xref: /illumos-gate/usr/src/uts/common/io/cxgbe/t4nex/t4_sge.c (revision 338b148b3855a59b1ec7a8a989aa5f0c55e8fc33)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source. A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * This file is part of the Chelsio T4 support code.
14  *
15  * Copyright (C) 2010-2013 Chelsio Communications.  All rights reserved.
16  *
17  * This program is distributed in the hope that it will be useful, but WITHOUT
18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19  * FITNESS FOR A PARTICULAR PURPOSE.  See the LICENSE file included in this
20  * release for licensing terms and conditions.
21  */
22 
23 /*
24  * Copyright 2025 Oxide Computer Company
25  */
26 
27 #include <sys/ddi.h>
28 #include <sys/sunddi.h>
29 #include <sys/sunndi.h>
30 #include <sys/atomic.h>
31 #include <sys/dlpi.h>
32 #include <sys/pattr.h>
33 #include <sys/strsubr.h>
34 #include <sys/stream.h>
35 #include <sys/strsun.h>
36 #include <inet/ip.h>
37 #include <inet/tcp.h>
38 
39 #include "version.h"
40 #include "common/common.h"
41 #include "common/t4_msg.h"
42 #include "common/t4_regs.h"
43 #include "common/t4_regs_values.h"
44 
45 /* TODO: Tune. */
46 int rx_buf_size = 8192;
47 int tx_copy_threshold = 256;
48 uint16_t rx_copy_threshold = 256;
49 
50 /* Used to track coalesced tx work request */
51 struct txpkts {
52 	mblk_t *tail;		/* head is in the software descriptor */
53 	uint64_t *flitp;	/* ptr to flit where next pkt should start */
54 	uint8_t npkt;		/* # of packets in this work request */
55 	uint8_t nflits;		/* # of flits used by this work request */
56 	uint16_t plen;		/* total payload (sum of all packets) */
57 };
58 
59 /* All information needed to tx a frame */
60 struct txinfo {
61 	uint32_t len;		/* Total length of frame */
62 	uint32_t flags;		/* Checksum and LSO flags */
63 	uint32_t mss;		/* MSS for LSO */
64 	uint8_t nsegs;		/* # of segments in the SGL, 0 means imm. tx */
65 	uint8_t nflits;		/* # of flits needed for the SGL */
66 	uint8_t hdls_used;	/* # of DMA handles used */
67 	uint32_t txb_used;	/* txb_space used */
68 	mac_ether_offload_info_t meoi;	/* pkt hdr info for offloads */
69 	struct ulptx_sgl sgl __attribute__((aligned(8)));
70 	struct ulptx_sge_pair reserved[TX_SGL_SEGS / 2];
71 };
72 
73 struct mblk_pair {
74 	mblk_t *head, *tail;
75 };
76 
77 struct rxbuf {
78 	kmem_cache_t *cache;		/* the kmem_cache this rxb came from */
79 	ddi_dma_handle_t dhdl;
80 	ddi_acc_handle_t ahdl;
81 	caddr_t va;			/* KVA of buffer */
82 	uint64_t ba;			/* bus address of buffer */
83 	frtn_t freefunc;
84 	uint_t buf_size;
85 	volatile uint_t ref_cnt;
86 };
87 
88 static int service_iq(struct sge_iq *iq, int budget);
89 static inline void init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx,
90     int8_t pktc_idx, int qsize, uint8_t esize);
91 static inline void init_fl(struct sge_fl *fl, uint16_t qsize);
92 static inline void init_eq(struct adapter *sc, struct sge_eq *eq,
93     uint16_t eqtype, uint16_t qsize, uint8_t tx_chan, uint16_t iqid);
94 static int alloc_iq_fl(struct port_info *pi, struct sge_iq *iq,
95     struct sge_fl *fl, int intr_idx, int cong);
96 static int free_iq_fl(struct port_info *pi, struct sge_iq *iq,
97     struct sge_fl *fl);
98 static int alloc_fwq(struct adapter *sc);
99 static int free_fwq(struct adapter *sc);
100 static int alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx,
101     int i);
102 static int free_rxq(struct port_info *pi, struct sge_rxq *rxq);
103 static int ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq);
104 static int eth_eq_alloc(struct adapter *sc, struct port_info *pi,
105     struct sge_eq *eq);
106 static int alloc_eq(struct adapter *sc, struct port_info *pi,
107     struct sge_eq *eq);
108 static int free_eq(struct adapter *sc, struct sge_eq *eq);
109 static int alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx);
110 static int free_txq(struct port_info *pi, struct sge_txq *txq);
111 static int alloc_dma_memory(struct adapter *sc, size_t len, int flags,
112     ddi_device_acc_attr_t *acc_attr, ddi_dma_attr_t *dma_attr,
113     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba,
114     caddr_t *pva);
115 static int free_dma_memory(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl);
116 static int alloc_desc_ring(struct adapter *sc, size_t len, int rw,
117     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba,
118     caddr_t *pva);
119 static int free_desc_ring(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl);
120 static int alloc_tx_copybuffer(struct adapter *sc, size_t len,
121     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba,
122     caddr_t *pva);
123 static inline bool is_new_response(const struct sge_iq *iq,
124     struct rsp_ctrl **ctrl);
125 static inline void iq_next(struct sge_iq *iq);
126 static int refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs);
127 static void refill_sfl(void *arg);
128 static void add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl);
129 static void free_fl_bufs(struct sge_fl *fl);
130 static mblk_t *get_fl_payload(struct adapter *sc, struct sge_fl *fl,
131     uint32_t len_newbuf, int *fl_bufs_used);
132 static int get_frame_txinfo(struct sge_txq *txq, mblk_t **fp,
133     struct txinfo *txinfo, int sgl_only);
134 static inline int fits_in_txb(struct sge_txq *txq, int len, int *waste);
135 static inline int copy_into_txb(struct sge_txq *txq, mblk_t *m, int len,
136     struct txinfo *txinfo);
137 static inline void add_seg(struct txinfo *txinfo, uint64_t ba, uint32_t len);
138 static inline int add_mblk(struct sge_txq *txq, struct txinfo *txinfo,
139     mblk_t *m, int len);
140 static void free_txinfo_resources(struct sge_txq *txq, struct txinfo *txinfo);
141 static int add_to_txpkts(struct sge_txq *txq, struct txpkts *txpkts, mblk_t *m,
142     struct txinfo *txinfo);
143 static void write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts);
144 static int write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, mblk_t *m,
145     struct txinfo *txinfo);
146 static inline void write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
147     struct txpkts *txpkts, struct txinfo *txinfo);
148 static inline void copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to,
149     int len);
150 static inline void ring_tx_db(struct adapter *sc, struct sge_eq *eq);
151 static int reclaim_tx_descs(struct sge_txq *txq, int howmany);
152 static void write_txqflush_wr(struct sge_txq *txq);
153 static int t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss,
154     mblk_t *m);
155 static inline void ring_fl_db(struct adapter *sc, struct sge_fl *fl);
156 static kstat_t *setup_port_config_kstats(struct port_info *pi);
157 static kstat_t *setup_port_info_kstats(struct port_info *pi);
158 static kstat_t *setup_rxq_kstats(struct port_info *pi, struct sge_rxq *rxq,
159     int idx);
160 static int update_rxq_kstats(kstat_t *ksp, int rw);
161 static int update_port_info_kstats(kstat_t *ksp, int rw);
162 static kstat_t *setup_txq_kstats(struct port_info *pi, struct sge_txq *txq,
163     int idx);
164 static int update_txq_kstats(kstat_t *ksp, int rw);
165 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
166     mblk_t *);
167 static int t4_handle_cpl_msg(struct sge_iq *, const struct rss_header *,
168     mblk_t *);
169 static int t4_handle_fw_msg(struct sge_iq *, const struct rss_header *);
170 
171 static kmem_cache_t *rxbuf_cache_create(struct rxbuf_cache_params *);
172 static struct rxbuf *rxbuf_alloc(kmem_cache_t *, int, uint_t);
173 static void rxbuf_free(struct rxbuf *);
174 static int rxbuf_ctor(void *, void *, int);
175 static void rxbuf_dtor(void *, void *);
176 
177 static inline int
reclaimable(struct sge_eq * eq)178 reclaimable(struct sge_eq *eq)
179 {
180 	unsigned int cidx;
181 
182 	cidx = eq->spg->cidx;   /* stable snapshot */
183 	cidx = be16_to_cpu(cidx);
184 
185 	if (cidx >= eq->cidx)
186 		return (cidx - eq->cidx);
187 	else
188 		return (cidx + eq->cap - eq->cidx);
189 }
190 
191 void
t4_sge_init(struct adapter * sc)192 t4_sge_init(struct adapter *sc)
193 {
194 	struct driver_properties *p = &sc->props;
195 	ddi_dma_attr_t *dma_attr;
196 	ddi_device_acc_attr_t *acc_attr;
197 	uint32_t sge_control, sge_conm_ctrl;
198 	int egress_threshold;
199 
200 	/*
201 	 * Device access and DMA attributes for descriptor rings
202 	 */
203 	acc_attr = &sc->sge.acc_attr_desc;
204 	acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0;
205 	acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
206 	acc_attr->devacc_attr_dataorder = DDI_STRICTORDER_ACC;
207 
208 	dma_attr = &sc->sge.dma_attr_desc;
209 	dma_attr->dma_attr_version = DMA_ATTR_V0;
210 	dma_attr->dma_attr_addr_lo = 0;
211 	dma_attr->dma_attr_addr_hi = UINT64_MAX;
212 	dma_attr->dma_attr_count_max = UINT64_MAX;
213 	dma_attr->dma_attr_align = 512;
214 	dma_attr->dma_attr_burstsizes = 0xfff;
215 	dma_attr->dma_attr_minxfer = 1;
216 	dma_attr->dma_attr_maxxfer = UINT64_MAX;
217 	dma_attr->dma_attr_seg = UINT64_MAX;
218 	dma_attr->dma_attr_sgllen = 1;
219 	dma_attr->dma_attr_granular = 1;
220 	dma_attr->dma_attr_flags = 0;
221 
222 	/*
223 	 * Device access and DMA attributes for tx buffers
224 	 */
225 	acc_attr = &sc->sge.acc_attr_tx;
226 	acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0;
227 	acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
228 
229 	dma_attr = &sc->sge.dma_attr_tx;
230 	dma_attr->dma_attr_version = DMA_ATTR_V0;
231 	dma_attr->dma_attr_addr_lo = 0;
232 	dma_attr->dma_attr_addr_hi = UINT64_MAX;
233 	dma_attr->dma_attr_count_max = UINT64_MAX;
234 	dma_attr->dma_attr_align = 1;
235 	dma_attr->dma_attr_burstsizes = 0xfff;
236 	dma_attr->dma_attr_minxfer = 1;
237 	dma_attr->dma_attr_maxxfer = UINT64_MAX;
238 	dma_attr->dma_attr_seg = UINT64_MAX;
239 	dma_attr->dma_attr_sgllen = TX_SGL_SEGS;
240 	dma_attr->dma_attr_granular = 1;
241 	dma_attr->dma_attr_flags = 0;
242 
243 	/*
244 	 * Ingress Padding Boundary and Egress Status Page Size are set up by
245 	 * t4_fixup_host_params().
246 	 */
247 	sge_control = t4_read_reg(sc, A_SGE_CONTROL);
248 	sc->sge.pktshift = G_PKTSHIFT(sge_control);
249 	sc->sge.stat_len = (sge_control & F_EGRSTATUSPAGESIZE) ? 128 : 64;
250 
251 	/* t4_nex uses FLM packed mode */
252 	sc->sge.fl_align = t4_fl_pkt_align(sc, true);
253 
254 	/*
255 	 * Device access and DMA attributes for rx buffers
256 	 */
257 	sc->sge.rxb_params.dip = sc->dip;
258 	sc->sge.rxb_params.buf_size = rx_buf_size;
259 
260 	acc_attr = &sc->sge.rxb_params.acc_attr_rx;
261 	acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0;
262 	acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
263 
264 	dma_attr = &sc->sge.rxb_params.dma_attr_rx;
265 	dma_attr->dma_attr_version = DMA_ATTR_V0;
266 	dma_attr->dma_attr_addr_lo = 0;
267 	dma_attr->dma_attr_addr_hi = UINT64_MAX;
268 	dma_attr->dma_attr_count_max = UINT64_MAX;
269 	/*
270 	 * Low 4 bits of an rx buffer address have a special meaning to the SGE
271 	 * and an rx buf cannot have an address with any of these bits set.
272 	 * FL_ALIGN is >= 32 so we're sure things are ok.
273 	 */
274 	dma_attr->dma_attr_align = sc->sge.fl_align;
275 	dma_attr->dma_attr_burstsizes = 0xfff;
276 	dma_attr->dma_attr_minxfer = 1;
277 	dma_attr->dma_attr_maxxfer = UINT64_MAX;
278 	dma_attr->dma_attr_seg = UINT64_MAX;
279 	dma_attr->dma_attr_sgllen = 1;
280 	dma_attr->dma_attr_granular = 1;
281 	dma_attr->dma_attr_flags = 0;
282 
283 	sc->sge.rxbuf_cache = rxbuf_cache_create(&sc->sge.rxb_params);
284 
285 	/*
286 	 * A FL with <= fl_starve_thres buffers is starving and a periodic
287 	 * timer will attempt to refill it.  This needs to be larger than the
288 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
289 	 * stuck waiting for new packets while the SGE is waiting for us to
290 	 * give it more Free List entries.  (Note that the SGE's Egress
291 	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
292 	 * there was only a single field to control this.  For T5 there's the
293 	 * original field which now only applies to Unpacked Mode Free List
294 	 * buffers and a new field which only applies to Packed Mode Free List
295 	 * buffers.
296 	 */
297 
298 	sge_conm_ctrl = t4_read_reg(sc, A_SGE_CONM_CTRL);
299 	switch (CHELSIO_CHIP_VERSION(sc->params.chip)) {
300 	case CHELSIO_T4:
301 		egress_threshold = G_EGRTHRESHOLD(sge_conm_ctrl);
302 		break;
303 	case CHELSIO_T5:
304 		egress_threshold = G_EGRTHRESHOLDPACKING(sge_conm_ctrl);
305 		break;
306 	case CHELSIO_T6:
307 	default:
308 		egress_threshold = G_T6_EGRTHRESHOLDPACKING(sge_conm_ctrl);
309 	}
310 	sc->sge.fl_starve_threshold = 2*egress_threshold + 1;
311 
312 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, rx_buf_size);
313 
314 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD,
315 	    V_THRESHOLD_0(p->counter_val[0]) |
316 	    V_THRESHOLD_1(p->counter_val[1]) |
317 	    V_THRESHOLD_2(p->counter_val[2]) |
318 	    V_THRESHOLD_3(p->counter_val[3]));
319 
320 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1,
321 	    V_TIMERVALUE0(us_to_core_ticks(sc, p->timer_val[0])) |
322 	    V_TIMERVALUE1(us_to_core_ticks(sc, p->timer_val[1])));
323 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3,
324 	    V_TIMERVALUE2(us_to_core_ticks(sc, p->timer_val[2])) |
325 	    V_TIMERVALUE3(us_to_core_ticks(sc, p->timer_val[3])));
326 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5,
327 	    V_TIMERVALUE4(us_to_core_ticks(sc, p->timer_val[4])) |
328 	    V_TIMERVALUE5(us_to_core_ticks(sc, p->timer_val[5])));
329 }
330 
331 /*
332  * Allocate and initialize the firmware event queue and the forwarded interrupt
333  * queues, if any.  The adapter owns all these queues as they are not associated
334  * with any particular port.
335  *
336  * Returns errno on failure.  Resources allocated up to that point may still be
337  * allocated.  Caller is responsible for cleanup in case this function fails.
338  */
339 int
t4_setup_adapter_queues(struct adapter * sc)340 t4_setup_adapter_queues(struct adapter *sc)
341 {
342 	int rc;
343 
344 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
345 
346 	/*
347 	 * Firmware event queue
348 	 */
349 	rc = alloc_fwq(sc);
350 	if (rc != 0)
351 		return (rc);
352 
353 	return (rc);
354 }
355 
356 /*
357  * Idempotent
358  */
359 int
t4_teardown_adapter_queues(struct adapter * sc)360 t4_teardown_adapter_queues(struct adapter *sc)
361 {
362 
363 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
364 
365 	(void) free_fwq(sc);
366 
367 	return (0);
368 }
369 
370 static inline int
first_vector(struct port_info * pi)371 first_vector(struct port_info *pi)
372 {
373 	struct adapter *sc = pi->adapter;
374 	int rc = T4_EXTRA_INTR, i;
375 
376 	if (sc->intr_count == 1)
377 		return (0);
378 
379 	for_each_port(sc, i) {
380 		struct port_info *p = sc->port[i];
381 
382 		if (i == pi->port_id)
383 			break;
384 
385 		/*
386 		 * Not compiled with offload support and intr_count > 1.  Only
387 		 * NIC queues exist and they'd better be taking direct
388 		 * interrupts.
389 		 */
390 		ASSERT(!(sc->flags & INTR_FWD));
391 		rc += p->nrxq;
392 	}
393 	return (rc);
394 }
395 
396 /*
397  * Given an arbitrary "index," come up with an iq that can be used by other
398  * queues (of this port) for interrupt forwarding, SGE egress updates, etc.
399  * The iq returned is guaranteed to be something that takes direct interrupts.
400  */
401 static struct sge_iq *
port_intr_iq(struct port_info * pi,int idx)402 port_intr_iq(struct port_info *pi, int idx)
403 {
404 	struct adapter *sc = pi->adapter;
405 	struct sge *s = &sc->sge;
406 	struct sge_iq *iq = NULL;
407 
408 	if (sc->intr_count == 1)
409 		return (&sc->sge.fwq);
410 
411 	/*
412 	 * Not compiled with offload support and intr_count > 1.  Only NIC
413 	 * queues exist and they'd better be taking direct interrupts.
414 	 */
415 	ASSERT(!(sc->flags & INTR_FWD));
416 
417 	idx %= pi->nrxq;
418 	iq = &s->rxq[pi->first_rxq + idx].iq;
419 
420 	return (iq);
421 }
422 
423 int
t4_setup_port_queues(struct port_info * pi)424 t4_setup_port_queues(struct port_info *pi)
425 {
426 	int rc = 0, i, intr_idx, j;
427 	struct sge_rxq *rxq;
428 	struct sge_txq *txq;
429 	struct adapter *sc = pi->adapter;
430 	struct driver_properties *p = &sc->props;
431 
432 	pi->ksp_config = setup_port_config_kstats(pi);
433 	pi->ksp_info   = setup_port_info_kstats(pi);
434 
435 	/* Interrupt vector to start from (when using multiple vectors) */
436 	intr_idx = first_vector(pi);
437 
438 	/*
439 	 * First pass over all rx queues (NIC and TOE):
440 	 * a) initialize iq and fl
441 	 * b) allocate queue iff it will take direct interrupts.
