (because
106  * there is no PMU), in which case it should simply return NULL.
107  */
108 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
109 
110 u64 __read_mostly hw_cache_event_ids
111 				[PERF_COUNT_HW_CACHE_MAX]
112 				[PERF_COUNT_HW_CACHE_OP_MAX]
113 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
114 u64 __read_mostly hw_cache_extra_regs
115 				[PERF_COUNT_HW_CACHE_MAX]
116 				[PERF_COUNT_HW_CACHE_OP_MAX]
117 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
118 
119 /*
120  * Propagate event elapsed time into the generic event.
121  * Can only be executed on the CPU where the event is active.
122  * Returns the delta events processed.
123  */
x86_perf_event_update(struct perf_event * event)124 u64 x86_perf_event_update(struct perf_event *event)
125 {
126 	struct hw_perf_event *hwc = &event->hw;
127 	int shift = 64 - x86_pmu.cntval_bits;
128 	u64 prev_raw_count, new_raw_count;
129 	u64 delta;
130 
131 	if (unlikely(!hwc->event_base))
132 		return 0;
133 
134 	/*
135 	 * Careful: an NMI might modify the previous event value.
136 	 *
137 	 * Our tactic to handle this is to first atomically read and
138 	 * exchange a new raw count - then add that new-prev delta
139 	 * count to the generic event atomically:
140 	 */
141 	prev_raw_count = local64_read(&hwc->prev_count);
142 	do {
143 		new_raw_count = rdpmc(hwc->event_base_rdpmc);
144 	} while (!local64_try_cmpxchg(&hwc->prev_count,
145 				      &prev_raw_count, new_raw_count));
146 
147 	/*
148 	 * Now we have the new raw value and have updated the prev
149 	 * timestamp already. We can now calculate the elapsed delta
150 	 * (event-)time and add that to the generic event.
151 	 *
152 	 * Careful, not all hw sign-extends above the physical width
153 	 * of the count.
154 	 */
155 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
156 	delta >>= shift;
157 
158 	local64_add(delta, &event->count);
159 	local64_sub(delta, &hwc->period_left);
160 
161 	return new_raw_count;
162 }
163 
164 /*
165  * Find and validate any extra registers to set up.
166  */
x86_pmu_extra_regs(u64 config,struct perf_event * event)167 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
168 {
169 	struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
170 	struct hw_perf_event_extra *reg;
171 	struct extra_reg *er;
172 
173 	reg = &event->hw.extra_reg;
174 
175 	if (!extra_regs)
176 		return 0;
177 
178 	for (er = extra_regs; er->msr; er++) {
179 		if (er->event != (config & er->config_mask))
180 			continue;
181 		if (event->attr.config1 & ~er->valid_mask)
182 			return -EINVAL;
183 		/* Check if the extra msrs can be safely accessed*/
184 		if (!er->extra_msr_access)
185 			return -ENXIO;
186 
187 		reg->idx = er->idx;
188 		reg->config = event->attr.config1;
189 		reg->reg = er->msr;
190 		break;
191 	}
192 	return 0;
193 }
194 
195 static atomic_t active_events;
196 static atomic_t pmc_refcount;
197 static DEFINE_MUTEX(pmc_reserve_mutex);
198 
199 #ifdef CONFIG_X86_LOCAL_APIC
200 
get_possible_counter_mask(void)201 static inline u64 get_possible_counter_mask(void)
202 {
203 	u64 cntr_mask = x86_pmu.cntr_mask64;
204 	int i;
205 
206 	if (!is_hybrid())
207 		return cntr_mask;
208 
209 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
210 		cntr_mask |= x86_pmu.hybrid_pmu[i].cntr_mask64;
211 
212 	return cntr_mask;
213 }
214 
reserve_pmc_hardware(void)215 static bool reserve_pmc_hardware(void)
216 {
217 	u64 cntr_mask = get_possible_counter_mask();
218 	int i, end;
219 
220 	for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
221 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
222 			goto perfctr_fail;
223 	}
224 
225 	for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
226 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
227 			goto eventsel_fail;
228 	}
229 
230 	return true;
231 
232 eventsel_fail:
233 	end = i;
234 	for_each_set_bit(i, (unsigned long *)&cntr_mask, end)
235 		release_evntsel_nmi(x86_pmu_config_addr(i));
236 	i = X86_PMC_IDX_MAX;
237 
238 perfctr_fail:
239 	end = i;
240 	for_each_set_bit(i, (unsigned long *)&cntr_mask, end)
241 		release_perfctr_nmi(x86_pmu_event_addr(i));
242 
243 	return false;
244 }
245 
release_pmc_hardware(void)246 static void release_pmc_hardware(void)
247 {
248 	u64 cntr_mask = get_possible_counter_mask();
249 	int i;
250 
251 	for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
252 		release_perfctr_nmi(x86_pmu_event_addr(i));
253 		release_evntsel_nmi(x86_pmu_config_addr(i));
254 	}
255 }
256 
257 #else
258 
reserve_pmc_hardware(void)259 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)260 static void release_pmc_hardware(void) {}
261 
262 #endif
263 
check_hw_exists(struct pmu * pmu,unsigned long * cntr_mask,unsigned long * fixed_cntr_mask)264 bool check_hw_exists(struct pmu *pmu, unsigned long *cntr_mask,
265 		     unsigned long *fixed_cntr_mask)
266 {
267 	u64 val, val_fail = -1, val_new= ~0;
268 	int i, reg, reg_fail = -1, ret = 0;
269 	int bios_fail = 0;
270 	int reg_safe = -1;
271 
272 	/*
273 	 * Check to see if the BIOS enabled any of the counters, if so
274 	 * complain and bail.
275 	 */
276 	for_each_set_bit(i, cntr_mask, X86_PMC_IDX_MAX) {
277 		reg = x86_pmu_config_addr(i);
278 		ret = rdmsrq_safe(reg, &val);
279 		if (ret)
280 			goto msr_fail;
281 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
282 			bios_fail = 1;
283 			val_fail = val;
284 			reg_fail = reg;
285 		} else {
286 			reg_safe = i;
287 		}
288 	}
289 
290 	if (*(u64 *)fixed_cntr_mask) {
291 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
292 		ret = rdmsrq_safe(reg, &val);
293 		if (ret)
294 			goto msr_fail;
295 		for_each_set_bit(i, fixed_cntr_mask, X86_PMC_IDX_MAX) {
296 			if (fixed_counter_disabled(i, pmu))
297 				continue;
298 			if (val & (0x03ULL << i*4)) {
299 				bios_fail = 1;
300 				val_fail = val;
301 				reg_fail = reg;
302 			}
303 		}
304 	}
305 
306 	/*
307 	 * If all the counters are enabled, the below test will always
308 	 * fail.  The tools will also become useless in this scenario.
309 	 * Just fail and disable the hardware counters.
310 	 */
311 
312 	if (reg_safe == -1) {
313 		reg = reg_safe;
314 		goto msr_fail;
315 	}
316 
317 	/*
318 	 * Read the current value, change it and read it back to see if it
319 	 * matches, this is needed to detect certain hardware emulators
320 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
321 	 */
322 	reg = x86_pmu_event_addr(reg_safe);
323 	if (rdmsrq_safe(reg, &val))
324 		goto msr_fail;
325 	val ^= 0xffffUL;
326 	ret = wrmsrq_safe(reg, val);
327 	ret |= rdmsrq_safe(reg, &val_new);
328 	if (ret || val != val_new)
329 		goto msr_fail;
330 
331 	/*
332 	 * We still allow the PMU driver to operate:
333 	 */
334 	if (bios_fail) {
335 		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
336 		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
337 			      reg_fail, val_fail);
338 	}
339 
340 	return true;
341 
342 msr_fail:
343 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
344 		pr_cont("PMU not available due to virtualization, using software events only.\n");
345 	} else {
346 		pr_cont("Broken PMU hardware detected, using software events only.\n");
347 		pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
348 		       reg, val_new);
349 	}
350 
351 	return false;
352 }
353 
hw_perf_event_destroy(struct perf_event * event)354 static void hw_perf_event_destroy(struct perf_event *event)
355 {
356 	x86_release_hardware();
357 	atomic_dec(&active_events);
358 }
359 
hw_perf_lbr_event_destroy(struct perf_event * event)360 void hw_perf_lbr_event_destroy(struct perf_event *event)
361 {
362 	hw_perf_event_destroy(event);
363 
364 	/* undo the lbr/bts event accounting */
365 	x86_del_exclusive(x86_lbr_exclusive_lbr);
366 }
367 
x86_pmu_initialized(void)368 static inline int x86_pmu_initialized(void)
369 {
370 	return x86_pmu.handle_irq != NULL;
371 }
372 
373 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)374 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
375 {
376 	struct perf_event_attr *attr = &event->attr;
377 	unsigned int cache_type, cache_op, cache_result;
378 	u64 config, val;
379 
380 	config = attr->config;
381 
382 	cache_type = (config >> 0) & 0xff;
383 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
384 		return -EINVAL;
385 	cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
386 
387 	cache_op = (config >>  8) & 0xff;
388 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
389 		return -EINVAL;
390 	cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
391 
392 	cache_result = (config >> 16) & 0xff;
393 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
394 		return -EINVAL;
395 	cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
396 
397 	val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
398 	if (val == 0)
399 		return -ENOENT;
400 
401 	if (val == -1)
402 		return -EINVAL;
403 
404 	hwc->config |= val;
405 	attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
406 	return x86_pmu_extra_regs(val, event);
407 }
408 
x86_reserve_hardware(void)409 int x86_reserve_hardware(void)
410 {
411 	int err = 0;
412 
413 	if (!atomic_inc_not_zero(&pmc_refcount)) {
414 		mutex_lock(&pmc_reserve_mutex);
415 		if (atomic_read(&pmc_refcount) == 0) {
416 			if (!reserve_pmc_hardware()) {
417 				err = -EBUSY;
418 			} else {
419 				reserve_ds_buffers();
420 				reserve_lbr_buffers();
421 			}
422 		}
423 		if (!err)
424 			atomic_inc(&pmc_refcount);
425 		mutex_unlock(&pmc_reserve_mutex);
426 	}
427 
428 	return err;
429 }
430 
x86_release_hardware(void)431 void x86_release_hardware(void)
432 {
433 	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
434 		release_pmc_hardware();
435 		release_ds_buffers();
436 		release_lbr_buffers();
437 		mutex_unlock(&pmc_reserve_mutex);
438 	}
439 }
440 
441 /*
442  * Check if we can create event of a certain type (that no conflicting events
443  * are present).
444  */
x86_add_exclusive(unsigned int what)445 int x86_add_exclusive(unsigned int what)
446 {
447 	int i;
448 
449 	/*
450 	 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
451 	 * LBR and BTS are still mutually exclusive.
452 	 */
453 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
454 		goto out;
455 
456 	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
457 		mutex_lock(&pmc_reserve_mutex);
458 		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
459 			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
460 				goto fail_unlock;
461 		}
462 		atomic_inc(&x86_pmu.lbr_exclusive[what]);
463 		mutex_unlock(&pmc_reserve_mutex);
464 	}
465 
466 out:
467 	atomic_inc(&active_events);
468 	return 0;
469 
470 fail_unlock:
471 	mutex_unlock(&pmc_reserve_mutex);
472 	return -EBUSY;
473 }
474 
x86_del_exclusive(unsigned int what)475 void x86_del_exclusive(unsigned int what)
476 {
477 	atomic_dec(&active_events);
478 
479 	/*
480 	 * See the comment in x86_add_exclusive().
