1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */
11
12 /*
13 * This file is part of the Chelsio T4 support code.
14 *
15 * Copyright (C) 2010-2013 Chelsio Communications. All rights reserved.
16 *
17 * This program is distributed in the hope that it will be useful, but WITHOUT
18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this
20 * release for licensing terms and conditions.
21 */
22
23 /*
24 * Copyright 2025 Oxide Computer Company
25 */
26
27 #include <sys/ddi.h>
28 #include <sys/sunddi.h>
29 #include <sys/sunndi.h>
30 #include <sys/atomic.h>
31 #include <sys/dlpi.h>
32 #include <sys/pattr.h>
33 #include <sys/strsubr.h>
34 #include <sys/stream.h>
35 #include <sys/strsun.h>
36 #include <inet/ip.h>
37 #include <inet/tcp.h>
38
39 #include "version.h"
40 #include "common/common.h"
41 #include "common/t4_msg.h"
42 #include "common/t4_regs.h"
43 #include "common/t4_regs_values.h"
44
45 /* TODO: Tune. */
46 int rx_buf_size = 8192;
47 int tx_copy_threshold = 256;
48 uint16_t rx_copy_threshold = 256;
49
50 /* Used to track coalesced tx work request */
51 struct txpkts {
52 mblk_t *tail; /* head is in the software descriptor */
53 uint64_t *flitp; /* ptr to flit where next pkt should start */
54 uint8_t npkt; /* # of packets in this work request */
55 uint8_t nflits; /* # of flits used by this work request */
56 uint16_t plen; /* total payload (sum of all packets) */
57 };
58
59 /* All information needed to tx a frame */
60 struct txinfo {
61 uint32_t len; /* Total length of frame */
62 uint32_t flags; /* Checksum and LSO flags */
63 uint32_t mss; /* MSS for LSO */
64 uint8_t nsegs; /* # of segments in the SGL, 0 means imm. tx */
65 uint8_t nflits; /* # of flits needed for the SGL */
66 uint8_t hdls_used; /* # of DMA handles used */
67 uint32_t txb_used; /* txb_space used */
68 mac_ether_offload_info_t meoi; /* pkt hdr info for offloads */
69 struct ulptx_sgl sgl __attribute__((aligned(8)));
70 struct ulptx_sge_pair reserved[TX_SGL_SEGS / 2];
71 };
72
73 struct mblk_pair {
74 mblk_t *head, *tail;
75 };
76
77 struct rxbuf {
78 kmem_cache_t *cache; /* the kmem_cache this rxb came from */
79 ddi_dma_handle_t dhdl;
80 ddi_acc_handle_t ahdl;
81 caddr_t va; /* KVA of buffer */
82 uint64_t ba; /* bus address of buffer */
83 frtn_t freefunc;
84 uint_t buf_size;
85 volatile uint_t ref_cnt;
86 };
87
88 static int service_iq(struct sge_iq *iq, int budget);
89 static inline void init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx,
90 int8_t pktc_idx, int qsize, uint8_t esize);
91 static inline void init_fl(struct sge_fl *fl, uint16_t qsize);
92 static inline void init_eq(struct adapter *sc, struct sge_eq *eq,
93 uint16_t eqtype, uint16_t qsize, uint8_t tx_chan, uint16_t iqid);
94 static int alloc_iq_fl(struct port_info *pi, struct sge_iq *iq,
95 struct sge_fl *fl, int intr_idx, int cong);
96 static int free_iq_fl(struct port_info *pi, struct sge_iq *iq,
97 struct sge_fl *fl);
98 static int alloc_fwq(struct adapter *sc);
99 static int free_fwq(struct adapter *sc);
100 static int alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx,
101 int i);
102 static int free_rxq(struct port_info *pi, struct sge_rxq *rxq);
103 static int ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq);
104 static int eth_eq_alloc(struct adapter *sc, struct port_info *pi,
105 struct sge_eq *eq);
106 static int alloc_eq(struct adapter *sc, struct port_info *pi,
107 struct sge_eq *eq);
108 static int free_eq(struct adapter *sc, struct sge_eq *eq);
109 static int alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx);
110 static int free_txq(struct port_info *pi, struct sge_txq *txq);
111 static int alloc_dma_memory(struct adapter *sc, size_t len, int flags,
112 ddi_device_acc_attr_t *acc_attr, ddi_dma_attr_t *dma_attr,
113 ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba,
114 caddr_t *pva);
115 static int free_dma_memory(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl);
116 static int alloc_desc_ring(struct adapter *sc, size_t len, int rw,
117 ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba,
118 caddr_t *pva);
119 static int free_desc_ring(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl);
120 static int alloc_tx_copybuffer(struct adapter *sc, size_t len,
121 ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba,
122 caddr_t *pva);
123 static inline bool is_new_response(const struct sge_iq *iq,
124 struct rsp_ctrl **ctrl);
125 static inline void iq_next(struct sge_iq *iq);
126 static int refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs);
127 static void refill_sfl(void *arg);
128 static void add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl);
129 static void free_fl_bufs(struct sge_fl *fl);
130 static mblk_t *get_fl_payload(struct adapter *sc, struct sge_fl *fl,
131 uint32_t len_newbuf, int *fl_bufs_used);
132 static int get_frame_txinfo(struct sge_txq *txq, mblk_t **fp,
133 struct txinfo *txinfo, int sgl_only);
134 static inline int fits_in_txb(struct sge_txq *txq, int len, int *waste);
135 static inline int copy_into_txb(struct sge_txq *txq, mblk_t *m, int len,
136 struct txinfo *txinfo);
137 static inline void add_seg(struct txinfo *txinfo, uint64_t ba, uint32_t len);
138 static inline int add_mblk(struct sge_txq *txq, struct txinfo *txinfo,
139 mblk_t *m, int len);
140 static void free_txinfo_resources(struct sge_txq *txq, struct txinfo *txinfo);
141 static int add_to_txpkts(struct sge_txq *txq, struct txpkts *txpkts, mblk_t *m,
142 struct txinfo *txinfo);
143 static void write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts);
144 static int write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, mblk_t *m,
145 struct txinfo *txinfo);
146 static inline void write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
147 struct txpkts *txpkts, struct txinfo *txinfo);
148 static inline void copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to,
149 int len);
150 static inline void ring_tx_db(struct adapter *sc, struct sge_eq *eq);
151 static int reclaim_tx_descs(struct sge_txq *txq, int howmany);
152 static void write_txqflush_wr(struct sge_txq *txq);
153 static int t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss,
154 mblk_t *m);
155 static inline void ring_fl_db(struct adapter *sc, struct sge_fl *fl);
156 static kstat_t *setup_port_config_kstats(struct port_info *pi);
157 static kstat_t *setup_port_info_kstats(struct port_info *pi);
158 static kstat_t *setup_rxq_kstats(struct port_info *pi, struct sge_rxq *rxq,
159 int idx);
160 static int update_rxq_kstats(kstat_t *ksp, int rw);
161 static int update_port_info_kstats(kstat_t *ksp, int rw);
162 static kstat_t *setup_txq_kstats(struct port_info *pi, struct sge_txq *txq,
163 int idx);
164 static int update_txq_kstats(kstat_t *ksp, int rw);
165 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
166 mblk_t *);
167 static int t4_handle_cpl_msg(struct sge_iq *, const struct rss_header *,
168 mblk_t *);
169 static int t4_handle_fw_msg(struct sge_iq *, const struct rss_header *);
170
171 static kmem_cache_t *rxbuf_cache_create(struct rxbuf_cache_params *);
172 static struct rxbuf *rxbuf_alloc(kmem_cache_t *, int, uint_t);
173 static void rxbuf_free(struct rxbuf *);
174 static int rxbuf_ctor(void *, void *, int);
175 static void rxbuf_dtor(void *, void *);
176
177 static inline int
reclaimable(struct sge_eq * eq)178 reclaimable(struct sge_eq *eq)
179 {
180 unsigned int cidx;
181
182 cidx = eq->spg->cidx; /* stable snapshot */
183 cidx = be16_to_cpu(cidx);
184
185 if (cidx >= eq->cidx)
186 return (cidx - eq->cidx);
187 else
188 return (cidx + eq->cap - eq->cidx);
189 }
190
191 void
t4_sge_init(struct adapter * sc)192 t4_sge_init(struct adapter *sc)
193 {
194 struct driver_properties *p = &sc->props;
195 ddi_dma_attr_t *dma_attr;
196 ddi_device_acc_attr_t *acc_attr;
197 uint32_t sge_control, sge_conm_ctrl;
198 int egress_threshold;
199
200 /*
201 * Device access and DMA attributes for descriptor rings
202 */
203 acc_attr = &sc->sge.acc_attr_desc;
204 acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0;
205 acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
206 acc_attr->devacc_attr_dataorder = DDI_STRICTORDER_ACC;
207
208 dma_attr = &sc->sge.dma_attr_desc;
209 dma_attr->dma_attr_version = DMA_ATTR_V0;
210 dma_attr->dma_attr_addr_lo = 0;
211 dma_attr->dma_attr_addr_hi = UINT64_MAX;
212 dma_attr->dma_attr_count_max = UINT64_MAX;
213 dma_attr->dma_attr_align = 512;
214 dma_attr->dma_attr_burstsizes = 0xfff;
215 dma_attr->dma_attr_minxfer = 1;
216 dma_attr->dma_attr_maxxfer = UINT64_MAX;
217 dma_attr->dma_attr_seg = UINT64_MAX;
218 dma_attr->dma_attr_sgllen = 1;
219 dma_attr->dma_attr_granular = 1;
220 dma_attr->dma_attr_flags = 0;
221
222 /*
223 * Device access and DMA attributes for tx buffers
224 */
225 acc_attr = &sc->sge.acc_attr_tx;
226 acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0;
227 acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
228
229 dma_attr = &sc->sge.dma_attr_tx;
230 dma_attr->dma_attr_version = DMA_ATTR_V0;
231 dma_attr->dma_attr_addr_lo = 0;
232 dma_attr->dma_attr_addr_hi = UINT64_MAX;
233 dma_attr->dma_attr_count_max = UINT64_MAX;
234 dma_attr->dma_attr_align = 1;
235 dma_attr->dma_attr_burstsizes = 0xfff;
236 dma_attr->dma_attr_minxfer = 1;
237 dma_attr->dma_attr_maxxfer = UINT64_MAX;
238 dma_attr->dma_attr_seg = UINT64_MAX;
239 dma_attr->dma_attr_sgllen = TX_SGL_SEGS;
240 dma_attr->dma_attr_granular = 1;
241 dma_attr->dma_attr_flags = 0;
242
243 /*
244 * Ingress Padding Boundary and Egress Status Page Size are set up by
245 * t4_fixup_host_params().
246 */
247 sge_control = t4_read_reg(sc, A_SGE_CONTROL);
248 sc->sge.pktshift = G_PKTSHIFT(sge_control);
249 sc->sge.stat_len = (sge_control & F_EGRSTATUSPAGESIZE) ? 128 : 64;
250
251 /* t4_nex uses FLM packed mode */
252 sc->sge.fl_align = t4_fl_pkt_align(sc, true);
253
254 /*
255 * Device access and DMA attributes for rx buffers
256 */
257 sc->sge.rxb_params.dip = sc->dip;
258 sc->sge.rxb_params.buf_size = rx_buf_size;
259
260 acc_attr = &sc->sge.rxb_params.acc_attr_rx;
261 acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0;
262 acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
263
264 dma_attr = &sc->sge.rxb_params.dma_attr_rx;
265 dma_attr->dma_attr_version = DMA_ATTR_V0;
266 dma_attr->dma_attr_addr_lo = 0;
267 dma_attr->dma_attr_addr_hi = UINT64_MAX;
268 dma_attr->dma_attr_count_max = UINT64_MAX;
269 /*
270 * Low 4 bits of an rx buffer address have a special meaning to the SGE
271 * and an rx buf cannot have an address with any of these bits set.
272 * FL_ALIGN is >= 32 so we're sure things are ok.
273 */
274 dma_attr->dma_attr_align = sc->sge.fl_align;
275 dma_attr->dma_attr_burstsizes = 0xfff;
276 dma_attr->dma_attr_minxfer = 1;
277 dma_attr->dma_attr_maxxfer = UINT64_MAX;
278 dma_attr->dma_attr_seg = UINT64_MAX;
279 dma_attr->dma_attr_sgllen = 1;
280 dma_attr->dma_attr_granular = 1;
281 dma_attr->dma_attr_flags = 0;
282
283 sc->sge.rxbuf_cache = rxbuf_cache_create(&sc->sge.rxb_params);
284
285 /*
286 * A FL with <= fl_starve_thres buffers is starving and a periodic
287 * timer will attempt to refill it. This needs to be larger than the
288 * SGE's Egress Congestion Threshold. If it isn't, then we can get
289 * stuck waiting for new packets while the SGE is waiting for us to
290 * give it more Free List entries. (Note that the SGE's Egress
291 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
292 * there was only a single field to control this. For T5 there's the
293 * original field which now only applies to Unpacked Mode Free List
294 * buffers and a new field which only applies to Packed Mode Free List
295 * buffers.
296 */
297
298 sge_conm_ctrl = t4_read_reg(sc, A_SGE_CONM_CTRL);
299 switch (CHELSIO_CHIP_VERSION(sc->params.chip)) {
300 case CHELSIO_T4:
301 egress_threshold = G_EGRTHRESHOLD(sge_conm_ctrl);
302 break;
303 case CHELSIO_T5:
304 egress_threshold = G_EGRTHRESHOLDPACKING(sge_conm_ctrl);
305 break;
306 case CHELSIO_T6:
307 default:
308 egress_threshold = G_T6_EGRTHRESHOLDPACKING(sge_conm_ctrl);
309 }
310 sc->sge.fl_starve_threshold = 2*egress_threshold + 1;
311
312 t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, rx_buf_size);
313
314 t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD,
315 V_THRESHOLD_0(p->counter_val[0]) |
316 V_THRESHOLD_1(p->counter_val[1]) |
317 V_THRESHOLD_2(p->counter_val[2]) |
318 V_THRESHOLD_3(p->counter_val[3]));
319
320 t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1,
321 V_TIMERVALUE0(us_to_core_ticks(sc, p->timer_val[0])) |
322 V_TIMERVALUE1(us_to_core_ticks(sc, p->timer_val[1])));
323 t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3,
324 V_TIMERVALUE2(us_to_core_ticks(sc, p->timer_val[2])) |
325 V_TIMERVALUE3(us_to_core_ticks(sc, p->timer_val[3])));
326 t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5,
327 V_TIMERVALUE4(us_to_core_ticks(sc, p->timer_val[4])) |
328 V_TIMERVALUE5(us_to_core_ticks(sc, p->timer_val[5])));
329 }
330
331 /*
332 * Allocate and initialize the firmware event queue and the forwarded interrupt
333 * queues, if any. The adapter owns all these queues as they are not associated
334 * with any particular port.
335 *
336 * Returns errno on failure. Resources allocated up to that point may still be
337 * allocated. Caller is responsible for cleanup in case this function fails.
338 */
339 int
t4_setup_adapter_queues(struct adapter * sc)340 t4_setup_adapter_queues(struct adapter *sc)
341 {
342 int rc;
343
344 ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
345
346 /*
347 * Firmware event queue
348 */
349 rc = alloc_fwq(sc);
350 if (rc != 0)
351 return (rc);
352
353 return (rc);
354 }
355
356 /*
357 * Idempotent
358 */
359 int
t4_teardown_adapter_queues(struct adapter * sc)360 t4_teardown_adapter_queues(struct adapter *sc)
361 {
362
363 ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
364
365 (void) free_fwq(sc);
366
367 return (0);
368 }
369
370 static inline int
first_vector(struct port_info * pi)371 first_vector(struct port_info *pi)
372 {
373 struct adapter *sc = pi->adapter;
374 int rc = T4_EXTRA_INTR, i;
375
376 if (sc->intr_count == 1)
377 return (0);
378
379 for_each_port(sc, i) {
380 struct port_info *p = sc->port[i];
381
382 if (i == pi->port_id)
383 break;
384
385 /*
386 * Not compiled with offload support and intr_count > 1. Only
387 * NIC queues exist and they'd better be taking direct
388 * interrupts.
389 */
390 ASSERT(!(sc->flags & INTR_FWD));
391 rc += p->nrxq;
392 }
393 return (rc);
394 }
395
396 /*
397 * Given an arbitrary "index," come up with an iq that can be used by other
398 * queues (of this port) for interrupt forwarding, SGE egress updates, etc.
399 * The iq returned is guaranteed to be something that takes direct interrupts.
400 */
401 static struct sge_iq *
port_intr_iq(struct port_info * pi,int idx)402 port_intr_iq(struct port_info *pi, int idx)
403 {
404 struct adapter *sc = pi->adapter;
405 struct sge *s = &sc->sge;
406 struct sge_iq *iq = NULL;
407
408 if (sc->intr_count == 1)
409 return (&sc->sge.fwq);
410
411 /*
412 * Not compiled with offload support and intr_count > 1. Only NIC
413 * queues exist and they'd better be taking direct interrupts.
414 */
415 ASSERT(!(sc->flags & INTR_FWD));
416
417 idx %= pi->nrxq;
418 iq = &s->rxq[pi->first_rxq + idx].iq;
419
420 return (iq);
421 }
422
423 int
t4_setup_port_queues(struct port_info * pi)424 t4_setup_port_queues(struct port_info *pi)
425 {
426 int rc = 0, i, intr_idx, j;
427 struct sge_rxq *rxq;
428 struct sge_txq *txq;
429 struct adapter *sc = pi->adapter;
430 struct driver_properties *p = &sc->props;
431
432 pi->ksp_config = setup_port_config_kstats(pi);
433 pi->ksp_info = setup_port_info_kstats(pi);
434
435 /* Interrupt vector to start from (when using multiple vectors) */
436 intr_idx = first_vector(pi);
437
438 /*
439 * First pass over all rx queues (NIC and TOE):
440 * a) initialize iq and fl
441 * b) allocate queue iff it will take direct interrupts.
