xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision 7b80c8b7d8d9a4a634c5fd5334a9fe40f9ca0b3b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011, 2025 Chelsio Communications.
5  * Written by: Navdeep Parhar <np@FreeBSD.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_kern_tls.h"
33 #include "opt_ratelimit.h"
34 
35 #include <sys/types.h>
36 #include <sys/eventhandler.h>
37 #include <sys/mbuf.h>
38 #include <sys/socket.h>
39 #include <sys/kernel.h>
40 #include <sys/ktls.h>
41 #include <sys/malloc.h>
42 #include <sys/msan.h>
43 #include <sys/queue.h>
44 #include <sys/sbuf.h>
45 #include <sys/taskqueue.h>
46 #include <sys/time.h>
47 #include <sys/sglist.h>
48 #include <sys/sysctl.h>
49 #include <sys/smp.h>
50 #include <sys/socketvar.h>
51 #include <sys/counter.h>
52 #include <net/bpf.h>
53 #include <net/ethernet.h>
54 #include <net/if.h>
55 #include <net/if_vlan_var.h>
56 #include <net/if_vxlan.h>
57 #include <netinet/in.h>
58 #include <netinet/ip.h>
59 #include <netinet/ip6.h>
60 #include <netinet/tcp.h>
61 #include <netinet/udp.h>
62 #include <machine/in_cksum.h>
63 #include <machine/md_var.h>
64 #include <vm/vm.h>
65 #include <vm/pmap.h>
66 #ifdef DEV_NETMAP
67 #include <machine/bus.h>
68 #include <sys/selinfo.h>
69 #include <net/if_var.h>
70 #include <net/netmap.h>
71 #include <dev/netmap/netmap_kern.h>
72 #endif
73 
74 #include "common/common.h"
75 #include "common/t4_regs.h"
76 #include "common/t4_regs_values.h"
77 #include "common/t4_msg.h"
78 #include "t4_l2t.h"
79 #include "t4_mp_ring.h"
80 
81 #define RX_COPY_THRESHOLD MINCLSIZE
82 
83 /*
84  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
85  * 0-7 are valid values.
86  */
87 static int fl_pktshift = 0;
88 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pktshift, CTLFLAG_RDTUN, &fl_pktshift, 0,
89     "payload DMA offset in rx buffer (bytes)");
90 
91 /*
92  * Pad ethernet payload up to this boundary.
93  * -1: driver should figure out a good value.
94  *  0: disable padding.
95  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
96  */
97 int fl_pad = -1;
98 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pad, CTLFLAG_RDTUN, &fl_pad, 0,
99     "payload pad boundary (bytes)");
100 
101 /*
102  * Status page length.
103  * -1: driver should figure out a good value.
104  *  64 or 128 are the only other valid values.
105  */
106 static int spg_len = -1;
107 SYSCTL_INT(_hw_cxgbe, OID_AUTO, spg_len, CTLFLAG_RDTUN, &spg_len, 0,
108     "status page size (bytes)");
109 
110 /*
111  * Congestion drops.
112  * -1: no congestion feedback (not recommended).
113  *  0: backpressure the channel instead of dropping packets right away.
114  *  1: no backpressure, drop packets for the congested queue immediately.
115  *  2: both backpressure and drop.
116  */
117 static int cong_drop = 0;
118 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cong_drop, CTLFLAG_RDTUN, &cong_drop, 0,
119     "Congestion control for NIC RX queues (0 = backpressure, 1 = drop, 2 = both");
120 #ifdef TCP_OFFLOAD
121 static int ofld_cong_drop = 0;
122 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ofld_cong_drop, CTLFLAG_RDTUN, &ofld_cong_drop, 0,
123     "Congestion control for TOE RX queues (0 = backpressure, 1 = drop, 2 = both");
124 #endif
125 
126 /*
127  * Deliver multiple frames in the same free list buffer if they fit.
128  * -1: let the driver decide whether to enable buffer packing or not.
129  *  0: disable buffer packing.
130  *  1: enable buffer packing.
131  */
132 static int buffer_packing = -1;
133 SYSCTL_INT(_hw_cxgbe, OID_AUTO, buffer_packing, CTLFLAG_RDTUN, &buffer_packing,
134     0, "Enable buffer packing");
135 
136 /*
137  * Start next frame in a packed buffer at this boundary.
138  * -1: driver should figure out a good value.
139  * T4: driver will ignore this and use the same value as fl_pad above.
140  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
141  */
142 static int fl_pack = -1;
143 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pack, CTLFLAG_RDTUN, &fl_pack, 0,
144     "payload pack boundary (bytes)");
145 
146 /*
147  * Largest rx cluster size that the driver is allowed to allocate.
148  */
149 static int largest_rx_cluster = MJUM16BYTES;
150 SYSCTL_INT(_hw_cxgbe, OID_AUTO, largest_rx_cluster, CTLFLAG_RDTUN,
151     &largest_rx_cluster, 0, "Largest rx cluster (bytes)");
152 
153 /*
154  * Size of cluster allocation that's most likely to succeed.  The driver will
155  * fall back to this size if it fails to allocate clusters larger than this.
156  */
157 static int safest_rx_cluster = PAGE_SIZE;
158 SYSCTL_INT(_hw_cxgbe, OID_AUTO, safest_rx_cluster, CTLFLAG_RDTUN,
159     &safest_rx_cluster, 0, "Safe rx cluster (bytes)");
160 
161 #ifdef RATELIMIT
162 /*
163  * Knob to control TCP timestamp rewriting, and the granularity of the tick used
164  * for rewriting.  -1 and 0-3 are all valid values.
165  * -1: hardware should leave the TCP timestamps alone.
166  * 0: 1ms
167  * 1: 100us
168  * 2: 10us
169  * 3: 1us
170  */
171 static int tsclk = -1;
172 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tsclk, CTLFLAG_RDTUN, &tsclk, 0,
173     "Control TCP timestamp rewriting when using pacing");
174 
175 static int eo_max_backlog = 1024 * 1024;
176 SYSCTL_INT(_hw_cxgbe, OID_AUTO, eo_max_backlog, CTLFLAG_RDTUN, &eo_max_backlog,
177     0, "Maximum backlog of ratelimited data per flow");
178 #endif
179 
180 /*
181  * The interrupt holdoff timers are multiplied by this value on T6+.
182  * 1 and 3-17 (both inclusive) are legal values.
183  */
184 static int tscale = 1;
185 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tscale, CTLFLAG_RDTUN, &tscale, 0,
186     "Interrupt holdoff timer scale on T6+");
187 
188 /*
189  * Number of LRO entries in the lro_ctrl structure per rx queue.
190  */
191 static int lro_entries = TCP_LRO_ENTRIES;
192 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_entries, CTLFLAG_RDTUN, &lro_entries, 0,
193     "Number of LRO entries per RX queue");
194 
195 /*
196  * This enables presorting of frames before they're fed into tcp_lro_rx.
197  */
198 static int lro_mbufs = 0;
199 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_mbufs, CTLFLAG_RDTUN, &lro_mbufs, 0,
200     "Enable presorting of LRO frames");
201 
202 static counter_u64_t pullups;
203 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, pullups, CTLFLAG_RD, &pullups,
204     "Number of mbuf pullups performed");
205 
206 static counter_u64_t defrags;
207 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, defrags, CTLFLAG_RD, &defrags,
208     "Number of mbuf defrags performed");
209 
210 static int t4_tx_coalesce = 1;
211 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce, CTLFLAG_RWTUN, &t4_tx_coalesce, 0,
212     "tx coalescing allowed");
213 
214 /*
215  * The driver will make aggressive attempts at tx coalescing if it sees these
216  * many packets eligible for coalescing in quick succession, with no more than
217  * the specified gap in between the eth_tx calls that delivered the packets.
218  */
219 static int t4_tx_coalesce_pkts = 32;
220 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_pkts, CTLFLAG_RWTUN,
221     &t4_tx_coalesce_pkts, 0,
222     "# of consecutive packets (1 - 255) that will trigger tx coalescing");
223 static int t4_tx_coalesce_gap = 5;
224 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_gap, CTLFLAG_RWTUN,
225     &t4_tx_coalesce_gap, 0, "tx gap (in microseconds)");
226 
227 static int service_iq(struct sge_iq *, int);
228 static int service_iq_fl(struct sge_iq *, int);
229 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
230 static int eth_rx(struct adapter *, struct sge_rxq *, const struct iq_desc *,
231     u_int);
232 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
233     int, int, int);
234 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
235 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
236     struct sge_iq *, char *);
237 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
238     struct sysctl_ctx_list *, struct sysctl_oid *);
239 static void free_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
240 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
241     struct sge_iq *);
242 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
243     struct sysctl_oid *, struct sge_fl *);
244 static int alloc_iq_fl_hwq(struct vi_info *, struct sge_iq *, struct sge_fl *);
245 static int free_iq_fl_hwq(struct adapter *, struct sge_iq *, struct sge_fl *);
246 static int alloc_fwq(struct adapter *);
247 static void free_fwq(struct adapter *);
248 static int alloc_ctrlq(struct adapter *, int);
249 static void free_ctrlq(struct adapter *, int);
250 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int, int);
251 static void free_rxq(struct vi_info *, struct sge_rxq *);
252 static void add_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
253     struct sge_rxq *);
254 #ifdef TCP_OFFLOAD
255 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
256     int);
257 static void free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
258 static void add_ofld_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
259     struct sge_ofld_rxq *);
260 #endif
261 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *, int);
262 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *,
263     int);
264 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
265 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *,
266     int);
267 #endif
268 static int alloc_eq(struct adapter *, struct sge_eq *, struct sysctl_ctx_list *,
269     struct sysctl_oid *);
270 static void free_eq(struct adapter *, struct sge_eq *);
271 static void add_eq_sysctls(struct adapter *, struct sysctl_ctx_list *,
272     struct sysctl_oid *, struct sge_eq *);
273 static int alloc_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *,
274     int);
275 static int free_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *);
276 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
277     struct sysctl_ctx_list *, struct sysctl_oid *);
278 static void free_wrq(struct adapter *, struct sge_wrq *);
279 static void add_wrq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
280     struct sge_wrq *);
281 static int alloc_txq(struct vi_info *, struct sge_txq *, int);
282 static void free_txq(struct vi_info *, struct sge_txq *);
283 static void add_txq_sysctls(struct vi_info *, struct sysctl_ctx_list *,
284     struct sysctl_oid *, struct sge_txq *);
285 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
286 static int alloc_ofld_txq(struct vi_info *, struct sge_ofld_txq *, int);
287 static void free_ofld_txq(struct vi_info *, struct sge_ofld_txq *);
288 static void add_ofld_txq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
289     struct sge_ofld_txq *);
290 #endif
291 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
292 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
293 static int refill_fl(struct adapter *, struct sge_fl *, int);
294 static void refill_sfl(void *);
295 static int find_refill_source(struct adapter *, int, bool);
296 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
297 
298 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
299 static inline u_int txpkt_len16(u_int, const u_int);
300 static inline u_int txpkt_vm_len16(u_int, const u_int);
301 static inline void calculate_mbuf_len16(struct mbuf *, bool);
302 static inline u_int txpkts0_len16(u_int);
303 static inline u_int txpkts1_len16(void);
304 static u_int write_raw_wr(struct sge_txq *, void *, struct mbuf *, u_int);
305 static u_int write_txpkt_wr(struct adapter *, struct sge_txq *, struct mbuf *,
306     u_int);
307 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
308     struct mbuf *);
309 static int add_to_txpkts_vf(struct adapter *, struct sge_txq *, struct mbuf *,
310     int, bool *);
311 static int add_to_txpkts_pf(struct adapter *, struct sge_txq *, struct mbuf *,
312     int, bool *);
313 static u_int write_txpkts_wr(struct adapter *, struct sge_txq *);
314 static u_int write_txpkts_vm_wr(struct adapter *, struct sge_txq *);
315 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
316 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
317 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
318 static inline uint16_t read_hw_cidx(struct sge_eq *);
319 static inline u_int reclaimable_tx_desc(struct sge_eq *);
320 static inline u_int total_available_tx_desc(struct sge_eq *);
321 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
322 static void tx_reclaim(void *, int);
323 static __be64 get_flit(struct sglist_seg *, int, int);
324 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
325     struct mbuf *);
326 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
327     struct mbuf *);
328 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
329 static void wrq_tx_drain(void *, int);
330 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
331 
332 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
333 #ifdef RATELIMIT
334 static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *,
335     struct mbuf *);
336 #if defined(INET) || defined(INET6)
337 static inline u_int txpkt_eo_len16(u_int, u_int, u_int);
338 static int ethofld_transmit(if_t, struct mbuf *);
339 #endif
340 #endif
341 
342 static counter_u64_t extfree_refs;
343 static counter_u64_t extfree_rels;
344 
345 an_handler_t t4_an_handler;
346 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
347 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
348 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
349 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
350 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
351 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
352 cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES];
353 cpl_handler_t fw6_pld_handlers[NUM_CPL_FW6_COOKIES];
354 
355 void
t4_register_an_handler(an_handler_t h)356 t4_register_an_handler(an_handler_t h)
357 {
358 	uintptr_t *loc;
359 
360 	MPASS(h == NULL || t4_an_handler == NULL);
361 
362 	loc = (uintptr_t *)&t4_an_handler;
363 	atomic_store_rel_ptr(loc, (uintptr_t)h);
364 }
365 
366 void
t4_register_fw_msg_handler(int type,fw_msg_handler_t h)367 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
368 {
369 	uintptr_t *loc;
370 
371 	MPASS(type < nitems(t4_fw_msg_handler));
372 	MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
373 	/*
374 	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
375 	 * handler dispatch table.  Reject any attempt to install a handler for
376 	 * this subtype.
377 	 */
378 	MPASS(type != FW_TYPE_RSSCPL);
379 	MPASS(type != FW6_TYPE_RSSCPL);
380 
381 	loc = (uintptr_t *)&t4_fw_msg_handler[type];
382 	atomic_store_rel_ptr(loc, (uintptr_t)h);
383 }
384 
385 void
t4_register_cpl_handler(int opcode,cpl_handler_t h)386 t4_register_cpl_handler(int opcode, cpl_handler_t h)
387 {
388 	uintptr_t *loc;
389 
390 	MPASS(opcode < nitems(t4_cpl_handler));
391 	MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
392 
393 	loc = (uintptr_t *)&t4_cpl_handler[opcode];
394 	atomic_store_rel_ptr(loc, (uintptr_t)h);
395 }
396 
397 static int
set_tcb_rpl_handler(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)398 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
399     struct mbuf *m)
400 {
401 	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
402 	u_int tid;
403 	int cookie;
404 
405 	MPASS(m == NULL);
406 
407 	tid = GET_TID(cpl);
408 	if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) {
409 		/*
410 		 * The return code for filter-write is put in the CPL cookie so
411 		 * we have to rely on the hardware tid (is_ftid) to determine
412 		 * that this is a response to a filter.
413 		 */
414 		cookie = CPL_COOKIE_FILTER;
415 	} else {
416 		cookie = G_COOKIE(cpl->cookie);
417 	}
418 	MPASS(cookie > CPL_COOKIE_RESERVED);
419 	MPASS(cookie < nitems(set_tcb_rpl_handlers));
420 
421 	return (set_tcb_rpl_handlers[cookie](iq, rss, m));
422 }
423 
424 static int
l2t_write_rpl_handler(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)425 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
426     struct mbuf *m)
427 {
428 	const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
429 	unsigned int cookie;
430 
431 	MPASS(m == NULL);
432 
433 	cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
434 	return (l2t_write_rpl_handlers[cookie](iq, rss, m));
435 }
436 
437 static int
act_open_rpl_handler(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)438 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
439     struct mbuf *m)
440 {
441 	const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
442 	u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
443 
444 	MPASS(m == NULL);
445 	MPASS(cookie != CPL_COOKIE_RESERVED);
446 
447 	return (act_open_rpl_handlers[cookie](iq, rss, m));
448 }
449 
450 static int
abort_rpl_rss_handler(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)451 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
452     struct mbuf *m)
453 {
454 	struct adapter *sc = iq->adapter;
455 	u_int cookie;
456 
457 	MPASS(m == NULL);
458 	if (is_hashfilter(sc))
459 		cookie = CPL_COOKIE_HASHFILTER;
460 	else
461 		cookie = CPL_COOKIE_TOM;
462 
463 	return (abort_rpl_rss_handlers[cookie](iq, rss, m));
464 }
465 
466 static int
fw4_ack_handler(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)467 fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
468 {
469 	struct adapter *sc = iq->adapter;
470 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
471 	unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
472 	u_int cookie;
473 
474 	MPASS(m == NULL);
475 	if (is_etid(sc, tid))
476 		cookie = CPL_COOKIE_ETHOFLD;
477 	else
478 		cookie = CPL_COOKIE_TOM;
479 
480 	return (fw4_ack_handlers[cookie](iq, rss, m));
481 }
482 
483 static int
fw6_pld_handler(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)484 fw6_pld_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
485 {
486 	const struct cpl_fw6_pld *cpl;
487 	uint64_t cookie;
488 
489 	if (m != NULL)
490 		cpl = mtod(m, const void *);
491 	else
492 		cpl = (const void *)(rss + 1);
493 	cookie = be64toh(cpl->data[1]) & CPL_FW6_COOKIE_MASK;
494 
495 	return (fw6_pld_handlers[cookie](iq, rss, m));
496 }
497 
498 static void
t4_init_shared_cpl_handlers(void)499 t4_init_shared_cpl_handlers(void)
500 {
501 
502 	t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
503 	t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
504 	t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
505 	t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
506 	t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler);
507 	t4_register_cpl_handler(CPL_FW6_PLD, fw6_pld_handler);
508 }
509 
510 void
t4_register_shared_cpl_handler(int opcode,cpl_handler_t h,int cookie)511 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
512 {
513 	uintptr_t *loc;
514 
515 	MPASS(opcode < nitems(t4_cpl_handler));
516 	if (opcode == CPL_FW6_PLD) {
517 		MPASS(cookie < NUM_CPL_FW6_COOKIES);
518 	} else {
519 		MPASS(cookie > CPL_COOKIE_RESERVED);
520 		MPASS(cookie < NUM_CPL_COOKIES);
521 	}
522 	MPASS(t4_cpl_handler[opcode] != NULL);
523 
524 	switch (opcode) {
525 	case CPL_SET_TCB_RPL:
526 		loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
527 		break;
528 	case CPL_L2T_WRITE_RPL:
529 		loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
530 		break;
531 	case CPL_ACT_OPEN_RPL:
532 		loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
533 		break;
534 	case CPL_ABORT_RPL_RSS:
535 		loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
536 		break;
537 	case CPL_FW4_ACK:
538 		loc = (uintptr_t *)&fw4_ack_handlers[cookie];
539 		break;
540 	case CPL_FW6_PLD:
541 		loc = (uintptr_t *)&fw6_pld_handlers[cookie];
542 		break;
543 	default:
544 		MPASS(0);
545 		return;
546 	}
547 	MPASS(h == NULL || *loc == (uintptr_t)NULL);
548 	atomic_store_rel_ptr(loc, (uintptr_t)h);
549 }
550 
551 /*
552  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
553  */
554 void
t4_sge_modload(void)555 t4_sge_modload(void)
556 {
557 
558 	if (fl_pktshift < 0 || fl_pktshift > 7) {
559 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
560 		    " using 0 instead.\n", fl_pktshift);
561 		fl_pktshift = 0;
562 	}
563 
564 	if (spg_len != 64 && spg_len != 128) {
565 		int len;
566 
567 #if defined(__i386__) || defined(__amd64__)
568 		len = cpu_clflush_line_size > 64 ? 128 : 64;
569 #else
570 		len = 64;
571 #endif
572 		if (spg_len != -1) {
573 			printf("Invalid hw.cxgbe.spg_len value (%d),"
574 			    " using %d instead.\n", spg_len, len);
575 		}
576 		spg_len = len;
577 	}
578 
579 	if (cong_drop < -1 || cong_drop > 2) {
580 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
581 		    " using 0 instead.\n", cong_drop);
582 		cong_drop = 0;
583 	}
584 #ifdef TCP_OFFLOAD
585 	if (ofld_cong_drop < -1 || ofld_cong_drop > 2) {
586 		printf("Invalid hw.cxgbe.ofld_cong_drop value (%d),"
587 		    " using 0 instead.\n", ofld_cong_drop);
588 		ofld_cong_drop = 0;
589 	}
590 #endif
591 
592 	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
593 		printf("Invalid hw.cxgbe.tscale value (%d),"
594 		    " using 1 instead.\n", tscale);
595 		tscale = 1;
596 	}
597 
598 	if (largest_rx_cluster != MCLBYTES &&
599 #if MJUMPAGESIZE != MCLBYTES
600 	    largest_rx_cluster != MJUMPAGESIZE &&
601 #endif
602 	    largest_rx_cluster != MJUM9BYTES &&
603 	    largest_rx_cluster != MJUM16BYTES) {
604 		printf("Invalid hw.cxgbe.largest_rx_cluster value (%d),"
605 		    " using %d instead.\n", largest_rx_cluster, MJUM16BYTES);
606 		largest_rx_cluster = MJUM16BYTES;
607 	}
608 
609 	if (safest_rx_cluster != MCLBYTES &&
610 #if MJUMPAGESIZE != MCLBYTES
611 	    safest_rx_cluster != MJUMPAGESIZE &&
612 #endif
613 	    safest_rx_cluster != MJUM9BYTES &&
614 	    safest_rx_cluster != MJUM16BYTES) {
615 		printf("Invalid hw.cxgbe.safest_rx_cluster value (%d),"
616 		    " using %d instead.\n", safest_rx_cluster, MJUMPAGESIZE);
617 		safest_rx_cluster = MJUMPAGESIZE;
618 	}
619 
620 	extfree_refs = counter_u64_alloc(M_WAITOK);
621 	extfree_rels = counter_u64_alloc(M_WAITOK);
622 	pullups = counter_u64_alloc(M_WAITOK);
623 	defrags = counter_u64_alloc(M_WAITOK);
624 	counter_u64_zero(extfree_refs);
625 	counter_u64_zero(extfree_rels);
626 	counter_u64_zero(pullups);
627 	counter_u64_zero(defrags);
628 
629 	t4_init_shared_cpl_handlers();
630 	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
631 	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
632 	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
633 #ifdef RATELIMIT
634 	t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack,
635 	    CPL_COOKIE_ETHOFLD);
636 #endif
637 	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
638 	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
639 }
640 
641 void
t4_sge_modunload(void)642 t4_sge_modunload(void)
643 {
644 
645 	counter_u64_free(extfree_refs);
646 	counter_u64_free(extfree_rels);
647 	counter_u64_free(pullups);
648 	counter_u64_free(defrags);
649 }
650 
651 uint64_t
t4_sge_extfree_refs(void)652 t4_sge_extfree_refs(void)
653 {
654 	uint64_t refs, rels;
655 
656 	rels = counter_u64_fetch(extfree_rels);
657 	refs = counter_u64_fetch(extfree_refs);
658 
659 	return (refs - rels);
660 }
661 
662 /* max 4096 */
663 #define MAX_PACK_BOUNDARY 512
664 
665 static inline void
setup_pad_and_pack_boundaries(struct adapter * sc)666 setup_pad_and_pack_boundaries(struct adapter *sc)
667 {
668 	uint32_t v, m;
669 	int pad, pack, pad_shift;
670 
671 	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
672 	    X_INGPADBOUNDARY_SHIFT;
673 	pad = fl_pad;
674 	if (fl_pad < (1 << pad_shift) ||
675 	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
676 	    !powerof2(fl_pad)) {
677 		/*
678 		 * If there is any chance that we might use buffer packing and
679 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
680 		 * it to the minimum allowed in all other cases.
681 		 */
682 		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
683 
684 		/*
685 		 * For fl_pad = 0 we'll still write a reasonable value to the
686 		 * register but all the freelists will opt out of padding.
687 		 * We'll complain here only if the user tried to set it to a
688 		 * value greater than 0 that was invalid.
689 		 */
690 		if (fl_pad > 0) {
691 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
692 			    " (%d), using %d instead.\n", fl_pad, pad);
693 		}
694 	}
695 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
696 	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
697 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
698 
699 	if (is_t4(sc)) {
700 		if (fl_pack != -1 && fl_pack != pad) {
701 			/* Complain but carry on. */
702 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
703 			    " using %d instead.\n", fl_pack, pad);
704 		}
705 		return;
706 	}
707 
708 	pack = fl_pack;
709 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
710 	    !powerof2(fl_pack)) {
711 		if (sc->params.pci.mps > MAX_PACK_BOUNDARY)
712 			pack = MAX_PACK_BOUNDARY;
713 		else
714 			pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
715 		MPASS(powerof2(pack));
716 		if (pack < 16)
717 			pack = 16;
718 		if (pack == 32)
719 			pack = 64;
720 		if (pack > 4096)
721 			pack = 4096;
722 		if (fl_pack != -1) {
723 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
724 			    " (%d), using %d instead.\n", fl_pack, pack);
725 		}
726 	}
727 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
728 	if (pack == 16)
729 		v = V_INGPACKBOUNDARY(0);
730 	else
731 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
732 
733 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
734 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
735 }
736 
737 /*
738  * adap->params.vpd.cclk must be set up before this is called.
739  */
740 void
t4_tweak_chip_settings(struct adapter * sc)741 t4_tweak_chip_settings(struct adapter *sc)
742 {
743 	int i, reg;
744 	uint32_t v, m;
745 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
746 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
747 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
748 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
749 	static int sw_buf_sizes[] = {
750 		MCLBYTES,
751 #if MJUMPAGESIZE != MCLBYTES
752 		MJUMPAGESIZE,
753 #endif
754 		MJUM9BYTES,
755 		MJUM16BYTES
756 	};
757 
758 	KASSERT(sc->flags & MASTER_PF,
759 	    ("%s: trying to change chip settings when not master.", __func__));
760 
761 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
762 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
763 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
764 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
765 
766 	setup_pad_and_pack_boundaries(sc);
767 
768 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
769 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
770 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
771 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
772 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
773 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
774 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
775 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
776 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
777 
778 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, 4096);
779 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE1, 65536);
780 	reg = A_SGE_FL_BUFFER_SIZE2;
781 	for (i = 0; i < nitems(sw_buf_sizes); i++) {
782 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
783 		t4_write_reg(sc, reg, sw_buf_sizes[i]);
784 		reg += 4;
785 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
786 		t4_write_reg(sc, reg, sw_buf_sizes[i] - CL_METADATA_SIZE);
787 		reg += 4;
788 	}
789 
790 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
791 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
792 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
793 
794 	KASSERT(intr_timer[0] <= timer_max,
795 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
796 	    timer_max));
797 	for (i = 1; i < nitems(intr_timer); i++) {
798 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
799 		    ("%s: timers not listed in increasing order (%d)",
800 		    __func__, i));
801 
802 		while (intr_timer[i] > timer_max) {
803 			if (i == nitems(intr_timer) - 1) {
804 				intr_timer[i] = timer_max;
805 				break;
806 			}
807 			intr_timer[i] += intr_timer[i - 1];
808 			intr_timer[i] /= 2;
809 		}
810 	}
811 
812 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
813 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
814 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
815 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
816 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
817 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
818 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
819 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
820 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
821 
822 	if (chip_id(sc) >= CHELSIO_T6) {
823 		m = V_TSCALE(M_TSCALE);
824 		if (tscale == 1)
825 			v = 0;
826 		else
827 			v = V_TSCALE(tscale - 2);
828 		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
829 
830 		if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
831 			m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
832 			    V_WRTHRTHRESH(M_WRTHRTHRESH);
833 			t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
834 			v &= ~m;
835 			v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
836 			    V_WRTHRTHRESH(16);
837 			t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
838 		}
839 	}
840 
841 	/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
842 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
843 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
844 
845 	/*
846 	 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
847 	 * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
848 	 * may have to deal with is MAXPHYS + 1 page.
849 	 */
850 	v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
851 	t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
852 
853 	/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
854 	m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
855 	if (sc->nvmecaps != 0) {
856 		/* Request DDP status bit for NVMe PDU completions. */
857 		m |= F_NVME_TCP_DDP_VAL_EN;
858 		v |= F_NVME_TCP_DDP_VAL_EN;
859 	}
860 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
861 
862 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
863 	    F_RESETDDPOFFSET;
864 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
865 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
866 }
867 
868 /*
869  * SGE wants the buffer to be at least 64B and then a multiple of 16.  Its
870  * address mut be 16B aligned.  If padding is in use the buffer's start and end
871  * need to be aligned to the pad boundary as well.  We'll just make sure that
872  * the size is a multiple of the pad boundary here, it is up to the buffer
873  * allocation code to make sure the start of the buffer is aligned.
874  */
875 static inline int
hwsz_ok(struct adapter * sc,int hwsz)876 hwsz_ok(struct adapter *sc, int hwsz)
877 {
878 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
879 
880 	return (hwsz >= 64 && (hwsz & mask) == 0);
881 }
882 
883 /*
884  * Initialize the rx buffer sizes and figure out which zones the buffers will
885  * be allocated from.
886  */
887 void
t4_init_rx_buf_info(struct adapter * sc)888 t4_init_rx_buf_info(struct adapter *sc)
889 {
890 	struct sge *s = &sc->sge;
891 	struct sge_params *sp = &sc->params.sge;
892 	int i, j, n;
893 	static int sw_buf_sizes[] = {	/* Sorted by size */
894 		MCLBYTES,
895 #if MJUMPAGESIZE != MCLBYTES
896 		MJUMPAGESIZE,
897 #endif
898 		MJUM9BYTES,
899 		MJUM16BYTES
900 	};
901 	struct rx_buf_info *rxb;
902 
903 	s->safe_zidx = -1;
904 	rxb = &s->rx_buf_info[0];
905 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
906 		rxb->size1 = sw_buf_sizes[i];
907 		rxb->zone = m_getzone(rxb->size1);
908 		rxb->type = m_gettype(rxb->size1);
909 		rxb->size2 = 0;
910 		rxb->hwidx1 = -1;
911 		rxb->hwidx2 = -1;
912 		for (j = 0; j < SGE_FLBUF_SIZES; j++) {
913 			int hwsize = sp->sge_fl_buffer_size[j];
914 
915 			if (!hwsz_ok(sc, hwsize))
916 				continue;
917 
918 			/* hwidx for size1 */
919 			if (rxb->hwidx1 == -1 && rxb->size1 == hwsize)
920 				rxb->hwidx1 = j;
921 
922 			/* hwidx for size2 (buffer packing) */
923 			if (rxb->size1 - CL_METADATA_SIZE < hwsize)
924 				continue;
925 			n = rxb->size1 - hwsize - CL_METADATA_SIZE;
926 			if (n == 0) {
927 				rxb->hwidx2 = j;
928 				rxb->size2 = hwsize;
929 				break;	/* stop looking */
930 			}
931 			if (rxb->hwidx2 != -1) {
932 				if (n < sp->sge_fl_buffer_size[rxb->hwidx2] -
933 				    hwsize - CL_METADATA_SIZE) {
934 					rxb->hwidx2 = j;
935 					rxb->size2 = hwsize;
936 				}
937 			} else if (n <= 2 * CL_METADATA_SIZE) {
938 				rxb->hwidx2 = j;
939 				rxb->size2 = hwsize;
940 			}
941 		}
942 		if (rxb->hwidx2 != -1)
943 			sc->flags |= BUF_PACKING_OK;
944 		if (s->safe_zidx == -1 && rxb->size1 == safest_rx_cluster)
945 			s->safe_zidx = i;
946 	}
947 }
948 
949 /*
950  * Verify some basic SGE settings for the PF and VF driver, and other
951  * miscellaneous settings for the PF driver.