442 	 */
443 
444 	for_each_rxq(pi, i, rxq) {
445 
446 		init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, p->qsize_rxq,
447 		    RX_IQ_ESIZE);
448 
449 		init_fl(&rxq->fl, p->qsize_rxq / 8); /* 8 bufs in each entry */
450 
451 		if ((!(sc->flags & INTR_FWD)) ||
452 		    (sc->intr_count > 1 && pi->nrxq)) {
453 			rxq->iq.flags |= IQ_INTR;
454 			rc = alloc_rxq(pi, rxq, intr_idx, i);
455 			if (rc != 0)
456 				goto done;
457 			intr_idx++;
458 		}
459 
460 	}
461 
462 	/*
463 	 * Second pass over all rx queues (NIC and TOE).  The queues forwarding
464 	 * their interrupts are allocated now.
465 	 */
466 	j = 0;
467 	for_each_rxq(pi, i, rxq) {
468 		if (rxq->iq.flags & IQ_INTR)
469 			continue;
470 
471 		intr_idx = port_intr_iq(pi, j)->abs_id;
472 
473 		rc = alloc_rxq(pi, rxq, intr_idx, i);
474 		if (rc != 0)
475 			goto done;
476 		j++;
477 	}
478 
479 	/*
480 	 * Now the tx queues.  Only one pass needed.
481 	 */
482 	j = 0;
483 	for_each_txq(pi, i, txq) {
484 		uint16_t iqid;
485 
486 		iqid = port_intr_iq(pi, j)->cntxt_id;
487 		init_eq(sc, &txq->eq, EQ_ETH, p->qsize_txq, pi->tx_chan, iqid);
488 		rc = alloc_txq(pi, txq, i);
489 		if (rc != 0)
490 			goto done;
491 	}
492 
493 done:
494 	if (rc != 0)
495 		(void) t4_teardown_port_queues(pi);
496 
497 	return (rc);
498 }
499 
500 /*
501  * Idempotent
502  */
503 int
t4_teardown_port_queues(struct port_info * pi)504 t4_teardown_port_queues(struct port_info *pi)
505 {
506 	int i;
507 	struct sge_rxq *rxq;
508 	struct sge_txq *txq;
509 
510 	if (pi->ksp_config != NULL) {
511 		kstat_delete(pi->ksp_config);
512 		pi->ksp_config = NULL;
513 	}
514 	if (pi->ksp_info != NULL) {
515 		kstat_delete(pi->ksp_info);
516 		pi->ksp_info = NULL;
517 	}
518 
519 	for_each_txq(pi, i, txq) {
520 		(void) free_txq(pi, txq);
521 	}
522 
523 	for_each_rxq(pi, i, rxq) {
524 		if ((rxq->iq.flags & IQ_INTR) == 0)
525 			(void) free_rxq(pi, rxq);
526 	}
527 
528 	/*
529 	 * Then take down the rx queues that take direct interrupts.
530 	 */
531 
532 	for_each_rxq(pi, i, rxq) {
533 		if (rxq->iq.flags & IQ_INTR)
534 			(void) free_rxq(pi, rxq);
535 	}
536 
537 	return (0);
538 }
539 
540 /* Deals with errors and forwarded interrupts */
541 uint_t
t4_intr_all(caddr_t arg1,caddr_t arg2)542 t4_intr_all(caddr_t arg1, caddr_t arg2)
543 {
544 
545 	(void) t4_intr_err(arg1, arg2);
546 	(void) t4_intr(arg1, arg2);
547 
548 	return (DDI_INTR_CLAIMED);
549 }
550 
551 static void
t4_intr_rx_work(struct sge_iq * iq)552 t4_intr_rx_work(struct sge_iq *iq)
553 {
554 	mblk_t *mp = NULL;
555 	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
556 	RXQ_LOCK(rxq);
557 	if (!iq->polling) {
558 		mp = t4_ring_rx(rxq, iq->qsize/8);
559 		t4_write_reg(iq->adapter, MYPF_REG(A_SGE_PF_GTS),
560 		    V_INGRESSQID((u32)iq->cntxt_id) |
561 		    V_SEINTARM(iq->intr_next));
562 	}
563 	RXQ_UNLOCK(rxq);
564 	if (mp != NULL) {
565 		mac_rx_ring(rxq->port->mh, rxq->ring_handle, mp,
566 		    rxq->ring_gen_num);
567 	}
568 }
569 
570 /* Deals with interrupts on the given ingress queue */
571 /* ARGSUSED */
572 uint_t
t4_intr(caddr_t arg1,caddr_t arg2)573 t4_intr(caddr_t arg1, caddr_t arg2)
574 {
575 	struct sge_iq *iq = (struct sge_iq *)arg2;
576 	int state;
577 
578 	/*
579 	 * Right now receive polling is only enabled for MSI-X and
580 	 * when we have enough msi-x vectors i.e no interrupt forwarding.
581 	 */
582 	if (iq->adapter->props.multi_rings) {
583 		t4_intr_rx_work(iq);
584 	} else {
585 		state = atomic_cas_uint(&iq->state, IQS_IDLE, IQS_BUSY);
586 		if (state == IQS_IDLE) {
587 			(void) service_iq(iq, 0);
588 			(void) atomic_cas_uint(&iq->state, IQS_BUSY, IQS_IDLE);
589 		}
590 	}
591 	return (DDI_INTR_CLAIMED);
592 }
593 
594 /* Deals with error interrupts */
595 /* ARGSUSED */
596 uint_t
t4_intr_err(caddr_t arg1,caddr_t arg2)597 t4_intr_err(caddr_t arg1, caddr_t arg2)
598 {
599 	/* LINTED: E_BAD_PTR_CAST_ALIGN */
600 	struct adapter *sc = (struct adapter *)arg1;
601 
602 	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
603 	(void) t4_slow_intr_handler(sc);
604 
605 	return (DDI_INTR_CLAIMED);
606 }
607 
608 /*
609  * t4_ring_rx - Process responses from an SGE response queue.
610  *
611  * This function processes responses from an SGE response queue up to the
612  * supplied budget.  Responses include received packets as well as control
613  * messages from FW or HW.
614  *
615  * It returns a chain of mblks containing the received data, to be
616  * passed up to mac_rx_ring().
617  */
618 mblk_t *
t4_ring_rx(struct sge_rxq * rxq,int budget)619 t4_ring_rx(struct sge_rxq *rxq, int budget)
620 {
621 	struct sge_iq *iq = &rxq->iq;
622 	struct sge_fl *fl = &rxq->fl;		/* Use iff IQ_HAS_FL */
623 	struct adapter *sc = iq->adapter;
624 	struct rsp_ctrl *ctrl;
625 	const struct rss_header *rss;
626 	int ndescs = 0, fl_bufs_used = 0;
627 	int rsp_type;
628 	uint32_t lq;
629 	mblk_t *mblk_head = NULL, **mblk_tail, *m;
630 	struct cpl_rx_pkt *cpl;
631 	uint32_t received_bytes = 0, pkt_len = 0;
632 	bool csum_ok;
633 	uint16_t err_vec;
634 
635 	mblk_tail = &mblk_head;
636 
637 	while (is_new_response(iq, &ctrl)) {
638 
639 		membar_consumer();
640 
641 		m = NULL;
642 		rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
643 		lq = be32_to_cpu(ctrl->pldbuflen_qid);
644 		rss = (const void *)iq->cdesc;
645 
646 		switch (rsp_type) {
647 		case X_RSPD_TYPE_FLBUF:
648 
649 			ASSERT(iq->flags & IQ_HAS_FL);
650 
651 			if (CPL_RX_PKT == rss->opcode) {
652 				cpl = (void *)(rss + 1);
653 				pkt_len = be16_to_cpu(cpl->len);
654 
655 				if (iq->polling &&
656 				    ((received_bytes + pkt_len) > budget))
657 					goto done;
658 
659 				m = get_fl_payload(sc, fl, lq, &fl_bufs_used);
660 				if (m == NULL)
661 					goto done;
662 
663 				iq->intr_next = iq->intr_params;
664 				m->b_rptr += sc->sge.pktshift;
665 				if (sc->params.tp.rx_pkt_encap) {
666 					/* Enabled only in T6 config file */
667 					err_vec = G_T6_COMPR_RXERR_VEC(
668 					    ntohs(cpl->err_vec));
669 				} else {
670 					err_vec = ntohs(cpl->err_vec);
671 				}
672 
673 				csum_ok = cpl->csum_calc && !err_vec;
674 
675 				/* TODO: what about cpl->ip_frag? */
676 				if (csum_ok && !cpl->ip_frag) {
677 					mac_hcksum_set(m, 0, 0, 0, 0xffff,
678 					    HCK_FULLCKSUM_OK | HCK_FULLCKSUM |
679 					    HCK_IPV4_HDRCKSUM_OK);
680 					rxq->rxcsum++;
681 				}
682 				rxq->rxpkts++;
683 				rxq->rxbytes += pkt_len;
684 				received_bytes += pkt_len;
685 
686 				*mblk_tail = m;
687 				mblk_tail = &m->b_next;
688 
689 				break;
690 			}
691 
692 			m = get_fl_payload(sc, fl, lq, &fl_bufs_used);
693 			if (m == NULL)
694 				goto done;
695 			/* FALLTHROUGH */
696 
697 		case X_RSPD_TYPE_CPL:
698 			(void) t4_handle_cpl_msg(iq, rss, m);
699 			break;
700 
701 		default:
702 			break;
703 		}
704 		iq_next(iq);
705 		++ndescs;
706 		if (!iq->polling && (ndescs == budget))
707 			break;
708 	}
709 
710 done:
711 
712 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
713 	    V_CIDXINC(ndescs) | V_INGRESSQID(iq->cntxt_id) |
714 	    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
715 
716 	if ((fl_bufs_used > 0) || (iq->flags & IQ_HAS_FL)) {
717 		int starved;
718 		FL_LOCK(fl);
719 		fl->needed += fl_bufs_used;
720 		starved = refill_fl(sc, fl, fl->cap / 8);
721 		FL_UNLOCK(fl);
722 		if (starved)
723 			add_fl_to_sfl(sc, fl);
724 	}
725 	return (mblk_head);
726 }
727 
728 /*
729  * Deals with anything and everything on the given ingress queue.
730  */
731 static int
service_iq(struct sge_iq * iq,int budget)732 service_iq(struct sge_iq *iq, int budget)
733 {
734 	struct sge_iq *q;
735 	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
736 	struct sge_fl *fl = &rxq->fl;		/* Use iff IQ_HAS_FL */
737 	struct adapter *sc = iq->adapter;
738 	struct rsp_ctrl *ctrl;
739 	const struct rss_header *rss;
740 	int ndescs = 0, limit, fl_bufs_used = 0;
741 	int rsp_type;
742 	uint32_t lq;
743 	int starved;
744 	mblk_t *m;
745 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
746 
747 	limit = budget ? budget : iq->qsize / 8;
748 
749 	/*
750 	 * We always come back and check the descriptor ring for new indirect
751 	 * interrupts and other responses after running a single handler.
752 	 */
753 	for (;;) {
754 		while (is_new_response(iq, &ctrl)) {
755 
756 			membar_consumer();
757 
758 			m = NULL;
759 			rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
760 			lq = be32_to_cpu(ctrl->pldbuflen_qid);
761 			rss = (const void *)iq->cdesc;
762 
763 			switch (rsp_type) {
764 			case X_RSPD_TYPE_FLBUF:
765 
766 				ASSERT(iq->flags & IQ_HAS_FL);
767 
768 				m = get_fl_payload(sc, fl, lq, &fl_bufs_used);
769 				if (m == NULL) {
770 					/*
771 					 * Rearm the iq with a
772 					 * longer-than-default timer
773 					 */
774 					const uint32_t timer_idx =
775 					    V_QINTR_TIMER_IDX(SGE_NTIMERS-1);
776 					t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
777 					    V_CIDXINC(ndescs) |
778 					    V_INGRESSQID((u32)iq->cntxt_id) |
779 					    V_SEINTARM(timer_idx));
780 					if (fl_bufs_used > 0) {
781 						ASSERT(iq->flags & IQ_HAS_FL);
782 						FL_LOCK(fl);
783 						fl->needed += fl_bufs_used;
784 						starved = refill_fl(sc, fl,
785 						    fl->cap / 8);
786 						FL_UNLOCK(fl);
787 						if (starved)
788 							add_fl_to_sfl(sc, fl);
789 					}
790 					return (0);
791 				}
792 
793 			/* FALLTHRU */
794 			case X_RSPD_TYPE_CPL:
795 				(void) t4_handle_cpl_msg(iq, rss, m);
796 				break;
797 
798 			case X_RSPD_TYPE_INTR:
799 
800 				/*
801 				 * Interrupts should be forwarded only to queues
802 				 * that are not forwarding their interrupts.
803 				 * This means service_iq can recurse but only 1
804 				 * level deep.
805 				 */
806 				ASSERT(budget == 0);
807 
808 				q = sc->sge.iqmap[lq - sc->sge.iq_start];
809 				if (atomic_cas_uint(&q->state, IQS_IDLE,
810 				    IQS_BUSY) == IQS_IDLE) {
811 					if (service_iq(q, q->qsize / 8) == 0) {
812 						(void) atomic_cas_uint(
813 						    &q->state, IQS_BUSY,
814 						    IQS_IDLE);
815 					} else {
816 						STAILQ_INSERT_TAIL(&iql, q,
817 						    link);
818 					}
819 				}
820 				break;
821 
822 			default:
823 				break;
824 			}
825 
826 			iq_next(iq);
827 			if (++ndescs == limit) {
828 				t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
829 				    V_CIDXINC(ndescs) |
830 				    V_INGRESSQID(iq->cntxt_id) |
831 				    V_SEINTARM(V_QINTR_TIMER_IDX(
832 				    X_TIMERREG_UPDATE_CIDX)));
833 				ndescs = 0;
834 
835 				if (fl_bufs_used > 0) {
836 					ASSERT(iq->flags & IQ_HAS_FL);
837 					FL_LOCK(fl);
838 					fl->needed += fl_bufs_used;
839 					(void) refill_fl(sc, fl, fl->cap / 8);
840 					FL_UNLOCK(fl);
841 					fl_bufs_used = 0;
842 				}
843 
844 				if (budget != 0)
845 					return (EINPROGRESS);
846 			}
847 		}
848 
849 		if (STAILQ_EMPTY(&iql) != 0)
850 			break;
851 
852 		/*
853 		 * Process the head only, and send it to the back of the list if
854 		 * it's still not done.
855 		 */
856 		q = STAILQ_FIRST(&iql);
857 		STAILQ_REMOVE_HEAD(&iql, link);
858 		if (service_iq(q, q->qsize / 8) == 0)
859 			(void) atomic_cas_uint(&q->state, IQS_BUSY, IQS_IDLE);
860 		else
861 			STAILQ_INSERT_TAIL(&iql, q, link);
862 	}
863 
864 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
865 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_next));
866 
867 	if (iq->flags & IQ_HAS_FL) {
868 
869 		FL_LOCK(fl);
870 		fl->needed += fl_bufs_used;
871 		starved = refill_fl(sc, fl, fl->cap / 4);
872 		FL_UNLOCK(fl);
873 		if (starved != 0)
874 			add_fl_to_sfl(sc, fl);
875 	}
876 
877 	return (0);
878 }
879 
880 /* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
881 #define	TXPKTS_PKT_HDR ((\
882 	sizeof (struct ulp_txpkt) + \
883 	sizeof (struct ulptx_idata) + \
884 	sizeof (struct cpl_tx_pkt_core)) / 8)
885 
886 /* Header of a coalesced tx WR, before SGL of first packet (in flits) */
887 #define	TXPKTS_WR_HDR (\
888 	sizeof (struct fw_eth_tx_pkts_wr) / 8 + \
889 	TXPKTS_PKT_HDR)
890 
891 /* Header of a tx WR, before SGL of first packet (in flits) */
892 #define	TXPKT_WR_HDR ((\
893 	sizeof (struct fw_eth_tx_pkt_wr) + \
894 	sizeof (struct cpl_tx_pkt_core)) / 8)
895 
896 /* Header of a tx LSO WR, before SGL of first packet (in flits) */
897 #define	TXPKT_LSO_WR_HDR ((\
898 	sizeof (struct fw_eth_tx_pkt_wr) + \
899 	sizeof (struct cpl_tx_pkt_lso_core) + \
900 	sizeof (struct cpl_tx_pkt_core)) / 8)
901 
902 mblk_t *
t4_eth_tx(void * arg,mblk_t * frame)903 t4_eth_tx(void *arg, mblk_t *frame)
904 {
905 	struct sge_txq *txq = (struct sge_txq *)arg;
906 	struct port_info *pi = txq->port;
907 	struct adapter *sc = pi->adapter;
908 	struct sge_eq *eq = &txq->eq;
909 	mblk_t *next_frame;
910 	int rc, coalescing;
911 	struct txpkts txpkts;
912 	struct txinfo txinfo;
913 
914 	txpkts.npkt = 0; /* indicates there's nothing in txpkts */
915 	coalescing = 0;
916 
917 	TXQ_LOCK(txq);
918 	if (eq->avail < 8)
919 		(void) reclaim_tx_descs(txq, 8);
920 	for (; frame; frame = next_frame) {
921 
922 		if (eq->avail < 8)
923 			break;
924 
925 		next_frame = frame->b_next;
926 		frame->b_next = NULL;
927 
928 		if (next_frame != NULL)
929 			coalescing = 1;
930 
931 		rc = get_frame_txinfo(txq, &frame, &txinfo, coalescing);
932 		if (rc != 0) {
933 			if (rc == ENOMEM) {
934 
935 				/* Short of resources, suspend tx */
936 
937 				frame->b_next = next_frame;
938 				break;
939 			}
940 
941 			/*
942 			 * Unrecoverable error for this frame, throw it
943 			 * away and move on to the next.
944 			 */
945 
946 			freemsg(frame);
947 			continue;
948 		}
949 
950 		if (coalescing != 0 &&
951 		    add_to_txpkts(txq, &txpkts, frame, &txinfo) == 0) {
952 
953 			/* Successfully absorbed into txpkts */
954 
955 			write_ulp_cpl_sgl(pi, txq, &txpkts, &txinfo);
956 			goto doorbell;
957 		}
958 
959 		/*
960 		 * We weren't coalescing to begin with, or current frame could
961 		 * not be coalesced (add_to_txpkts flushes txpkts if a frame
962 		 * given to it can't be coalesced).  Either way there should be
963 		 * nothing in txpkts.
964 		 */
965 		ASSERT(txpkts.npkt == 0);
966 
967 		/* We're sending out individual frames now */
968 		coalescing = 0;
969 
970 		if (eq->avail < 8)
971 			(void) reclaim_tx_descs(txq, 8);
972 		rc = write_txpkt_wr(pi, txq, frame, &txinfo);
973 		if (rc != 0) {
974 
975 			/* Short of hardware descriptors, suspend tx */
976 
977 			/*
978 			 * This is an unlikely but expensive failure.  We've
979 			 * done all the hard work (DMA bindings etc.) and now we
980 			 * can't send out the frame.  What's worse, we have to
981 			 * spend even more time freeing up everything in txinfo.