442 */
443
444 for_each_rxq(pi, i, rxq) {
445
446 init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, p->qsize_rxq,
447 RX_IQ_ESIZE);
448
449 init_fl(&rxq->fl, p->qsize_rxq / 8); /* 8 bufs in each entry */
450
451 if ((!(sc->flags & INTR_FWD)) ||
452 (sc->intr_count > 1 && pi->nrxq)) {
453 rxq->iq.flags |= IQ_INTR;
454 rc = alloc_rxq(pi, rxq, intr_idx, i);
455 if (rc != 0)
456 goto done;
457 intr_idx++;
458 }
459
460 }
461
462 /*
463 * Second pass over all rx queues (NIC and TOE). The queues forwarding
464 * their interrupts are allocated now.
465 */
466 j = 0;
467 for_each_rxq(pi, i, rxq) {
468 if (rxq->iq.flags & IQ_INTR)
469 continue;
470
471 intr_idx = port_intr_iq(pi, j)->abs_id;
472
473 rc = alloc_rxq(pi, rxq, intr_idx, i);
474 if (rc != 0)
475 goto done;
476 j++;
477 }
478
479 /*
480 * Now the tx queues. Only one pass needed.
481 */
482 j = 0;
483 for_each_txq(pi, i, txq) {
484 uint16_t iqid;
485
486 iqid = port_intr_iq(pi, j)->cntxt_id;
487 init_eq(sc, &txq->eq, EQ_ETH, p->qsize_txq, pi->tx_chan, iqid);
488 rc = alloc_txq(pi, txq, i);
489 if (rc != 0)
490 goto done;
491 }
492
493 done:
494 if (rc != 0)
495 (void) t4_teardown_port_queues(pi);
496
497 return (rc);
498 }
499
500 /*
501 * Idempotent
502 */
503 int
t4_teardown_port_queues(struct port_info * pi)504 t4_teardown_port_queues(struct port_info *pi)
505 {
506 int i;
507 struct sge_rxq *rxq;
508 struct sge_txq *txq;
509
510 if (pi->ksp_config != NULL) {
511 kstat_delete(pi->ksp_config);
512 pi->ksp_config = NULL;
513 }
514 if (pi->ksp_info != NULL) {
515 kstat_delete(pi->ksp_info);
516 pi->ksp_info = NULL;
517 }
518
519 for_each_txq(pi, i, txq) {
520 (void) free_txq(pi, txq);
521 }
522
523 for_each_rxq(pi, i, rxq) {
524 if ((rxq->iq.flags & IQ_INTR) == 0)
525 (void) free_rxq(pi, rxq);
526 }
527
528 /*
529 * Then take down the rx queues that take direct interrupts.
530 */
531
532 for_each_rxq(pi, i, rxq) {
533 if (rxq->iq.flags & IQ_INTR)
534 (void) free_rxq(pi, rxq);
535 }
536
537 return (0);
538 }
539
540 /* Deals with errors and forwarded interrupts */
541 uint_t
t4_intr_all(caddr_t arg1,caddr_t arg2)542 t4_intr_all(caddr_t arg1, caddr_t arg2)
543 {
544
545 (void) t4_intr_err(arg1, arg2);
546 (void) t4_intr(arg1, arg2);
547
548 return (DDI_INTR_CLAIMED);
549 }
550
551 static void
t4_intr_rx_work(struct sge_iq * iq)552 t4_intr_rx_work(struct sge_iq *iq)
553 {
554 mblk_t *mp = NULL;
555 struct sge_rxq *rxq = iq_to_rxq(iq); /* Use iff iq is part of rxq */
556 RXQ_LOCK(rxq);
557 if (!iq->polling) {
558 mp = t4_ring_rx(rxq, iq->qsize/8);
559 t4_write_reg(iq->adapter, MYPF_REG(A_SGE_PF_GTS),
560 V_INGRESSQID((u32)iq->cntxt_id) |
561 V_SEINTARM(iq->intr_next));
562 }
563 RXQ_UNLOCK(rxq);
564 if (mp != NULL) {
565 mac_rx_ring(rxq->port->mh, rxq->ring_handle, mp,
566 rxq->ring_gen_num);
567 }
568 }
569
570 /* Deals with interrupts on the given ingress queue */
571 /* ARGSUSED */
572 uint_t
t4_intr(caddr_t arg1,caddr_t arg2)573 t4_intr(caddr_t arg1, caddr_t arg2)
574 {
575 struct sge_iq *iq = (struct sge_iq *)arg2;
576 int state;
577
578 /*
579 * Right now receive polling is only enabled for MSI-X and
580 * when we have enough msi-x vectors i.e no interrupt forwarding.
581 */
582 if (iq->adapter->props.multi_rings) {
583 t4_intr_rx_work(iq);
584 } else {
585 state = atomic_cas_uint(&iq->state, IQS_IDLE, IQS_BUSY);
586 if (state == IQS_IDLE) {
587 (void) service_iq(iq, 0);
588 (void) atomic_cas_uint(&iq->state, IQS_BUSY, IQS_IDLE);
589 }
590 }
591 return (DDI_INTR_CLAIMED);
592 }
593
594 /* Deals with error interrupts */
595 /* ARGSUSED */
596 uint_t
t4_intr_err(caddr_t arg1,caddr_t arg2)597 t4_intr_err(caddr_t arg1, caddr_t arg2)
598 {
599 /* LINTED: E_BAD_PTR_CAST_ALIGN */
600 struct adapter *sc = (struct adapter *)arg1;
601
602 t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
603 (void) t4_slow_intr_handler(sc);
604
605 return (DDI_INTR_CLAIMED);
606 }
607
608 /*
609 * t4_ring_rx - Process responses from an SGE response queue.
610 *
611 * This function processes responses from an SGE response queue up to the
612 * supplied budget. Responses include received packets as well as control
613 * messages from FW or HW.
614 *
615 * It returns a chain of mblks containing the received data, to be
616 * passed up to mac_rx_ring().
617 */
618 mblk_t *
t4_ring_rx(struct sge_rxq * rxq,int budget)619 t4_ring_rx(struct sge_rxq *rxq, int budget)
620 {
621 struct sge_iq *iq = &rxq->iq;
622 struct sge_fl *fl = &rxq->fl; /* Use iff IQ_HAS_FL */
623 struct adapter *sc = iq->adapter;
624 struct rsp_ctrl *ctrl;
625 const struct rss_header *rss;
626 int ndescs = 0, fl_bufs_used = 0;
627 int rsp_type;
628 uint32_t lq;
629 mblk_t *mblk_head = NULL, **mblk_tail, *m;
630 struct cpl_rx_pkt *cpl;
631 uint32_t received_bytes = 0, pkt_len = 0;
632 bool csum_ok;
633 uint16_t err_vec;
634
635 mblk_tail = &mblk_head;
636
637 while (is_new_response(iq, &ctrl)) {
638
639 membar_consumer();
640
641 m = NULL;
642 rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
643 lq = be32_to_cpu(ctrl->pldbuflen_qid);
644 rss = (const void *)iq->cdesc;
645
646 switch (rsp_type) {
647 case X_RSPD_TYPE_FLBUF:
648
649 ASSERT(iq->flags & IQ_HAS_FL);
650
651 if (CPL_RX_PKT == rss->opcode) {
652 cpl = (void *)(rss + 1);
653 pkt_len = be16_to_cpu(cpl->len);
654
655 if (iq->polling &&
656 ((received_bytes + pkt_len) > budget))
657 goto done;
658
659 m = get_fl_payload(sc, fl, lq, &fl_bufs_used);
660 if (m == NULL)
661 goto done;
662
663 iq->intr_next = iq->intr_params;
664 m->b_rptr += sc->sge.pktshift;
665 if (sc->params.tp.rx_pkt_encap) {
666 /* Enabled only in T6 config file */
667 err_vec = G_T6_COMPR_RXERR_VEC(
668 ntohs(cpl->err_vec));
669 } else {
670 err_vec = ntohs(cpl->err_vec);
671 }
672
673 csum_ok = cpl->csum_calc && !err_vec;
674
675 /* TODO: what about cpl->ip_frag? */
676 if (csum_ok && !cpl->ip_frag) {
677 mac_hcksum_set(m, 0, 0, 0, 0xffff,
678 HCK_FULLCKSUM_OK | HCK_FULLCKSUM |
679 HCK_IPV4_HDRCKSUM_OK);
680 rxq->rxcsum++;
681 }
682 rxq->rxpkts++;
683 rxq->rxbytes += pkt_len;
684 received_bytes += pkt_len;
685
686 *mblk_tail = m;
687 mblk_tail = &m->b_next;
688
689 break;
690 }
691
692 m = get_fl_payload(sc, fl, lq, &fl_bufs_used);
693 if (m == NULL)
694 goto done;
695 /* FALLTHROUGH */
696
697 case X_RSPD_TYPE_CPL:
698 (void) t4_handle_cpl_msg(iq, rss, m);
699 break;
700
701 default:
702 break;
703 }
704 iq_next(iq);
705 ++ndescs;
706 if (!iq->polling && (ndescs == budget))
707 break;
708 }
709
710 done:
711
712 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
713 V_CIDXINC(ndescs) | V_INGRESSQID(iq->cntxt_id) |
714 V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
715
716 if ((fl_bufs_used > 0) || (iq->flags & IQ_HAS_FL)) {
717 int starved;
718 FL_LOCK(fl);
719 fl->needed += fl_bufs_used;
720 starved = refill_fl(sc, fl, fl->cap / 8);
721 FL_UNLOCK(fl);
722 if (starved)
723 add_fl_to_sfl(sc, fl);
724 }
725 return (mblk_head);
726 }
727
728 /*
729 * Deals with anything and everything on the given ingress queue.
730 */
731 static int
service_iq(struct sge_iq * iq,int budget)732 service_iq(struct sge_iq *iq, int budget)
733 {
734 struct sge_iq *q;
735 struct sge_rxq *rxq = iq_to_rxq(iq); /* Use iff iq is part of rxq */
736 struct sge_fl *fl = &rxq->fl; /* Use iff IQ_HAS_FL */
737 struct adapter *sc = iq->adapter;
738 struct rsp_ctrl *ctrl;
739 const struct rss_header *rss;
740 int ndescs = 0, limit, fl_bufs_used = 0;
741 int rsp_type;
742 uint32_t lq;
743 int starved;
744 mblk_t *m;
745 STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
746
747 limit = budget ? budget : iq->qsize / 8;
748
749 /*
750 * We always come back and check the descriptor ring for new indirect
751 * interrupts and other responses after running a single handler.
752 */
753 for (;;) {
754 while (is_new_response(iq, &ctrl)) {
755
756 membar_consumer();
757
758 m = NULL;
759 rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
760 lq = be32_to_cpu(ctrl->pldbuflen_qid);
761 rss = (const void *)iq->cdesc;
762
763 switch (rsp_type) {
764 case X_RSPD_TYPE_FLBUF:
765
766 ASSERT(iq->flags & IQ_HAS_FL);
767
768 m = get_fl_payload(sc, fl, lq, &fl_bufs_used);
769 if (m == NULL) {
770 /*
771 * Rearm the iq with a
772 * longer-than-default timer
773 */
774 const uint32_t timer_idx =
775 V_QINTR_TIMER_IDX(SGE_NTIMERS-1);
776 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
777 V_CIDXINC(ndescs) |
778 V_INGRESSQID((u32)iq->cntxt_id) |
779 V_SEINTARM(timer_idx));
780 if (fl_bufs_used > 0) {
781 ASSERT(iq->flags & IQ_HAS_FL);
782 FL_LOCK(fl);
783 fl->needed += fl_bufs_used;
784 starved = refill_fl(sc, fl,
785 fl->cap / 8);
786 FL_UNLOCK(fl);
787 if (starved)
788 add_fl_to_sfl(sc, fl);
789 }
790 return (0);
791 }
792
793 /* FALLTHRU */
794 case X_RSPD_TYPE_CPL:
795 (void) t4_handle_cpl_msg(iq, rss, m);
796 break;
797
798 case X_RSPD_TYPE_INTR:
799
800 /*
801 * Interrupts should be forwarded only to queues
802 * that are not forwarding their interrupts.
803 * This means service_iq can recurse but only 1
804 * level deep.
805 */
806 ASSERT(budget == 0);
807
808 q = sc->sge.iqmap[lq - sc->sge.iq_start];
809 if (atomic_cas_uint(&q->state, IQS_IDLE,
810 IQS_BUSY) == IQS_IDLE) {
811 if (service_iq(q, q->qsize / 8) == 0) {
812 (void) atomic_cas_uint(
813 &q->state, IQS_BUSY,
814 IQS_IDLE);
815 } else {
816 STAILQ_INSERT_TAIL(&iql, q,
817 link);
818 }
819 }
820 break;
821
822 default:
823 break;
824 }
825
826 iq_next(iq);
827 if (++ndescs == limit) {
828 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
829 V_CIDXINC(ndescs) |
830 V_INGRESSQID(iq->cntxt_id) |
831 V_SEINTARM(V_QINTR_TIMER_IDX(
832 X_TIMERREG_UPDATE_CIDX)));
833 ndescs = 0;
834
835 if (fl_bufs_used > 0) {
836 ASSERT(iq->flags & IQ_HAS_FL);
837 FL_LOCK(fl);
838 fl->needed += fl_bufs_used;
839 (void) refill_fl(sc, fl, fl->cap / 8);
840 FL_UNLOCK(fl);
841 fl_bufs_used = 0;
842 }
843
844 if (budget != 0)
845 return (EINPROGRESS);
846 }
847 }
848
849 if (STAILQ_EMPTY(&iql) != 0)
850 break;
851
852 /*
853 * Process the head only, and send it to the back of the list if
854 * it's still not done.
855 */
856 q = STAILQ_FIRST(&iql);
857 STAILQ_REMOVE_HEAD(&iql, link);
858 if (service_iq(q, q->qsize / 8) == 0)
859 (void) atomic_cas_uint(&q->state, IQS_BUSY, IQS_IDLE);
860 else
861 STAILQ_INSERT_TAIL(&iql, q, link);
862 }
863
864 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
865 V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_next));
866
867 if (iq->flags & IQ_HAS_FL) {
868
869 FL_LOCK(fl);
870 fl->needed += fl_bufs_used;
871 starved = refill_fl(sc, fl, fl->cap / 4);
872 FL_UNLOCK(fl);
873 if (starved != 0)
874 add_fl_to_sfl(sc, fl);
875 }
876
877 return (0);
878 }
879
880 /* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
881 #define TXPKTS_PKT_HDR ((\
882 sizeof (struct ulp_txpkt) + \
883 sizeof (struct ulptx_idata) + \
884 sizeof (struct cpl_tx_pkt_core)) / 8)
885
886 /* Header of a coalesced tx WR, before SGL of first packet (in flits) */
887 #define TXPKTS_WR_HDR (\
888 sizeof (struct fw_eth_tx_pkts_wr) / 8 + \
889 TXPKTS_PKT_HDR)
890
891 /* Header of a tx WR, before SGL of first packet (in flits) */
892 #define TXPKT_WR_HDR ((\
893 sizeof (struct fw_eth_tx_pkt_wr) + \
894 sizeof (struct cpl_tx_pkt_core)) / 8)
895
896 /* Header of a tx LSO WR, before SGL of first packet (in flits) */
897 #define TXPKT_LSO_WR_HDR ((\
898 sizeof (struct fw_eth_tx_pkt_wr) + \
899 sizeof (struct cpl_tx_pkt_lso_core) + \
900 sizeof (struct cpl_tx_pkt_core)) / 8)
901
902 mblk_t *
t4_eth_tx(void * arg,mblk_t * frame)903 t4_eth_tx(void *arg, mblk_t *frame)
904 {
905 struct sge_txq *txq = (struct sge_txq *)arg;
906 struct port_info *pi = txq->port;
907 struct adapter *sc = pi->adapter;
908 struct sge_eq *eq = &txq->eq;
909 mblk_t *next_frame;
910 int rc, coalescing;
911 struct txpkts txpkts;
912 struct txinfo txinfo;
913
914 txpkts.npkt = 0; /* indicates there's nothing in txpkts */
915 coalescing = 0;
916
917 TXQ_LOCK(txq);
918 if (eq->avail < 8)
919 (void) reclaim_tx_descs(txq, 8);
920 for (; frame; frame = next_frame) {
921
922 if (eq->avail < 8)
923 break;
924
925 next_frame = frame->b_next;
926 frame->b_next = NULL;
927
928 if (next_frame != NULL)
929 coalescing = 1;
930
931 rc = get_frame_txinfo(txq, &frame, &txinfo, coalescing);
932 if (rc != 0) {
933 if (rc == ENOMEM) {
934
935 /* Short of resources, suspend tx */
936
937 frame->b_next = next_frame;
938 break;
939 }
940
941 /*
942 * Unrecoverable error for this frame, throw it
943 * away and move on to the next.
944 */
945
946 freemsg(frame);
947 continue;
948 }
949
950 if (coalescing != 0 &&
951 add_to_txpkts(txq, &txpkts, frame, &txinfo) == 0) {
952
953 /* Successfully absorbed into txpkts */
954
955 write_ulp_cpl_sgl(pi, txq, &txpkts, &txinfo);
956 goto doorbell;
957 }
958
959 /*
960 * We weren't coalescing to begin with, or current frame could
961 * not be coalesced (add_to_txpkts flushes txpkts if a frame
962 * given to it can't be coalesced). Either way there should be
963 * nothing in txpkts.
964 */
965 ASSERT(txpkts.npkt == 0);
966
967 /* We're sending out individual frames now */
968 coalescing = 0;
969
970 if (eq->avail < 8)
971 (void) reclaim_tx_descs(txq, 8);
972 rc = write_txpkt_wr(pi, txq, frame, &txinfo);
973 if (rc != 0) {
974
975 /* Short of hardware descriptors, suspend tx */
976
977 /*
978 * This is an unlikely but expensive failure. We've
979 * done all the hard work (DMA bindings etc.) and now we
980 * can't send out the frame. What's worse, we have to
981 * spend even more time freeing up everything in txinfo.