952  */
953 int
t4_verify_chip_settings(struct adapter * sc)954 t4_verify_chip_settings(struct adapter *sc)
955 {
956 	struct sge_params *sp = &sc->params.sge;
957 	uint32_t m, v, r;
958 	int rc = 0;
959 	const uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
960 
961 	m = F_RXPKTCPLMODE;
962 	v = F_RXPKTCPLMODE;
963 	r = sp->sge_control;
964 	if ((r & m) != v) {
965 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
966 		rc = EINVAL;
967 	}
968 
969 	/*
970 	 * If this changes then every single use of PAGE_SHIFT in the driver
971 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
972 	 */
973 	if (sp->page_shift != PAGE_SHIFT) {
974 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
975 		rc = EINVAL;
976 	}
977 
978 	if (sc->flags & IS_VF)
979 		return (0);
980 
981 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
982 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
983 	if (r != v) {
984 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
985 		if (sc->vres.ddp.size != 0)
986 			rc = EINVAL;
987 	}
988 
989 	m = v = F_TDDPTAGTCB;
990 	r = t4_read_reg(sc, A_ULP_RX_CTL);
991 	if ((r & m) != v) {
992 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
993 		if (sc->vres.ddp.size != 0)
994 			rc = EINVAL;
995 	}
996 
997 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
998 	    F_RESETDDPOFFSET;
999 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
1000 	r = t4_read_reg(sc, A_TP_PARA_REG5);
1001 	if ((r & m) != v) {
1002 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
1003 		if (sc->vres.ddp.size != 0)
1004 			rc = EINVAL;
1005 	}
1006 
1007 	return (rc);
1008 }
1009 
1010 int
t4_create_dma_tag(struct adapter * sc)1011 t4_create_dma_tag(struct adapter *sc)
1012 {
1013 	int rc;
1014 
1015 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
1016 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
1017 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
1018 	    NULL, &sc->dmat);
1019 	if (rc != 0) {
1020 		device_printf(sc->dev,
1021 		    "failed to create main DMA tag: %d\n", rc);
1022 	}
1023 
1024 	return (rc);
1025 }
1026 
1027 void
t4_sge_sysctls(struct adapter * sc,struct sysctl_ctx_list * ctx,struct sysctl_oid_list * children)1028 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
1029     struct sysctl_oid_list *children)
1030 {
1031 	struct sge_params *sp = &sc->params.sge;
1032 
1033 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
1034 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
1035 	    sysctl_bufsizes, "A", "freelist buffer sizes");
1036 
1037 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
1038 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
1039 
1040 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
1041 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
1042 
1043 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
1044 	    NULL, sp->spg_len, "status page size (bytes)");
1045 
1046 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
1047 	    NULL, cong_drop, "congestion drop setting");
1048 #ifdef TCP_OFFLOAD
1049 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ofld_cong_drop", CTLFLAG_RD,
1050 	    NULL, ofld_cong_drop, "congestion drop setting");
1051 #endif
1052 
1053 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
1054 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
1055 }
1056 
1057 int
t4_destroy_dma_tag(struct adapter * sc)1058 t4_destroy_dma_tag(struct adapter *sc)
1059 {
1060 	if (sc->dmat)
1061 		bus_dma_tag_destroy(sc->dmat);
1062 
1063 	return (0);
1064 }
1065 
1066 /*
1067  * Allocate and initialize the firmware event queue, control queues, and special
1068  * purpose rx queues owned by the adapter.
1069  *
1070  * Returns errno on failure.  Resources allocated up to that point may still be
1071  * allocated.  Caller is responsible for cleanup in case this function fails.
1072  */
1073 int
t4_setup_adapter_queues(struct adapter * sc)1074 t4_setup_adapter_queues(struct adapter *sc)
1075 {
1076 	int rc, i;
1077 
1078 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1079 
1080 	/*
1081 	 * Firmware event queue
1082 	 */
1083 	rc = alloc_fwq(sc);
1084 	if (rc != 0)
1085 		return (rc);
1086 
1087 	/*
1088 	 * That's all for the VF driver.
1089 	 */
1090 	if (sc->flags & IS_VF)
1091 		return (rc);
1092 
1093 	/*
1094 	 * XXX: General purpose rx queues, one per port.
1095 	 */
1096 
1097 	/*
1098 	 * Control queues.  At least one per port and per internal core.
1099 	 */
1100 	for (i = 0; i < sc->sge.nctrlq; i++) {
1101 		rc = alloc_ctrlq(sc, i);
1102 		if (rc != 0)
1103 			return (rc);
1104 	}
1105 
1106 	return (rc);
1107 }
1108 
1109 /*
1110  * Idempotent
1111  */
1112 int
t4_teardown_adapter_queues(struct adapter * sc)1113 t4_teardown_adapter_queues(struct adapter *sc)
1114 {
1115 	int i;
1116 
1117 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1118 
1119 	if (sc->sge.ctrlq != NULL) {
1120 		MPASS(!(sc->flags & IS_VF));	/* VFs don't allocate ctrlq. */
1121 		for (i = 0; i < sc->sge.nctrlq; i++)
1122 			free_ctrlq(sc, i);
1123 	}
1124 	free_fwq(sc);
1125 
1126 	return (0);
1127 }
1128 
1129 /* Maximum payload that could arrive with a single iq descriptor. */
1130 static inline int
max_rx_payload(struct adapter * sc,if_t ifp,const bool ofld)1131 max_rx_payload(struct adapter *sc, if_t ifp, const bool ofld)
1132 {
1133 	int maxp;
1134 
1135 	/* large enough even when hw VLAN extraction is disabled */
1136 	maxp = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1137 	    ETHER_VLAN_ENCAP_LEN + if_getmtu(ifp);
1138 	if (ofld && sc->tt.tls && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS &&
1139 	    maxp < sc->params.tp.max_rx_pdu)
1140 		maxp = sc->params.tp.max_rx_pdu;
1141 	return (maxp);
1142 }
1143 
1144 int
t4_setup_vi_queues(struct vi_info * vi)1145 t4_setup_vi_queues(struct vi_info *vi)
1146 {
1147 	int rc = 0, i, intr_idx;
1148 	struct sge_rxq *rxq;
1149 	struct sge_txq *txq;
1150 #ifdef TCP_OFFLOAD
1151 	struct sge_ofld_rxq *ofld_rxq;
1152 #endif
1153 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1154 	struct sge_ofld_txq *ofld_txq;
1155 #endif
1156 #ifdef DEV_NETMAP
1157 	int saved_idx, iqidx;
1158 	struct sge_nm_rxq *nm_rxq;
1159 	struct sge_nm_txq *nm_txq;
1160 #endif
1161 	struct adapter *sc = vi->adapter;
1162 	if_t ifp = vi->ifp;
1163 	int maxp;
1164 
1165 	/* Interrupt vector to start from (when using multiple vectors) */
1166 	intr_idx = vi->first_intr;
1167 
1168 #ifdef DEV_NETMAP
1169 	saved_idx = intr_idx;
1170 	if (if_getcapabilities(ifp) & IFCAP_NETMAP) {
1171 
1172 		/* netmap is supported with direct interrupts only. */
1173 		MPASS(!forwarding_intr_to_fwq(sc));
1174 		MPASS(vi->first_intr >= 0);
1175 
1176 		/*
1177 		 * We don't have buffers to back the netmap rx queues
1178 		 * right now so we create the queues in a way that
1179 		 * doesn't set off any congestion signal in the chip.
1180 		 */
1181 		for_each_nm_rxq(vi, i, nm_rxq) {
1182 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i);
1183 			if (rc != 0)
1184 				goto done;
1185 			intr_idx++;
1186 		}
1187 
1188 		for_each_nm_txq(vi, i, nm_txq) {
1189 			iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1190 			rc = alloc_nm_txq(vi, nm_txq, iqidx, i);
1191 			if (rc != 0)
1192 				goto done;
1193 		}
1194 	}
1195 
1196 	/* Normal rx queues and netmap rx queues share the same interrupts. */
1197 	intr_idx = saved_idx;
1198 #endif
1199 
1200 	/*
1201 	 * Allocate rx queues first because a default iqid is required when
1202 	 * creating a tx queue.
1203 	 */
1204 	maxp = max_rx_payload(sc, ifp, false);
1205 	for_each_rxq(vi, i, rxq) {
1206 		rc = alloc_rxq(vi, rxq, i, intr_idx, maxp);
1207 		if (rc != 0)
1208 			goto done;
1209 		if (!forwarding_intr_to_fwq(sc))
1210 			intr_idx++;
1211 	}
1212 #ifdef DEV_NETMAP
1213 	if (if_getcapabilities(ifp) & IFCAP_NETMAP)
1214 		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1215 #endif
1216 #ifdef TCP_OFFLOAD
1217 	maxp = max_rx_payload(sc, ifp, true);
1218 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1219 		rc = alloc_ofld_rxq(vi, ofld_rxq, i, intr_idx, maxp);
1220 		if (rc != 0)
1221 			goto done;
1222 		if (!forwarding_intr_to_fwq(sc))
1223 			intr_idx++;
1224 	}
1225 #endif
1226 
1227 	/*
1228 	 * Now the tx queues.
1229 	 */
1230 	for_each_txq(vi, i, txq) {
1231 		rc = alloc_txq(vi, txq, i);
1232 		if (rc != 0)
1233 			goto done;
1234 	}
1235 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1236 	for_each_ofld_txq(vi, i, ofld_txq) {
1237 		rc = alloc_ofld_txq(vi, ofld_txq, i);
1238 		if (rc != 0)
1239 			goto done;
1240 	}
1241 #endif
1242 done:
1243 	if (rc)
1244 		t4_teardown_vi_queues(vi);
1245 
1246 	return (rc);
1247 }
1248 
1249 /*
1250  * Idempotent
1251  */
1252 int
t4_teardown_vi_queues(struct vi_info * vi)1253 t4_teardown_vi_queues(struct vi_info *vi)
1254 {
1255 	int i;
1256 	struct sge_rxq *rxq;
1257 	struct sge_txq *txq;
1258 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1259 	struct sge_ofld_txq *ofld_txq;
1260 #endif
1261 #ifdef TCP_OFFLOAD
1262 	struct sge_ofld_rxq *ofld_rxq;
1263 #endif
1264 #ifdef DEV_NETMAP
1265 	struct sge_nm_rxq *nm_rxq;
1266 	struct sge_nm_txq *nm_txq;
1267 #endif
1268 
1269 #ifdef DEV_NETMAP
1270 	if (if_getcapabilities(vi->ifp) & IFCAP_NETMAP) {
1271 		for_each_nm_txq(vi, i, nm_txq) {
1272 			free_nm_txq(vi, nm_txq);
1273 		}
1274 
1275 		for_each_nm_rxq(vi, i, nm_rxq) {
1276 			free_nm_rxq(vi, nm_rxq);
1277 		}
1278 	}
1279 #endif
1280 
1281 	/*
1282 	 * Take down all the tx queues first, as they reference the rx queues
1283 	 * (for egress updates, etc.).
1284 	 */
1285 
1286 	for_each_txq(vi, i, txq) {
1287 		free_txq(vi, txq);
1288 	}
1289 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1290 	for_each_ofld_txq(vi, i, ofld_txq) {
1291 		free_ofld_txq(vi, ofld_txq);
1292 	}
1293 #endif
1294 
1295 	/*
1296 	 * Then take down the rx queues.
1297 	 */
1298 
1299 	for_each_rxq(vi, i, rxq) {
1300 		free_rxq(vi, rxq);
1301 	}
1302 #ifdef TCP_OFFLOAD
1303 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1304 		free_ofld_rxq(vi, ofld_rxq);
1305 	}
1306 #endif
1307 
1308 	return (0);
1309 }
1310 
1311 /*
1312  * Interrupt handler when the driver is using only 1 interrupt.  This is a very
1313  * unusual scenario.
1314  *
1315  * a) Deals with errors, if any.
1316  * b) Services firmware event queue, which is taking interrupts for all other
1317  *    queues.
1318  */
1319 void
t4_intr_all(void * arg)1320 t4_intr_all(void *arg)
1321 {
1322 	struct adapter *sc = arg;
1323 	struct sge_iq *fwq = &sc->sge.fwq;
1324 
1325 	MPASS(sc->intr_count == 1);
1326 
1327 	if (sc->intr_type == INTR_INTX)
1328 		t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1329 
1330 	t4_intr_err(arg);
1331 	t4_intr_evt(fwq);
1332 }
1333 
1334 /*
1335  * Interrupt handler for errors (installed directly when multiple interrupts are
1336  * being used, or called by t4_intr_all).
1337  */
1338 void
t4_intr_err(void * arg)1339 t4_intr_err(void *arg)
1340 {
1341 	struct adapter *sc = arg;
1342 	uint32_t v;
1343 
1344 	if (atomic_load_int(&sc->error_flags) & ADAP_FATAL_ERR)
1345 		return;
1346 
1347 	v = t4_read_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE));
1348 	if (v & F_PFSW) {
1349 		sc->swintr++;
1350 		t4_write_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE), v);
1351 	}
1352 
1353 	if (t4_slow_intr_handler(sc, sc->intr_flags))
1354 		t4_fatal_err(sc, false);
1355 }
1356 
1357 /*
1358  * Interrupt handler for iq-only queues.  The firmware event queue is the only
1359  * such queue right now.
1360  */
1361 void
t4_intr_evt(void * arg)1362 t4_intr_evt(void *arg)
1363 {
1364 	struct sge_iq *iq = arg;
1365 
1366 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1367 		service_iq(iq, 0);
1368 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1369 	}
1370 }
1371 
1372 /*
1373  * Interrupt handler for iq+fl queues.
1374  */
1375 void
t4_intr(void * arg)1376 t4_intr(void *arg)
1377 {
1378 	struct sge_iq *iq = arg;
1379 
1380 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1381 		service_iq_fl(iq, 0);
1382 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1383 	}
1384 }
1385 
1386 #ifdef DEV_NETMAP
1387 /*
1388  * Interrupt handler for netmap rx queues.
1389  */
1390 void
t4_nm_intr(void * arg)1391 t4_nm_intr(void *arg)
1392 {
1393 	struct sge_nm_rxq *nm_rxq = arg;
1394 
1395 	if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) {
1396 		service_nm_rxq(nm_rxq);
1397 		(void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON);
1398 	}
1399 }
1400 
1401 /*
1402  * Interrupt handler for vectors shared between NIC and netmap rx queues.
1403  */
1404 void
t4_vi_intr(void * arg)1405 t4_vi_intr(void *arg)
1406 {
1407 	struct irq *irq = arg;
1408 
1409 	MPASS(irq->nm_rxq != NULL);
1410 	t4_nm_intr(irq->nm_rxq);
1411 
1412 	MPASS(irq->rxq != NULL);
1413 	t4_intr(irq->rxq);
1414 }
1415 #endif
1416 
1417 /*
1418  * Deals with interrupts on an iq-only (no freelist) queue.
1419  */
1420 static int
service_iq(struct sge_iq * iq,int budget)1421 service_iq(struct sge_iq *iq, int budget)
1422 {
1423 	struct sge_iq *q;
1424 	struct adapter *sc = iq->adapter;
1425 	struct iq_desc *d = &iq->desc[iq->cidx];
1426 	int ndescs = 0, limit;
1427 	int rsp_type;
1428 	uint32_t lq;
1429 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1430 
1431 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1432 	KASSERT((iq->flags & IQ_HAS_FL) == 0,
1433 	    ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq,
1434 	    iq->flags));
1435 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1436 	MPASS((iq->flags & IQ_LRO_ENABLED) == 0);
1437 
1438 	limit = budget ? budget : iq->qsize / 16;
1439 
1440 	/*
1441 	 * We always come back and check the descriptor ring for new indirect
1442 	 * interrupts and other responses after running a single handler.
1443 	 */
1444 	for (;;) {
1445 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1446 
1447 			rmb();
1448 
1449 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1450 			lq = be32toh(d->rsp.pldbuflen_qid);
1451 
1452 			switch (rsp_type) {
1453 			case X_RSPD_TYPE_FLBUF:
1454 				panic("%s: data for an iq (%p) with no freelist",
1455 				    __func__, iq);
1456 
1457 				/* NOTREACHED */
1458 
1459 			case X_RSPD_TYPE_CPL:
1460 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1461 				    ("%s: bad opcode %02x.", __func__,
1462 				    d->rss.opcode));
1463 				t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL);
1464 				break;
1465 
1466 			case X_RSPD_TYPE_INTR:
1467 				/*
1468 				 * There are 1K interrupt-capable queues (qids 0
1469 				 * through 1023).  A response type indicating a
1470 				 * forwarded interrupt with a qid >= 1K is an
1471 				 * iWARP async notification.
1472 				 */
1473 				if (__predict_true(lq >= 1024)) {
1474 					t4_an_handler(iq, &d->rsp);
1475 					break;
1476 				}
1477 
1478 				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1479 				    sc->sge.iq_base];
1480 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1481 				    IQS_BUSY)) {
1482 					if (service_iq_fl(q, q->qsize / 16) == 0) {
1483 						(void) atomic_cmpset_int(&q->state,
1484 						    IQS_BUSY, IQS_IDLE);
1485 					} else {
1486 						STAILQ_INSERT_TAIL(&iql, q,
1487 						    link);
1488 					}
1489 				}
1490 				break;
1491 
1492 			default:
1493 				KASSERT(0,
1494 				    ("%s: illegal response type %d on iq %p",
1495 				    __func__, rsp_type, iq));
1496 				log(LOG_ERR,
1497 				    "%s: illegal response type %d on iq %p",
1498 				    device_get_nameunit(sc->dev), rsp_type, iq);
1499 				break;
1500 			}
1501 
1502 			d++;
1503 			if (__predict_false(++iq->cidx == iq->sidx)) {
1504 				iq->cidx = 0;
1505 				iq->gen ^= F_RSPD_GEN;
1506 				d = &iq->desc[0];
1507 			}
1508 			if (__predict_false(++ndescs == limit)) {
1509 				t4_write_reg(sc, sc->sge_gts_reg,
1510 				    V_CIDXINC(ndescs) |
1511 				    V_INGRESSQID(iq->cntxt_id) |
1512 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1513 				ndescs = 0;
1514 
1515 				if (budget) {
1516 					return (EINPROGRESS);
1517 				}
1518 			}
1519 		}
1520 
1521 		if (STAILQ_EMPTY(&iql))
1522 			break;
1523 
1524 		/*
1525 		 * Process the head only, and send it to the back of the list if
1526 		 * it's still not done.
1527 		 */
1528 		q = STAILQ_FIRST(&iql);
1529 		STAILQ_REMOVE_HEAD(&iql, link);
1530 		if (service_iq_fl(q, q->qsize / 8) == 0)
1531 			(void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1532 		else
1533 			STAILQ_INSERT_TAIL(&iql, q, link);
1534 	}
1535 
1536 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1537 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1538 
1539 	return (0);
1540 }
1541 
1542 #if defined(INET) || defined(INET6)
1543 static inline int
sort_before_lro(struct lro_ctrl * lro)1544 sort_before_lro(struct lro_ctrl *lro)
1545 {
1546 
1547 	return (lro->lro_mbuf_max != 0);
1548 }
1549 #endif
1550 
1551 #define CGBE_SHIFT_SCALE 10
1552 
1553 static inline uint64_t
t4_tstmp_to_ns(struct adapter * sc,uint64_t lf)1554 t4_tstmp_to_ns(struct adapter *sc, uint64_t lf)
1555 {
1556 	struct clock_sync *cur, dcur;
1557 	uint64_t hw_clocks;
1558 	uint64_t hw_clk_div;
1559 	sbintime_t sbt_cur_to_prev, sbt;
1560 	uint64_t hw_tstmp = lf & 0xfffffffffffffffULL;	/* 60b, not 64b. */
1561 	seqc_t gen;
1562 
1563 	for (;;) {
1564 		cur = &sc->cal_info[sc->cal_current];
1565 		gen = seqc_read(&cur->gen);
1566 		if (gen == 0)
1567 			return (0);
1568 		dcur = *cur;
1569 		if (seqc_consistent(&cur->gen, gen))
1570 			break;
1571 	}
1572 
1573 	/*
1574 	 * Our goal here is to have a result that is:
1575 	 *
1576 	 * (                             (cur_time - prev_time)   )
1577 	 * ((hw_tstmp - hw_prev) *  ----------------------------- ) + prev_time
1578 	 * (                             (hw_cur - hw_prev)       )
1579 	 *
1580 	 * With the constraints that we cannot use float and we
1581 	 * don't want to overflow the uint64_t numbers we are using.
1582 	 */
1583 	hw_clocks = hw_tstmp - dcur.hw_prev;
1584 	sbt_cur_to_prev = (dcur.sbt_cur - dcur.sbt_prev);
1585 	hw_clk_div = dcur.hw_cur - dcur.hw_prev;
1586 	sbt = hw_clocks * sbt_cur_to_prev / hw_clk_div + dcur.sbt_prev;
1587 	return (sbttons(sbt));
1588 }
1589 
1590 static inline void
move_to_next_rxbuf(struct sge_fl * fl)1591 move_to_next_rxbuf(struct sge_fl *fl)
1592 {
1593 
1594 	fl->rx_offset = 0;
1595 	if (__predict_false((++fl->cidx & 7) == 0)) {
1596 		uint16_t cidx = fl->cidx >> 3;
1597 
1598 		if (__predict_false(cidx == fl->sidx))
1599 			fl->cidx = cidx = 0;
1600 		fl->hw_cidx = cidx;
1601 	}
1602 }
1603 
1604 /*
1605  * Deals with interrupts on an iq+fl queue.
1606  */
1607 static int
service_iq_fl(struct sge_iq * iq,int budget)1608 service_iq_fl(struct sge_iq *iq, int budget)
1609 {
1610 	struct sge_rxq *rxq = iq_to_rxq(iq);
1611 	struct sge_fl *fl;
1612 	struct adapter *sc = iq->adapter;
1613 	struct iq_desc *d = &iq->desc[iq->cidx];
1614 	int ndescs, limit;
1615 	int rsp_type, starved;
1616 	uint32_t lq;
1617 	uint16_t fl_hw_cidx;
1618 	struct mbuf *m0;
1619 #if defined(INET) || defined(INET6)
1620 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1621 	struct lro_ctrl *lro = &rxq->lro;
1622 #endif
1623 
1624 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1625 	MPASS(iq->flags & IQ_HAS_FL);
1626 
1627 	ndescs = 0;
1628 #if defined(INET) || defined(INET6)
1629 	if (iq->flags & IQ_ADJ_CREDIT) {
1630 		MPASS(sort_before_lro(lro));
1631 		iq->flags &= ~IQ_ADJ_CREDIT;
1632 		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1633 			tcp_lro_flush_all(lro);
1634 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1635 			    V_INGRESSQID((u32)iq->cntxt_id) |
1636 			    V_SEINTARM(iq->intr_params));
1637 			return (0);
1638 		}
1639 		ndescs = 1;
1640 	}
1641 #else
1642 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1643 #endif
1644 
1645 	limit = budget ? budget : iq->qsize / 16;
1646 	fl = &rxq->fl;
1647 	fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1648 	while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1649 
1650 		rmb();
1651 
1652 		m0 = NULL;
1653 		rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1654 		lq = be32toh(d->rsp.pldbuflen_qid);
1655 
1656 		switch (rsp_type) {
1657 		case X_RSPD_TYPE_FLBUF:
1658 			if (lq & F_RSPD_NEWBUF) {
1659 				if (fl->rx_offset > 0)
1660 					move_to_next_rxbuf(fl);
1661 				lq = G_RSPD_LEN(lq);
1662 			}
1663 			if (IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 4) {
1664 				FL_LOCK(fl);
1665 				refill_fl(sc, fl, 64);
1666 				FL_UNLOCK(fl);
1667 				fl_hw_cidx = fl->hw_cidx;
1668 			}
1669 
1670 			if (d->rss.opcode == CPL_RX_PKT) {
1671 				if (__predict_true(eth_rx(sc, rxq, d, lq) == 0))
1672 					break;
1673 				goto out;
1674 			}
1675 			m0 = get_fl_payload(sc, fl, lq);
1676 			if (__predict_false(m0 == NULL))
1677 				goto out;
1678 
1679 			/* fall through */
1680 
1681 		case X_RSPD_TYPE_CPL:
1682 			KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1683 			    ("%s: bad opcode %02x.", __func__, d->rss.opcode));
1684 			t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1685 			break;
1686 
1687 		case X_RSPD_TYPE_INTR:
1688 
1689 			/*
1690 			 * There are 1K interrupt-capable queues (qids 0
1691 			 * through 1023).  A response type indicating a
1692 			 * forwarded interrupt with a qid >= 1K is an
1693 			 * iWARP async notification.  That is the only
1694 			 * acceptable indirect interrupt on this queue.
1695 			 */
1696 			if (__predict_false(lq < 1024)) {
1697 				panic("%s: indirect interrupt on iq_fl %p "
1698 				    "with qid %u", __func__, iq, lq);
1699 			}
1700 
1701 			t4_an_handler(iq, &d->rsp);
1702 			break;
1703 
1704 		default:
1705 			KASSERT(0, ("%s: illegal response type %d on iq %p",
1706 			    __func__, rsp_type, iq));
1707 			log(LOG_ERR, "%s: illegal response type %d on iq %p",
1708 			    device_get_nameunit(sc->dev), rsp_type, iq);
1709 			break;
1710 		}
1711 
1712 		d++;
1713 		if (__predict_false(++iq->cidx == iq->sidx)) {
1714 			iq->cidx = 0;
1715 			iq->gen ^= F_RSPD_GEN;
1716 			d = &iq->desc[0];
1717 		}
1718 		if (__predict_false(++ndescs == limit)) {
1719 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1720 			    V_INGRESSQID(iq->cntxt_id) |
1721 			    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1722 
1723 #if defined(INET) || defined(INET6)
1724 			if (iq->flags & IQ_LRO_ENABLED &&
1725 			    !sort_before_lro(lro) &&
1726 			    sc->lro_timeout != 0) {
1727 				tcp_lro_flush_inactive(lro, &lro_timeout);
1728 			}
1729 #endif
1730 			if (budget)
1731 				return (EINPROGRESS);
1732 			ndescs = 0;
1733 		}
1734 	}
1735 out:
1736 #if defined(INET) || defined(INET6)
1737 	if (iq->flags & IQ_LRO_ENABLED) {
1738 		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1739 			MPASS(sort_before_lro(lro));
1740 			/* hold back one credit and don't flush LRO state */
1741 			iq->flags |= IQ_ADJ_CREDIT;
1742 			ndescs--;
1743 		} else {
1744 			tcp_lro_flush_all(lro);
1745 		}
1746 	}
1747 #endif
1748 
1749 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1750 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1751 
1752 	FL_LOCK(fl);
1753 	starved = refill_fl(sc, fl, 64);
1754 	FL_UNLOCK(fl);
1755 	if (__predict_false(starved != 0))
1756 		add_fl_to_sfl(sc, fl);
1757 
1758 	return (0);
1759 }
1760 
1761 static inline struct cluster_metadata *
cl_metadata(struct fl_sdesc * sd)1762 cl_metadata(struct fl_sdesc *sd)
1763 {
1764 
1765 	return ((void *)(sd->cl + sd->moff));
1766 }
1767 
1768 static void
rxb_free(struct mbuf * m)1769 rxb_free(struct mbuf *m)
1770 {
1771 	struct cluster_metadata *clm = m->m_ext.ext_arg1;
1772 
1773 	uma_zfree(clm->zone, clm->cl);
1774 	counter_u64_add(extfree_rels, 1);
1775 }
1776 
1777 /*
1778  * The mbuf returned comes from zone_muf and carries the payload in one of these
1779  * ways
1780  * a) complete frame inside the mbuf
1781  * b) m_cljset (for clusters without metadata)
1782  * d) m_extaddref (cluster with metadata)
1783  */
1784 static struct mbuf *
get_scatter_segment(struct adapter * sc,struct sge_fl * fl,int fr_offset,int remaining)1785 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1786     int remaining)
1787 {
1788 	struct mbuf *m;
1789 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1790 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1791 	struct cluster_metadata *clm;
1792 	int len, blen;
1793 	caddr_t payload;
1794 
1795 	if (fl->flags & FL_BUF_PACKING) {
1796 		u_int l, pad;
1797 
1798 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1799 		len = min(remaining, blen);
1800 		payload = sd->cl + fl->rx_offset;
1801 
1802 		l = fr_offset + len;
1803 		pad = roundup2(l, fl->buf_boundary) - l;
1804 		if (fl->rx_offset + len + pad < rxb->size2)
1805 			blen = len + pad;
1806 		MPASS(fl->rx_offset + blen <= rxb->size2);
1807 	} else {
1808 		MPASS(fl->rx_offset == 0);	/* not packing */
1809 		blen = rxb->size1;
1810 		len = min(remaining, blen);
1811 		payload = sd->cl;
1812 	}
1813 
1814 	if (fr_offset == 0) {
1815 		m = m_gethdr(M_NOWAIT, MT_DATA);
1816 		if (__predict_false(m == NULL))
1817 			return (NULL);
1818 		m->m_pkthdr.len = remaining;
1819 	} else {
1820 		m = m_get(M_NOWAIT, MT_DATA);
1821 		if (__predict_false(m == NULL))
1822 			return (NULL);
1823 	}
1824 	m->m_len = len;
1825 	kmsan_mark(payload, len, KMSAN_STATE_INITED);
1826 
1827 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1828 		/* copy data to mbuf */
1829 		bcopy(payload, mtod(m, caddr_t), len);
1830 		if (fl->flags & FL_BUF_PACKING) {
1831 			fl->rx_offset += blen;
1832 			MPASS(fl->rx_offset <= rxb->size2);
1833 			if (fl->rx_offset < rxb->size2)
1834 				return (m);	/* without advancing the cidx */
1835 		}
1836 	} else if (fl->flags & FL_BUF_PACKING) {
1837 		clm = cl_metadata(sd);
1838 		if (sd->nmbuf++ == 0) {
1839 			clm->refcount = 1;
1840 			clm->zone = rxb->zone;
1841 			clm->cl = sd->cl;
1842 			counter_u64_add(extfree_refs, 1);
1843 		}
1844 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free, clm,
1845 		    NULL);
1846 
1847 		fl->rx_offset += blen;
1848 		MPASS(fl->rx_offset <= rxb->size2);
1849 		if (fl->rx_offset < rxb->size2)
1850 			return (m);	/* without advancing the cidx */
1851 	} else {
1852 		m_cljset(m, sd->cl, rxb->type);
1853 		sd->cl = NULL;	/* consumed, not a recycle candidate */
1854 	}
1855 
1856 	move_to_next_rxbuf(fl);
1857 
1858 	return (m);
1859 }
1860 
1861 static struct mbuf *
get_fl_payload(struct adapter * sc,struct sge_fl * fl,const u_int plen)1862 get_fl_payload(struct adapter *sc, struct sge_fl *fl, const u_int plen)
1863 {
1864 	struct mbuf *m0, *m, **pnext;
1865 	u_int remaining;
1866 
1867 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1868 		M_ASSERTPKTHDR(fl->m0);
1869 		MPASS(fl->m0->m_pkthdr.len == plen);
1870 		MPASS(fl->remaining < plen);
1871 
1872 		m0 = fl->m0;
1873 		pnext = fl->pnext;
1874 		remaining = fl->remaining;
1875 		fl->flags &= ~FL_BUF_RESUME;
1876 		goto get_segment;
1877 	}
1878 
1879 	/*
1880 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1881 	 * 'len' and it may span multiple hw buffers.