982 			 */
983 			txq->qfull++;
984 			free_txinfo_resources(txq, &txinfo);
985 
986 			frame->b_next = next_frame;
987 			break;
988 		}
989 
990 doorbell:
991 		/* Fewer and fewer doorbells as the queue fills up */
992 		if (eq->pending >= (1 << (fls(eq->qsize - eq->avail) / 2))) {
993 			txq->txbytes += txinfo.len;
994 			txq->txpkts++;
995 			ring_tx_db(sc, eq);
996 		}
997 		(void) reclaim_tx_descs(txq, 32);
998 	}
999 
1000 	if (txpkts.npkt > 0)
1001 		write_txpkts_wr(txq, &txpkts);
1002 
1003 	/*
1004 	 * frame not NULL means there was an error but we haven't thrown it
1005 	 * away.  This can happen when we're short of tx descriptors (qfull) or
1006 	 * maybe even DMA handles (dma_hdl_failed).  Either way, a credit flush
1007 	 * and reclaim will get things going again.
1008 	 *
1009 	 * If eq->avail is already 0 we know a credit flush was requested in the
1010 	 * WR that reduced it to 0 so we don't need another flush (we don't have
1011 	 * any descriptor for a flush WR anyway, duh).
1012 	 */
1013 	if (frame && eq->avail > 0)
1014 		write_txqflush_wr(txq);
1015 
1016 	if (eq->pending != 0)
1017 		ring_tx_db(sc, eq);
1018 
1019 	(void) reclaim_tx_descs(txq, eq->qsize);
1020 	TXQ_UNLOCK(txq);
1021 
1022 	return (frame);
1023 }
1024 
1025 static inline void
init_iq(struct sge_iq * iq,struct adapter * sc,int tmr_idx,int8_t pktc_idx,int qsize,uint8_t esize)1026 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int8_t pktc_idx,
1027     int qsize, uint8_t esize)
1028 {
1029 	ASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS);
1030 	ASSERT(pktc_idx < SGE_NCOUNTERS);	/* -ve is ok, means don't use */
1031 
1032 	iq->flags = 0;
1033 	iq->adapter = sc;
1034 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
1035 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
1036 	if (pktc_idx >= 0) {
1037 		iq->intr_params |= F_QINTR_CNT_EN;
1038 		iq->intr_pktc_idx = pktc_idx;
1039 	}
1040 	iq->qsize = roundup(qsize, 16);		/* See FW_IQ_CMD/iqsize */
1041 	iq->esize = max(esize, 16);		/* See FW_IQ_CMD/iqesize */
1042 }
1043 
1044 static inline void
init_fl(struct sge_fl * fl,uint16_t qsize)1045 init_fl(struct sge_fl *fl, uint16_t qsize)
1046 {
1047 
1048 	fl->qsize = qsize;
1049 	fl->allocb_fail = 0;
1050 }
1051 
1052 static inline void
init_eq(struct adapter * sc,struct sge_eq * eq,uint16_t eqtype,uint16_t qsize,uint8_t tx_chan,uint16_t iqid)1053 init_eq(struct adapter *sc, struct sge_eq *eq, uint16_t eqtype, uint16_t qsize,
1054     uint8_t tx_chan, uint16_t iqid)
1055 {
1056 	struct sge *s = &sc->sge;
1057 	uint32_t r;
1058 
1059 	ASSERT(tx_chan < NCHAN);
1060 	ASSERT(eqtype <= EQ_TYPEMASK);
1061 
1062 	if (is_t5(sc->params.chip)) {
1063 		r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
1064 		r >>= S_QUEUESPERPAGEPF0 +
1065 		    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
1066 		s->s_qpp = r & M_QUEUESPERPAGEPF0;
1067 	}
1068 
1069 	eq->flags = eqtype & EQ_TYPEMASK;
1070 	eq->tx_chan = tx_chan;
1071 	eq->iqid = iqid;
1072 	eq->qsize = qsize;
1073 }
1074 
1075 /*
1076  * Allocates the ring for an ingress queue and an optional freelist.  If the
1077  * freelist is specified it will be allocated and then associated with the
1078  * ingress queue.
1079  *
1080  * Returns errno on failure.  Resources allocated up to that point may still be
1081  * allocated.  Caller is responsible for cleanup in case this function fails.
1082  *
1083  * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
1084  * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
1085  * the index of the queue to which its interrupts will be forwarded.
1086  */
1087 static int
alloc_iq_fl(struct port_info * pi,struct sge_iq * iq,struct sge_fl * fl,int intr_idx,int cong)1088 alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
1089     int intr_idx, int cong)
1090 {
1091 	int rc, i, cntxt_id;
1092 	size_t len;
1093 	struct fw_iq_cmd c;
1094 	struct adapter *sc = iq->adapter;
1095 	uint32_t v = 0;
1096 
1097 	len = iq->qsize * iq->esize;
1098 	rc = alloc_desc_ring(sc, len, DDI_DMA_READ, &iq->dhdl, &iq->ahdl,
1099 	    &iq->ba, (caddr_t *)&iq->desc);
1100 	if (rc != 0)
1101 		return (rc);
1102 
1103 	bzero(&c, sizeof (c));
1104 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
1105 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
1106 	    V_FW_IQ_CMD_VFN(0));
1107 
1108 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
1109 	    FW_LEN16(c));
1110 
1111 	/* Special handling for firmware event queue */
1112 	if (iq == &sc->sge.fwq)
1113 		v |= F_FW_IQ_CMD_IQASYNCH;
1114 
1115 	if (iq->flags & IQ_INTR)
1116 		ASSERT(intr_idx < sc->intr_count);
1117 	else
1118 		v |= F_FW_IQ_CMD_IQANDST;
1119 	v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
1120 
1121 	c.type_to_iqandstindex = cpu_to_be32(v |
1122 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
1123 	    V_FW_IQ_CMD_VIID(pi->viid) |
1124 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
1125 	c.iqdroprss_to_iqesize = cpu_to_be16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
1126 	    F_FW_IQ_CMD_IQGTSMODE |
1127 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
1128 	    V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4));
1129 	c.iqsize = cpu_to_be16(iq->qsize);
1130 	c.iqaddr = cpu_to_be64(iq->ba);
1131 	if (cong >= 0) {
1132 		const uint32_t iq_type =
1133 		    cong ? FW_IQ_IQTYPE_NIC : FW_IQ_IQTYPE_OFLD;
1134 		c.iqns_to_fl0congen = BE_32(F_FW_IQ_CMD_IQFLINTCONGEN |
1135 		    V_FW_IQ_CMD_IQTYPE(iq_type));
1136 	}
1137 
1138 	if (fl != NULL) {
1139 		unsigned int chip_ver = CHELSIO_CHIP_VERSION(sc->params.chip);
1140 
1141 		mutex_init(&fl->lock, NULL, MUTEX_DRIVER,
1142 		    DDI_INTR_PRI(sc->intr_pri));
1143 		fl->flags |= FL_MTX;
1144 
1145 		len = fl->qsize * RX_FL_ESIZE;
1146 		rc = alloc_desc_ring(sc, len, DDI_DMA_WRITE, &fl->dhdl,
1147 		    &fl->ahdl, &fl->ba, (caddr_t *)&fl->desc);
1148 		if (rc != 0)
1149 			return (rc);
1150 
1151 		/* Allocate space for one software descriptor per buffer. */
1152 		fl->cap = (fl->qsize - sc->sge.stat_len / RX_FL_ESIZE) * 8;
1153 		fl->sdesc = kmem_zalloc(sizeof (struct fl_sdesc) * fl->cap,
1154 		    KM_SLEEP);
1155 		fl->needed = fl->cap;
1156 		fl->lowat = roundup(sc->sge.fl_starve_threshold, 8);
1157 
1158 		c.iqns_to_fl0congen |=
1159 		    cpu_to_be32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
1160 		    F_FW_IQ_CMD_FL0PACKEN | F_FW_IQ_CMD_FL0PADEN);
1161 		if (cong >= 0) {
1162 			c.iqns_to_fl0congen |=
1163 			    BE_32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
1164 			    F_FW_IQ_CMD_FL0CONGCIF |
1165 			    F_FW_IQ_CMD_FL0CONGEN);
1166 		}
1167 
1168 		/*
1169 		 * In T6, for egress queue type FL there is internal overhead
1170 		 * of 16B for header going into FLM module.  Hence the maximum
1171 		 * allowed burst size is 448 bytes.  For T4/T5, the hardware
1172 		 * doesn't coalesce fetch requests if more than 64 bytes of
1173 		 * Free List pointers are provided, so we use a 128-byte Fetch
1174 		 * Burst Minimum there (T6 implements coalescing so we can use
1175 		 * the smaller 64-byte value there).
1176 		 */
1177 
1178 		c.fl0dcaen_to_fl0cidxfthresh = cpu_to_be16(
1179 		    V_FW_IQ_CMD_FL0FBMIN(chip_ver <= CHELSIO_T5 ?
1180 		    X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B) |
1181 		    V_FW_IQ_CMD_FL0FBMAX(chip_ver <= CHELSIO_T5 ?
1182 		    X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
1183 		c.fl0size = cpu_to_be16(fl->qsize);
1184 		c.fl0addr = cpu_to_be64(fl->ba);
1185 	}
1186 
1187 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
1188 	if (rc != 0) {
1189 		cxgb_printf(sc->dip, CE_WARN,
1190 		    "failed to create ingress queue: %d", rc);
1191 		return (rc);
1192 	}
1193 
1194 	iq->cdesc = iq->desc;
1195 	iq->cidx = 0;
1196 	iq->gen = 1;
1197 	iq->intr_next = iq->intr_params;
1198 	iq->adapter = sc;
1199 	iq->cntxt_id = be16_to_cpu(c.iqid);
1200 	iq->abs_id = be16_to_cpu(c.physiqid);
1201 	iq->flags |= IQ_ALLOCATED;
1202 	mutex_init(&iq->lock, NULL, MUTEX_DRIVER,
1203 	    DDI_INTR_PRI(DDI_INTR_PRI(sc->intr_pri)));
1204 	iq->polling = 0;
1205 
1206 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
1207 	if (cntxt_id >= sc->sge.iqmap_sz) {
1208 		panic("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
1209 		    cntxt_id, sc->sge.iqmap_sz - 1);
1210 	}
1211 	sc->sge.iqmap[cntxt_id] = iq;
1212 
1213 	if (fl != NULL) {
1214 		fl->cntxt_id = be16_to_cpu(c.fl0id);
1215 		fl->pidx = fl->cidx = 0;
1216 		fl->copy_threshold = rx_copy_threshold;
1217 
1218 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
1219 		if (cntxt_id >= sc->sge.eqmap_sz) {
1220 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
1221 			    __func__, cntxt_id, sc->sge.eqmap_sz - 1);
1222 		}
1223 		sc->sge.eqmap[cntxt_id] = (void *)fl;
1224 
1225 		FL_LOCK(fl);
1226 		(void) refill_fl(sc, fl, fl->lowat);
1227 		FL_UNLOCK(fl);
1228 
1229 		iq->flags |= IQ_HAS_FL;
1230 	}
1231 
1232 	if (is_t5(sc->params.chip) && cong >= 0) {
1233 		uint32_t param, val;
1234 
1235 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1236 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
1237 		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
1238 		if (cong == 0)
1239 			val = 1 << 19;
1240 		else {
1241 			val = 2 << 19;
1242 			for (i = 0; i < 4; i++) {
1243 				if (cong & (1 << i))
1244 					val |= 1 << (i << 2);
1245 			}
1246 		}
1247 
1248 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
1249 		if (rc != 0) {
1250 			/* report error but carry on */
1251 			cxgb_printf(sc->dip, CE_WARN,
1252 			    "failed to set congestion manager context for "
1253 			    "ingress queue %d: %d", iq->cntxt_id, rc);
1254 		}
1255 	}
1256 
1257 	/* Enable IQ interrupts */
1258 	iq->state = IQS_IDLE;
1259 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
1260 	    V_INGRESSQID(iq->cntxt_id));
1261 
1262 	return (0);
1263 }
1264 
1265 static int
free_iq_fl(struct port_info * pi,struct sge_iq * iq,struct sge_fl * fl)1266 free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
1267 {
1268 	int rc;
1269 
1270 	if (iq != NULL) {
1271 		struct adapter *sc = iq->adapter;
1272 		dev_info_t *dip;
1273 
1274 		dip = pi ? pi->dip : sc->dip;
1275 		if (iq->flags & IQ_ALLOCATED) {
1276 			rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
1277 			    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
1278 			    fl ? fl->cntxt_id : 0xffff, 0xffff);
1279 			if (rc != 0) {
1280 				cxgb_printf(dip, CE_WARN,
1281 				    "failed to free queue %p: %d", iq, rc);
1282 				return (rc);
1283 			}
1284 			mutex_destroy(&iq->lock);
1285 			iq->flags &= ~IQ_ALLOCATED;
1286 		}
1287 
1288 		if (iq->desc != NULL) {
1289 			(void) free_desc_ring(&iq->dhdl, &iq->ahdl);
1290 			iq->desc = NULL;
1291 		}
1292 
1293 		bzero(iq, sizeof (*iq));
1294 	}
1295 
1296 	if (fl != NULL) {
1297 		if (fl->sdesc != NULL) {
1298 			FL_LOCK(fl);
1299 			free_fl_bufs(fl);
1300 			FL_UNLOCK(fl);
1301 
1302 			kmem_free(fl->sdesc, sizeof (struct fl_sdesc) *
1303 			    fl->cap);
1304 			fl->sdesc = NULL;
1305 		}
1306 
1307 		if (fl->desc != NULL) {
1308 			(void) free_desc_ring(&fl->dhdl, &fl->ahdl);
1309 			fl->desc = NULL;
1310 		}
1311 
1312 		if (fl->flags & FL_MTX) {
1313 			mutex_destroy(&fl->lock);
1314 			fl->flags &= ~FL_MTX;
1315 		}
1316 
1317 		bzero(fl, sizeof (struct sge_fl));
1318 	}
1319 
1320 	return (0);
1321 }
1322 
1323 static int
alloc_fwq(struct adapter * sc)1324 alloc_fwq(struct adapter *sc)
1325 {
1326 	int rc, intr_idx;
1327 	struct sge_iq *fwq = &sc->sge.fwq;
1328 
1329 	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE);
1330 	fwq->flags |= IQ_INTR;	/* always */
1331 	intr_idx = sc->intr_count > 1 ? 1 : 0;
1332 	rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
1333 	if (rc != 0) {
1334 		cxgb_printf(sc->dip, CE_WARN,
1335 		    "failed to create firmware event queue: %d.", rc);
1336 		return (rc);
1337 	}
1338 
1339 	return (0);
1340 }
1341 
1342 static int
free_fwq(struct adapter * sc)1343 free_fwq(struct adapter *sc)
1344 {
1345 
1346 	return (free_iq_fl(NULL, &sc->sge.fwq, NULL));
1347 }
1348 
1349 static int
alloc_rxq(struct port_info * pi,struct sge_rxq * rxq,int intr_idx,int i)1350 alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int i)
1351 {
1352 	int rc;
1353 
1354 	rxq->port = pi;
1355 	rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx,
1356 	    t4_get_tp_ch_map(pi->adapter, pi->tx_chan));
1357 	if (rc != 0)
1358 		return (rc);
1359 
1360 	rxq->ksp = setup_rxq_kstats(pi, rxq, i);
1361 
1362 	return (rc);
1363 }
1364 
1365 static int
free_rxq(struct port_info * pi,struct sge_rxq * rxq)1366 free_rxq(struct port_info *pi, struct sge_rxq *rxq)
1367 {
1368 	int rc;
1369 
1370 	if (rxq->ksp != NULL) {
1371 		kstat_delete(rxq->ksp);
1372 		rxq->ksp = NULL;
1373 	}
1374 
1375 	rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
1376 	if (rc == 0)
1377 		bzero(&rxq->fl, sizeof (*rxq) - offsetof(struct sge_rxq, fl));
1378 
1379 	return (rc);
1380 }
1381 
1382 static int
ctrl_eq_alloc(struct adapter * sc,struct sge_eq * eq)1383 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
1384 {
1385 	int rc, cntxt_id;
1386 	struct fw_eq_ctrl_cmd c;
1387 
1388 	bzero(&c, sizeof (c));
1389 
1390 	c.op_to_vfn = BE_32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
1391 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
1392 	    V_FW_EQ_CTRL_CMD_VFN(0));
1393 	c.alloc_to_len16 = BE_32(F_FW_EQ_CTRL_CMD_ALLOC |
1394 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
1395 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* TODO */
1396 	c.physeqid_pkd = BE_32(0);
1397 	c.fetchszm_to_iqid =
1398 	    BE_32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
1399 	    V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
1400 	    F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
1401 	c.dcaen_to_eqsize =
1402 	    BE_32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
1403 	    V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
1404 	    V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
1405 	    V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize));
1406 	c.eqaddr = BE_64(eq->ba);
1407 
1408 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
1409 	if (rc != 0) {
1410 		cxgb_printf(sc->dip, CE_WARN,
1411 		    "failed to create control queue %d: %d", eq->tx_chan, rc);
1412 		return (rc);
1413 	}
1414 	eq->flags |= EQ_ALLOCATED;
1415 
1416 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(BE_32(c.cmpliqid_eqid));
1417 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
1418 	if (cntxt_id >= sc->sge.eqmap_sz)
1419 		panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
1420 		    cntxt_id, sc->sge.eqmap_sz - 1);
1421 	sc->sge.eqmap[cntxt_id] = eq;
1422 
1423 	return (rc);
1424 }
1425 
1426 static int
eth_eq_alloc(struct adapter * sc,struct port_info * pi,struct sge_eq * eq)1427 eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
1428 {
1429 	int rc, cntxt_id;
1430 	struct fw_eq_eth_cmd c;
1431 
1432 	bzero(&c, sizeof (c));
1433 
1434 	c.op_to_vfn = BE_32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
1435 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
1436 	    V_FW_EQ_ETH_CMD_VFN(0));
1437 	c.alloc_to_len16 = BE_32(F_FW_EQ_ETH_CMD_ALLOC |
1438 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
1439 	c.autoequiqe_to_viid = BE_32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
1440 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(pi->viid));
1441 	c.fetchszm_to_iqid =
1442 	    BE_32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
1443 	    V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
1444 	    V_FW_EQ_ETH_CMD_IQID(eq->iqid));
1445 	c.dcaen_to_eqsize = BE_32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
1446 	    V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
1447 	    V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
1448 	    V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
1449 	c.eqaddr = BE_64(eq->ba);
1450 
1451 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
1452 	if (rc != 0) {
1453 		cxgb_printf(pi->dip, CE_WARN,
1454 		    "failed to create Ethernet egress queue: %d", rc);
1455 		return (rc);
1456 	}
1457 	eq->flags |= EQ_ALLOCATED;
1458 
1459 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(BE_32(c.eqid_pkd));
1460 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
1461 	if (cntxt_id >= sc->sge.eqmap_sz)
1462 		panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
1463 		    cntxt_id, sc->sge.eqmap_sz - 1);
1464 	sc->sge.eqmap[cntxt_id] = eq;
1465 
1466 	return (rc);
1467 }
1468 
1469 static int
alloc_eq(struct adapter * sc,struct port_info * pi,struct sge_eq * eq)1470 alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
1471 {
1472 	int rc;
1473 	size_t len;
1474 
1475 	mutex_init(&eq->lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(sc->intr_pri));
1476 	eq->flags |= EQ_MTX;
1477 
1478 	len = eq->qsize * EQ_ESIZE;
1479 	rc = alloc_desc_ring(sc, len, DDI_DMA_WRITE, &eq->desc_dhdl,
1480 	    &eq->desc_ahdl, &eq->ba, (caddr_t *)&eq->desc);
1481 	if (rc != 0)
1482 		return (rc);
1483 
1484 	eq->cap = eq->qsize - sc->sge.stat_len / EQ_ESIZE;
1485 	eq->spg = (void *)&eq->desc[eq->cap];
1486 	eq->avail = eq->cap - 1;	/* one less to avoid cidx = pidx */
1487 	eq->pidx = eq->cidx = 0;
1488 	eq->doorbells = sc->doorbells;
1489 
1490 	switch (eq->flags & EQ_TYPEMASK) {
1491 	case EQ_CTRL:
1492 		rc = ctrl_eq_alloc(sc, eq);
1493 		break;
1494 
1495 	case EQ_ETH:
1496 		rc = eth_eq_alloc(sc, pi, eq);
1497 		break;
1498 
1499 	default:
1500 		panic("%s: invalid eq type %d.", __func__,
1501 		    eq->flags & EQ_TYPEMASK);
1502 	}
1503 
1504 	if (eq->doorbells & (DOORBELL_UDB | DOORBELL_UDBWC | DOORBELL_WCWR)) {
1505 		uint32_t s_qpp = sc->sge.s_qpp;
1506 		uint32_t mask = (1 << s_qpp) - 1;
1507 		volatile uint8_t *udb;
1508 
1509 		udb = (volatile uint8_t *)sc->reg1p + UDBS_DB_OFFSET;
1510 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
1511 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
1512 		if (eq->udb_qid > PAGE_SIZE / UDBS_SEG_SIZE)
1513 			eq->doorbells &= ~DOORBELL_WCWR;
1514 		else {
1515 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
1516 			eq->udb_qid = 0;
1517 		}
1518 		eq->udb = (volatile void *)udb;
1519 	}
1520 
1521 	if (rc != 0) {
1522 		cxgb_printf(sc->dip, CE_WARN,
1523 		    "failed to allocate egress queue(%d): %d",
1524 		    eq->flags & EQ_TYPEMASK, rc);
1525 	}
1526 
1527 	return (rc);
1528 }
1529 
1530 static int
free_eq(struct adapter * sc,struct sge_eq * eq)1531 free_eq(struct adapter *sc, struct sge_eq *eq)
1532 {
1533 	int rc;
1534 
1535 	if (eq->flags & EQ_ALLOCATED) {
1536 		switch (eq->flags & EQ_TYPEMASK) {
1537 		case EQ_CTRL:
1538 			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
1539 			    eq->cntxt_id);
1540 			break;
1541 
1542 		case EQ_ETH:
1543 			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
1544 			    eq->cntxt_id);
1545 			break;
1546 		default:
1547 			panic("%s: invalid eq type %d.", __func__,
1548 			    eq->flags & EQ_TYPEMASK);
1549 		}
1550 		if (rc != 0) {
1551 			cxgb_printf(sc->dip, CE_WARN,
1552 			    "failed to free egress queue (%d): %d",
1553 			    eq->flags & EQ_TYPEMASK, rc);
1554 			return (rc);
1555 		}
1556 		eq->flags &= ~EQ_ALLOCATED;
1557 	}
1558 
1559 	if (eq->desc != NULL) {
1560 		(void) free_desc_ring(&eq->desc_dhdl, &eq->desc_ahdl);
1561 		eq->desc = NULL;
1562 	}
1563 
1564 	if (eq->flags & EQ_MTX)
1565 		mutex_destroy(&eq->lock);
1566 
1567 	bzero(eq, sizeof (*eq));
1568 	return (0);
1569 }
1570 
1571 static int
alloc_txq(struct port_info * pi,struct sge_txq * txq,int idx)1572 alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx)
1573 {
1574 	int rc, i;
1575 	struct adapter *sc = pi->adapter;
1576 	struct sge_eq *eq = &txq->eq;
1577 
1578 	rc = alloc_eq(sc, pi, eq);
1579 	if (rc != 0)
1580 		return (rc);
1581 
1582 	txq->port = pi;
1583 	txq->sdesc = kmem_zalloc(sizeof (struct tx_sdesc) * eq->cap, KM_SLEEP);
1584 	txq->txb_size = eq->qsize * tx_copy_threshold;
1585 	rc = alloc_tx_copybuffer(sc, txq->txb_size, &txq->txb_dhdl,
1586 	    &txq->txb_ahdl, &txq->txb_ba, &txq->txb_va);
1587 	if (rc == 0)
1588 		txq->txb_avail = txq->txb_size;
1589 	else
1590 		txq->txb_avail = txq->txb_size = 0;
1591 
1592 	/*
1593 	 * TODO: is this too low?  Worst case would need around 4 times qsize
1594 	 * (all tx descriptors filled to the brim with SGLs, with each entry in
1595 	 * the SGL coming from a distinct DMA handle).  Increase tx_dhdl_total
1596 	 * if you see too many dma_hdl_failed.