982 */
983 txq->qfull++;
984 free_txinfo_resources(txq, &txinfo);
985
986 frame->b_next = next_frame;
987 break;
988 }
989
990 doorbell:
991 /* Fewer and fewer doorbells as the queue fills up */
992 if (eq->pending >= (1 << (fls(eq->qsize - eq->avail) / 2))) {
993 txq->txbytes += txinfo.len;
994 txq->txpkts++;
995 ring_tx_db(sc, eq);
996 }
997 (void) reclaim_tx_descs(txq, 32);
998 }
999
1000 if (txpkts.npkt > 0)
1001 write_txpkts_wr(txq, &txpkts);
1002
1003 /*
1004 * frame not NULL means there was an error but we haven't thrown it
1005 * away. This can happen when we're short of tx descriptors (qfull) or
1006 * maybe even DMA handles (dma_hdl_failed). Either way, a credit flush
1007 * and reclaim will get things going again.
1008 *
1009 * If eq->avail is already 0 we know a credit flush was requested in the
1010 * WR that reduced it to 0 so we don't need another flush (we don't have
1011 * any descriptor for a flush WR anyway, duh).
1012 */
1013 if (frame && eq->avail > 0)
1014 write_txqflush_wr(txq);
1015
1016 if (eq->pending != 0)
1017 ring_tx_db(sc, eq);
1018
1019 (void) reclaim_tx_descs(txq, eq->qsize);
1020 TXQ_UNLOCK(txq);
1021
1022 return (frame);
1023 }
1024
1025 static inline void
init_iq(struct sge_iq * iq,struct adapter * sc,int tmr_idx,int8_t pktc_idx,int qsize,uint8_t esize)1026 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int8_t pktc_idx,
1027 int qsize, uint8_t esize)
1028 {
1029 ASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS);
1030 ASSERT(pktc_idx < SGE_NCOUNTERS); /* -ve is ok, means don't use */
1031
1032 iq->flags = 0;
1033 iq->adapter = sc;
1034 iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
1035 iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
1036 if (pktc_idx >= 0) {
1037 iq->intr_params |= F_QINTR_CNT_EN;
1038 iq->intr_pktc_idx = pktc_idx;
1039 }
1040 iq->qsize = roundup(qsize, 16); /* See FW_IQ_CMD/iqsize */
1041 iq->esize = max(esize, 16); /* See FW_IQ_CMD/iqesize */
1042 }
1043
1044 static inline void
init_fl(struct sge_fl * fl,uint16_t qsize)1045 init_fl(struct sge_fl *fl, uint16_t qsize)
1046 {
1047
1048 fl->qsize = qsize;
1049 fl->allocb_fail = 0;
1050 }
1051
1052 static inline void
init_eq(struct adapter * sc,struct sge_eq * eq,uint16_t eqtype,uint16_t qsize,uint8_t tx_chan,uint16_t iqid)1053 init_eq(struct adapter *sc, struct sge_eq *eq, uint16_t eqtype, uint16_t qsize,
1054 uint8_t tx_chan, uint16_t iqid)
1055 {
1056 struct sge *s = &sc->sge;
1057 uint32_t r;
1058
1059 ASSERT(tx_chan < NCHAN);
1060 ASSERT(eqtype <= EQ_TYPEMASK);
1061
1062 if (is_t5(sc->params.chip)) {
1063 r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
1064 r >>= S_QUEUESPERPAGEPF0 +
1065 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
1066 s->s_qpp = r & M_QUEUESPERPAGEPF0;
1067 }
1068
1069 eq->flags = eqtype & EQ_TYPEMASK;
1070 eq->tx_chan = tx_chan;
1071 eq->iqid = iqid;
1072 eq->qsize = qsize;
1073 }
1074
1075 /*
1076 * Allocates the ring for an ingress queue and an optional freelist. If the
1077 * freelist is specified it will be allocated and then associated with the
1078 * ingress queue.
1079 *
1080 * Returns errno on failure. Resources allocated up to that point may still be
1081 * allocated. Caller is responsible for cleanup in case this function fails.
1082 *
1083 * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
1084 * the intr_idx specifies the vector, starting from 0. Otherwise it specifies
1085 * the index of the queue to which its interrupts will be forwarded.
1086 */
1087 static int
alloc_iq_fl(struct port_info * pi,struct sge_iq * iq,struct sge_fl * fl,int intr_idx,int cong)1088 alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
1089 int intr_idx, int cong)
1090 {
1091 int rc, i, cntxt_id;
1092 size_t len;
1093 struct fw_iq_cmd c;
1094 struct adapter *sc = iq->adapter;
1095 uint32_t v = 0;
1096
1097 len = iq->qsize * iq->esize;
1098 rc = alloc_desc_ring(sc, len, DDI_DMA_READ, &iq->dhdl, &iq->ahdl,
1099 &iq->ba, (caddr_t *)&iq->desc);
1100 if (rc != 0)
1101 return (rc);
1102
1103 bzero(&c, sizeof (c));
1104 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
1105 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
1106 V_FW_IQ_CMD_VFN(0));
1107
1108 c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
1109 FW_LEN16(c));
1110
1111 /* Special handling for firmware event queue */
1112 if (iq == &sc->sge.fwq)
1113 v |= F_FW_IQ_CMD_IQASYNCH;
1114
1115 if (iq->flags & IQ_INTR)
1116 ASSERT(intr_idx < sc->intr_count);
1117 else
1118 v |= F_FW_IQ_CMD_IQANDST;
1119 v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
1120
1121 c.type_to_iqandstindex = cpu_to_be32(v |
1122 V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
1123 V_FW_IQ_CMD_VIID(pi->viid) |
1124 V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
1125 c.iqdroprss_to_iqesize = cpu_to_be16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
1126 F_FW_IQ_CMD_IQGTSMODE |
1127 V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
1128 V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4));
1129 c.iqsize = cpu_to_be16(iq->qsize);
1130 c.iqaddr = cpu_to_be64(iq->ba);
1131 if (cong >= 0) {
1132 const uint32_t iq_type =
1133 cong ? FW_IQ_IQTYPE_NIC : FW_IQ_IQTYPE_OFLD;
1134 c.iqns_to_fl0congen = BE_32(F_FW_IQ_CMD_IQFLINTCONGEN |
1135 V_FW_IQ_CMD_IQTYPE(iq_type));
1136 }
1137
1138 if (fl != NULL) {
1139 unsigned int chip_ver = CHELSIO_CHIP_VERSION(sc->params.chip);
1140
1141 mutex_init(&fl->lock, NULL, MUTEX_DRIVER,
1142 DDI_INTR_PRI(sc->intr_pri));
1143 fl->flags |= FL_MTX;
1144
1145 len = fl->qsize * RX_FL_ESIZE;
1146 rc = alloc_desc_ring(sc, len, DDI_DMA_WRITE, &fl->dhdl,
1147 &fl->ahdl, &fl->ba, (caddr_t *)&fl->desc);
1148 if (rc != 0)
1149 return (rc);
1150
1151 /* Allocate space for one software descriptor per buffer. */
1152 fl->cap = (fl->qsize - sc->sge.stat_len / RX_FL_ESIZE) * 8;
1153 fl->sdesc = kmem_zalloc(sizeof (struct fl_sdesc) * fl->cap,
1154 KM_SLEEP);
1155 fl->needed = fl->cap;
1156 fl->lowat = roundup(sc->sge.fl_starve_threshold, 8);
1157
1158 c.iqns_to_fl0congen |=
1159 cpu_to_be32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
1160 F_FW_IQ_CMD_FL0PACKEN | F_FW_IQ_CMD_FL0PADEN);
1161 if (cong >= 0) {
1162 c.iqns_to_fl0congen |=
1163 BE_32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
1164 F_FW_IQ_CMD_FL0CONGCIF |
1165 F_FW_IQ_CMD_FL0CONGEN);
1166 }
1167
1168 /*
1169 * In T6, for egress queue type FL there is internal overhead
1170 * of 16B for header going into FLM module. Hence the maximum
1171 * allowed burst size is 448 bytes. For T4/T5, the hardware
1172 * doesn't coalesce fetch requests if more than 64 bytes of
1173 * Free List pointers are provided, so we use a 128-byte Fetch
1174 * Burst Minimum there (T6 implements coalescing so we can use
1175 * the smaller 64-byte value there).
1176 */
1177
1178 c.fl0dcaen_to_fl0cidxfthresh = cpu_to_be16(
1179 V_FW_IQ_CMD_FL0FBMIN(chip_ver <= CHELSIO_T5 ?
1180 X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B) |
1181 V_FW_IQ_CMD_FL0FBMAX(chip_ver <= CHELSIO_T5 ?
1182 X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
1183 c.fl0size = cpu_to_be16(fl->qsize);
1184 c.fl0addr = cpu_to_be64(fl->ba);
1185 }
1186
1187 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
1188 if (rc != 0) {
1189 cxgb_printf(sc->dip, CE_WARN,
1190 "failed to create ingress queue: %d", rc);
1191 return (rc);
1192 }
1193
1194 iq->cdesc = iq->desc;
1195 iq->cidx = 0;
1196 iq->gen = 1;
1197 iq->intr_next = iq->intr_params;
1198 iq->adapter = sc;
1199 iq->cntxt_id = be16_to_cpu(c.iqid);
1200 iq->abs_id = be16_to_cpu(c.physiqid);
1201 iq->flags |= IQ_ALLOCATED;
1202 mutex_init(&iq->lock, NULL, MUTEX_DRIVER,
1203 DDI_INTR_PRI(DDI_INTR_PRI(sc->intr_pri)));
1204 iq->polling = 0;
1205
1206 cntxt_id = iq->cntxt_id - sc->sge.iq_start;
1207 if (cntxt_id >= sc->sge.iqmap_sz) {
1208 panic("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
1209 cntxt_id, sc->sge.iqmap_sz - 1);
1210 }
1211 sc->sge.iqmap[cntxt_id] = iq;
1212
1213 if (fl != NULL) {
1214 fl->cntxt_id = be16_to_cpu(c.fl0id);
1215 fl->pidx = fl->cidx = 0;
1216 fl->copy_threshold = rx_copy_threshold;
1217
1218 cntxt_id = fl->cntxt_id - sc->sge.eq_start;
1219 if (cntxt_id >= sc->sge.eqmap_sz) {
1220 panic("%s: fl->cntxt_id (%d) more than the max (%d)",
1221 __func__, cntxt_id, sc->sge.eqmap_sz - 1);
1222 }
1223 sc->sge.eqmap[cntxt_id] = (void *)fl;
1224
1225 FL_LOCK(fl);
1226 (void) refill_fl(sc, fl, fl->lowat);
1227 FL_UNLOCK(fl);
1228
1229 iq->flags |= IQ_HAS_FL;
1230 }
1231
1232 if (is_t5(sc->params.chip) && cong >= 0) {
1233 uint32_t param, val;
1234
1235 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1236 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
1237 V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
1238 if (cong == 0)
1239 val = 1 << 19;
1240 else {
1241 val = 2 << 19;
1242 for (i = 0; i < 4; i++) {
1243 if (cong & (1 << i))
1244 val |= 1 << (i << 2);
1245 }
1246 }
1247
1248 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
1249 if (rc != 0) {
1250 /* report error but carry on */
1251 cxgb_printf(sc->dip, CE_WARN,
1252 "failed to set congestion manager context for "
1253 "ingress queue %d: %d", iq->cntxt_id, rc);
1254 }
1255 }
1256
1257 /* Enable IQ interrupts */
1258 iq->state = IQS_IDLE;
1259 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
1260 V_INGRESSQID(iq->cntxt_id));
1261
1262 return (0);
1263 }
1264
1265 static int
free_iq_fl(struct port_info * pi,struct sge_iq * iq,struct sge_fl * fl)1266 free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
1267 {
1268 int rc;
1269
1270 if (iq != NULL) {
1271 struct adapter *sc = iq->adapter;
1272 dev_info_t *dip;
1273
1274 dip = pi ? pi->dip : sc->dip;
1275 if (iq->flags & IQ_ALLOCATED) {
1276 rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
1277 FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
1278 fl ? fl->cntxt_id : 0xffff, 0xffff);
1279 if (rc != 0) {
1280 cxgb_printf(dip, CE_WARN,
1281 "failed to free queue %p: %d", iq, rc);
1282 return (rc);
1283 }
1284 mutex_destroy(&iq->lock);
1285 iq->flags &= ~IQ_ALLOCATED;
1286 }
1287
1288 if (iq->desc != NULL) {
1289 (void) free_desc_ring(&iq->dhdl, &iq->ahdl);
1290 iq->desc = NULL;
1291 }
1292
1293 bzero(iq, sizeof (*iq));
1294 }
1295
1296 if (fl != NULL) {
1297 if (fl->sdesc != NULL) {
1298 FL_LOCK(fl);
1299 free_fl_bufs(fl);
1300 FL_UNLOCK(fl);
1301
1302 kmem_free(fl->sdesc, sizeof (struct fl_sdesc) *
1303 fl->cap);
1304 fl->sdesc = NULL;
1305 }
1306
1307 if (fl->desc != NULL) {
1308 (void) free_desc_ring(&fl->dhdl, &fl->ahdl);
1309 fl->desc = NULL;
1310 }
1311
1312 if (fl->flags & FL_MTX) {
1313 mutex_destroy(&fl->lock);
1314 fl->flags &= ~FL_MTX;
1315 }
1316
1317 bzero(fl, sizeof (struct sge_fl));
1318 }
1319
1320 return (0);
1321 }
1322
1323 static int
alloc_fwq(struct adapter * sc)1324 alloc_fwq(struct adapter *sc)
1325 {
1326 int rc, intr_idx;
1327 struct sge_iq *fwq = &sc->sge.fwq;
1328
1329 init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE);
1330 fwq->flags |= IQ_INTR; /* always */
1331 intr_idx = sc->intr_count > 1 ? 1 : 0;
1332 rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
1333 if (rc != 0) {
1334 cxgb_printf(sc->dip, CE_WARN,
1335 "failed to create firmware event queue: %d.", rc);
1336 return (rc);
1337 }
1338
1339 return (0);
1340 }
1341
1342 static int
free_fwq(struct adapter * sc)1343 free_fwq(struct adapter *sc)
1344 {
1345
1346 return (free_iq_fl(NULL, &sc->sge.fwq, NULL));
1347 }
1348
1349 static int
alloc_rxq(struct port_info * pi,struct sge_rxq * rxq,int intr_idx,int i)1350 alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int i)
1351 {
1352 int rc;
1353
1354 rxq->port = pi;
1355 rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx,
1356 t4_get_tp_ch_map(pi->adapter, pi->tx_chan));
1357 if (rc != 0)
1358 return (rc);
1359
1360 rxq->ksp = setup_rxq_kstats(pi, rxq, i);
1361
1362 return (rc);
1363 }
1364
1365 static int
free_rxq(struct port_info * pi,struct sge_rxq * rxq)1366 free_rxq(struct port_info *pi, struct sge_rxq *rxq)
1367 {
1368 int rc;
1369
1370 if (rxq->ksp != NULL) {
1371 kstat_delete(rxq->ksp);
1372 rxq->ksp = NULL;
1373 }
1374
1375 rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
1376 if (rc == 0)
1377 bzero(&rxq->fl, sizeof (*rxq) - offsetof(struct sge_rxq, fl));
1378
1379 return (rc);
1380 }
1381
1382 static int
ctrl_eq_alloc(struct adapter * sc,struct sge_eq * eq)1383 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
1384 {
1385 int rc, cntxt_id;
1386 struct fw_eq_ctrl_cmd c;
1387
1388 bzero(&c, sizeof (c));
1389
1390 c.op_to_vfn = BE_32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
1391 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
1392 V_FW_EQ_CTRL_CMD_VFN(0));
1393 c.alloc_to_len16 = BE_32(F_FW_EQ_CTRL_CMD_ALLOC |
1394 F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
1395 c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* TODO */
1396 c.physeqid_pkd = BE_32(0);
1397 c.fetchszm_to_iqid =
1398 BE_32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
1399 V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
1400 F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
1401 c.dcaen_to_eqsize =
1402 BE_32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
1403 V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
1404 V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
1405 V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize));
1406 c.eqaddr = BE_64(eq->ba);
1407
1408 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
1409 if (rc != 0) {
1410 cxgb_printf(sc->dip, CE_WARN,
1411 "failed to create control queue %d: %d", eq->tx_chan, rc);
1412 return (rc);
1413 }
1414 eq->flags |= EQ_ALLOCATED;
1415
1416 eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(BE_32(c.cmpliqid_eqid));
1417 cntxt_id = eq->cntxt_id - sc->sge.eq_start;
1418 if (cntxt_id >= sc->sge.eqmap_sz)
1419 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
1420 cntxt_id, sc->sge.eqmap_sz - 1);
1421 sc->sge.eqmap[cntxt_id] = eq;
1422
1423 return (rc);
1424 }
1425
1426 static int
eth_eq_alloc(struct adapter * sc,struct port_info * pi,struct sge_eq * eq)1427 eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
1428 {
1429 int rc, cntxt_id;
1430 struct fw_eq_eth_cmd c;
1431
1432 bzero(&c, sizeof (c));
1433
1434 c.op_to_vfn = BE_32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
1435 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
1436 V_FW_EQ_ETH_CMD_VFN(0));
1437 c.alloc_to_len16 = BE_32(F_FW_EQ_ETH_CMD_ALLOC |
1438 F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
1439 c.autoequiqe_to_viid = BE_32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
1440 F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(pi->viid));
1441 c.fetchszm_to_iqid =
1442 BE_32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
1443 V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
1444 V_FW_EQ_ETH_CMD_IQID(eq->iqid));
1445 c.dcaen_to_eqsize = BE_32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
1446 V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
1447 V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
1448 V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
1449 c.eqaddr = BE_64(eq->ba);
1450
1451 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
1452 if (rc != 0) {
1453 cxgb_printf(pi->dip, CE_WARN,
1454 "failed to create Ethernet egress queue: %d", rc);
1455 return (rc);
1456 }
1457 eq->flags |= EQ_ALLOCATED;
1458
1459 eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(BE_32(c.eqid_pkd));
1460 cntxt_id = eq->cntxt_id - sc->sge.eq_start;
1461 if (cntxt_id >= sc->sge.eqmap_sz)
1462 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
1463 cntxt_id, sc->sge.eqmap_sz - 1);
1464 sc->sge.eqmap[cntxt_id] = eq;
1465
1466 return (rc);
1467 }
1468
1469 static int
alloc_eq(struct adapter * sc,struct port_info * pi,struct sge_eq * eq)1470 alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
1471 {
1472 int rc;
1473 size_t len;
1474
1475 mutex_init(&eq->lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(sc->intr_pri));
1476 eq->flags |= EQ_MTX;
1477
1478 len = eq->qsize * EQ_ESIZE;
1479 rc = alloc_desc_ring(sc, len, DDI_DMA_WRITE, &eq->desc_dhdl,
1480 &eq->desc_ahdl, &eq->ba, (caddr_t *)&eq->desc);
1481 if (rc != 0)
1482 return (rc);
1483
1484 eq->cap = eq->qsize - sc->sge.stat_len / EQ_ESIZE;
1485 eq->spg = (void *)&eq->desc[eq->cap];
1486 eq->avail = eq->cap - 1; /* one less to avoid cidx = pidx */
1487 eq->pidx = eq->cidx = 0;
1488 eq->doorbells = sc->doorbells;
1489
1490 switch (eq->flags & EQ_TYPEMASK) {
1491 case EQ_CTRL:
1492 rc = ctrl_eq_alloc(sc, eq);
1493 break;
1494
1495 case EQ_ETH:
1496 rc = eth_eq_alloc(sc, pi, eq);
1497 break;
1498
1499 default:
1500 panic("%s: invalid eq type %d.", __func__,
1501 eq->flags & EQ_TYPEMASK);
1502 }
1503
1504 if (eq->doorbells & (DOORBELL_UDB | DOORBELL_UDBWC | DOORBELL_WCWR)) {
1505 uint32_t s_qpp = sc->sge.s_qpp;
1506 uint32_t mask = (1 << s_qpp) - 1;
1507 volatile uint8_t *udb;
1508
1509 udb = (volatile uint8_t *)sc->reg1p + UDBS_DB_OFFSET;
1510 udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT; /* pg offset */
1511 eq->udb_qid = eq->cntxt_id & mask; /* id in page */
1512 if (eq->udb_qid > PAGE_SIZE / UDBS_SEG_SIZE)
1513 eq->doorbells &= ~DOORBELL_WCWR;
1514 else {
1515 udb += eq->udb_qid << UDBS_SEG_SHIFT; /* seg offset */
1516 eq->udb_qid = 0;
1517 }
1518 eq->udb = (volatile void *)udb;
1519 }
1520
1521 if (rc != 0) {
1522 cxgb_printf(sc->dip, CE_WARN,
1523 "failed to allocate egress queue(%d): %d",
1524 eq->flags & EQ_TYPEMASK, rc);
1525 }
1526
1527 return (rc);
1528 }
1529
1530 static int
free_eq(struct adapter * sc,struct sge_eq * eq)1531 free_eq(struct adapter *sc, struct sge_eq *eq)
1532 {
1533 int rc;
1534
1535 if (eq->flags & EQ_ALLOCATED) {
1536 switch (eq->flags & EQ_TYPEMASK) {
1537 case EQ_CTRL:
1538 rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
1539 eq->cntxt_id);
1540 break;
1541
1542 case EQ_ETH:
1543 rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
1544 eq->cntxt_id);
1545 break;
1546 default:
1547 panic("%s: invalid eq type %d.", __func__,
1548 eq->flags & EQ_TYPEMASK);
1549 }
1550 if (rc != 0) {
1551 cxgb_printf(sc->dip, CE_WARN,
1552 "failed to free egress queue (%d): %d",
1553 eq->flags & EQ_TYPEMASK, rc);
1554 return (rc);
1555 }
1556 eq->flags &= ~EQ_ALLOCATED;
1557 }
1558
1559 if (eq->desc != NULL) {
1560 (void) free_desc_ring(&eq->desc_dhdl, &eq->desc_ahdl);
1561 eq->desc = NULL;
1562 }
1563
1564 if (eq->flags & EQ_MTX)
1565 mutex_destroy(&eq->lock);
1566
1567 bzero(eq, sizeof (*eq));
1568 return (0);
1569 }
1570
1571 static int
alloc_txq(struct port_info * pi,struct sge_txq * txq,int idx)1572 alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx)
1573 {
1574 int rc, i;
1575 struct adapter *sc = pi->adapter;
1576 struct sge_eq *eq = &txq->eq;
1577
1578 rc = alloc_eq(sc, pi, eq);
1579 if (rc != 0)
1580 return (rc);
1581
1582 txq->port = pi;
1583 txq->sdesc = kmem_zalloc(sizeof (struct tx_sdesc) * eq->cap, KM_SLEEP);
1584 txq->txb_size = eq->qsize * tx_copy_threshold;
1585 rc = alloc_tx_copybuffer(sc, txq->txb_size, &txq->txb_dhdl,
1586 &txq->txb_ahdl, &txq->txb_ba, &txq->txb_va);
1587 if (rc == 0)
1588 txq->txb_avail = txq->txb_size;
1589 else
1590 txq->txb_avail = txq->txb_size = 0;
1591
1592 /*
1593 * TODO: is this too low? Worst case would need around 4 times qsize
1594 * (all tx descriptors filled to the brim with SGLs, with each entry in
1595 * the SGL coming from a distinct DMA handle). Increase tx_dhdl_total
1596 * if you see too many dma_hdl_failed.
