xref: /linux/include/linux/seqlock.h (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_SEQLOCK_H
3 #define __LINUX_SEQLOCK_H
4 
5 /*
6  * seqcount_t / seqlock_t - a reader-writer consistency mechanism with
7  * lockless readers (read-only retry loops), and no writer starvation.
8  *
9  * See Documentation/locking/seqlock.rst
10  *
11  * Copyrights:
12  * - Based on x86_64 vsyscall gettimeofday: Keith Owens, Andrea Arcangeli
13  * - Sequence counters with associated locks, (C) 2020 Linutronix GmbH
14  */
15 
16 #include <linux/compiler.h>
17 #include <linux/kcsan-checks.h>
18 #include <linux/lockdep.h>
19 #include <linux/mutex.h>
20 #include <linux/preempt.h>
21 #include <linux/seqlock_types.h>
22 #include <linux/spinlock.h>
23 
24 #include <asm/processor.h>
25 
26 /*
27  * The seqlock seqcount_t interface does not prescribe a precise sequence of
28  * read begin/retry/end. For readers, typically there is a call to
29  * read_seqcount_begin() and read_seqcount_retry(), however, there are more
30  * esoteric cases which do not follow this pattern.
31  *
32  * As a consequence, we take the following best-effort approach for raw usage
33  * via seqcount_t under KCSAN: upon beginning a seq-reader critical section,
34  * pessimistically mark the next KCSAN_SEQLOCK_REGION_MAX memory accesses as
35  * atomics; if there is a matching read_seqcount_retry() call, no following
36  * memory operations are considered atomic. Usage of the seqlock_t interface
37  * is not affected.
38  */
39 #define KCSAN_SEQLOCK_REGION_MAX 1000
40 
__seqcount_init(seqcount_t * s,const char * name,struct lock_class_key * key)41 static inline void __seqcount_init(seqcount_t *s, const char *name,
42 					  struct lock_class_key *key)
43 {
44 	/*
45 	 * Make sure we are not reinitializing a held lock:
46 	 */
47 	lockdep_init_map(&s->dep_map, name, key, 0);
48 	s->sequence = 0;
49 }
50 
51 #ifdef CONFIG_DEBUG_LOCK_ALLOC
52 
53 # define SEQCOUNT_DEP_MAP_INIT(lockname)				\
54 		.dep_map = { .name = #lockname }
55 
56 /**
57  * seqcount_init() - runtime initializer for seqcount_t
58  * @s: Pointer to the seqcount_t instance
59  */
60 # define seqcount_init(s)						\
61 	do {								\
62 		static struct lock_class_key __key;			\
63 		__seqcount_init((s), #s, &__key);			\
64 	} while (0)
65 
seqcount_lockdep_reader_access(const seqcount_t * s)66 static inline void seqcount_lockdep_reader_access(const seqcount_t *s)
67 {
68 	seqcount_t *l = (seqcount_t *)s;
69 	unsigned long flags;
70 
71 	local_irq_save(flags);
72 	seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_);
73 	seqcount_release(&l->dep_map, _RET_IP_);
74 	local_irq_restore(flags);
75 }
76 
77 #else
78 # define SEQCOUNT_DEP_MAP_INIT(lockname)
79 # define seqcount_init(s) __seqcount_init(s, NULL, NULL)
80 # define seqcount_lockdep_reader_access(x)
81 #endif
82 
83 /**
84  * SEQCNT_ZERO() - static initializer for seqcount_t
85  * @name: Name of the seqcount_t instance
86  */
87 #define SEQCNT_ZERO(name) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(name) }
88 
89 /*
90  * Sequence counters with associated locks (seqcount_LOCKNAME_t)
91  *
92  * A sequence counter which associates the lock used for writer
93  * serialization at initialization time. This enables lockdep to validate
94  * that the write side critical section is properly serialized.
95  *
96  * For associated locks which do not implicitly disable preemption,
97  * preemption protection is enforced in the write side function.
98  *
99  * Lockdep is never used in any for the raw write variants.
100  *
101  * See Documentation/locking/seqlock.rst
102  */
103 
104 /*
105  * typedef seqcount_LOCKNAME_t - sequence counter with LOCKNAME associated
106  * @seqcount:	The real sequence counter
107  * @lock:	Pointer to the associated lock
108  *
109  * A plain sequence counter with external writer synchronization by
110  * LOCKNAME @lock. The lock is associated to the sequence counter in the
111  * static initializer or init function. This enables lockdep to validate
112  * that the write side critical section is properly serialized.