1597 	 */
1598 	txq->tx_dhdl_total = eq->qsize * 2;
1599 	txq->tx_dhdl = kmem_zalloc(sizeof (ddi_dma_handle_t) *
1600 	    txq->tx_dhdl_total, KM_SLEEP);
1601 	for (i = 0; i < txq->tx_dhdl_total; i++) {
1602 		rc = ddi_dma_alloc_handle(sc->dip, &sc->sge.dma_attr_tx,
1603 		    DDI_DMA_SLEEP, 0, &txq->tx_dhdl[i]);
1604 		if (rc != DDI_SUCCESS) {
1605 			cxgb_printf(sc->dip, CE_WARN,
1606 			    "%s: failed to allocate DMA handle (%d)",
1607 			    __func__, rc);
1608 			return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL);
1609 		}
1610 		txq->tx_dhdl_avail++;
1611 	}
1612 
1613 	txq->ksp = setup_txq_kstats(pi, txq, idx);
1614 
1615 	return (rc);
1616 }
1617 
1618 static int
free_txq(struct port_info * pi,struct sge_txq * txq)1619 free_txq(struct port_info *pi, struct sge_txq *txq)
1620 {
1621 	int i;
1622 	struct adapter *sc = pi->adapter;
1623 	struct sge_eq *eq = &txq->eq;
1624 
1625 	if (txq->ksp != NULL) {
1626 		kstat_delete(txq->ksp);
1627 		txq->ksp = NULL;
1628 	}
1629 
1630 	if (txq->txb_va != NULL) {
1631 		(void) free_desc_ring(&txq->txb_dhdl, &txq->txb_ahdl);
1632 		txq->txb_va = NULL;
1633 	}
1634 
1635 	if (txq->sdesc != NULL) {
1636 		struct tx_sdesc *sd;
1637 		ddi_dma_handle_t hdl;
1638 
1639 		TXQ_LOCK(txq);
1640 		while (eq->cidx != eq->pidx) {
1641 			sd = &txq->sdesc[eq->cidx];
1642 
1643 			for (i = sd->hdls_used; i; i--) {
1644 				hdl = txq->tx_dhdl[txq->tx_dhdl_cidx];
1645 				(void) ddi_dma_unbind_handle(hdl);
1646 				if (++txq->tx_dhdl_cidx == txq->tx_dhdl_total)
1647 					txq->tx_dhdl_cidx = 0;
1648 			}
1649 
1650 			ASSERT(sd->m);
1651 			freemsgchain(sd->m);
1652 
1653 			eq->cidx += sd->desc_used;
1654 			if (eq->cidx >= eq->cap)
1655 				eq->cidx -= eq->cap;
1656 
1657 			txq->txb_avail += txq->txb_used;
1658 		}
1659 		ASSERT(txq->tx_dhdl_cidx == txq->tx_dhdl_pidx);
1660 		ASSERT(txq->txb_avail == txq->txb_size);
1661 		TXQ_UNLOCK(txq);
1662 
1663 		kmem_free(txq->sdesc, sizeof (struct tx_sdesc) * eq->cap);
1664 		txq->sdesc = NULL;
1665 	}
1666 
1667 	if (txq->tx_dhdl != NULL) {
1668 		for (i = 0; i < txq->tx_dhdl_total; i++) {
1669 			if (txq->tx_dhdl[i] != NULL)
1670 				ddi_dma_free_handle(&txq->tx_dhdl[i]);
1671 		}
1672 		kmem_free(txq->tx_dhdl,
1673 		    sizeof (ddi_dma_handle_t) * txq->tx_dhdl_total);
1674 		txq->tx_dhdl = NULL;
1675 	}
1676 
1677 	(void) free_eq(sc, &txq->eq);
1678 
1679 	bzero(txq, sizeof (*txq));
1680 	return (0);
1681 }
1682 
1683 /*
1684  * Allocates a block of contiguous memory for DMA.  Can be used to allocate
1685  * memory for descriptor rings or for tx/rx copy buffers.
1686  *
1687  * Caller does not have to clean up anything if this function fails, it cleans
1688  * up after itself.
1689  *
1690  * Caller provides the following:
1691  * len		length of the block of memory to allocate.
1692  * flags	DDI_DMA_* flags to use (CONSISTENT/STREAMING, READ/WRITE/RDWR)
1693  * acc_attr	device access attributes for the allocation.
1694  * dma_attr	DMA attributes for the allocation
1695  *
1696  * If the function is successful it fills up this information:
1697  * dma_hdl	DMA handle for the allocated memory
1698  * acc_hdl	access handle for the allocated memory
1699  * ba		bus address of the allocated memory
1700  * va		KVA of the allocated memory.
1701  */
1702 static int
alloc_dma_memory(struct adapter * sc,size_t len,int flags,ddi_device_acc_attr_t * acc_attr,ddi_dma_attr_t * dma_attr,ddi_dma_handle_t * dma_hdl,ddi_acc_handle_t * acc_hdl,uint64_t * pba,caddr_t * pva)1703 alloc_dma_memory(struct adapter *sc, size_t len, int flags,
1704     ddi_device_acc_attr_t *acc_attr, ddi_dma_attr_t *dma_attr,
1705     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl,
1706     uint64_t *pba, caddr_t *pva)
1707 {
1708 	int rc;
1709 	ddi_dma_handle_t dhdl;
1710 	ddi_acc_handle_t ahdl;
1711 	ddi_dma_cookie_t cookie;
1712 	uint_t ccount;
1713 	caddr_t va;
1714 	size_t real_len;
1715 
1716 	*pva = NULL;
1717 
1718 	/*
1719 	 * DMA handle.
1720 	 */
1721 	rc = ddi_dma_alloc_handle(sc->dip, dma_attr, DDI_DMA_SLEEP, 0, &dhdl);
1722 	if (rc != DDI_SUCCESS) {
1723 		return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL);
1724 	}
1725 
1726 	/*
1727 	 * Memory suitable for DMA.
1728 	 */
1729 	rc = ddi_dma_mem_alloc(dhdl, len, acc_attr,
1730 	    flags & DDI_DMA_CONSISTENT ? DDI_DMA_CONSISTENT : DDI_DMA_STREAMING,
1731 	    DDI_DMA_SLEEP, 0, &va, &real_len, &ahdl);
1732 	if (rc != DDI_SUCCESS) {
1733 		ddi_dma_free_handle(&dhdl);
1734 		return (ENOMEM);
1735 	}
1736 
1737 	/*
1738 	 * DMA bindings.
1739 	 */
1740 	rc = ddi_dma_addr_bind_handle(dhdl, NULL, va, real_len, flags, NULL,
1741 	    NULL, &cookie, &ccount);
1742 	if (rc != DDI_DMA_MAPPED) {
1743 		ddi_dma_mem_free(&ahdl);
1744 		ddi_dma_free_handle(&dhdl);
1745 		return (ENOMEM);
1746 	}
1747 	if (ccount != 1) {
1748 		/* unusable DMA mapping */
1749 		(void) free_desc_ring(&dhdl, &ahdl);
1750 		return (ENOMEM);
1751 	}
1752 
1753 	bzero(va, real_len);
1754 	*dma_hdl = dhdl;
1755 	*acc_hdl = ahdl;
1756 	*pba = cookie.dmac_laddress;
1757 	*pva = va;
1758 
1759 	return (0);
1760 }
1761 
1762 static int
free_dma_memory(ddi_dma_handle_t * dhdl,ddi_acc_handle_t * ahdl)1763 free_dma_memory(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl)
1764 {
1765 	(void) ddi_dma_unbind_handle(*dhdl);
1766 	ddi_dma_mem_free(ahdl);
1767 	ddi_dma_free_handle(dhdl);
1768 
1769 	return (0);
1770 }
1771 
1772 static int
alloc_desc_ring(struct adapter * sc,size_t len,int rw,ddi_dma_handle_t * dma_hdl,ddi_acc_handle_t * acc_hdl,uint64_t * pba,caddr_t * pva)1773 alloc_desc_ring(struct adapter *sc, size_t len, int rw,
1774     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl,
1775     uint64_t *pba, caddr_t *pva)
1776 {
1777 	ddi_device_acc_attr_t *acc_attr = &sc->sge.acc_attr_desc;
1778 	ddi_dma_attr_t *dma_attr = &sc->sge.dma_attr_desc;
1779 
1780 	return (alloc_dma_memory(sc, len, DDI_DMA_CONSISTENT | rw, acc_attr,
1781 	    dma_attr, dma_hdl, acc_hdl, pba, pva));
1782 }
1783 
1784 static int
free_desc_ring(ddi_dma_handle_t * dhdl,ddi_acc_handle_t * ahdl)1785 free_desc_ring(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl)
1786 {
1787 	return (free_dma_memory(dhdl, ahdl));
1788 }
1789 
1790 static int
alloc_tx_copybuffer(struct adapter * sc,size_t len,ddi_dma_handle_t * dma_hdl,ddi_acc_handle_t * acc_hdl,uint64_t * pba,caddr_t * pva)1791 alloc_tx_copybuffer(struct adapter *sc, size_t len,
1792     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl,
1793     uint64_t *pba, caddr_t *pva)
1794 {
1795 	ddi_device_acc_attr_t *acc_attr = &sc->sge.acc_attr_tx;
1796 	ddi_dma_attr_t *dma_attr = &sc->sge.dma_attr_desc; /* NOT dma_attr_tx */
1797 
1798 	return (alloc_dma_memory(sc, len, DDI_DMA_STREAMING | DDI_DMA_WRITE,
1799 	    acc_attr, dma_attr, dma_hdl, acc_hdl, pba, pva));
1800 }
1801 
1802 static inline bool
is_new_response(const struct sge_iq * iq,struct rsp_ctrl ** ctrl)1803 is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl)
1804 {
1805 	(void) ddi_dma_sync(iq->dhdl, (uintptr_t)iq->cdesc -
1806 	    (uintptr_t)iq->desc, iq->esize, DDI_DMA_SYNC_FORKERNEL);
1807 
1808 	*ctrl = (void *)((uintptr_t)iq->cdesc +
1809 	    (iq->esize - sizeof (struct rsp_ctrl)));
1810 
1811 	return ((((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen));
1812 }
1813 
1814 static inline void
iq_next(struct sge_iq * iq)1815 iq_next(struct sge_iq *iq)
1816 {
1817 	iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize);
1818 	if (++iq->cidx == iq->qsize - 1) {
1819 		iq->cidx = 0;
1820 		iq->gen ^= 1;
1821 		iq->cdesc = iq->desc;
1822 	}
1823 }
1824 
1825 /*
1826  * Fill up the freelist by upto nbufs and maybe ring its doorbell.
1827  *
1828  * Returns non-zero to indicate that it should be added to the list of starving
1829  * freelists.
1830  */
1831 static int
refill_fl(struct adapter * sc,struct sge_fl * fl,int nbufs)1832 refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs)
1833 {
1834 	uint64_t *d = &fl->desc[fl->pidx];
1835 	struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
1836 
1837 	FL_LOCK_ASSERT_OWNED(fl);
1838 	ASSERT(nbufs >= 0);
1839 
1840 	if (nbufs > fl->needed)
1841 		nbufs = fl->needed;
1842 
1843 	while (nbufs--) {
1844 		if (sd->rxb != NULL) {
1845 			if (sd->rxb->ref_cnt == 1) {
1846 				/*
1847 				 * Buffer is available for recycling.  Two ways
1848 				 * this can happen:
1849 				 *
1850 				 * a) All the packets DMA'd into it last time
1851 				 *    around were within the rx_copy_threshold
1852 				 *    and no part of the buffer was ever passed
1853 				 *    up (ref_cnt never went over 1).
1854 				 *
1855 				 * b) Packets DMA'd into the buffer were passed
1856 				 *    up but have all been freed by the upper
1857 				 *    layers by now (ref_cnt went over 1 but is
1858 				 *    now back to 1).
1859 				 *
1860 				 * Either way the bus address in the descriptor
1861 				 * ring is already valid.
1862 				 */
1863 				ASSERT(*d == cpu_to_be64(sd->rxb->ba));
1864 				d++;
1865 				goto recycled;
1866 			} else {
1867 				/*
1868 				 * Buffer still in use and we need a
1869 				 * replacement. But first release our reference
1870 				 * on the existing buffer.
1871 				 */
1872 				rxbuf_free(sd->rxb);
1873 			}
1874 		}
1875 
1876 		sd->rxb = rxbuf_alloc(sc->sge.rxbuf_cache, KM_NOSLEEP, 1);
1877 		if (sd->rxb == NULL)
1878 			break;
1879 		*d++ = cpu_to_be64(sd->rxb->ba);
1880 
1881 recycled:	fl->pending++;
1882 		sd++;
1883 		fl->needed--;
1884 		if (++fl->pidx == fl->cap) {
1885 			fl->pidx = 0;
1886 			sd = fl->sdesc;
1887 			d = fl->desc;
1888 		}
1889 	}
1890 
1891 	if (fl->pending >= 8)
1892 		ring_fl_db(sc, fl);
1893 
1894 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
1895 }
1896 
1897 #ifndef TAILQ_FOREACH_SAFE
1898 #define	TAILQ_FOREACH_SAFE(var, head, field, tvar)			\
1899 	for ((var) = TAILQ_FIRST((head));				\
1900 	    (var) && ((tvar) = TAILQ_NEXT((var), field), 1);		\
1901 	    (var) = (tvar))
1902 #endif
1903 
1904 /*
1905  * Attempt to refill all starving freelists.