1597 */
1598 txq->tx_dhdl_total = eq->qsize * 2;
1599 txq->tx_dhdl = kmem_zalloc(sizeof (ddi_dma_handle_t) *
1600 txq->tx_dhdl_total, KM_SLEEP);
1601 for (i = 0; i < txq->tx_dhdl_total; i++) {
1602 rc = ddi_dma_alloc_handle(sc->dip, &sc->sge.dma_attr_tx,
1603 DDI_DMA_SLEEP, 0, &txq->tx_dhdl[i]);
1604 if (rc != DDI_SUCCESS) {
1605 cxgb_printf(sc->dip, CE_WARN,
1606 "%s: failed to allocate DMA handle (%d)",
1607 __func__, rc);
1608 return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL);
1609 }
1610 txq->tx_dhdl_avail++;
1611 }
1612
1613 txq->ksp = setup_txq_kstats(pi, txq, idx);
1614
1615 return (rc);
1616 }
1617
1618 static int
free_txq(struct port_info * pi,struct sge_txq * txq)1619 free_txq(struct port_info *pi, struct sge_txq *txq)
1620 {
1621 int i;
1622 struct adapter *sc = pi->adapter;
1623 struct sge_eq *eq = &txq->eq;
1624
1625 if (txq->ksp != NULL) {
1626 kstat_delete(txq->ksp);
1627 txq->ksp = NULL;
1628 }
1629
1630 if (txq->txb_va != NULL) {
1631 (void) free_desc_ring(&txq->txb_dhdl, &txq->txb_ahdl);
1632 txq->txb_va = NULL;
1633 }
1634
1635 if (txq->sdesc != NULL) {
1636 struct tx_sdesc *sd;
1637 ddi_dma_handle_t hdl;
1638
1639 TXQ_LOCK(txq);
1640 while (eq->cidx != eq->pidx) {
1641 sd = &txq->sdesc[eq->cidx];
1642
1643 for (i = sd->hdls_used; i; i--) {
1644 hdl = txq->tx_dhdl[txq->tx_dhdl_cidx];
1645 (void) ddi_dma_unbind_handle(hdl);
1646 if (++txq->tx_dhdl_cidx == txq->tx_dhdl_total)
1647 txq->tx_dhdl_cidx = 0;
1648 }
1649
1650 ASSERT(sd->m);
1651 freemsgchain(sd->m);
1652
1653 eq->cidx += sd->desc_used;
1654 if (eq->cidx >= eq->cap)
1655 eq->cidx -= eq->cap;
1656
1657 txq->txb_avail += txq->txb_used;
1658 }
1659 ASSERT(txq->tx_dhdl_cidx == txq->tx_dhdl_pidx);
1660 ASSERT(txq->txb_avail == txq->txb_size);
1661 TXQ_UNLOCK(txq);
1662
1663 kmem_free(txq->sdesc, sizeof (struct tx_sdesc) * eq->cap);
1664 txq->sdesc = NULL;
1665 }
1666
1667 if (txq->tx_dhdl != NULL) {
1668 for (i = 0; i < txq->tx_dhdl_total; i++) {
1669 if (txq->tx_dhdl[i] != NULL)
1670 ddi_dma_free_handle(&txq->tx_dhdl[i]);
1671 }
1672 kmem_free(txq->tx_dhdl,
1673 sizeof (ddi_dma_handle_t) * txq->tx_dhdl_total);
1674 txq->tx_dhdl = NULL;
1675 }
1676
1677 (void) free_eq(sc, &txq->eq);
1678
1679 bzero(txq, sizeof (*txq));
1680 return (0);
1681 }
1682
1683 /*
1684 * Allocates a block of contiguous memory for DMA. Can be used to allocate
1685 * memory for descriptor rings or for tx/rx copy buffers.
1686 *
1687 * Caller does not have to clean up anything if this function fails, it cleans
1688 * up after itself.
1689 *
1690 * Caller provides the following:
1691 * len length of the block of memory to allocate.
1692 * flags DDI_DMA_* flags to use (CONSISTENT/STREAMING, READ/WRITE/RDWR)
1693 * acc_attr device access attributes for the allocation.
1694 * dma_attr DMA attributes for the allocation
1695 *
1696 * If the function is successful it fills up this information:
1697 * dma_hdl DMA handle for the allocated memory
1698 * acc_hdl access handle for the allocated memory
1699 * ba bus address of the allocated memory
1700 * va KVA of the allocated memory.
1701 */
1702 static int
alloc_dma_memory(struct adapter * sc,size_t len,int flags,ddi_device_acc_attr_t * acc_attr,ddi_dma_attr_t * dma_attr,ddi_dma_handle_t * dma_hdl,ddi_acc_handle_t * acc_hdl,uint64_t * pba,caddr_t * pva)1703 alloc_dma_memory(struct adapter *sc, size_t len, int flags,
1704 ddi_device_acc_attr_t *acc_attr, ddi_dma_attr_t *dma_attr,
1705 ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl,
1706 uint64_t *pba, caddr_t *pva)
1707 {
1708 int rc;
1709 ddi_dma_handle_t dhdl;
1710 ddi_acc_handle_t ahdl;
1711 ddi_dma_cookie_t cookie;
1712 uint_t ccount;
1713 caddr_t va;
1714 size_t real_len;
1715
1716 *pva = NULL;
1717
1718 /*
1719 * DMA handle.
1720 */
1721 rc = ddi_dma_alloc_handle(sc->dip, dma_attr, DDI_DMA_SLEEP, 0, &dhdl);
1722 if (rc != DDI_SUCCESS) {
1723 return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL);
1724 }
1725
1726 /*
1727 * Memory suitable for DMA.
1728 */
1729 rc = ddi_dma_mem_alloc(dhdl, len, acc_attr,
1730 flags & DDI_DMA_CONSISTENT ? DDI_DMA_CONSISTENT : DDI_DMA_STREAMING,
1731 DDI_DMA_SLEEP, 0, &va, &real_len, &ahdl);
1732 if (rc != DDI_SUCCESS) {
1733 ddi_dma_free_handle(&dhdl);
1734 return (ENOMEM);
1735 }
1736
1737 /*
1738 * DMA bindings.
1739 */
1740 rc = ddi_dma_addr_bind_handle(dhdl, NULL, va, real_len, flags, NULL,
1741 NULL, &cookie, &ccount);
1742 if (rc != DDI_DMA_MAPPED) {
1743 ddi_dma_mem_free(&ahdl);
1744 ddi_dma_free_handle(&dhdl);
1745 return (ENOMEM);
1746 }
1747 if (ccount != 1) {
1748 /* unusable DMA mapping */
1749 (void) free_desc_ring(&dhdl, &ahdl);
1750 return (ENOMEM);
1751 }
1752
1753 bzero(va, real_len);
1754 *dma_hdl = dhdl;
1755 *acc_hdl = ahdl;
1756 *pba = cookie.dmac_laddress;
1757 *pva = va;
1758
1759 return (0);
1760 }
1761
1762 static int
free_dma_memory(ddi_dma_handle_t * dhdl,ddi_acc_handle_t * ahdl)1763 free_dma_memory(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl)
1764 {
1765 (void) ddi_dma_unbind_handle(*dhdl);
1766 ddi_dma_mem_free(ahdl);
1767 ddi_dma_free_handle(dhdl);
1768
1769 return (0);
1770 }
1771
1772 static int
alloc_desc_ring(struct adapter * sc,size_t len,int rw,ddi_dma_handle_t * dma_hdl,ddi_acc_handle_t * acc_hdl,uint64_t * pba,caddr_t * pva)1773 alloc_desc_ring(struct adapter *sc, size_t len, int rw,
1774 ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl,
1775 uint64_t *pba, caddr_t *pva)
1776 {
1777 ddi_device_acc_attr_t *acc_attr = &sc->sge.acc_attr_desc;
1778 ddi_dma_attr_t *dma_attr = &sc->sge.dma_attr_desc;
1779
1780 return (alloc_dma_memory(sc, len, DDI_DMA_CONSISTENT | rw, acc_attr,
1781 dma_attr, dma_hdl, acc_hdl, pba, pva));
1782 }
1783
1784 static int
free_desc_ring(ddi_dma_handle_t * dhdl,ddi_acc_handle_t * ahdl)1785 free_desc_ring(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl)
1786 {
1787 return (free_dma_memory(dhdl, ahdl));
1788 }
1789
1790 static int
alloc_tx_copybuffer(struct adapter * sc,size_t len,ddi_dma_handle_t * dma_hdl,ddi_acc_handle_t * acc_hdl,uint64_t * pba,caddr_t * pva)1791 alloc_tx_copybuffer(struct adapter *sc, size_t len,
1792 ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl,
1793 uint64_t *pba, caddr_t *pva)
1794 {
1795 ddi_device_acc_attr_t *acc_attr = &sc->sge.acc_attr_tx;
1796 ddi_dma_attr_t *dma_attr = &sc->sge.dma_attr_desc; /* NOT dma_attr_tx */
1797
1798 return (alloc_dma_memory(sc, len, DDI_DMA_STREAMING | DDI_DMA_WRITE,
1799 acc_attr, dma_attr, dma_hdl, acc_hdl, pba, pva));
1800 }
1801
1802 static inline bool
is_new_response(const struct sge_iq * iq,struct rsp_ctrl ** ctrl)1803 is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl)
1804 {
1805 (void) ddi_dma_sync(iq->dhdl, (uintptr_t)iq->cdesc -
1806 (uintptr_t)iq->desc, iq->esize, DDI_DMA_SYNC_FORKERNEL);
1807
1808 *ctrl = (void *)((uintptr_t)iq->cdesc +
1809 (iq->esize - sizeof (struct rsp_ctrl)));
1810
1811 return ((((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen));
1812 }
1813
1814 static inline void
iq_next(struct sge_iq * iq)1815 iq_next(struct sge_iq *iq)
1816 {
1817 iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize);
1818 if (++iq->cidx == iq->qsize - 1) {
1819 iq->cidx = 0;
1820 iq->gen ^= 1;
1821 iq->cdesc = iq->desc;
1822 }
1823 }
1824
1825 /*
1826 * Fill up the freelist by upto nbufs and maybe ring its doorbell.
1827 *
1828 * Returns non-zero to indicate that it should be added to the list of starving
1829 * freelists.
1830 */
1831 static int
refill_fl(struct adapter * sc,struct sge_fl * fl,int nbufs)1832 refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs)
1833 {
1834 uint64_t *d = &fl->desc[fl->pidx];
1835 struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
1836
1837 FL_LOCK_ASSERT_OWNED(fl);
1838 ASSERT(nbufs >= 0);
1839
1840 if (nbufs > fl->needed)
1841 nbufs = fl->needed;
1842
1843 while (nbufs--) {
1844 if (sd->rxb != NULL) {
1845 if (sd->rxb->ref_cnt == 1) {
1846 /*
1847 * Buffer is available for recycling. Two ways
1848 * this can happen:
1849 *
1850 * a) All the packets DMA'd into it last time
1851 * around were within the rx_copy_threshold
1852 * and no part of the buffer was ever passed
1853 * up (ref_cnt never went over 1).
1854 *
1855 * b) Packets DMA'd into the buffer were passed
1856 * up but have all been freed by the upper
1857 * layers by now (ref_cnt went over 1 but is
1858 * now back to 1).
1859 *
1860 * Either way the bus address in the descriptor
1861 * ring is already valid.
1862 */
1863 ASSERT(*d == cpu_to_be64(sd->rxb->ba));
1864 d++;
1865 goto recycled;
1866 } else {
1867 /*
1868 * Buffer still in use and we need a
1869 * replacement. But first release our reference
1870 * on the existing buffer.
1871 */
1872 rxbuf_free(sd->rxb);
1873 }
1874 }
1875
1876 sd->rxb = rxbuf_alloc(sc->sge.rxbuf_cache, KM_NOSLEEP, 1);
1877 if (sd->rxb == NULL)
1878 break;
1879 *d++ = cpu_to_be64(sd->rxb->ba);
1880
1881 recycled: fl->pending++;
1882 sd++;
1883 fl->needed--;
1884 if (++fl->pidx == fl->cap) {
1885 fl->pidx = 0;
1886 sd = fl->sdesc;
1887 d = fl->desc;
1888 }
1889 }
1890
1891 if (fl->pending >= 8)
1892 ring_fl_db(sc, fl);
1893
1894 return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
1895 }
1896
1897 #ifndef TAILQ_FOREACH_SAFE
1898 #define TAILQ_FOREACH_SAFE(var, head, field, tvar) \
1899 for ((var) = TAILQ_FIRST((head)); \
1900 (var) && ((tvar) = TAILQ_NEXT((var), field), 1); \
1901 (var) = (tvar))
1902 #endif
1903
1904 /*
1905 * Attempt to refill all starving freelists.