481 	 */
482 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
483 		return;
484 
485 	atomic_dec(&x86_pmu.lbr_exclusive[what]);
486 }
487 
x86_setup_perfctr(struct perf_event * event)488 int x86_setup_perfctr(struct perf_event *event)
489 {
490 	struct perf_event_attr *attr = &event->attr;
491 	struct hw_perf_event *hwc = &event->hw;
492 	u64 config;
493 
494 	if (!is_sampling_event(event)) {
495 		hwc->sample_period = x86_pmu.max_period;
496 		hwc->last_period = hwc->sample_period;
497 		local64_set(&hwc->period_left, hwc->sample_period);
498 	}
499 
500 	if (attr->type == event->pmu->type)
501 		return x86_pmu_extra_regs(event->attr.config, event);
502 
503 	if (attr->type == PERF_TYPE_HW_CACHE)
504 		return set_ext_hw_attr(hwc, event);
505 
506 	if (attr->config >= x86_pmu.max_events)
507 		return -EINVAL;
508 
509 	attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
510 
511 	/*
512 	 * The generic map:
513 	 */
514 	config = x86_pmu.event_map(attr->config);
515 
516 	if (config == 0)
517 		return -ENOENT;
518 
519 	if (config == -1LL)
520 		return -EINVAL;
521 
522 	hwc->config |= config;
523 
524 	return 0;
525 }
526 
527 /*
528  * check that branch_sample_type is compatible with
529  * settings needed for precise_ip > 1 which implies
530  * using the LBR to capture ALL taken branches at the
531  * priv levels of the measurement
532  */
precise_br_compat(struct perf_event * event)533 static inline int precise_br_compat(struct perf_event *event)
534 {
535 	u64 m = event->attr.branch_sample_type;
536 	u64 b = 0;
537 
538 	/* must capture all branches */
539 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
540 		return 0;
541 
542 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
543 
544 	if (!event->attr.exclude_user)
545 		b |= PERF_SAMPLE_BRANCH_USER;
546 
547 	if (!event->attr.exclude_kernel)
548 		b |= PERF_SAMPLE_BRANCH_KERNEL;
549 
550 	/*
551 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
552 	 */
553 
554 	return m == b;
555 }
556 
x86_pmu_max_precise(void)557 int x86_pmu_max_precise(void)
558 {
559 	int precise = 0;
560 
561 	/* Support for constant skid */
562 	if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
563 		precise++;
564 
565 		/* Support for IP fixup */
566 		if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
567 			precise++;
568 
569 		if (x86_pmu.pebs_prec_dist)
570 			precise++;
571 	}
572 	return precise;
573 }
574 
x86_pmu_hw_config(struct perf_event * event)575 int x86_pmu_hw_config(struct perf_event *event)
576 {
577 	if (event->attr.precise_ip) {
578 		int precise = x86_pmu_max_precise();
579 
580 		if (event->attr.precise_ip > precise)
581 			return -EOPNOTSUPP;
582 
583 		/* There's no sense in having PEBS for non sampling events: */
584 		if (!is_sampling_event(event))
585 			return -EINVAL;
586 	}
587 	/*
588 	 * check that PEBS LBR correction does not conflict with
589 	 * whatever the user is asking with attr->branch_sample_type
590 	 */
591 	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
592 		u64 *br_type = &event->attr.branch_sample_type;
593 
594 		if (has_branch_stack(event)) {
595 			if (!precise_br_compat(event))
596 				return -EOPNOTSUPP;
597 
598 			/* branch_sample_type is compatible */
599 
600 		} else {
601 			/*
602 			 * user did not specify  branch_sample_type
603 			 *
604 			 * For PEBS fixups, we capture all
605 			 * the branches at the priv level of the
606 			 * event.
607 			 */
608 			*br_type = PERF_SAMPLE_BRANCH_ANY;
609 
610 			if (!event->attr.exclude_user)
611 				*br_type |= PERF_SAMPLE_BRANCH_USER;
612 
613 			if (!event->attr.exclude_kernel)
614 				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
615 		}
616 	}
617 
618 	if (branch_sample_call_stack(event))
619 		event->attach_state |= PERF_ATTACH_TASK_DATA;
620 
621 	/*
622 	 * Generate PMC IRQs:
623 	 * (keep 'enabled' bit clear for now)
624 	 */
625 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
626 
627 	/*
628 	 * Count user and OS events unless requested not to
629 	 */
630 	if (!event->attr.exclude_user)
631 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
632 	if (!event->attr.exclude_kernel)
633 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
634 
635 	if (event->attr.type == event->pmu->type)
636 		event->hw.config |= x86_pmu_get_event_config(event);
637 
638 	if (is_sampling_event(event) && !event->attr.freq && x86_pmu.limit_period) {
639 		s64 left = event->attr.sample_period;
640 		x86_pmu.limit_period(event, &left);
641 		if (left > event->attr.sample_period)
642 			return -EINVAL;
643 	}
644 
645 	/* sample_regs_user never support XMM registers */
646 	if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
647 		return -EINVAL;
648 	/*
649 	 * Besides the general purpose registers, XMM registers may
650 	 * be collected in PEBS on some platforms, e.g. Icelake
651 	 */
652 	if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
653 		if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
654 			return -EINVAL;
655 
656 		if (!event->attr.precise_ip)
657 			return -EINVAL;
658 	}
659 
660 	return x86_setup_perfctr(event);
661 }
662 
663 /*
664  * Setup the hardware configuration for a given attr_type
665  */
__x86_pmu_event_init(struct perf_event * event)666 static int __x86_pmu_event_init(struct perf_event *event)
667 {
668 	int err;
669 
670 	if (!x86_pmu_initialized())
671 		return -ENODEV;
672 
673 	err = x86_reserve_hardware();
674 	if (err)
675 		return err;
676 
677 	atomic_inc(&active_events);
678 	event->destroy = hw_perf_event_destroy;
679 
680 	event->hw.idx = -1;
681 	event->hw.last_cpu = -1;
682 	event->hw.last_tag = ~0ULL;
683 	event->hw.dyn_constraint = ~0ULL;
684 
685 	/* mark unused */
686 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
687 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
688 
689 	return x86_pmu.hw_config(event);
690 }
691 
x86_pmu_disable_all(void)692 void x86_pmu_disable_all(void)
693 {
694 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
695 	int idx;
696 
697 	for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
698 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
699 		u64 val;
700 
701 		if (!test_bit(idx, cpuc->active_mask))
702 			continue;
703 		rdmsrq(x86_pmu_config_addr(idx), val);
704 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
705 			continue;
706 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
707 		wrmsrq(x86_pmu_config_addr(idx), val);
708 		if (is_counter_pair(hwc))
709 			wrmsrq(x86_pmu_config_addr(idx + 1), 0);
710 	}
711 }
712 
perf_guest_get_msrs(int * nr,void * data)713 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data)
714 {
715 	return static_call(x86_pmu_guest_get_msrs)(nr, data);
716 }
717 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
718 
719 /*
720  * There may be PMI landing after enabled=0. The PMI hitting could be before or
721  * after disable_all.
722  *
723  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
724  * It will not be re-enabled in the NMI handler again, because enabled=0. After
725  * handling the NMI, disable_all will be called, which will not change the
726  * state either. If PMI hits after disable_all, the PMU is already disabled
727  * before entering NMI handler. The NMI handler will not change the state
728  * either.
729  *
730  * So either situation is harmless.
731  */
x86_pmu_disable(struct pmu * pmu)732 static void x86_pmu_disable(struct pmu *pmu)
733 {
734 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
735 
736 	if (!x86_pmu_initialized())
737 		return;
738 
739 	if (!cpuc->enabled)
740 		return;
741 
742 	cpuc->n_added = 0;
743 	cpuc->enabled = 0;
744 	barrier();
745 
746 	static_call(x86_pmu_disable_all)();
747 }
748 
x86_pmu_enable_all(int added)749 void x86_pmu_enable_all(int added)
750 {
751 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
752 	int idx;
753 
754 	for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
755 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
756 
757 		if (!test_bit(idx, cpuc->active_mask))
758 			continue;
759 
760 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
761 	}
762 }
763 
is_x86_event(struct perf_event * event)764 int is_x86_event(struct perf_event *event)
765 {
766 	/*
767 	 * For a non-hybrid platforms, the type of X86 pmu is
768 	 * always PERF_TYPE_RAW.
769 	 * For a hybrid platform, the PERF_PMU_CAP_EXTENDED_HW_TYPE
770 	 * is a unique capability for the X86 PMU.
771 	 * Use them to detect a X86 event.
772 	 */
773 	if (event->pmu->type == PERF_TYPE_RAW ||
774 	    event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)
775 		return true;
776 
777 	return false;
778 }
779 
x86_get_pmu(unsigned int cpu)780 struct pmu *x86_get_pmu(unsigned int cpu)
781 {
782 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
783 
784 	/*
785 	 * All CPUs of the hybrid type have been offline.
786 	 * The x86_get_pmu() should not be invoked.
787 	 */
788 	if (WARN_ON_ONCE(!cpuc->pmu))
789 		return &pmu;
790 
791 	return cpuc->pmu;
792 }
793 /*
794  * Event scheduler state:
795  *
796  * Assign events iterating over all events and counters, beginning
797  * with events with least weights first. Keep the current iterator
798  * state in struct sched_state.
799  */
800 struct sched_state {
801 	int	weight;
802 	int	event;		/* event index */
803 	int	counter;	/* counter index */
804 	int	unassigned;	/* number of events to be assigned left */
805 	int	nr_gp;		/* number of GP counters used */
806 	u64	used;
807 };
808 
809 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
810 #define	SCHED_STATES_MAX	2
811 
812 struct perf_sched {
813 	int			max_weight;
814 	int			max_events;
815 	int			max_gp;
816 	int			saved_states;
817 	struct event_constraint	**constraints;
818 	struct sched_state	state;
819 	struct sched_state	saved[SCHED_STATES_MAX];
820 };
821 
822 /*
823  * Initialize iterator that runs through all events and counters.
824  */
perf_sched_init(struct perf_sched * sched,struct event_constraint ** constraints,int num,int wmin,int wmax,int gpmax)825 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
826 			    int num, int wmin, int wmax, int gpmax)
827 {
828 	int idx;
829 
830 	memset(sched, 0, sizeof(*sched));
831 	sched->max_events	= num;
832 	sched->max_weight	= wmax;
833 	sched->max_gp		= gpmax;
834 	sched->constraints	= constraints;
835 
836 	for (idx = 0; idx < num; idx++) {
837 		if (constraints[idx]->weight == wmin)
838 			break;
839 	}
840 
841 	sched->state.event	= idx;		/* start with min weight */
842 	sched->state.weight	= wmin;
843 	sched->state.unassigned	= num;
844 }
845 
perf_sched_save_state(struct perf_sched * sched)846 static void perf_sched_save_state(struct perf_sched *sched)
847 {
848 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
849 		return;
850 
851 	sched->saved[sched->saved_states] = sched->state;
852 	sched->saved_states++;
853 }
854 
perf_sched_restore_state(struct perf_sched * sched)855 static bool perf_sched_restore_state(struct perf_sched *sched)
856 {
857 	if (!sched->saved_states)
858 		return false;
859 
860 	sched->saved_states--;
861 	sched->state = sched->saved[sched->saved_states];
862 
863 	/* this assignment didn't work out */
864 	/* XXX broken vs EVENT_PAIR */
865 	sched->state.used &= ~BIT_ULL(sched->state.counter);
866 
867 	/* try the next one */
868 	sched->state.counter++;
869 
870 	return true;
871 }
872 
873 /*
874  * Select a counter for the current event to schedule. Return true on
875  * success.
876  */
__perf_sched_find_counter(struct perf_sched * sched)877 static bool __perf_sched_find_counter(struct perf_sched *sched)
878 {
879 	struct event_constraint *c;
880 	int idx;
881 
882 	if (!sched->state.unassigned)
883 		return false;
884 
885 	if (sched->state.event >= sched->max_events)
886 		return false;
887 
888 	c = sched->constraints[sched->state.event];
889 	/* Prefer fixed purpose counters */
890 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
891 		idx = INTEL_PMC_IDX_FIXED;
892 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
893 			u64 mask = BIT_ULL(idx);
894 
895 			if (sched->state.used & mask)
896 				continue;
897 
898 			sched->state.used |= mask;
899 			goto done;
900 		}
901 	}
902 
903 	/* Grab the first unused counter starting with idx */
904 	idx = sched->state.counter;
905 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
906 		u64 mask = BIT_ULL(idx);
907 
908 		if (c->flags & PERF_X86_EVENT_PAIR)
909 			mask |= mask << 1;
910 
911 		if (sched->state.used & mask)
912 			continue;
913 
914 		if (sched->state.nr_gp++ >= sched->max_gp)
915 			return false;
916 
917 		sched->state.used |= mask;
918 		goto done;
919 	}
920 
921 	return false;
922 
923 done:
924 	sched->state.counter = idx;
925 
926 	if (c->overlap)
927 		perf_sched_save_state(sched);
928 
929 	return true;
930 }
931 
perf_sched_find_counter(struct perf_sched * sched)932 static bool perf_sched_find_counter(struct perf_sched *sched)
933 {
934 	while (!__perf_sched_find_counter(sched)) {
935 		if (!perf_sched_restore_state(sched))
936 			return false;
937 	}
938 
939 	return true;
940 }
941 
942 /*
943  * Go through all unassigned events and find the next one to schedule.