1906  */
1907 static void
refill_sfl(void * arg)1908 refill_sfl(void *arg)
1909 {
1910 	struct adapter *sc = arg;
1911 	struct sge_fl *fl, *fl_temp;
1912 
1913 	mutex_enter(&sc->sfl_lock);
1914 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
1915 		FL_LOCK(fl);
1916 		(void) refill_fl(sc, fl, 64);
1917 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
1918 			TAILQ_REMOVE(&sc->sfl, fl, link);
1919 			fl->flags &= ~FL_STARVING;
1920 		}
1921 		FL_UNLOCK(fl);
1922 	}
1923 
1924 	if (!TAILQ_EMPTY(&sc->sfl) != 0)
1925 		sc->sfl_timer =  timeout(refill_sfl, sc, drv_usectohz(100000));
1926 	mutex_exit(&sc->sfl_lock);
1927 }
1928 
1929 static void
add_fl_to_sfl(struct adapter * sc,struct sge_fl * fl)1930 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
1931 {
1932 	mutex_enter(&sc->sfl_lock);
1933 	FL_LOCK(fl);
1934 	if ((fl->flags & FL_DOOMED) == 0) {
1935 		if (TAILQ_EMPTY(&sc->sfl) != 0) {
1936 			sc->sfl_timer = timeout(refill_sfl, sc,
1937 			    drv_usectohz(100000));
1938 		}
1939 		fl->flags |= FL_STARVING;
1940 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
1941 	}
1942 	FL_UNLOCK(fl);
1943 	mutex_exit(&sc->sfl_lock);
1944 }
1945 
1946 static void
free_fl_bufs(struct sge_fl * fl)1947 free_fl_bufs(struct sge_fl *fl)
1948 {
1949 	struct fl_sdesc *sd;
1950 	unsigned int i;
1951 
1952 	FL_LOCK_ASSERT_OWNED(fl);
1953 
1954 	for (i = 0; i < fl->cap; i++) {
1955 		sd = &fl->sdesc[i];
1956 
1957 		if (sd->rxb != NULL) {
1958 			rxbuf_free(sd->rxb);
1959 			sd->rxb = NULL;
1960 		}
1961 	}
1962 }
1963 
1964 /*
1965  * Note that fl->cidx and fl->offset are left unchanged in case of failure.
1966  */
1967 static mblk_t *
get_fl_payload(struct adapter * sc,struct sge_fl * fl,uint32_t len_newbuf,int * fl_bufs_used)1968 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf,
1969     int *fl_bufs_used)
1970 {
1971 	struct mblk_pair frame = {0};
1972 	struct rxbuf *rxb;
1973 	mblk_t *m = NULL;
1974 	uint_t nbuf = 0, len, copy, n;
1975 	uint32_t cidx, offset, rcidx, roffset;
1976 
1977 	/*
1978 	 * The SGE won't pack a new frame into the current buffer if the entire
1979 	 * payload doesn't fit in the remaining space.  Move on to the next buf
1980 	 * in that case.
1981 	 */
1982 	rcidx = fl->cidx;
1983 	roffset = fl->offset;
1984 	if (fl->offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1985 		fl->offset = 0;
1986 		if (++fl->cidx == fl->cap)
1987 			fl->cidx = 0;
1988 		nbuf++;
1989 	}
1990 	cidx = fl->cidx;
1991 	offset = fl->offset;
1992 
1993 	len = G_RSPD_LEN(len_newbuf);	/* pktshift + payload length */
1994 	copy = (len <= fl->copy_threshold);
1995 	if (copy != 0) {
1996 		frame.head = m = allocb(len, BPRI_HI);
1997 		if (m == NULL) {
1998 			fl->allocb_fail++;
1999 			DTRACE_PROBE1(t4__fl_alloc_fail, struct sge_fl *, fl);
2000 			fl->cidx = rcidx;
2001 			fl->offset = roffset;
2002 			return (NULL);
2003 		}
2004 	}
2005 
2006 	while (len) {
2007 		rxb = fl->sdesc[cidx].rxb;
2008 		n = min(len, rxb->buf_size - offset);
2009 
2010 		(void) ddi_dma_sync(rxb->dhdl, offset, n,
2011 		    DDI_DMA_SYNC_FORKERNEL);
2012 
2013 		if (copy != 0)
2014 			bcopy(rxb->va + offset, m->b_wptr, n);
2015 		else {
2016 			m = desballoc((unsigned char *)rxb->va + offset, n,
2017 			    BPRI_HI, &rxb->freefunc);
2018 			if (m == NULL) {
2019 				fl->allocb_fail++;
2020 				DTRACE_PROBE1(t4__fl_alloc_fail,
2021 				    struct sge_fl *, fl);
2022 				if (frame.head)
2023 					freemsgchain(frame.head);
2024 				fl->cidx = rcidx;
2025 				fl->offset = roffset;
2026 				return (NULL);
2027 			}
2028 			atomic_inc_uint(&rxb->ref_cnt);
2029 			if (frame.head != NULL)
2030 				frame.tail->b_cont = m;
2031 			else
2032 				frame.head = m;
2033 			frame.tail = m;
2034 		}
2035 		m->b_wptr += n;
2036 		len -= n;
2037 		offset += roundup(n, sc->sge.fl_align);
2038 		ASSERT(offset <= rxb->buf_size);
2039 		if (offset == rxb->buf_size) {
2040 			offset = 0;
2041 			if (++cidx == fl->cap)
2042 				cidx = 0;
2043 			nbuf++;
2044 		}
2045 	}
2046 
2047 	fl->cidx = cidx;
2048 	fl->offset = offset;
2049 	(*fl_bufs_used) += nbuf;
2050 
2051 	ASSERT(frame.head != NULL);
2052 	return (frame.head);
2053 }
2054 
2055 /*
2056  * We'll do immediate data tx for non-LSO, but only when not coalescing.  We're
2057  * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
2058  * of immediate data.
2059  */
2060 #define	IMM_LEN ( \
2061 	2 * EQ_ESIZE \
2062 	- sizeof (struct fw_eth_tx_pkt_wr) \
2063 	- sizeof (struct cpl_tx_pkt_core))
2064 
2065 /*
2066  * Returns non-zero on failure, no need to cleanup anything in that case.
2067  *
2068  * Note 1: We always try to pull up the mblk if required and return E2BIG only
2069  * if this fails.
2070  *
2071  * Note 2: We'll also pullup incoming mblk if HW_LSO is set and the first mblk
2072  * does not have the TCP header in it.
2073  */
2074 static int
get_frame_txinfo(struct sge_txq * txq,mblk_t ** fp,struct txinfo * txinfo,int sgl_only)2075 get_frame_txinfo(struct sge_txq *txq, mblk_t **fp, struct txinfo *txinfo,
2076     int sgl_only)
2077 {
2078 	uint32_t flags = 0, len, n;
2079 	mblk_t *m = *fp;
2080 	int rc;
2081 
2082 	TXQ_LOCK_ASSERT_OWNED(txq);	/* will manipulate txb and dma_hdls */
2083 
2084 	mac_hcksum_get(m, NULL, NULL, NULL, NULL, &flags);
2085 	txinfo->flags = (flags & HCK_TX_FLAGS);
2086 
2087 	mac_lso_get(m, &txinfo->mss, &flags);
2088 	txinfo->flags |= (flags & HW_LSO_FLAGS);
2089 
2090 	if (flags & HW_LSO)
2091 		sgl_only = 1;	/* Do not allow immediate data with LSO */
2092 
2093 	/*
2094 	 * If checksum or segmentation offloads are requested, gather
2095 	 * information about the sizes and types of headers in the packet.
2096 	 */
2097 	if (txinfo->flags != 0) {
2098 		mac_ether_offload_info(m, &txinfo->meoi);
2099 	} else {
2100 		bzero(&txinfo->meoi, sizeof (txinfo->meoi));
2101 	}
2102 
2103 start:	txinfo->nsegs = 0;
2104 	txinfo->hdls_used = 0;
2105 	txinfo->txb_used = 0;
2106 	txinfo->len = 0;
2107 
2108 	/* total length and a rough estimate of # of segments */
2109 	n = 0;
2110 	for (; m; m = m->b_cont) {
2111 		len = MBLKL(m);
2112 		n += (len / PAGE_SIZE) + 1;
2113 		txinfo->len += len;
2114 	}
2115 	m = *fp;
2116 
2117 	if (n >= TX_SGL_SEGS || (flags & HW_LSO && MBLKL(m) < 50)) {
2118 		txq->pullup_early++;
2119 		m = msgpullup(*fp, -1);
2120 		if (m == NULL) {
2121 			txq->pullup_failed++;
2122 			return (E2BIG);	/* (*fp) left as it was */
2123 		}
2124 		freemsg(*fp);
2125 		*fp = m;
2126 		mac_hcksum_set(m, 0, 0, 0, 0, txinfo->flags);
2127 	}
2128 
2129 	if (txinfo->len <= IMM_LEN && !sgl_only)
2130 		return (0);	/* nsegs = 0 tells caller to use imm. tx */
2131 
2132 	if (txinfo->len <= txq->copy_threshold &&
2133 	    copy_into_txb(txq, m, txinfo->len, txinfo) == 0)
2134 		goto done;
2135 
2136 	for (; m; m = m->b_cont) {
2137 
2138 		len = MBLKL(m);
2139 
2140 		/* Use tx copy buffer if this mblk is small enough */
2141 		if (len <= txq->copy_threshold &&
2142 		    copy_into_txb(txq, m, len, txinfo) == 0)
2143 			continue;
2144 
2145 		/* Add DMA bindings for this mblk to the SGL */
2146 		rc = add_mblk(txq, txinfo, m, len);
2147 
2148 		if (rc == E2BIG ||
2149 		    (txinfo->nsegs == TX_SGL_SEGS && m->b_cont)) {
2150 
2151 			txq->pullup_late++;
2152 			m = msgpullup(*fp, -1);
2153 			if (m != NULL) {
2154 				free_txinfo_resources(txq, txinfo);
2155 				freemsg(*fp);
2156 				*fp = m;
2157 				mac_hcksum_set(m, 0, 0, 0, 0, txinfo->flags);
2158 				goto start;
2159 			}
2160 
2161 			txq->pullup_failed++;
2162 			rc = E2BIG;
2163 		}
2164 
2165 		if (rc != 0) {
2166 			free_txinfo_resources(txq, txinfo);
2167 			return (rc);
2168 		}
2169 	}
2170 
2171 	ASSERT(txinfo->nsegs > 0 && txinfo->nsegs <= TX_SGL_SEGS);
2172 
2173 done:
2174 
2175 	/*
2176 	 * Store the # of flits required to hold this frame's SGL in nflits.  An
2177 	 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
2178 	 * multiple (len0 + len1, addr0, addr1) tuples.  If addr1 is not used
2179 	 * then len1 must be set to 0.
2180 	 */
2181 	n = txinfo->nsegs - 1;
2182 	txinfo->nflits = (3 * n) / 2 + (n & 1) + 2;
2183 	if (n & 1)
2184 		txinfo->sgl.sge[n / 2].len[1] = cpu_to_be32(0);
2185 
2186 	txinfo->sgl.cmd_nsge = cpu_to_be32(V_ULPTX_CMD((u32)ULP_TX_SC_DSGL) |
2187 	    V_ULPTX_NSGE(txinfo->nsegs));
2188 
2189 	return (0);
2190 }
2191 
2192 static inline int
fits_in_txb(struct sge_txq * txq,int len,int * waste)2193 fits_in_txb(struct sge_txq *txq, int len, int *waste)
2194 {
2195 	if (txq->txb_avail < len)
2196 		return (0);
2197 
2198 	if (txq->txb_next + len <= txq->txb_size) {
2199 		*waste = 0;
2200 		return (1);
2201 	}
2202 
2203 	*waste = txq->txb_size - txq->txb_next;
2204 
2205 	return (txq->txb_avail - *waste < len ? 0 : 1);
2206 }
2207 
2208 #define	TXB_CHUNK	64
2209 
2210 /*
2211  * Copies the specified # of bytes into txq's tx copy buffer and updates txinfo
2212  * and txq to indicate resources used.  Caller has to make sure that those many
2213  * bytes are available in the mblk chain (b_cont linked).
2214  */
2215 static inline int
copy_into_txb(struct sge_txq * txq,mblk_t * m,int len,struct txinfo * txinfo)2216 copy_into_txb(struct sge_txq *txq, mblk_t *m, int len, struct txinfo *txinfo)
2217 {
2218 	int waste, n;
2219 
2220 	TXQ_LOCK_ASSERT_OWNED(txq);	/* will manipulate txb */
2221 
2222 	if (!fits_in_txb(txq, len, &waste)) {
2223 		txq->txb_full++;
2224 		return (ENOMEM);
2225 	}
2226 
2227 	if (waste != 0) {
2228 		ASSERT((waste & (TXB_CHUNK - 1)) == 0);
2229 		txinfo->txb_used += waste;
2230 		txq->txb_avail -= waste;
2231 		txq->txb_next = 0;
2232 	}
2233 
2234 	for (n = 0; n < len; m = m->b_cont) {
2235 		bcopy(m->b_rptr, txq->txb_va + txq->txb_next + n, MBLKL(m));
2236 		n += MBLKL(m);
2237 	}
2238 
2239 	add_seg(txinfo, txq->txb_ba + txq->txb_next, len);
2240 
2241 	n = roundup(len, TXB_CHUNK);
2242 	txinfo->txb_used += n;
2243 	txq->txb_avail -= n;
2244 	txq->txb_next += n;
2245 	ASSERT(txq->txb_next <= txq->txb_size);
2246 	if (txq->txb_next == txq->txb_size)
2247 		txq->txb_next = 0;
2248 
2249 	return (0);
2250 }
2251 
2252 static inline void
add_seg(struct txinfo * txinfo,uint64_t ba,uint32_t len)2253 add_seg(struct txinfo *txinfo, uint64_t ba, uint32_t len)
2254 {
2255 	ASSERT(txinfo->nsegs < TX_SGL_SEGS);	/* must have room */
2256 
2257 	if (txinfo->nsegs != 0) {
2258 		int idx = txinfo->nsegs - 1;
2259 		txinfo->sgl.sge[idx / 2].len[idx & 1] = cpu_to_be32(len);
2260 		txinfo->sgl.sge[idx / 2].addr[idx & 1] = cpu_to_be64(ba);
2261 	} else {
2262 		txinfo->sgl.len0 = cpu_to_be32(len);
2263 		txinfo->sgl.addr0 = cpu_to_be64(ba);
2264 	}
2265 	txinfo->nsegs++;
2266 }
2267 
2268 /*
2269  * This function cleans up any partially allocated resources when it fails so
2270  * there's nothing for the caller to clean up in that case.
2271  *
2272  * EIO indicates permanent failure.  Caller should drop the frame containing
2273  * this mblk and continue.
2274  *
2275  * E2BIG indicates that the SGL length for this mblk exceeds the hardware
2276  * limit.  Caller should pull up the frame before trying to send it out.
2277  * (This error means our pullup_early heuristic did not work for this frame)
2278  *
2279  * ENOMEM indicates a temporary shortage of resources (DMA handles, other DMA
2280  * resources, etc.).  Caller should suspend the tx queue and wait for reclaim to
2281  * free up resources.
2282  */
2283 static inline int
add_mblk(struct sge_txq * txq,struct txinfo * txinfo,mblk_t * m,int len)2284 add_mblk(struct sge_txq *txq, struct txinfo *txinfo, mblk_t *m, int len)
2285 {
2286 	ddi_dma_handle_t dhdl;
2287 	ddi_dma_cookie_t cookie;
2288 	uint_t ccount = 0;
2289 	int rc;
2290 
2291 	TXQ_LOCK_ASSERT_OWNED(txq);	/* will manipulate dhdls */
2292 
2293 	if (txq->tx_dhdl_avail == 0) {
2294 		txq->dma_hdl_failed++;
2295 		return (ENOMEM);
2296 	}
2297 
2298 	dhdl = txq->tx_dhdl[txq->tx_dhdl_pidx];
2299 	rc = ddi_dma_addr_bind_handle(dhdl, NULL, (caddr_t)m->b_rptr, len,
2300 	    DDI_DMA_WRITE | DDI_DMA_STREAMING, DDI_DMA_DONTWAIT, NULL, &cookie,
2301 	    &ccount);
2302 	if (rc != DDI_DMA_MAPPED) {
2303 		txq->dma_map_failed++;
2304 
2305 		ASSERT(rc != DDI_DMA_INUSE && rc != DDI_DMA_PARTIAL_MAP);
2306 
2307 		return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EIO);
2308 	}
2309 
2310 	if (ccount + txinfo->nsegs > TX_SGL_SEGS) {
2311 		(void) ddi_dma_unbind_handle(dhdl);
2312 		return (E2BIG);
2313 	}
2314 
2315 	add_seg(txinfo, cookie.dmac_laddress, cookie.dmac_size);
2316 	while (--ccount) {
2317 		ddi_dma_nextcookie(dhdl, &cookie);
2318 		add_seg(txinfo, cookie.dmac_laddress, cookie.dmac_size);
2319 	}
2320 
2321 	if (++txq->tx_dhdl_pidx == txq->tx_dhdl_total)
2322 		txq->tx_dhdl_pidx = 0;
2323 	txq->tx_dhdl_avail--;
2324 	txinfo->hdls_used++;
2325 
2326 	return (0);
2327 }
2328 
2329 /*
2330  * Releases all the txq resources used up in the specified txinfo.
2331  */
2332 static void
free_txinfo_resources(struct sge_txq * txq,struct txinfo * txinfo)2333 free_txinfo_resources(struct sge_txq *txq, struct txinfo *txinfo)
2334 {
2335 	int n;
2336 
2337 	TXQ_LOCK_ASSERT_OWNED(txq);	/* dhdls, txb */
2338 
2339 	n = txinfo->txb_used;
2340 	if (n > 0) {
2341 		txq->txb_avail += n;
2342 		if (n <= txq->txb_next)
2343 			txq->txb_next -= n;
2344 		else {
2345 			n -= txq->txb_next;
2346 			txq->txb_next = txq->txb_size - n;
2347 		}
2348 	}
2349 
2350 	for (n = txinfo->hdls_used; n > 0; n--) {
2351 		if (txq->tx_dhdl_pidx > 0)
2352 			txq->tx_dhdl_pidx--;
2353 		else
2354 			txq->tx_dhdl_pidx = txq->tx_dhdl_total - 1;
2355 		txq->tx_dhdl_avail++;
2356 		(void) ddi_dma_unbind_handle(txq->tx_dhdl[txq->tx_dhdl_pidx]);
2357 	}
2358 }
2359 
2360 /*
2361  * Returns 0 to indicate that m has been accepted into a coalesced tx work
2362  * request.  It has either been folded into txpkts or txpkts was flushed and m
2363  * has started a new coalesced work request (as the first frame in a fresh
2364  * txpkts).
2365  *
2366  * Returns non-zero to indicate a failure - caller is responsible for
2367  * transmitting m, if there was anything in txpkts it has been flushed.