1906 */
1907 static void
refill_sfl(void * arg)1908 refill_sfl(void *arg)
1909 {
1910 struct adapter *sc = arg;
1911 struct sge_fl *fl, *fl_temp;
1912
1913 mutex_enter(&sc->sfl_lock);
1914 TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
1915 FL_LOCK(fl);
1916 (void) refill_fl(sc, fl, 64);
1917 if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
1918 TAILQ_REMOVE(&sc->sfl, fl, link);
1919 fl->flags &= ~FL_STARVING;
1920 }
1921 FL_UNLOCK(fl);
1922 }
1923
1924 if (!TAILQ_EMPTY(&sc->sfl) != 0)
1925 sc->sfl_timer = timeout(refill_sfl, sc, drv_usectohz(100000));
1926 mutex_exit(&sc->sfl_lock);
1927 }
1928
1929 static void
add_fl_to_sfl(struct adapter * sc,struct sge_fl * fl)1930 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
1931 {
1932 mutex_enter(&sc->sfl_lock);
1933 FL_LOCK(fl);
1934 if ((fl->flags & FL_DOOMED) == 0) {
1935 if (TAILQ_EMPTY(&sc->sfl) != 0) {
1936 sc->sfl_timer = timeout(refill_sfl, sc,
1937 drv_usectohz(100000));
1938 }
1939 fl->flags |= FL_STARVING;
1940 TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
1941 }
1942 FL_UNLOCK(fl);
1943 mutex_exit(&sc->sfl_lock);
1944 }
1945
1946 static void
free_fl_bufs(struct sge_fl * fl)1947 free_fl_bufs(struct sge_fl *fl)
1948 {
1949 struct fl_sdesc *sd;
1950 unsigned int i;
1951
1952 FL_LOCK_ASSERT_OWNED(fl);
1953
1954 for (i = 0; i < fl->cap; i++) {
1955 sd = &fl->sdesc[i];
1956
1957 if (sd->rxb != NULL) {
1958 rxbuf_free(sd->rxb);
1959 sd->rxb = NULL;
1960 }
1961 }
1962 }
1963
1964 /*
1965 * Note that fl->cidx and fl->offset are left unchanged in case of failure.
1966 */
1967 static mblk_t *
get_fl_payload(struct adapter * sc,struct sge_fl * fl,uint32_t len_newbuf,int * fl_bufs_used)1968 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf,
1969 int *fl_bufs_used)
1970 {
1971 struct mblk_pair frame = {0};
1972 struct rxbuf *rxb;
1973 mblk_t *m = NULL;
1974 uint_t nbuf = 0, len, copy, n;
1975 uint32_t cidx, offset, rcidx, roffset;
1976
1977 /*
1978 * The SGE won't pack a new frame into the current buffer if the entire
1979 * payload doesn't fit in the remaining space. Move on to the next buf
1980 * in that case.
1981 */
1982 rcidx = fl->cidx;
1983 roffset = fl->offset;
1984 if (fl->offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1985 fl->offset = 0;
1986 if (++fl->cidx == fl->cap)
1987 fl->cidx = 0;
1988 nbuf++;
1989 }
1990 cidx = fl->cidx;
1991 offset = fl->offset;
1992
1993 len = G_RSPD_LEN(len_newbuf); /* pktshift + payload length */
1994 copy = (len <= fl->copy_threshold);
1995 if (copy != 0) {
1996 frame.head = m = allocb(len, BPRI_HI);
1997 if (m == NULL) {
1998 fl->allocb_fail++;
1999 DTRACE_PROBE1(t4__fl_alloc_fail, struct sge_fl *, fl);
2000 fl->cidx = rcidx;
2001 fl->offset = roffset;
2002 return (NULL);
2003 }
2004 }
2005
2006 while (len) {
2007 rxb = fl->sdesc[cidx].rxb;
2008 n = min(len, rxb->buf_size - offset);
2009
2010 (void) ddi_dma_sync(rxb->dhdl, offset, n,
2011 DDI_DMA_SYNC_FORKERNEL);
2012
2013 if (copy != 0)
2014 bcopy(rxb->va + offset, m->b_wptr, n);
2015 else {
2016 m = desballoc((unsigned char *)rxb->va + offset, n,
2017 BPRI_HI, &rxb->freefunc);
2018 if (m == NULL) {
2019 fl->allocb_fail++;
2020 DTRACE_PROBE1(t4__fl_alloc_fail,
2021 struct sge_fl *, fl);
2022 if (frame.head)
2023 freemsgchain(frame.head);
2024 fl->cidx = rcidx;
2025 fl->offset = roffset;
2026 return (NULL);
2027 }
2028 atomic_inc_uint(&rxb->ref_cnt);
2029 if (frame.head != NULL)
2030 frame.tail->b_cont = m;
2031 else
2032 frame.head = m;
2033 frame.tail = m;
2034 }
2035 m->b_wptr += n;
2036 len -= n;
2037 offset += roundup(n, sc->sge.fl_align);
2038 ASSERT(offset <= rxb->buf_size);
2039 if (offset == rxb->buf_size) {
2040 offset = 0;
2041 if (++cidx == fl->cap)
2042 cidx = 0;
2043 nbuf++;
2044 }
2045 }
2046
2047 fl->cidx = cidx;
2048 fl->offset = offset;
2049 (*fl_bufs_used) += nbuf;
2050
2051 ASSERT(frame.head != NULL);
2052 return (frame.head);
2053 }
2054
2055 /*
2056 * We'll do immediate data tx for non-LSO, but only when not coalescing. We're
2057 * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
2058 * of immediate data.
2059 */
2060 #define IMM_LEN ( \
2061 2 * EQ_ESIZE \
2062 - sizeof (struct fw_eth_tx_pkt_wr) \
2063 - sizeof (struct cpl_tx_pkt_core))
2064
2065 /*
2066 * Returns non-zero on failure, no need to cleanup anything in that case.
2067 *
2068 * Note 1: We always try to pull up the mblk if required and return E2BIG only
2069 * if this fails.
2070 *
2071 * Note 2: We'll also pullup incoming mblk if HW_LSO is set and the first mblk
2072 * does not have the TCP header in it.
2073 */
2074 static int
get_frame_txinfo(struct sge_txq * txq,mblk_t ** fp,struct txinfo * txinfo,int sgl_only)2075 get_frame_txinfo(struct sge_txq *txq, mblk_t **fp, struct txinfo *txinfo,
2076 int sgl_only)
2077 {
2078 uint32_t flags = 0, len, n;
2079 mblk_t *m = *fp;
2080 int rc;
2081
2082 TXQ_LOCK_ASSERT_OWNED(txq); /* will manipulate txb and dma_hdls */
2083
2084 mac_hcksum_get(m, NULL, NULL, NULL, NULL, &flags);
2085 txinfo->flags = (flags & HCK_TX_FLAGS);
2086
2087 mac_lso_get(m, &txinfo->mss, &flags);
2088 txinfo->flags |= (flags & HW_LSO_FLAGS);
2089
2090 if (flags & HW_LSO)
2091 sgl_only = 1; /* Do not allow immediate data with LSO */
2092
2093 /*
2094 * If checksum or segmentation offloads are requested, gather
2095 * information about the sizes and types of headers in the packet.
2096 */
2097 if (txinfo->flags != 0) {
2098 mac_ether_offload_info(m, &txinfo->meoi);
2099 } else {
2100 bzero(&txinfo->meoi, sizeof (txinfo->meoi));
2101 }
2102
2103 start: txinfo->nsegs = 0;
2104 txinfo->hdls_used = 0;
2105 txinfo->txb_used = 0;
2106 txinfo->len = 0;
2107
2108 /* total length and a rough estimate of # of segments */
2109 n = 0;
2110 for (; m; m = m->b_cont) {
2111 len = MBLKL(m);
2112 n += (len / PAGE_SIZE) + 1;
2113 txinfo->len += len;
2114 }
2115 m = *fp;
2116
2117 if (n >= TX_SGL_SEGS || (flags & HW_LSO && MBLKL(m) < 50)) {
2118 txq->pullup_early++;
2119 m = msgpullup(*fp, -1);
2120 if (m == NULL) {
2121 txq->pullup_failed++;
2122 return (E2BIG); /* (*fp) left as it was */
2123 }
2124 freemsg(*fp);
2125 *fp = m;
2126 mac_hcksum_set(m, 0, 0, 0, 0, txinfo->flags);
2127 }
2128
2129 if (txinfo->len <= IMM_LEN && !sgl_only)
2130 return (0); /* nsegs = 0 tells caller to use imm. tx */
2131
2132 if (txinfo->len <= txq->copy_threshold &&
2133 copy_into_txb(txq, m, txinfo->len, txinfo) == 0)
2134 goto done;
2135
2136 for (; m; m = m->b_cont) {
2137
2138 len = MBLKL(m);
2139
2140 /* Use tx copy buffer if this mblk is small enough */
2141 if (len <= txq->copy_threshold &&
2142 copy_into_txb(txq, m, len, txinfo) == 0)
2143 continue;
2144
2145 /* Add DMA bindings for this mblk to the SGL */
2146 rc = add_mblk(txq, txinfo, m, len);
2147
2148 if (rc == E2BIG ||
2149 (txinfo->nsegs == TX_SGL_SEGS && m->b_cont)) {
2150
2151 txq->pullup_late++;
2152 m = msgpullup(*fp, -1);
2153 if (m != NULL) {
2154 free_txinfo_resources(txq, txinfo);
2155 freemsg(*fp);
2156 *fp = m;
2157 mac_hcksum_set(m, 0, 0, 0, 0, txinfo->flags);
2158 goto start;
2159 }
2160
2161 txq->pullup_failed++;
2162 rc = E2BIG;
2163 }
2164
2165 if (rc != 0) {
2166 free_txinfo_resources(txq, txinfo);
2167 return (rc);
2168 }
2169 }
2170
2171 ASSERT(txinfo->nsegs > 0 && txinfo->nsegs <= TX_SGL_SEGS);
2172
2173 done:
2174
2175 /*
2176 * Store the # of flits required to hold this frame's SGL in nflits. An
2177 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
2178 * multiple (len0 + len1, addr0, addr1) tuples. If addr1 is not used
2179 * then len1 must be set to 0.
2180 */
2181 n = txinfo->nsegs - 1;
2182 txinfo->nflits = (3 * n) / 2 + (n & 1) + 2;
2183 if (n & 1)
2184 txinfo->sgl.sge[n / 2].len[1] = cpu_to_be32(0);
2185
2186 txinfo->sgl.cmd_nsge = cpu_to_be32(V_ULPTX_CMD((u32)ULP_TX_SC_DSGL) |
2187 V_ULPTX_NSGE(txinfo->nsegs));
2188
2189 return (0);
2190 }
2191
2192 static inline int
fits_in_txb(struct sge_txq * txq,int len,int * waste)2193 fits_in_txb(struct sge_txq *txq, int len, int *waste)
2194 {
2195 if (txq->txb_avail < len)
2196 return (0);
2197
2198 if (txq->txb_next + len <= txq->txb_size) {
2199 *waste = 0;
2200 return (1);
2201 }
2202
2203 *waste = txq->txb_size - txq->txb_next;
2204
2205 return (txq->txb_avail - *waste < len ? 0 : 1);
2206 }
2207
2208 #define TXB_CHUNK 64
2209
2210 /*
2211 * Copies the specified # of bytes into txq's tx copy buffer and updates txinfo
2212 * and txq to indicate resources used. Caller has to make sure that those many
2213 * bytes are available in the mblk chain (b_cont linked).
2214 */
2215 static inline int
copy_into_txb(struct sge_txq * txq,mblk_t * m,int len,struct txinfo * txinfo)2216 copy_into_txb(struct sge_txq *txq, mblk_t *m, int len, struct txinfo *txinfo)
2217 {
2218 int waste, n;
2219
2220 TXQ_LOCK_ASSERT_OWNED(txq); /* will manipulate txb */
2221
2222 if (!fits_in_txb(txq, len, &waste)) {
2223 txq->txb_full++;
2224 return (ENOMEM);
2225 }
2226
2227 if (waste != 0) {
2228 ASSERT((waste & (TXB_CHUNK - 1)) == 0);
2229 txinfo->txb_used += waste;
2230 txq->txb_avail -= waste;
2231 txq->txb_next = 0;
2232 }
2233
2234 for (n = 0; n < len; m = m->b_cont) {
2235 bcopy(m->b_rptr, txq->txb_va + txq->txb_next + n, MBLKL(m));
2236 n += MBLKL(m);
2237 }
2238
2239 add_seg(txinfo, txq->txb_ba + txq->txb_next, len);
2240
2241 n = roundup(len, TXB_CHUNK);
2242 txinfo->txb_used += n;
2243 txq->txb_avail -= n;
2244 txq->txb_next += n;
2245 ASSERT(txq->txb_next <= txq->txb_size);
2246 if (txq->txb_next == txq->txb_size)
2247 txq->txb_next = 0;
2248
2249 return (0);
2250 }
2251
2252 static inline void
add_seg(struct txinfo * txinfo,uint64_t ba,uint32_t len)2253 add_seg(struct txinfo *txinfo, uint64_t ba, uint32_t len)
2254 {
2255 ASSERT(txinfo->nsegs < TX_SGL_SEGS); /* must have room */
2256
2257 if (txinfo->nsegs != 0) {
2258 int idx = txinfo->nsegs - 1;
2259 txinfo->sgl.sge[idx / 2].len[idx & 1] = cpu_to_be32(len);
2260 txinfo->sgl.sge[idx / 2].addr[idx & 1] = cpu_to_be64(ba);
2261 } else {
2262 txinfo->sgl.len0 = cpu_to_be32(len);
2263 txinfo->sgl.addr0 = cpu_to_be64(ba);
2264 }
2265 txinfo->nsegs++;
2266 }
2267
2268 /*
2269 * This function cleans up any partially allocated resources when it fails so
2270 * there's nothing for the caller to clean up in that case.
2271 *
2272 * EIO indicates permanent failure. Caller should drop the frame containing
2273 * this mblk and continue.
2274 *
2275 * E2BIG indicates that the SGL length for this mblk exceeds the hardware
2276 * limit. Caller should pull up the frame before trying to send it out.
2277 * (This error means our pullup_early heuristic did not work for this frame)
2278 *
2279 * ENOMEM indicates a temporary shortage of resources (DMA handles, other DMA
2280 * resources, etc.). Caller should suspend the tx queue and wait for reclaim to
2281 * free up resources.
2282 */
2283 static inline int
add_mblk(struct sge_txq * txq,struct txinfo * txinfo,mblk_t * m,int len)2284 add_mblk(struct sge_txq *txq, struct txinfo *txinfo, mblk_t *m, int len)
2285 {
2286 ddi_dma_handle_t dhdl;
2287 ddi_dma_cookie_t cookie;
2288 uint_t ccount = 0;
2289 int rc;
2290
2291 TXQ_LOCK_ASSERT_OWNED(txq); /* will manipulate dhdls */
2292
2293 if (txq->tx_dhdl_avail == 0) {
2294 txq->dma_hdl_failed++;
2295 return (ENOMEM);
2296 }
2297
2298 dhdl = txq->tx_dhdl[txq->tx_dhdl_pidx];
2299 rc = ddi_dma_addr_bind_handle(dhdl, NULL, (caddr_t)m->b_rptr, len,
2300 DDI_DMA_WRITE | DDI_DMA_STREAMING, DDI_DMA_DONTWAIT, NULL, &cookie,
2301 &ccount);
2302 if (rc != DDI_DMA_MAPPED) {
2303 txq->dma_map_failed++;
2304
2305 ASSERT(rc != DDI_DMA_INUSE && rc != DDI_DMA_PARTIAL_MAP);
2306
2307 return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EIO);
2308 }
2309
2310 if (ccount + txinfo->nsegs > TX_SGL_SEGS) {
2311 (void) ddi_dma_unbind_handle(dhdl);
2312 return (E2BIG);
2313 }
2314
2315 add_seg(txinfo, cookie.dmac_laddress, cookie.dmac_size);
2316 while (--ccount) {
2317 ddi_dma_nextcookie(dhdl, &cookie);
2318 add_seg(txinfo, cookie.dmac_laddress, cookie.dmac_size);
2319 }
2320
2321 if (++txq->tx_dhdl_pidx == txq->tx_dhdl_total)
2322 txq->tx_dhdl_pidx = 0;
2323 txq->tx_dhdl_avail--;
2324 txinfo->hdls_used++;
2325
2326 return (0);
2327 }
2328
2329 /*
2330 * Releases all the txq resources used up in the specified txinfo.
2331 */
2332 static void
free_txinfo_resources(struct sge_txq * txq,struct txinfo * txinfo)2333 free_txinfo_resources(struct sge_txq *txq, struct txinfo *txinfo)
2334 {
2335 int n;
2336
2337 TXQ_LOCK_ASSERT_OWNED(txq); /* dhdls, txb */
2338
2339 n = txinfo->txb_used;
2340 if (n > 0) {
2341 txq->txb_avail += n;
2342 if (n <= txq->txb_next)
2343 txq->txb_next -= n;
2344 else {
2345 n -= txq->txb_next;
2346 txq->txb_next = txq->txb_size - n;
2347 }
2348 }
2349
2350 for (n = txinfo->hdls_used; n > 0; n--) {
2351 if (txq->tx_dhdl_pidx > 0)
2352 txq->tx_dhdl_pidx--;
2353 else
2354 txq->tx_dhdl_pidx = txq->tx_dhdl_total - 1;
2355 txq->tx_dhdl_avail++;
2356 (void) ddi_dma_unbind_handle(txq->tx_dhdl[txq->tx_dhdl_pidx]);
2357 }
2358 }
2359
2360 /*
2361 * Returns 0 to indicate that m has been accepted into a coalesced tx work
2362 * request. It has either been folded into txpkts or txpkts was flushed and m
2363 * has started a new coalesced work request (as the first frame in a fresh
2364 * txpkts).
2365 *
2366 * Returns non-zero to indicate a failure - caller is responsible for
2367 * transmitting m, if there was anything in txpkts it has been flushed.