1882 	 */
1883 
1884 	m0 = get_scatter_segment(sc, fl, 0, plen);
1885 	if (m0 == NULL)
1886 		return (NULL);
1887 	remaining = plen - m0->m_len;
1888 	pnext = &m0->m_next;
1889 	while (remaining > 0) {
1890 get_segment:
1891 		MPASS(fl->rx_offset == 0);
1892 		m = get_scatter_segment(sc, fl, plen - remaining, remaining);
1893 		if (__predict_false(m == NULL)) {
1894 			fl->m0 = m0;
1895 			fl->pnext = pnext;
1896 			fl->remaining = remaining;
1897 			fl->flags |= FL_BUF_RESUME;
1898 			return (NULL);
1899 		}
1900 		*pnext = m;
1901 		pnext = &m->m_next;
1902 		remaining -= m->m_len;
1903 	}
1904 	*pnext = NULL;
1905 
1906 	M_ASSERTPKTHDR(m0);
1907 	return (m0);
1908 }
1909 
1910 static int
skip_scatter_segment(struct adapter * sc,struct sge_fl * fl,int fr_offset,int remaining)1911 skip_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1912     int remaining)
1913 {
1914 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1915 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1916 	int len, blen;
1917 
1918 	if (fl->flags & FL_BUF_PACKING) {
1919 		u_int l, pad;
1920 
1921 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1922 		len = min(remaining, blen);
1923 
1924 		l = fr_offset + len;
1925 		pad = roundup2(l, fl->buf_boundary) - l;
1926 		if (fl->rx_offset + len + pad < rxb->size2)
1927 			blen = len + pad;
1928 		fl->rx_offset += blen;
1929 		MPASS(fl->rx_offset <= rxb->size2);
1930 		if (fl->rx_offset < rxb->size2)
1931 			return (len);	/* without advancing the cidx */
1932 	} else {
1933 		MPASS(fl->rx_offset == 0);	/* not packing */
1934 		blen = rxb->size1;
1935 		len = min(remaining, blen);
1936 	}
1937 	move_to_next_rxbuf(fl);
1938 	return (len);
1939 }
1940 
1941 static inline void
skip_fl_payload(struct adapter * sc,struct sge_fl * fl,int plen)1942 skip_fl_payload(struct adapter *sc, struct sge_fl *fl, int plen)
1943 {
1944 	int remaining, fr_offset, len;
1945 
1946 	fr_offset = 0;
1947 	remaining = plen;
1948 	while (remaining > 0) {
1949 		len = skip_scatter_segment(sc, fl, fr_offset, remaining);
1950 		fr_offset += len;
1951 		remaining -= len;
1952 	}
1953 }
1954 
1955 static inline int
get_segment_len(struct adapter * sc,struct sge_fl * fl,int plen)1956 get_segment_len(struct adapter *sc, struct sge_fl *fl, int plen)
1957 {
1958 	int len;
1959 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1960 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1961 
1962 	if (fl->flags & FL_BUF_PACKING)
1963 		len = rxb->size2 - fl->rx_offset;
1964 	else
1965 		len = rxb->size1;
1966 
1967 	return (min(plen, len));
1968 }
1969 
1970 static int
eth_rx(struct adapter * sc,struct sge_rxq * rxq,const struct iq_desc * d,u_int plen)1971 eth_rx(struct adapter *sc, struct sge_rxq *rxq, const struct iq_desc *d,
1972     u_int plen)
1973 {
1974 	struct mbuf *m0;
1975 	if_t ifp = rxq->ifp;
1976 	struct sge_fl *fl = &rxq->fl;
1977 	struct vi_info *vi = if_getsoftc(ifp);
1978 	const struct cpl_rx_pkt *cpl;
1979 #if defined(INET) || defined(INET6)
1980 	struct lro_ctrl *lro = &rxq->lro;
1981 #endif
1982 	uint16_t err_vec, tnl_type, tnlhdr_len;
1983 	static const int sw_hashtype[4][2] = {
1984 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1985 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1986 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1987 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1988 	};
1989 	static const int sw_csum_flags[2][2] = {
1990 		{
1991 			/* IP, inner IP */
1992 			CSUM_ENCAP_VXLAN |
1993 			    CSUM_L3_CALC | CSUM_L3_VALID |
1994 			    CSUM_L4_CALC | CSUM_L4_VALID |
1995 			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1996 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1997 
1998 			/* IP, inner IP6 */
1999 			CSUM_ENCAP_VXLAN |
2000 			    CSUM_L3_CALC | CSUM_L3_VALID |
2001 			    CSUM_L4_CALC | CSUM_L4_VALID |
2002 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
2003 		},
2004 		{
2005 			/* IP6, inner IP */
2006 			CSUM_ENCAP_VXLAN |
2007 			    CSUM_L4_CALC | CSUM_L4_VALID |
2008 			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
2009 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
2010 
2011 			/* IP6, inner IP6 */
2012 			CSUM_ENCAP_VXLAN |
2013 			    CSUM_L4_CALC | CSUM_L4_VALID |
2014 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
2015 		},
2016 	};
2017 
2018 	MPASS(plen > sc->params.sge.fl_pktshift);
2019 	if (vi->pfil != NULL && PFIL_HOOKED_IN(vi->pfil) &&
2020 	    __predict_true((fl->flags & FL_BUF_RESUME) == 0)) {
2021 		struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
2022 		caddr_t frame;
2023 		int rc, slen;
2024 
2025 		slen = get_segment_len(sc, fl, plen) -
2026 		    sc->params.sge.fl_pktshift;
2027 		frame = sd->cl + fl->rx_offset + sc->params.sge.fl_pktshift;
2028 		CURVNET_SET_QUIET(if_getvnet(ifp));
2029 		rc = pfil_mem_in(vi->pfil, frame, slen, ifp, &m0);
2030 		CURVNET_RESTORE();
2031 		if (rc == PFIL_DROPPED || rc == PFIL_CONSUMED) {
2032 			skip_fl_payload(sc, fl, plen);
2033 			return (0);
2034 		}
2035 		if (rc == PFIL_REALLOCED) {
2036 			skip_fl_payload(sc, fl, plen);
2037 			goto have_mbuf;
2038 		}
2039 	}
2040 
2041 	m0 = get_fl_payload(sc, fl, plen);
2042 	if (__predict_false(m0 == NULL))
2043 		return (ENOMEM);
2044 
2045 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
2046 	m0->m_len -= sc->params.sge.fl_pktshift;
2047 	m0->m_data += sc->params.sge.fl_pktshift;
2048 
2049 have_mbuf:
2050 	m0->m_pkthdr.rcvif = ifp;
2051 	M_HASHTYPE_SET(m0, sw_hashtype[d->rss.hash_type][d->rss.ipv6]);
2052 	m0->m_pkthdr.flowid = be32toh(d->rss.hash_val);
2053 
2054 	cpl = (const void *)(&d->rss + 1);
2055 	if (sc->params.tp.rx_pkt_encap) {
2056 		const uint16_t ev = be16toh(cpl->err_vec);
2057 
2058 		err_vec = G_T6_COMPR_RXERR_VEC(ev);
2059 		tnl_type = G_T6_RX_TNL_TYPE(ev);
2060 		tnlhdr_len = G_T6_RX_TNLHDR_LEN(ev);
2061 	} else {
2062 		err_vec = be16toh(cpl->err_vec);
2063 		tnl_type = 0;
2064 		tnlhdr_len = 0;
2065 	}
2066 	if (cpl->csum_calc && err_vec == 0) {
2067 		int ipv6 = !!(cpl->l2info & htobe32(F_RXF_IP6));
2068 
2069 		/* checksum(s) calculated and found to be correct. */
2070 
2071 		MPASS((cpl->l2info & htobe32(F_RXF_IP)) ^
2072 		    (cpl->l2info & htobe32(F_RXF_IP6)));
2073 		m0->m_pkthdr.csum_data = be16toh(cpl->csum);
2074 		if (tnl_type == 0) {
2075 			if (!ipv6 && if_getcapenable(ifp) & IFCAP_RXCSUM) {
2076 				m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2077 				    CSUM_L3_VALID | CSUM_L4_CALC |
2078 				    CSUM_L4_VALID;
2079 			} else if (ipv6 && if_getcapenable(ifp) & IFCAP_RXCSUM_IPV6) {
2080 				m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2081 				    CSUM_L4_VALID;
2082 			}
2083 			rxq->rxcsum++;
2084 		} else {
2085 			MPASS(tnl_type == RX_PKT_TNL_TYPE_VXLAN);
2086 
2087 			M_HASHTYPE_SETINNER(m0);
2088 			if (__predict_false(cpl->ip_frag)) {
2089 				/*
2090 				 * csum_data is for the inner frame (which is an
2091 				 * IP fragment) and is not 0xffff.  There is no
2092 				 * way to pass the inner csum_data to the stack.
2093 				 * We don't want the stack to use the inner
2094 				 * csum_data to validate the outer frame or it
2095 				 * will get rejected.  So we fix csum_data here
2096 				 * and let sw do the checksum of inner IP
2097 				 * fragments.
2098 				 *
2099 				 * XXX: Need 32b for csum_data2 in an rx mbuf.
2100 				 * Maybe stuff it into rcv_tstmp?
2101 				 */
2102 				m0->m_pkthdr.csum_data = 0xffff;
2103 				if (ipv6) {
2104 					m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2105 					    CSUM_L4_VALID;
2106 				} else {
2107 					m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2108 					    CSUM_L3_VALID | CSUM_L4_CALC |
2109 					    CSUM_L4_VALID;
2110 				}
2111 			} else {
2112 				int outer_ipv6;
2113 
2114 				MPASS(m0->m_pkthdr.csum_data == 0xffff);
2115 
2116 				outer_ipv6 = tnlhdr_len >=
2117 				    sizeof(struct ether_header) +
2118 				    sizeof(struct ip6_hdr);
2119 				m0->m_pkthdr.csum_flags =
2120 				    sw_csum_flags[outer_ipv6][ipv6];
2121 			}
2122 			rxq->vxlan_rxcsum++;
2123 		}
2124 	}
2125 
2126 	if (cpl->vlan_ex) {
2127 		if (sc->flags & IS_VF && sc->vlan_id) {
2128 			/*
2129 			 * HW is not setup correctly if extracted vlan_id does
2130 			 * not match the VF's setting.
2131 			 */
2132 			MPASS(be16toh(cpl->vlan) == sc->vlan_id);
2133 		} else {
2134 			m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
2135 			m0->m_flags |= M_VLANTAG;
2136 			rxq->vlan_extraction++;
2137 		}
2138 	}
2139 
2140 	if (rxq->iq.flags & IQ_RX_TIMESTAMP) {
2141 		/*
2142 		 * Fill up rcv_tstmp but do not set M_TSTMP as
2143 		 * long as we get a non-zero back from t4_tstmp_to_ns().
2144 		 */
2145 		m0->m_pkthdr.rcv_tstmp = t4_tstmp_to_ns(sc,
2146 		    be64toh(d->rsp.u.last_flit));
2147 		if (m0->m_pkthdr.rcv_tstmp != 0)
2148 			m0->m_flags |= M_TSTMP;
2149 	}
2150 
2151 #ifdef NUMA
2152 	m0->m_pkthdr.numa_domain = if_getnumadomain(ifp);
2153 #endif
2154 #if defined(INET) || defined(INET6)
2155 	if (rxq->iq.flags & IQ_LRO_ENABLED && tnl_type == 0 &&
2156 	    (M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV4 ||
2157 	    M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV6)) {
2158 		if (sort_before_lro(lro)) {
2159 			tcp_lro_queue_mbuf(lro, m0);
2160 			return (0); /* queued for sort, then LRO */
2161 		}
2162 		if (tcp_lro_rx(lro, m0, 0) == 0)
2163 			return (0); /* queued for LRO */
2164 	}
2165 #endif
2166 	if_input(ifp, m0);
2167 
2168 	return (0);
2169 }
2170 
2171 /*
2172  * Must drain the wrq or make sure that someone else will.
2173  */
2174 static void
wrq_tx_drain(void * arg,int n)2175 wrq_tx_drain(void *arg, int n)
2176 {
2177 	struct sge_wrq *wrq = arg;
2178 	struct sge_eq *eq = &wrq->eq;
2179 
2180 	EQ_LOCK(eq);
2181 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2182 		drain_wrq_wr_list(wrq->adapter, wrq);
2183 	EQ_UNLOCK(eq);
2184 }
2185 
2186 static void
drain_wrq_wr_list(struct adapter * sc,struct sge_wrq * wrq)2187 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
2188 {
2189 	struct sge_eq *eq = &wrq->eq;
2190 	u_int available, dbdiff;	/* # of hardware descriptors */
2191 	u_int n;
2192 	struct wrqe *wr;
2193 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2194 
2195 	EQ_LOCK_ASSERT_OWNED(eq);
2196 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
2197 	wr = STAILQ_FIRST(&wrq->wr_list);
2198 	MPASS(wr != NULL);	/* Must be called with something useful to do */
2199 	MPASS(eq->pidx == eq->dbidx);
2200 	dbdiff = 0;
2201 
2202 	do {
2203 		eq->cidx = read_hw_cidx(eq);
2204 		if (eq->pidx == eq->cidx)
2205 			available = eq->sidx - 1;
2206 		else
2207 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2208 
2209 		MPASS(wr->wrq == wrq);
2210 		n = howmany(wr->wr_len, EQ_ESIZE);
2211 		if (available < n)
2212 			break;
2213 
2214 		dst = (void *)&eq->desc[eq->pidx];
2215 		if (__predict_true(eq->sidx - eq->pidx > n)) {
2216 			/* Won't wrap, won't end exactly at the status page. */
2217 			bcopy(&wr->wr[0], dst, wr->wr_len);
2218 			eq->pidx += n;
2219 		} else {
2220 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
2221 
2222 			bcopy(&wr->wr[0], dst, first_portion);
2223 			if (wr->wr_len > first_portion) {
2224 				bcopy(&wr->wr[first_portion], &eq->desc[0],
2225 				    wr->wr_len - first_portion);
2226 			}
2227 			eq->pidx = n - (eq->sidx - eq->pidx);
2228 		}
2229 		wrq->tx_wrs_copied++;
2230 
2231 		if (available < eq->sidx / 4 &&
2232 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2233 				/*
2234 				 * XXX: This is not 100% reliable with some
2235 				 * types of WRs.  But this is a very unusual
2236 				 * situation for an ofld/ctrl queue anyway.
2237 				 */
2238 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2239 			    F_FW_WR_EQUEQ);
2240 		}
2241 
2242 		dbdiff += n;
2243 		if (dbdiff >= 16) {
2244 			ring_eq_db(sc, eq, dbdiff);
2245 			dbdiff = 0;
2246 		}
2247 
2248 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
2249 		free_wrqe(wr);
2250 		MPASS(wrq->nwr_pending > 0);
2251 		wrq->nwr_pending--;
2252 		MPASS(wrq->ndesc_needed >= n);
2253 		wrq->ndesc_needed -= n;
2254 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
2255 
2256 	if (dbdiff)
2257 		ring_eq_db(sc, eq, dbdiff);
2258 }
2259 
2260 /*
2261  * Doesn't fail.  Holds on to work requests it can't send right away.
2262  */
2263 void
t4_wrq_tx_locked(struct adapter * sc,struct sge_wrq * wrq,struct wrqe * wr)2264 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
2265 {
2266 #ifdef INVARIANTS
2267 	struct sge_eq *eq = &wrq->eq;
2268 #endif
2269 
2270 	EQ_LOCK_ASSERT_OWNED(eq);
2271 	MPASS(wr != NULL);
2272 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
2273 	MPASS((wr->wr_len & 0x7) == 0);
2274 
2275 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
2276 	wrq->nwr_pending++;
2277 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
2278 
2279 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
2280 		return;	/* commit_wrq_wr will drain wr_list as well. */
2281 
2282 	drain_wrq_wr_list(sc, wrq);
2283 
2284 	/* Doorbell must have caught up to the pidx. */
2285 	MPASS(eq->pidx == eq->dbidx);
2286 }
2287 
2288 void
t4_update_fl_bufsize(if_t ifp)2289 t4_update_fl_bufsize(if_t ifp)
2290 {
2291 	struct vi_info *vi = if_getsoftc(ifp);
2292 	struct adapter *sc = vi->adapter;
2293 	struct sge_rxq *rxq;
2294 #ifdef TCP_OFFLOAD
2295 	struct sge_ofld_rxq *ofld_rxq;
2296 #endif
2297 	struct sge_fl *fl;
2298 	int i, maxp;
2299 
2300 	maxp = max_rx_payload(sc, ifp, false);
2301 	for_each_rxq(vi, i, rxq) {
2302 		fl = &rxq->fl;
2303 
2304 		FL_LOCK(fl);
2305 		fl->zidx = find_refill_source(sc, maxp,
2306 		    fl->flags & FL_BUF_PACKING);
2307 		FL_UNLOCK(fl);
2308 	}
2309 #ifdef TCP_OFFLOAD
2310 	maxp = max_rx_payload(sc, ifp, true);
2311 	for_each_ofld_rxq(vi, i, ofld_rxq) {
2312 		fl = &ofld_rxq->fl;
2313 
2314 		FL_LOCK(fl);
2315 		fl->zidx = find_refill_source(sc, maxp,
2316 		    fl->flags & FL_BUF_PACKING);
2317 		FL_UNLOCK(fl);
2318 	}
2319 #endif
2320 }
2321 
2322 #ifdef RATELIMIT
2323 static inline int
mbuf_eo_nsegs(struct mbuf * m)2324 mbuf_eo_nsegs(struct mbuf *m)
2325 {
2326 
2327 	M_ASSERTPKTHDR(m);
2328 	return (m->m_pkthdr.PH_loc.eight[1]);
2329 }
2330 
2331 #if defined(INET) || defined(INET6)
2332 static inline void
set_mbuf_eo_nsegs(struct mbuf * m,uint8_t nsegs)2333 set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs)
2334 {
2335 
2336 	M_ASSERTPKTHDR(m);
2337 	m->m_pkthdr.PH_loc.eight[1] = nsegs;
2338 }
2339 #endif
2340 
2341 static inline int
mbuf_eo_len16(struct mbuf * m)2342 mbuf_eo_len16(struct mbuf *m)
2343 {
2344 	int n;
2345 
2346 	M_ASSERTPKTHDR(m);
2347 	n = m->m_pkthdr.PH_loc.eight[2];
2348 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2349 
2350 	return (n);
2351 }
2352 
2353 #if defined(INET) || defined(INET6)
2354 static inline void
set_mbuf_eo_len16(struct mbuf * m,uint8_t len16)2355 set_mbuf_eo_len16(struct mbuf *m, uint8_t len16)
2356 {
2357 
2358 	M_ASSERTPKTHDR(m);
2359 	m->m_pkthdr.PH_loc.eight[2] = len16;
2360 }
2361 #endif
2362 
2363 static inline int
mbuf_eo_tsclk_tsoff(struct mbuf * m)2364 mbuf_eo_tsclk_tsoff(struct mbuf *m)
2365 {
2366 
2367 	M_ASSERTPKTHDR(m);
2368 	return (m->m_pkthdr.PH_loc.eight[3]);
2369 }
2370 
2371 #if defined(INET) || defined(INET6)
2372 static inline void
set_mbuf_eo_tsclk_tsoff(struct mbuf * m,uint8_t tsclk_tsoff)2373 set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff)
2374 {
2375 
2376 	M_ASSERTPKTHDR(m);
2377 	m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff;
2378 }
2379 #endif
2380 
2381 static inline int
needs_eo(struct m_snd_tag * mst)2382 needs_eo(struct m_snd_tag *mst)
2383 {
2384 
2385 	return (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_RATE_LIMIT);
2386 }
2387 #endif
2388 
2389 /*
2390  * Try to allocate an mbuf to contain a raw work request.  To make it
2391  * easy to construct the work request, don't allocate a chain but a
2392  * single mbuf.
2393  */
2394 struct mbuf *
alloc_wr_mbuf(int len,int how)2395 alloc_wr_mbuf(int len, int how)
2396 {
2397 	struct mbuf *m;
2398 
2399 	if (len <= MHLEN)
2400 		m = m_gethdr(how, MT_DATA);
2401 	else if (len <= MCLBYTES)
2402 		m = m_getcl(how, MT_DATA, M_PKTHDR);
2403 	else
2404 		m = NULL;
2405 	if (m == NULL)
2406 		return (NULL);
2407 	m->m_pkthdr.len = len;
2408 	m->m_len = len;
2409 	set_mbuf_cflags(m, MC_RAW_WR);
2410 	set_mbuf_len16(m, howmany(len, 16));
2411 	return (m);
2412 }
2413 
2414 static inline bool
needs_hwcsum(struct mbuf * m)2415 needs_hwcsum(struct mbuf *m)
2416 {
2417 	const uint32_t csum_flags = CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP |
2418 	    CSUM_IP_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2419 	    CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_IP6_UDP |
2420 	    CSUM_IP6_TCP | CSUM_IP6_TSO | CSUM_INNER_IP6_UDP |
2421 	    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO;
2422 
2423 	M_ASSERTPKTHDR(m);
2424 
2425 	return (m->m_pkthdr.csum_flags & csum_flags);
2426 }
2427 
2428 static inline bool
needs_tso(struct mbuf * m)2429 needs_tso(struct mbuf *m)
2430 {
2431 	const uint32_t csum_flags = CSUM_IP_TSO | CSUM_IP6_TSO |
2432 	    CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2433 
2434 	M_ASSERTPKTHDR(m);
2435 
2436 	return (m->m_pkthdr.csum_flags & csum_flags);
2437 }
2438 
2439 static inline bool
needs_vxlan_csum(struct mbuf * m)2440 needs_vxlan_csum(struct mbuf *m)
2441 {
2442 
2443 	M_ASSERTPKTHDR(m);
2444 
2445 	return (m->m_pkthdr.csum_flags & CSUM_ENCAP_VXLAN);
2446 }
2447 
2448 static inline bool
needs_vxlan_tso(struct mbuf * m)2449 needs_vxlan_tso(struct mbuf *m)
2450 {
2451 	const uint32_t csum_flags = CSUM_ENCAP_VXLAN | CSUM_INNER_IP_TSO |
2452 	    CSUM_INNER_IP6_TSO;
2453 
2454 	M_ASSERTPKTHDR(m);
2455 
2456 	return ((m->m_pkthdr.csum_flags & csum_flags) != 0 &&
2457 	    (m->m_pkthdr.csum_flags & csum_flags) != CSUM_ENCAP_VXLAN);
2458 }
2459 
2460 #if defined(INET) || defined(INET6)
2461 static inline bool
needs_inner_tcp_csum(struct mbuf * m)2462 needs_inner_tcp_csum(struct mbuf *m)
2463 {
2464 	const uint32_t csum_flags = CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2465 
2466 	M_ASSERTPKTHDR(m);
2467 
2468 	return (m->m_pkthdr.csum_flags & csum_flags);
2469 }
2470 #endif
2471 
2472 static inline bool
needs_l3_csum(struct mbuf * m)2473 needs_l3_csum(struct mbuf *m)
2474 {
2475 	const uint32_t csum_flags = CSUM_IP | CSUM_IP_TSO | CSUM_INNER_IP |
2476 	    CSUM_INNER_IP_TSO;
2477 
2478 	M_ASSERTPKTHDR(m);
2479 
2480 	return (m->m_pkthdr.csum_flags & csum_flags);
2481 }
2482 
2483 static inline bool
needs_outer_tcp_csum(struct mbuf * m)2484 needs_outer_tcp_csum(struct mbuf *m)
2485 {
2486 	const uint32_t csum_flags = CSUM_IP_TCP | CSUM_IP_TSO | CSUM_IP6_TCP |
2487 	    CSUM_IP6_TSO;
2488 
2489 	M_ASSERTPKTHDR(m);
2490 
2491 	return (m->m_pkthdr.csum_flags & csum_flags);
2492 }
2493 
2494 #ifdef RATELIMIT
2495 static inline bool
needs_outer_l4_csum(struct mbuf * m)2496 needs_outer_l4_csum(struct mbuf *m)
2497 {
2498 	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_TSO |
2499 	    CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_TSO;
2500 
2501 	M_ASSERTPKTHDR(m);
2502 
2503 	return (m->m_pkthdr.csum_flags & csum_flags);
2504 }
2505 
2506 static inline bool
needs_outer_udp_csum(struct mbuf * m)2507 needs_outer_udp_csum(struct mbuf *m)
2508 {
2509 	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP6_UDP;
2510 
2511 	M_ASSERTPKTHDR(m);
2512 
2513 	return (m->m_pkthdr.csum_flags & csum_flags);
2514 }
2515 #endif
2516 
2517 static inline bool
needs_vlan_insertion(struct mbuf * m)2518 needs_vlan_insertion(struct mbuf *m)
2519 {
2520 
2521 	M_ASSERTPKTHDR(m);
2522 
2523 	return (m->m_flags & M_VLANTAG);
2524 }
2525 
2526 #if defined(INET) || defined(INET6)
2527 static void *
m_advance(struct mbuf ** pm,int * poffset,int len)2528 m_advance(struct mbuf **pm, int *poffset, int len)
2529 {
2530 	struct mbuf *m = *pm;
2531 	int offset = *poffset;
2532 	uintptr_t p = 0;
2533 
2534 	MPASS(len > 0);
2535 
2536 	for (;;) {
2537 		if (offset + len < m->m_len) {
2538 			offset += len;
2539 			p = mtod(m, uintptr_t) + offset;
2540 			break;
2541 		}
2542 		len -= m->m_len - offset;
2543 		m = m->m_next;
2544 		offset = 0;
2545 		MPASS(m != NULL);
2546 	}
2547 	*poffset = offset;
2548 	*pm = m;
2549 	return ((void *)p);
2550 }
2551 #endif
2552 
2553 static inline int
count_mbuf_ext_pgs(struct mbuf * m,int skip,vm_paddr_t * nextaddr)2554 count_mbuf_ext_pgs(struct mbuf *m, int skip, vm_paddr_t *nextaddr)
2555 {
2556 	vm_paddr_t paddr;
2557 	int i, len, off, pglen, pgoff, seglen, segoff;
2558 	int nsegs = 0;
2559 
2560 	M_ASSERTEXTPG(m);
2561 	off = mtod(m, vm_offset_t);
2562 	len = m->m_len;
2563 	off += skip;
2564 	len -= skip;
2565 
2566 	if (m->m_epg_hdrlen != 0) {
2567 		if (off >= m->m_epg_hdrlen) {
2568 			off -= m->m_epg_hdrlen;
2569 		} else {
2570 			seglen = m->m_epg_hdrlen - off;
2571 			segoff = off;
2572 			seglen = min(seglen, len);
2573 			off = 0;
2574 			len -= seglen;
2575 			paddr = pmap_kextract(
2576 			    (vm_offset_t)&m->m_epg_hdr[segoff]);
2577 			if (*nextaddr != paddr)
2578 				nsegs++;
2579 			*nextaddr = paddr + seglen;
2580 		}
2581 	}
2582 	pgoff = m->m_epg_1st_off;
2583 	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
2584 		pglen = m_epg_pagelen(m, i, pgoff);
2585 		if (off >= pglen) {
2586 			off -= pglen;
2587 			pgoff = 0;
2588 			continue;
2589 		}
2590 		seglen = pglen - off;
2591 		segoff = pgoff + off;
2592 		off = 0;
2593 		seglen = min(seglen, len);
2594 		len -= seglen;
2595 		paddr = m->m_epg_pa[i] + segoff;
2596 		if (*nextaddr != paddr)
2597 			nsegs++;
2598 		*nextaddr = paddr + seglen;
2599 		pgoff = 0;
2600 	};
2601 	if (len != 0) {
2602 		seglen = min(len, m->m_epg_trllen - off);
2603 		len -= seglen;
2604 		paddr = pmap_kextract((vm_offset_t)&m->m_epg_trail[off]);
2605 		if (*nextaddr != paddr)
2606 			nsegs++;
2607 		*nextaddr = paddr + seglen;
2608 	}
2609 
2610 	return (nsegs);
2611 }
2612 
2613 
2614 /*
2615  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2616  * must have at least one mbuf that's not empty.  It is possible for this
2617  * routine to return 0 if skip accounts for all the contents of the mbuf chain.