944  * Take events with the least weight first. Return true on success.
945  */
perf_sched_next_event(struct perf_sched * sched)946 static bool perf_sched_next_event(struct perf_sched *sched)
947 {
948 	struct event_constraint *c;
949 
950 	if (!sched->state.unassigned || !--sched->state.unassigned)
951 		return false;
952 
953 	do {
954 		/* next event */
955 		sched->state.event++;
956 		if (sched->state.event >= sched->max_events) {
957 			/* next weight */
958 			sched->state.event = 0;
959 			sched->state.weight++;
960 			if (sched->state.weight > sched->max_weight)
961 				return false;
962 		}
963 		c = sched->constraints[sched->state.event];
964 	} while (c->weight != sched->state.weight);
965 
966 	sched->state.counter = 0;	/* start with first counter */
967 
968 	return true;
969 }
970 
971 /*
972  * Assign a counter for each event.
973  */
perf_assign_events(struct event_constraint ** constraints,int n,int wmin,int wmax,int gpmax,int * assign)974 int perf_assign_events(struct event_constraint **constraints, int n,
975 			int wmin, int wmax, int gpmax, int *assign)
976 {
977 	struct perf_sched sched;
978 
979 	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
980 
981 	do {
982 		if (!perf_sched_find_counter(&sched))
983 			break;	/* failed */
984 		if (assign)
985 			assign[sched.state.event] = sched.state.counter;
986 	} while (perf_sched_next_event(&sched));
987 
988 	return sched.state.unassigned;
989 }
990 EXPORT_SYMBOL_GPL(perf_assign_events);
991 
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)992 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
993 {
994 	struct event_constraint *c;
995 	struct perf_event *e;
996 	int n0, i, wmin, wmax, unsched = 0;
997 	struct hw_perf_event *hwc;
998 	u64 used_mask = 0;
999 
1000 	/*
1001 	 * Compute the number of events already present; see x86_pmu_add(),
1002 	 * validate_group() and x86_pmu_commit_txn(). For the former two
1003 	 * cpuc->n_events hasn't been updated yet, while for the latter
1004 	 * cpuc->n_txn contains the number of events added in the current
1005 	 * transaction.
1006 	 */
1007 	n0 = cpuc->n_events;
1008 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1009 		n0 -= cpuc->n_txn;
1010 
1011 	static_call_cond(x86_pmu_start_scheduling)(cpuc);
1012 
1013 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
1014 		c = cpuc->event_constraint[i];
1015 
1016 		/*
1017 		 * Previously scheduled events should have a cached constraint,
1018 		 * while new events should not have one.
1019 		 */
1020 		WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1021 
1022 		/*
1023 		 * Request constraints for new events; or for those events that
1024 		 * have a dynamic constraint -- for those the constraint can
1025 		 * change due to external factors (sibling state, allow_tfa).
1026 		 */
1027 		if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1028 			c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1029 			cpuc->event_constraint[i] = c;
1030 		}
1031 
1032 		wmin = min(wmin, c->weight);
1033 		wmax = max(wmax, c->weight);
1034 	}
1035 
1036 	/*
1037 	 * fastpath, try to reuse previous register
1038 	 */
1039 	for (i = 0; i < n; i++) {
1040 		u64 mask;
1041 
1042 		hwc = &cpuc->event_list[i]->hw;
1043 		c = cpuc->event_constraint[i];
1044 
1045 		/* never assigned */
1046 		if (hwc->idx == -1)
1047 			break;
1048 
1049 		/* constraint still honored */
1050 		if (!test_bit(hwc->idx, c->idxmsk))
1051 			break;
1052 
1053 		mask = BIT_ULL(hwc->idx);
1054 		if (is_counter_pair(hwc))
1055 			mask |= mask << 1;
1056 
1057 		/* not already used */
1058 		if (used_mask & mask)
1059 			break;
1060 
1061 		used_mask |= mask;
1062 
1063 		if (assign)
1064 			assign[i] = hwc->idx;
1065 	}
1066 
1067 	/* slow path */
1068 	if (i != n) {
1069 		int gpmax = x86_pmu_max_num_counters(cpuc->pmu);
1070 
1071 		/*
1072 		 * Do not allow scheduling of more than half the available
1073 		 * generic counters.
1074 		 *
1075 		 * This helps avoid counter starvation of sibling thread by
1076 		 * ensuring at most half the counters cannot be in exclusive
1077 		 * mode. There is no designated counters for the limits. Any
1078 		 * N/2 counters can be used. This helps with events with
1079 		 * specific counter constraints.
1080 		 */
1081 		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1082 		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1083 			gpmax /= 2;
1084 
1085 		/*
1086 		 * Reduce the amount of available counters to allow fitting
1087 		 * the extra Merge events needed by large increment events.
1088 		 */
1089 		if (x86_pmu.flags & PMU_FL_PAIR) {
1090 			gpmax -= cpuc->n_pair;
1091 			WARN_ON(gpmax <= 0);
1092 		}
1093 
1094 		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1095 					     wmax, gpmax, assign);
1096 	}
1097 
1098 	/*
1099 	 * In case of success (unsched = 0), mark events as committed,
1100 	 * so we do not put_constraint() in case new events are added
1101 	 * and fail to be scheduled
1102 	 *
1103 	 * We invoke the lower level commit callback to lock the resource
1104 	 *
1105 	 * We do not need to do all of this in case we are called to
1106 	 * validate an event group (assign == NULL)
1107 	 */
1108 	if (!unsched && assign) {
1109 		for (i = 0; i < n; i++)
1110 			static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1111 	} else {
1112 		for (i = n0; i < n; i++) {
1113 			e = cpuc->event_list[i];
1114 
1115 			/*
1116 			 * release events that failed scheduling
1117 			 */
1118 			static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1119 
1120 			cpuc->event_constraint[i] = NULL;
1121 		}
1122 	}
1123 
1124 	static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1125 
1126 	return unsched ? -EINVAL : 0;
1127 }
1128 
add_nr_metric_event(struct cpu_hw_events * cpuc,struct perf_event * event)1129 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1130 			       struct perf_event *event)
1131 {
1132 	if (is_metric_event(event)) {
1133 		if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1134 			return -EINVAL;
1135 		cpuc->n_metric++;
1136 		cpuc->n_txn_metric++;
1137 	}
1138 
1139 	return 0;
1140 }
1141 
del_nr_metric_event(struct cpu_hw_events * cpuc,struct perf_event * event)1142 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1143 				struct perf_event *event)
1144 {
1145 	if (is_metric_event(event))
1146 		cpuc->n_metric--;
1147 }
1148 
collect_event(struct cpu_hw_events * cpuc,struct perf_event * event,int max_count,int n)1149 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1150 			 int max_count, int n)
1151 {
1152 	union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1153 
1154 	if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1155 		return -EINVAL;
1156 
1157 	if (n >= max_count + cpuc->n_metric)
1158 		return -EINVAL;
1159 
1160 	cpuc->event_list[n] = event;
1161 	if (is_counter_pair(&event->hw)) {
1162 		cpuc->n_pair++;
1163 		cpuc->n_txn_pair++;
1164 	}
1165 
1166 	return 0;
1167 }
1168 
1169 /*
1170  * dogrp: true if must collect siblings events (group)
1171  * returns total number of events and error code
1172  */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)1173 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1174 {
1175 	struct perf_event *event;
1176 	int n, max_count;
1177 
1178 	max_count = x86_pmu_num_counters(cpuc->pmu) + x86_pmu_num_counters_fixed(cpuc->pmu);
1179 
1180 	/* current number of events already accepted */
1181 	n = cpuc->n_events;
1182 	if (!cpuc->n_events)
1183 		cpuc->pebs_output = 0;
1184 
1185 	if (!cpuc->is_fake && leader->attr.precise_ip) {
1186 		/*
1187 		 * For PEBS->PT, if !aux_event, the group leader (PT) went
1188 		 * away, the group was broken down and this singleton event
1189 		 * can't schedule any more.
1190 		 */
1191 		if (is_pebs_pt(leader) && !leader->aux_event)
1192 			return -EINVAL;
1193 
1194 		/*
1195 		 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1196 		 */
1197 		if (cpuc->pebs_output &&
1198 		    cpuc->pebs_output != is_pebs_pt(leader) + 1)
1199 			return -EINVAL;
1200 
1201 		cpuc->pebs_output = is_pebs_pt(leader) + 1;
1202 	}
1203 
1204 	if (is_x86_event(leader)) {
1205 		if (collect_event(cpuc, leader, max_count, n))
1206 			return -EINVAL;
1207 		n++;
1208 	}
1209 
1210 	if (!dogrp)
1211 		return n;
1212 
1213 	for_each_sibling_event(event, leader) {
1214 		if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1215 			continue;
1216 
1217 		if (collect_event(cpuc, event, max_count, n))
1218 			return -EINVAL;
1219 
1220 		n++;
1221 	}
1222 	return n;
1223 }
1224 
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)1225 static inline void x86_assign_hw_event(struct perf_event *event,
1226 				struct cpu_hw_events *cpuc, int i)
1227 {
1228 	struct hw_perf_event *hwc = &event->hw;
1229 	int idx;
1230 
1231 	idx = hwc->idx = cpuc->assign[i];
1232 	hwc->last_cpu = smp_processor_id();
1233 	hwc->last_tag = ++cpuc->tags[i];
1234 
1235 	static_call_cond(x86_pmu_assign)(event, idx);
1236 
1237 	switch (hwc->idx) {
1238 	case INTEL_PMC_IDX_FIXED_BTS:
1239 	case INTEL_PMC_IDX_FIXED_VLBR:
1240 		hwc->config_base = 0;
1241 		hwc->event_base	= 0;
1242 		break;
1243 
1244 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1245 		/* All the metric events are mapped onto the fixed counter 3. */
1246 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
1247 		fallthrough;
1248 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1249 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1250 		hwc->event_base = x86_pmu_fixed_ctr_addr(idx - INTEL_PMC_IDX_FIXED);
1251 		hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1252 					INTEL_PMC_FIXED_RDPMC_BASE;
1253 		break;
1254 
1255 	default:
1256 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
1257 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1258 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1259 		break;
1260 	}
1261 }
1262 
1263 /**
1264  * x86_perf_rdpmc_index - Return PMC counter used for event
1265  * @event: the perf_event to which the PMC counter was assigned
1266  *
1267  * The counter assigned to this performance event may change if interrupts
1268  * are enabled. This counter should thus never be used while interrupts are
1269  * enabled. Before this function is used to obtain the assigned counter the
1270  * event should be checked for validity using, for example,
1271  * perf_event_read_local(), within the same interrupt disabled section in
1272  * which this counter is planned to be used.
1273  *
1274  * Return: The index of the performance monitoring counter assigned to
1275  * @perf_event.
1276  */
x86_perf_rdpmc_index(struct perf_event * event)1277 int x86_perf_rdpmc_index(struct perf_event *event)
1278 {
1279 	lockdep_assert_irqs_disabled();
1280 
1281 	return event->hw.event_base_rdpmc;
1282 }
1283 
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)1284 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1285 					struct cpu_hw_events *cpuc,
1286 					int i)
1287 {
1288 	return hwc->idx == cpuc->assign[i] &&
1289 		hwc->last_cpu == smp_processor_id() &&
1290 		hwc->last_tag == cpuc->tags[i];
1291 }
1292 
1293 static void x86_pmu_start(struct perf_event *event, int flags);
1294 
x86_pmu_enable(struct pmu * pmu)1295 static void x86_pmu_enable(struct pmu *pmu)
1296 {
1297 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1298 	struct perf_event *event;
1299 	struct hw_perf_event *hwc;
1300 	int i, added = cpuc->n_added;
1301 
1302 	if (!x86_pmu_initialized())
1303 		return;
1304 
1305 	if (cpuc->enabled)
1306 		return;
1307 
1308 	if (cpuc->n_added) {
1309 		int n_running = cpuc->n_events - cpuc->n_added;
1310 
1311 		/*
1312 		 * The late setup (after counters are scheduled)
1313 		 * is required for some cases, e.g., PEBS counters
1314 		 * snapshotting. Because an accurate counter index
1315 		 * is needed.