2368 */
2369 static int
add_to_txpkts(struct sge_txq * txq,struct txpkts * txpkts,mblk_t * m,struct txinfo * txinfo)2370 add_to_txpkts(struct sge_txq *txq, struct txpkts *txpkts, mblk_t *m,
2371 struct txinfo *txinfo)
2372 {
2373 struct sge_eq *eq = &txq->eq;
2374 int can_coalesce;
2375 struct tx_sdesc *txsd;
2376 uint8_t flits;
2377
2378 TXQ_LOCK_ASSERT_OWNED(txq);
2379
2380 if (txpkts->npkt > 0) {
2381 flits = TXPKTS_PKT_HDR + txinfo->nflits;
2382 can_coalesce = (txinfo->flags & HW_LSO) == 0 &&
2383 txpkts->nflits + flits <= TX_WR_FLITS &&
2384 txpkts->nflits + flits <= eq->avail * 8 &&
2385 txpkts->plen + txinfo->len < 65536;
2386
2387 if (can_coalesce != 0) {
2388 txpkts->tail->b_next = m;
2389 txpkts->tail = m;
2390 txpkts->npkt++;
2391 txpkts->nflits += flits;
2392 txpkts->plen += txinfo->len;
2393
2394 txsd = &txq->sdesc[eq->pidx];
2395 txsd->txb_used += txinfo->txb_used;
2396 txsd->hdls_used += txinfo->hdls_used;
2397
2398 return (0);
2399 }
2400
2401 /*
2402 * Couldn't coalesce m into txpkts. The first order of business
2403 * is to send txpkts on its way. Then we'll revisit m.
2404 */
2405 write_txpkts_wr(txq, txpkts);
2406 }
2407
2408 /*
2409 * Check if we can start a new coalesced tx work request with m as
2410 * the first packet in it.
2411 */
2412
2413 ASSERT(txpkts->npkt == 0);
2414 ASSERT(txinfo->len < 65536);
2415
2416 flits = TXPKTS_WR_HDR + txinfo->nflits;
2417 can_coalesce = (txinfo->flags & HW_LSO) == 0 &&
2418 flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
2419
2420 if (can_coalesce == 0)
2421 return (EINVAL);
2422
2423 /*
2424 * Start a fresh coalesced tx WR with m as the first frame in it.
2425 */
2426 txpkts->tail = m;
2427 txpkts->npkt = 1;
2428 txpkts->nflits = flits;
2429 txpkts->flitp = &eq->desc[eq->pidx].flit[2];
2430 txpkts->plen = txinfo->len;
2431
2432 txsd = &txq->sdesc[eq->pidx];
2433 txsd->m = m;
2434 txsd->txb_used = txinfo->txb_used;
2435 txsd->hdls_used = txinfo->hdls_used;
2436
2437 return (0);
2438 }
2439
2440 /*
2441 * Note that write_txpkts_wr can never run out of hardware descriptors (but
2442 * write_txpkt_wr can). add_to_txpkts ensures that a frame is accepted for
2443 * coalescing only if sufficient hardware descriptors are available.
2444 */
2445 static void
write_txpkts_wr(struct sge_txq * txq,struct txpkts * txpkts)2446 write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
2447 {
2448 struct sge_eq *eq = &txq->eq;
2449 struct fw_eth_tx_pkts_wr *wr;
2450 struct tx_sdesc *txsd;
2451 uint32_t ctrl;
2452 uint16_t ndesc;
2453
2454 TXQ_LOCK_ASSERT_OWNED(txq); /* pidx, avail */
2455
2456 ndesc = howmany(txpkts->nflits, 8);
2457
2458 wr = (void *)&eq->desc[eq->pidx];
2459 wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR) |
2460 V_FW_WR_IMMDLEN(0)); /* immdlen does not matter in this WR */
2461 ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
2462 if (eq->avail == ndesc)
2463 ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
2464 wr->equiq_to_len16 = cpu_to_be32(ctrl);
2465 wr->plen = cpu_to_be16(txpkts->plen);
2466 wr->npkt = txpkts->npkt;
2467 wr->r3 = wr->type = 0;
2468
2469 /* Everything else already written */
2470
2471 txsd = &txq->sdesc[eq->pidx];
2472 txsd->desc_used = ndesc;
2473
2474 txq->txb_used += txsd->txb_used / TXB_CHUNK;
2475 txq->hdl_used += txsd->hdls_used;
2476
2477 ASSERT(eq->avail >= ndesc);
2478
2479 eq->pending += ndesc;
2480 eq->avail -= ndesc;
2481 eq->pidx += ndesc;
2482 if (eq->pidx >= eq->cap)
2483 eq->pidx -= eq->cap;
2484
2485 txq->txpkts_pkts += txpkts->npkt;
2486 txq->txpkts_wrs++;
2487 txpkts->npkt = 0; /* emptied */
2488 }
2489
2490 typedef enum {
2491 COS_SUCCESS, /* ctrl flit contains proper bits for csum offload */
2492 COS_IGNORE, /* no csum offload requested */
2493 COS_FAIL, /* csum offload requested, but pkt data missing */
2494 } csum_offload_status_t;
2495 /*
2496 * Build a ctrl1 flit for checksum offload in CPL_TX_PKT_XT command
2497 */
2498 static csum_offload_status_t
csum_to_ctrl(const struct txinfo * txinfo,uint32_t chip_version,uint64_t * ctrlp)2499 csum_to_ctrl(const struct txinfo *txinfo, uint32_t chip_version,
2500 uint64_t *ctrlp)
2501 {
2502 const mac_ether_offload_info_t *meoi = &txinfo->meoi;
2503 const uint32_t tx_flags = txinfo->flags;
2504 const boolean_t needs_l3_csum = (tx_flags & HW_LSO) != 0 ||
2505 (tx_flags & HCK_IPV4_HDRCKSUM) != 0;
2506 const boolean_t needs_l4_csum = (tx_flags & HW_LSO) != 0 ||
2507 (tx_flags & (HCK_FULLCKSUM | HCK_PARTIALCKSUM)) != 0;
2508
2509 /*
2510 * Default to disabling any checksumming both for cases where it is not
2511 * requested, but also if we cannot appropriately interrogate the
2512 * required information from the packet.
2513 */
2514 uint64_t ctrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS;
2515 if (!needs_l3_csum && !needs_l4_csum) {
2516 *ctrlp = ctrl;
2517 return (COS_IGNORE);
2518 }
2519
2520 if (needs_l3_csum) {
2521 /* Only IPv4 checksums are supported (for L3) */
2522 if ((meoi->meoi_flags & MEOI_L3INFO_SET) == 0 ||
2523 meoi->meoi_l3proto != ETHERTYPE_IP) {
2524 *ctrlp = ctrl;
2525 return (COS_FAIL);
2526 }
2527 ctrl &= ~F_TXPKT_IPCSUM_DIS;
2528 }
2529
2530 if (needs_l4_csum) {
2531 /*
2532 * We need at least all of the L3 header to make decisions about
2533 * the contained L4 protocol. If not all of the L4 information
2534 * is present, we will leave it to the NIC to checksum all it is
2535 * able to.
2536 */
2537 if ((meoi->meoi_flags & MEOI_L3INFO_SET) == 0) {
2538 *ctrlp = ctrl;
2539 return (COS_FAIL);
2540 }
2541
2542 /*
2543 * Since we are parsing the packet anyways, make the checksum
2544 * decision based on the L4 protocol, rather than using the
2545 * Generic TCP/UDP checksum using start & end offsets in the
2546 * packet (like requested with PARTIALCKSUM).
2547 */
2548 int csum_type = -1;
2549 if (meoi->meoi_l3proto == ETHERTYPE_IP &&
2550 meoi->meoi_l4proto == IPPROTO_TCP) {
2551 csum_type = TX_CSUM_TCPIP;
2552 } else if (meoi->meoi_l3proto == ETHERTYPE_IPV6 &&
2553 meoi->meoi_l4proto == IPPROTO_TCP) {
2554 csum_type = TX_CSUM_TCPIP6;
2555 } else if (meoi->meoi_l3proto == ETHERTYPE_IP &&
2556 meoi->meoi_l4proto == IPPROTO_UDP) {
2557 csum_type = TX_CSUM_UDPIP;
2558 } else if (meoi->meoi_l3proto == ETHERTYPE_IPV6 &&
2559 meoi->meoi_l4proto == IPPROTO_UDP) {
2560 csum_type = TX_CSUM_UDPIP6;
2561 } else {
2562 *ctrlp = ctrl;
2563 return (COS_FAIL);
2564 }
2565
2566 ASSERT(csum_type != -1);
2567 ctrl &= ~F_TXPKT_L4CSUM_DIS;
2568 ctrl |= V_TXPKT_CSUM_TYPE(csum_type);
2569 }
2570
2571 if ((ctrl & F_TXPKT_IPCSUM_DIS) == 0 &&
2572 (ctrl & F_TXPKT_L4CSUM_DIS) != 0) {
2573 /*
2574 * If only the IPv4 checksum is requested, we need to set an
2575 * appropriate type in the command for it.
2576 */
2577 ctrl |= V_TXPKT_CSUM_TYPE(TX_CSUM_IP);
2578 }
2579
2580 ASSERT(ctrl != (F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS));
2581
2582 /*
2583 * Fill in the requisite L2/L3 header length data.
2584 *
2585 * The Ethernet header length is recorded as 'size - 14 bytes'
2586 */
2587 const uint8_t eth_len = meoi->meoi_l2hlen - 14;
2588 if (chip_version >= CHELSIO_T6) {
2589 ctrl |= V_T6_TXPKT_ETHHDR_LEN(eth_len);
2590 } else {
2591 ctrl |= V_TXPKT_ETHHDR_LEN(eth_len);
2592 }
2593 ctrl |= V_TXPKT_IPHDR_LEN(meoi->meoi_l3hlen);
2594
2595 *ctrlp = ctrl;
2596 return (COS_SUCCESS);
2597 }
2598
2599 static int
write_txpkt_wr(struct port_info * pi,struct sge_txq * txq,mblk_t * m,struct txinfo * txinfo)2600 write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, mblk_t *m,
2601 struct txinfo *txinfo)
2602 {
2603 struct sge_eq *eq = &txq->eq;
2604 struct fw_eth_tx_pkt_wr *wr;
2605 struct cpl_tx_pkt_core *cpl;
2606 uint32_t ctrl; /* used in many unrelated places */
2607 uint64_t ctrl1;
2608 int nflits, ndesc;
2609 struct tx_sdesc *txsd;
2610 caddr_t dst;
2611 const mac_ether_offload_info_t *meoi = &txinfo->meoi;
2612
2613 TXQ_LOCK_ASSERT_OWNED(txq); /* pidx, avail */
2614
2615 /*
2616 * Do we have enough flits to send this frame out?
2617 */
2618 ctrl = sizeof (struct cpl_tx_pkt_core);
2619 if (txinfo->flags & HW_LSO) {
2620 nflits = TXPKT_LSO_WR_HDR;
2621 ctrl += sizeof (struct cpl_tx_pkt_lso_core);
2622 } else {
2623 nflits = TXPKT_WR_HDR;
2624 }
2625 if (txinfo->nsegs > 0)
2626 nflits += txinfo->nflits;
2627 else {
2628 nflits += howmany(txinfo->len, 8);
2629 ctrl += txinfo->len;
2630 }
2631 ndesc = howmany(nflits, 8);
2632 if (ndesc > eq->avail)
2633 return (ENOMEM);
2634
2635 /* Firmware work request header */
2636 wr = (void *)&eq->desc[eq->pidx];
2637 wr->op_immdlen = cpu_to_be32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
2638 V_FW_WR_IMMDLEN(ctrl));
2639 ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
2640 if (eq->avail == ndesc)
2641 ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
2642 wr->equiq_to_len16 = cpu_to_be32(ctrl);
2643 wr->r3 = 0;
2644
2645 if (txinfo->flags & HW_LSO &&
2646 (meoi->meoi_flags & MEOI_L4INFO_SET) != 0 &&
2647 meoi->meoi_l4proto == IPPROTO_TCP) {
2648 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2649
2650 ctrl = V_LSO_OPCODE((u32)CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
2651 F_LSO_LAST_SLICE;
2652
2653 if (meoi->meoi_l2hlen > sizeof (struct ether_header)) {
2654 /*
2655 * This presently assumes a standard VLAN header,
2656 * without support for Q-in-Q.
2657 */
2658 ctrl |= V_LSO_ETHHDR_LEN(1);
2659 }
2660
2661 switch (meoi->meoi_l3proto) {
2662 case ETHERTYPE_IPV6:
2663 ctrl |= F_LSO_IPV6;
2664 /* FALLTHROUGH */
2665 case ETHERTYPE_IP:
2666 ctrl |= V_LSO_IPHDR_LEN(meoi->meoi_l3hlen / 4);
2667 break;
2668 default:
2669 break;
2670 }
2671
2672 ctrl |= V_LSO_TCPHDR_LEN(meoi->meoi_l4hlen / 4);
2673
2674 lso->lso_ctrl = cpu_to_be32(ctrl);
2675 lso->ipid_ofst = cpu_to_be16(0);
2676 lso->mss = cpu_to_be16(txinfo->mss);
2677 lso->seqno_offset = cpu_to_be32(0);
2678 if (is_t4(pi->adapter->params.chip))
2679 lso->len = cpu_to_be32(txinfo->len);
2680 else
2681 lso->len = cpu_to_be32(V_LSO_T5_XFER_SIZE(txinfo->len));
2682
2683 cpl = (void *)(lso + 1);
2684
2685 txq->tso_wrs++;
2686 } else {
2687 cpl = (void *)(wr + 1);
2688 }
2689
2690 /* Checksum offload */
2691 switch (csum_to_ctrl(txinfo,
2692 CHELSIO_CHIP_VERSION(pi->adapter->params.chip), &ctrl1)) {
2693 case COS_SUCCESS:
2694 txq->txcsum++;
2695 break;
2696 case COS_FAIL:
2697 /*
2698 * Packet will be going out with checksums which are probably
2699 * wrong but there is little we can do now.
2700 */
2701 txq->csum_failed++;
2702 break;
2703 default:
2704 break;
2705 }
2706
2707 /* CPL header */
2708 cpl->ctrl0 = cpu_to_be32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
2709 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
2710 cpl->pack = 0;
2711 cpl->len = cpu_to_be16(txinfo->len);
2712 cpl->ctrl1 = cpu_to_be64(ctrl1);
2713
2714 /* Software descriptor */
2715 txsd = &txq->sdesc[eq->pidx];
2716 txsd->m = m;
2717 txsd->txb_used = txinfo->txb_used;
2718 txsd->hdls_used = txinfo->hdls_used;
2719 /* LINTED: E_ASSIGN_NARROW_CONV */
2720 txsd->desc_used = ndesc;
2721
2722 txq->txb_used += txinfo->txb_used / TXB_CHUNK;
2723 txq->hdl_used += txinfo->hdls_used;
2724
2725 eq->pending += ndesc;
2726 eq->avail -= ndesc;
2727 eq->pidx += ndesc;
2728 if (eq->pidx >= eq->cap)
2729 eq->pidx -= eq->cap;
2730
2731 /* SGL */
2732 dst = (void *)(cpl + 1);
2733 if (txinfo->nsegs > 0) {
2734 txq->sgl_wrs++;
2735 copy_to_txd(eq, (void *)&txinfo->sgl, &dst, txinfo->nflits * 8);
2736
2737 /* Need to zero-pad to a 16 byte boundary if not on one */
2738 if ((uintptr_t)dst & 0xf)
2739 /* LINTED: E_BAD_PTR_CAST_ALIGN */
2740 *(uint64_t *)dst = 0;
2741
2742 } else {
2743 txq->imm_wrs++;
2744 #ifdef DEBUG
2745 ctrl = txinfo->len;
2746 #endif
2747 for (; m; m = m->b_cont) {
2748 copy_to_txd(eq, (void *)m->b_rptr, &dst, MBLKL(m));
2749 #ifdef DEBUG
2750 ctrl -= MBLKL(m);
2751 #endif
2752 }
2753 ASSERT(ctrl == 0);
2754 }
2755
2756 txq->txpkt_wrs++;
2757 return (0);
2758 }
2759
2760 static inline void
write_ulp_cpl_sgl(struct port_info * pi,struct sge_txq * txq,struct txpkts * txpkts,struct txinfo * txinfo)2761 write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
2762 struct txpkts *txpkts, struct txinfo *txinfo)
2763 {
2764 struct ulp_txpkt *ulpmc;
2765 struct ulptx_idata *ulpsc;
2766 struct cpl_tx_pkt_core *cpl;
2767 uintptr_t flitp, start, end;
2768 uint64_t ctrl;
2769 caddr_t dst;
2770
2771 ASSERT(txpkts->npkt > 0);
2772
2773 start = (uintptr_t)txq->eq.desc;
2774 end = (uintptr_t)txq->eq.spg;
2775
2776 /* Checksum offload */
2777 switch (csum_to_ctrl(txinfo,
2778 CHELSIO_CHIP_VERSION(pi->adapter->params.chip), &ctrl)) {
2779 case COS_SUCCESS:
2780 txq->txcsum++;
2781 break;
2782 case COS_FAIL:
2783 /*
2784 * Packet will be going out with checksums which are probably
2785 * wrong but there is little we can do now.
2786 */
2787 txq->csum_failed++;
2788 break;
2789 default:
2790 break;
2791 }
2792
2793 /*
2794 * The previous packet's SGL must have ended at a 16 byte boundary (this
2795 * is required by the firmware/hardware). It follows that flitp cannot
2796 * wrap around between the ULPTX master command and ULPTX subcommand (8
2797 * bytes each), and that it can not wrap around in the middle of the
2798 * cpl_tx_pkt_core either.