2618  */
2619 static inline int
count_mbuf_nsegs(struct mbuf * m,int skip,uint8_t * cflags)2620 count_mbuf_nsegs(struct mbuf *m, int skip, uint8_t *cflags)
2621 {
2622 	vm_paddr_t nextaddr, paddr;
2623 	vm_offset_t va;
2624 	int len, nsegs;
2625 
2626 	M_ASSERTPKTHDR(m);
2627 	MPASS(m->m_pkthdr.len > 0);
2628 	MPASS(m->m_pkthdr.len >= skip);
2629 
2630 	nsegs = 0;
2631 	nextaddr = 0;
2632 	for (; m; m = m->m_next) {
2633 		len = m->m_len;
2634 		if (__predict_false(len == 0))
2635 			continue;
2636 		if (skip >= len) {
2637 			skip -= len;
2638 			continue;
2639 		}
2640 		if ((m->m_flags & M_EXTPG) != 0) {
2641 			*cflags |= MC_NOMAP;
2642 			nsegs += count_mbuf_ext_pgs(m, skip, &nextaddr);
2643 			skip = 0;
2644 			continue;
2645 		}
2646 		va = mtod(m, vm_offset_t) + skip;
2647 		len -= skip;
2648 		skip = 0;
2649 		paddr = pmap_kextract(va);
2650 		nsegs += sglist_count((void *)(uintptr_t)va, len);
2651 		if (paddr == nextaddr)
2652 			nsegs--;
2653 		nextaddr = pmap_kextract(va + len - 1) + 1;
2654 	}
2655 
2656 	return (nsegs);
2657 }
2658 
2659 /*
2660  * The maximum number of segments that can fit in a WR.
2661  */
2662 static int
max_nsegs_allowed(struct mbuf * m,bool vm_wr)2663 max_nsegs_allowed(struct mbuf *m, bool vm_wr)
2664 {
2665 
2666 	if (vm_wr) {
2667 		if (needs_tso(m))
2668 			return (TX_SGL_SEGS_VM_TSO);
2669 		return (TX_SGL_SEGS_VM);
2670 	}
2671 
2672 	if (needs_tso(m)) {
2673 		if (needs_vxlan_tso(m))
2674 			return (TX_SGL_SEGS_VXLAN_TSO);
2675 		else
2676 			return (TX_SGL_SEGS_TSO);
2677 	}
2678 
2679 	return (TX_SGL_SEGS);
2680 }
2681 
2682 static struct timeval txerr_ratecheck = {0};
2683 static const struct timeval txerr_interval = {3, 0};
2684 
2685 /*
2686  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2687  * a) caller can assume it's been freed if this function returns with an error.
2688  * b) it may get defragged up if the gather list is too long for the hardware.
2689  */
2690 int
parse_pkt(struct mbuf ** mp,bool vm_wr)2691 parse_pkt(struct mbuf **mp, bool vm_wr)
2692 {
2693 	struct mbuf *m0 = *mp, *m;
2694 	int rc, nsegs, defragged = 0;
2695 	struct ether_header *eh;
2696 #ifdef INET
2697 	void *l3hdr;
2698 #endif
2699 #if defined(INET) || defined(INET6)
2700 	int offset;
2701 	struct tcphdr *tcp;
2702 #endif
2703 #if defined(KERN_TLS) || defined(RATELIMIT)
2704 	struct m_snd_tag *mst;
2705 #endif
2706 	uint16_t eh_type;
2707 	uint8_t cflags;
2708 
2709 	cflags = 0;
2710 	M_ASSERTPKTHDR(m0);
2711 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2712 		rc = EINVAL;
2713 fail:
2714 		m_freem(m0);
2715 		*mp = NULL;
2716 		return (rc);
2717 	}
2718 restart:
2719 	/*
2720 	 * First count the number of gather list segments in the payload.
2721 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2722 	 */
2723 	M_ASSERTPKTHDR(m0);
2724 	MPASS(m0->m_pkthdr.len > 0);
2725 	nsegs = count_mbuf_nsegs(m0, 0, &cflags);
2726 #if defined(KERN_TLS) || defined(RATELIMIT)
2727 	if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG)
2728 		mst = m0->m_pkthdr.snd_tag;
2729 	else
2730 		mst = NULL;
2731 #endif
2732 #ifdef KERN_TLS
2733 	if (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_TLS) {
2734 		struct vi_info *vi = if_getsoftc(mst->ifp);
2735 
2736 		cflags |= MC_TLS;
2737 		set_mbuf_cflags(m0, cflags);
2738 		if (is_t6(vi->pi->adapter))
2739 			rc = t6_ktls_parse_pkt(m0);
2740 		else
2741 			rc = t7_ktls_parse_pkt(m0);
2742 		if (rc != 0)
2743 			goto fail;
2744 		return (EINPROGRESS);
2745 	}
2746 #endif
2747 	if (nsegs > max_nsegs_allowed(m0, vm_wr)) {
2748 		if (defragged++ > 0) {
2749 			rc = EFBIG;
2750 			goto fail;
2751 		}
2752 		counter_u64_add(defrags, 1);
2753 		if ((m = m_defrag(m0, M_NOWAIT)) == NULL) {
2754 			rc = ENOMEM;
2755 			goto fail;
2756 		}
2757 		*mp = m0 = m;	/* update caller's copy after defrag */
2758 		goto restart;
2759 	}
2760 
2761 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN &&
2762 	    !(cflags & MC_NOMAP))) {
2763 		counter_u64_add(pullups, 1);
2764 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2765 		if (m0 == NULL) {
2766 			/* Should have left well enough alone. */
2767 			rc = EFBIG;
2768 			goto fail;
2769 		}
2770 		*mp = m0;	/* update caller's copy after pullup */
2771 		goto restart;
2772 	}
2773 	set_mbuf_nsegs(m0, nsegs);
2774 	set_mbuf_cflags(m0, cflags);
2775 	calculate_mbuf_len16(m0, vm_wr);
2776 
2777 #ifdef RATELIMIT
2778 	/*
2779 	 * Ethofld is limited to TCP and UDP for now, and only when L4 hw
2780 	 * checksumming is enabled.  needs_outer_l4_csum happens to check for
2781 	 * all the right things.
2782 	 */
2783 	if (__predict_false(needs_eo(mst) && !needs_outer_l4_csum(m0))) {
2784 		m_snd_tag_rele(m0->m_pkthdr.snd_tag);
2785 		m0->m_pkthdr.snd_tag = NULL;
2786 		m0->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
2787 		mst = NULL;
2788 	}
2789 #endif
2790 
2791 	if (!needs_hwcsum(m0)
2792 #ifdef RATELIMIT
2793 		 && !needs_eo(mst)
2794 #endif
2795 	)
2796 		return (0);
2797 
2798 	m = m0;
2799 	eh = mtod(m, struct ether_header *);
2800 	eh_type = ntohs(eh->ether_type);
2801 	if (eh_type == ETHERTYPE_VLAN) {
2802 		struct ether_vlan_header *evh = (void *)eh;
2803 
2804 		eh_type = ntohs(evh->evl_proto);
2805 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2806 	} else
2807 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2808 
2809 #if defined(INET) || defined(INET6)
2810 	offset = 0;
2811 #ifdef INET
2812 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2813 #else
2814 	m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2815 #endif
2816 #endif
2817 
2818 	switch (eh_type) {
2819 #ifdef INET6
2820 	case ETHERTYPE_IPV6:
2821 		m0->m_pkthdr.l3hlen = sizeof(struct ip6_hdr);
2822 		break;
2823 #endif
2824 #ifdef INET
2825 	case ETHERTYPE_IP:
2826 	{
2827 		struct ip *ip = l3hdr;
2828 
2829 		if (needs_vxlan_csum(m0)) {
2830 			/* Driver will do the outer IP hdr checksum. */
2831 			ip->ip_sum = 0;
2832 			if (needs_vxlan_tso(m0)) {
2833 				const uint16_t ipl = ip->ip_len;
2834 
2835 				ip->ip_len = 0;
2836 				ip->ip_sum = ~in_cksum_hdr(ip);
2837 				ip->ip_len = ipl;
2838 			} else
2839 				ip->ip_sum = in_cksum_hdr(ip);
2840 		}
2841 		m0->m_pkthdr.l3hlen = ip->ip_hl << 2;
2842 		break;
2843 	}
2844 #endif
2845 	default:
2846 		if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
2847 			log(LOG_ERR, "%s: ethertype 0x%04x unknown.  "
2848 			    "if_cxgbe must be compiled with the same "
2849 			    "INET/INET6 options as the kernel.\n", __func__,
2850 			    eh_type);
2851 		}
2852 		rc = EINVAL;
2853 		goto fail;
2854 	}
2855 
2856 #if defined(INET) || defined(INET6)
2857 	if (needs_vxlan_csum(m0)) {
2858 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2859 		m0->m_pkthdr.l5hlen = sizeof(struct vxlan_header);
2860 
2861 		/* Inner headers. */
2862 		eh = m_advance(&m, &offset, m0->m_pkthdr.l3hlen +
2863 		    sizeof(struct udphdr) + sizeof(struct vxlan_header));
2864 		eh_type = ntohs(eh->ether_type);
2865 		if (eh_type == ETHERTYPE_VLAN) {
2866 			struct ether_vlan_header *evh = (void *)eh;
2867 
2868 			eh_type = ntohs(evh->evl_proto);
2869 			m0->m_pkthdr.inner_l2hlen = sizeof(*evh);
2870 		} else
2871 			m0->m_pkthdr.inner_l2hlen = sizeof(*eh);
2872 #ifdef INET
2873 		l3hdr = m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
2874 #else
2875 		m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
2876 #endif
2877 
2878 		switch (eh_type) {
2879 #ifdef INET6
2880 		case ETHERTYPE_IPV6:
2881 			m0->m_pkthdr.inner_l3hlen = sizeof(struct ip6_hdr);
2882 			break;
2883 #endif
2884 #ifdef INET
2885 		case ETHERTYPE_IP:
2886 		{
2887 			struct ip *ip = l3hdr;
2888 
2889 			m0->m_pkthdr.inner_l3hlen = ip->ip_hl << 2;
2890 			break;
2891 		}
2892 #endif
2893 		default:
2894 			if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
2895 				log(LOG_ERR, "%s: VXLAN hw offload requested"
2896 				    "with unknown ethertype 0x%04x.  if_cxgbe "
2897 				    "must be compiled with the same INET/INET6 "
2898 				    "options as the kernel.\n", __func__,
2899 				    eh_type);
2900 			}
2901 			rc = EINVAL;
2902 			goto fail;
2903 		}
2904 		if (needs_inner_tcp_csum(m0)) {
2905 			tcp = m_advance(&m, &offset, m0->m_pkthdr.inner_l3hlen);
2906 			m0->m_pkthdr.inner_l4hlen = tcp->th_off * 4;
2907 		}
2908 		MPASS((m0->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
2909 		m0->m_pkthdr.csum_flags &= CSUM_INNER_IP6_UDP |
2910 		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO | CSUM_INNER_IP |
2911 		    CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO |
2912 		    CSUM_ENCAP_VXLAN;
2913 	}
2914 
2915 	if (needs_outer_tcp_csum(m0)) {
2916 		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2917 		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2918 #ifdef RATELIMIT
2919 		if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) {
2920 			set_mbuf_eo_tsclk_tsoff(m0,
2921 			    V_FW_ETH_TX_EO_WR_TSCLK(tsclk) |
2922 			    V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1));
2923 		} else
2924 			set_mbuf_eo_tsclk_tsoff(m0, 0);
2925 	} else if (needs_outer_udp_csum(m0)) {
2926 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2927 #endif
2928 	}
2929 #ifdef RATELIMIT
2930 	if (needs_eo(mst)) {
2931 		u_int immhdrs;
2932 
2933 		/* EO WRs have the headers in the WR and not the GL. */
2934 		immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen +
2935 		    m0->m_pkthdr.l4hlen;
2936 		cflags = 0;
2937 		nsegs = count_mbuf_nsegs(m0, immhdrs, &cflags);
2938 		MPASS(cflags == mbuf_cflags(m0));
2939 		set_mbuf_eo_nsegs(m0, nsegs);
2940 		set_mbuf_eo_len16(m0,
2941 		    txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0)));
2942 		rc = ethofld_transmit(mst->ifp, m0);
2943 		if (rc != 0)
2944 			goto fail;
2945 		return (EINPROGRESS);
2946 	}
2947 #endif
2948 #endif
2949 	MPASS(m0 == *mp);
2950 	return (0);
2951 }
2952 
2953 void *
start_wrq_wr(struct sge_wrq * wrq,int len16,struct wrq_cookie * cookie)2954 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2955 {
2956 	struct sge_eq *eq = &wrq->eq;
2957 	struct adapter *sc = wrq->adapter;
2958 	int ndesc, available;
2959 	struct wrqe *wr;
2960 	void *w;
2961 
2962 	MPASS(len16 > 0);
2963 	ndesc = tx_len16_to_desc(len16);
2964 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2965 
2966 	EQ_LOCK(eq);
2967 	if (__predict_false((eq->flags & EQ_HW_ALLOCATED) == 0)) {
2968 		EQ_UNLOCK(eq);
2969 		return (NULL);
2970 	}
2971 
2972 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2973 		drain_wrq_wr_list(sc, wrq);
2974 
2975 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2976 slowpath:
2977 		EQ_UNLOCK(eq);
2978 		wr = alloc_wrqe(len16 * 16, wrq);
2979 		if (__predict_false(wr == NULL))
2980 			return (NULL);
2981 		cookie->pidx = -1;
2982 		cookie->ndesc = ndesc;
2983 		return (&wr->wr);
2984 	}
2985 
2986 	eq->cidx = read_hw_cidx(eq);
2987 	if (eq->pidx == eq->cidx)
2988 		available = eq->sidx - 1;
2989 	else
2990 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2991 	if (available < ndesc)
2992 		goto slowpath;
2993 
2994 	cookie->pidx = eq->pidx;
2995 	cookie->ndesc = ndesc;
2996 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2997 
2998 	w = &eq->desc[eq->pidx];
2999 	IDXINCR(eq->pidx, ndesc, eq->sidx);
3000 	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
3001 		w = &wrq->ss[0];
3002 		wrq->ss_pidx = cookie->pidx;
3003 		wrq->ss_len = len16 * 16;
3004 	}
3005 
3006 	EQ_UNLOCK(eq);
3007 
3008 	return (w);
3009 }
3010 
3011 void
commit_wrq_wr(struct sge_wrq * wrq,void * w,struct wrq_cookie * cookie)3012 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
3013 {
3014 	struct sge_eq *eq = &wrq->eq;
3015 	struct adapter *sc = wrq->adapter;
3016 	int ndesc, pidx;
3017 	struct wrq_cookie *prev, *next;
3018 
3019 	if (cookie->pidx == -1) {
3020 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
3021 
3022 		t4_wrq_tx(sc, wr);
3023 		return;
3024 	}
3025 
3026 	if (__predict_false(w == &wrq->ss[0])) {
3027 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
3028 
3029 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
3030 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
3031 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
3032 		wrq->tx_wrs_ss++;
3033 	} else
3034 		wrq->tx_wrs_direct++;
3035 
3036 	EQ_LOCK(eq);
3037 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
3038 	pidx = cookie->pidx;
3039 	MPASS(pidx >= 0 && pidx < eq->sidx);
3040 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
3041 	next = TAILQ_NEXT(cookie, link);
3042 	if (prev == NULL) {
3043 		MPASS(pidx == eq->dbidx);
3044 		if (next == NULL || ndesc >= 16) {
3045 			int available;
3046 			struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
3047 
3048 			/*
3049 			 * Note that the WR via which we'll request tx updates
3050 			 * is at pidx and not eq->pidx, which has moved on
3051 			 * already.
3052 			 */
3053 			dst = (void *)&eq->desc[pidx];
3054 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3055 			if (available < eq->sidx / 4 &&
3056 			    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3057 				/*
3058 				 * XXX: This is not 100% reliable with some
3059 				 * types of WRs.  But this is a very unusual
3060 				 * situation for an ofld/ctrl queue anyway.
3061 				 */
3062 				dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
3063 				    F_FW_WR_EQUEQ);
3064 			}
3065 
3066 			if (__predict_true(eq->flags & EQ_HW_ALLOCATED))
3067 				ring_eq_db(wrq->adapter, eq, ndesc);
3068 			else
3069 				IDXINCR(eq->dbidx, ndesc, eq->sidx);
3070 		} else {
3071 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
3072 			next->pidx = pidx;
3073 			next->ndesc += ndesc;
3074 		}
3075 	} else {
3076 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
3077 		prev->ndesc += ndesc;
3078 	}
3079 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
3080 
3081 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
3082 		drain_wrq_wr_list(sc, wrq);
3083 
3084 #ifdef INVARIANTS
3085 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
3086 		/* Doorbell must have caught up to the pidx. */
3087 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
3088 	}
3089 #endif
3090 	EQ_UNLOCK(eq);
3091 }
3092 
3093 static u_int
can_resume_eth_tx(struct mp_ring * r)3094 can_resume_eth_tx(struct mp_ring *r)
3095 {
3096 	struct sge_eq *eq = r->cookie;
3097 
3098 	return (total_available_tx_desc(eq) > eq->sidx / 8);
3099 }
3100 
3101 static inline bool
cannot_use_txpkts(struct mbuf * m)3102 cannot_use_txpkts(struct mbuf *m)
3103 {
3104 	/* maybe put a GL limit too, to avoid silliness? */
3105 
3106 	return (needs_tso(m) || (mbuf_cflags(m) & (MC_RAW_WR | MC_TLS)) != 0);
3107 }
3108 
3109 static inline int
discard_tx(struct sge_eq * eq)3110 discard_tx(struct sge_eq *eq)
3111 {
3112 
3113 	return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
3114 }
3115 
3116 static inline int
wr_can_update_eq(void * p)3117 wr_can_update_eq(void *p)
3118 {
3119 	struct fw_eth_tx_pkts_wr *wr = p;
3120 
3121 	switch (G_FW_WR_OP(be32toh(wr->op_pkd))) {
3122 	case FW_ULPTX_WR:
3123 	case FW_ETH_TX_PKT_WR:
3124 	case FW_ETH_TX_PKTS_WR:
3125 	case FW_ETH_TX_PKTS2_WR:
3126 	case FW_ETH_TX_PKT_VM_WR:
3127 	case FW_ETH_TX_PKTS_VM_WR:
3128 		return (1);
3129 	default:
3130 		return (0);
3131 	}
3132 }
3133 
3134 static inline void
set_txupdate_flags(struct sge_txq * txq,u_int avail,struct fw_eth_tx_pkt_wr * wr)3135 set_txupdate_flags(struct sge_txq *txq, u_int avail,
3136     struct fw_eth_tx_pkt_wr *wr)
3137 {
3138 	struct sge_eq *eq = &txq->eq;
3139 	struct txpkts *txp = &txq->txp;
3140 
3141 	if ((txp->npkt > 0 || avail < eq->sidx / 2) &&
3142 	    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3143 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3144 		eq->equeqidx = eq->pidx;
3145 	} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
3146 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
3147 		eq->equeqidx = eq->pidx;
3148 	}
3149 }
3150 
3151 #if defined(__i386__) || defined(__amd64__)
3152 extern uint64_t tsc_freq;
3153 #endif
3154 
3155 static inline bool
record_eth_tx_time(struct sge_txq * txq)3156 record_eth_tx_time(struct sge_txq *txq)
3157 {
3158 	const uint64_t cycles = get_cyclecount();
3159 	const uint64_t last_tx = txq->last_tx;
3160 #if defined(__i386__) || defined(__amd64__)
3161 	const uint64_t itg = tsc_freq * t4_tx_coalesce_gap / 1000000;
3162 #else
3163 	const uint64_t itg = 0;
3164 #endif
3165 
3166 	MPASS(cycles >= last_tx);
3167 	txq->last_tx = cycles;
3168 	return (cycles - last_tx < itg);
3169 }
3170 
3171 /*
3172  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
3173  * be consumed.  Return the actual number consumed.  0 indicates a stall.
3174  */
3175 static u_int
eth_tx(struct mp_ring * r,u_int cidx,u_int pidx,bool * coalescing)3176 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx, bool *coalescing)
3177 {
3178 	struct sge_txq *txq = r->cookie;
3179 	if_t ifp = txq->ifp;
3180 	struct sge_eq *eq = &txq->eq;
3181 	struct txpkts *txp = &txq->txp;
3182 	struct vi_info *vi = if_getsoftc(ifp);
3183 	struct adapter *sc = vi->adapter;
3184 	u_int total, remaining;		/* # of packets */
3185 	u_int n, avail, dbdiff;		/* # of hardware descriptors */
3186 	int i, rc;
3187 	struct mbuf *m0;
3188 	bool snd, recent_tx;
3189 	void *wr;	/* start of the last WR written to the ring */
3190 
3191 	TXQ_LOCK_ASSERT_OWNED(txq);
3192 	recent_tx = record_eth_tx_time(txq);
3193 
3194 	remaining = IDXDIFF(pidx, cidx, r->size);
3195 	if (__predict_false(discard_tx(eq))) {
3196 		for (i = 0; i < txp->npkt; i++)
3197 			m_freem(txp->mb[i]);
3198 		txp->npkt = 0;
3199 		while (cidx != pidx) {
3200 			m0 = r->items[cidx];
3201 			m_freem(m0);
3202 			if (++cidx == r->size)
3203 				cidx = 0;
3204 		}
3205 		reclaim_tx_descs(txq, eq->sidx);
3206 		*coalescing = false;
3207 		return (remaining);	/* emptied */
3208 	}
3209 
3210 	/* How many hardware descriptors do we have readily available. */
3211 	if (eq->pidx == eq->cidx)
3212 		avail = eq->sidx - 1;
3213 	else
3214 		avail = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3215 
3216 	total = 0;
3217 	if (remaining == 0) {
3218 		txp->score = 0;
3219 		txq->txpkts_flush++;
3220 		goto send_txpkts;
3221 	}
3222 
3223 	dbdiff = 0;
3224 	MPASS(remaining > 0);
3225 	while (remaining > 0) {
3226 		m0 = r->items[cidx];
3227 		M_ASSERTPKTHDR(m0);
3228 		MPASS(m0->m_nextpkt == NULL);
3229 
3230 		if (avail < 2 * SGE_MAX_WR_NDESC)
3231 			avail += reclaim_tx_descs(txq, 64);
3232 
3233 		if (t4_tx_coalesce == 0 && txp->npkt == 0)
3234 			goto skip_coalescing;
3235 		if (cannot_use_txpkts(m0))
3236 			txp->score = 0;
3237 		else if (recent_tx) {
3238 			if (++txp->score == 0)
3239 				txp->score = UINT8_MAX;
3240 		} else
3241 			txp->score = 1;
3242 		if (txp->npkt > 0 || remaining > 1 ||
3243 		    txp->score >= t4_tx_coalesce_pkts ||
3244 		    atomic_load_int(&txq->eq.equiq) != 0) {
3245 			if (vi->flags & TX_USES_VM_WR)
3246 				rc = add_to_txpkts_vf(sc, txq, m0, avail, &snd);
3247 			else
3248 				rc = add_to_txpkts_pf(sc, txq, m0, avail, &snd);
3249 		} else {
3250 			snd = false;
3251 			rc = EINVAL;
3252 		}
3253 		if (snd) {
3254 			MPASS(txp->npkt > 0);
3255 			for (i = 0; i < txp->npkt; i++)
3256 				ETHER_BPF_MTAP(ifp, txp->mb[i]);
3257 			if (txp->npkt > 1) {
3258 				MPASS(avail >= tx_len16_to_desc(txp->len16));
3259 				if (vi->flags & TX_USES_VM_WR)
3260 					n = write_txpkts_vm_wr(sc, txq);
3261 				else
3262 					n = write_txpkts_wr(sc, txq);
3263 			} else {
3264 				MPASS(avail >=
3265 				    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3266 				if (vi->flags & TX_USES_VM_WR)
3267 					n = write_txpkt_vm_wr(sc, txq,
3268 					    txp->mb[0]);
3269 				else
3270 					n = write_txpkt_wr(sc, txq, txp->mb[0],
3271 					    avail);
3272 			}
3273 			MPASS(n <= SGE_MAX_WR_NDESC);
3274 			avail -= n;
3275 			dbdiff += n;
3276 			wr = &eq->desc[eq->pidx];
3277 			IDXINCR(eq->pidx, n, eq->sidx);
3278 			txp->npkt = 0;	/* emptied */
3279 		}
3280 		if (rc == 0) {
3281 			/* m0 was coalesced into txq->txpkts. */
3282 			goto next_mbuf;
3283 		}
3284 		if (rc == EAGAIN) {
3285 			/*
3286 			 * m0 is suitable for tx coalescing but could not be
3287 			 * combined with the existing txq->txpkts, which has now
3288 			 * been transmitted.  Start a new txpkts with m0.
3289 			 */
3290 			MPASS(snd);
3291 			MPASS(txp->npkt == 0);
3292 			continue;
3293 		}
3294 
3295 		MPASS(rc != 0 && rc != EAGAIN);
3296 		MPASS(txp->npkt == 0);
3297 skip_coalescing:
3298 		n = tx_len16_to_desc(mbuf_len16(m0));
3299 		if (__predict_false(avail < n)) {
3300 			avail += reclaim_tx_descs(txq, min(n, 32));
3301 			if (avail < n)
3302 				break;	/* out of descriptors */
3303 		}
3304 
3305 		wr = &eq->desc[eq->pidx];
3306 		if (mbuf_cflags(m0) & MC_RAW_WR) {
3307 			n = write_raw_wr(txq, wr, m0, avail);
3308 #ifdef KERN_TLS
3309 		} else if (mbuf_cflags(m0) & MC_TLS) {
3310 			ETHER_BPF_MTAP(ifp, m0);
3311 			if (is_t6(sc))
3312 				n = t6_ktls_write_wr(txq, wr, m0, avail);
3313 			else
3314 				n = t7_ktls_write_wr(txq, wr, m0, avail);
3315 #endif
3316 		} else {
3317 			ETHER_BPF_MTAP(ifp, m0);
3318 			if (vi->flags & TX_USES_VM_WR)
3319 				n = write_txpkt_vm_wr(sc, txq, m0);
3320 			else
3321 				n = write_txpkt_wr(sc, txq, m0, avail);
3322 		}
3323 		MPASS(n >= 1 && n <= avail);
3324 		if (!(mbuf_cflags(m0) & MC_TLS))
3325 			MPASS(n <= SGE_MAX_WR_NDESC);
3326 
3327 		avail -= n;
3328 		dbdiff += n;
3329 		IDXINCR(eq->pidx, n, eq->sidx);
3330 
3331 		if (dbdiff >= 512 / EQ_ESIZE) {	/* X_FETCHBURSTMAX_512B */
3332 			if (wr_can_update_eq(wr))
3333 				set_txupdate_flags(txq, avail, wr);
3334 			ring_eq_db(sc, eq, dbdiff);
3335 			avail += reclaim_tx_descs(txq, 32);
3336 			dbdiff = 0;
3337 		}
3338 next_mbuf:
3339 		total++;
3340 		remaining--;
3341 		if (__predict_false(++cidx == r->size))
3342 			cidx = 0;
3343 	}
3344 	if (dbdiff != 0) {
3345 		if (wr_can_update_eq(wr))
3346 			set_txupdate_flags(txq, avail, wr);
3347 		ring_eq_db(sc, eq, dbdiff);
3348 		reclaim_tx_descs(txq, 32);
3349 	} else if (eq->pidx == eq->cidx && txp->npkt > 0 &&
3350 	    atomic_load_int(&txq->eq.equiq) == 0) {
3351 		/*
3352 		 * If nothing was submitted to the chip for tx (it was coalesced
3353 		 * into txpkts instead) and there is no tx update outstanding
3354 		 * then we need to send txpkts now.
3355 		 */
3356 send_txpkts:
3357 		MPASS(txp->npkt > 0);
3358 		for (i = 0; i < txp->npkt; i++)
3359 			ETHER_BPF_MTAP(ifp, txp->mb[i]);
3360 		if (txp->npkt > 1) {
3361 			MPASS(avail >= tx_len16_to_desc(txp->len16));
3362 			if (vi->flags & TX_USES_VM_WR)
3363 				n = write_txpkts_vm_wr(sc, txq);
3364 			else
3365 				n = write_txpkts_wr(sc, txq);
3366 		} else {
3367 			MPASS(avail >=
3368 			    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3369 			if (vi->flags & TX_USES_VM_WR)
3370 				n = write_txpkt_vm_wr(sc, txq, txp->mb[0]);
3371 			else
3372 				n = write_txpkt_wr(sc, txq, txp->mb[0], avail);
3373 		}
3374 		MPASS(n <= SGE_MAX_WR_NDESC);
3375 		wr = &eq->desc[eq->pidx];
3376 		IDXINCR(eq->pidx, n, eq->sidx);
3377 		txp->npkt = 0;	/* emptied */
3378 
3379 		MPASS(wr_can_update_eq(wr));
3380 		set_txupdate_flags(txq, avail - n, wr);
3381 		ring_eq_db(sc, eq, n);
3382 		reclaim_tx_descs(txq, 32);
3383 	}
3384 	*coalescing = txp->npkt > 0;
3385 
3386 	return (total);
3387 }
3388 
3389 static inline void
init_iq(struct sge_iq * iq,struct adapter * sc,int tmr_idx,int pktc_idx,int qsize,int intr_idx,int cong,int qtype)3390 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
3391     int qsize, int intr_idx, int cong, int qtype)
3392 {
3393 
3394 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
3395 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
3396 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
3397 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
3398 	KASSERT(intr_idx >= -1 && intr_idx < sc->intr_count,
3399 	    ("%s: bad intr_idx %d", __func__, intr_idx));
3400 	KASSERT(qtype == FW_IQ_IQTYPE_OTHER || qtype == FW_IQ_IQTYPE_NIC ||
3401 	    qtype == FW_IQ_IQTYPE_OFLD, ("%s: bad qtype %d", __func__, qtype));
3402 
3403 	iq->flags = 0;
3404 	iq->state = IQS_DISABLED;
3405 	iq->adapter = sc;
3406 	iq->qtype = qtype;
3407 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
3408 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
3409 	if (pktc_idx >= 0) {
3410 		iq->intr_params |= F_QINTR_CNT_EN;
3411 		iq->intr_pktc_idx = pktc_idx;
3412 	}
3413 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
3414 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
3415 	iq->intr_idx = intr_idx;
3416 	iq->cong_drop = cong;
3417 }
3418 
3419 static inline void
init_fl(struct adapter * sc,struct sge_fl * fl,int qsize,int maxp,char * name)3420 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
3421 {
3422 	struct sge_params *sp = &sc->params.sge;
3423 
3424 	fl->qsize = qsize;
3425 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3426 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
3427 	mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
3428 	if (sc->flags & BUF_PACKING_OK &&
3429 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
3430 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
3431 		fl->flags |= FL_BUF_PACKING;
3432 	fl->zidx = find_refill_source(sc, maxp, fl->flags & FL_BUF_PACKING);
3433 	fl->safe_zidx = sc->sge.safe_zidx;
3434 	if (fl->flags & FL_BUF_PACKING) {
3435 		fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
3436 		fl->buf_boundary = sp->pack_boundary;
3437 	} else {
3438 		fl->lowat = roundup2(sp->fl_starve_threshold, 8);
3439 		fl->buf_boundary = 16;
3440 	}
3441 	if (fl_pad && fl->buf_boundary < sp->pad_boundary)
3442 		fl->buf_boundary = sp->pad_boundary;
3443 }
3444 
3445 static inline void
init_eq(struct adapter * sc,struct sge_eq * eq,int eqtype,int qsize,uint8_t port_id,struct sge_iq * iq,char * name)3446 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
3447     uint8_t port_id, struct sge_iq *iq, char *name)
3448 {
3449 	KASSERT(eqtype >= EQ_CTRL && eqtype <= EQ_OFLD,
3450 	    ("%s: bad qtype %d", __func__, eqtype));
3451 
3452 	eq->type = eqtype;
3453 	eq->port_id = port_id;
3454 	eq->tx_chan = sc->port[port_id]->tx_chan;
3455 	eq->hw_port = sc->port[port_id]->hw_port;
3456 	eq->iq = iq;
3457 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3458 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
3459 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3460 }
3461 
3462 int
alloc_ring(struct adapter * sc,size_t len,bus_dma_tag_t * tag,bus_dmamap_t * map,bus_addr_t * pa,void ** va)3463 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
3464     bus_dmamap_t *map, bus_addr_t *pa, void **va)
3465 {
3466 	int rc;
3467 
3468 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
3469 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
3470 	if (rc != 0) {
3471 		CH_ERR(sc, "cannot allocate DMA tag: %d\n", rc);
3472 		goto done;
3473 	}
3474 
3475 	rc = bus_dmamem_alloc(*tag, va,
3476 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
3477 	if (rc != 0) {
3478 		CH_ERR(sc, "cannot allocate DMA memory: %d\n", rc);
3479 		goto done;
3480 	}
3481 
3482 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
3483 	if (rc != 0) {
3484 		CH_ERR(sc, "cannot load DMA map: %d\n", rc);
3485 		goto done;
3486 	}
3487 done:
3488 	if (rc)
3489 		free_ring(sc, *tag, *map, *pa, *va);
3490 
3491 	return (rc);
3492 }
3493 
3494 int
free_ring(struct adapter * sc,bus_dma_tag_t tag,bus_dmamap_t map,bus_addr_t pa,void * va)3495 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
3496     bus_addr_t pa, void *va)
3497 {
3498 	if (pa)
3499 		bus_dmamap_unload(tag, map);
3500 	if (va)
3501 		bus_dmamem_free(tag, va, map);
3502 	if (tag)
3503 		bus_dma_tag_destroy(tag);
3504 
3505 	return (0);
3506 }
3507 
3508 /*
3509  * Allocates the software resources (mainly memory and sysctl nodes) for an
3510  * ingress queue and an optional freelist.