113  *
114  * LOCKNAME:	raw_spinlock, spinlock, rwlock or mutex
115  */
116 
117 /*
118  * seqcount_LOCKNAME_init() - runtime initializer for seqcount_LOCKNAME_t
119  * @s:		Pointer to the seqcount_LOCKNAME_t instance
120  * @lock:	Pointer to the associated lock
121  */
122 
123 #define seqcount_LOCKNAME_init(s, _lock, lockname)			\
124 	do {								\
125 		seqcount_##lockname##_t *____s = (s);			\
126 		seqcount_init(&____s->seqcount);			\
127 		__SEQ_LOCK(____s->lock = (_lock));			\
128 	} while (0)
129 
130 #define seqcount_raw_spinlock_init(s, lock)	seqcount_LOCKNAME_init(s, lock, raw_spinlock)
131 #define seqcount_spinlock_init(s, lock)		seqcount_LOCKNAME_init(s, lock, spinlock)
132 #define seqcount_rwlock_init(s, lock)		seqcount_LOCKNAME_init(s, lock, rwlock)
133 #define seqcount_mutex_init(s, lock)		seqcount_LOCKNAME_init(s, lock, mutex)
134 
135 /*
136  * SEQCOUNT_LOCKNAME()	- Instantiate seqcount_LOCKNAME_t and helpers
137  * seqprop_LOCKNAME_*()	- Property accessors for seqcount_LOCKNAME_t
138  *
139  * @lockname:		"LOCKNAME" part of seqcount_LOCKNAME_t
140  * @locktype:		LOCKNAME canonical C data type
141  * @preemptible:	preemptibility of above locktype
142  * @lockbase:		prefix for associated lock/unlock
143  */
144 #define SEQCOUNT_LOCKNAME(lockname, locktype, preemptible, lockbase)	\
145 static __always_inline seqcount_t *					\
146 __seqprop_##lockname##_ptr(seqcount_##lockname##_t *s)			\
147 {									\
148 	return &s->seqcount;						\
149 }									\
150 									\
151 static __always_inline const seqcount_t *				\
152 __seqprop_##lockname##_const_ptr(const seqcount_##lockname##_t *s)	\
153 {									\
154 	return &s->seqcount;						\
155 }									\
156 									\
157 static __always_inline unsigned						\
158 __seqprop_##lockname##_sequence(const seqcount_##lockname##_t *s)	\
159 {									\
160 	unsigned seq = smp_load_acquire(&s->seqcount.sequence);		\
161 									\
162 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))				\
163 		return seq;						\
164 									\
165 	if (preemptible && unlikely(seq & 1)) {				\
166 		__SEQ_LOCK(lockbase##_lock(s->lock));			\
167 		__SEQ_LOCK(lockbase##_unlock(s->lock));			\
168 									\
169 		/*							\
170 		 * Re-read the sequence counter since the (possibly	\
171 		 * preempted) writer made progress.			\
172 		 */							\
173 		seq = smp_load_acquire(&s->seqcount.sequence);		\
174 	}								\
175 									\
176 	return seq;							\
177 }									\
178 									\
179 static __always_inline bool						\
180 __seqprop_##lockname##_preemptible(const seqcount_##lockname##_t *s)	\
181 {									\
182 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))				\
183 		return preemptible;					\
184 									\
185 	/* PREEMPT_RT relies on the above LOCK+UNLOCK */		\
186 	return false;							\
187 }									\
188 									\
189 static __always_inline void						\
190 __seqprop_##lockname##_assert(const seqcount_##lockname##_t *s)		\
191 {									\
192 	__SEQ_LOCK(lockdep_assert_held(s->lock));			\
193 }
194 
195 /*
196  * __seqprop() for seqcount_t
197  */
198 
__seqprop_ptr(seqcount_t * s)199 static inline seqcount_t *__seqprop_ptr(seqcount_t *s)
200 {
201 	return s;
202 }
203 
__seqprop_const_ptr(const seqcount_t * s)204 static inline const seqcount_t *__seqprop_const_ptr(const seqcount_t *s)
205 {
206 	return s;
207 }
208 
__seqprop_sequence(const seqcount_t * s)209 static inline unsigned __seqprop_sequence(const seqcount_t *s)
210 {
211 	return smp_load_acquire(&s->sequence);
212 }
213 
__seqprop_preemptible(const seqcount_t * s)214 static inline bool __seqprop_preemptible(const seqcount_t *s)
215 {
216 	return false;
217 }
218 
__seqprop_assert(const seqcount_t * s)219 static inline void __seqprop_assert(const seqcount_t *s)
220 {
221 	lockdep_assert_preemption_disabled();
222 }
223 
224 #define __SEQ_RT	IS_ENABLED(CONFIG_PREEMPT_RT)
225 
SEQCOUNT_LOCKNAME(raw_spinlock,raw_spinlock_t,false,raw_spin)226 SEQCOUNT_LOCKNAME(raw_spinlock, raw_spinlock_t,  false,    raw_spin)
227 SEQCOUNT_LOCKNAME(spinlock,     spinlock_t,      __SEQ_RT, spin)
228 SEQCOUNT_LOCKNAME(rwlock,       rwlock_t,        __SEQ_RT, read)
229 SEQCOUNT_LOCKNAME(mutex,        struct mutex,    true,     mutex)
230 #undef SEQCOUNT_LOCKNAME
231 
232 /*
233  * SEQCNT_LOCKNAME_ZERO - static initializer for seqcount_LOCKNAME_t
234  * @name:	Name of the seqcount_LOCKNAME_t instance
235  * @lock:	Pointer to the associated LOCKNAME
236  */
237 
238 #define SEQCOUNT_LOCKNAME_ZERO(seq_name, assoc_lock) {			\
239 	.seqcount		= SEQCNT_ZERO(seq_name.seqcount),	\
240 	__SEQ_LOCK(.lock	= (assoc_lock))				\
241 }
242 
243 #define SEQCNT_RAW_SPINLOCK_ZERO(name, lock)	SEQCOUNT_LOCKNAME_ZERO(name, lock)
244 #define SEQCNT_SPINLOCK_ZERO(name, lock)	SEQCOUNT_LOCKNAME_ZERO(name, lock)
245 #define SEQCNT_RWLOCK_ZERO(name, lock)		SEQCOUNT_LOCKNAME_ZERO(name, lock)
246 #define SEQCNT_MUTEX_ZERO(name, lock)		SEQCOUNT_LOCKNAME_ZERO(name, lock)
247 #define SEQCNT_WW_MUTEX_ZERO(name, lock) 	SEQCOUNT_LOCKNAME_ZERO(name, lock)