2799 */
2800 flitp = (uintptr_t)txpkts->flitp;
2801 ASSERT((flitp & 0xf) == 0);
2802
2803 /* ULP master command */
2804 ulpmc = (void *)flitp;
2805 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
2806 ulpmc->len = htonl(howmany(sizeof (*ulpmc) + sizeof (*ulpsc) +
2807 sizeof (*cpl) + 8 * txinfo->nflits, 16));
2808
2809 /* ULP subcommand */
2810 ulpsc = (void *)(ulpmc + 1);
2811 ulpsc->cmd_more = cpu_to_be32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
2812 F_ULP_TX_SC_MORE);
2813 ulpsc->len = cpu_to_be32(sizeof (struct cpl_tx_pkt_core));
2814
2815 flitp += sizeof (*ulpmc) + sizeof (*ulpsc);
2816 if (flitp == end)
2817 flitp = start;
2818
2819 /* CPL_TX_PKT_XT */
2820 cpl = (void *)flitp;
2821 cpl->ctrl0 = cpu_to_be32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
2822 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
2823 cpl->pack = 0;
2824 cpl->len = cpu_to_be16(txinfo->len);
2825 cpl->ctrl1 = cpu_to_be64(ctrl);
2826
2827 flitp += sizeof (*cpl);
2828 if (flitp == end)
2829 flitp = start;
2830
2831 /* SGL for this frame */
2832 dst = (caddr_t)flitp;
2833 copy_to_txd(&txq->eq, (void *)&txinfo->sgl, &dst, txinfo->nflits * 8);
2834 flitp = (uintptr_t)dst;
2835
2836 /* Zero pad and advance to a 16 byte boundary if not already at one. */
2837 if (flitp & 0xf) {
2838
2839 /* no matter what, flitp should be on an 8 byte boundary */
2840 ASSERT((flitp & 0x7) == 0);
2841
2842 *(uint64_t *)flitp = 0;
2843 flitp += sizeof (uint64_t);
2844 txpkts->nflits++;
2845 }
2846
2847 if (flitp == end)
2848 flitp = start;
2849
2850 txpkts->flitp = (void *)flitp;
2851 }
2852
2853 static inline void
copy_to_txd(struct sge_eq * eq,caddr_t from,caddr_t * to,int len)2854 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
2855 {
2856 if ((uintptr_t)(*to) + len <= (uintptr_t)eq->spg) {
2857 bcopy(from, *to, len);
2858 (*to) += len;
2859 } else {
2860 int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
2861
2862 bcopy(from, *to, portion);
2863 from += portion;
2864 portion = len - portion; /* remaining */
2865 bcopy(from, (void *)eq->desc, portion);
2866 (*to) = (caddr_t)eq->desc + portion;
2867 }
2868 }
2869
2870 static inline void
ring_tx_db(struct adapter * sc,struct sge_eq * eq)2871 ring_tx_db(struct adapter *sc, struct sge_eq *eq)
2872 {
2873 int val, db_mode;
2874 uint_t db = eq->doorbells;
2875
2876 if (eq->pending > 1)
2877 db &= ~DOORBELL_WCWR;
2878
2879 if (eq->pending > eq->pidx) {
2880 int offset = eq->cap - (eq->pending - eq->pidx);
2881
2882 /* pidx has wrapped around since last doorbell */
2883
2884 (void) ddi_dma_sync(eq->desc_dhdl,
2885 offset * sizeof (struct tx_desc), 0,
2886 DDI_DMA_SYNC_FORDEV);
2887 (void) ddi_dma_sync(eq->desc_dhdl,
2888 0, eq->pidx * sizeof (struct tx_desc),
2889 DDI_DMA_SYNC_FORDEV);
2890 } else if (eq->pending > 0) {
2891 (void) ddi_dma_sync(eq->desc_dhdl,
2892 (eq->pidx - eq->pending) * sizeof (struct tx_desc),
2893 eq->pending * sizeof (struct tx_desc),
2894 DDI_DMA_SYNC_FORDEV);
2895 }
2896
2897 membar_producer();
2898
2899 if (is_t4(sc->params.chip))
2900 val = V_PIDX(eq->pending);
2901 else
2902 val = V_PIDX_T5(eq->pending);
2903
2904 db_mode = (1 << (ffs(db) - 1));
2905 switch (db_mode) {
2906 case DOORBELL_UDB:
2907 *eq->udb = LE_32(V_QID(eq->udb_qid) | val);
2908 break;
2909
2910 case DOORBELL_WCWR:
2911 {
2912 volatile uint64_t *dst, *src;
2913 int i;
2914 /*
2915 * Queues whose 128B doorbell segment fits in
2916 * the page do not use relative qid
2917 * (udb_qid is always 0). Only queues with
2918 * doorbell segments can do WCWR.
2919 */
2920 ASSERT(eq->udb_qid == 0 && eq->pending == 1);
2921
2922 dst = (volatile void *)((uintptr_t)eq->udb +
2923 UDBS_WR_OFFSET - UDBS_DB_OFFSET);
2924 i = eq->pidx ? eq->pidx - 1 : eq->cap - 1;
2925 src = (void *)&eq->desc[i];
2926 while (src != (void *)&eq->desc[i + 1]) {
2927 *dst++ = *src++;
2928 }
2929 membar_producer();
2930 break;
2931 }
2932
2933 case DOORBELL_UDBWC:
2934 *eq->udb = LE_32(V_QID(eq->udb_qid) | val);
2935 membar_producer();
2936 break;
2937
2938 case DOORBELL_KDB:
2939 t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
2940 V_QID(eq->cntxt_id) | val);
2941 break;
2942 }
2943
2944 eq->pending = 0;
2945 }
2946
2947 static int
reclaim_tx_descs(struct sge_txq * txq,int howmany)2948 reclaim_tx_descs(struct sge_txq *txq, int howmany)
2949 {
2950 struct tx_sdesc *txsd;
2951 uint_t cidx, can_reclaim, reclaimed, txb_freed, hdls_freed;
2952 struct sge_eq *eq = &txq->eq;
2953
2954 EQ_LOCK_ASSERT_OWNED(eq);
2955
2956 cidx = eq->spg->cidx; /* stable snapshot */
2957 cidx = be16_to_cpu(cidx);
2958
2959 if (cidx >= eq->cidx)
2960 can_reclaim = cidx - eq->cidx;
2961 else
2962 can_reclaim = cidx + eq->cap - eq->cidx;
2963
2964 if (can_reclaim == 0)
2965 return (0);
2966
2967 txb_freed = hdls_freed = reclaimed = 0;
2968 do {
2969 int ndesc;
2970
2971 txsd = &txq->sdesc[eq->cidx];
2972 ndesc = txsd->desc_used;
2973
2974 /* Firmware doesn't return "partial" credits. */
2975 ASSERT(can_reclaim >= ndesc);
2976
2977 /*
2978 * We always keep mblk around, even for immediate data. If mblk
2979 * is NULL, this has to be the software descriptor for a credit
2980 * flush work request.
2981 */
2982 if (txsd->m != NULL)
2983 freemsgchain(txsd->m);
2984 #ifdef DEBUG
2985 else {
2986 ASSERT(txsd->txb_used == 0);
2987 ASSERT(txsd->hdls_used == 0);
2988 ASSERT(ndesc == 1);
2989 }
2990 #endif
2991
2992 txb_freed += txsd->txb_used;
2993 hdls_freed += txsd->hdls_used;
2994 reclaimed += ndesc;
2995
2996 eq->cidx += ndesc;
2997 if (eq->cidx >= eq->cap)
2998 eq->cidx -= eq->cap;
2999
3000 can_reclaim -= ndesc;
3001
3002 } while (can_reclaim && reclaimed < howmany);
3003
3004 eq->avail += reclaimed;
3005 ASSERT(eq->avail < eq->cap); /* avail tops out at (cap - 1) */
3006
3007 txq->txb_avail += txb_freed;
3008
3009 txq->tx_dhdl_avail += hdls_freed;
3010 ASSERT(txq->tx_dhdl_avail <= txq->tx_dhdl_total);
3011 for (; hdls_freed; hdls_freed--) {
3012 (void) ddi_dma_unbind_handle(txq->tx_dhdl[txq->tx_dhdl_cidx]);
3013 if (++txq->tx_dhdl_cidx == txq->tx_dhdl_total)
3014 txq->tx_dhdl_cidx = 0;
3015 }
3016
3017 return (reclaimed);
3018 }
3019
3020 static void
write_txqflush_wr(struct sge_txq * txq)3021 write_txqflush_wr(struct sge_txq *txq)
3022 {
3023 struct sge_eq *eq = &txq->eq;
3024 struct fw_eq_flush_wr *wr;
3025 struct tx_sdesc *txsd;
3026
3027 EQ_LOCK_ASSERT_OWNED(eq);
3028 ASSERT(eq->avail > 0);
3029
3030 wr = (void *)&eq->desc[eq->pidx];
3031 bzero(wr, sizeof (*wr));
3032 wr->opcode = FW_EQ_FLUSH_WR;
3033 wr->equiq_to_len16 = cpu_to_be32(V_FW_WR_LEN16(sizeof (*wr) / 16) |
3034 F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3035
3036 txsd = &txq->sdesc[eq->pidx];
3037 txsd->m = NULL;
3038 txsd->txb_used = 0;
3039 txsd->hdls_used = 0;
3040 txsd->desc_used = 1;
3041
3042 eq->pending++;
3043 eq->avail--;
3044 if (++eq->pidx == eq->cap)
3045 eq->pidx = 0;
3046 }
3047
3048 static int
t4_handle_cpl_msg(struct sge_iq * iq,const struct rss_header * rss,mblk_t * mp)3049 t4_handle_cpl_msg(struct sge_iq *iq, const struct rss_header *rss, mblk_t *mp)
3050 {
3051 const uint8_t opcode = rss->opcode;
3052
3053 DTRACE_PROBE4(t4__cpl_msg, struct sge_iq *, iq, uint8_t, opcode,
3054 const struct rss_header *, rss, mblk_t *, mp);
3055
3056 switch (opcode) {
3057 case CPL_FW4_MSG:
3058 case CPL_FW6_MSG:
3059 ASSERT3P(mp, ==, NULL);
3060 return (t4_handle_fw_msg(iq, rss));
3061 case CPL_SGE_EGR_UPDATE:
3062 return (handle_sge_egr_update(iq, rss, mp));
3063 case CPL_RX_PKT:
3064 return (t4_eth_rx(iq, rss, mp));
3065 default:
3066 cxgb_printf(iq->adapter->dip, CE_WARN,
3067 "unhandled CPL opcode 0x%02x", opcode);
3068 if (mp != NULL) {
3069 freemsg(mp);
3070 }
3071 return (0);
3072 }
3073 }
3074
3075 static int
t4_handle_fw_msg(struct sge_iq * iq,const struct rss_header * rss)3076 t4_handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss)
3077 {
3078 const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
3079 const uint8_t msg_type = cpl->type;
3080 const struct rss_header *rss2;
3081 struct adapter *sc = iq->adapter;
3082
3083 DTRACE_PROBE3(t4__fw_msg, struct sge_iq *, iq, uint8_t, msg_type,
3084 const struct rss_header *, rss);
3085
3086 switch (msg_type) {
3087 case FW_TYPE_RSSCPL: /* also synonym for FW6_TYPE_RSSCPL */
3088 rss2 = (const struct rss_header *)&cpl->data[0];
3089 return (t4_handle_cpl_msg(iq, rss2, NULL));
3090 case FW6_TYPE_CMD_RPL:
3091 return (t4_handle_fw_rpl(sc, &cpl->data[0]));
3092 default:
3093 cxgb_printf(sc->dip, CE_WARN,
3094 "unhandled fw_msg type 0x%02x", msg_type);
3095 return (0);
3096 }
3097 }
3098
3099 static int
t4_eth_rx(struct sge_iq * iq,const struct rss_header * rss,mblk_t * m)3100 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, mblk_t *m)
3101 {
3102 bool csum_ok;
3103 uint16_t err_vec;
3104 struct sge_rxq *rxq = (void *)iq;
3105 struct mblk_pair chain = {0};
3106 struct adapter *sc = iq->adapter;
3107 const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
3108
3109 iq->intr_next = iq->intr_params;
3110
3111 m->b_rptr += sc->sge.pktshift;
3112
3113 /* Compressed error vector is enabled for T6 only */
3114 if (sc->params.tp.rx_pkt_encap)
3115 /* It is enabled only in T6 config file */
3116 err_vec = G_T6_COMPR_RXERR_VEC(ntohs(cpl->err_vec));
3117 else
3118 err_vec = ntohs(cpl->err_vec);
3119
3120 csum_ok = cpl->csum_calc && !err_vec;
3121 /* TODO: what about cpl->ip_frag? */
3122 if (csum_ok && !cpl->ip_frag) {
3123 mac_hcksum_set(m, 0, 0, 0, 0xffff,
3124 HCK_FULLCKSUM_OK | HCK_FULLCKSUM |
3125 HCK_IPV4_HDRCKSUM_OK);
3126 rxq->rxcsum++;
3127 }
3128
3129 /* Add to the chain that we'll send up */
3130 if (chain.head != NULL)
3131 chain.tail->b_next = m;
3132 else
3133 chain.head = m;
3134 chain.tail = m;
3135
3136 t4_mac_rx(rxq->port, rxq, chain.head);
3137
3138 rxq->rxpkts++;
3139 rxq->rxbytes += be16_to_cpu(cpl->len);
3140 return (0);
3141 }
3142
3143 #define FL_HW_IDX(idx) ((idx) >> 3)
3144
3145 static inline void
ring_fl_db(struct adapter * sc,struct sge_fl * fl)3146 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3147 {
3148 int desc_start, desc_last, ndesc;
3149 uint32_t v = sc->params.arch.sge_fl_db;
3150
3151 ndesc = FL_HW_IDX(fl->pending);
3152
3153 /* Hold back one credit if pidx = cidx */
3154 if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx))
3155 ndesc--;
3156
3157 /*
3158 * There are chances of ndesc modified above (to avoid pidx = cidx).
3159 * If there is nothing to post, return.