1316 		 */
1317 		static_call_cond(x86_pmu_late_setup)();
1318 
1319 		/*
1320 		 * apply assignment obtained either from
1321 		 * hw_perf_group_sched_in() or x86_pmu_enable()
1322 		 *
1323 		 * step1: save events moving to new counters
1324 		 */
1325 		for (i = 0; i < n_running; i++) {
1326 			event = cpuc->event_list[i];
1327 			hwc = &event->hw;
1328 
1329 			/*
1330 			 * we can avoid reprogramming counter if:
1331 			 * - assigned same counter as last time
1332 			 * - running on same CPU as last time
1333 			 * - no other event has used the counter since
1334 			 */
1335 			if (hwc->idx == -1 ||
1336 			    match_prev_assignment(hwc, cpuc, i))
1337 				continue;
1338 
1339 			/*
1340 			 * Ensure we don't accidentally enable a stopped
1341 			 * counter simply because we rescheduled.
1342 			 */
1343 			if (hwc->state & PERF_HES_STOPPED)
1344 				hwc->state |= PERF_HES_ARCH;
1345 
1346 			x86_pmu_stop(event, PERF_EF_UPDATE);
1347 		}
1348 
1349 		/*
1350 		 * step2: reprogram moved events into new counters
1351 		 */
1352 		for (i = 0; i < cpuc->n_events; i++) {
1353 			event = cpuc->event_list[i];
1354 			hwc = &event->hw;
1355 
1356 			if (!match_prev_assignment(hwc, cpuc, i))
1357 				x86_assign_hw_event(event, cpuc, i);
1358 			else if (i < n_running)
1359 				continue;
1360 
1361 			if (hwc->state & PERF_HES_ARCH)
1362 				continue;
1363 
1364 			/*
1365 			 * if cpuc->enabled = 0, then no wrmsr as
1366 			 * per x86_pmu_enable_event()
1367 			 */
1368 			x86_pmu_start(event, PERF_EF_RELOAD);
1369 		}
1370 		cpuc->n_added = 0;
1371 		perf_events_lapic_init();
1372 	}
1373 
1374 	cpuc->enabled = 1;
1375 	barrier();
1376 
1377 	static_call(x86_pmu_enable_all)(added);
1378 }
1379 
1380 DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1381 
1382 /*
1383  * Set the next IRQ period, based on the hwc->period_left value.
1384  * To be called with the event disabled in hw:
1385  */
x86_perf_event_set_period(struct perf_event * event)1386 int x86_perf_event_set_period(struct perf_event *event)
1387 {
1388 	struct hw_perf_event *hwc = &event->hw;
1389 	s64 left = local64_read(&hwc->period_left);
1390 	s64 period = hwc->sample_period;
1391 	int ret = 0, idx = hwc->idx;
1392 
1393 	if (unlikely(!hwc->event_base))
1394 		return 0;
1395 
1396 	/*
1397 	 * If we are way outside a reasonable range then just skip forward:
1398 	 */
1399 	if (unlikely(left <= -period)) {
1400 		left = period;
1401 		local64_set(&hwc->period_left, left);
1402 		hwc->last_period = period;
1403 		ret = 1;
1404 	}
1405 
1406 	if (unlikely(left <= 0)) {
1407 		left += period;
1408 		local64_set(&hwc->period_left, left);
1409 		hwc->last_period = period;
1410 		ret = 1;
1411 	}
1412 	/*
1413 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1414 	 */
1415 	if (unlikely(left < 2))
1416 		left = 2;
1417 
1418 	if (left > x86_pmu.max_period)
1419 		left = x86_pmu.max_period;
1420 
1421 	static_call_cond(x86_pmu_limit_period)(event, &left);
1422 
1423 	this_cpu_write(pmc_prev_left[idx], left);
1424 
1425 	/*
1426 	 * The hw event starts counting from this event offset,
1427 	 * mark it to be able to extra future deltas:
1428 	 */
1429 	local64_set(&hwc->prev_count, (u64)-left);
1430 
1431 	wrmsrq(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1432 
1433 	/*
1434 	 * Sign extend the Merge event counter's upper 16 bits since
1435 	 * we currently declare a 48-bit counter width
1436 	 */
1437 	if (is_counter_pair(hwc))
1438 		wrmsrq(x86_pmu_event_addr(idx + 1), 0xffff);
1439 
1440 	perf_event_update_userpage(event);
1441 
1442 	return ret;
1443 }
1444 
x86_pmu_enable_event(struct perf_event * event)1445 void x86_pmu_enable_event(struct perf_event *event)
1446 {
1447 	if (__this_cpu_read(cpu_hw_events.enabled))
1448 		__x86_pmu_enable_event(&event->hw,
1449 				       ARCH_PERFMON_EVENTSEL_ENABLE);
1450 }
1451 
1452 /*
1453  * Add a single event to the PMU.
1454  *
1455  * The event is added to the group of enabled events
1456  * but only if it can be scheduled with existing events.
1457  */
x86_pmu_add(struct perf_event * event,int flags)1458 static int x86_pmu_add(struct perf_event *event, int flags)
1459 {
1460 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1461 	struct hw_perf_event *hwc;
1462 	int assign[X86_PMC_IDX_MAX];
1463 	int n, n0, ret;
1464 
1465 	hwc = &event->hw;
1466 
1467 	n0 = cpuc->n_events;
1468 	ret = n = collect_events(cpuc, event, false);
1469 	if (ret < 0)
1470 		goto out;
1471 
1472 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1473 	if (!(flags & PERF_EF_START))
1474 		hwc->state |= PERF_HES_ARCH;
1475 
1476 	/*
1477 	 * If group events scheduling transaction was started,
1478 	 * skip the schedulability test here, it will be performed
1479 	 * at commit time (->commit_txn) as a whole.
1480 	 *
1481 	 * If commit fails, we'll call ->del() on all events
1482 	 * for which ->add() was called.
1483 	 */
1484 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1485 		goto done_collect;
1486 
1487 	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1488 	if (ret)
1489 		goto out;
1490 	/*
1491 	 * copy new assignment, now we know it is possible
1492 	 * will be used by hw_perf_enable()
1493 	 */
1494 	memcpy(cpuc->assign, assign, n*sizeof(int));
1495 
1496 done_collect:
1497 	/*
1498 	 * Commit the collect_events() state. See x86_pmu_del() and
1499 	 * x86_pmu_*_txn().
1500 	 */
1501 	cpuc->n_events = n;
1502 	cpuc->n_added += n - n0;
1503 	cpuc->n_txn += n - n0;
1504 
1505 	/*
1506 	 * This is before x86_pmu_enable() will call x86_pmu_start(),
1507 	 * so we enable LBRs before an event needs them etc..
1508 	 */
1509 	static_call_cond(x86_pmu_add)(event);
1510 
1511 	ret = 0;
1512 out:
1513 	return ret;
1514 }
1515 
x86_pmu_start(struct perf_event * event,int flags)1516 static void x86_pmu_start(struct perf_event *event, int flags)
1517 {
1518 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1519 	int idx = event->hw.idx;
1520 
1521 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1522 		return;
1523 
1524 	if (WARN_ON_ONCE(idx == -1))
1525 		return;
1526 
1527 	if (flags & PERF_EF_RELOAD) {
1528 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1529 		static_call(x86_pmu_set_period)(event);
1530 	}
1531 
1532 	event->hw.state = 0;
1533 
1534 	cpuc->events[idx] = event;
1535 	__set_bit(idx, cpuc->active_mask);
1536 	static_call(x86_pmu_enable)(event);
1537 	perf_event_update_userpage(event);
1538 }
1539 
perf_event_print_debug(void)1540 void perf_event_print_debug(void)
1541 {
1542 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1543 	unsigned long *cntr_mask, *fixed_cntr_mask;
1544 	struct event_constraint *pebs_constraints;
1545 	struct cpu_hw_events *cpuc;
1546 	u64 pebs, debugctl;
1547 	int cpu, idx;
1548 
1549 	guard(irqsave)();
1550 
1551 	cpu = smp_processor_id();
1552 	cpuc = &per_cpu(cpu_hw_events, cpu);
1553 	cntr_mask = hybrid(cpuc->pmu, cntr_mask);
1554 	fixed_cntr_mask = hybrid(cpuc->pmu, fixed_cntr_mask);
1555 	pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1556 
1557 	if (!*(u64 *)cntr_mask)
1558 		return;
1559 
1560 	if (x86_pmu.version >= 2) {
1561 		rdmsrq(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1562 		rdmsrq(MSR_CORE_PERF_GLOBAL_STATUS, status);
1563 		rdmsrq(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1564 		rdmsrq(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1565 
1566 		pr_info("\n");
1567 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1568 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1569 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1570 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1571 		if (pebs_constraints) {
1572 			rdmsrq(MSR_IA32_PEBS_ENABLE, pebs);
1573 			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1574 		}
1575 		if (x86_pmu.lbr_nr) {
1576 			rdmsrq(MSR_IA32_DEBUGCTLMSR, debugctl);
1577 			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1578 		}
1579 	}
1580 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1581 
1582 	for_each_set_bit(idx, cntr_mask, X86_PMC_IDX_MAX) {
1583 		rdmsrq(x86_pmu_config_addr(idx), pmc_ctrl);
1584 		rdmsrq(x86_pmu_event_addr(idx), pmc_count);
1585 
1586 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1587 
1588 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1589 			cpu, idx, pmc_ctrl);
1590 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1591 			cpu, idx, pmc_count);
1592 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1593 			cpu, idx, prev_left);
1594 	}
1595 	for_each_set_bit(idx, fixed_cntr_mask, X86_PMC_IDX_MAX) {
1596 		if (fixed_counter_disabled(idx, cpuc->pmu))
1597 			continue;
1598 		rdmsrq(x86_pmu_fixed_ctr_addr(idx), pmc_count);
1599 
1600 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1601 			cpu, idx, pmc_count);
1602 	}
1603 }
1604 
x86_pmu_stop(struct perf_event * event,int flags)1605 void x86_pmu_stop(struct perf_event *event, int flags)
1606 {
1607 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1608 	struct hw_perf_event *hwc = &event->hw;
1609 
1610 	if (test_bit(hwc->idx, cpuc->active_mask)) {
1611 		static_call(x86_pmu_disable)(event);
1612 		__clear_bit(hwc->idx, cpuc->active_mask);
1613 		cpuc->events[hwc->idx] = NULL;
1614 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1615 		hwc->state |= PERF_HES_STOPPED;
1616 	}
1617 
1618 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1619 		/*
1620 		 * Drain the remaining delta count out of a event
1621 		 * that we are disabling:
1622 		 */
1623 		static_call(x86_pmu_update)(event);
1624 		hwc->state |= PERF_HES_UPTODATE;
1625 	}
1626 }
1627 
x86_pmu_del(struct perf_event * event,int flags)1628 static void x86_pmu_del(struct perf_event *event, int flags)
1629 {
1630 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1631 	union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1632 	int i;
1633 
1634 	/*
1635 	 * If we're called during a txn, we only need to undo x86_pmu.add.
1636 	 * The events never got scheduled and ->cancel_txn will truncate
1637 	 * the event_list.
1638 	 *
1639 	 * XXX assumes any ->del() called during a TXN will only be on
1640 	 * an event added during that same TXN.
1641 	 */
1642 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1643 		goto do_del;
1644 
1645 	__set_bit(event->hw.idx, cpuc->dirty);
1646 
1647 	/*
1648 	 * Not a TXN, therefore cleanup properly.