248 
249 #define __seqprop_case(s, lockname, prop)				\
250 	seqcount_##lockname##_t: __seqprop_##lockname##_##prop
251 
252 #define __seqprop(s, prop) _Generic(*(s),				\
253 	seqcount_t:		__seqprop_##prop,			\
254 	__seqprop_case((s),	raw_spinlock,	prop),			\
255 	__seqprop_case((s),	spinlock,	prop),			\
256 	__seqprop_case((s),	rwlock,		prop),			\
257 	__seqprop_case((s),	mutex,		prop))
258 
259 #define seqprop_ptr(s)			__seqprop(s, ptr)(s)
260 #define seqprop_const_ptr(s)		__seqprop(s, const_ptr)(s)
261 #define seqprop_sequence(s)		__seqprop(s, sequence)(s)
262 #define seqprop_preemptible(s)		__seqprop(s, preemptible)(s)
263 #define seqprop_assert(s)		__seqprop(s, assert)(s)
264 
265 /**
266  * __read_seqcount_begin() - begin a seqcount_t read section
267  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
268  *
269  * Return: count to be passed to read_seqcount_retry()
270  */
271 #define __read_seqcount_begin(s)					\
272 ({									\
273 	unsigned __seq;							\
274 									\
275 	while ((__seq = seqprop_sequence(s)) & 1)			\
276 		cpu_relax();						\
277 									\
278 	kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX);			\
279 	__seq;								\
280 })
281 
282 /**
283  * raw_read_seqcount_begin() - begin a seqcount_t read section w/o lockdep
284  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
285  *
286  * Return: count to be passed to read_seqcount_retry()
287  */
288 #define raw_read_seqcount_begin(s) __read_seqcount_begin(s)
289 
290 /**
291  * read_seqcount_begin() - begin a seqcount_t read critical section
292  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
293  *
294  * Return: count to be passed to read_seqcount_retry()
295  */
296 #define read_seqcount_begin(s)						\
297 ({									\
298 	seqcount_lockdep_reader_access(seqprop_const_ptr(s));		\
299 	raw_read_seqcount_begin(s);					\
300 })
301 
302 /**
303  * raw_read_seqcount() - read the raw seqcount_t counter value
304  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
305  *
306  * raw_read_seqcount opens a read critical section of the given
307  * seqcount_t, without any lockdep checking, and without checking or
308  * masking the sequence counter LSB. Calling code is responsible for
309  * handling that.
310  *
311  * Return: count to be passed to read_seqcount_retry()
312  */
313 #define raw_read_seqcount(s)						\
314 ({									\
315 	unsigned __seq = seqprop_sequence(s);				\
316 									\
317 	kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX);			\
318 	__seq;								\
319 })
320 
321 /**
322  * raw_seqcount_begin() - begin a seqcount_t read critical section w/o
323  *                        lockdep and w/o counter stabilization
324  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
325  *
326  * raw_seqcount_begin opens a read critical section of the given
327  * seqcount_t. Unlike read_seqcount_begin(), this function will not wait
328  * for the count to stabilize. If a writer is active when it begins, it
329  * will fail the read_seqcount_retry() at the end of the read critical
330  * section instead of stabilizing at the beginning of it.
331  *
332  * Use this only in special kernel hot paths where the read section is
333  * small and has a high probability of success through other external
334  * means. It will save a single branching instruction.
335  *
336  * Return: count to be passed to read_seqcount_retry()
337  */
338 #define raw_seqcount_begin(s)						\
339 ({									\
340 	/*								\
341 	 * If the counter is odd, let read_seqcount_retry() fail	\
342 	 * by decrementing the counter.					\
343 	 */								\
344 	raw_read_seqcount(s) & ~1;					\
345 })
346 
347 /**
348  * __read_seqcount_retry() - end a seqcount_t read section w/o barrier
349  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
350  * @start: count, from read_seqcount_begin()
351  *
352  * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
353  * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
354  * provided before actually loading any of the variables that are to be
355  * protected in this critical section.
356  *
357  * Use carefully, only in critical code, and comment how the barrier is
358  * provided.
359  *
360  * Return: true if a read section retry is required, else false
361  */
362 #define __read_seqcount_retry(s, start)					\
363 	do___read_seqcount_retry(seqprop_const_ptr(s), start)
364 
365 static inline int do___read_seqcount_retry(const seqcount_t *s, unsigned start)
366 {
367 	kcsan_atomic_next(0);
368 	return unlikely(READ_ONCE(s->sequence) != start);
369 }
370 
371 /**
372  * read_seqcount_retry() - end a seqcount_t read critical section
373  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
374  * @start: count, from read_seqcount_begin()
375  *
376  * read_seqcount_retry closes the read critical section of given
377  * seqcount_t.  If the critical section was invalid, it must be ignored
378  * (and typically retried).