3511  *
3512  * Sets IQ_SW_ALLOCATED and returns 0 on success.
3513  */
3514 static int
alloc_iq_fl(struct vi_info * vi,struct sge_iq * iq,struct sge_fl * fl,struct sysctl_ctx_list * ctx,struct sysctl_oid * oid)3515 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
3516     struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
3517 {
3518 	int rc;
3519 	size_t len;
3520 	struct adapter *sc = vi->adapter;
3521 
3522 	MPASS(!(iq->flags & IQ_SW_ALLOCATED));
3523 
3524 	len = iq->qsize * IQ_ESIZE;
3525 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
3526 	    (void **)&iq->desc);
3527 	if (rc != 0)
3528 		return (rc);
3529 
3530 	if (fl) {
3531 		len = fl->qsize * EQ_ESIZE;
3532 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
3533 		    &fl->ba, (void **)&fl->desc);
3534 		if (rc) {
3535 			free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba,
3536 			    iq->desc);
3537 			return (rc);
3538 		}
3539 
3540 		/* Allocate space for one software descriptor per buffer. */
3541 		fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc),
3542 		    M_CXGBE, M_ZERO | M_WAITOK);
3543 
3544 		add_fl_sysctls(sc, ctx, oid, fl);
3545 		iq->flags |= IQ_HAS_FL;
3546 	}
3547 	add_iq_sysctls(ctx, oid, iq);
3548 	iq->flags |= IQ_SW_ALLOCATED;
3549 
3550 	return (0);
3551 }
3552 
3553 /*
3554  * Frees all software resources (memory and locks) associated with an ingress
3555  * queue and an optional freelist.
3556  */
3557 static void
free_iq_fl(struct adapter * sc,struct sge_iq * iq,struct sge_fl * fl)3558 free_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
3559 {
3560 	MPASS(iq->flags & IQ_SW_ALLOCATED);
3561 
3562 	if (fl) {
3563 		MPASS(iq->flags & IQ_HAS_FL);
3564 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, fl->desc);
3565 		free_fl_buffers(sc, fl);
3566 		free(fl->sdesc, M_CXGBE);
3567 		mtx_destroy(&fl->fl_lock);
3568 		bzero(fl, sizeof(*fl));
3569 	}
3570 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
3571 	bzero(iq, sizeof(*iq));
3572 }
3573 
3574 /*
3575  * Allocates a hardware ingress queue and an optional freelist that will be
3576  * associated with it.
3577  *
3578  * Returns errno on failure.  Resources allocated up to that point may still be
3579  * allocated.  Caller is responsible for cleanup in case this function fails.
3580  */
3581 static int
alloc_iq_fl_hwq(struct vi_info * vi,struct sge_iq * iq,struct sge_fl * fl)3582 alloc_iq_fl_hwq(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
3583 {
3584 	int rc, cntxt_id, cong_map;
3585 	struct fw_iq_cmd c;
3586 	struct adapter *sc = vi->adapter;
3587 	struct port_info *pi = vi->pi;
3588 	__be32 v = 0;
3589 
3590 	MPASS (!(iq->flags & IQ_HW_ALLOCATED));
3591 
3592 	bzero(&c, sizeof(c));
3593 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
3594 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
3595 	    V_FW_IQ_CMD_VFN(0));
3596 
3597 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
3598 	    FW_LEN16(c));
3599 
3600 	/* Special handling for firmware event queue */
3601 	if (iq == &sc->sge.fwq)
3602 		v |= F_FW_IQ_CMD_IQASYNCH;
3603 
3604 	if (iq->intr_idx < 0) {
3605 		/* Forwarded interrupts, all headed to fwq */
3606 		v |= F_FW_IQ_CMD_IQANDST;
3607 		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
3608 	} else {
3609 		KASSERT(iq->intr_idx < sc->intr_count,
3610 		    ("%s: invalid direct intr_idx %d", __func__, iq->intr_idx));
3611 		v |= V_FW_IQ_CMD_IQANDSTINDEX(iq->intr_idx);
3612 	}
3613 
3614 	bzero(iq->desc, iq->qsize * IQ_ESIZE);
3615 	c.type_to_iqandstindex = htobe32(v |
3616 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
3617 	    V_FW_IQ_CMD_VIID(vi->viid) |
3618 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
3619 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->hw_port) |
3620 	    F_FW_IQ_CMD_IQGTSMODE |
3621 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
3622 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
3623 	c.iqsize = htobe16(iq->qsize);
3624 	c.iqaddr = htobe64(iq->ba);
3625 	c.iqns_to_fl0congen = htobe32(V_FW_IQ_CMD_IQTYPE(iq->qtype));
3626 	if (iq->cong_drop != -1) {
3627 		if (iq->qtype == IQ_ETH) {
3628 			if (chip_id(sc) >= CHELSIO_T7)
3629 				cong_map = 1 << pi->hw_port;
3630 			else
3631 				cong_map = pi->rx_e_chan_map;
3632 		} else
3633 			cong_map = 0;
3634 		c.iqns_to_fl0congen |= htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
3635 	}
3636 
3637 	if (fl) {
3638 		bzero(fl->desc, fl->sidx * EQ_ESIZE + sc->params.sge.spg_len);
3639 		c.iqns_to_fl0congen |=
3640 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
3641 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
3642 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
3643 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
3644 			    0));
3645 		if (iq->cong_drop != -1) {
3646 			c.iqns_to_fl0congen |=
3647 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong_map) |
3648 				    F_FW_IQ_CMD_FL0CONGCIF |
3649 				    F_FW_IQ_CMD_FL0CONGEN);
3650 		}
3651 		c.fl0dcaen_to_fl0cidxfthresh =
3652 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3653 			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B_T6) |
3654 			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
3655 			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
3656 		c.fl0size = htobe16(fl->qsize);
3657 		c.fl0addr = htobe64(fl->ba);
3658 	}
3659 
3660 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3661 	if (rc != 0) {
3662 		CH_ERR(sc, "failed to create hw ingress queue: %d\n", rc);
3663 		return (rc);
3664 	}
3665 
3666 	iq->cidx = 0;
3667 	iq->gen = F_RSPD_GEN;
3668 	iq->cntxt_id = be16toh(c.iqid);
3669 	iq->abs_id = be16toh(c.physiqid);
3670 
3671 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
3672 	if (cntxt_id >= sc->sge.iqmap_sz) {
3673 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
3674 		    cntxt_id, sc->sge.iqmap_sz - 1);
3675 	}
3676 	sc->sge.iqmap[cntxt_id] = iq;
3677 
3678 	if (fl) {
3679 		u_int qid;
3680 #ifdef INVARIANTS
3681 		int i;
3682 
3683 		MPASS(!(fl->flags & FL_BUF_RESUME));
3684 		for (i = 0; i < fl->sidx * 8; i++)
3685 			MPASS(fl->sdesc[i].cl == NULL);
3686 #endif
3687 		fl->cntxt_id = be16toh(c.fl0id);
3688 		fl->pidx = fl->cidx = fl->hw_cidx = fl->dbidx = 0;
3689 		fl->rx_offset = 0;
3690 		fl->flags &= ~(FL_STARVING | FL_DOOMED);
3691 
3692 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
3693 		if (cntxt_id >= sc->sge.eqmap_sz) {
3694 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
3695 			    __func__, cntxt_id, sc->sge.eqmap_sz - 1);
3696 		}
3697 		sc->sge.eqmap[cntxt_id] = (void *)fl;
3698 
3699 		qid = fl->cntxt_id;
3700 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
3701 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3702 			uint32_t mask = (1 << s_qpp) - 1;
3703 			volatile uint8_t *udb;
3704 
3705 			udb = sc->udbs_base + UDBS_DB_OFFSET;
3706 			udb += (qid >> s_qpp) << PAGE_SHIFT;
3707 			qid &= mask;
3708 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
3709 				udb += qid << UDBS_SEG_SHIFT;
3710 				qid = 0;
3711 			}
3712 			fl->udb = (volatile void *)udb;
3713 		}
3714 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
3715 
3716 		FL_LOCK(fl);
3717 		/* Enough to make sure the SGE doesn't think it's starved */
3718 		refill_fl(sc, fl, fl->lowat);
3719 		FL_UNLOCK(fl);
3720 	}
3721 
3722 	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) &&
3723 	    iq->cong_drop != -1) {
3724 		t4_sge_set_conm_context(sc, iq->cntxt_id, iq->cong_drop,
3725 		    cong_map);
3726 	}
3727 
3728 	/* Enable IQ interrupts */
3729 	atomic_store_rel_int(&iq->state, IQS_IDLE);
3730 	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
3731 	    V_INGRESSQID(iq->cntxt_id));
3732 
3733 	iq->flags |= IQ_HW_ALLOCATED;
3734 
3735 	return (0);
3736 }
3737 
3738 static int
free_iq_fl_hwq(struct adapter * sc,struct sge_iq * iq,struct sge_fl * fl)3739 free_iq_fl_hwq(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
3740 {
3741 	int rc;
3742 
3743 	MPASS(iq->flags & IQ_HW_ALLOCATED);
3744 	rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
3745 	    iq->cntxt_id, fl ? fl->cntxt_id : 0xffff, 0xffff);
3746 	if (rc != 0) {
3747 		CH_ERR(sc, "failed to free iq %p: %d\n", iq, rc);
3748 		return (rc);
3749 	}
3750 	iq->flags &= ~IQ_HW_ALLOCATED;
3751 
3752 	return (0);
3753 }
3754 
3755 static void
add_iq_sysctls(struct sysctl_ctx_list * ctx,struct sysctl_oid * oid,struct sge_iq * iq)3756 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
3757     struct sge_iq *iq)
3758 {
3759 	struct sysctl_oid_list *children;
3760 
3761 	if (ctx == NULL || oid == NULL)
3762 		return;
3763 
3764 	children = SYSCTL_CHILDREN(oid);
3765 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
3766 	    "bus address of descriptor ring");
3767 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3768 	    iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
3769 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
3770 	    &iq->abs_id, 0, "absolute id of the queue");
3771 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3772 	    &iq->cntxt_id, 0, "SGE context id of the queue");
3773 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &iq->cidx,
3774 	    0, "consumer index");
3775 }
3776 
3777 static void
add_fl_sysctls(struct adapter * sc,struct sysctl_ctx_list * ctx,struct sysctl_oid * oid,struct sge_fl * fl)3778 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
3779     struct sysctl_oid *oid, struct sge_fl *fl)
3780 {
3781 	struct sysctl_oid_list *children;
3782 
3783 	if (ctx == NULL || oid == NULL)
3784 		return;
3785 
3786 	children = SYSCTL_CHILDREN(oid);
3787 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl",
3788 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "freelist");
3789 	children = SYSCTL_CHILDREN(oid);
3790 
3791 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3792 	    &fl->ba, "bus address of descriptor ring");
3793 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3794 	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3795 	    "desc ring size in bytes");
3796 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3797 	    &fl->cntxt_id, 0, "SGE context id of the freelist");
3798 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
3799 	    fl_pad ? 1 : 0, "padding enabled");
3800 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
3801 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
3802 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
3803 	    0, "consumer index");
3804 	if (fl->flags & FL_BUF_PACKING) {
3805 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
3806 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
3807 	}
3808 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
3809 	    0, "producer index");
3810 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
3811 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
3812 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
3813 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
3814 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
3815 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
3816 }
3817 
3818 /*
3819  * Idempotent.
3820  */
3821 static int
alloc_fwq(struct adapter * sc)3822 alloc_fwq(struct adapter *sc)
3823 {
3824 	int rc, intr_idx;
3825 	struct sge_iq *fwq = &sc->sge.fwq;
3826 	struct vi_info *vi = &sc->port[0]->vi[0];
3827 
3828 	if (!(fwq->flags & IQ_SW_ALLOCATED)) {
3829 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3830 
3831 		if (sc->flags & IS_VF)
3832 			intr_idx = 0;
3833 		else
3834 			intr_idx = sc->intr_count > 1 ? 1 : 0;
3835 		init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, intr_idx, -1, IQ_OTHER);
3836 		rc = alloc_iq_fl(vi, fwq, NULL, &sc->ctx, sc->fwq_oid);
3837 		if (rc != 0) {
3838 			CH_ERR(sc, "failed to allocate fwq: %d\n", rc);
3839 			return (rc);
3840 		}
3841 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3842 	}
3843 
3844 	if (!(fwq->flags & IQ_HW_ALLOCATED)) {
3845 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3846 
3847 		rc = alloc_iq_fl_hwq(vi, fwq, NULL);
3848 		if (rc != 0) {
3849 			CH_ERR(sc, "failed to create hw fwq: %d\n", rc);
3850 			return (rc);
3851 		}
3852 		MPASS(fwq->flags & IQ_HW_ALLOCATED);
3853 	}
3854 
3855 	return (0);
3856 }
3857 
3858 /*
3859  * Idempotent.
3860  */
3861 static void
free_fwq(struct adapter * sc)3862 free_fwq(struct adapter *sc)
3863 {
3864 	struct sge_iq *fwq = &sc->sge.fwq;
3865 
3866 	if (fwq->flags & IQ_HW_ALLOCATED) {
3867 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3868 		free_iq_fl_hwq(sc, fwq, NULL);
3869 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3870 	}
3871 
3872 	if (fwq->flags & IQ_SW_ALLOCATED) {
3873 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3874 		free_iq_fl(sc, fwq, NULL);
3875 		MPASS(!(fwq->flags & IQ_SW_ALLOCATED));
3876 	}
3877 }
3878 
3879 /*
3880  * Idempotent.
3881  */
3882 static int
alloc_ctrlq(struct adapter * sc,int idx)3883 alloc_ctrlq(struct adapter *sc, int idx)
3884 {
3885 	int rc;
3886 	char name[16];
3887 	struct sysctl_oid *oid;
3888 	struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
3889 
3890 	MPASS(idx < sc->sge.nctrlq);
3891 
3892 	if (!(ctrlq->eq.flags & EQ_SW_ALLOCATED)) {
3893 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3894 
3895 		snprintf(name, sizeof(name), "%d", idx);
3896 		oid = SYSCTL_ADD_NODE(&sc->ctx, SYSCTL_CHILDREN(sc->ctrlq_oid),
3897 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
3898 		    "ctrl queue");
3899 
3900 		snprintf(name, sizeof(name), "%s ctrlq%d",
3901 		    device_get_nameunit(sc->dev), idx);
3902 		init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE,
3903 		    idx % sc->params.nports, &sc->sge.fwq, name);
3904 		rc = alloc_wrq(sc, NULL, ctrlq, &sc->ctx, oid);
3905 		if (rc != 0) {
3906 			CH_ERR(sc, "failed to allocate ctrlq%d: %d\n", idx, rc);
3907 			sysctl_remove_oid(oid, 1, 1);
3908 			return (rc);
3909 		}
3910 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3911 	}
3912 
3913 	if (!(ctrlq->eq.flags & EQ_HW_ALLOCATED)) {
3914 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3915 		MPASS(ctrlq->nwr_pending == 0);
3916 		MPASS(ctrlq->ndesc_needed == 0);
3917 
3918 		rc = alloc_eq_hwq(sc, NULL, &ctrlq->eq, idx);
3919 		if (rc != 0) {
3920 			CH_ERR(sc, "failed to create hw ctrlq%d: %d\n", idx, rc);
3921 			return (rc);
3922 		}
3923 		MPASS(ctrlq->eq.flags & EQ_HW_ALLOCATED);
3924 	}
3925 
3926 	return (0);
3927 }
3928 
3929 /*
3930  * Idempotent.
3931  */
3932 static void
free_ctrlq(struct adapter * sc,int idx)3933 free_ctrlq(struct adapter *sc, int idx)
3934 {
3935 	struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
3936 
3937 	if (ctrlq->eq.flags & EQ_HW_ALLOCATED) {
3938 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3939 		free_eq_hwq(sc, NULL, &ctrlq->eq);
3940 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3941 	}
3942 
3943 	if (ctrlq->eq.flags & EQ_SW_ALLOCATED) {
3944 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3945 		free_wrq(sc, ctrlq);
3946 		MPASS(!(ctrlq->eq.flags & EQ_SW_ALLOCATED));
3947 	}
3948 }
3949 
3950 int
t4_sge_set_conm_context(struct adapter * sc,int cntxt_id,int cong_drop,int cong_map)3951 t4_sge_set_conm_context(struct adapter *sc, int cntxt_id, int cong_drop,
3952     int cong_map)
3953 {
3954 	const int cng_ch_bits_log = sc->chip_params->cng_ch_bits_log;
3955 	uint32_t param, val;
3956 	uint16_t ch_map;
3957 	int cong_mode, rc, i;
3958 
3959 	if (chip_id(sc) < CHELSIO_T5)
3960 		return (ENOTSUP);
3961 
3962 	/* Convert the driver knob to the mode understood by the firmware. */
3963 	switch (cong_drop) {
3964 	case -1:
3965 		cong_mode = X_CONMCTXT_CNGTPMODE_DISABLE;
3966 		break;
3967 	case 0:
3968 		cong_mode = X_CONMCTXT_CNGTPMODE_CHANNEL;
3969 		break;
3970 	case 1:
3971 		cong_mode = X_CONMCTXT_CNGTPMODE_QUEUE;
3972 		break;
3973 	case 2:
3974 		cong_mode = X_CONMCTXT_CNGTPMODE_BOTH;
3975 		break;
3976 	default:
3977 		MPASS(0);
3978 		CH_ERR(sc, "cong_drop = %d is invalid (ingress queue %d).\n",
3979 		    cong_drop, cntxt_id);
3980 		return (EINVAL);
3981 	}
3982 
3983 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
3984 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3985 	    V_FW_PARAMS_PARAM_YZ(cntxt_id);
3986 	if (chip_id(sc) >= CHELSIO_T7) {
3987 		val = V_T7_DMAQ_CONM_CTXT_CNGTPMODE(cong_mode) |
3988 		    V_T7_DMAQ_CONM_CTXT_CH_VEC(cong_map);
3989 	} else {
3990 		val = V_CONMCTXT_CNGTPMODE(cong_mode);
3991 		if (cong_mode == X_CONMCTXT_CNGTPMODE_CHANNEL ||
3992 		    cong_mode == X_CONMCTXT_CNGTPMODE_BOTH) {
3993 			for (i = 0, ch_map = 0; i < 4; i++) {
3994 				if (cong_map & (1 << i))
3995 					ch_map |= 1 << (i << cng_ch_bits_log);
3996 			}
3997 			val |= V_CONMCTXT_CNGCHMAP(ch_map);
3998 		}
3999 	}
4000 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
4001 	if (rc != 0) {
4002 		CH_ERR(sc, "failed to set congestion manager context "
4003 		    "for ingress queue %d: %d\n", cntxt_id, rc);
4004 	}
4005 
4006 	return (rc);
4007 }
4008 
4009 /*
4010  * Idempotent.
4011  */
4012 static int
alloc_rxq(struct vi_info * vi,struct sge_rxq * rxq,int idx,int intr_idx,int maxp)4013 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int idx, int intr_idx,
4014     int maxp)
4015 {
4016 	int rc;
4017 	struct adapter *sc = vi->adapter;
4018 	if_t ifp = vi->ifp;
4019 	struct sysctl_oid *oid;
4020 	char name[16];
4021 
4022 	if (!(rxq->iq.flags & IQ_SW_ALLOCATED)) {
4023 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4024 #if defined(INET) || defined(INET6)
4025 		rc = tcp_lro_init_args(&rxq->lro, ifp, lro_entries, lro_mbufs);
4026 		if (rc != 0)
4027 			return (rc);
4028 		MPASS(rxq->lro.ifp == ifp);	/* also indicates LRO init'ed */
4029 #endif
4030 		rxq->ifp = ifp;
4031 
4032 		snprintf(name, sizeof(name), "%d", idx);
4033 		oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->rxq_oid),
4034 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
4035 		    "rx queue");
4036 
4037 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq,
4038 		    intr_idx, cong_drop, IQ_ETH);
4039 #if defined(INET) || defined(INET6)
4040 		if (if_getcapenable(ifp) & IFCAP_LRO)
4041 			rxq->iq.flags |= IQ_LRO_ENABLED;
4042 #endif
4043 		if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP)
4044 			rxq->iq.flags |= IQ_RX_TIMESTAMP;
4045 		snprintf(name, sizeof(name), "%s rxq%d-fl",
4046 		    device_get_nameunit(vi->dev), idx);
4047 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
4048 		rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, &vi->ctx, oid);
4049 		if (rc != 0) {
4050 			CH_ERR(vi, "failed to allocate rxq%d: %d\n", idx, rc);
4051 			sysctl_remove_oid(oid, 1, 1);
4052 #if defined(INET) || defined(INET6)
4053 			tcp_lro_free(&rxq->lro);
4054 			rxq->lro.ifp = NULL;
4055 #endif
4056 			return (rc);
4057 		}
4058 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
4059 		add_rxq_sysctls(&vi->ctx, oid, rxq);
4060 	}
4061 
4062 	if (!(rxq->iq.flags & IQ_HW_ALLOCATED)) {
4063 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
4064 		rc = alloc_iq_fl_hwq(vi, &rxq->iq, &rxq->fl);
4065 		if (rc != 0) {
4066 			CH_ERR(vi, "failed to create hw rxq%d: %d\n", idx, rc);
4067 			return (rc);
4068 		}
4069 		MPASS(rxq->iq.flags & IQ_HW_ALLOCATED);
4070 
4071 		if (idx == 0)
4072 			sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
4073 		else
4074 			KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
4075 			    ("iq_base mismatch"));
4076 		KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
4077 		    ("PF with non-zero iq_base"));
4078 
4079 		/*
4080 		 * The freelist is just barely above the starvation threshold
4081 		 * right now, fill it up a bit more.
4082 		 */
4083 		FL_LOCK(&rxq->fl);
4084 		refill_fl(sc, &rxq->fl, 128);
4085 		FL_UNLOCK(&rxq->fl);
4086 	}
4087 
4088 	return (0);
4089 }
4090 
4091 /*
4092  * Idempotent.
4093  */
4094 static void
free_rxq(struct vi_info * vi,struct sge_rxq * rxq)4095 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
4096 {
4097 	if (rxq->iq.flags & IQ_HW_ALLOCATED) {
4098 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
4099 		free_iq_fl_hwq(vi->adapter, &rxq->iq, &rxq->fl);
4100 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4101 	}
4102 
4103 	if (rxq->iq.flags & IQ_SW_ALLOCATED) {
4104 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4105 #if defined(INET) || defined(INET6)
4106 		tcp_lro_free(&rxq->lro);
4107 #endif
4108 		free_iq_fl(vi->adapter, &rxq->iq, &rxq->fl);
4109 		MPASS(!(rxq->iq.flags & IQ_SW_ALLOCATED));
4110 		bzero(rxq, sizeof(*rxq));
4111 	}
4112 }
4113 
4114 static void
add_rxq_sysctls(struct sysctl_ctx_list * ctx,struct sysctl_oid * oid,struct sge_rxq * rxq)4115 add_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4116     struct sge_rxq *rxq)
4117 {
4118 	struct sysctl_oid_list *children;
4119 
4120 	if (ctx == NULL || oid == NULL)
4121 		return;
4122 
4123 	children = SYSCTL_CHILDREN(oid);
4124 #if defined(INET) || defined(INET6)
4125 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
4126 	    &rxq->lro.lro_queued, 0, NULL);
4127 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
4128 	    &rxq->lro.lro_flushed, 0, NULL);
4129 #endif
4130 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
4131 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
4132 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_extraction", CTLFLAG_RD,
4133 	    &rxq->vlan_extraction, "# of times hardware extracted 802.1Q tag");
4134 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_rxcsum", CTLFLAG_RD,
4135 	    &rxq->vxlan_rxcsum,
4136 	    "# of times hardware assisted with inner checksum (VXLAN)");
4137 }
4138 
4139 #ifdef TCP_OFFLOAD
4140 /*
4141  * Idempotent.
4142  */
4143 static int
alloc_ofld_rxq(struct vi_info * vi,struct sge_ofld_rxq * ofld_rxq,int idx,int intr_idx,int maxp)4144 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq, int idx,
4145     int intr_idx, int maxp)
4146 {
4147 	int rc;
4148 	struct adapter *sc = vi->adapter;
4149 	struct sysctl_oid *oid;
4150 	char name[16];
4151 
4152 	if (!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED)) {
4153 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4154 
4155 		snprintf(name, sizeof(name), "%d", idx);
4156 		oid = SYSCTL_ADD_NODE(&vi->ctx,
4157 		    SYSCTL_CHILDREN(vi->ofld_rxq_oid), OID_AUTO, name,
4158 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload rx queue");
4159 
4160 		init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
4161 		    vi->qsize_rxq, intr_idx, ofld_cong_drop, IQ_OFLD);
4162 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
4163 		    device_get_nameunit(vi->dev), idx);
4164 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
4165 		rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, &vi->ctx,
4166 		    oid);
4167 		if (rc != 0) {
4168 			CH_ERR(vi, "failed to allocate ofld_rxq%d: %d\n", idx,
4169 			    rc);
4170 			sysctl_remove_oid(oid, 1, 1);
4171 			return (rc);
4172 		}
4173 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4174 		ofld_rxq->rx_iscsi_ddp_setup_ok = counter_u64_alloc(M_WAITOK);
4175 		ofld_rxq->rx_iscsi_ddp_setup_error =
4176 		    counter_u64_alloc(M_WAITOK);
4177 		ofld_rxq->rx_nvme_ddp_setup_ok = counter_u64_alloc(M_WAITOK);
4178 		ofld_rxq->rx_nvme_ddp_setup_no_stag =
4179 		    counter_u64_alloc(M_WAITOK);
4180 		ofld_rxq->rx_nvme_ddp_setup_error =
4181 		    counter_u64_alloc(M_WAITOK);
4182 		ofld_rxq->rx_nvme_ddp_octets = counter_u64_alloc(M_WAITOK);
4183 		ofld_rxq->rx_nvme_ddp_pdus = counter_u64_alloc(M_WAITOK);
4184 		ofld_rxq->rx_nvme_fl_octets = counter_u64_alloc(M_WAITOK);
4185 		ofld_rxq->rx_nvme_fl_pdus = counter_u64_alloc(M_WAITOK);
4186 		ofld_rxq->rx_nvme_invalid_headers = counter_u64_alloc(M_WAITOK);
4187 		ofld_rxq->rx_nvme_header_digest_errors =
4188 		    counter_u64_alloc(M_WAITOK);
4189 		ofld_rxq->rx_nvme_data_digest_errors =
4190 		    counter_u64_alloc(M_WAITOK);
4191 		ofld_rxq->ddp_buffer_alloc = counter_u64_alloc(M_WAITOK);
4192 		ofld_rxq->ddp_buffer_reuse = counter_u64_alloc(M_WAITOK);
4193 		ofld_rxq->ddp_buffer_free = counter_u64_alloc(M_WAITOK);
4194 		add_ofld_rxq_sysctls(&vi->ctx, oid, ofld_rxq);
4195 	}
4196 
4197 	if (!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED)) {
4198 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4199 		rc = alloc_iq_fl_hwq(vi, &ofld_rxq->iq, &ofld_rxq->fl);
4200 		if (rc != 0) {
4201 			CH_ERR(vi, "failed to create hw ofld_rxq%d: %d\n", idx,
4202 			    rc);
4203 			return (rc);
4204 		}
4205 		MPASS(ofld_rxq->iq.flags & IQ_HW_ALLOCATED);
4206 	}
4207 	return (rc);
4208 }
4209 
4210 /*
4211  * Idempotent.