1649 	 */
1650 	x86_pmu_stop(event, PERF_EF_UPDATE);
1651 
1652 	for (i = 0; i < cpuc->n_events; i++) {
1653 		if (event == cpuc->event_list[i])
1654 			break;
1655 	}
1656 
1657 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1658 		return;
1659 
1660 	/* If we have a newly added event; make sure to decrease n_added. */
1661 	if (i >= cpuc->n_events - cpuc->n_added)
1662 		--cpuc->n_added;
1663 
1664 	static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1665 
1666 	/* Delete the array entry. */
1667 	while (++i < cpuc->n_events) {
1668 		cpuc->event_list[i-1] = cpuc->event_list[i];
1669 		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1670 		cpuc->assign[i-1] = cpuc->assign[i];
1671 	}
1672 	cpuc->event_constraint[i-1] = NULL;
1673 	--cpuc->n_events;
1674 	if (intel_cap.perf_metrics)
1675 		del_nr_metric_event(cpuc, event);
1676 
1677 	perf_event_update_userpage(event);
1678 
1679 do_del:
1680 
1681 	/*
1682 	 * This is after x86_pmu_stop(); so we disable LBRs after any
1683 	 * event can need them etc..
1684 	 */
1685 	static_call_cond(x86_pmu_del)(event);
1686 }
1687 
x86_pmu_handle_irq(struct pt_regs * regs)1688 int x86_pmu_handle_irq(struct pt_regs *regs)
1689 {
1690 	struct perf_sample_data data;
1691 	struct cpu_hw_events *cpuc;
1692 	struct perf_event *event;
1693 	int idx, handled = 0;
1694 	u64 last_period;
1695 	u64 val;
1696 
1697 	cpuc = this_cpu_ptr(&cpu_hw_events);
1698 
1699 	/*
1700 	 * Some chipsets need to unmask the LVTPC in a particular spot
1701 	 * inside the nmi handler.  As a result, the unmasking was pushed
1702 	 * into all the nmi handlers.
1703 	 *
1704 	 * This generic handler doesn't seem to have any issues where the
1705 	 * unmasking occurs so it was left at the top.
1706 	 */
1707 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1708 
1709 	for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
1710 		if (!test_bit(idx, cpuc->active_mask))
1711 			continue;
1712 
1713 		event = cpuc->events[idx];
1714 		last_period = event->hw.last_period;
1715 
1716 		val = static_call(x86_pmu_update)(event);
1717 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1718 			continue;
1719 
1720 		/*
1721 		 * event overflow
1722 		 */
1723 		handled++;
1724 
1725 		if (!static_call(x86_pmu_set_period)(event))
1726 			continue;
1727 
1728 		perf_sample_data_init(&data, 0, last_period);
1729 
1730 		perf_sample_save_brstack(&data, event, &cpuc->lbr_stack, NULL);
1731 
1732 		perf_event_overflow(event, &data, regs);
1733 	}
1734 
1735 	if (handled)
1736 		inc_irq_stat(apic_perf_irqs);
1737 
1738 	return handled;
1739 }
1740 
perf_events_lapic_init(void)1741 void perf_events_lapic_init(void)
1742 {
1743 	if (!x86_pmu.apic || !x86_pmu_initialized())
1744 		return;
1745 
1746 	/*
1747 	 * Always use NMI for PMU
1748 	 */
1749 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1750 }
1751 
1752 static int
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1753 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1754 {
1755 	u64 start_clock;
1756 	u64 finish_clock;
1757 	int ret;
1758 
1759 	/*
1760 	 * All PMUs/events that share this PMI handler should make sure to
1761 	 * increment active_events for their events.
1762 	 */
1763 	if (!atomic_read(&active_events))
1764 		return NMI_DONE;
1765 
1766 	start_clock = sched_clock();
1767 	ret = static_call(x86_pmu_handle_irq)(regs);
1768 	finish_clock = sched_clock();
1769 
1770 	perf_sample_event_took(finish_clock - start_clock);
1771 
1772 	return ret;
1773 }
1774 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1775 
1776 struct event_constraint emptyconstraint;
1777 struct event_constraint unconstrained;
1778 
x86_pmu_prepare_cpu(unsigned int cpu)1779 static int x86_pmu_prepare_cpu(unsigned int cpu)
1780 {
1781 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1782 	int i;
1783 
1784 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1785 		cpuc->kfree_on_online[i] = NULL;
1786 	if (x86_pmu.cpu_prepare)
1787 		return x86_pmu.cpu_prepare(cpu);
1788 	return 0;
1789 }
1790 
x86_pmu_dead_cpu(unsigned int cpu)1791 static int x86_pmu_dead_cpu(unsigned int cpu)
1792 {
1793 	if (x86_pmu.cpu_dead)
1794 		x86_pmu.cpu_dead(cpu);
1795 	return 0;
1796 }
1797 
x86_pmu_online_cpu(unsigned int cpu)1798 static int x86_pmu_online_cpu(unsigned int cpu)
1799 {
1800 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1801 	int i;
1802 
1803 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1804 		kfree(cpuc->kfree_on_online[i]);
1805 		cpuc->kfree_on_online[i] = NULL;
1806 	}
1807 	return 0;
1808 }
1809 
x86_pmu_starting_cpu(unsigned int cpu)1810 static int x86_pmu_starting_cpu(unsigned int cpu)
1811 {
1812 	if (x86_pmu.cpu_starting)
1813 		x86_pmu.cpu_starting(cpu);
1814 	return 0;
1815 }
1816 
x86_pmu_dying_cpu(unsigned int cpu)1817 static int x86_pmu_dying_cpu(unsigned int cpu)
1818 {
1819 	if (x86_pmu.cpu_dying)
1820 		x86_pmu.cpu_dying(cpu);
1821 	return 0;
1822 }
1823 
pmu_check_apic(void)1824 static void __init pmu_check_apic(void)
1825 {
1826 	if (boot_cpu_has(X86_FEATURE_APIC))
1827 		return;
1828 
1829 	x86_pmu.apic = 0;
1830 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1831 	pr_info("no hardware sampling interrupt available.\n");
1832 
1833 	/*
1834 	 * If we have a PMU initialized but no APIC
1835 	 * interrupts, we cannot sample hardware
1836 	 * events (user-space has to fall back and
1837 	 * sample via a hrtimer based software event):
1838 	 */
1839 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1840 
1841 }
1842 
1843 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1844 	.name = "format",
1845 	.attrs = NULL,
1846 };
1847 
events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1848 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1849 {
1850 	struct perf_pmu_events_attr *pmu_attr =
1851 		container_of(attr, struct perf_pmu_events_attr, attr);
1852 	u64 config = 0;
1853 
1854 	if (pmu_attr->id < x86_pmu.max_events)
1855 		config = x86_pmu.event_map(pmu_attr->id);
1856 
1857 	/* string trumps id */
1858 	if (pmu_attr->event_str)
1859 		return sprintf(page, "%s\n", pmu_attr->event_str);
1860 
1861 	return x86_pmu.events_sysfs_show(page, config);
1862 }
1863 EXPORT_SYMBOL_GPL(events_sysfs_show);
1864 
events_ht_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1865 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1866 			  char *page)
1867 {
1868 	struct perf_pmu_events_ht_attr *pmu_attr =
1869 		container_of(attr, struct perf_pmu_events_ht_attr, attr);
1870 
1871 	/*
1872 	 * Report conditional events depending on Hyper-Threading.
1873 	 *
1874 	 * This is overly conservative as usually the HT special
1875 	 * handling is not needed if the other CPU thread is idle.
1876 	 *
1877 	 * Note this does not (and cannot) handle the case when thread
1878 	 * siblings are invisible, for example with virtualization
1879 	 * if they are owned by some other guest.  The user tool
1880 	 * has to re-read when a thread sibling gets onlined later.
1881 	 */
1882 	return sprintf(page, "%s",
1883 			topology_max_smt_threads() > 1 ?
1884 			pmu_attr->event_str_ht :
1885 			pmu_attr->event_str_noht);
1886 }
1887 
events_hybrid_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1888 ssize_t events_hybrid_sysfs_show(struct device *dev,
1889 				 struct device_attribute *attr,
1890 				 char *page)
1891 {
1892 	struct perf_pmu_events_hybrid_attr *pmu_attr =
1893 		container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1894 	struct x86_hybrid_pmu *pmu;
1895 	const char *str, *next_str;
1896 	int i;
1897 
1898 	if (hweight64(pmu_attr->pmu_type) == 1)
1899 		return sprintf(page, "%s", pmu_attr->event_str);
1900 
1901 	/*
1902 	 * Hybrid PMUs may support the same event name, but with different
1903 	 * event encoding, e.g., the mem-loads event on an Atom PMU has
1904 	 * different event encoding from a Core PMU.
1905 	 *
1906 	 * The event_str includes all event encodings. Each event encoding
1907 	 * is divided by ";". The order of the event encodings must follow
1908 	 * the order of the hybrid PMU index.
1909 	 */
1910 	pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1911 
1912 	str = pmu_attr->event_str;
1913 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1914 		if (!(x86_pmu.hybrid_pmu[i].pmu_type & pmu_attr->pmu_type))
1915 			continue;
1916 		if (x86_pmu.hybrid_pmu[i].pmu_type & pmu->pmu_type) {
1917 			next_str = strchr(str, ';');
1918 			if (next_str)
1919 				return snprintf(page, next_str - str + 1, "%s", str);
1920 			else
1921 				return sprintf(page, "%s", str);
1922 		}
1923 		str = strchr(str, ';');
1924 		str++;
1925 	}
1926 
1927 	return 0;
1928 }
1929 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1930 
1931 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1932 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1933 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1934 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1935 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1936 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1937 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1938 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1939 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1940 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1941 
1942 static struct attribute *empty_attrs;
1943 
1944 static struct attribute *events_attr[] = {
1945 	EVENT_PTR(CPU_CYCLES),
1946 	EVENT_PTR(INSTRUCTIONS),
1947 	EVENT_PTR(CACHE_REFERENCES),
1948 	EVENT_PTR(CACHE_MISSES),
1949 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1950 	EVENT_PTR(BRANCH_MISSES),
1951 	EVENT_PTR(BUS_CYCLES),
1952 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1953 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1954 	EVENT_PTR(REF_CPU_CYCLES),
1955 	NULL,
1956 };
1957 
1958 /*
1959  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1960  * out of events_attr attributes.
1961  */
1962 static umode_t
is_visible(struct kobject * kobj,struct attribute * attr,int idx)1963 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1964 {
1965 	struct perf_pmu_events_attr *pmu_attr;
1966 
1967 	if (idx >= x86_pmu.max_events)
1968 		return 0;
1969 
1970 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1971 	/* str trumps id */
1972 	return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1973 }
1974 
1975 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1976 	.name = "events",
1977 	.attrs = events_attr,
1978 	.is_visible = is_visible,
1979 };
1980 
x86_event_sysfs_show(char * page,u64 config,u64 event)1981 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1982 {
1983 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1984 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1985 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1986 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1987 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1988 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1989 	ssize_t ret;
1990 
1991 	/*
1992 	* We have whole page size to spend and just little data
1993 	* to write, so we can safely use sprintf.