379  *
380  * Return: true if a read section retry is required, else false
381  */
382 #define read_seqcount_retry(s, start)					\
383 	do_read_seqcount_retry(seqprop_const_ptr(s), start)
384 
do_read_seqcount_retry(const seqcount_t * s,unsigned start)385 static inline int do_read_seqcount_retry(const seqcount_t *s, unsigned start)
386 {
387 	smp_rmb();
388 	return do___read_seqcount_retry(s, start);
389 }
390 
391 /**
392  * raw_write_seqcount_begin() - start a seqcount_t write section w/o lockdep
393  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
394  *
395  * Context: check write_seqcount_begin()
396  */
397 #define raw_write_seqcount_begin(s)					\
398 do {									\
399 	if (seqprop_preemptible(s))					\
400 		preempt_disable();					\
401 									\
402 	do_raw_write_seqcount_begin(seqprop_ptr(s));			\
403 } while (0)
404 
do_raw_write_seqcount_begin(seqcount_t * s)405 static inline void do_raw_write_seqcount_begin(seqcount_t *s)
406 {
407 	kcsan_nestable_atomic_begin();
408 	s->sequence++;
409 	smp_wmb();
410 }
411 
412 /**
413  * raw_write_seqcount_end() - end a seqcount_t write section w/o lockdep
414  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
415  *
416  * Context: check write_seqcount_end()
417  */
418 #define raw_write_seqcount_end(s)					\
419 do {									\
420 	do_raw_write_seqcount_end(seqprop_ptr(s));			\
421 									\
422 	if (seqprop_preemptible(s))					\
423 		preempt_enable();					\
424 } while (0)
425 
do_raw_write_seqcount_end(seqcount_t * s)426 static inline void do_raw_write_seqcount_end(seqcount_t *s)
427 {
428 	smp_wmb();
429 	s->sequence++;
430 	kcsan_nestable_atomic_end();
431 }
432 
433 /**
434  * write_seqcount_begin_nested() - start a seqcount_t write section with
435  *                                 custom lockdep nesting level
436  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
437  * @subclass: lockdep nesting level
438  *
439  * See Documentation/locking/lockdep-design.rst
440  * Context: check write_seqcount_begin()
441  */
442 #define write_seqcount_begin_nested(s, subclass)			\
443 do {									\
444 	seqprop_assert(s);						\
445 									\
446 	if (seqprop_preemptible(s))					\
447 		preempt_disable();					\
448 									\
449 	do_write_seqcount_begin_nested(seqprop_ptr(s), subclass);	\
450 } while (0)
451 
do_write_seqcount_begin_nested(seqcount_t * s,int subclass)452 static inline void do_write_seqcount_begin_nested(seqcount_t *s, int subclass)
453 {
454 	seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_);
455 	do_raw_write_seqcount_begin(s);
456 }
457 
458 /**
459  * write_seqcount_begin() - start a seqcount_t write side critical section
460  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
461  *
462  * Context: sequence counter write side sections must be serialized and
463  * non-preemptible. Preemption will be automatically disabled if and
464  * only if the seqcount write serialization lock is associated, and
465  * preemptible.  If readers can be invoked from hardirq or softirq
466  * context, interrupts or bottom halves must be respectively disabled.
467  */
468 #define write_seqcount_begin(s)						\
469 do {									\
470 	seqprop_assert(s);						\
471 									\
472 	if (seqprop_preemptible(s))					\
473 		preempt_disable();					\
474 									\
475 	do_write_seqcount_begin(seqprop_ptr(s));			\
476 } while (0)
477 
do_write_seqcount_begin(seqcount_t * s)478 static inline void do_write_seqcount_begin(seqcount_t *s)
479 {
480 	do_write_seqcount_begin_nested(s, 0);
481 }
482 
483 /**
484  * write_seqcount_end() - end a seqcount_t write side critical section
485  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
486  *
487  * Context: Preemption will be automatically re-enabled if and only if
488  * the seqcount write serialization lock is associated, and preemptible.
489  */
490 #define write_seqcount_end(s)						\
491 do {									\
492 	do_write_seqcount_end(seqprop_ptr(s));				\
493 									\
494 	if (seqprop_preemptible(s))					\
495 		preempt_enable();					\
496 } while (0)
497 
do_write_seqcount_end(seqcount_t * s)498 static inline void do_write_seqcount_end(seqcount_t *s)
499 {
500 	seqcount_release(&s->dep_map, _RET_IP_);
501 	do_raw_write_seqcount_end(s);
502 }
503 
504 /**
505  * raw_write_seqcount_barrier() - do a seqcount_t write barrier
506  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
507  *
508  * This can be used to provide an ordering guarantee instead of the usual
509  * consistency guarantee. It is one wmb cheaper, because it can collapse
510  * the two back-to-back wmb()s.
511  *
512  * Note that writes surrounding the barrier should be declared atomic (e.g.
513  * via WRITE_ONCE): a) to ensure the writes become visible to other threads
514  * atomically, avoiding compiler optimizations; b) to document which writes are
515  * meant to propagate to the reader critical section. This is necessary because
516  * neither writes before nor after the barrier are enclosed in a seq-writer
517  * critical section that would ensure readers are aware of ongoing writes::
518  *
519  *	seqcount_t seq;
520  *	bool X = true, Y = false;
521  *
522  *	void read(void)
523  *	{
524  *		bool x, y;
525  *
526  *		do {
527  *			int s = read_seqcount_begin(&seq);
528  *
529  *			x = X; y = Y;
530  *
531  *		} while (read_seqcount_retry(&seq, s));
532  *
533  *		BUG_ON(!x && !y);
534  *      }
535  *
536  *      void write(void)
537  *      {
538  *		WRITE_ONCE(Y, true);
539  *
540  *		raw_write_seqcount_barrier(seq);
541  *
542  *		WRITE_ONCE(X, false);
543  *      }
544  */
545 #define raw_write_seqcount_barrier(s)					\
546 	do_raw_write_seqcount_barrier(seqprop_ptr(s))
547 
do_raw_write_seqcount_barrier(seqcount_t * s)548 static inline void do_raw_write_seqcount_barrier(seqcount_t *s)
549 {
550 	kcsan_nestable_atomic_begin();
551 	s->sequence++;
552 	smp_wmb();
553 	s->sequence++;
554 	kcsan_nestable_atomic_end();
555 }
556 
557 /**
558  * write_seqcount_invalidate() - invalidate in-progress seqcount_t read
559  *                               side operations
560  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
561  *
562  * After write_seqcount_invalidate, no seqcount_t read side operations
563  * will complete successfully and see data older than this.
564  */
565 #define write_seqcount_invalidate(s)					\
566 	do_write_seqcount_invalidate(seqprop_ptr(s))
567 
do_write_seqcount_invalidate(seqcount_t * s)568 static inline void do_write_seqcount_invalidate(seqcount_t *s)
569 {
570 	smp_wmb();
571 	kcsan_nestable_atomic_begin();
572 	s->sequence+=2;
573 	kcsan_nestable_atomic_end();
574 }
575 
576 /*
577  * Latch sequence counters (seqcount_latch_t)
578  *
579  * A sequence counter variant where the counter even/odd value is used to
580  * switch between two copies of protected data. This allows the read path,
581  * typically NMIs, to safely interrupt the write side critical section.
582  *
583  * As the write sections are fully preemptible, no special handling for
584  * PREEMPT_RT is needed.