4212  */
4213 static void
free_ofld_rxq(struct vi_info * vi,struct sge_ofld_rxq * ofld_rxq)4214 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
4215 {
4216 	if (ofld_rxq->iq.flags & IQ_HW_ALLOCATED) {
4217 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4218 		free_iq_fl_hwq(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
4219 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4220 	}
4221 
4222 	if (ofld_rxq->iq.flags & IQ_SW_ALLOCATED) {
4223 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4224 		free_iq_fl(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
4225 		MPASS(!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED));
4226 		counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_ok);
4227 		counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_error);
4228 		counter_u64_free(ofld_rxq->rx_nvme_ddp_setup_ok);
4229 		counter_u64_free(ofld_rxq->rx_nvme_ddp_setup_no_stag);
4230 		counter_u64_free(ofld_rxq->rx_nvme_ddp_setup_error);
4231 		counter_u64_free(ofld_rxq->rx_nvme_ddp_octets);
4232 		counter_u64_free(ofld_rxq->rx_nvme_ddp_pdus);
4233 		counter_u64_free(ofld_rxq->rx_nvme_fl_octets);
4234 		counter_u64_free(ofld_rxq->rx_nvme_fl_pdus);
4235 		counter_u64_free(ofld_rxq->rx_nvme_invalid_headers);
4236 		counter_u64_free(ofld_rxq->rx_nvme_header_digest_errors);
4237 		counter_u64_free(ofld_rxq->rx_nvme_data_digest_errors);
4238 		counter_u64_free(ofld_rxq->ddp_buffer_alloc);
4239 		counter_u64_free(ofld_rxq->ddp_buffer_reuse);
4240 		counter_u64_free(ofld_rxq->ddp_buffer_free);
4241 		bzero(ofld_rxq, sizeof(*ofld_rxq));
4242 	}
4243 }
4244 
4245 static void
add_ofld_rxq_sysctls(struct sysctl_ctx_list * ctx,struct sysctl_oid * oid,struct sge_ofld_rxq * ofld_rxq)4246 add_ofld_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4247     struct sge_ofld_rxq *ofld_rxq)
4248 {
4249 	struct sysctl_oid_list *children, *top;
4250 
4251 	if (ctx == NULL || oid == NULL)
4252 		return;
4253 
4254 	top = children = SYSCTL_CHILDREN(oid);
4255 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "rx_aio_ddp_jobs",
4256 	    CTLFLAG_RD, &ofld_rxq->rx_aio_ddp_jobs, 0,
4257 	    "# of aio_read(2) jobs completed via DDP");
4258 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "rx_aio_ddp_octets",
4259 	    CTLFLAG_RD, &ofld_rxq->rx_aio_ddp_octets, 0,
4260 	    "# of octets placed directly for aio_read(2) jobs");
4261 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4262 	    "rx_toe_tls_records", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_records,
4263 	    "# of TOE TLS records received");
4264 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4265 	    "rx_toe_tls_octets", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_octets,
4266 	    "# of payload octets in received TOE TLS records");
4267 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4268 	    "rx_toe_ddp_octets", CTLFLAG_RD, &ofld_rxq->rx_toe_ddp_octets,
4269 	    "# of payload octets received via TCP DDP");
4270 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO,
4271 	    "ddp_buffer_alloc", CTLFLAG_RD, &ofld_rxq->ddp_buffer_alloc,
4272 	    "# of DDP RCV buffers allocated");
4273 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO,
4274 	    "ddp_buffer_reuse", CTLFLAG_RD, &ofld_rxq->ddp_buffer_reuse,
4275 	    "# of DDP RCV buffers reused");
4276 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO,
4277 	    "ddp_buffer_free", CTLFLAG_RD, &ofld_rxq->ddp_buffer_free,
4278 	    "# of DDP RCV buffers freed");
4279 
4280 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "iscsi",
4281 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE iSCSI statistics");
4282 	children = SYSCTL_CHILDREN(oid);
4283 
4284 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_ok",
4285 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_ok,
4286 	    "# of times DDP buffer was setup successfully.");
4287 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_error",
4288 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_error,
4289 	    "# of times DDP buffer setup failed.");
4290 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_octets",
4291 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_octets, 0,
4292 	    "# of octets placed directly");
4293 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_pdus",
4294 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_pdus, 0,
4295 	    "# of PDUs with data placed directly.");
4296 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_octets",
4297 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_octets, 0,
4298 	    "# of data octets delivered in freelist");
4299 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_pdus",
4300 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_pdus, 0,
4301 	    "# of PDUs with data delivered in freelist");
4302 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "padding_errors",
4303 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_padding_errors, 0,
4304 	    "# of PDUs with invalid padding");
4305 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "header_digest_errors",
4306 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_header_digest_errors, 0,
4307 	    "# of PDUs with invalid header digests");
4308 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "data_digest_errors",
4309 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_data_digest_errors, 0,
4310 	    "# of PDUs with invalid data digests");
4311 
4312 	oid = SYSCTL_ADD_NODE(ctx, top, OID_AUTO, "nvme",
4313 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE NVMe statistics");
4314 	children = SYSCTL_CHILDREN(oid);
4315 
4316 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_ok",
4317 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_ddp_setup_ok,
4318 	    "# of times DDP buffer was setup successfully");
4319 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_no_stag",
4320 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_ddp_setup_no_stag,
4321 	    "# of times STAG was not available for DDP buffer setup");
4322 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_error",
4323 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_ddp_setup_error,
4324 	    "# of times DDP buffer setup failed");
4325 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_octets",
4326 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_ddp_octets,
4327 	    "# of octets placed directly");
4328 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_pdus",
4329 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_ddp_pdus,
4330 	    "# of PDUs with data placed directly");
4331 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "fl_octets",
4332 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_fl_octets,
4333 	    "# of data octets delivered in freelist");
4334 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "fl_pdus",
4335 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_fl_pdus,
4336 	    "# of PDUs with data delivered in freelist");
4337 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "invalid_headers",
4338 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_invalid_headers,
4339 	    "# of PDUs with invalid header field");
4340 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "header_digest_errors",
4341 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_header_digest_errors,
4342 	    "# of PDUs with invalid header digests");
4343 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "data_digest_errors",
4344 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_data_digest_errors,
4345 	    "# of PDUs with invalid data digests");
4346 }
4347 #endif
4348 
4349 /*
4350  * Returns a reasonable automatic cidx flush threshold for a given queue size.
4351  */
4352 static u_int
qsize_to_fthresh(int qsize)4353 qsize_to_fthresh(int qsize)
4354 {
4355 	u_int fthresh;
4356 
4357 	fthresh = qsize == 0 ? 0 : order_base_2(qsize);
4358 	if (fthresh > X_CIDXFLUSHTHRESH_128)
4359 		fthresh = X_CIDXFLUSHTHRESH_128;
4360 
4361 	return (fthresh);
4362 }
4363 
4364 static int
ctrl_eq_alloc(struct adapter * sc,struct sge_eq * eq,int idx)4365 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq, int idx)
4366 {
4367 	int rc, cntxt_id, core;
4368 	struct fw_eq_ctrl_cmd c;
4369 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4370 
4371 	core = sc->params.tid_qid_sel_mask != 0 ? idx % sc->params.ncores : 0;
4372 	bzero(&c, sizeof(c));
4373 
4374 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
4375 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
4376 	    V_FW_EQ_CTRL_CMD_VFN(0));
4377 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
4378 	    V_FW_EQ_CTRL_CMD_COREGROUP(core) |
4379 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
4380 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
4381 	c.physeqid_pkd = htobe32(0);
4382 	c.fetchszm_to_iqid =
4383 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4384 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->hw_port) |
4385 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
4386 	c.dcaen_to_eqsize =
4387 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4388 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4389 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4390 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4391 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
4392 	c.eqaddr = htobe64(eq->ba);
4393 
4394 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4395 	if (rc != 0) {
4396 		CH_ERR(sc, "failed to create hw ctrlq for port %d: %d\n",
4397 		    eq->port_id, rc);
4398 		return (rc);
4399 	}
4400 
4401 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
4402 	eq->abs_id = G_FW_EQ_CTRL_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4403 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4404 	if (cntxt_id >= sc->sge.eqmap_sz)
4405 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4406 		cntxt_id, sc->sge.eqmap_sz - 1);
4407 	sc->sge.eqmap[cntxt_id] = eq;
4408 
4409 	return (rc);
4410 }
4411 
4412 static int
eth_eq_alloc(struct adapter * sc,struct vi_info * vi,struct sge_eq * eq,int idx)4413 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq, int idx)
4414 {
4415 	int rc, cntxt_id, core;
4416 	struct fw_eq_eth_cmd c;
4417 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4418 
4419 	core = sc->params.ncores > 1 ? idx % sc->params.ncores : 0;
4420 	bzero(&c, sizeof(c));
4421 
4422 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
4423 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
4424 	    V_FW_EQ_ETH_CMD_VFN(0));
4425 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
4426 	    V_FW_EQ_ETH_CMD_COREGROUP(core) |
4427 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
4428 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
4429 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
4430 	c.fetchszm_to_iqid =
4431 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
4432 		V_FW_EQ_ETH_CMD_PCIECHN(eq->hw_port) | F_FW_EQ_ETH_CMD_FETCHRO |
4433 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
4434 	c.dcaen_to_eqsize =
4435 	    htobe32(V_FW_EQ_ETH_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4436 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4437 		V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4438 		V_FW_EQ_ETH_CMD_EQSIZE(qsize));
4439 	c.eqaddr = htobe64(eq->ba);
4440 
4441 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4442 	if (rc != 0) {
4443 		device_printf(vi->dev,
4444 		    "failed to create Ethernet egress queue: %d\n", rc);
4445 		return (rc);
4446 	}
4447 
4448 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
4449 	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4450 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4451 	if (cntxt_id >= sc->sge.eqmap_sz)
4452 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4453 		cntxt_id, sc->sge.eqmap_sz - 1);
4454 	sc->sge.eqmap[cntxt_id] = eq;
4455 
4456 	return (rc);
4457 }
4458 
4459 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4460 /*
4461  * ncores	number of uP cores.
4462  * nq		number of queues for this VI
4463  * idx		queue index
4464  */
4465 static inline int
qidx_to_core(int ncores,int nq,int idx)4466 qidx_to_core(int ncores, int nq, int idx)
4467 {
4468 	MPASS(nq % ncores == 0);
4469 	MPASS(idx >= 0 && idx < nq);
4470 
4471 	return (idx * ncores / nq);
4472 }
4473 
4474 static int
ofld_eq_alloc(struct adapter * sc,struct vi_info * vi,struct sge_eq * eq,int idx)4475 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq,
4476     int idx)
4477 {
4478 	int rc, cntxt_id, core;
4479 	struct fw_eq_ofld_cmd c;
4480 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4481 
4482 	if (sc->params.tid_qid_sel_mask != 0)
4483 		core = qidx_to_core(sc->params.ncores, vi->nofldtxq, idx);
4484 	else
4485 		core = 0;
4486 
4487 	bzero(&c, sizeof(c));
4488 
4489 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
4490 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
4491 	    V_FW_EQ_OFLD_CMD_VFN(0));
4492 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
4493 	    V_FW_EQ_OFLD_CMD_COREGROUP(core) |
4494 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
4495 	c.fetchszm_to_iqid =
4496 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4497 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->hw_port) |
4498 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
4499 	c.dcaen_to_eqsize =
4500 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4501 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4502 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4503 		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4504 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
4505 	c.eqaddr = htobe64(eq->ba);
4506 
4507 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4508 	if (rc != 0) {
4509 		device_printf(vi->dev,
4510 		    "failed to create egress queue for TCP offload: %d\n", rc);
4511 		return (rc);
4512 	}
4513 
4514 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
4515 	eq->abs_id = G_FW_EQ_OFLD_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4516 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4517 	if (cntxt_id >= sc->sge.eqmap_sz)
4518 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4519 		cntxt_id, sc->sge.eqmap_sz - 1);
4520 	sc->sge.eqmap[cntxt_id] = eq;
4521 
4522 	return (rc);
4523 }
4524 #endif
4525 
4526 /* SW only */
4527 static int
alloc_eq(struct adapter * sc,struct sge_eq * eq,struct sysctl_ctx_list * ctx,struct sysctl_oid * oid)4528 alloc_eq(struct adapter *sc, struct sge_eq *eq, struct sysctl_ctx_list *ctx,
4529     struct sysctl_oid *oid)
4530 {
4531 	int rc, qsize;
4532 	size_t len;
4533 
4534 	MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4535 
4536 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4537 	len = qsize * EQ_ESIZE;
4538 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, &eq->ba,
4539 	    (void **)&eq->desc);
4540 	if (rc)
4541 		return (rc);
4542 	if (ctx != NULL && oid != NULL)
4543 		add_eq_sysctls(sc, ctx, oid, eq);
4544 	eq->flags |= EQ_SW_ALLOCATED;
4545 
4546 	return (0);
4547 }
4548 
4549 /* SW only */
4550 static void
free_eq(struct adapter * sc,struct sge_eq * eq)4551 free_eq(struct adapter *sc, struct sge_eq *eq)
4552 {
4553 	MPASS(eq->flags & EQ_SW_ALLOCATED);
4554 	if (eq->type == EQ_ETH)
4555 		MPASS(eq->pidx == eq->cidx);
4556 
4557 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
4558 	mtx_destroy(&eq->eq_lock);
4559 	bzero(eq, sizeof(*eq));
4560 }
4561 
4562 static void
add_eq_sysctls(struct adapter * sc,struct sysctl_ctx_list * ctx,struct sysctl_oid * oid,struct sge_eq * eq)4563 add_eq_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
4564     struct sysctl_oid *oid, struct sge_eq *eq)
4565 {
4566 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4567 
4568 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &eq->ba,
4569 	    "bus address of descriptor ring");
4570 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
4571 	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
4572 	    "desc ring size in bytes");
4573 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
4574 	    &eq->abs_id, 0, "absolute id of the queue");
4575 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4576 	    &eq->cntxt_id, 0, "SGE context id of the queue");
4577 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &eq->cidx,
4578 	    0, "consumer index");
4579 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &eq->pidx,
4580 	    0, "producer index");
4581 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
4582 	    eq->sidx, "status page index");
4583 }
4584 
4585 static int
alloc_eq_hwq(struct adapter * sc,struct vi_info * vi,struct sge_eq * eq,int idx)4586 alloc_eq_hwq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq, int idx)
4587 {
4588 	int rc;
4589 
4590 	MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4591 
4592 	eq->iqid = eq->iq->cntxt_id;
4593 	eq->pidx = eq->cidx = eq->dbidx = 0;
4594 	/* Note that equeqidx is not used with sge_wrq (OFLD/CTRL) queues. */
4595 	eq->equeqidx = 0;
4596 	eq->doorbells = sc->doorbells;
4597 	bzero(eq->desc, eq->sidx * EQ_ESIZE + sc->params.sge.spg_len);
4598 
4599 	switch (eq->type) {
4600 	case EQ_CTRL:
4601 		rc = ctrl_eq_alloc(sc, eq, idx);
4602 		break;
4603 
4604 	case EQ_ETH:
4605 		rc = eth_eq_alloc(sc, vi, eq, idx);
4606 		break;
4607 
4608 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4609 	case EQ_OFLD:
4610 		rc = ofld_eq_alloc(sc, vi, eq, idx);
4611 		break;
4612 #endif
4613 
4614 	default:
4615 		panic("%s: invalid eq type %d.", __func__, eq->type);
4616 	}
4617 	if (rc != 0) {
4618 		CH_ERR(sc, "failed to allocate egress queue(%d): %d\n",
4619 		    eq->type, rc);
4620 		return (rc);
4621 	}
4622 
4623 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
4624 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
4625 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
4626 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
4627 		uint32_t mask = (1 << s_qpp) - 1;
4628 		volatile uint8_t *udb;
4629 
4630 		udb = sc->udbs_base + UDBS_DB_OFFSET;
4631 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
4632 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
4633 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
4634 			clrbit(&eq->doorbells, DOORBELL_WCWR);
4635 		else {
4636 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
4637 			eq->udb_qid = 0;
4638 		}
4639 		eq->udb = (volatile void *)udb;
4640 	}
4641 
4642 	eq->flags |= EQ_HW_ALLOCATED;
4643 	return (0);
4644 }
4645 
4646 static int
free_eq_hwq(struct adapter * sc,struct vi_info * vi __unused,struct sge_eq * eq)4647 free_eq_hwq(struct adapter *sc, struct vi_info *vi __unused, struct sge_eq *eq)
4648 {
4649 	int rc;
4650 
4651 	MPASS(eq->flags & EQ_HW_ALLOCATED);
4652 
4653 	switch (eq->type) {
4654 	case EQ_CTRL:
4655 		rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4656 		break;
4657 	case EQ_ETH:
4658 		rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4659 		break;
4660 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4661 	case EQ_OFLD:
4662 		rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4663 		break;
4664 #endif
4665 	default:
4666 		panic("%s: invalid eq type %d.", __func__, eq->type);
4667 	}
4668 	if (rc != 0) {
4669 		CH_ERR(sc, "failed to free eq (type %d): %d\n", eq->type, rc);
4670 		return (rc);
4671 	}
4672 	eq->flags &= ~EQ_HW_ALLOCATED;
4673 
4674 	return (0);
4675 }
4676 
4677 static int
alloc_wrq(struct adapter * sc,struct vi_info * vi,struct sge_wrq * wrq,struct sysctl_ctx_list * ctx,struct sysctl_oid * oid)4678 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
4679     struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
4680 {
4681 	struct sge_eq *eq = &wrq->eq;
4682 	int rc;
4683 
4684 	MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4685 
4686 	rc = alloc_eq(sc, eq, ctx, oid);
4687 	if (rc)
4688 		return (rc);
4689 	MPASS(eq->flags & EQ_SW_ALLOCATED);
4690 	/* Can't fail after this. */
4691 
4692 	wrq->adapter = sc;
4693 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
4694 	TAILQ_INIT(&wrq->incomplete_wrs);
4695 	STAILQ_INIT(&wrq->wr_list);
4696 	wrq->nwr_pending = 0;
4697 	wrq->ndesc_needed = 0;
4698 	add_wrq_sysctls(ctx, oid, wrq);
4699 
4700 	return (0);
4701 }
4702 
4703 static void
free_wrq(struct adapter * sc,struct sge_wrq * wrq)4704 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
4705 {
4706 	free_eq(sc, &wrq->eq);
4707 	MPASS(wrq->nwr_pending == 0);
4708 	MPASS(wrq->ndesc_needed == 0);
4709 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
4710 	MPASS(STAILQ_EMPTY(&wrq->wr_list));
4711 	bzero(wrq, sizeof(*wrq));
4712 }
4713 
4714 static void
add_wrq_sysctls(struct sysctl_ctx_list * ctx,struct sysctl_oid * oid,struct sge_wrq * wrq)4715 add_wrq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4716     struct sge_wrq *wrq)
4717 {
4718 	struct sysctl_oid_list *children;
4719 
4720 	if (ctx == NULL || oid == NULL)
4721 		return;
4722 
4723 	children = SYSCTL_CHILDREN(oid);
4724 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
4725 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
4726 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
4727 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
4728 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
4729 	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
4730 }
4731 
4732 /*
4733  * Idempotent.
4734  */
4735 static int
alloc_txq(struct vi_info * vi,struct sge_txq * txq,int idx)4736 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx)
4737 {
4738 	int rc, iqidx;
4739 	struct port_info *pi = vi->pi;
4740 	struct adapter *sc = vi->adapter;
4741 	struct sge_eq *eq = &txq->eq;
4742 	struct txpkts *txp;
4743 	char name[16];
4744 	struct sysctl_oid *oid;
4745 
4746 	if (!(eq->flags & EQ_SW_ALLOCATED)) {
4747 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4748 
4749 		snprintf(name, sizeof(name), "%d", idx);
4750 		oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->txq_oid),
4751 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
4752 		    "tx queue");
4753 
4754 		iqidx = vi->first_rxq + (idx % vi->nrxq);
4755 		snprintf(name, sizeof(name), "%s txq%d",
4756 		    device_get_nameunit(vi->dev), idx);
4757 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->port_id,
4758 		    &sc->sge.rxq[iqidx].iq, name);
4759 
4760 		rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx,
4761 		    can_resume_eth_tx, M_CXGBE, &eq->eq_lock, M_WAITOK);
4762 		if (rc != 0) {
4763 			CH_ERR(vi, "failed to allocate mp_ring for txq%d: %d\n",
4764 			    idx, rc);
4765 failed:
4766 			sysctl_remove_oid(oid, 1, 1);
4767 			return (rc);
4768 		}
4769 
4770 		rc = alloc_eq(sc, eq, &vi->ctx, oid);
4771 		if (rc) {
4772 			CH_ERR(vi, "failed to allocate txq%d: %d\n", idx, rc);
4773 			mp_ring_free(txq->r);
4774 			goto failed;
4775 		}
4776 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4777 		/* Can't fail after this point. */
4778 
4779 		TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
4780 		txq->ifp = vi->ifp;
4781 		txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
4782 		txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
4783 		    M_ZERO | M_WAITOK);
4784 
4785 		add_txq_sysctls(vi, &vi->ctx, oid, txq);
4786 	}
4787 
4788 	if (!(eq->flags & EQ_HW_ALLOCATED)) {
4789 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4790 		rc = alloc_eq_hwq(sc, vi, eq, idx);
4791 		if (rc != 0) {
4792 			CH_ERR(vi, "failed to create hw txq%d: %d\n", idx, rc);
4793 			return (rc);
4794 		}
4795 		MPASS(eq->flags & EQ_HW_ALLOCATED);
4796 		/* Can't fail after this point. */
4797 
4798 		if (idx == 0)
4799 			sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
4800 		else
4801 			KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
4802 			    ("eq_base mismatch"));
4803 		KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
4804 		    ("PF with non-zero eq_base"));
4805 
4806 		txp = &txq->txp;
4807 		MPASS(nitems(txp->mb) >= sc->params.max_pkts_per_eth_tx_pkts_wr);
4808 		txq->txp.max_npkt = min(nitems(txp->mb),
4809 		    sc->params.max_pkts_per_eth_tx_pkts_wr);
4810 		if (vi->flags & TX_USES_VM_WR && !(sc->flags & IS_VF))
4811 			txq->txp.max_npkt--;
4812 
4813 		if (vi->flags & TX_USES_VM_WR)
4814 			txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4815 			    V_TXPKT_INTF(pi->hw_port));
4816 		else
4817 			txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4818 			    V_TXPKT_INTF(pi->hw_port) | V_TXPKT_PF(sc->pf) |
4819 			    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
4820 
4821 		txq->tc_idx = -1;
4822 	}
4823 
4824 	return (0);
4825 }
4826 
4827 /*
4828  * Idempotent.
4829  */
4830 static void
free_txq(struct vi_info * vi,struct sge_txq * txq)4831 free_txq(struct vi_info *vi, struct sge_txq *txq)
4832 {
4833 	struct adapter *sc = vi->adapter;
4834 	struct sge_eq *eq = &txq->eq;
4835 
4836 	if (eq->flags & EQ_HW_ALLOCATED) {
4837 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4838 		free_eq_hwq(sc, NULL, eq);
4839 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4840 	}
4841 
4842 	if (eq->flags & EQ_SW_ALLOCATED) {
4843 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4844 		sglist_free(txq->gl);
4845 		free(txq->sdesc, M_CXGBE);
4846 		mp_ring_free(txq->r);
4847 		free_eq(sc, eq);
4848 		MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4849 		bzero(txq, sizeof(*txq));
4850 	}
4851 }
4852 
4853 static void
add_txq_sysctls(struct vi_info * vi,struct sysctl_ctx_list * ctx,struct sysctl_oid * oid,struct sge_txq * txq)4854 add_txq_sysctls(struct vi_info *vi, struct sysctl_ctx_list *ctx,
4855     struct sysctl_oid *oid, struct sge_txq *txq)
4856 {
4857 	struct adapter *sc;
4858 	struct sysctl_oid_list *children;
4859 
4860 	if (ctx == NULL || oid == NULL)
4861 		return;
4862 
4863 	sc = vi->adapter;
4864 	children = SYSCTL_CHILDREN(oid);
4865 
4866 	mp_ring_sysctls(txq->r, ctx, children);
4867 
4868 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tc",
4869 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, txq - sc->sge.txq,
4870 	    sysctl_tc, "I", "traffic class (-1 means none)");
4871 
4872 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
4873 	    &txq->txcsum, "# of times hardware assisted with checksum");
4874 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_insertion", CTLFLAG_RD,
4875 	    &txq->vlan_insertion, "# of times hardware inserted 802.1Q tag");
4876 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
4877 	    &txq->tso_wrs, "# of TSO work requests");
4878 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
4879 	    &txq->imm_wrs, "# of work requests with immediate data");
4880 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
4881 	    &txq->sgl_wrs, "# of work requests with direct SGL");
4882 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
4883 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
4884 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_wrs", CTLFLAG_RD,
4885 	    &txq->txpkts0_wrs, "# of txpkts (type 0) work requests");
4886 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_wrs", CTLFLAG_RD,
4887 	    &txq->txpkts1_wrs, "# of txpkts (type 1) work requests");
4888 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_pkts", CTLFLAG_RD,
4889 	    &txq->txpkts0_pkts,
4890 	    "# of frames tx'd using type0 txpkts work requests");
4891 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_pkts", CTLFLAG_RD,
4892 	    &txq->txpkts1_pkts,
4893 	    "# of frames tx'd using type1 txpkts work requests");
4894 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts_flush", CTLFLAG_RD,
4895 	    &txq->txpkts_flush,
4896 	    "# of times txpkts had to be flushed out by an egress-update");
4897 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "raw_wrs", CTLFLAG_RD,
4898 	    &txq->raw_wrs, "# of raw work requests (non-packets)");
4899 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_tso_wrs", CTLFLAG_RD,
4900 	    &txq->vxlan_tso_wrs, "# of VXLAN TSO work requests");
4901 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_txcsum", CTLFLAG_RD,
4902 	    &txq->vxlan_txcsum,
4903 	    "# of times hardware assisted with inner checksums (VXLAN)");
4904 
4905 #ifdef KERN_TLS
4906 	if (is_ktls(sc)) {
4907 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_records",
4908 		    CTLFLAG_RD, &txq->kern_tls_records,
4909 		    "# of NIC TLS records transmitted");
4910 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_short",
4911 		    CTLFLAG_RD, &txq->kern_tls_short,
4912 		    "# of short NIC TLS records transmitted");
4913 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_partial",
4914 		    CTLFLAG_RD, &txq->kern_tls_partial,
4915 		    "# of partial NIC TLS records transmitted");
4916 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_full",
4917 		    CTLFLAG_RD, &txq->kern_tls_full,
4918 		    "# of full NIC TLS records transmitted");
4919 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_octets",
4920 		    CTLFLAG_RD, &txq->kern_tls_octets,
4921 		    "# of payload octets in transmitted NIC TLS records");
4922 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_waste",
4923 		    CTLFLAG_RD, &txq->kern_tls_waste,
4924 		    "# of octets DMAd but not transmitted in NIC TLS records");
4925 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_header",
4926 		    CTLFLAG_RD, &txq->kern_tls_header,
4927 		    "# of NIC TLS header-only packets transmitted");
4928 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin_short",
4929 		    CTLFLAG_RD, &txq->kern_tls_fin_short,
4930 		    "# of NIC TLS padded FIN packets on short TLS records");
4931 		if (is_t6(sc)) {
4932 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4933 			    "kern_tls_options", CTLFLAG_RD,
4934 			    &txq->kern_tls_options,
4935 			    "# of NIC TLS options-only packets transmitted");
4936 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4937 			    "kern_tls_fin", CTLFLAG_RD, &txq->kern_tls_fin,
4938 			    "# of NIC TLS FIN-only packets transmitted");
4939 		} else {
4940 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4941 			    "kern_tls_ghash_received", CTLFLAG_RD,
4942 			    &txq->kern_tls_ghash_received,
4943 			    "# of NIC TLS GHASHes received");
4944 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4945 			    "kern_tls_ghash_requested", CTLFLAG_RD,
4946 			    &txq->kern_tls_ghash_requested,
4947 			    "# of NIC TLS GHASHes requested");
4948 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4949 			    "kern_tls_lso", CTLFLAG_RD,
4950 			    &txq->kern_tls_lso,
4951 			    "# of NIC TLS records transmitted using LSO");
4952 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4953 			    "kern_tls_partial_ghash", CTLFLAG_RD,
4954 			    &txq->kern_tls_partial_ghash,
4955 			    "# of NIC TLS records encrypted using a partial GHASH");
4956 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4957 			    "kern_tls_splitmode", CTLFLAG_RD,
4958 			    &txq->kern_tls_splitmode,
4959 			    "# of NIC TLS records using SplitMode");
4960 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4961 			    "kern_tls_trailer", CTLFLAG_RD,
4962 			    &txq->kern_tls_trailer,
4963 			    "# of NIC TLS trailer-only packets transmitted");
4964 		}
4965 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_cbc",
4966 		    CTLFLAG_RD, &txq->kern_tls_cbc,
4967 		    "# of NIC TLS sessions using AES-CBC");
4968 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_gcm",
4969 		    CTLFLAG_RD, &txq->kern_tls_gcm,
4970 		    "# of NIC TLS sessions using AES-GCM");
4971 	}
4972 #endif
4973 }
4974 
4975 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4976 /*
4977  * Idempotent.