3160 */
3161 if (ndesc <= 0)
3162 return;
3163
3164 desc_last = FL_HW_IDX(fl->pidx);
3165
3166 if (fl->pidx < fl->pending) {
3167 /* There was a wrap */
3168 desc_start = FL_HW_IDX(fl->pidx + fl->cap - fl->pending);
3169
3170 /* From desc_start to the end of list */
3171 (void) ddi_dma_sync(fl->dhdl, desc_start * RX_FL_ESIZE, 0,
3172 DDI_DMA_SYNC_FORDEV);
3173
3174 /* From start of list to the desc_last */
3175 if (desc_last != 0)
3176 (void) ddi_dma_sync(fl->dhdl, 0, desc_last *
3177 RX_FL_ESIZE, DDI_DMA_SYNC_FORDEV);
3178 } else {
3179 /* There was no wrap, sync from start_desc to last_desc */
3180 desc_start = FL_HW_IDX(fl->pidx - fl->pending);
3181 (void) ddi_dma_sync(fl->dhdl, desc_start * RX_FL_ESIZE,
3182 ndesc * RX_FL_ESIZE, DDI_DMA_SYNC_FORDEV);
3183 }
3184
3185 if (is_t4(sc->params.chip))
3186 v |= V_PIDX(ndesc);
3187 else
3188 v |= V_PIDX_T5(ndesc);
3189 v |= V_QID(fl->cntxt_id) | V_PIDX(ndesc);
3190
3191 membar_producer();
3192
3193 t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
3194
3195 /*
3196 * Update pending count:
3197 * Deduct the number of descriptors posted
3198 */
3199 fl->pending -= ndesc * 8;
3200 }
3201
3202 static void
tx_reclaim_task(void * arg)3203 tx_reclaim_task(void *arg)
3204 {
3205 struct sge_txq *txq = arg;
3206
3207 TXQ_LOCK(txq);
3208 reclaim_tx_descs(txq, txq->eq.qsize);
3209 TXQ_UNLOCK(txq);
3210 }
3211
3212 /* ARGSUSED */
3213 static int
handle_sge_egr_update(struct sge_iq * iq,const struct rss_header * rss,mblk_t * m)3214 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
3215 mblk_t *m)
3216 {
3217 const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
3218 unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
3219 struct adapter *sc = iq->adapter;
3220 struct sge *s = &sc->sge;
3221 struct sge_eq *eq;
3222 struct sge_txq *txq;
3223
3224 txq = (void *)s->eqmap[qid - s->eq_start];
3225 eq = &txq->eq;
3226 txq->qflush++;
3227 t4_mac_tx_update(txq->port, txq);
3228
3229 ddi_taskq_dispatch(sc->tq[eq->tx_chan], tx_reclaim_task,
3230 (void *)txq, DDI_NOSLEEP);
3231
3232 return (0);
3233 }
3234
3235 int
t4_alloc_tx_maps(struct adapter * sc,struct tx_maps * txmaps,int count,int flags)3236 t4_alloc_tx_maps(struct adapter *sc, struct tx_maps *txmaps, int count,
3237 int flags)
3238 {
3239 int i, rc;
3240
3241 txmaps->map_total = count;
3242 txmaps->map_avail = txmaps->map_cidx = txmaps->map_pidx = 0;
3243
3244 txmaps->map = kmem_zalloc(sizeof (ddi_dma_handle_t) *
3245 txmaps->map_total, flags);
3246
3247 for (i = 0; i < count; i++) {
3248 rc = ddi_dma_alloc_handle(sc->dip, &sc->sge.dma_attr_tx,
3249 DDI_DMA_SLEEP, 0, &txmaps->map[i]);
3250 if (rc != DDI_SUCCESS) {
3251 cxgb_printf(sc->dip, CE_WARN,
3252 "%s: failed to allocate DMA handle (%d)",
3253 __func__, rc);
3254 return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL);
3255 }
3256 txmaps->map_avail++;
3257 }
3258
3259 return (0);
3260 }
3261
3262 #define KS_UINIT(x) kstat_named_init(&kstatp->x, #x, KSTAT_DATA_ULONG)
3263 #define KS_CINIT(x) kstat_named_init(&kstatp->x, #x, KSTAT_DATA_CHAR)
3264 #define KS_U_SET(x, y) kstatp->x.value.ul = (y)
3265 #define KS_U_FROM(x, y) kstatp->x.value.ul = (y)->x
3266 #define KS_C_SET(x, ...) \
3267 (void) snprintf(kstatp->x.value.c, 16, __VA_ARGS__)
3268
3269 /*
3270 * cxgbe:X:config
3271 */
3272 struct cxgbe_port_config_kstats {
3273 kstat_named_t idx;
3274 kstat_named_t nrxq;
3275 kstat_named_t ntxq;
3276 kstat_named_t first_rxq;
3277 kstat_named_t first_txq;
3278 kstat_named_t controller;
3279 kstat_named_t factory_mac_address;
3280 };
3281
3282 /*
3283 * cxgbe:X:info
3284 */
3285 struct cxgbe_port_info_kstats {
3286 kstat_named_t transceiver;
3287 kstat_named_t rx_ovflow0;
3288 kstat_named_t rx_ovflow1;
3289 kstat_named_t rx_ovflow2;
3290 kstat_named_t rx_ovflow3;
3291 kstat_named_t rx_trunc0;
3292 kstat_named_t rx_trunc1;
3293 kstat_named_t rx_trunc2;
3294 kstat_named_t rx_trunc3;
3295 kstat_named_t tx_pause;
3296 kstat_named_t rx_pause;
3297 };
3298
3299 static kstat_t *
setup_port_config_kstats(struct port_info * pi)3300 setup_port_config_kstats(struct port_info *pi)
3301 {
3302 kstat_t *ksp;
3303 struct cxgbe_port_config_kstats *kstatp;
3304 int ndata;
3305 dev_info_t *pdip = ddi_get_parent(pi->dip);
3306 uint8_t *ma = &pi->hw_addr[0];
3307
3308 ndata = sizeof (struct cxgbe_port_config_kstats) /
3309 sizeof (kstat_named_t);
3310
3311 ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), "config",
3312 "net", KSTAT_TYPE_NAMED, ndata, 0);
3313 if (ksp == NULL) {
3314 cxgb_printf(pi->dip, CE_WARN, "failed to initialize kstats.");
3315 return (NULL);
3316 }
3317
3318 kstatp = (struct cxgbe_port_config_kstats *)ksp->ks_data;
3319
3320 KS_UINIT(idx);
3321 KS_UINIT(nrxq);
3322 KS_UINIT(ntxq);
3323 KS_UINIT(first_rxq);
3324 KS_UINIT(first_txq);
3325 KS_CINIT(controller);
3326 KS_CINIT(factory_mac_address);
3327
3328 KS_U_SET(idx, pi->port_id);
3329 KS_U_SET(nrxq, pi->nrxq);
3330 KS_U_SET(ntxq, pi->ntxq);
3331 KS_U_SET(first_rxq, pi->first_rxq);
3332 KS_U_SET(first_txq, pi->first_txq);
3333 KS_C_SET(controller, "%s%d", ddi_driver_name(pdip),
3334 ddi_get_instance(pdip));
3335 KS_C_SET(factory_mac_address, "%02X%02X%02X%02X%02X%02X",
3336 ma[0], ma[1], ma[2], ma[3], ma[4], ma[5]);
3337
3338 /* Do NOT set ksp->ks_update. These kstats do not change. */
3339
3340 /* Install the kstat */
3341 ksp->ks_private = (void *)pi;
3342 kstat_install(ksp);
3343
3344 return (ksp);
3345 }
3346
3347 static kstat_t *
setup_port_info_kstats(struct port_info * pi)3348 setup_port_info_kstats(struct port_info *pi)
3349 {
3350 kstat_t *ksp;
3351 struct cxgbe_port_info_kstats *kstatp;
3352 int ndata;
3353
3354 ndata = sizeof (struct cxgbe_port_info_kstats) / sizeof (kstat_named_t);
3355
3356 ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), "info",
3357 "net", KSTAT_TYPE_NAMED, ndata, 0);
3358 if (ksp == NULL) {
3359 cxgb_printf(pi->dip, CE_WARN, "failed to initialize kstats.");
3360 return (NULL);
3361 }
3362
3363 kstatp = (struct cxgbe_port_info_kstats *)ksp->ks_data;
3364
3365 KS_CINIT(transceiver);
3366 KS_UINIT(rx_ovflow0);
3367 KS_UINIT(rx_ovflow1);
3368 KS_UINIT(rx_ovflow2);
3369 KS_UINIT(rx_ovflow3);
3370 KS_UINIT(rx_trunc0);
3371 KS_UINIT(rx_trunc1);
3372 KS_UINIT(rx_trunc2);
3373 KS_UINIT(rx_trunc3);
3374 KS_UINIT(tx_pause);
3375 KS_UINIT(rx_pause);
3376
3377 /* Install the kstat */
3378 ksp->ks_update = update_port_info_kstats;
3379 ksp->ks_private = (void *)pi;
3380 kstat_install(ksp);
3381
3382 return (ksp);
3383 }
3384
3385 static int
update_port_info_kstats(kstat_t * ksp,int rw)3386 update_port_info_kstats(kstat_t *ksp, int rw)
3387 {
3388 struct cxgbe_port_info_kstats *kstatp =
3389 (struct cxgbe_port_info_kstats *)ksp->ks_data;
3390 struct port_info *pi = ksp->ks_private;
3391 static const char *mod_str[] = { NULL, "LR", "SR", "ER", "TWINAX",
3392 "active TWINAX", "LRM" };
3393 uint32_t bgmap;
3394
3395 if (rw == KSTAT_WRITE)
3396 return (0);
3397
3398 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
3399 KS_C_SET(transceiver, "unplugged");
3400 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
3401 KS_C_SET(transceiver, "unknown");
3402 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
3403 KS_C_SET(transceiver, "unsupported");
3404 else if (pi->mod_type > 0 && pi->mod_type < ARRAY_SIZE(mod_str))
3405 KS_C_SET(transceiver, "%s", mod_str[pi->mod_type]);
3406 else
3407 KS_C_SET(transceiver, "type %d", pi->mod_type);
3408
3409 #define GET_STAT(name) t4_read_reg64(pi->adapter, \
3410 PORT_REG(pi->port_id, A_MPS_PORT_STAT_##name##_L))
3411 #define GET_STAT_COM(name) t4_read_reg64(pi->adapter, \
3412 A_MPS_STAT_##name##_L)
3413
3414 bgmap = G_NUMPORTS(t4_read_reg(pi->adapter, A_MPS_CMN_CTL));
3415 if (bgmap == 0)
3416 bgmap = (pi->port_id == 0) ? 0xf : 0;
3417 else if (bgmap == 1)
3418 bgmap = (pi->port_id < 2) ? (3 << (2 * pi->port_id)) : 0;
3419 else
3420 bgmap = 1;
3421
3422 KS_U_SET(rx_ovflow0, (bgmap & 1) ?
3423 GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0);
3424 KS_U_SET(rx_ovflow1, (bgmap & 2) ?
3425 GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0);
3426 KS_U_SET(rx_ovflow2, (bgmap & 4) ?
3427 GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0);
3428 KS_U_SET(rx_ovflow3, (bgmap & 8) ?
3429 GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0);
3430 KS_U_SET(rx_trunc0, (bgmap & 1) ?
3431 GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0);
3432 KS_U_SET(rx_trunc1, (bgmap & 2) ?
3433 GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0);
3434 KS_U_SET(rx_trunc2, (bgmap & 4) ?
3435 GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0);
3436 KS_U_SET(rx_trunc3, (bgmap & 8) ?
3437 GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0);
3438
3439 KS_U_SET(tx_pause, GET_STAT(TX_PORT_PAUSE));
3440 KS_U_SET(rx_pause, GET_STAT(RX_PORT_PAUSE));
3441
3442 return (0);
3443
3444 }
3445
3446 /*
3447 * cxgbe:X:rxqY
3448 */
3449 struct rxq_kstats {
3450 kstat_named_t rxcsum;
3451 kstat_named_t rxpkts;
3452 kstat_named_t rxbytes;
3453 kstat_named_t nomem;
3454 };
3455
3456 static kstat_t *
setup_rxq_kstats(struct port_info * pi,struct sge_rxq * rxq,int idx)3457 setup_rxq_kstats(struct port_info *pi, struct sge_rxq *rxq, int idx)
3458 {
3459 struct kstat *ksp;
3460 struct rxq_kstats *kstatp;
3461 int ndata;
3462 char str[16];
3463
3464 ndata = sizeof (struct rxq_kstats) / sizeof (kstat_named_t);
3465 (void) snprintf(str, sizeof (str), "rxq%u", idx);
3466
3467 ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), str, "rxq",
3468 KSTAT_TYPE_NAMED, ndata, 0);
3469 if (ksp == NULL) {
3470 cxgb_printf(pi->dip, CE_WARN,
3471 "%s: failed to initialize rxq kstats for queue %d.",
3472 __func__, idx);
3473 return (NULL);
3474 }
3475
3476 kstatp = (struct rxq_kstats *)ksp->ks_data;
3477
3478 KS_UINIT(rxcsum);
3479 KS_UINIT(rxpkts);
3480 KS_UINIT(rxbytes);
3481 KS_UINIT(nomem);
3482
3483 ksp->ks_update = update_rxq_kstats;
3484 ksp->ks_private = (void *)rxq;
3485 kstat_install(ksp);
3486
3487 return (ksp);
3488 }
3489
3490 static int
update_rxq_kstats(kstat_t * ksp,int rw)3491 update_rxq_kstats(kstat_t *ksp, int rw)
3492 {
3493 struct rxq_kstats *kstatp = (struct rxq_kstats *)ksp->ks_data;
3494 struct sge_rxq *rxq = ksp->ks_private;
3495
3496 if (rw == KSTAT_WRITE)
3497 return (0);
3498
3499 KS_U_FROM(rxcsum, rxq);
3500 KS_U_FROM(rxpkts, rxq);
3501 KS_U_FROM(rxbytes, rxq);
3502 KS_U_FROM(nomem, rxq);
3503
3504 return (0);
3505 }
3506
3507 /*
3508 * cxgbe:X:txqY
3509 */
3510 struct txq_kstats {
3511 kstat_named_t txcsum;
3512 kstat_named_t tso_wrs;
3513 kstat_named_t imm_wrs;
3514 kstat_named_t sgl_wrs;
3515 kstat_named_t txpkt_wrs;
3516 kstat_named_t txpkts_wrs;
3517 kstat_named_t txpkts_pkts;
3518 kstat_named_t txb_used;
3519 kstat_named_t hdl_used;
3520 kstat_named_t txb_full;
3521 kstat_named_t dma_hdl_failed;
3522 kstat_named_t dma_map_failed;
3523 kstat_named_t qfull;
3524 kstat_named_t qflush;
3525 kstat_named_t pullup_early;
3526 kstat_named_t pullup_late;
3527 kstat_named_t pullup_failed;
3528 kstat_named_t csum_failed;
3529 };
3530
3531 static kstat_t *
setup_txq_kstats(struct port_info * pi,struct sge_txq * txq,int idx)3532 setup_txq_kstats(struct port_info *pi, struct sge_txq *txq, int idx)
3533 {
3534 struct kstat *ksp;
3535 struct txq_kstats *kstatp;
3536 int ndata;
3537 char str[16];
3538
3539 ndata = sizeof (struct txq_kstats) / sizeof (kstat_named_t);
3540 (void) snprintf(str, sizeof (str), "txq%u", idx);
3541
3542 ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), str, "txq",
3543 KSTAT_TYPE_NAMED, ndata, 0);
3544 if (ksp == NULL) {
3545 cxgb_printf(pi->dip, CE_WARN,
3546 "%s: failed to initialize txq kstats for queue %d.",
3547 __func__, idx);
3548 return (NULL);
3549 }
3550
3551 kstatp = (struct txq_kstats *)ksp->ks_data;
3552
3553 KS_UINIT(txcsum);
3554 KS_UINIT(tso_wrs);
3555 KS_UINIT(imm_wrs);
3556 KS_UINIT(sgl_wrs);
3557 KS_UINIT(txpkt_wrs);
3558 KS_UINIT(txpkts_wrs);
3559 KS_UINIT(txpkts_pkts);
3560 KS_UINIT(txb_used);
3561 KS_UINIT(hdl_used);
3562 KS_UINIT(txb_full);
3563 KS_UINIT(dma_hdl_failed);
3564 KS_UINIT(dma_map_failed);
3565 KS_UINIT(qfull);
3566 KS_UINIT(qflush);
3567 KS_UINIT(pullup_early);
3568 KS_UINIT(pullup_late);
3569 KS_UINIT(pullup_failed);
3570 KS_UINIT(csum_failed);
3571
3572 ksp->ks_update = update_txq_kstats;
3573 ksp->ks_private = (void *)txq;
3574 kstat_install(ksp);
3575
3576 return (ksp);
3577 }
3578
3579 static int
update_txq_kstats(kstat_t * ksp,int rw)3580 update_txq_kstats(kstat_t *ksp, int rw)
3581 {
3582 struct txq_kstats *kstatp = (struct txq_kstats *)ksp->ks_data;
3583 struct sge_txq *txq = ksp->ks_private;
3584
3585 if (rw == KSTAT_WRITE)
3586 return (0);
3587
3588 KS_U_FROM(txcsum, txq);
3589 KS_U_FROM(tso_wrs, txq);
3590 KS_U_FROM(imm_wrs, txq);
3591 KS_U_FROM(sgl_wrs, txq);
3592 KS_U_FROM(txpkt_wrs, txq);
3593 KS_U_FROM(txpkts_wrs, txq);
3594 KS_U_FROM(txpkts_pkts, txq);
3595 KS_U_FROM(txb_used, txq);
3596 KS_U_FROM(hdl_used, txq);
3597 KS_U_FROM(txb_full, txq);
3598 KS_U_FROM(dma_hdl_failed, txq);
3599 KS_U_FROM(dma_map_failed, txq);
3600 KS_U_FROM(qfull, txq);
3601 KS_U_FROM(qflush, txq);
3602 KS_U_FROM(pullup_early, txq);
3603 KS_U_FROM(pullup_late, txq);
3604 KS_U_FROM(pullup_failed, txq);
3605 KS_U_FROM(csum_failed, txq);
3606
3607 return (0);
3608 }
3609
3610 static int rxbuf_ctor(void *, void *, int);
3611 static void rxbuf_dtor(void *, void *);
3612
3613 static kmem_cache_t *
rxbuf_cache_create(struct rxbuf_cache_params * p)3614 rxbuf_cache_create(struct rxbuf_cache_params *p)
3615 {
3616 char name[32];
3617
3618 (void) snprintf(name, sizeof (name), "%s%d_rxbuf_cache",
3619 ddi_driver_name(p->dip), ddi_get_instance(p->dip));
3620
3621 return kmem_cache_create(name, sizeof (struct rxbuf), _CACHE_LINE_SIZE,
3622 rxbuf_ctor, rxbuf_dtor, NULL, p, NULL, 0);
3623 }
3624
3625 /*
3626 * If ref_cnt is more than 1 then those many calls to rxbuf_free will
3627 * have to be made before the rxb is released back to the kmem_cache.
3628 */
3629 static struct rxbuf *
rxbuf_alloc(kmem_cache_t * cache,int kmflags,uint_t ref_cnt)3630 rxbuf_alloc(kmem_cache_t *cache, int kmflags, uint_t ref_cnt)
3631 {
3632 struct rxbuf *rxb;
3633
3634 ASSERT(ref_cnt > 0);
3635
3636 rxb = kmem_cache_alloc(cache, kmflags);
3637 if (rxb != NULL) {
3638 rxb->ref_cnt = ref_cnt;
3639 rxb->cache = cache;
3640 }
3641
3642 return (rxb);
3643 }
3644
3645 /*
3646 * This is normally called via the rxb's freefunc, when an mblk referencing the
3647 * rxb is freed.
3648 */
3649 static void
rxbuf_free(struct rxbuf * rxb)3650 rxbuf_free(struct rxbuf *rxb)
3651 {
3652 if (atomic_dec_uint_nv(&rxb->ref_cnt) == 0)
3653 kmem_cache_free(rxb->cache, rxb);
3654 }
3655
3656 static int
rxbuf_ctor(void * arg1,void * arg2,int kmflag)3657 rxbuf_ctor(void *arg1, void *arg2, int kmflag)
3658 {
3659 struct rxbuf *rxb = arg1;
3660 struct rxbuf_cache_params *p = arg2;
3661 size_t real_len;
3662 ddi_dma_cookie_t cookie;
3663 uint_t ccount = 0;
3664 int (*callback)(caddr_t);
3665 int rc = ENOMEM;
3666
3667 if ((kmflag & KM_NOSLEEP) != 0)
3668 callback = DDI_DMA_DONTWAIT;
3669 else
3670 callback = DDI_DMA_SLEEP;
3671
3672 rc = ddi_dma_alloc_handle(p->dip, &p->dma_attr_rx, callback, 0,
3673 &rxb->dhdl);
3674 if (rc != DDI_SUCCESS)
3675 return (rc == DDI_DMA_BADATTR ? EINVAL : ENOMEM);
3676
3677 rc = ddi_dma_mem_alloc(rxb->dhdl, p->buf_size, &p->acc_attr_rx,
3678 DDI_DMA_STREAMING, callback, 0, &rxb->va, &real_len, &rxb->ahdl);
3679 if (rc != DDI_SUCCESS) {
3680 rc = ENOMEM;
3681 goto fail1;
3682 }
3683
3684 rc = ddi_dma_addr_bind_handle(rxb->dhdl, NULL, rxb->va, p->buf_size,
3685 DDI_DMA_READ | DDI_DMA_STREAMING, NULL, NULL, &cookie, &ccount);
3686 if (rc != DDI_DMA_MAPPED) {
3687 if (rc == DDI_DMA_INUSE)
3688 rc = EBUSY;
3689 else if (rc == DDI_DMA_TOOBIG)
3690 rc = E2BIG;
3691 else
3692 rc = ENOMEM;
3693 goto fail2;
3694 }
3695
3696 if (ccount != 1) {
3697 rc = E2BIG;
3698 goto fail3;
3699 }
3700
3701 rxb->ref_cnt = 0;
3702 rxb->buf_size = p->buf_size;
3703 rxb->freefunc.free_arg = (caddr_t)rxb;
3704 rxb->freefunc.free_func = rxbuf_free;
3705 rxb->ba = cookie.dmac_laddress;
3706
3707 return (0);
3708
3709 fail3: (void) ddi_dma_unbind_handle(rxb->dhdl);
3710 fail2: ddi_dma_mem_free(&rxb->ahdl);
3711 fail1: ddi_dma_free_handle(&rxb->dhdl);
3712 return (rc);
3713 }
3714
3715 static void
rxbuf_dtor(void * arg1,void * arg2)3716 rxbuf_dtor(void *arg1, void *arg2)
3717 {
3718 struct rxbuf *rxb = arg1;
3719
3720 (void) ddi_dma_unbind_handle(rxb->dhdl);
3721 ddi_dma_mem_free(&rxb->ahdl);
3722 ddi_dma_free_handle(&rxb->dhdl);
3723 }
3724