585  */
586 typedef struct {
587 	seqcount_t seqcount;
588 } seqcount_latch_t;
589 
590 /**
591  * SEQCNT_LATCH_ZERO() - static initializer for seqcount_latch_t
592  * @seq_name: Name of the seqcount_latch_t instance
593  */
594 #define SEQCNT_LATCH_ZERO(seq_name) {					\
595 	.seqcount		= SEQCNT_ZERO(seq_name.seqcount),	\
596 }
597 
598 /**
599  * seqcount_latch_init() - runtime initializer for seqcount_latch_t
600  * @s: Pointer to the seqcount_latch_t instance
601  */
602 #define seqcount_latch_init(s) seqcount_init(&(s)->seqcount)
603 
604 /**
605  * raw_read_seqcount_latch() - pick even/odd latch data copy
606  * @s: Pointer to seqcount_latch_t
607  *
608  * See raw_write_seqcount_latch() for details and a full reader/writer
609  * usage example.
610  *
611  * Return: sequence counter raw value. Use the lowest bit as an index for
612  * picking which data copy to read. The full counter must then be checked
613  * with raw_read_seqcount_latch_retry().
614  */
raw_read_seqcount_latch(const seqcount_latch_t * s)615 static __always_inline unsigned raw_read_seqcount_latch(const seqcount_latch_t *s)
616 {
617 	/*
618 	 * Pairs with the first smp_wmb() in raw_write_seqcount_latch().
619 	 * Due to the dependent load, a full smp_rmb() is not needed.
620 	 */
621 	return READ_ONCE(s->seqcount.sequence);
622 }
623 
624 /**
625  * raw_read_seqcount_latch_retry() - end a seqcount_latch_t read section
626  * @s:		Pointer to seqcount_latch_t
627  * @start:	count, from raw_read_seqcount_latch()
628  *
629  * Return: true if a read section retry is required, else false
630  */
631 static __always_inline int
raw_read_seqcount_latch_retry(const seqcount_latch_t * s,unsigned start)632 raw_read_seqcount_latch_retry(const seqcount_latch_t *s, unsigned start)
633 {
634 	smp_rmb();
635 	return unlikely(READ_ONCE(s->seqcount.sequence) != start);
636 }
637 
638 /**
639  * raw_write_seqcount_latch() - redirect latch readers to even/odd copy
640  * @s: Pointer to seqcount_latch_t
641  *
642  * The latch technique is a multiversion concurrency control method that allows
643  * queries during non-atomic modifications. If you can guarantee queries never
644  * interrupt the modification -- e.g. the concurrency is strictly between CPUs
645  * -- you most likely do not need this.
646  *
647  * Where the traditional RCU/lockless data structures rely on atomic
648  * modifications to ensure queries observe either the old or the new state the
649  * latch allows the same for non-atomic updates. The trade-off is doubling the
650  * cost of storage; we have to maintain two copies of the entire data
651  * structure.
652  *
653  * Very simply put: we first modify one copy and then the other. This ensures
654  * there is always one copy in a stable state, ready to give us an answer.
655  *
656  * The basic form is a data structure like::
657  *
658  *	struct latch_struct {
659  *		seqcount_latch_t	seq;
660  *		struct data_struct	data[2];
661  *	};
662  *
663  * Where a modification, which is assumed to be externally serialized, does the
664  * following::
665  *
666  *	void latch_modify(struct latch_struct *latch, ...)
667  *	{
668  *		smp_wmb();	// Ensure that the last data[1] update is visible
669  *		latch->seq.sequence++;
670  *		smp_wmb();	// Ensure that the seqcount update is visible
671  *
672  *		modify(latch->data[0], ...);
673  *
674  *		smp_wmb();	// Ensure that the data[0] update is visible
675  *		latch->seq.sequence++;
676  *		smp_wmb();	// Ensure that the seqcount update is visible
677  *
678  *		modify(latch->data[1], ...);
679  *	}
680  *
681  * The query will have a form like::
682  *
683  *	struct entry *latch_query(struct latch_struct *latch, ...)
684  *	{
685  *		struct entry *entry;
686  *		unsigned seq, idx;
687  *
688  *		do {
689  *			seq = raw_read_seqcount_latch(&latch->seq);
690  *
691  *			idx = seq & 0x01;
692  *			entry = data_query(latch->data[idx], ...);
693  *
694  *		// This includes needed smp_rmb()
695  *		} while (raw_read_seqcount_latch_retry(&latch->seq, seq));
696  *
697  *		return entry;
698  *	}
699  *
700  * So during the modification, queries are first redirected to data[1]. Then we
701  * modify data[0]. When that is complete, we redirect queries back to data[0]
702  * and we can modify data[1].
703  *
704  * NOTE:
705  *
706  *	The non-requirement for atomic modifications does _NOT_ include
707  *	the publishing of new entries in the case where data is a dynamic
708  *	data structure.
709  *
710  *	An iteration might start in data[0] and get suspended long enough
711  *	to miss an entire modification sequence, once it resumes it might
712  *	observe the new entry.
713  *
714  * NOTE2:
715  *
716  *	When data is a dynamic data structure; one should use regular RCU
717  *	patterns to manage the lifetimes of the objects within.