2368  */
2369 static int
add_to_txpkts(struct sge_txq * txq,struct txpkts * txpkts,mblk_t * m,struct txinfo * txinfo)2370 add_to_txpkts(struct sge_txq *txq, struct txpkts *txpkts, mblk_t *m,
2371     struct txinfo *txinfo)
2372 {
2373 	struct sge_eq *eq = &txq->eq;
2374 	int can_coalesce;
2375 	struct tx_sdesc *txsd;
2376 	uint8_t flits;
2377 
2378 	TXQ_LOCK_ASSERT_OWNED(txq);
2379 
2380 	if (txpkts->npkt > 0) {
2381 		flits = TXPKTS_PKT_HDR + txinfo->nflits;
2382 		can_coalesce = (txinfo->flags & HW_LSO) == 0 &&
2383 		    txpkts->nflits + flits <= TX_WR_FLITS &&
2384 		    txpkts->nflits + flits <= eq->avail * 8 &&
2385 		    txpkts->plen + txinfo->len < 65536;
2386 
2387 		if (can_coalesce != 0) {
2388 			txpkts->tail->b_next = m;
2389 			txpkts->tail = m;
2390 			txpkts->npkt++;
2391 			txpkts->nflits += flits;
2392 			txpkts->plen += txinfo->len;
2393 
2394 			txsd = &txq->sdesc[eq->pidx];
2395 			txsd->txb_used += txinfo->txb_used;
2396 			txsd->hdls_used += txinfo->hdls_used;
2397 
2398 			return (0);
2399 		}
2400 
2401 		/*
2402 		 * Couldn't coalesce m into txpkts.  The first order of business
2403 		 * is to send txpkts on its way.  Then we'll revisit m.
2404 		 */
2405 		write_txpkts_wr(txq, txpkts);
2406 	}
2407 
2408 	/*
2409 	 * Check if we can start a new coalesced tx work request with m as
2410 	 * the first packet in it.
2411 	 */
2412 
2413 	ASSERT(txpkts->npkt == 0);
2414 	ASSERT(txinfo->len < 65536);
2415 
2416 	flits = TXPKTS_WR_HDR + txinfo->nflits;
2417 	can_coalesce = (txinfo->flags & HW_LSO) == 0 &&
2418 	    flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
2419 
2420 	if (can_coalesce == 0)
2421 		return (EINVAL);
2422 
2423 	/*
2424 	 * Start a fresh coalesced tx WR with m as the first frame in it.
2425 	 */
2426 	txpkts->tail = m;
2427 	txpkts->npkt = 1;
2428 	txpkts->nflits = flits;
2429 	txpkts->flitp = &eq->desc[eq->pidx].flit[2];
2430 	txpkts->plen = txinfo->len;
2431 
2432 	txsd = &txq->sdesc[eq->pidx];
2433 	txsd->m = m;
2434 	txsd->txb_used = txinfo->txb_used;
2435 	txsd->hdls_used = txinfo->hdls_used;
2436 
2437 	return (0);
2438 }
2439 
2440 /*
2441  * Note that write_txpkts_wr can never run out of hardware descriptors (but
2442  * write_txpkt_wr can).  add_to_txpkts ensures that a frame is accepted for
2443  * coalescing only if sufficient hardware descriptors are available.
2444  */
2445 static void
write_txpkts_wr(struct sge_txq * txq,struct txpkts * txpkts)2446 write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
2447 {
2448 	struct sge_eq *eq = &txq->eq;
2449 	struct fw_eth_tx_pkts_wr *wr;
2450 	struct tx_sdesc *txsd;
2451 	uint32_t ctrl;
2452 	uint16_t ndesc;
2453 
2454 	TXQ_LOCK_ASSERT_OWNED(txq);	/* pidx, avail */
2455 
2456 	ndesc = howmany(txpkts->nflits, 8);
2457 
2458 	wr = (void *)&eq->desc[eq->pidx];
2459 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR) |
2460 	    V_FW_WR_IMMDLEN(0)); /* immdlen does not matter in this WR */
2461 	ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
2462 	if (eq->avail == ndesc)
2463 		ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
2464 	wr->equiq_to_len16 = cpu_to_be32(ctrl);
2465 	wr->plen = cpu_to_be16(txpkts->plen);
2466 	wr->npkt = txpkts->npkt;
2467 	wr->r3 = wr->type = 0;
2468 
2469 	/* Everything else already written */
2470 
2471 	txsd = &txq->sdesc[eq->pidx];
2472 	txsd->desc_used = ndesc;
2473 
2474 	txq->txb_used += txsd->txb_used / TXB_CHUNK;
2475 	txq->hdl_used += txsd->hdls_used;
2476 
2477 	ASSERT(eq->avail >= ndesc);
2478 
2479 	eq->pending += ndesc;
2480 	eq->avail -= ndesc;
2481 	eq->pidx += ndesc;
2482 	if (eq->pidx >= eq->cap)
2483 		eq->pidx -= eq->cap;
2484 
2485 	txq->txpkts_pkts += txpkts->npkt;
2486 	txq->txpkts_wrs++;
2487 	txpkts->npkt = 0;	/* emptied */
2488 }
2489 
2490 typedef enum {
2491 	COS_SUCCESS,	/* ctrl flit contains proper bits for csum offload */
2492 	COS_IGNORE,	/* no csum offload requested */
2493 	COS_FAIL,	/* csum offload requested, but pkt data missing */
2494 } csum_offload_status_t;
2495 /*
2496  * Build a ctrl1 flit for checksum offload in CPL_TX_PKT_XT command
2497  */
2498 static csum_offload_status_t
csum_to_ctrl(const struct txinfo * txinfo,uint32_t chip_version,uint64_t * ctrlp)2499 csum_to_ctrl(const struct txinfo *txinfo, uint32_t chip_version,
2500     uint64_t *ctrlp)
2501 {
2502 	const mac_ether_offload_info_t *meoi = &txinfo->meoi;
2503 	const uint32_t tx_flags = txinfo->flags;
2504 	const boolean_t needs_l3_csum = (tx_flags & HW_LSO) != 0 ||
2505 	    (tx_flags & HCK_IPV4_HDRCKSUM) != 0;
2506 	const boolean_t needs_l4_csum = (tx_flags & HW_LSO) != 0 ||
2507 	    (tx_flags & (HCK_FULLCKSUM | HCK_PARTIALCKSUM)) != 0;
2508 
2509 	/*
2510 	 * Default to disabling any checksumming both for cases where it is not
2511 	 * requested, but also if we cannot appropriately interrogate the
2512 	 * required information from the packet.
2513 	 */
2514 	uint64_t ctrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS;
2515 	if (!needs_l3_csum && !needs_l4_csum) {
2516 		*ctrlp = ctrl;
2517 		return (COS_IGNORE);
2518 	}
2519 
2520 	if (needs_l3_csum) {
2521 		/* Only IPv4 checksums are supported (for L3) */
2522 		if ((meoi->meoi_flags & MEOI_L3INFO_SET) == 0 ||
2523 		    meoi->meoi_l3proto != ETHERTYPE_IP) {
2524 			*ctrlp = ctrl;
2525 			return (COS_FAIL);
2526 		}
2527 		ctrl &= ~F_TXPKT_IPCSUM_DIS;
2528 	}
2529 
2530 	if (needs_l4_csum) {
2531 		/*
2532 		 * We need at least all of the L3 header to make decisions about
2533 		 * the contained L4 protocol.  If not all of the L4 information
2534 		 * is present, we will leave it to the NIC to checksum all it is
2535 		 * able to.
2536 		 */
2537 		if ((meoi->meoi_flags & MEOI_L3INFO_SET) == 0) {
2538 			*ctrlp = ctrl;
2539 			return (COS_FAIL);
2540 		}
2541 
2542 		/*
2543 		 * Since we are parsing the packet anyways, make the checksum
2544 		 * decision based on the L4 protocol, rather than using the
2545 		 * Generic TCP/UDP checksum using start & end offsets in the
2546 		 * packet (like requested with PARTIALCKSUM).
2547 		 */
2548 		int csum_type = -1;
2549 		if (meoi->meoi_l3proto == ETHERTYPE_IP &&
2550 		    meoi->meoi_l4proto == IPPROTO_TCP) {
2551 			csum_type = TX_CSUM_TCPIP;
2552 		} else if (meoi->meoi_l3proto == ETHERTYPE_IPV6 &&
2553 		    meoi->meoi_l4proto == IPPROTO_TCP) {
2554 			csum_type = TX_CSUM_TCPIP6;
2555 		} else if (meoi->meoi_l3proto == ETHERTYPE_IP &&
2556 		    meoi->meoi_l4proto == IPPROTO_UDP) {
2557 			csum_type = TX_CSUM_UDPIP;
2558 		} else if (meoi->meoi_l3proto == ETHERTYPE_IPV6 &&
2559 		    meoi->meoi_l4proto == IPPROTO_UDP) {
2560 			csum_type = TX_CSUM_UDPIP6;
2561 		} else {
2562 			*ctrlp = ctrl;
2563 			return (COS_FAIL);
2564 		}
2565 
2566 		ASSERT(csum_type != -1);
2567 		ctrl &= ~F_TXPKT_L4CSUM_DIS;
2568 		ctrl |= V_TXPKT_CSUM_TYPE(csum_type);
2569 	}
2570 
2571 	if ((ctrl & F_TXPKT_IPCSUM_DIS) == 0 &&
2572 	    (ctrl & F_TXPKT_L4CSUM_DIS) != 0) {
2573 		/*
2574 		 * If only the IPv4 checksum is requested, we need to set an
2575 		 * appropriate type in the command for it.
2576 		 */
2577 		ctrl |= V_TXPKT_CSUM_TYPE(TX_CSUM_IP);
2578 	}
2579 
2580 	ASSERT(ctrl != (F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS));
2581 
2582 	/*
2583 	 * Fill in the requisite L2/L3 header length data.
2584 	 *
2585 	 * The Ethernet header length is recorded as 'size - 14 bytes'
2586 	 */
2587 	const uint8_t eth_len = meoi->meoi_l2hlen - 14;
2588 	if (chip_version >= CHELSIO_T6) {
2589 		ctrl |= V_T6_TXPKT_ETHHDR_LEN(eth_len);
2590 	} else {
2591 		ctrl |= V_TXPKT_ETHHDR_LEN(eth_len);
2592 	}
2593 	ctrl |= V_TXPKT_IPHDR_LEN(meoi->meoi_l3hlen);
2594 
2595 	*ctrlp = ctrl;
2596 	return (COS_SUCCESS);
2597 }
2598 
2599 static int
write_txpkt_wr(struct port_info * pi,struct sge_txq * txq,mblk_t * m,struct txinfo * txinfo)2600 write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, mblk_t *m,
2601     struct txinfo *txinfo)
2602 {
2603 	struct sge_eq *eq = &txq->eq;
2604 	struct fw_eth_tx_pkt_wr *wr;
2605 	struct cpl_tx_pkt_core *cpl;
2606 	uint32_t ctrl;	/* used in many unrelated places */
2607 	uint64_t ctrl1;
2608 	int nflits, ndesc;
2609 	struct tx_sdesc *txsd;
2610 	caddr_t dst;
2611 	const mac_ether_offload_info_t *meoi = &txinfo->meoi;
2612 
2613 	TXQ_LOCK_ASSERT_OWNED(txq);	/* pidx, avail */
2614 
2615 	/*
2616 	 * Do we have enough flits to send this frame out?
2617 	 */
2618 	ctrl = sizeof (struct cpl_tx_pkt_core);
2619 	if (txinfo->flags & HW_LSO) {
2620 		nflits = TXPKT_LSO_WR_HDR;
2621 		ctrl += sizeof (struct cpl_tx_pkt_lso_core);
2622 	} else {
2623 		nflits = TXPKT_WR_HDR;
2624 	}
2625 	if (txinfo->nsegs > 0)
2626 		nflits += txinfo->nflits;
2627 	else {
2628 		nflits += howmany(txinfo->len, 8);
2629 		ctrl += txinfo->len;
2630 	}
2631 	ndesc = howmany(nflits, 8);
2632 	if (ndesc > eq->avail)
2633 		return (ENOMEM);
2634 
2635 	/* Firmware work request header */
2636 	wr = (void *)&eq->desc[eq->pidx];
2637 	wr->op_immdlen = cpu_to_be32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
2638 	    V_FW_WR_IMMDLEN(ctrl));
2639 	ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
2640 	if (eq->avail == ndesc)
2641 		ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
2642 	wr->equiq_to_len16 = cpu_to_be32(ctrl);
2643 	wr->r3 = 0;
2644 
2645 	if (txinfo->flags & HW_LSO &&
2646 	    (meoi->meoi_flags & MEOI_L4INFO_SET) != 0 &&
2647 	    meoi->meoi_l4proto == IPPROTO_TCP) {
2648 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2649 
2650 		ctrl = V_LSO_OPCODE((u32)CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
2651 		    F_LSO_LAST_SLICE;
2652 
2653 		if (meoi->meoi_l2hlen > sizeof (struct ether_header)) {
2654 			/*
2655 			 * This presently assumes a standard VLAN header,
2656 			 * without support for Q-in-Q.
2657 			 */
2658 			ctrl |= V_LSO_ETHHDR_LEN(1);
2659 		}
2660 
2661 		switch (meoi->meoi_l3proto) {
2662 		case ETHERTYPE_IPV6:
2663 			ctrl |= F_LSO_IPV6;
2664 			/* FALLTHROUGH */
2665 		case ETHERTYPE_IP:
2666 			ctrl |= V_LSO_IPHDR_LEN(meoi->meoi_l3hlen / 4);
2667 			break;
2668 		default:
2669 			break;
2670 		}
2671 
2672 		ctrl |= V_LSO_TCPHDR_LEN(meoi->meoi_l4hlen / 4);
2673 
2674 		lso->lso_ctrl = cpu_to_be32(ctrl);
2675 		lso->ipid_ofst = cpu_to_be16(0);
2676 		lso->mss = cpu_to_be16(txinfo->mss);
2677 		lso->seqno_offset = cpu_to_be32(0);
2678 		if (is_t4(pi->adapter->params.chip))
2679 			lso->len = cpu_to_be32(txinfo->len);
2680 		else
2681 			lso->len = cpu_to_be32(V_LSO_T5_XFER_SIZE(txinfo->len));
2682 
2683 		cpl = (void *)(lso + 1);
2684 
2685 		txq->tso_wrs++;
2686 	} else {
2687 		cpl = (void *)(wr + 1);
2688 	}
2689 
2690 	/* Checksum offload */
2691 	switch (csum_to_ctrl(txinfo,
2692 	    CHELSIO_CHIP_VERSION(pi->adapter->params.chip), &ctrl1)) {
2693 	case COS_SUCCESS:
2694 		txq->txcsum++;
2695 		break;
2696 	case COS_FAIL:
2697 		/*
2698 		 * Packet will be going out with checksums which are probably
2699 		 * wrong but there is little we can do now.
2700 		 */
2701 		txq->csum_failed++;
2702 		break;
2703 	default:
2704 		break;
2705 	}
2706 
2707 	/* CPL header */
2708 	cpl->ctrl0 = cpu_to_be32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
2709 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
2710 	cpl->pack = 0;
2711 	cpl->len = cpu_to_be16(txinfo->len);
2712 	cpl->ctrl1 = cpu_to_be64(ctrl1);
2713 
2714 	/* Software descriptor */
2715 	txsd = &txq->sdesc[eq->pidx];
2716 	txsd->m = m;
2717 	txsd->txb_used = txinfo->txb_used;
2718 	txsd->hdls_used = txinfo->hdls_used;
2719 	/* LINTED: E_ASSIGN_NARROW_CONV */
2720 	txsd->desc_used = ndesc;
2721 
2722 	txq->txb_used += txinfo->txb_used / TXB_CHUNK;
2723 	txq->hdl_used += txinfo->hdls_used;
2724 
2725 	eq->pending += ndesc;
2726 	eq->avail -= ndesc;
2727 	eq->pidx += ndesc;
2728 	if (eq->pidx >= eq->cap)
2729 		eq->pidx -= eq->cap;
2730 
2731 	/* SGL */
2732 	dst = (void *)(cpl + 1);
2733 	if (txinfo->nsegs > 0) {
2734 		txq->sgl_wrs++;
2735 		copy_to_txd(eq, (void *)&txinfo->sgl, &dst, txinfo->nflits * 8);
2736 
2737 		/* Need to zero-pad to a 16 byte boundary if not on one */
2738 		if ((uintptr_t)dst & 0xf)
2739 			/* LINTED: E_BAD_PTR_CAST_ALIGN */
2740 			*(uint64_t *)dst = 0;
2741 
2742 	} else {
2743 		txq->imm_wrs++;
2744 #ifdef DEBUG
2745 		ctrl = txinfo->len;
2746 #endif
2747 		for (; m; m = m->b_cont) {
2748 			copy_to_txd(eq, (void *)m->b_rptr, &dst, MBLKL(m));
2749 #ifdef DEBUG
2750 			ctrl -= MBLKL(m);
2751 #endif
2752 		}
2753 		ASSERT(ctrl == 0);
2754 	}
2755 
2756 	txq->txpkt_wrs++;
2757 	return (0);
2758 }
2759 
2760 static inline void
write_ulp_cpl_sgl(struct port_info * pi,struct sge_txq * txq,struct txpkts * txpkts,struct txinfo * txinfo)2761 write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
2762     struct txpkts *txpkts, struct txinfo *txinfo)
2763 {
2764 	struct ulp_txpkt *ulpmc;
2765 	struct ulptx_idata *ulpsc;
2766 	struct cpl_tx_pkt_core *cpl;
2767 	uintptr_t flitp, start, end;
2768 	uint64_t ctrl;
2769 	caddr_t dst;
2770 
2771 	ASSERT(txpkts->npkt > 0);
2772 
2773 	start = (uintptr_t)txq->eq.desc;
2774 	end = (uintptr_t)txq->eq.spg;
2775 
2776 	/* Checksum offload */
2777 	switch (csum_to_ctrl(txinfo,
2778 	    CHELSIO_CHIP_VERSION(pi->adapter->params.chip), &ctrl)) {
2779 	case COS_SUCCESS:
2780 		txq->txcsum++;
2781 		break;
2782 	case COS_FAIL:
2783 		/*
2784 		 * Packet will be going out with checksums which are probably
2785 		 * wrong but there is little we can do now.
2786 		 */
2787 		txq->csum_failed++;
2788 		break;
2789 	default:
2790 		break;
2791 	}
2792 
2793 	/*
2794 	 * The previous packet's SGL must have ended at a 16 byte boundary (this
2795 	 * is required by the firmware/hardware).  It follows that flitp cannot
2796 	 * wrap around between the ULPTX master command and ULPTX subcommand (8
2797 	 * bytes each), and that it can not wrap around in the middle of the
2798 	 * cpl_tx_pkt_core either.