1994 	*/
1995 	ret = sprintf(page, "event=0x%02llx", event);
1996 
1997 	if (umask)
1998 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1999 
2000 	if (edge)
2001 		ret += sprintf(page + ret, ",edge");
2002 
2003 	if (pc)
2004 		ret += sprintf(page + ret, ",pc");
2005 
2006 	if (any)
2007 		ret += sprintf(page + ret, ",any");
2008 
2009 	if (inv)
2010 		ret += sprintf(page + ret, ",inv");
2011 
2012 	if (cmask)
2013 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
2014 
2015 	ret += sprintf(page + ret, "\n");
2016 
2017 	return ret;
2018 }
2019 
2020 static struct attribute_group x86_pmu_attr_group;
2021 static struct attribute_group x86_pmu_caps_group;
2022 
x86_pmu_static_call_update(void)2023 static void x86_pmu_static_call_update(void)
2024 {
2025 	static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2026 	static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2027 	static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2028 	static_call_update(x86_pmu_enable, x86_pmu.enable);
2029 	static_call_update(x86_pmu_disable, x86_pmu.disable);
2030 
2031 	static_call_update(x86_pmu_assign, x86_pmu.assign);
2032 
2033 	static_call_update(x86_pmu_add, x86_pmu.add);
2034 	static_call_update(x86_pmu_del, x86_pmu.del);
2035 	static_call_update(x86_pmu_read, x86_pmu.read);
2036 
2037 	static_call_update(x86_pmu_set_period, x86_pmu.set_period);
2038 	static_call_update(x86_pmu_update, x86_pmu.update);
2039 	static_call_update(x86_pmu_limit_period, x86_pmu.limit_period);
2040 
2041 	static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2042 	static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2043 	static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2044 
2045 	static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2046 	static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2047 	static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2048 
2049 	static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2050 
2051 	static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2052 	static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2053 
2054 	static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2055 	static_call_update(x86_pmu_filter, x86_pmu.filter);
2056 
2057 	static_call_update(x86_pmu_late_setup, x86_pmu.late_setup);
2058 
2059 	static_call_update(x86_pmu_pebs_enable, x86_pmu.pebs_enable);
2060 	static_call_update(x86_pmu_pebs_disable, x86_pmu.pebs_disable);
2061 	static_call_update(x86_pmu_pebs_enable_all, x86_pmu.pebs_enable_all);
2062 	static_call_update(x86_pmu_pebs_disable_all, x86_pmu.pebs_disable_all);
2063 }
2064 
_x86_pmu_read(struct perf_event * event)2065 static void _x86_pmu_read(struct perf_event *event)
2066 {
2067 	static_call(x86_pmu_update)(event);
2068 }
2069 
x86_pmu_show_pmu_cap(struct pmu * pmu)2070 void x86_pmu_show_pmu_cap(struct pmu *pmu)
2071 {
2072 	pr_info("... version:                %d\n",     x86_pmu.version);
2073 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
2074 	pr_info("... generic registers:      %d\n",     x86_pmu_num_counters(pmu));
2075 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
2076 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
2077 	pr_info("... fixed-purpose events:   %d\n",     x86_pmu_num_counters_fixed(pmu));
2078 	pr_info("... event mask:             %016Lx\n", hybrid(pmu, intel_ctrl));
2079 }
2080 
init_hw_perf_events(void)2081 static int __init init_hw_perf_events(void)
2082 {
2083 	struct x86_pmu_quirk *quirk;
2084 	int err;
2085 
2086 	pr_info("Performance Events: ");
2087 
2088 	switch (boot_cpu_data.x86_vendor) {
2089 	case X86_VENDOR_INTEL:
2090 		err = intel_pmu_init();
2091 		break;
2092 	case X86_VENDOR_AMD:
2093 		err = amd_pmu_init();
2094 		break;
2095 	case X86_VENDOR_HYGON:
2096 		err = amd_pmu_init();
2097 		x86_pmu.name = "HYGON";
2098 		break;
2099 	case X86_VENDOR_ZHAOXIN:
2100 	case X86_VENDOR_CENTAUR:
2101 		err = zhaoxin_pmu_init();
2102 		break;
2103 	default:
2104 		err = -ENOTSUPP;
2105 	}
2106 	if (err != 0) {
2107 		pr_cont("no PMU driver, software events only.\n");
2108 		err = 0;
2109 		goto out_bad_pmu;
2110 	}
2111 
2112 	pmu_check_apic();
2113 
2114 	/* sanity check that the hardware exists or is emulated */
2115 	if (!check_hw_exists(&pmu, x86_pmu.cntr_mask, x86_pmu.fixed_cntr_mask))
2116 		goto out_bad_pmu;
2117 
2118 	pr_cont("%s PMU driver.\n", x86_pmu.name);
2119 
2120 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2121 
2122 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2123 		quirk->func();
2124 
2125 	if (!x86_pmu.intel_ctrl)
2126 		x86_pmu.intel_ctrl = x86_pmu.cntr_mask64;
2127 
2128 	if (!x86_pmu.config_mask)
2129 		x86_pmu.config_mask = X86_RAW_EVENT_MASK;
2130 
2131 	perf_events_lapic_init();
2132 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2133 
2134 	unconstrained = (struct event_constraint)
2135 		__EVENT_CONSTRAINT(0, x86_pmu.cntr_mask64,
2136 				   0, x86_pmu_num_counters(NULL), 0, 0);
2137 
2138 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2139 
2140 	if (!x86_pmu.events_sysfs_show)
2141 		x86_pmu_events_group.attrs = &empty_attrs;
2142 
2143 	pmu.attr_update = x86_pmu.attr_update;
2144 
2145 	if (!is_hybrid())
2146 		x86_pmu_show_pmu_cap(NULL);
2147 
2148 	if (!x86_pmu.read)
2149 		x86_pmu.read = _x86_pmu_read;
2150 
2151 	if (!x86_pmu.guest_get_msrs)
2152 		x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2153 
2154 	if (!x86_pmu.set_period)
2155 		x86_pmu.set_period = x86_perf_event_set_period;
2156 
2157 	if (!x86_pmu.update)
2158 		x86_pmu.update = x86_perf_event_update;
2159 
2160 	x86_pmu_static_call_update();
2161 
2162 	/*
2163 	 * Install callbacks. Core will call them for each online
2164 	 * cpu.
2165 	 */
2166 	err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2167 				x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2168 	if (err)
2169 		return err;
2170 
2171 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2172 				"perf/x86:starting", x86_pmu_starting_cpu,
2173 				x86_pmu_dying_cpu);
2174 	if (err)
2175 		goto out;
2176 
2177 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2178 				x86_pmu_online_cpu, NULL);
2179 	if (err)
2180 		goto out1;
2181 
2182 	if (!is_hybrid()) {
2183 		err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2184 		if (err)
2185 			goto out2;
2186 	} else {
2187 		struct x86_hybrid_pmu *hybrid_pmu;
2188 		int i, j;
2189 
2190 		for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2191 			hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2192 
2193 			hybrid_pmu->pmu = pmu;
2194 			hybrid_pmu->pmu.type = -1;
2195 			hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2196 			hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2197 
2198 			err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2199 						(hybrid_pmu->pmu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2200 			if (err)
2201 				break;
2202 		}
2203 
2204 		if (i < x86_pmu.num_hybrid_pmus) {
2205 			for (j = 0; j < i; j++)
2206 				perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2207 			pr_warn("Failed to register hybrid PMUs\n");
2208 			kfree(x86_pmu.hybrid_pmu);
2209 			x86_pmu.hybrid_pmu = NULL;
2210 			x86_pmu.num_hybrid_pmus = 0;
2211 			goto out2;
2212 		}
2213 	}
2214 
2215 	return 0;
2216 
2217 out2:
2218 	cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2219 out1:
2220 	cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2221 out:
2222 	cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2223 out_bad_pmu:
2224 	memset(&x86_pmu, 0, sizeof(x86_pmu));
2225 	return err;
2226 }
2227 early_initcall(init_hw_perf_events);
2228 
x86_pmu_read(struct perf_event * event)2229 static void x86_pmu_read(struct perf_event *event)
2230 {
2231 	static_call(x86_pmu_read)(event);
2232 }
2233 
2234 /*
2235  * Start group events scheduling transaction
2236  * Set the flag to make pmu::enable() not perform the
2237  * schedulability test, it will be performed at commit time
2238  *
2239  * We only support PERF_PMU_TXN_ADD transactions. Save the
2240  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2241  * transactions.
2242  */
x86_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)2243 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2244 {
2245 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2246 
2247 	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
2248 
2249 	cpuc->txn_flags = txn_flags;
2250 	if (txn_flags & ~PERF_PMU_TXN_ADD)
2251 		return;
2252 
2253 	perf_pmu_disable(pmu);
2254 	__this_cpu_write(cpu_hw_events.n_txn, 0);
2255 	__this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2256 	__this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2257 }
2258 
2259 /*
2260  * Stop group events scheduling transaction
2261  * Clear the flag and pmu::enable() will perform the
2262  * schedulability test.
2263  */
x86_pmu_cancel_txn(struct pmu * pmu)2264 static void x86_pmu_cancel_txn(struct pmu *pmu)
2265 {
2266 	unsigned int txn_flags;
2267 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2268 
2269 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
2270 
2271 	txn_flags = cpuc->txn_flags;
2272 	cpuc->txn_flags = 0;
2273 	if (txn_flags & ~PERF_PMU_TXN_ADD)
2274 		return;
2275 
2276 	/*
2277 	 * Truncate collected array by the number of events added in this
2278 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2279 	 */
2280 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2281 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2282 	__this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2283 	__this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2284 	perf_pmu_enable(pmu);
2285 }
2286 
2287 /*
2288  * Commit group events scheduling transaction
2289  * Perform the group schedulability test as a whole
2290  * Return 0 if success
2291  *
2292  * Does not cancel the transaction on failure; expects the caller to do this.
2293  */
x86_pmu_commit_txn(struct pmu * pmu)2294 static int x86_pmu_commit_txn(struct pmu *pmu)
2295 {
2296 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2297 	int assign[X86_PMC_IDX_MAX];
2298 	int n, ret;
2299 
2300 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
2301 
2302 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2303 		cpuc->txn_flags = 0;
2304 		return 0;
2305 	}
2306 
2307 	n = cpuc->n_events;
2308 
2309 	if (!x86_pmu_initialized())
2310 		return -EAGAIN;
2311 
2312 	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2313 	if (ret)
2314 		return ret;
2315 
2316 	/*
2317 	 * copy new assignment, now we know it is possible
2318 	 * will be used by hw_perf_enable()
2319 	 */
2320 	memcpy(cpuc->assign, assign, n*sizeof(int));
2321 
2322 	cpuc->txn_flags = 0;
2323 	perf_pmu_enable(pmu);
2324 	return 0;
2325 }
2326 /*
2327  * a fake_cpuc is used to validate event groups. Due to
2328  * the extra reg logic, we need to also allocate a fake
2329  * per_core and per_cpu structure. Otherwise, group events
2330  * using extra reg may conflict without the kernel being
2331  * able to catch this when the last event gets added to
2332  * the group.
2333  */
free_fake_cpuc(struct cpu_hw_events * cpuc)2334 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2335 {
2336 	intel_cpuc_finish(cpuc);
2337 	kfree(cpuc);
2338 }
2339 
allocate_fake_cpuc(struct pmu * event_pmu)2340 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2341 {
2342 	struct cpu_hw_events *cpuc;
2343 	int cpu;
2344 
2345 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2346 	if (!cpuc)
2347 		return ERR_PTR(-ENOMEM);
2348 	cpuc->is_fake = 1;
2349 
2350 	if (is_hybrid()) {
2351 		struct x86_hybrid_pmu *h_pmu;
2352 
2353 		h_pmu = hybrid_pmu(event_pmu);
2354 		if (cpumask_empty(&h_pmu->supported_cpus))
2355 			goto error;
2356 		cpu = cpumask_first(&h_pmu->supported_cpus);
2357 	} else
2358 		cpu = raw_smp_processor_id();
2359 	cpuc->pmu = event_pmu;
2360 
2361 	if (intel_cpuc_prepare(cpuc, cpu))
2362 		goto error;
2363 
2364 	return cpuc;
2365 error:
2366 	free_fake_cpuc(cpuc);
2367 	return ERR_PTR(-ENOMEM);
2368 }
2369 
2370 /*
2371  * validate that we can schedule this event
2372  */
validate_event(struct perf_event * event)2373 static int validate_event(struct perf_event *event)
2374 {
2375 	struct cpu_hw_events *fake_cpuc;
2376 	struct event_constraint *c;
2377 	int ret = 0;
2378 
2379 	fake_cpuc = allocate_fake_cpuc(event->pmu);
2380 	if (IS_ERR(fake_cpuc))
2381 		return PTR_ERR(fake_cpuc);
2382 
2383 	c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2384 
2385 	if (!c || !c->weight)
2386 		ret = -EINVAL;
2387 
2388 	if (x86_pmu.put_event_constraints)
2389 		x86_pmu.put_event_constraints(fake_cpuc, event);
2390 
2391 	free_fake_cpuc(fake_cpuc);
2392 
2393 	return ret;
2394 }
2395 
2396 /*
2397  * validate a single event group
2398  *
2399  * validation include:
2400  *	- check events are compatible which each other
2401  *	- events do not compete for the same counter
2402  *	- number of events <= number of counters
2403  *
2404  * validation ensures the group can be loaded onto the
2405  * PMU if it was the only group available.
2406  */
validate_group(struct perf_event * event)2407 static int validate_group(struct perf_event *event)
2408 {
2409 	struct perf_event *leader = event->group_leader;
2410 	struct cpu_hw_events *fake_cpuc;
2411 	int ret = -EINVAL, n;
2412 
2413 	/*
2414 	 * Reject events from different hybrid PMUs.