718  */
raw_write_seqcount_latch(seqcount_latch_t * s)719 static inline void raw_write_seqcount_latch(seqcount_latch_t *s)
720 {
721 	smp_wmb();	/* prior stores before incrementing "sequence" */
722 	s->seqcount.sequence++;
723 	smp_wmb();      /* increment "sequence" before following stores */
724 }
725 
726 #define __SEQLOCK_UNLOCKED(lockname)					\
727 	{								\
728 		.seqcount = SEQCNT_SPINLOCK_ZERO(lockname, &(lockname).lock), \
729 		.lock =	__SPIN_LOCK_UNLOCKED(lockname)			\
730 	}
731 
732 /**
733  * seqlock_init() - dynamic initializer for seqlock_t
734  * @sl: Pointer to the seqlock_t instance
735  */
736 #define seqlock_init(sl)						\
737 	do {								\
738 		spin_lock_init(&(sl)->lock);				\
739 		seqcount_spinlock_init(&(sl)->seqcount, &(sl)->lock);	\
740 	} while (0)
741 
742 /**
743  * DEFINE_SEQLOCK(sl) - Define a statically allocated seqlock_t
744  * @sl: Name of the seqlock_t instance
745  */
746 #define DEFINE_SEQLOCK(sl) \
747 		seqlock_t sl = __SEQLOCK_UNLOCKED(sl)
748 
749 /**
750  * read_seqbegin() - start a seqlock_t read side critical section
751  * @sl: Pointer to seqlock_t
752  *
753  * Return: count, to be passed to read_seqretry()
754  */
read_seqbegin(const seqlock_t * sl)755 static inline unsigned read_seqbegin(const seqlock_t *sl)
756 {
757 	unsigned ret = read_seqcount_begin(&sl->seqcount);
758 
759 	kcsan_atomic_next(0);  /* non-raw usage, assume closing read_seqretry() */
760 	kcsan_flat_atomic_begin();
761 	return ret;
762 }
763 
764 /**
765  * read_seqretry() - end a seqlock_t read side section
766  * @sl: Pointer to seqlock_t
767  * @start: count, from read_seqbegin()
768  *
769  * read_seqretry closes the read side critical section of given seqlock_t.
770  * If the critical section was invalid, it must be ignored (and typically
771  * retried).
772  *
773  * Return: true if a read section retry is required, else false
774  */
read_seqretry(const seqlock_t * sl,unsigned start)775 static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
776 {
777 	/*
778 	 * Assume not nested: read_seqretry() may be called multiple times when
779 	 * completing read critical section.
780 	 */
781 	kcsan_flat_atomic_end();
782 
783 	return read_seqcount_retry(&sl->seqcount, start);
784 }
785 
786 /*
787  * For all seqlock_t write side functions, use the internal
788  * do_write_seqcount_begin() instead of generic write_seqcount_begin().
789  * This way, no redundant lockdep_assert_held() checks are added.
790  */
791 
792 /**
793  * write_seqlock() - start a seqlock_t write side critical section
794  * @sl: Pointer to seqlock_t
795  *
796  * write_seqlock opens a write side critical section for the given
797  * seqlock_t.  It also implicitly acquires the spinlock_t embedded inside
798  * that sequential lock. All seqlock_t write side sections are thus
799  * automatically serialized and non-preemptible.
800  *
801  * Context: if the seqlock_t read section, or other write side critical
802  * sections, can be invoked from hardirq or softirq contexts, use the
803  * _irqsave or _bh variants of this function instead.
804  */
write_seqlock(seqlock_t * sl)805 static inline void write_seqlock(seqlock_t *sl)
806 {
807 	spin_lock(&sl->lock);
808 	do_write_seqcount_begin(&sl->seqcount.seqcount);
809 }
810 
811 /**
812  * write_sequnlock() - end a seqlock_t write side critical section
813  * @sl: Pointer to seqlock_t
814  *
815  * write_sequnlock closes the (serialized and non-preemptible) write side
816  * critical section of given seqlock_t.
817  */
write_sequnlock(seqlock_t * sl)818 static inline void write_sequnlock(seqlock_t *sl)
819 {
820 	do_write_seqcount_end(&sl->seqcount.seqcount);
821 	spin_unlock(&sl->lock);
822 }
823 
824 /**
825  * write_seqlock_bh() - start a softirqs-disabled seqlock_t write section
826  * @sl: Pointer to seqlock_t
827  *
828  * _bh variant of write_seqlock(). Use only if the read side section, or
829  * other write side sections, can be invoked from softirq contexts.
830  */
write_seqlock_bh(seqlock_t * sl)831 static inline void write_seqlock_bh(seqlock_t *sl)
832 {
833 	spin_lock_bh(&sl->lock);
834 	do_write_seqcount_begin(&sl->seqcount.seqcount);
835 }
836 
837 /**
838  * write_sequnlock_bh() - end a softirqs-disabled seqlock_t write section
839  * @sl: Pointer to seqlock_t
840  *
841  * write_sequnlock_bh closes the serialized, non-preemptible, and
842  * softirqs-disabled, seqlock_t write side critical section opened with
843  * write_seqlock_bh().
844  */
write_sequnlock_bh(seqlock_t * sl)845 static inline void write_sequnlock_bh(seqlock_t *sl)
846 {
847 	do_write_seqcount_end(&sl->seqcount.seqcount);
848 	spin_unlock_bh(&sl->lock);
849 }
850 
851 /**
852  * write_seqlock_irq() - start a non-interruptible seqlock_t write section
853  * @sl: Pointer to seqlock_t
854  *
855  * _irq variant of write_seqlock(). Use only if the read side section, or
856  * other write sections, can be invoked from hardirq contexts.
857  */
write_seqlock_irq(seqlock_t * sl)858 static inline void write_seqlock_irq(seqlock_t *sl)
859 {
860 	spin_lock_irq(&sl->lock);
861 	do_write_seqcount_begin(&sl->seqcount.seqcount);
862 }
863 
864 /**
865  * write_sequnlock_irq() - end a non-interruptible seqlock_t write section
866  * @sl: Pointer to seqlock_t
867  *
868  * write_sequnlock_irq closes the serialized and non-interruptible
869  * seqlock_t write side section opened with write_seqlock_irq().