2799 	 */
2800 	flitp = (uintptr_t)txpkts->flitp;
2801 	ASSERT((flitp & 0xf) == 0);
2802 
2803 	/* ULP master command */
2804 	ulpmc = (void *)flitp;
2805 	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
2806 	ulpmc->len = htonl(howmany(sizeof (*ulpmc) + sizeof (*ulpsc) +
2807 	    sizeof (*cpl) + 8 * txinfo->nflits, 16));
2808 
2809 	/* ULP subcommand */
2810 	ulpsc = (void *)(ulpmc + 1);
2811 	ulpsc->cmd_more = cpu_to_be32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
2812 	    F_ULP_TX_SC_MORE);
2813 	ulpsc->len = cpu_to_be32(sizeof (struct cpl_tx_pkt_core));
2814 
2815 	flitp += sizeof (*ulpmc) + sizeof (*ulpsc);
2816 	if (flitp == end)
2817 		flitp = start;
2818 
2819 	/* CPL_TX_PKT_XT */
2820 	cpl = (void *)flitp;
2821 	cpl->ctrl0 = cpu_to_be32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
2822 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
2823 	cpl->pack = 0;
2824 	cpl->len = cpu_to_be16(txinfo->len);
2825 	cpl->ctrl1 = cpu_to_be64(ctrl);
2826 
2827 	flitp += sizeof (*cpl);
2828 	if (flitp == end)
2829 		flitp = start;
2830 
2831 	/* SGL for this frame */
2832 	dst = (caddr_t)flitp;
2833 	copy_to_txd(&txq->eq, (void *)&txinfo->sgl, &dst, txinfo->nflits * 8);
2834 	flitp = (uintptr_t)dst;
2835 
2836 	/* Zero pad and advance to a 16 byte boundary if not already at one. */
2837 	if (flitp & 0xf) {
2838 
2839 		/* no matter what, flitp should be on an 8 byte boundary */
2840 		ASSERT((flitp & 0x7) == 0);
2841 
2842 		*(uint64_t *)flitp = 0;
2843 		flitp += sizeof (uint64_t);
2844 		txpkts->nflits++;
2845 	}
2846 
2847 	if (flitp == end)
2848 		flitp = start;
2849 
2850 	txpkts->flitp = (void *)flitp;
2851 }
2852 
2853 static inline void
copy_to_txd(struct sge_eq * eq,caddr_t from,caddr_t * to,int len)2854 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
2855 {
2856 	if ((uintptr_t)(*to) + len <= (uintptr_t)eq->spg) {
2857 		bcopy(from, *to, len);
2858 		(*to) += len;
2859 	} else {
2860 		int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
2861 
2862 		bcopy(from, *to, portion);
2863 		from += portion;
2864 		portion = len - portion;	/* remaining */
2865 		bcopy(from, (void *)eq->desc, portion);
2866 		(*to) = (caddr_t)eq->desc + portion;
2867 	}
2868 }
2869 
2870 static inline void
ring_tx_db(struct adapter * sc,struct sge_eq * eq)2871 ring_tx_db(struct adapter *sc, struct sge_eq *eq)
2872 {
2873 	int val, db_mode;
2874 	uint_t db = eq->doorbells;
2875 
2876 	if (eq->pending > 1)
2877 		db &= ~DOORBELL_WCWR;
2878 
2879 	if (eq->pending > eq->pidx) {
2880 		int offset = eq->cap - (eq->pending - eq->pidx);
2881 
2882 		/* pidx has wrapped around since last doorbell */
2883 
2884 		(void) ddi_dma_sync(eq->desc_dhdl,
2885 		    offset * sizeof (struct tx_desc), 0,
2886 		    DDI_DMA_SYNC_FORDEV);
2887 		(void) ddi_dma_sync(eq->desc_dhdl,
2888 		    0, eq->pidx * sizeof (struct tx_desc),
2889 		    DDI_DMA_SYNC_FORDEV);
2890 	} else if (eq->pending > 0) {
2891 		(void) ddi_dma_sync(eq->desc_dhdl,
2892 		    (eq->pidx - eq->pending) * sizeof (struct tx_desc),
2893 		    eq->pending * sizeof (struct tx_desc),
2894 		    DDI_DMA_SYNC_FORDEV);
2895 	}
2896 
2897 	membar_producer();
2898 
2899 	if (is_t4(sc->params.chip))
2900 		val = V_PIDX(eq->pending);
2901 	else
2902 		val = V_PIDX_T5(eq->pending);
2903 
2904 	db_mode = (1 << (ffs(db) - 1));
2905 	switch (db_mode) {
2906 		case DOORBELL_UDB:
2907 			*eq->udb = LE_32(V_QID(eq->udb_qid) | val);
2908 			break;
2909 
2910 		case DOORBELL_WCWR:
2911 			{
2912 				volatile uint64_t *dst, *src;
2913 				int i;
2914 				/*
2915 				 * Queues whose 128B doorbell segment fits in
2916 				 * the page do not use relative qid
2917 				 * (udb_qid is always 0).  Only queues with
2918 				 * doorbell segments can do WCWR.
2919 				 */
2920 				ASSERT(eq->udb_qid == 0 && eq->pending == 1);
2921 
2922 				dst = (volatile void *)((uintptr_t)eq->udb +
2923 				    UDBS_WR_OFFSET - UDBS_DB_OFFSET);
2924 				i = eq->pidx ? eq->pidx - 1 : eq->cap - 1;
2925 				src = (void *)&eq->desc[i];
2926 				while (src != (void *)&eq->desc[i + 1]) {
2927 					*dst++ = *src++;
2928 				}
2929 				membar_producer();
2930 				break;
2931 			}
2932 
2933 		case DOORBELL_UDBWC:
2934 			*eq->udb = LE_32(V_QID(eq->udb_qid) | val);
2935 			membar_producer();
2936 			break;
2937 
2938 		case DOORBELL_KDB:
2939 			t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
2940 			    V_QID(eq->cntxt_id) | val);
2941 			break;
2942 	}
2943 
2944 	eq->pending = 0;
2945 }
2946 
2947 static int
reclaim_tx_descs(struct sge_txq * txq,int howmany)2948 reclaim_tx_descs(struct sge_txq *txq, int howmany)
2949 {
2950 	struct tx_sdesc *txsd;
2951 	uint_t cidx, can_reclaim, reclaimed, txb_freed, hdls_freed;
2952 	struct sge_eq *eq = &txq->eq;
2953 
2954 	EQ_LOCK_ASSERT_OWNED(eq);
2955 
2956 	cidx = eq->spg->cidx;	/* stable snapshot */
2957 	cidx = be16_to_cpu(cidx);
2958 
2959 	if (cidx >= eq->cidx)
2960 		can_reclaim = cidx - eq->cidx;
2961 	else
2962 		can_reclaim = cidx + eq->cap - eq->cidx;
2963 
2964 	if (can_reclaim == 0)
2965 		return (0);
2966 
2967 	txb_freed = hdls_freed = reclaimed = 0;
2968 	do {
2969 		int ndesc;
2970 
2971 		txsd = &txq->sdesc[eq->cidx];
2972 		ndesc = txsd->desc_used;
2973 
2974 		/* Firmware doesn't return "partial" credits. */
2975 		ASSERT(can_reclaim >= ndesc);
2976 
2977 		/*
2978 		 * We always keep mblk around, even for immediate data.  If mblk
2979 		 * is NULL, this has to be the software descriptor for a credit
2980 		 * flush work request.
2981 		 */
2982 		if (txsd->m != NULL)
2983 			freemsgchain(txsd->m);
2984 #ifdef DEBUG
2985 		else {
2986 			ASSERT(txsd->txb_used == 0);
2987 			ASSERT(txsd->hdls_used == 0);
2988 			ASSERT(ndesc == 1);
2989 		}
2990 #endif
2991 
2992 		txb_freed += txsd->txb_used;
2993 		hdls_freed += txsd->hdls_used;
2994 		reclaimed += ndesc;
2995 
2996 		eq->cidx += ndesc;
2997 		if (eq->cidx >= eq->cap)
2998 			eq->cidx -= eq->cap;
2999 
3000 		can_reclaim -= ndesc;
3001 
3002 	} while (can_reclaim && reclaimed < howmany);
3003 
3004 	eq->avail += reclaimed;
3005 	ASSERT(eq->avail < eq->cap);	/* avail tops out at (cap - 1) */
3006 
3007 	txq->txb_avail += txb_freed;
3008 
3009 	txq->tx_dhdl_avail += hdls_freed;
3010 	ASSERT(txq->tx_dhdl_avail <= txq->tx_dhdl_total);
3011 	for (; hdls_freed; hdls_freed--) {
3012 		(void) ddi_dma_unbind_handle(txq->tx_dhdl[txq->tx_dhdl_cidx]);
3013 		if (++txq->tx_dhdl_cidx == txq->tx_dhdl_total)
3014 			txq->tx_dhdl_cidx = 0;
3015 	}
3016 
3017 	return (reclaimed);
3018 }
3019 
3020 static void
write_txqflush_wr(struct sge_txq * txq)3021 write_txqflush_wr(struct sge_txq *txq)
3022 {
3023 	struct sge_eq *eq = &txq->eq;
3024 	struct fw_eq_flush_wr *wr;
3025 	struct tx_sdesc *txsd;
3026 
3027 	EQ_LOCK_ASSERT_OWNED(eq);
3028 	ASSERT(eq->avail > 0);
3029 
3030 	wr = (void *)&eq->desc[eq->pidx];
3031 	bzero(wr, sizeof (*wr));
3032 	wr->opcode = FW_EQ_FLUSH_WR;
3033 	wr->equiq_to_len16 = cpu_to_be32(V_FW_WR_LEN16(sizeof (*wr) / 16) |
3034 	    F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3035 
3036 	txsd = &txq->sdesc[eq->pidx];
3037 	txsd->m = NULL;
3038 	txsd->txb_used = 0;
3039 	txsd->hdls_used = 0;
3040 	txsd->desc_used = 1;
3041 
3042 	eq->pending++;
3043 	eq->avail--;
3044 	if (++eq->pidx == eq->cap)
3045 		eq->pidx = 0;
3046 }
3047 
3048 static int
t4_handle_cpl_msg(struct sge_iq * iq,const struct rss_header * rss,mblk_t * mp)3049 t4_handle_cpl_msg(struct sge_iq *iq, const struct rss_header *rss, mblk_t *mp)
3050 {
3051 	const uint8_t opcode = rss->opcode;
3052 
3053 	DTRACE_PROBE4(t4__cpl_msg, struct sge_iq *, iq, uint8_t, opcode,
3054 	    const struct rss_header *, rss, mblk_t *, mp);
3055 
3056 	switch (opcode) {
3057 	case CPL_FW4_MSG:
3058 	case CPL_FW6_MSG:
3059 		ASSERT3P(mp, ==, NULL);
3060 		return (t4_handle_fw_msg(iq, rss));
3061 	case CPL_SGE_EGR_UPDATE:
3062 		return (handle_sge_egr_update(iq, rss, mp));
3063 	case CPL_RX_PKT:
3064 		return (t4_eth_rx(iq, rss, mp));
3065 	default:
3066 		cxgb_printf(iq->adapter->dip, CE_WARN,
3067 		    "unhandled CPL opcode 0x%02x", opcode);
3068 		if (mp != NULL) {
3069 			freemsg(mp);
3070 		}
3071 		return (0);
3072 	}
3073 }
3074 
3075 static int
t4_handle_fw_msg(struct sge_iq * iq,const struct rss_header * rss)3076 t4_handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss)
3077 {
3078 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
3079 	const uint8_t msg_type = cpl->type;
3080 	const struct rss_header *rss2;
3081 	struct adapter *sc = iq->adapter;
3082 
3083 	DTRACE_PROBE3(t4__fw_msg, struct sge_iq *, iq, uint8_t, msg_type,
3084 	    const struct rss_header *, rss);
3085 
3086 	switch (msg_type) {
3087 	case FW_TYPE_RSSCPL:	/* also synonym for FW6_TYPE_RSSCPL */
3088 		rss2 = (const struct rss_header *)&cpl->data[0];
3089 		return (t4_handle_cpl_msg(iq, rss2, NULL));
3090 	case FW6_TYPE_CMD_RPL:
3091 		return (t4_handle_fw_rpl(sc, &cpl->data[0]));
3092 	default:
3093 		cxgb_printf(sc->dip, CE_WARN,
3094 		    "unhandled fw_msg type 0x%02x", msg_type);
3095 		return (0);
3096 	}
3097 }
3098 
3099 static int
t4_eth_rx(struct sge_iq * iq,const struct rss_header * rss,mblk_t * m)3100 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, mblk_t *m)
3101 {
3102 	bool csum_ok;
3103 	uint16_t err_vec;
3104 	struct sge_rxq *rxq = (void *)iq;
3105 	struct mblk_pair chain = {0};
3106 	struct adapter *sc = iq->adapter;
3107 	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
3108 
3109 	iq->intr_next = iq->intr_params;
3110 
3111 	m->b_rptr += sc->sge.pktshift;
3112 
3113 	/* Compressed error vector is enabled for T6 only */
3114 	if (sc->params.tp.rx_pkt_encap)
3115 		/* It is enabled only in T6 config file */
3116 		err_vec = G_T6_COMPR_RXERR_VEC(ntohs(cpl->err_vec));
3117 	else
3118 		err_vec = ntohs(cpl->err_vec);
3119 
3120 	csum_ok = cpl->csum_calc && !err_vec;
3121 	/* TODO: what about cpl->ip_frag? */
3122 	if (csum_ok && !cpl->ip_frag) {
3123 		mac_hcksum_set(m, 0, 0, 0, 0xffff,
3124 		    HCK_FULLCKSUM_OK | HCK_FULLCKSUM |
3125 		    HCK_IPV4_HDRCKSUM_OK);
3126 		rxq->rxcsum++;
3127 	}
3128 
3129 	/* Add to the chain that we'll send up */
3130 	if (chain.head != NULL)
3131 		chain.tail->b_next = m;
3132 	else
3133 		chain.head = m;
3134 	chain.tail = m;
3135 
3136 	t4_mac_rx(rxq->port, rxq, chain.head);
3137 
3138 	rxq->rxpkts++;
3139 	rxq->rxbytes  += be16_to_cpu(cpl->len);
3140 	return (0);
3141 }
3142 
3143 #define	FL_HW_IDX(idx)	((idx) >> 3)
3144 
3145 static inline void
ring_fl_db(struct adapter * sc,struct sge_fl * fl)3146 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3147 {
3148 	int desc_start, desc_last, ndesc;
3149 	uint32_t v = sc->params.arch.sge_fl_db;
3150 
3151 	ndesc = FL_HW_IDX(fl->pending);
3152 
3153 	/* Hold back one credit if pidx = cidx */
3154 	if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx))
3155 		ndesc--;
3156 
3157 	/*
3158 	 * There are chances of ndesc modified above (to avoid pidx = cidx).
3159 	 * If there is nothing to post, return.