2415 	 */
2416 	if (is_hybrid()) {
2417 		struct perf_event *sibling;
2418 		struct pmu *pmu = NULL;
2419 
2420 		if (is_x86_event(leader))
2421 			pmu = leader->pmu;
2422 
2423 		for_each_sibling_event(sibling, leader) {
2424 			if (!is_x86_event(sibling))
2425 				continue;
2426 			if (!pmu)
2427 				pmu = sibling->pmu;
2428 			else if (pmu != sibling->pmu)
2429 				return ret;
2430 		}
2431 	}
2432 
2433 	fake_cpuc = allocate_fake_cpuc(event->pmu);
2434 	if (IS_ERR(fake_cpuc))
2435 		return PTR_ERR(fake_cpuc);
2436 	/*
2437 	 * the event is not yet connected with its
2438 	 * siblings therefore we must first collect
2439 	 * existing siblings, then add the new event
2440 	 * before we can simulate the scheduling
2441 	 */
2442 	n = collect_events(fake_cpuc, leader, true);
2443 	if (n < 0)
2444 		goto out;
2445 
2446 	fake_cpuc->n_events = n;
2447 	n = collect_events(fake_cpuc, event, false);
2448 	if (n < 0)
2449 		goto out;
2450 
2451 	fake_cpuc->n_events = 0;
2452 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2453 
2454 out:
2455 	free_fake_cpuc(fake_cpuc);
2456 	return ret;
2457 }
2458 
x86_pmu_event_init(struct perf_event * event)2459 static int x86_pmu_event_init(struct perf_event *event)
2460 {
2461 	struct x86_hybrid_pmu *pmu = NULL;
2462 	int err;
2463 
2464 	if ((event->attr.type != event->pmu->type) &&
2465 	    (event->attr.type != PERF_TYPE_HARDWARE) &&
2466 	    (event->attr.type != PERF_TYPE_HW_CACHE))
2467 		return -ENOENT;
2468 
2469 	if (is_hybrid() && (event->cpu != -1)) {
2470 		pmu = hybrid_pmu(event->pmu);
2471 		if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2472 			return -ENOENT;
2473 	}
2474 
2475 	err = __x86_pmu_event_init(event);
2476 	if (!err) {
2477 		if (event->group_leader != event)
2478 			err = validate_group(event);
2479 		else
2480 			err = validate_event(event);
2481 	}
2482 	if (err) {
2483 		if (event->destroy)
2484 			event->destroy(event);
2485 		event->destroy = NULL;
2486 	}
2487 
2488 	if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2489 	    !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2490 		event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
2491 
2492 	return err;
2493 }
2494 
perf_clear_dirty_counters(void)2495 void perf_clear_dirty_counters(void)
2496 {
2497 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2498 	int i;
2499 
2500 	 /* Don't need to clear the assigned counter. */
2501 	for (i = 0; i < cpuc->n_events; i++)
2502 		__clear_bit(cpuc->assign[i], cpuc->dirty);
2503 
2504 	if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2505 		return;
2506 
2507 	for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2508 		if (i >= INTEL_PMC_IDX_FIXED) {
2509 			/* Metrics and fake events don't have corresponding HW counters. */
2510 			if (!test_bit(i - INTEL_PMC_IDX_FIXED, hybrid(cpuc->pmu, fixed_cntr_mask)))
2511 				continue;
2512 
2513 			wrmsrq(x86_pmu_fixed_ctr_addr(i - INTEL_PMC_IDX_FIXED), 0);
2514 		} else {
2515 			wrmsrq(x86_pmu_event_addr(i), 0);
2516 		}
2517 	}
2518 
2519 	bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2520 }
2521 
x86_pmu_event_mapped(struct perf_event * event,struct mm_struct * mm)2522 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2523 {
2524 	if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2525 		return;
2526 
2527 	/*
2528 	 * This function relies on not being called concurrently in two
2529 	 * tasks in the same mm.  Otherwise one task could observe
2530 	 * perf_rdpmc_allowed > 1 and return all the way back to
2531 	 * userspace with CR4.PCE clear while another task is still
2532 	 * doing on_each_cpu_mask() to propagate CR4.PCE.
2533 	 *
2534 	 * For now, this can't happen because all callers hold mmap_lock
2535 	 * for write.  If this changes, we'll need a different solution.
2536 	 */
2537 	mmap_assert_write_locked(mm);
2538 
2539 	if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2540 		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2541 }
2542 
x86_pmu_event_unmapped(struct perf_event * event,struct mm_struct * mm)2543 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2544 {
2545 	if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2546 		return;
2547 
2548 	if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2549 		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2550 }
2551 
x86_pmu_event_idx(struct perf_event * event)2552 static int x86_pmu_event_idx(struct perf_event *event)
2553 {
2554 	struct hw_perf_event *hwc = &event->hw;
2555 
2556 	if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
2557 		return 0;
2558 
2559 	if (is_metric_idx(hwc->idx))
2560 		return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2561 	else
2562 		return hwc->event_base_rdpmc + 1;
2563 }
2564 
get_attr_rdpmc(struct device * cdev,struct device_attribute * attr,char * buf)2565 static ssize_t get_attr_rdpmc(struct device *cdev,
2566 			      struct device_attribute *attr,
2567 			      char *buf)
2568 {
2569 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2570 }
2571 
set_attr_rdpmc(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)2572 static ssize_t set_attr_rdpmc(struct device *cdev,
2573 			      struct device_attribute *attr,
2574 			      const char *buf, size_t count)
2575 {
2576 	static DEFINE_MUTEX(rdpmc_mutex);
2577 	unsigned long val;
2578 	ssize_t ret;
2579 
2580 	ret = kstrtoul(buf, 0, &val);
2581 	if (ret)
2582 		return ret;
2583 
2584 	if (val > 2)
2585 		return -EINVAL;
2586 
2587 	if (x86_pmu.attr_rdpmc_broken)
2588 		return -ENOTSUPP;
2589 
2590 	guard(mutex)(&rdpmc_mutex);
2591 
2592 	if (val != x86_pmu.attr_rdpmc) {
2593 		/*
2594 		 * Changing into or out of never available or always available,
2595 		 * aka perf-event-bypassing mode. This path is extremely slow,
2596 		 * but only root can trigger it, so it's okay.
2597 		 */
2598 		if (val == 0)
2599 			static_branch_inc(&rdpmc_never_available_key);
2600 		else if (x86_pmu.attr_rdpmc == 0)
2601 			static_branch_dec(&rdpmc_never_available_key);
2602 
2603 		if (val == 2)
2604 			static_branch_inc(&rdpmc_always_available_key);
2605 		else if (x86_pmu.attr_rdpmc == 2)
2606 			static_branch_dec(&rdpmc_always_available_key);
2607 
2608 		on_each_cpu(cr4_update_pce, NULL, 1);
2609 		x86_pmu.attr_rdpmc = val;
2610 	}
2611 
2612 	return count;
2613 }
2614 
2615 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2616 
2617 static struct attribute *x86_pmu_attrs[] = {
2618 	&dev_attr_rdpmc.attr,
2619 	NULL,
2620 };
2621 
2622 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2623 	.attrs = x86_pmu_attrs,
2624 };
2625 
max_precise_show(struct device * cdev,struct device_attribute * attr,char * buf)2626 static ssize_t max_precise_show(struct device *cdev,
2627 				  struct device_attribute *attr,
2628 				  char *buf)
2629 {
2630 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2631 }
2632 
2633 static DEVICE_ATTR_RO(max_precise);
2634 
2635 static struct attribute *x86_pmu_caps_attrs[] = {
2636 	&dev_attr_max_precise.attr,
2637 	NULL
2638 };
2639 
2640 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2641 	.name = "caps",
2642 	.attrs = x86_pmu_caps_attrs,
2643 };
2644 
2645 static const struct attribute_group *x86_pmu_attr_groups[] = {
2646 	&x86_pmu_attr_group,
2647 	&x86_pmu_format_group,
2648 	&x86_pmu_events_group,
2649 	&x86_pmu_caps_group,
2650 	NULL,
2651 };
2652 
x86_pmu_sched_task(struct perf_event_pmu_context * pmu_ctx,struct task_struct * task,bool sched_in)2653 static void x86_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
2654 			       struct task_struct *task, bool sched_in)
2655 {
2656 	static_call_cond(x86_pmu_sched_task)(pmu_ctx, task, sched_in);
2657 }
2658 
perf_check_microcode(void)2659 void perf_check_microcode(void)
2660 {
2661 	if (x86_pmu.check_microcode)
2662 		x86_pmu.check_microcode();
2663 }
2664 
x86_pmu_check_period(struct perf_event * event,u64 value)2665 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2666 {
2667 	if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2668 		return -EINVAL;
2669 
2670 	if (value && x86_pmu.limit_period) {
2671 		s64 left = value;
2672 		x86_pmu.limit_period(event, &left);
2673 		if (left > value)
2674 			return -EINVAL;
2675 	}
2676 
2677 	return 0;
2678 }
2679 
x86_pmu_aux_output_match(struct perf_event * event)2680 static int x86_pmu_aux_output_match(struct perf_event *event)
2681 {
2682 	if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2683 		return 0;
2684 
2685 	if (x86_pmu.aux_output_match)
2686 		return x86_pmu.aux_output_match(event);
2687 
2688 	return 0;
2689 }
2690 
x86_pmu_filter(struct pmu * pmu,int cpu)2691 static bool x86_pmu_filter(struct pmu *pmu, int cpu)
2692 {
2693 	bool ret = false;
2694 
2695 	static_call_cond(x86_pmu_filter)(pmu, cpu, &ret);
2696 
2697 	return ret;
2698 }
2699 
2700 static struct pmu pmu = {
2701 	.pmu_enable		= x86_pmu_enable,
2702 	.pmu_disable		= x86_pmu_disable,
2703 
2704 	.attr_groups		= x86_pmu_attr_groups,
2705 
2706 	.event_init		= x86_pmu_event_init,
2707 
2708 	.event_mapped		= x86_pmu_event_mapped,
2709 	.event_unmapped		= x86_pmu_event_unmapped,
2710 
2711 	.add			= x86_pmu_add,
2712 	.del			= x86_pmu_del,
2713 	.start			= x86_pmu_start,
2714 	.stop			= x86_pmu_stop,
2715 	.read			= x86_pmu_read,
2716 
2717 	.start_txn		= x86_pmu_start_txn,
2718 	.cancel_txn		= x86_pmu_cancel_txn,
2719 	.commit_txn		= x86_pmu_commit_txn,
2720 
2721 	.event_idx		= x86_pmu_event_idx,
2722 	.sched_task		= x86_pmu_sched_task,
2723 	.check_period		= x86_pmu_check_period,
2724 
2725 	.aux_output_match	= x86_pmu_aux_output_match,
2726 
2727 	.filter			= x86_pmu_filter,
2728 };
2729 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)2730 void arch_perf_update_userpage(struct perf_event *event,
2731 			       struct perf_event_mmap_page *userpg, u64 now)
2732 {
2733 	struct cyc2ns_data data;
2734 	u64 offset;
2735 
2736 	userpg->cap_user_time = 0;
2737 	userpg->cap_user_time_zero = 0;
2738 	userpg->cap_user_rdpmc =
2739 		!!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT);
2740 	userpg->pmc_width = x86_pmu.cntval_bits;
2741 
2742 	if (!using_native_sched_clock() || !sched_clock_stable())
2743 		return;
2744 
2745 	cyc2ns_read_begin(&data);
2746 
2747 	offset = data.cyc2ns_offset + __sched_clock_offset;
2748 
2749 	/*
2750 	 * Internal timekeeping for enabled/running/stopped times
2751 	 * is always in the local_clock domain.
2752 	 */
2753 	userpg->cap_user_time = 1;
2754 	userpg->time_mult = data.cyc2ns_mul;
2755 	userpg->time_shift = data.cyc2ns_shift;
2756 	userpg->time_offset = offset - now;
2757 
2758 	/*
2759 	 * cap_user_time_zero doesn't make sense when we're using a different
2760 	 * time base for the records.
2761 	 */
2762 	if (!event->attr.use_clockid) {
2763 		userpg->cap_user_time_zero = 1;
2764 		userpg->time_zero = offset;
2765 	}
2766 
2767 	cyc2ns_read_end();
2768 }
2769 
2770 /*
2771  * Determine whether the regs were taken from an irq/exception handler rather
2772  * than from perf_arch_fetch_caller_regs().