870  */
write_sequnlock_irq(seqlock_t * sl)871 static inline void write_sequnlock_irq(seqlock_t *sl)
872 {
873 	do_write_seqcount_end(&sl->seqcount.seqcount);
874 	spin_unlock_irq(&sl->lock);
875 }
876 
__write_seqlock_irqsave(seqlock_t * sl)877 static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
878 {
879 	unsigned long flags;
880 
881 	spin_lock_irqsave(&sl->lock, flags);
882 	do_write_seqcount_begin(&sl->seqcount.seqcount);
883 	return flags;
884 }
885 
886 /**
887  * write_seqlock_irqsave() - start a non-interruptible seqlock_t write
888  *                           section
889  * @lock:  Pointer to seqlock_t
890  * @flags: Stack-allocated storage for saving caller's local interrupt
891  *         state, to be passed to write_sequnlock_irqrestore().
892  *
893  * _irqsave variant of write_seqlock(). Use it only if the read side
894  * section, or other write sections, can be invoked from hardirq context.
895  */
896 #define write_seqlock_irqsave(lock, flags)				\
897 	do { flags = __write_seqlock_irqsave(lock); } while (0)
898 
899 /**
900  * write_sequnlock_irqrestore() - end non-interruptible seqlock_t write
901  *                                section
902  * @sl:    Pointer to seqlock_t
903  * @flags: Caller's saved interrupt state, from write_seqlock_irqsave()
904  *
905  * write_sequnlock_irqrestore closes the serialized and non-interruptible
906  * seqlock_t write section previously opened with write_seqlock_irqsave().
907  */
908 static inline void
write_sequnlock_irqrestore(seqlock_t * sl,unsigned long flags)909 write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
910 {
911 	do_write_seqcount_end(&sl->seqcount.seqcount);
912 	spin_unlock_irqrestore(&sl->lock, flags);
913 }
914 
915 /**
916  * read_seqlock_excl() - begin a seqlock_t locking reader section
917  * @sl:	Pointer to seqlock_t
918  *
919  * read_seqlock_excl opens a seqlock_t locking reader critical section.  A
920  * locking reader exclusively locks out *both* other writers *and* other
921  * locking readers, but it does not update the embedded sequence number.
922  *
923  * Locking readers act like a normal spin_lock()/spin_unlock().
924  *
925  * Context: if the seqlock_t write section, *or other read sections*, can
926  * be invoked from hardirq or softirq contexts, use the _irqsave or _bh
927  * variant of this function instead.
928  *
929  * The opened read section must be closed with read_sequnlock_excl().
930  */
read_seqlock_excl(seqlock_t * sl)931 static inline void read_seqlock_excl(seqlock_t *sl)
932 {
933 	spin_lock(&sl->lock);
934 }
935 
936 /**
937  * read_sequnlock_excl() - end a seqlock_t locking reader critical section
938  * @sl: Pointer to seqlock_t
939  */
read_sequnlock_excl(seqlock_t * sl)940 static inline void read_sequnlock_excl(seqlock_t *sl)
941 {
942 	spin_unlock(&sl->lock);
943 }
944 
945 /**
946  * read_seqlock_excl_bh() - start a seqlock_t locking reader section with
947  *			    softirqs disabled
948  * @sl: Pointer to seqlock_t
949  *
950  * _bh variant of read_seqlock_excl(). Use this variant only if the
951  * seqlock_t write side section, *or other read sections*, can be invoked
952  * from softirq contexts.
953  */
read_seqlock_excl_bh(seqlock_t * sl)954 static inline void read_seqlock_excl_bh(seqlock_t *sl)
955 {
956 	spin_lock_bh(&sl->lock);
957 }
958 
959 /**
960  * read_sequnlock_excl_bh() - stop a seqlock_t softirq-disabled locking
961  *			      reader section
962  * @sl: Pointer to seqlock_t
963  */
read_sequnlock_excl_bh(seqlock_t * sl)964 static inline void read_sequnlock_excl_bh(seqlock_t *sl)
965 {
966 	spin_unlock_bh(&sl->lock);
967 }
968 
969 /**
970  * read_seqlock_excl_irq() - start a non-interruptible seqlock_t locking
971  *			     reader section
972  * @sl: Pointer to seqlock_t
973  *
974  * _irq variant of read_seqlock_excl(). Use this only if the seqlock_t
975  * write side section, *or other read sections*, can be invoked from a
976  * hardirq context.
977  */
read_seqlock_excl_irq(seqlock_t * sl)978 static inline void read_seqlock_excl_irq(seqlock_t *sl)
979 {
980 	spin_lock_irq(&sl->lock);
981 }
982 
983 /**
984  * read_sequnlock_excl_irq() - end an interrupts-disabled seqlock_t
985  *                             locking reader section
986  * @sl: Pointer to seqlock_t
987  */
read_sequnlock_excl_irq(seqlock_t * sl)988 static inline void read_sequnlock_excl_irq(seqlock_t *sl)
989 {
990 	spin_unlock_irq(&sl->lock);
991 }
992 
__read_seqlock_excl_irqsave(seqlock_t * sl)993 static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl)
994 {
995 	unsigned long flags;
996 
997 	spin_lock_irqsave(&sl->lock, flags);
998 	return flags;
999 }
1000 
1001 /**
1002  * read_seqlock_excl_irqsave() - start a non-interruptible seqlock_t
1003  *				 locking reader section
1004  * @lock:  Pointer to seqlock_t
1005  * @flags: Stack-allocated storage for saving caller's local interrupt
1006  *         state, to be passed to read_sequnlock_excl_irqrestore().
1007  *
1008  * _irqsave variant of read_seqlock_excl(). Use this only if the seqlock_t
1009  * write side section, *or other read sections*, can be invoked from a
1010  * hardirq context.