3160 	 */
3161 	if (ndesc <= 0)
3162 		return;
3163 
3164 	desc_last = FL_HW_IDX(fl->pidx);
3165 
3166 	if (fl->pidx < fl->pending) {
3167 		/* There was a wrap */
3168 		desc_start = FL_HW_IDX(fl->pidx + fl->cap - fl->pending);
3169 
3170 		/* From desc_start to the end of list */
3171 		(void) ddi_dma_sync(fl->dhdl, desc_start * RX_FL_ESIZE, 0,
3172 		    DDI_DMA_SYNC_FORDEV);
3173 
3174 		/* From start of list to the desc_last */
3175 		if (desc_last != 0)
3176 			(void) ddi_dma_sync(fl->dhdl, 0, desc_last *
3177 			    RX_FL_ESIZE, DDI_DMA_SYNC_FORDEV);
3178 	} else {
3179 		/* There was no wrap, sync from start_desc to last_desc */
3180 		desc_start = FL_HW_IDX(fl->pidx - fl->pending);
3181 		(void) ddi_dma_sync(fl->dhdl, desc_start * RX_FL_ESIZE,
3182 		    ndesc * RX_FL_ESIZE, DDI_DMA_SYNC_FORDEV);
3183 	}
3184 
3185 	if (is_t4(sc->params.chip))
3186 		v |= V_PIDX(ndesc);
3187 	else
3188 		v |= V_PIDX_T5(ndesc);
3189 	v |= V_QID(fl->cntxt_id) | V_PIDX(ndesc);
3190 
3191 	membar_producer();
3192 
3193 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
3194 
3195 	/*
3196 	 * Update pending count:
3197 	 * Deduct the number of descriptors posted
3198 	 */
3199 	fl->pending -= ndesc * 8;
3200 }
3201 
3202 static void
tx_reclaim_task(void * arg)3203 tx_reclaim_task(void *arg)
3204 {
3205 	struct sge_txq *txq = arg;
3206 
3207 	TXQ_LOCK(txq);
3208 	reclaim_tx_descs(txq, txq->eq.qsize);
3209 	TXQ_UNLOCK(txq);
3210 }
3211 
3212 /* ARGSUSED */
3213 static int
handle_sge_egr_update(struct sge_iq * iq,const struct rss_header * rss,mblk_t * m)3214 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
3215     mblk_t *m)
3216 {
3217 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
3218 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
3219 	struct adapter *sc = iq->adapter;
3220 	struct sge *s = &sc->sge;
3221 	struct sge_eq *eq;
3222 	struct sge_txq *txq;
3223 
3224 	txq = (void *)s->eqmap[qid - s->eq_start];
3225 	eq = &txq->eq;
3226 	txq->qflush++;
3227 	t4_mac_tx_update(txq->port, txq);
3228 
3229 	ddi_taskq_dispatch(sc->tq[eq->tx_chan], tx_reclaim_task,
3230 	    (void *)txq, DDI_NOSLEEP);
3231 
3232 	return (0);
3233 }
3234 
3235 int
t4_alloc_tx_maps(struct adapter * sc,struct tx_maps * txmaps,int count,int flags)3236 t4_alloc_tx_maps(struct adapter *sc, struct tx_maps *txmaps, int count,
3237     int flags)
3238 {
3239 	int i, rc;
3240 
3241 	txmaps->map_total =  count;
3242 	txmaps->map_avail = txmaps->map_cidx = txmaps->map_pidx = 0;
3243 
3244 	txmaps->map =  kmem_zalloc(sizeof (ddi_dma_handle_t) *
3245 	    txmaps->map_total, flags);
3246 
3247 	for (i = 0; i < count; i++) {
3248 		rc = ddi_dma_alloc_handle(sc->dip, &sc->sge.dma_attr_tx,
3249 		    DDI_DMA_SLEEP, 0, &txmaps->map[i]);
3250 		if (rc != DDI_SUCCESS) {
3251 			cxgb_printf(sc->dip, CE_WARN,
3252 			    "%s: failed to allocate DMA handle (%d)",
3253 			    __func__, rc);
3254 			return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL);
3255 		}
3256 		txmaps->map_avail++;
3257 	}
3258 
3259 	return (0);
3260 }
3261 
3262 #define	KS_UINIT(x)	kstat_named_init(&kstatp->x, #x, KSTAT_DATA_ULONG)
3263 #define	KS_CINIT(x)	kstat_named_init(&kstatp->x, #x, KSTAT_DATA_CHAR)
3264 #define	KS_U_SET(x, y)	kstatp->x.value.ul = (y)
3265 #define	KS_U_FROM(x, y)	kstatp->x.value.ul = (y)->x
3266 #define	KS_C_SET(x, ...)	\
3267 			(void) snprintf(kstatp->x.value.c, 16,  __VA_ARGS__)
3268 
3269 /*
3270  * cxgbe:X:config
3271  */
3272 struct cxgbe_port_config_kstats {
3273 	kstat_named_t idx;
3274 	kstat_named_t nrxq;
3275 	kstat_named_t ntxq;
3276 	kstat_named_t first_rxq;
3277 	kstat_named_t first_txq;
3278 	kstat_named_t controller;
3279 	kstat_named_t factory_mac_address;
3280 };
3281 
3282 /*
3283  * cxgbe:X:info
3284  */
3285 struct cxgbe_port_info_kstats {
3286 	kstat_named_t transceiver;
3287 	kstat_named_t rx_ovflow0;
3288 	kstat_named_t rx_ovflow1;
3289 	kstat_named_t rx_ovflow2;
3290 	kstat_named_t rx_ovflow3;
3291 	kstat_named_t rx_trunc0;
3292 	kstat_named_t rx_trunc1;
3293 	kstat_named_t rx_trunc2;
3294 	kstat_named_t rx_trunc3;
3295 	kstat_named_t tx_pause;
3296 	kstat_named_t rx_pause;
3297 };
3298 
3299 static kstat_t *
setup_port_config_kstats(struct port_info * pi)3300 setup_port_config_kstats(struct port_info *pi)
3301 {
3302 	kstat_t *ksp;
3303 	struct cxgbe_port_config_kstats *kstatp;
3304 	int ndata;
3305 	dev_info_t *pdip = ddi_get_parent(pi->dip);
3306 	uint8_t *ma = &pi->hw_addr[0];
3307 
3308 	ndata = sizeof (struct cxgbe_port_config_kstats) /
3309 	    sizeof (kstat_named_t);
3310 
3311 	ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), "config",
3312 	    "net", KSTAT_TYPE_NAMED, ndata, 0);
3313 	if (ksp == NULL) {
3314 		cxgb_printf(pi->dip, CE_WARN, "failed to initialize kstats.");
3315 		return (NULL);
3316 	}
3317 
3318 	kstatp = (struct cxgbe_port_config_kstats *)ksp->ks_data;
3319 
3320 	KS_UINIT(idx);
3321 	KS_UINIT(nrxq);
3322 	KS_UINIT(ntxq);
3323 	KS_UINIT(first_rxq);
3324 	KS_UINIT(first_txq);
3325 	KS_CINIT(controller);
3326 	KS_CINIT(factory_mac_address);
3327 
3328 	KS_U_SET(idx, pi->port_id);
3329 	KS_U_SET(nrxq, pi->nrxq);
3330 	KS_U_SET(ntxq, pi->ntxq);
3331 	KS_U_SET(first_rxq, pi->first_rxq);
3332 	KS_U_SET(first_txq, pi->first_txq);
3333 	KS_C_SET(controller, "%s%d", ddi_driver_name(pdip),
3334 	    ddi_get_instance(pdip));
3335 	KS_C_SET(factory_mac_address, "%02X%02X%02X%02X%02X%02X",
3336 	    ma[0], ma[1], ma[2], ma[3], ma[4], ma[5]);
3337 
3338 	/* Do NOT set ksp->ks_update.  These kstats do not change. */
3339 
3340 	/* Install the kstat */
3341 	ksp->ks_private = (void *)pi;
3342 	kstat_install(ksp);
3343 
3344 	return (ksp);
3345 }
3346 
3347 static kstat_t *
setup_port_info_kstats(struct port_info * pi)3348 setup_port_info_kstats(struct port_info *pi)
3349 {
3350 	kstat_t *ksp;
3351 	struct cxgbe_port_info_kstats *kstatp;
3352 	int ndata;
3353 
3354 	ndata = sizeof (struct cxgbe_port_info_kstats) / sizeof (kstat_named_t);
3355 
3356 	ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), "info",
3357 	    "net", KSTAT_TYPE_NAMED, ndata, 0);
3358 	if (ksp == NULL) {
3359 		cxgb_printf(pi->dip, CE_WARN, "failed to initialize kstats.");
3360 		return (NULL);
3361 	}
3362 
3363 	kstatp = (struct cxgbe_port_info_kstats *)ksp->ks_data;
3364 
3365 	KS_CINIT(transceiver);
3366 	KS_UINIT(rx_ovflow0);
3367 	KS_UINIT(rx_ovflow1);
3368 	KS_UINIT(rx_ovflow2);
3369 	KS_UINIT(rx_ovflow3);
3370 	KS_UINIT(rx_trunc0);
3371 	KS_UINIT(rx_trunc1);
3372 	KS_UINIT(rx_trunc2);
3373 	KS_UINIT(rx_trunc3);
3374 	KS_UINIT(tx_pause);
3375 	KS_UINIT(rx_pause);
3376 
3377 	/* Install the kstat */
3378 	ksp->ks_update = update_port_info_kstats;
3379 	ksp->ks_private = (void *)pi;
3380 	kstat_install(ksp);
3381 
3382 	return (ksp);
3383 }
3384 
3385 static int
update_port_info_kstats(kstat_t * ksp,int rw)3386 update_port_info_kstats(kstat_t *ksp, int rw)
3387 {
3388 	struct cxgbe_port_info_kstats *kstatp =
3389 	    (struct cxgbe_port_info_kstats *)ksp->ks_data;
3390 	struct port_info *pi = ksp->ks_private;
3391 	static const char *mod_str[] = { NULL, "LR", "SR", "ER", "TWINAX",
3392 	    "active TWINAX", "LRM" };
3393 	uint32_t bgmap;
3394 
3395 	if (rw == KSTAT_WRITE)
3396 		return (0);
3397 
3398 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
3399 		KS_C_SET(transceiver, "unplugged");
3400 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
3401 		KS_C_SET(transceiver, "unknown");
3402 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
3403 		KS_C_SET(transceiver, "unsupported");
3404 	else if (pi->mod_type > 0 && pi->mod_type < ARRAY_SIZE(mod_str))
3405 		KS_C_SET(transceiver, "%s", mod_str[pi->mod_type]);
3406 	else
3407 		KS_C_SET(transceiver, "type %d", pi->mod_type);
3408 
3409 #define	GET_STAT(name) t4_read_reg64(pi->adapter, \
3410 	    PORT_REG(pi->port_id, A_MPS_PORT_STAT_##name##_L))
3411 #define	GET_STAT_COM(name) t4_read_reg64(pi->adapter, \
3412 	    A_MPS_STAT_##name##_L)
3413 
3414 	bgmap = G_NUMPORTS(t4_read_reg(pi->adapter, A_MPS_CMN_CTL));
3415 	if (bgmap == 0)
3416 		bgmap = (pi->port_id == 0) ? 0xf : 0;
3417 	else if (bgmap == 1)
3418 		bgmap = (pi->port_id < 2) ? (3 << (2 * pi->port_id)) : 0;
3419 	else
3420 		bgmap = 1;
3421 
3422 	KS_U_SET(rx_ovflow0, (bgmap & 1) ?
3423 	    GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0);
3424 	KS_U_SET(rx_ovflow1, (bgmap & 2) ?
3425 	    GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0);
3426 	KS_U_SET(rx_ovflow2, (bgmap & 4) ?
3427 	    GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0);
3428 	KS_U_SET(rx_ovflow3, (bgmap & 8) ?
3429 	    GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0);
3430 	KS_U_SET(rx_trunc0,  (bgmap & 1) ?
3431 	    GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0);
3432 	KS_U_SET(rx_trunc1,  (bgmap & 2) ?
3433 	    GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0);
3434 	KS_U_SET(rx_trunc2,  (bgmap & 4) ?
3435 	    GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0);
3436 	KS_U_SET(rx_trunc3,  (bgmap & 8) ?
3437 	    GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0);
3438 
3439 	KS_U_SET(tx_pause, GET_STAT(TX_PORT_PAUSE));
3440 	KS_U_SET(rx_pause, GET_STAT(RX_PORT_PAUSE));
3441 
3442 	return (0);
3443 
3444 }
3445 
3446 /*
3447  * cxgbe:X:rxqY
3448  */
3449 struct rxq_kstats {
3450 	kstat_named_t rxcsum;
3451 	kstat_named_t rxpkts;
3452 	kstat_named_t rxbytes;
3453 	kstat_named_t nomem;
3454 };
3455 
3456 static kstat_t *
setup_rxq_kstats(struct port_info * pi,struct sge_rxq * rxq,int idx)3457 setup_rxq_kstats(struct port_info *pi, struct sge_rxq *rxq, int idx)
3458 {
3459 	struct kstat *ksp;
3460 	struct rxq_kstats *kstatp;
3461 	int ndata;
3462 	char str[16];
3463 
3464 	ndata = sizeof (struct rxq_kstats) / sizeof (kstat_named_t);
3465 	(void) snprintf(str, sizeof (str), "rxq%u", idx);
3466 
3467 	ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), str, "rxq",
3468 	    KSTAT_TYPE_NAMED, ndata, 0);
3469 	if (ksp == NULL) {
3470 		cxgb_printf(pi->dip, CE_WARN,
3471 		    "%s: failed to initialize rxq kstats for queue %d.",
3472 		    __func__, idx);
3473 		return (NULL);
3474 	}
3475 
3476 	kstatp = (struct rxq_kstats *)ksp->ks_data;
3477 
3478 	KS_UINIT(rxcsum);
3479 	KS_UINIT(rxpkts);
3480 	KS_UINIT(rxbytes);
3481 	KS_UINIT(nomem);
3482 
3483 	ksp->ks_update = update_rxq_kstats;
3484 	ksp->ks_private = (void *)rxq;
3485 	kstat_install(ksp);
3486 
3487 	return (ksp);
3488 }
3489 
3490 static int
update_rxq_kstats(kstat_t * ksp,int rw)3491 update_rxq_kstats(kstat_t *ksp, int rw)
3492 {
3493 	struct rxq_kstats *kstatp = (struct rxq_kstats *)ksp->ks_data;
3494 	struct sge_rxq *rxq = ksp->ks_private;
3495 
3496 	if (rw == KSTAT_WRITE)
3497 		return (0);
3498 
3499 	KS_U_FROM(rxcsum, rxq);
3500 	KS_U_FROM(rxpkts, rxq);
3501 	KS_U_FROM(rxbytes, rxq);
3502 	KS_U_FROM(nomem, rxq);
3503 
3504 	return (0);
3505 }
3506 
3507 /*
3508  * cxgbe:X:txqY
3509  */
3510 struct txq_kstats {
3511 	kstat_named_t txcsum;
3512 	kstat_named_t tso_wrs;
3513 	kstat_named_t imm_wrs;
3514 	kstat_named_t sgl_wrs;
3515 	kstat_named_t txpkt_wrs;
3516 	kstat_named_t txpkts_wrs;
3517 	kstat_named_t txpkts_pkts;
3518 	kstat_named_t txb_used;
3519 	kstat_named_t hdl_used;
3520 	kstat_named_t txb_full;
3521 	kstat_named_t dma_hdl_failed;
3522 	kstat_named_t dma_map_failed;
3523 	kstat_named_t qfull;
3524 	kstat_named_t qflush;
3525 	kstat_named_t pullup_early;
3526 	kstat_named_t pullup_late;
3527 	kstat_named_t pullup_failed;
3528 	kstat_named_t csum_failed;
3529 };
3530 
3531 static kstat_t *
setup_txq_kstats(struct port_info * pi,struct sge_txq * txq,int idx)3532 setup_txq_kstats(struct port_info *pi, struct sge_txq *txq, int idx)
3533 {
3534 	struct kstat *ksp;
3535 	struct txq_kstats *kstatp;
3536 	int ndata;
3537 	char str[16];
3538 
3539 	ndata = sizeof (struct txq_kstats) / sizeof (kstat_named_t);
3540 	(void) snprintf(str, sizeof (str), "txq%u", idx);
3541 
3542 	ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), str, "txq",
3543 	    KSTAT_TYPE_NAMED, ndata, 0);
3544 	if (ksp == NULL) {
3545 		cxgb_printf(pi->dip, CE_WARN,
3546 		    "%s: failed to initialize txq kstats for queue %d.",
3547 		    __func__, idx);
3548 		return (NULL);
3549 	}
3550 
3551 	kstatp = (struct txq_kstats *)ksp->ks_data;
3552 
3553 	KS_UINIT(txcsum);
3554 	KS_UINIT(tso_wrs);
3555 	KS_UINIT(imm_wrs);
3556 	KS_UINIT(sgl_wrs);
3557 	KS_UINIT(txpkt_wrs);
3558 	KS_UINIT(txpkts_wrs);
3559 	KS_UINIT(txpkts_pkts);
3560 	KS_UINIT(txb_used);
3561 	KS_UINIT(hdl_used);
3562 	KS_UINIT(txb_full);
3563 	KS_UINIT(dma_hdl_failed);
3564 	KS_UINIT(dma_map_failed);
3565 	KS_UINIT(qfull);
3566 	KS_UINIT(qflush);
3567 	KS_UINIT(pullup_early);
3568 	KS_UINIT(pullup_late);
3569 	KS_UINIT(pullup_failed);
3570 	KS_UINIT(csum_failed);
3571 
3572 	ksp->ks_update = update_txq_kstats;
3573 	ksp->ks_private = (void *)txq;
3574 	kstat_install(ksp);
3575 
3576 	return (ksp);
3577 }
3578 
3579 static int
update_txq_kstats(kstat_t * ksp,int rw)3580 update_txq_kstats(kstat_t *ksp, int rw)
3581 {
3582 	struct txq_kstats *kstatp = (struct txq_kstats *)ksp->ks_data;
3583 	struct sge_txq *txq = ksp->ks_private;
3584 
3585 	if (rw == KSTAT_WRITE)
3586 		return (0);
3587 
3588 	KS_U_FROM(txcsum, txq);
3589 	KS_U_FROM(tso_wrs, txq);
3590 	KS_U_FROM(imm_wrs, txq);
3591 	KS_U_FROM(sgl_wrs, txq);
3592 	KS_U_FROM(txpkt_wrs, txq);
3593 	KS_U_FROM(txpkts_wrs, txq);
3594 	KS_U_FROM(txpkts_pkts, txq);
3595 	KS_U_FROM(txb_used, txq);
3596 	KS_U_FROM(hdl_used, txq);
3597 	KS_U_FROM(txb_full, txq);
3598 	KS_U_FROM(dma_hdl_failed, txq);
3599 	KS_U_FROM(dma_map_failed, txq);
3600 	KS_U_FROM(qfull, txq);
3601 	KS_U_FROM(qflush, txq);
3602 	KS_U_FROM(pullup_early, txq);
3603 	KS_U_FROM(pullup_late, txq);
3604 	KS_U_FROM(pullup_failed, txq);
3605 	KS_U_FROM(csum_failed, txq);
3606 
3607 	return (0);
3608 }
3609 
3610 static int rxbuf_ctor(void *, void *, int);
3611 static void rxbuf_dtor(void *, void *);
3612 
3613 static kmem_cache_t *
rxbuf_cache_create(struct rxbuf_cache_params * p)3614 rxbuf_cache_create(struct rxbuf_cache_params *p)
3615 {
3616 	char name[32];
3617 
3618 	(void) snprintf(name, sizeof (name), "%s%d_rxbuf_cache",
3619 	    ddi_driver_name(p->dip), ddi_get_instance(p->dip));
3620 
3621 	return kmem_cache_create(name, sizeof (struct rxbuf), _CACHE_LINE_SIZE,
3622 	    rxbuf_ctor, rxbuf_dtor, NULL, p, NULL, 0);
3623 }
3624 
3625 /*
3626  * If ref_cnt is more than 1 then those many calls to rxbuf_free will
3627  * have to be made before the rxb is released back to the kmem_cache.
3628  */
3629 static struct rxbuf *
rxbuf_alloc(kmem_cache_t * cache,int kmflags,uint_t ref_cnt)3630 rxbuf_alloc(kmem_cache_t *cache, int kmflags, uint_t ref_cnt)
3631 {
3632 	struct rxbuf *rxb;
3633 
3634 	ASSERT(ref_cnt > 0);
3635 
3636 	rxb = kmem_cache_alloc(cache, kmflags);
3637 	if (rxb != NULL) {
3638 		rxb->ref_cnt = ref_cnt;
3639 		rxb->cache = cache;
3640 	}
3641 
3642 	return (rxb);
3643 }
3644 
3645 /*
3646  * This is normally called via the rxb's freefunc, when an mblk referencing the
3647  * rxb is freed.
3648  */
3649 static void
rxbuf_free(struct rxbuf * rxb)3650 rxbuf_free(struct rxbuf *rxb)
3651 {
3652 	if (atomic_dec_uint_nv(&rxb->ref_cnt) == 0)
3653 		kmem_cache_free(rxb->cache, rxb);
3654 }
3655 
3656 static int
rxbuf_ctor(void * arg1,void * arg2,int kmflag)3657 rxbuf_ctor(void *arg1, void *arg2, int kmflag)
3658 {
3659 	struct rxbuf *rxb = arg1;
3660 	struct rxbuf_cache_params *p = arg2;
3661 	size_t real_len;
3662 	ddi_dma_cookie_t cookie;
3663 	uint_t ccount = 0;
3664 	int (*callback)(caddr_t);
3665 	int rc = ENOMEM;
3666 
3667 	if ((kmflag & KM_NOSLEEP) != 0)
3668 		callback = DDI_DMA_DONTWAIT;
3669 	else
3670 		callback = DDI_DMA_SLEEP;
3671 
3672 	rc = ddi_dma_alloc_handle(p->dip, &p->dma_attr_rx, callback, 0,
3673 	    &rxb->dhdl);
3674 	if (rc != DDI_SUCCESS)
3675 		return (rc == DDI_DMA_BADATTR ? EINVAL : ENOMEM);
3676 
3677 	rc = ddi_dma_mem_alloc(rxb->dhdl, p->buf_size, &p->acc_attr_rx,
3678 	    DDI_DMA_STREAMING, callback, 0, &rxb->va, &real_len, &rxb->ahdl);
3679 	if (rc != DDI_SUCCESS) {
3680 		rc = ENOMEM;
3681 		goto fail1;
3682 	}
3683 
3684 	rc = ddi_dma_addr_bind_handle(rxb->dhdl, NULL, rxb->va, p->buf_size,
3685 	    DDI_DMA_READ | DDI_DMA_STREAMING, NULL, NULL, &cookie, &ccount);
3686 	if (rc != DDI_DMA_MAPPED) {
3687 		if (rc == DDI_DMA_INUSE)
3688 			rc = EBUSY;
3689 		else if (rc == DDI_DMA_TOOBIG)
3690 			rc = E2BIG;
3691 		else
3692 			rc = ENOMEM;
3693 		goto fail2;
3694 	}
3695 
3696 	if (ccount != 1) {
3697 		rc = E2BIG;
3698 		goto fail3;
3699 	}
3700 
3701 	rxb->ref_cnt = 0;
3702 	rxb->buf_size = p->buf_size;
3703 	rxb->freefunc.free_arg = (caddr_t)rxb;
3704 	rxb->freefunc.free_func = rxbuf_free;
3705 	rxb->ba = cookie.dmac_laddress;
3706 
3707 	return (0);
3708 
3709 fail3:	(void) ddi_dma_unbind_handle(rxb->dhdl);
3710 fail2:	ddi_dma_mem_free(&rxb->ahdl);
3711 fail1:	ddi_dma_free_handle(&rxb->dhdl);
3712 	return (rc);
3713 }
3714 
3715 static void
rxbuf_dtor(void * arg1,void * arg2)3716 rxbuf_dtor(void *arg1, void *arg2)
3717 {
3718 	struct rxbuf *rxb = arg1;
3719 
3720 	(void) ddi_dma_unbind_handle(rxb->dhdl);
3721 	ddi_dma_mem_free(&rxb->ahdl);
3722 	ddi_dma_free_handle(&rxb->dhdl);
3723 }
3724