2773  */
perf_hw_regs(struct pt_regs * regs)2774 static bool perf_hw_regs(struct pt_regs *regs)
2775 {
2776 	return regs->flags & X86_EFLAGS_FIXED;
2777 }
2778 
2779 void
perf_callchain_kernel(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2780 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2781 {
2782 	struct unwind_state state;
2783 	unsigned long addr;
2784 
2785 	if (perf_guest_state()) {
2786 		/* TODO: We don't support guest os callchain now */
2787 		return;
2788 	}
2789 
2790 	if (perf_callchain_store(entry, regs->ip))
2791 		return;
2792 
2793 	if (perf_hw_regs(regs))
2794 		unwind_start(&state, current, regs, NULL);
2795 	else
2796 		unwind_start(&state, current, NULL, (void *)regs->sp);
2797 
2798 	for (; !unwind_done(&state); unwind_next_frame(&state)) {
2799 		addr = unwind_get_return_address(&state);
2800 		if (!addr || perf_callchain_store(entry, addr))
2801 			return;
2802 	}
2803 }
2804 
2805 static inline int
valid_user_frame(const void __user * fp,unsigned long size)2806 valid_user_frame(const void __user *fp, unsigned long size)
2807 {
2808 	return __access_ok(fp, size);
2809 }
2810 
get_segment_base(unsigned int segment)2811 static unsigned long get_segment_base(unsigned int segment)
2812 {
2813 	struct desc_struct *desc;
2814 	unsigned int idx = segment >> 3;
2815 
2816 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2817 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2818 		struct ldt_struct *ldt;
2819 
2820 		/*
2821 		 * If we're not in a valid context with a real (not just lazy)
2822 		 * user mm, then don't even try.
2823 		 */
2824 		if (!nmi_uaccess_okay())
2825 			return 0;
2826 
2827 		/* IRQs are off, so this synchronizes with smp_store_release */
2828 		ldt = smp_load_acquire(&current->mm->context.ldt);
2829 		if (!ldt || idx >= ldt->nr_entries)
2830 			return 0;
2831 
2832 		desc = &ldt->entries[idx];
2833 #else
2834 		return 0;
2835 #endif
2836 	} else {
2837 		if (idx >= GDT_ENTRIES)
2838 			return 0;
2839 
2840 		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2841 	}
2842 
2843 	return get_desc_base(desc);
2844 }
2845 
2846 #ifdef CONFIG_UPROBES
2847 /*
2848  * Heuristic-based check if uprobe is installed at the function entry.
2849  *
2850  * Under assumption of user code being compiled with frame pointers,
2851  * `push %rbp/%ebp` is a good indicator that we indeed are.
2852  *
2853  * Similarly, `endbr64` (assuming 64-bit mode) is also a common pattern.
2854  * If we get this wrong, captured stack trace might have one extra bogus
2855  * entry, but the rest of stack trace will still be meaningful.
2856  */
is_uprobe_at_func_entry(struct pt_regs * regs)2857 static bool is_uprobe_at_func_entry(struct pt_regs *regs)
2858 {
2859 	struct arch_uprobe *auprobe;
2860 
2861 	if (!current->utask)
2862 		return false;
2863 
2864 	auprobe = current->utask->auprobe;
2865 	if (!auprobe)
2866 		return false;
2867 
2868 	/* push %rbp/%ebp */
2869 	if (auprobe->insn[0] == 0x55)
2870 		return true;
2871 
2872 	/* endbr64 (64-bit only) */
2873 	if (user_64bit_mode(regs) && is_endbr((u32 *)auprobe->insn))
2874 		return true;
2875 
2876 	return false;
2877 }
2878 
2879 #else
is_uprobe_at_func_entry(struct pt_regs * regs)2880 static bool is_uprobe_at_func_entry(struct pt_regs *regs)
2881 {
2882 	return false;
2883 }
2884 #endif /* CONFIG_UPROBES */
2885 
2886 #ifdef CONFIG_IA32_EMULATION
2887 
2888 #include <linux/compat.h>
2889 
2890 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2891 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2892 {
2893 	/* 32-bit process in 64-bit kernel. */
2894 	unsigned long ss_base, cs_base;
2895 	struct stack_frame_ia32 frame;
2896 	const struct stack_frame_ia32 __user *fp;
2897 	u32 ret_addr;
2898 
2899 	if (user_64bit_mode(regs))
2900 		return 0;
2901 
2902 	cs_base = get_segment_base(regs->cs);
2903 	ss_base = get_segment_base(regs->ss);
2904 
2905 	fp = compat_ptr(ss_base + regs->bp);
2906 	pagefault_disable();
2907 
2908 	/* see perf_callchain_user() below for why we do this */
2909 	if (is_uprobe_at_func_entry(regs) &&
2910 	    !get_user(ret_addr, (const u32 __user *)regs->sp))
2911 		perf_callchain_store(entry, ret_addr);
2912 
2913 	while (entry->nr < entry->max_stack) {
2914 		if (!valid_user_frame(fp, sizeof(frame)))
2915 			break;
2916 
2917 		if (__get_user(frame.next_frame, &fp->next_frame))
2918 			break;
2919 		if (__get_user(frame.return_address, &fp->return_address))
2920 			break;
2921 
2922 		perf_callchain_store(entry, cs_base + frame.return_address);
2923 		fp = compat_ptr(ss_base + frame.next_frame);
2924 	}
2925 	pagefault_enable();
2926 	return 1;
2927 }
2928 #else
2929 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2930 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2931 {
2932     return 0;
2933 }
2934 #endif
2935 
2936 void
perf_callchain_user(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2937 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2938 {
2939 	struct stack_frame frame;
2940 	const struct stack_frame __user *fp;
2941 	unsigned long ret_addr;
2942 
2943 	if (perf_guest_state()) {
2944 		/* TODO: We don't support guest os callchain now */
2945 		return;
2946 	}
2947 
2948 	/*
2949 	 * We don't know what to do with VM86 stacks.. ignore them for now.
2950 	 */
2951 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2952 		return;
2953 
2954 	fp = (void __user *)regs->bp;
2955 
2956 	perf_callchain_store(entry, regs->ip);
2957 
2958 	if (!nmi_uaccess_okay())
2959 		return;
2960 
2961 	if (perf_callchain_user32(regs, entry))
2962 		return;
2963 
2964 	pagefault_disable();
2965 
2966 	/*
2967 	 * If we are called from uprobe handler, and we are indeed at the very
2968 	 * entry to user function (which is normally a `push %rbp` instruction,
2969 	 * under assumption of application being compiled with frame pointers),
2970 	 * we should read return address from *regs->sp before proceeding
2971 	 * to follow frame pointers, otherwise we'll skip immediate caller
2972 	 * as %rbp is not yet setup.
2973 	 */
2974 	if (is_uprobe_at_func_entry(regs) &&
2975 	    !get_user(ret_addr, (const unsigned long __user *)regs->sp))
2976 		perf_callchain_store(entry, ret_addr);
2977 
2978 	while (entry->nr < entry->max_stack) {
2979 		if (!valid_user_frame(fp, sizeof(frame)))
2980 			break;
2981 
2982 		if (__get_user(frame.next_frame, &fp->next_frame))
2983 			break;
2984 		if (__get_user(frame.return_address, &fp->return_address))
2985 			break;
2986 
2987 		perf_callchain_store(entry, frame.return_address);
2988 		fp = (void __user *)frame.next_frame;
2989 	}
2990 	pagefault_enable();
2991 }
2992 
2993 /*
2994  * Deal with code segment offsets for the various execution modes:
2995  *
2996  *   VM86 - the good olde 16 bit days, where the linear address is
2997  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2998  *
2999  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
3000  *          to figure out what the 32bit base address is.
3001  *
3002  *    X32 - has TIF_X32 set, but is running in x86_64
3003  *
3004  * X86_64 - CS,DS,SS,ES are all zero based.
3005  */
code_segment_base(struct pt_regs * regs)3006 static unsigned long code_segment_base(struct pt_regs *regs)
3007 {
3008 	/*
3009 	 * For IA32 we look at the GDT/LDT segment base to convert the
3010 	 * effective IP to a linear address.
3011 	 */
3012 
3013 #ifdef CONFIG_X86_32
3014 	/*
3015 	 * If we are in VM86 mode, add the segment offset to convert to a
3016 	 * linear address.
3017 	 */
3018 	if (regs->flags & X86_VM_MASK)
3019 		return 0x10 * regs->cs;
3020 
3021 	if (user_mode(regs) && regs->cs != __USER_CS)
3022 		return get_segment_base(regs->cs);
3023 #else
3024 	if (user_mode(regs) && !user_64bit_mode(regs) &&
3025 	    regs->cs != __USER32_CS)
3026 		return get_segment_base(regs->cs);
3027 #endif
3028 	return 0;
3029 }
3030 
perf_arch_instruction_pointer(struct pt_regs * regs)3031 unsigned long perf_arch_instruction_pointer(struct pt_regs *regs)
3032 {
3033 	return regs->ip + code_segment_base(regs);
3034 }
3035 
common_misc_flags(struct pt_regs * regs)3036 static unsigned long common_misc_flags(struct pt_regs *regs)
3037 {
3038 	if (regs->flags & PERF_EFLAGS_EXACT)
3039 		return PERF_RECORD_MISC_EXACT_IP;
3040 
3041 	return 0;
3042 }
3043 
guest_misc_flags(struct pt_regs * regs)3044 static unsigned long guest_misc_flags(struct pt_regs *regs)
3045 {
3046 	unsigned long guest_state = perf_guest_state();
3047 
3048 	if (!(guest_state & PERF_GUEST_ACTIVE))
3049 		return 0;
3050 
3051 	if (guest_state & PERF_GUEST_USER)
3052 		return PERF_RECORD_MISC_GUEST_USER;
3053 	else
3054 		return PERF_RECORD_MISC_GUEST_KERNEL;
3055 
3056 }
3057 
host_misc_flags(struct pt_regs * regs)3058 static unsigned long host_misc_flags(struct pt_regs *regs)
3059 {
3060 	if (user_mode(regs))
3061 		return PERF_RECORD_MISC_USER;
3062 	else
3063 		return PERF_RECORD_MISC_KERNEL;
3064 }
3065 
perf_arch_guest_misc_flags(struct pt_regs * regs)3066 unsigned long perf_arch_guest_misc_flags(struct pt_regs *regs)
3067 {
3068 	unsigned long flags = common_misc_flags(regs);
3069 
3070 	flags |= guest_misc_flags(regs);
3071 
3072 	return flags;
3073 }
3074 
perf_arch_misc_flags(struct pt_regs * regs)3075 unsigned long perf_arch_misc_flags(struct pt_regs *regs)
3076 {
3077 	unsigned long flags = common_misc_flags(regs);
3078 
3079 	flags |= host_misc_flags(regs);
3080 
3081 	return flags;
3082 }
3083 
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)3084 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
3085 {
3086 	/* This API doesn't currently support enumerating hybrid PMUs. */
3087 	if (WARN_ON_ONCE(cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) ||
3088 	    !x86_pmu_initialized()) {
3089 		memset(cap, 0, sizeof(*cap));
3090 		return;
3091 	}
3092 
3093 	/*
3094 	 * Note, hybrid CPU models get tracked as having hybrid PMUs even when
3095 	 * all E-cores are disabled via BIOS.  When E-cores are disabled, the
3096 	 * base PMU holds the correct number of counters for P-cores.
3097 	 */
3098 	cap->version		= x86_pmu.version;
3099 	cap->num_counters_gp	= x86_pmu_num_counters(NULL);
3100 	cap->num_counters_fixed	= x86_pmu_num_counters_fixed(NULL);
3101 	cap->bit_width_gp	= x86_pmu.cntval_bits;
3102 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
3103 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
3104 	cap->events_mask_len	= x86_pmu.events_mask_len;
3105 	cap->pebs_ept		= x86_pmu.pebs_ept;
3106 }
3107 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
3108 
perf_get_hw_event_config(int hw_event)3109 u64 perf_get_hw_event_config(int hw_event)
3110 {
3111 	int max = x86_pmu.max_events;
3112 
3113 	if (hw_event < max)
3114 		return x86_pmu.event_map(array_index_nospec(hw_event, max));
3115 
3116 	return 0;
3117 }
3118 EXPORT_SYMBOL_GPL(perf_get_hw_event_config);
3119