4978  */
4979 static int
alloc_ofld_txq(struct vi_info * vi,struct sge_ofld_txq * ofld_txq,int idx)4980 alloc_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq, int idx)
4981 {
4982 	struct sysctl_oid *oid;
4983 	struct port_info *pi = vi->pi;
4984 	struct adapter *sc = vi->adapter;
4985 	struct sge_eq *eq = &ofld_txq->wrq.eq;
4986 	int rc, iqidx;
4987 	char name[16];
4988 
4989 	MPASS(idx >= 0);
4990 	MPASS(idx < vi->nofldtxq);
4991 
4992 	if (!(eq->flags & EQ_SW_ALLOCATED)) {
4993 		snprintf(name, sizeof(name), "%d", idx);
4994 		oid = SYSCTL_ADD_NODE(&vi->ctx,
4995 		    SYSCTL_CHILDREN(vi->ofld_txq_oid), OID_AUTO, name,
4996 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload tx queue");
4997 
4998 		snprintf(name, sizeof(name), "%s ofld_txq%d",
4999 		    device_get_nameunit(vi->dev), idx);
5000 		if (vi->nofldrxq > 0) {
5001 			iqidx = vi->first_ofld_rxq + (idx % vi->nofldrxq);
5002 			init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->port_id,
5003 			    &sc->sge.ofld_rxq[iqidx].iq, name);
5004 		} else {
5005 			iqidx = vi->first_rxq + (idx % vi->nrxq);
5006 			init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->port_id,
5007 			    &sc->sge.rxq[iqidx].iq, name);
5008 		}
5009 
5010 		rc = alloc_wrq(sc, vi, &ofld_txq->wrq, &vi->ctx, oid);
5011 		if (rc != 0) {
5012 			CH_ERR(vi, "failed to allocate ofld_txq%d: %d\n", idx,
5013 			    rc);
5014 			sysctl_remove_oid(oid, 1, 1);
5015 			return (rc);
5016 		}
5017 		MPASS(eq->flags & EQ_SW_ALLOCATED);
5018 		/* Can't fail after this point. */
5019 
5020 		ofld_txq->tx_iscsi_pdus = counter_u64_alloc(M_WAITOK);
5021 		ofld_txq->tx_iscsi_octets = counter_u64_alloc(M_WAITOK);
5022 		ofld_txq->tx_iscsi_iso_wrs = counter_u64_alloc(M_WAITOK);
5023 		ofld_txq->tx_nvme_pdus = counter_u64_alloc(M_WAITOK);
5024 		ofld_txq->tx_nvme_octets = counter_u64_alloc(M_WAITOK);
5025 		ofld_txq->tx_nvme_iso_wrs = counter_u64_alloc(M_WAITOK);
5026 		ofld_txq->tx_aio_jobs = counter_u64_alloc(M_WAITOK);
5027 		ofld_txq->tx_aio_octets = counter_u64_alloc(M_WAITOK);
5028 		ofld_txq->tx_toe_tls_records = counter_u64_alloc(M_WAITOK);
5029 		ofld_txq->tx_toe_tls_octets = counter_u64_alloc(M_WAITOK);
5030 		add_ofld_txq_sysctls(&vi->ctx, oid, ofld_txq);
5031 	}
5032 
5033 	if (!(eq->flags & EQ_HW_ALLOCATED)) {
5034 		MPASS(eq->flags & EQ_SW_ALLOCATED);
5035 		MPASS(ofld_txq->wrq.nwr_pending == 0);
5036 		MPASS(ofld_txq->wrq.ndesc_needed == 0);
5037 		rc = alloc_eq_hwq(sc, vi, eq, idx);
5038 		if (rc != 0) {
5039 			CH_ERR(vi, "failed to create hw ofld_txq%d: %d\n", idx,
5040 			    rc);
5041 			return (rc);
5042 		}
5043 		MPASS(eq->flags & EQ_HW_ALLOCATED);
5044 	}
5045 
5046 	return (0);
5047 }
5048 
5049 /*
5050  * Idempotent.
5051  */
5052 static void
free_ofld_txq(struct vi_info * vi,struct sge_ofld_txq * ofld_txq)5053 free_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq)
5054 {
5055 	struct adapter *sc = vi->adapter;
5056 	struct sge_eq *eq = &ofld_txq->wrq.eq;
5057 
5058 	if (eq->flags & EQ_HW_ALLOCATED) {
5059 		MPASS(eq->flags & EQ_SW_ALLOCATED);
5060 		free_eq_hwq(sc, NULL, eq);
5061 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
5062 	}
5063 
5064 	if (eq->flags & EQ_SW_ALLOCATED) {
5065 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
5066 		counter_u64_free(ofld_txq->tx_iscsi_pdus);
5067 		counter_u64_free(ofld_txq->tx_iscsi_octets);
5068 		counter_u64_free(ofld_txq->tx_iscsi_iso_wrs);
5069 		counter_u64_free(ofld_txq->tx_nvme_pdus);
5070 		counter_u64_free(ofld_txq->tx_nvme_octets);
5071 		counter_u64_free(ofld_txq->tx_nvme_iso_wrs);
5072 		counter_u64_free(ofld_txq->tx_aio_jobs);
5073 		counter_u64_free(ofld_txq->tx_aio_octets);
5074 		counter_u64_free(ofld_txq->tx_toe_tls_records);
5075 		counter_u64_free(ofld_txq->tx_toe_tls_octets);
5076 		free_wrq(sc, &ofld_txq->wrq);
5077 		MPASS(!(eq->flags & EQ_SW_ALLOCATED));
5078 		bzero(ofld_txq, sizeof(*ofld_txq));
5079 	}
5080 }
5081 
5082 static void
add_ofld_txq_sysctls(struct sysctl_ctx_list * ctx,struct sysctl_oid * oid,struct sge_ofld_txq * ofld_txq)5083 add_ofld_txq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
5084     struct sge_ofld_txq *ofld_txq)
5085 {
5086 	struct sysctl_oid_list *children;
5087 
5088 	if (ctx == NULL || oid == NULL)
5089 		return;
5090 
5091 	children = SYSCTL_CHILDREN(oid);
5092 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_pdus",
5093 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_pdus,
5094 	    "# of iSCSI PDUs transmitted");
5095 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_octets",
5096 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_octets,
5097 	    "# of payload octets in transmitted iSCSI PDUs");
5098 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_iso_wrs",
5099 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_iso_wrs,
5100 	    "# of iSCSI segmentation offload work requests");
5101 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_nvme_pdus",
5102 	    CTLFLAG_RD, &ofld_txq->tx_nvme_pdus,
5103 	    "# of NVMe PDUs transmitted");
5104 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_nvme_octets",
5105 	    CTLFLAG_RD, &ofld_txq->tx_nvme_octets,
5106 	    "# of payload octets in transmitted NVMe PDUs");
5107 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_nvme_iso_wrs",
5108 	    CTLFLAG_RD, &ofld_txq->tx_nvme_iso_wrs,
5109 	    "# of NVMe segmentation offload work requests");
5110 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_aio_jobs",
5111 	    CTLFLAG_RD, &ofld_txq->tx_aio_jobs,
5112 	    "# of zero-copy aio_write(2) jobs transmitted");
5113 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_aio_octets",
5114 	    CTLFLAG_RD, &ofld_txq->tx_aio_octets,
5115 	    "# of payload octets in transmitted zero-copy aio_write(2) jobs");
5116 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_records",
5117 	    CTLFLAG_RD, &ofld_txq->tx_toe_tls_records,
5118 	    "# of TOE TLS records transmitted");
5119 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_octets",
5120 	    CTLFLAG_RD, &ofld_txq->tx_toe_tls_octets,
5121 	    "# of payload octets in transmitted TOE TLS records");
5122 }
5123 #endif
5124 
5125 static void
oneseg_dma_callback(void * arg,bus_dma_segment_t * segs,int nseg,int error)5126 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
5127 {
5128 	bus_addr_t *ba = arg;
5129 
5130 	KASSERT(nseg == 1,
5131 	    ("%s meant for single segment mappings only.", __func__));
5132 
5133 	*ba = error ? 0 : segs->ds_addr;
5134 }
5135 
5136 static inline void
ring_fl_db(struct adapter * sc,struct sge_fl * fl)5137 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
5138 {
5139 	uint32_t n, v;
5140 
5141 	n = IDXDIFF(fl->pidx >> 3, fl->dbidx, fl->sidx);
5142 	MPASS(n > 0);
5143 
5144 	wmb();
5145 	v = fl->dbval | V_PIDX(n);
5146 	if (fl->udb)
5147 		*fl->udb = htole32(v);
5148 	else
5149 		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
5150 	IDXINCR(fl->dbidx, n, fl->sidx);
5151 }
5152 
5153 /*
5154  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
5155  * recycled do not count towards this allocation budget.
5156  *
5157  * Returns non-zero to indicate that this freelist should be added to the list
5158  * of starving freelists.
5159  */
5160 static int
refill_fl(struct adapter * sc,struct sge_fl * fl,int n)5161 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
5162 {
5163 	__be64 *d;
5164 	struct fl_sdesc *sd;
5165 	uintptr_t pa;
5166 	caddr_t cl;
5167 	struct rx_buf_info *rxb;
5168 	struct cluster_metadata *clm;
5169 	uint16_t max_pidx, zidx = fl->zidx;
5170 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
5171 
5172 	FL_LOCK_ASSERT_OWNED(fl);
5173 
5174 	/*
5175 	 * We always stop at the beginning of the hardware descriptor that's just
5176 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
5177 	 * which would mean an empty freelist to the chip.
5178 	 */
5179 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
5180 	if (fl->pidx == max_pidx * 8)
5181 		return (0);
5182 
5183 	d = &fl->desc[fl->pidx];
5184 	sd = &fl->sdesc[fl->pidx];
5185 	rxb = &sc->sge.rx_buf_info[zidx];
5186 
5187 	while (n > 0) {
5188 
5189 		if (sd->cl != NULL) {
5190 
5191 			if (sd->nmbuf == 0) {
5192 				/*
5193 				 * Fast recycle without involving any atomics on
5194 				 * the cluster's metadata (if the cluster has
5195 				 * metadata).  This happens when all frames
5196 				 * received in the cluster were small enough to
5197 				 * fit within a single mbuf each.
5198 				 */
5199 				fl->cl_fast_recycled++;
5200 				goto recycled;
5201 			}
5202 
5203 			/*
5204 			 * Cluster is guaranteed to have metadata.  Clusters
5205 			 * without metadata always take the fast recycle path
5206 			 * when they're recycled.
5207 			 */
5208 			clm = cl_metadata(sd);
5209 			MPASS(clm != NULL);
5210 
5211 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
5212 				fl->cl_recycled++;
5213 				counter_u64_add(extfree_rels, 1);
5214 				goto recycled;
5215 			}
5216 			sd->cl = NULL;	/* gave up my reference */
5217 		}
5218 		MPASS(sd->cl == NULL);
5219 		cl = uma_zalloc(rxb->zone, M_NOWAIT);
5220 		if (__predict_false(cl == NULL)) {
5221 			if (zidx != fl->safe_zidx) {
5222 				zidx = fl->safe_zidx;
5223 				rxb = &sc->sge.rx_buf_info[zidx];
5224 				cl = uma_zalloc(rxb->zone, M_NOWAIT);
5225 			}
5226 			if (cl == NULL)
5227 				break;
5228 		}
5229 		fl->cl_allocated++;
5230 		n--;
5231 
5232 		pa = pmap_kextract((vm_offset_t)cl);
5233 		sd->cl = cl;
5234 		sd->zidx = zidx;
5235 
5236 		if (fl->flags & FL_BUF_PACKING) {
5237 			*d = htobe64(pa | rxb->hwidx2);
5238 			sd->moff = rxb->size2;
5239 		} else {
5240 			*d = htobe64(pa | rxb->hwidx1);
5241 			sd->moff = 0;
5242 		}
5243 recycled:
5244 		sd->nmbuf = 0;
5245 		d++;
5246 		sd++;
5247 		if (__predict_false((++fl->pidx & 7) == 0)) {
5248 			uint16_t pidx = fl->pidx >> 3;
5249 
5250 			if (__predict_false(pidx == fl->sidx)) {
5251 				fl->pidx = 0;
5252 				pidx = 0;
5253 				sd = fl->sdesc;
5254 				d = fl->desc;
5255 			}
5256 			if (n < 8 || pidx == max_pidx)
5257 				break;
5258 
5259 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
5260 				ring_fl_db(sc, fl);
5261 		}
5262 	}
5263 
5264 	if ((fl->pidx >> 3) != fl->dbidx)
5265 		ring_fl_db(sc, fl);
5266 
5267 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
5268 }
5269 
5270 /*
5271  * Attempt to refill all starving freelists.
5272  */
5273 static void
refill_sfl(void * arg)5274 refill_sfl(void *arg)
5275 {
5276 	struct adapter *sc = arg;
5277 	struct sge_fl *fl, *fl_temp;
5278 
5279 	mtx_assert(&sc->sfl_lock, MA_OWNED);
5280 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
5281 		FL_LOCK(fl);
5282 		refill_fl(sc, fl, 64);
5283 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
5284 			TAILQ_REMOVE(&sc->sfl, fl, link);
5285 			fl->flags &= ~FL_STARVING;
5286 		}
5287 		FL_UNLOCK(fl);
5288 	}
5289 
5290 	if (!TAILQ_EMPTY(&sc->sfl))
5291 		callout_schedule(&sc->sfl_callout, hz / 5);
5292 }
5293 
5294 /*
5295  * Release the driver's reference on all buffers in the given freelist.  Buffers
5296  * with kernel references cannot be freed and will prevent the driver from being
5297  * unloaded safely.
5298  */
5299 void
free_fl_buffers(struct adapter * sc,struct sge_fl * fl)5300 free_fl_buffers(struct adapter *sc, struct sge_fl *fl)
5301 {
5302 	struct fl_sdesc *sd;
5303 	struct cluster_metadata *clm;
5304 	int i;
5305 
5306 	sd = fl->sdesc;
5307 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
5308 		if (sd->cl == NULL)
5309 			continue;
5310 
5311 		if (sd->nmbuf == 0)
5312 			uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone, sd->cl);
5313 		else if (fl->flags & FL_BUF_PACKING) {
5314 			clm = cl_metadata(sd);
5315 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
5316 				uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone,
5317 				    sd->cl);
5318 				counter_u64_add(extfree_rels, 1);
5319 			}
5320 		}
5321 		sd->cl = NULL;
5322 	}
5323 
5324 	if (fl->flags & FL_BUF_RESUME) {
5325 		m_freem(fl->m0);
5326 		fl->flags &= ~FL_BUF_RESUME;
5327 	}
5328 }
5329 
5330 static inline void
get_pkt_gl(struct mbuf * m,struct sglist * gl)5331 get_pkt_gl(struct mbuf *m, struct sglist *gl)
5332 {
5333 	int rc;
5334 
5335 	M_ASSERTPKTHDR(m);
5336 
5337 	sglist_reset(gl);
5338 	rc = sglist_append_mbuf(gl, m);
5339 	if (__predict_false(rc != 0)) {
5340 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
5341 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
5342 	}
5343 
5344 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
5345 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
5346 	    mbuf_nsegs(m), gl->sg_nseg));
5347 #if 0	/* vm_wr not readily available here. */
5348 	KASSERT(gl->sg_nseg > 0 && gl->sg_nseg <= max_nsegs_allowed(m, vm_wr),
5349 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
5350 		gl->sg_nseg, max_nsegs_allowed(m, vm_wr)));
5351 #endif
5352 }
5353 
5354 /*
5355  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
5356  */
5357 static inline u_int
txpkt_len16(u_int nsegs,const u_int extra)5358 txpkt_len16(u_int nsegs, const u_int extra)
5359 {
5360 	u_int n;
5361 
5362 	MPASS(nsegs > 0);
5363 
5364 	nsegs--; /* first segment is part of ulptx_sgl */
5365 	n = extra + sizeof(struct fw_eth_tx_pkt_wr) +
5366 	    sizeof(struct cpl_tx_pkt_core) +
5367 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5368 
5369 	return (howmany(n, 16));
5370 }
5371 
5372 /*
5373  * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
5374  * request header.
5375  */
5376 static inline u_int
txpkt_vm_len16(u_int nsegs,const u_int extra)5377 txpkt_vm_len16(u_int nsegs, const u_int extra)
5378 {
5379 	u_int n;
5380 
5381 	MPASS(nsegs > 0);
5382 
5383 	nsegs--; /* first segment is part of ulptx_sgl */
5384 	n = extra + sizeof(struct fw_eth_tx_pkt_vm_wr) +
5385 	    sizeof(struct cpl_tx_pkt_core) +
5386 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5387 
5388 	return (howmany(n, 16));
5389 }
5390 
5391 static inline void
calculate_mbuf_len16(struct mbuf * m,bool vm_wr)5392 calculate_mbuf_len16(struct mbuf *m, bool vm_wr)
5393 {
5394 	const int lso = sizeof(struct cpl_tx_pkt_lso_core);
5395 	const int tnl_lso = sizeof(struct cpl_tx_tnl_lso);
5396 
5397 	if (vm_wr) {
5398 		if (needs_tso(m))
5399 			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), lso));
5400 		else
5401 			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), 0));
5402 		return;
5403 	}
5404 
5405 	if (needs_tso(m)) {
5406 		if (needs_vxlan_tso(m))
5407 			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), tnl_lso));
5408 		else
5409 			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), lso));
5410 	} else
5411 		set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), 0));
5412 }
5413 
5414 /*
5415  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
5416  * request header.
5417  */
5418 static inline u_int
txpkts0_len16(u_int nsegs)5419 txpkts0_len16(u_int nsegs)
5420 {
5421 	u_int n;
5422 
5423 	MPASS(nsegs > 0);
5424 
5425 	nsegs--; /* first segment is part of ulptx_sgl */
5426 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
5427 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
5428 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
5429 
5430 	return (howmany(n, 16));
5431 }
5432 
5433 /*
5434  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
5435  * request header.
5436  */
5437 static inline u_int
txpkts1_len16(void)5438 txpkts1_len16(void)
5439 {
5440 	u_int n;
5441 
5442 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
5443 
5444 	return (howmany(n, 16));
5445 }
5446 
5447 static inline u_int
imm_payload(u_int ndesc)5448 imm_payload(u_int ndesc)
5449 {
5450 	u_int n;
5451 
5452 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
5453 	    sizeof(struct cpl_tx_pkt_core);
5454 
5455 	return (n);
5456 }
5457 
5458 static inline uint64_t
csum_to_ctrl(struct adapter * sc,struct mbuf * m)5459 csum_to_ctrl(struct adapter *sc, struct mbuf *m)
5460 {
5461 	uint64_t ctrl;
5462 	int csum_type, l2hlen, l3hlen;
5463 	int x, y;
5464 	static const int csum_types[3][2] = {
5465 		{TX_CSUM_TCPIP, TX_CSUM_TCPIP6},
5466 		{TX_CSUM_UDPIP, TX_CSUM_UDPIP6},
5467 		{TX_CSUM_IP, 0}
5468 	};
5469 
5470 	M_ASSERTPKTHDR(m);
5471 
5472 	if (!needs_hwcsum(m))
5473 		return (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS);
5474 
5475 	MPASS(m->m_pkthdr.l2hlen >= ETHER_HDR_LEN);
5476 	MPASS(m->m_pkthdr.l3hlen >= sizeof(struct ip));
5477 
5478 	if (needs_vxlan_csum(m)) {
5479 		MPASS(m->m_pkthdr.l4hlen > 0);
5480 		MPASS(m->m_pkthdr.l5hlen > 0);
5481 		MPASS(m->m_pkthdr.inner_l2hlen >= ETHER_HDR_LEN);
5482 		MPASS(m->m_pkthdr.inner_l3hlen >= sizeof(struct ip));
5483 
5484 		l2hlen = m->m_pkthdr.l2hlen + m->m_pkthdr.l3hlen +
5485 		    m->m_pkthdr.l4hlen + m->m_pkthdr.l5hlen +
5486 		    m->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN;
5487 		l3hlen = m->m_pkthdr.inner_l3hlen;
5488 	} else {
5489 		l2hlen = m->m_pkthdr.l2hlen - ETHER_HDR_LEN;
5490 		l3hlen = m->m_pkthdr.l3hlen;
5491 	}
5492 
5493 	ctrl = 0;
5494 	if (!needs_l3_csum(m))
5495 		ctrl |= F_TXPKT_IPCSUM_DIS;
5496 
5497 	if (m->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_INNER_IP_TCP |
5498 	    CSUM_IP6_TCP | CSUM_INNER_IP6_TCP))
5499 		x = 0;	/* TCP */
5500 	else if (m->m_pkthdr.csum_flags & (CSUM_IP_UDP | CSUM_INNER_IP_UDP |
5501 	    CSUM_IP6_UDP | CSUM_INNER_IP6_UDP))
5502 		x = 1;	/* UDP */
5503 	else
5504 		x = 2;
5505 
5506 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_IP_TCP | CSUM_IP_UDP |
5507 	    CSUM_INNER_IP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_UDP))
5508 		y = 0;	/* IPv4 */
5509 	else {
5510 		MPASS(m->m_pkthdr.csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP |
5511 		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_UDP));
5512 		y = 1;	/* IPv6 */
5513 	}
5514 	/*
5515 	 * needs_hwcsum returned true earlier so there must be some kind of
5516 	 * checksum to calculate.
5517 	 */
5518 	csum_type = csum_types[x][y];
5519 	MPASS(csum_type != 0);
5520 	if (csum_type == TX_CSUM_IP)
5521 		ctrl |= F_TXPKT_L4CSUM_DIS;
5522 	ctrl |= V_TXPKT_CSUM_TYPE(csum_type) | V_TXPKT_IPHDR_LEN(l3hlen);
5523 	if (chip_id(sc) <= CHELSIO_T5)
5524 		ctrl |= V_TXPKT_ETHHDR_LEN(l2hlen);
5525 	else
5526 		ctrl |= V_T6_TXPKT_ETHHDR_LEN(l2hlen);
5527 
5528 	return (ctrl);
5529 }
5530 
5531 static inline void *
write_lso_cpl(void * cpl,struct mbuf * m0)5532 write_lso_cpl(void *cpl, struct mbuf *m0)
5533 {
5534 	struct cpl_tx_pkt_lso_core *lso;
5535 	uint32_t ctrl;
5536 
5537 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5538 	    m0->m_pkthdr.l4hlen > 0,
5539 	    ("%s: mbuf %p needs TSO but missing header lengths",
5540 		__func__, m0));
5541 
5542 	ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
5543 	    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
5544 	    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5545 	    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
5546 	    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
5547 	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5548 		ctrl |= F_LSO_IPV6;
5549 
5550 	lso = cpl;
5551 	lso->lso_ctrl = htobe32(ctrl);
5552 	lso->ipid_ofst = htobe16(0);
5553 	lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
5554 	lso->seqno_offset = htobe32(0);
5555 	lso->len = htobe32(m0->m_pkthdr.len);
5556 
5557 	return (lso + 1);
5558 }
5559 
5560 static void *
write_tnl_lso_cpl(void * cpl,struct mbuf * m0)5561 write_tnl_lso_cpl(void *cpl, struct mbuf *m0)
5562 {
5563 	struct cpl_tx_tnl_lso *tnl_lso = cpl;
5564 	uint32_t ctrl;
5565 
5566 	KASSERT(m0->m_pkthdr.inner_l2hlen > 0 &&
5567 	    m0->m_pkthdr.inner_l3hlen > 0 && m0->m_pkthdr.inner_l4hlen > 0 &&
5568 	    m0->m_pkthdr.inner_l5hlen > 0,
5569 	    ("%s: mbuf %p needs VXLAN_TSO but missing inner header lengths",
5570 		__func__, m0));
5571 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5572 	    m0->m_pkthdr.l4hlen > 0 && m0->m_pkthdr.l5hlen > 0,
5573 	    ("%s: mbuf %p needs VXLAN_TSO but missing outer header lengths",
5574 		__func__, m0));
5575 
5576 	/* Outer headers. */
5577 	ctrl = V_CPL_TX_TNL_LSO_OPCODE(CPL_TX_TNL_LSO) |
5578 	    F_CPL_TX_TNL_LSO_FIRST | F_CPL_TX_TNL_LSO_LAST |
5579 	    V_CPL_TX_TNL_LSO_ETHHDRLENOUT(
5580 		(m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5581 	    V_CPL_TX_TNL_LSO_IPHDRLENOUT(m0->m_pkthdr.l3hlen >> 2) |
5582 	    F_CPL_TX_TNL_LSO_IPLENSETOUT;
5583 	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5584 		ctrl |= F_CPL_TX_TNL_LSO_IPV6OUT;
5585 	else {
5586 		ctrl |= F_CPL_TX_TNL_LSO_IPHDRCHKOUT |
5587 		    F_CPL_TX_TNL_LSO_IPIDINCOUT;
5588 	}
5589 	tnl_lso->op_to_IpIdSplitOut = htobe32(ctrl);
5590 	tnl_lso->IpIdOffsetOut = 0;
5591 	tnl_lso->UdpLenSetOut_to_TnlHdrLen =
5592 		htobe16(F_CPL_TX_TNL_LSO_UDPCHKCLROUT |
5593 		    F_CPL_TX_TNL_LSO_UDPLENSETOUT |
5594 		    V_CPL_TX_TNL_LSO_TNLHDRLEN(m0->m_pkthdr.l2hlen +
5595 			m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen +
5596 			m0->m_pkthdr.l5hlen) |
5597 		    V_CPL_TX_TNL_LSO_TNLTYPE(TX_TNL_TYPE_VXLAN));
5598 	tnl_lso->ipsecen_to_rocev2 = 0;
5599 	tnl_lso->roce_eth = 0;
5600 
5601 	/* Inner headers. */
5602 	ctrl = V_CPL_TX_TNL_LSO_ETHHDRLEN(
5603 	    (m0->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN) >> 2) |
5604 	    V_CPL_TX_TNL_LSO_IPHDRLEN(m0->m_pkthdr.inner_l3hlen >> 2) |
5605 	    V_CPL_TX_TNL_LSO_TCPHDRLEN(m0->m_pkthdr.inner_l4hlen >> 2);
5606 	if (m0->m_pkthdr.inner_l3hlen == sizeof(struct ip6_hdr))
5607 		ctrl |= F_CPL_TX_TNL_LSO_IPV6;
5608 	tnl_lso->Flow_to_TcpHdrLen = htobe32(ctrl);
5609 	tnl_lso->IpIdOffset = 0;
5610 	tnl_lso->IpIdSplit_to_Mss =
5611 	    htobe16(V_CPL_TX_TNL_LSO_MSS(m0->m_pkthdr.tso_segsz));
5612 	tnl_lso->TCPSeqOffset = 0;
5613 	tnl_lso->EthLenOffset_Size =
5614 	    htobe32(V_CPL_TX_TNL_LSO_SIZE(m0->m_pkthdr.len));
5615 
5616 	return (tnl_lso + 1);
5617 }
5618 
5619 #define VM_TX_L2HDR_LEN	16	/* ethmacdst to vlantci */
5620 
5621 /*
5622  * Write a VM txpkt WR for this packet to the hardware descriptors, update the
5623  * software descriptor, and advance the pidx.  It is guaranteed that enough
5624  * descriptors are available.
5625  *
5626  * The return value is the # of hardware descriptors used.
5627  */
5628 static u_int
write_txpkt_vm_wr(struct adapter * sc,struct sge_txq * txq,struct mbuf * m0)5629 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0)
5630 {
5631 	struct sge_eq *eq;
5632 	struct fw_eth_tx_pkt_vm_wr *wr;
5633 	struct tx_sdesc *txsd;
5634 	struct cpl_tx_pkt_core *cpl;
5635 	uint32_t ctrl;	/* used in many unrelated places */
5636 	uint64_t ctrl1;
5637 	int len16, ndesc, pktlen;
5638 	caddr_t dst;
5639 
5640 	TXQ_LOCK_ASSERT_OWNED(txq);
5641 	M_ASSERTPKTHDR(m0);
5642 
5643 	len16 = mbuf_len16(m0);
5644 	pktlen = m0->m_pkthdr.len;
5645 	ctrl = sizeof(struct cpl_tx_pkt_core);
5646 	if (needs_tso(m0))
5647 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5648 	ndesc = tx_len16_to_desc(len16);
5649 
5650 	/* Firmware work request header */
5651 	eq = &txq->eq;
5652 	wr = (void *)&eq->desc[eq->pidx];
5653 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
5654 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5655 
5656 	ctrl = V_FW_WR_LEN16(len16);
5657 	wr->equiq_to_len16 = htobe32(ctrl);
5658 	wr->r3[0] = 0;
5659 	wr->r3[1] = 0;
5660 
5661 	/*
5662 	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
5663 	 * vlantci is ignored unless the ethtype is 0x8100, so it's
5664 	 * simpler to always copy it rather than making it
5665 	 * conditional.  Also, it seems that we do not have to set
5666 	 * vlantci or fake the ethtype when doing VLAN tag insertion.
5667 	 */
5668 	m_copydata(m0, 0, VM_TX_L2HDR_LEN, wr->ethmacdst);
5669 
5670 	if (needs_tso(m0)) {
5671 		cpl = write_lso_cpl(wr + 1, m0);
5672 		txq->tso_wrs++;
5673 	} else
5674 		cpl = (void *)(wr + 1);
5675 
5676 	/* Checksum offload */
5677 	ctrl1 = csum_to_ctrl(sc, m0);
5678 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5679 		txq->txcsum++;	/* some hardware assistance provided */
5680 
5681 	/* VLAN tag insertion */
5682 	if (needs_vlan_insertion(m0)) {
5683 		ctrl1 |= F_TXPKT_VLAN_VLD |
5684 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5685 		txq->vlan_insertion++;
5686 	} else if (sc->vlan_id)
5687 		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(sc->vlan_id);
5688 
5689 	/* CPL header */
5690 	cpl->ctrl0 = txq->cpl_ctrl0;
5691 	cpl->pack = 0;
5692 	cpl->len = htobe16(pktlen);
5693 	cpl->ctrl1 = htobe64(ctrl1);
5694 
5695 	/* SGL */
5696 	dst = (void *)(cpl + 1);
5697 
5698 	/*
5699 	 * A packet using TSO will use up an entire descriptor for the
5700 	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
5701 	 * If this descriptor is the last descriptor in the ring, wrap
5702 	 * around to the front of the ring explicitly for the start of
5703 	 * the sgl.
5704 	 */
5705 	if (dst == (void *)&eq->desc[eq->sidx]) {
5706 		dst = (void *)&eq->desc[0];
5707 		write_gl_to_txd(txq, m0, &dst, 0);
5708 	} else
5709 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5710 	txq->sgl_wrs++;
5711 	txq->txpkt_wrs++;
5712 
5713 	txsd = &txq->sdesc[eq->pidx];
5714 	txsd->m = m0;
5715 	txsd->desc_used = ndesc;
5716 
5717 	return (ndesc);
5718 }
5719 
5720 /*
5721  * Write a raw WR to the hardware descriptors, update the software
5722  * descriptor, and advance the pidx.  It is guaranteed that enough
5723  * descriptors are available.
5724  *
5725  * The return value is the # of hardware descriptors used.
5726  */
5727 static u_int
write_raw_wr(struct sge_txq * txq,void * wr,struct mbuf * m0,u_int available)5728 write_raw_wr(struct sge_txq *txq, void *wr, struct mbuf *m0, u_int available)
5729 {
5730 	struct sge_eq *eq = &txq->eq;
5731 	struct tx_sdesc *txsd;
5732 	struct mbuf *m;
5733 	caddr_t dst;
5734 	int len16, ndesc;
5735 
5736 	len16 = mbuf_len16(m0);
5737 	ndesc = tx_len16_to_desc(len16);
5738 	MPASS(ndesc <= available);
5739 
5740 	dst = wr;
5741 	for (m = m0; m != NULL; m = m->m_next)
5742 		copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5743 
5744 	txq->raw_wrs++;
5745 
5746 	txsd = &txq->sdesc[eq->pidx];
5747 	txsd->m = m0;
5748 	txsd->desc_used = ndesc;
5749 
5750 	return (ndesc);
5751 }
5752 
5753 /*
5754  * Write a txpkt WR for this packet to the hardware descriptors, update the
5755  * software descriptor, and advance the pidx.  It is guaranteed that enough
5756  * descriptors are available.