1011  */
1012 #define read_seqlock_excl_irqsave(lock, flags)				\
1013 	do { flags = __read_seqlock_excl_irqsave(lock); } while (0)
1014 
1015 /**
1016  * read_sequnlock_excl_irqrestore() - end non-interruptible seqlock_t
1017  *				      locking reader section
1018  * @sl:    Pointer to seqlock_t
1019  * @flags: Caller saved interrupt state, from read_seqlock_excl_irqsave()
1020  */
1021 static inline void
read_sequnlock_excl_irqrestore(seqlock_t * sl,unsigned long flags)1022 read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags)
1023 {
1024 	spin_unlock_irqrestore(&sl->lock, flags);
1025 }
1026 
1027 /**
1028  * read_seqbegin_or_lock() - begin a seqlock_t lockless or locking reader
1029  * @lock: Pointer to seqlock_t
1030  * @seq : Marker and return parameter. If the passed value is even, the
1031  * reader will become a *lockless* seqlock_t reader as in read_seqbegin().
1032  * If the passed value is odd, the reader will become a *locking* reader
1033  * as in read_seqlock_excl().  In the first call to this function, the
1034  * caller *must* initialize and pass an even value to @seq; this way, a
1035  * lockless read can be optimistically tried first.
1036  *
1037  * read_seqbegin_or_lock is an API designed to optimistically try a normal
1038  * lockless seqlock_t read section first.  If an odd counter is found, the
1039  * lockless read trial has failed, and the next read iteration transforms
1040  * itself into a full seqlock_t locking reader.
1041  *
1042  * This is typically used to avoid seqlock_t lockless readers starvation
1043  * (too much retry loops) in the case of a sharp spike in write side
1044  * activity.
1045  *
1046  * Context: if the seqlock_t write section, *or other read sections*, can
1047  * be invoked from hardirq or softirq contexts, use the _irqsave or _bh
1048  * variant of this function instead.
1049  *
1050  * Check Documentation/locking/seqlock.rst for template example code.
1051  *
1052  * Return: the encountered sequence counter value, through the @seq
1053  * parameter, which is overloaded as a return parameter. This returned
1054  * value must be checked with need_seqretry(). If the read section need to
1055  * be retried, this returned value must also be passed as the @seq
1056  * parameter of the next read_seqbegin_or_lock() iteration.
1057  */
read_seqbegin_or_lock(seqlock_t * lock,int * seq)1058 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
1059 {
1060 	if (!(*seq & 1))	/* Even */
1061 		*seq = read_seqbegin(lock);
1062 	else			/* Odd */
1063 		read_seqlock_excl(lock);
1064 }
1065 
1066 /**
1067  * need_seqretry() - validate seqlock_t "locking or lockless" read section
1068  * @lock: Pointer to seqlock_t
1069  * @seq: sequence count, from read_seqbegin_or_lock()
1070  *
1071  * Return: true if a read section retry is required, false otherwise
1072  */
need_seqretry(seqlock_t * lock,int seq)1073 static inline int need_seqretry(seqlock_t *lock, int seq)
1074 {
1075 	return !(seq & 1) && read_seqretry(lock, seq);
1076 }
1077 
1078 /**
1079  * done_seqretry() - end seqlock_t "locking or lockless" reader section
1080  * @lock: Pointer to seqlock_t
1081  * @seq: count, from read_seqbegin_or_lock()
1082  *
1083  * done_seqretry finishes the seqlock_t read side critical section started
1084  * with read_seqbegin_or_lock() and validated by need_seqretry().
1085  */
done_seqretry(seqlock_t * lock,int seq)1086 static inline void done_seqretry(seqlock_t *lock, int seq)
1087 {
1088 	if (seq & 1)
1089 		read_sequnlock_excl(lock);
1090 }
1091 
1092 /**
1093  * read_seqbegin_or_lock_irqsave() - begin a seqlock_t lockless reader, or
1094  *                                   a non-interruptible locking reader
1095  * @lock: Pointer to seqlock_t
1096  * @seq:  Marker and return parameter. Check read_seqbegin_or_lock().
1097  *
1098  * This is the _irqsave variant of read_seqbegin_or_lock(). Use it only if
1099  * the seqlock_t write section, *or other read sections*, can be invoked
1100  * from hardirq context.
1101  *
1102  * Note: Interrupts will be disabled only for "locking reader" mode.
1103  *
1104  * Return:
1105  *
1106  *   1. The saved local interrupts state in case of a locking reader, to
1107  *      be passed to done_seqretry_irqrestore().
1108  *
1109  *   2. The encountered sequence counter value, returned through @seq
1110  *      overloaded as a return parameter. Check read_seqbegin_or_lock().
1111  */
1112 static inline unsigned long
read_seqbegin_or_lock_irqsave(seqlock_t * lock,int * seq)1113 read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq)
1114 {
1115 	unsigned long flags = 0;
1116 
1117 	if (!(*seq & 1))	/* Even */
1118 		*seq = read_seqbegin(lock);
1119 	else			/* Odd */
1120 		read_seqlock_excl_irqsave(lock, flags);
1121 
1122 	return flags;
1123 }
1124 
1125 /**
1126  * done_seqretry_irqrestore() - end a seqlock_t lockless reader, or a
1127  *				non-interruptible locking reader section
1128  * @lock:  Pointer to seqlock_t
1129  * @seq:   Count, from read_seqbegin_or_lock_irqsave()
1130  * @flags: Caller's saved local interrupt state in case of a locking
1131  *	   reader, also from read_seqbegin_or_lock_irqsave()
1132  *
1133  * This is the _irqrestore variant of done_seqretry(). The read section
1134  * must've been opened with read_seqbegin_or_lock_irqsave(), and validated
1135  * by need_seqretry().
1136  */
1137 static inline void
done_seqretry_irqrestore(seqlock_t * lock,int seq,unsigned long flags)1138 done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags)
1139 {
1140 	if (seq & 1)
1141 		read_sequnlock_excl_irqrestore(lock, flags);
1142 }
1143 #endif /* __LINUX_SEQLOCK_H */
1144