5757  *
5758  * The return value is the # of hardware descriptors used.
5759  */
5760 static u_int
write_txpkt_wr(struct adapter * sc,struct sge_txq * txq,struct mbuf * m0,u_int available)5761 write_txpkt_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0,
5762     u_int available)
5763 {
5764 	struct sge_eq *eq;
5765 	struct fw_eth_tx_pkt_wr *wr;
5766 	struct tx_sdesc *txsd;
5767 	struct cpl_tx_pkt_core *cpl;
5768 	uint32_t ctrl;	/* used in many unrelated places */
5769 	uint64_t ctrl1;
5770 	int len16, ndesc, pktlen, nsegs;
5771 	caddr_t dst;
5772 
5773 	TXQ_LOCK_ASSERT_OWNED(txq);
5774 	M_ASSERTPKTHDR(m0);
5775 
5776 	len16 = mbuf_len16(m0);
5777 	nsegs = mbuf_nsegs(m0);
5778 	pktlen = m0->m_pkthdr.len;
5779 	ctrl = sizeof(struct cpl_tx_pkt_core);
5780 	if (needs_tso(m0)) {
5781 		if (needs_vxlan_tso(m0))
5782 			ctrl += sizeof(struct cpl_tx_tnl_lso);
5783 		else
5784 			ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5785 	} else if (!(mbuf_cflags(m0) & MC_NOMAP) && pktlen <= imm_payload(2) &&
5786 	    available >= 2) {
5787 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
5788 		ctrl += pktlen;
5789 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
5790 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
5791 		nsegs = 0;
5792 	}
5793 	ndesc = tx_len16_to_desc(len16);
5794 	MPASS(ndesc <= available);
5795 
5796 	/* Firmware work request header */
5797 	eq = &txq->eq;
5798 	wr = (void *)&eq->desc[eq->pidx];
5799 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
5800 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5801 
5802 	ctrl = V_FW_WR_LEN16(len16);
5803 	wr->equiq_to_len16 = htobe32(ctrl);
5804 	wr->r3 = 0;
5805 
5806 	if (needs_tso(m0)) {
5807 		if (needs_vxlan_tso(m0)) {
5808 			cpl = write_tnl_lso_cpl(wr + 1, m0);
5809 			txq->vxlan_tso_wrs++;
5810 		} else {
5811 			cpl = write_lso_cpl(wr + 1, m0);
5812 			txq->tso_wrs++;
5813 		}
5814 	} else
5815 		cpl = (void *)(wr + 1);
5816 
5817 	/* Checksum offload */
5818 	ctrl1 = csum_to_ctrl(sc, m0);
5819 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5820 		/* some hardware assistance provided */
5821 		if (needs_vxlan_csum(m0))
5822 			txq->vxlan_txcsum++;
5823 		else
5824 			txq->txcsum++;
5825 	}
5826 
5827 	/* VLAN tag insertion */
5828 	if (needs_vlan_insertion(m0)) {
5829 		ctrl1 |= F_TXPKT_VLAN_VLD |
5830 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5831 		txq->vlan_insertion++;
5832 	}
5833 
5834 	/* CPL header */
5835 	cpl->ctrl0 = txq->cpl_ctrl0;
5836 	cpl->pack = 0;
5837 	cpl->len = htobe16(pktlen);
5838 	cpl->ctrl1 = htobe64(ctrl1);
5839 
5840 	/* SGL */
5841 	dst = (void *)(cpl + 1);
5842 	if (__predict_false((uintptr_t)dst == (uintptr_t)&eq->desc[eq->sidx]))
5843 		dst = (caddr_t)&eq->desc[0];
5844 	if (nsegs > 0) {
5845 
5846 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5847 		txq->sgl_wrs++;
5848 	} else {
5849 		struct mbuf *m;
5850 
5851 		for (m = m0; m != NULL; m = m->m_next) {
5852 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5853 #ifdef INVARIANTS
5854 			pktlen -= m->m_len;
5855 #endif
5856 		}
5857 #ifdef INVARIANTS
5858 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
5859 #endif
5860 		txq->imm_wrs++;
5861 	}
5862 
5863 	txq->txpkt_wrs++;
5864 
5865 	txsd = &txq->sdesc[eq->pidx];
5866 	txsd->m = m0;
5867 	txsd->desc_used = ndesc;
5868 
5869 	return (ndesc);
5870 }
5871 
5872 static inline bool
cmp_l2hdr(struct txpkts * txp,struct mbuf * m)5873 cmp_l2hdr(struct txpkts *txp, struct mbuf *m)
5874 {
5875 	int len;
5876 
5877 	MPASS(txp->npkt > 0);
5878 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5879 
5880 	if (txp->ethtype == be16toh(ETHERTYPE_VLAN))
5881 		len = VM_TX_L2HDR_LEN;
5882 	else
5883 		len = sizeof(struct ether_header);
5884 
5885 	return (memcmp(m->m_data, &txp->ethmacdst[0], len) != 0);
5886 }
5887 
5888 static inline void
save_l2hdr(struct txpkts * txp,struct mbuf * m)5889 save_l2hdr(struct txpkts *txp, struct mbuf *m)
5890 {
5891 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5892 
5893 	memcpy(&txp->ethmacdst[0], mtod(m, const void *), VM_TX_L2HDR_LEN);
5894 }
5895 
5896 static int
add_to_txpkts_vf(struct adapter * sc,struct sge_txq * txq,struct mbuf * m,int avail,bool * send)5897 add_to_txpkts_vf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5898     int avail, bool *send)
5899 {
5900 	struct txpkts *txp = &txq->txp;
5901 
5902 	/* Cannot have TSO and coalesce at the same time. */
5903 	if (cannot_use_txpkts(m)) {
5904 cannot_coalesce:
5905 		*send = txp->npkt > 0;
5906 		return (EINVAL);
5907 	}
5908 
5909 	/* VF allows coalescing of type 1 (1 GL) only */
5910 	if (mbuf_nsegs(m) > 1)
5911 		goto cannot_coalesce;
5912 
5913 	*send = false;
5914 	if (txp->npkt > 0) {
5915 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5916 		MPASS(txp->npkt < txp->max_npkt);
5917 		MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5918 
5919 		if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) > avail) {
5920 retry_after_send:
5921 			*send = true;
5922 			return (EAGAIN);
5923 		}
5924 		if (m->m_pkthdr.len + txp->plen > 65535)
5925 			goto retry_after_send;
5926 		if (cmp_l2hdr(txp, m))
5927 			goto retry_after_send;
5928 
5929 		txp->len16 += txpkts1_len16();
5930 		txp->plen += m->m_pkthdr.len;
5931 		txp->mb[txp->npkt++] = m;
5932 		if (txp->npkt == txp->max_npkt)
5933 			*send = true;
5934 	} else {
5935 		txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_vm_wr), 16) +
5936 		    txpkts1_len16();
5937 		if (tx_len16_to_desc(txp->len16) > avail)
5938 			goto cannot_coalesce;
5939 		txp->npkt = 1;
5940 		txp->wr_type = 1;
5941 		txp->plen = m->m_pkthdr.len;
5942 		txp->mb[0] = m;
5943 		save_l2hdr(txp, m);
5944 	}
5945 	return (0);
5946 }
5947 
5948 static int
add_to_txpkts_pf(struct adapter * sc,struct sge_txq * txq,struct mbuf * m,int avail,bool * send)5949 add_to_txpkts_pf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5950     int avail, bool *send)
5951 {
5952 	struct txpkts *txp = &txq->txp;
5953 	int nsegs;
5954 
5955 	MPASS(!(sc->flags & IS_VF));
5956 
5957 	/* Cannot have TSO and coalesce at the same time. */
5958 	if (cannot_use_txpkts(m)) {
5959 cannot_coalesce:
5960 		*send = txp->npkt > 0;
5961 		return (EINVAL);
5962 	}
5963 
5964 	*send = false;
5965 	nsegs = mbuf_nsegs(m);
5966 	if (txp->npkt == 0) {
5967 		if (m->m_pkthdr.len > 65535)
5968 			goto cannot_coalesce;
5969 		if (nsegs > 1) {
5970 			txp->wr_type = 0;
5971 			txp->len16 =
5972 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5973 			    txpkts0_len16(nsegs);
5974 		} else {
5975 			txp->wr_type = 1;
5976 			txp->len16 =
5977 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5978 			    txpkts1_len16();
5979 		}
5980 		if (tx_len16_to_desc(txp->len16) > avail)
5981 			goto cannot_coalesce;
5982 		txp->npkt = 1;
5983 		txp->plen = m->m_pkthdr.len;
5984 		txp->mb[0] = m;
5985 	} else {
5986 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5987 		MPASS(txp->npkt < txp->max_npkt);
5988 
5989 		if (m->m_pkthdr.len + txp->plen > 65535) {
5990 retry_after_send:
5991 			*send = true;
5992 			return (EAGAIN);
5993 		}
5994 
5995 		MPASS(txp->wr_type == 0 || txp->wr_type == 1);
5996 		if (txp->wr_type == 0) {
5997 			if (tx_len16_to_desc(txp->len16 +
5998 			    txpkts0_len16(nsegs)) > min(avail, SGE_MAX_WR_NDESC))
5999 				goto retry_after_send;
6000 			txp->len16 += txpkts0_len16(nsegs);
6001 		} else {
6002 			if (nsegs != 1)
6003 				goto retry_after_send;
6004 			if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) >
6005 			    avail)
6006 				goto retry_after_send;
6007 			txp->len16 += txpkts1_len16();
6008 		}
6009 
6010 		txp->plen += m->m_pkthdr.len;
6011 		txp->mb[txp->npkt++] = m;
6012 		if (txp->npkt == txp->max_npkt)
6013 			*send = true;
6014 	}
6015 	return (0);
6016 }
6017 
6018 /*
6019  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
6020  * the software descriptor, and advance the pidx.  It is guaranteed that enough
6021  * descriptors are available.
6022  *
6023  * The return value is the # of hardware descriptors used.
6024  */
6025 static u_int
write_txpkts_wr(struct adapter * sc,struct sge_txq * txq)6026 write_txpkts_wr(struct adapter *sc, struct sge_txq *txq)
6027 {
6028 	const struct txpkts *txp = &txq->txp;
6029 	struct sge_eq *eq = &txq->eq;
6030 	struct fw_eth_tx_pkts_wr *wr;
6031 	struct tx_sdesc *txsd;
6032 	struct cpl_tx_pkt_core *cpl;
6033 	uint64_t ctrl1;
6034 	int ndesc, i, checkwrap;
6035 	struct mbuf *m, *last;
6036 	void *flitp;
6037 
6038 	TXQ_LOCK_ASSERT_OWNED(txq);
6039 	MPASS(txp->npkt > 0);
6040 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
6041 
6042 	wr = (void *)&eq->desc[eq->pidx];
6043 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
6044 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
6045 	wr->plen = htobe16(txp->plen);
6046 	wr->npkt = txp->npkt;
6047 	wr->r3 = 0;
6048 	wr->type = txp->wr_type;
6049 	flitp = wr + 1;
6050 
6051 	/*
6052 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
6053 	 * set then we know the WR is going to wrap around somewhere.  We'll
6054 	 * check for that at appropriate points.
6055 	 */
6056 	ndesc = tx_len16_to_desc(txp->len16);
6057 	last = NULL;
6058 	checkwrap = eq->sidx - ndesc < eq->pidx;
6059 	for (i = 0; i < txp->npkt; i++) {
6060 		m = txp->mb[i];
6061 		if (txp->wr_type == 0) {
6062 			struct ulp_txpkt *ulpmc;
6063 			struct ulptx_idata *ulpsc;
6064 
6065 			/* ULP master command */
6066 			ulpmc = flitp;
6067 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
6068 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
6069 			ulpmc->len = htobe32(txpkts0_len16(mbuf_nsegs(m)));
6070 
6071 			/* ULP subcommand */
6072 			ulpsc = (void *)(ulpmc + 1);
6073 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
6074 			    F_ULP_TX_SC_MORE);
6075 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
6076 
6077 			cpl = (void *)(ulpsc + 1);
6078 			if (checkwrap &&
6079 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
6080 				cpl = (void *)&eq->desc[0];
6081 		} else {
6082 			cpl = flitp;
6083 		}
6084 
6085 		/* Checksum offload */
6086 		ctrl1 = csum_to_ctrl(sc, m);
6087 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
6088 			/* some hardware assistance provided */
6089 			if (needs_vxlan_csum(m))
6090 				txq->vxlan_txcsum++;
6091 			else
6092 				txq->txcsum++;
6093 		}
6094 
6095 		/* VLAN tag insertion */
6096 		if (needs_vlan_insertion(m)) {
6097 			ctrl1 |= F_TXPKT_VLAN_VLD |
6098 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
6099 			txq->vlan_insertion++;
6100 		}
6101 
6102 		/* CPL header */
6103 		cpl->ctrl0 = txq->cpl_ctrl0;
6104 		cpl->pack = 0;
6105 		cpl->len = htobe16(m->m_pkthdr.len);
6106 		cpl->ctrl1 = htobe64(ctrl1);
6107 
6108 		flitp = cpl + 1;
6109 		if (checkwrap &&
6110 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
6111 			flitp = (void *)&eq->desc[0];
6112 
6113 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
6114 
6115 		if (last != NULL)
6116 			last->m_nextpkt = m;
6117 		last = m;
6118 	}
6119 
6120 	txq->sgl_wrs++;
6121 	if (txp->wr_type == 0) {
6122 		txq->txpkts0_pkts += txp->npkt;
6123 		txq->txpkts0_wrs++;
6124 	} else {
6125 		txq->txpkts1_pkts += txp->npkt;
6126 		txq->txpkts1_wrs++;
6127 	}
6128 
6129 	txsd = &txq->sdesc[eq->pidx];
6130 	txsd->m = txp->mb[0];
6131 	txsd->desc_used = ndesc;
6132 
6133 	return (ndesc);
6134 }
6135 
6136 static u_int
write_txpkts_vm_wr(struct adapter * sc,struct sge_txq * txq)6137 write_txpkts_vm_wr(struct adapter *sc, struct sge_txq *txq)
6138 {
6139 	const struct txpkts *txp = &txq->txp;
6140 	struct sge_eq *eq = &txq->eq;
6141 	struct fw_eth_tx_pkts_vm_wr *wr;
6142 	struct tx_sdesc *txsd;
6143 	struct cpl_tx_pkt_core *cpl;
6144 	uint64_t ctrl1;
6145 	int ndesc, i;
6146 	struct mbuf *m, *last;
6147 	void *flitp;
6148 
6149 	TXQ_LOCK_ASSERT_OWNED(txq);
6150 	MPASS(txp->npkt > 0);
6151 	MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
6152 	MPASS(txp->mb[0] != NULL);
6153 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
6154 
6155 	wr = (void *)&eq->desc[eq->pidx];
6156 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR));
6157 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
6158 	wr->r3 = 0;
6159 	wr->plen = htobe16(txp->plen);
6160 	wr->npkt = txp->npkt;
6161 	wr->r4 = 0;
6162 	memcpy(&wr->ethmacdst[0], &txp->ethmacdst[0], 16);
6163 	flitp = wr + 1;
6164 
6165 	/*
6166 	 * At this point we are 32B into a hardware descriptor.  Each mbuf in
6167 	 * the WR will take 32B so we check for the end of the descriptor ring
6168 	 * before writing odd mbufs (mb[1], 3, 5, ..)
6169 	 */
6170 	ndesc = tx_len16_to_desc(txp->len16);
6171 	last = NULL;
6172 	for (i = 0; i < txp->npkt; i++) {
6173 		m = txp->mb[i];
6174 		if (i & 1 && (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
6175 			flitp = &eq->desc[0];
6176 		cpl = flitp;
6177 
6178 		/* Checksum offload */
6179 		ctrl1 = csum_to_ctrl(sc, m);
6180 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
6181 			txq->txcsum++;	/* some hardware assistance provided */
6182 
6183 		/* VLAN tag insertion */
6184 		if (needs_vlan_insertion(m)) {
6185 			ctrl1 |= F_TXPKT_VLAN_VLD |
6186 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
6187 			txq->vlan_insertion++;
6188 		} else if (sc->vlan_id)
6189 			ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(sc->vlan_id);
6190 
6191 		/* CPL header */
6192 		cpl->ctrl0 = txq->cpl_ctrl0;
6193 		cpl->pack = 0;
6194 		cpl->len = htobe16(m->m_pkthdr.len);
6195 		cpl->ctrl1 = htobe64(ctrl1);
6196 
6197 		flitp = cpl + 1;
6198 		MPASS(mbuf_nsegs(m) == 1);
6199 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), 0);
6200 
6201 		if (last != NULL)
6202 			last->m_nextpkt = m;
6203 		last = m;
6204 	}
6205 
6206 	txq->sgl_wrs++;
6207 	txq->txpkts1_pkts += txp->npkt;
6208 	txq->txpkts1_wrs++;
6209 
6210 	txsd = &txq->sdesc[eq->pidx];
6211 	txsd->m = txp->mb[0];
6212 	txsd->desc_used = ndesc;
6213 
6214 	return (ndesc);
6215 }
6216 
6217 /*
6218  * If the SGL ends on an address that is not 16 byte aligned, this function will
6219  * add a 0 filled flit at the end.
6220  */
6221 static void
write_gl_to_txd(struct sge_txq * txq,struct mbuf * m,caddr_t * to,int checkwrap)6222 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
6223 {
6224 	struct sge_eq *eq = &txq->eq;
6225 	struct sglist *gl = txq->gl;
6226 	struct sglist_seg *seg;
6227 	__be64 *flitp, *wrap;
6228 	struct ulptx_sgl *usgl;
6229 	int i, nflits, nsegs;
6230 
6231 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
6232 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
6233 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
6234 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
6235 
6236 	get_pkt_gl(m, gl);
6237 	nsegs = gl->sg_nseg;
6238 	MPASS(nsegs > 0);
6239 
6240 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
6241 	flitp = (__be64 *)(*to);
6242 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
6243 	seg = &gl->sg_segs[0];
6244 	usgl = (void *)flitp;
6245 
6246 	/*
6247 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
6248 	 * ring, so we're at least 16 bytes away from the status page.  There is
6249 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
6250 	 */
6251 
6252 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6253 	    V_ULPTX_NSGE(nsegs));
6254 	usgl->len0 = htobe32(seg->ss_len);
6255 	usgl->addr0 = htobe64(seg->ss_paddr);
6256 	seg++;
6257 
6258 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
6259 
6260 		/* Won't wrap around at all */
6261 
6262 		for (i = 0; i < nsegs - 1; i++, seg++) {
6263 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
6264 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
6265 		}
6266 		if (i & 1)
6267 			usgl->sge[i / 2].len[1] = htobe32(0);
6268 		flitp += nflits;
6269 	} else {
6270 
6271 		/* Will wrap somewhere in the rest of the SGL */
6272 
6273 		/* 2 flits already written, write the rest flit by flit */
6274 		flitp = (void *)(usgl + 1);
6275 		for (i = 0; i < nflits - 2; i++) {
6276 			if (flitp == wrap)
6277 				flitp = (void *)eq->desc;
6278 			*flitp++ = get_flit(seg, nsegs - 1, i);
6279 		}
6280 	}
6281 
6282 	if (nflits & 1) {
6283 		MPASS(((uintptr_t)flitp) & 0xf);
6284 		*flitp++ = 0;
6285 	}
6286 
6287 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
6288 	if (__predict_false(flitp == wrap))
6289 		*to = (void *)eq->desc;
6290 	else
6291 		*to = (void *)flitp;
6292 }
6293 
6294 static inline void
copy_to_txd(struct sge_eq * eq,caddr_t from,caddr_t * to,int len)6295 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
6296 {
6297 
6298 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
6299 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
6300 
6301 	if (__predict_true((uintptr_t)(*to) + len <=
6302 	    (uintptr_t)&eq->desc[eq->sidx])) {
6303 		bcopy(from, *to, len);
6304 		(*to) += len;
6305 	} else {
6306 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
6307 
6308 		bcopy(from, *to, portion);
6309 		from += portion;
6310 		portion = len - portion;	/* remaining */
6311 		bcopy(from, (void *)eq->desc, portion);
6312 		(*to) = (caddr_t)eq->desc + portion;
6313 	}
6314 }
6315 
6316 static inline void
ring_eq_db(struct adapter * sc,struct sge_eq * eq,u_int n)6317 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
6318 {
6319 	u_int db;
6320 
6321 	MPASS(n > 0);
6322 
6323 	db = eq->doorbells;
6324 	if (n > 1)
6325 		clrbit(&db, DOORBELL_WCWR);
6326 	wmb();
6327 
6328 	switch (ffs(db) - 1) {
6329 	case DOORBELL_UDB:
6330 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
6331 		break;
6332 
6333 	case DOORBELL_WCWR: {
6334 		volatile uint64_t *dst, *src;
6335 		int i;
6336 
6337 		/*
6338 		 * Queues whose 128B doorbell segment fits in the page do not
6339 		 * use relative qid (udb_qid is always 0).  Only queues with
6340 		 * doorbell segments can do WCWR.
6341 		 */
6342 		KASSERT(eq->udb_qid == 0 && n == 1,
6343 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
6344 		    __func__, eq->doorbells, n, eq->dbidx, eq));
6345 
6346 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
6347 		    UDBS_DB_OFFSET);
6348 		i = eq->dbidx;
6349 		src = (void *)&eq->desc[i];
6350 		while (src != (void *)&eq->desc[i + 1])
6351 			*dst++ = *src++;
6352 		wmb();
6353 		break;
6354 	}
6355 
6356 	case DOORBELL_UDBWC:
6357 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
6358 		wmb();
6359 		break;
6360 
6361 	case DOORBELL_KDB:
6362 		t4_write_reg(sc, sc->sge_kdoorbell_reg,
6363 		    V_QID(eq->cntxt_id) | V_PIDX(n));
6364 		break;
6365 	}
6366 
6367 	IDXINCR(eq->dbidx, n, eq->sidx);
6368 }
6369 
6370 static inline u_int
reclaimable_tx_desc(struct sge_eq * eq)6371 reclaimable_tx_desc(struct sge_eq *eq)
6372 {
6373 	uint16_t hw_cidx;
6374 
6375 	hw_cidx = read_hw_cidx(eq);
6376 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
6377 }
6378 
6379 static inline u_int
total_available_tx_desc(struct sge_eq * eq)6380 total_available_tx_desc(struct sge_eq *eq)
6381 {
6382 	uint16_t hw_cidx, pidx;
6383 
6384 	hw_cidx = read_hw_cidx(eq);
6385 	pidx = eq->pidx;
6386 
6387 	if (pidx == hw_cidx)
6388 		return (eq->sidx - 1);
6389 	else
6390 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
6391 }
6392 
6393 static inline uint16_t
read_hw_cidx(struct sge_eq * eq)6394 read_hw_cidx(struct sge_eq *eq)
6395 {
6396 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
6397 	uint16_t cidx = spg->cidx;	/* stable snapshot */
6398 
6399 	return (be16toh(cidx));
6400 }
6401 
6402 /*
6403  * Reclaim 'n' descriptors approximately.
6404  */
6405 static u_int
reclaim_tx_descs(struct sge_txq * txq,u_int n)6406 reclaim_tx_descs(struct sge_txq *txq, u_int n)
6407 {
6408 	struct tx_sdesc *txsd;
6409 	struct sge_eq *eq = &txq->eq;
6410 	u_int can_reclaim, reclaimed;
6411 
6412 	TXQ_LOCK_ASSERT_OWNED(txq);
6413 	MPASS(n > 0);
6414 
6415 	reclaimed = 0;
6416 	can_reclaim = reclaimable_tx_desc(eq);
6417 	while (can_reclaim && reclaimed < n) {
6418 		int ndesc;
6419 		struct mbuf *m, *nextpkt;
6420 
6421 		txsd = &txq->sdesc[eq->cidx];
6422 		ndesc = txsd->desc_used;
6423 
6424 		/* Firmware doesn't return "partial" credits. */
6425 		KASSERT(can_reclaim >= ndesc,
6426 		    ("%s: unexpected number of credits: %d, %d",
6427 		    __func__, can_reclaim, ndesc));
6428 		KASSERT(ndesc != 0,
6429 		    ("%s: descriptor with no credits: cidx %d",
6430 		    __func__, eq->cidx));
6431 
6432 		for (m = txsd->m; m != NULL; m = nextpkt) {
6433 			nextpkt = m->m_nextpkt;
6434 			m->m_nextpkt = NULL;
6435 			m_freem(m);
6436 		}
6437 		reclaimed += ndesc;
6438 		can_reclaim -= ndesc;
6439 		IDXINCR(eq->cidx, ndesc, eq->sidx);
6440 	}
6441 
6442 	return (reclaimed);
6443 }
6444 
6445 static void
tx_reclaim(void * arg,int n)6446 tx_reclaim(void *arg, int n)
6447 {
6448 	struct sge_txq *txq = arg;
6449 	struct sge_eq *eq = &txq->eq;
6450 
6451 	do {
6452 		if (TXQ_TRYLOCK(txq) == 0)
6453 			break;
6454 		n = reclaim_tx_descs(txq, 32);
6455 		if (eq->cidx == eq->pidx)
6456 			eq->equeqidx = eq->pidx;
6457 		TXQ_UNLOCK(txq);
6458 	} while (n > 0);
6459 }
6460 
6461 static __be64
get_flit(struct sglist_seg * segs,int nsegs,int idx)6462 get_flit(struct sglist_seg *segs, int nsegs, int idx)
6463 {
6464 	int i = (idx / 3) * 2;
6465 
6466 	switch (idx % 3) {
6467 	case 0: {
6468 		uint64_t rc;
6469 
6470 		rc = (uint64_t)segs[i].ss_len << 32;
6471 		if (i + 1 < nsegs)
6472 			rc |= (uint64_t)(segs[i + 1].ss_len);
6473 
6474 		return (htobe64(rc));
6475 	}
6476 	case 1:
6477 		return (htobe64(segs[i].ss_paddr));
6478 	case 2:
6479 		return (htobe64(segs[i + 1].ss_paddr));
6480 	}
6481 
6482 	return (0);
6483 }
6484 
6485 static int
find_refill_source(struct adapter * sc,int maxp,bool packing)6486 find_refill_source(struct adapter *sc, int maxp, bool packing)
6487 {
6488 	int i, zidx = -1;
6489 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6490 
6491 	if (packing) {
6492 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6493 			if (rxb->hwidx2 == -1)
6494 				continue;
6495 			if (rxb->size1 < PAGE_SIZE &&
6496 			    rxb->size1 < largest_rx_cluster)
6497 				continue;
6498 			if (rxb->size1 > largest_rx_cluster)
6499 				break;
6500 			MPASS(rxb->size1 - rxb->size2 >= CL_METADATA_SIZE);
6501 			if (rxb->size2 >= maxp)
6502 				return (i);
6503 			zidx = i;
6504 		}
6505 	} else {
6506 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6507 			if (rxb->hwidx1 == -1)
6508 				continue;
6509 			if (rxb->size1 > largest_rx_cluster)
6510 				break;
6511 			if (rxb->size1 >= maxp)
6512 				return (i);
6513 			zidx = i;
6514 		}
6515 	}
6516 
6517 	return (zidx);
6518 }
6519 
6520 static void
add_fl_to_sfl(struct adapter * sc,struct sge_fl * fl)6521 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
6522 {
6523 	mtx_lock(&sc->sfl_lock);
6524 	FL_LOCK(fl);
6525 	if ((fl->flags & FL_DOOMED) == 0) {
6526 		fl->flags |= FL_STARVING;
6527 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
6528 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
6529 	}
6530 	FL_UNLOCK(fl);
6531 	mtx_unlock(&sc->sfl_lock);
6532 }
6533 
6534 static void
handle_wrq_egr_update(struct adapter * sc,struct sge_eq * eq)6535 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
6536 {
6537 	struct sge_wrq *wrq = (void *)eq;
6538 
6539 	atomic_readandclear_int(&eq->equiq);
6540 	taskqueue_enqueue(sc->tq[eq->port_id], &wrq->wrq_tx_task);
6541 }
6542 
6543 static void
handle_eth_egr_update(struct adapter * sc,struct sge_eq * eq)6544 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
6545 {
6546 	struct sge_txq *txq = (void *)eq;
6547 
6548 	MPASS(eq->type == EQ_ETH);
6549 
6550 	atomic_readandclear_int(&eq->equiq);
6551 	if (mp_ring_is_idle(txq->r))
6552 		taskqueue_enqueue(sc->tq[eq->port_id], &txq->tx_reclaim_task);
6553 	else
6554 		mp_ring_check_drainage(txq->r, 64);
6555 }
6556 
6557 static int
handle_sge_egr_update(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)6558 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
6559     struct mbuf *m)
6560 {
6561 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
6562 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
6563 	struct adapter *sc = iq->adapter;
6564 	struct sge *s = &sc->sge;
6565 	struct sge_eq *eq;
6566 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
6567 		&handle_wrq_egr_update, &handle_eth_egr_update,
6568 		&handle_wrq_egr_update};
6569 
6570 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6571 	    rss->opcode));
6572 
6573 	eq = s->eqmap[qid - s->eq_start - s->eq_base];
6574 	(*h[eq->type])(sc, eq);
6575 
6576 	return (0);
6577 }
6578 
6579 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
6580 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
6581     offsetof(struct cpl_fw6_msg, data));
6582 
6583 static int
handle_fw_msg(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)6584 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
6585 {
6586 	struct adapter *sc = iq->adapter;
6587 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
6588 
6589 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6590 	    rss->opcode));
6591 
6592 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
6593 		const struct rss_header *rss2;
6594 
6595 		rss2 = (const struct rss_header *)&cpl->data[0];
6596 		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
6597 	}
6598 
6599 	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
6600 }
6601 
6602 /**
6603  *	t4_handle_wrerr_rpl - process a FW work request error message
6604  *	@adap: the adapter
6605  *	@rpl: start of the FW message
6606  */
6607 static int
t4_handle_wrerr_rpl(struct adapter * adap,const __be64 * rpl)6608 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
6609 {
6610 	u8 opcode = *(const u8 *)rpl;
6611 	const struct fw_error_cmd *e = (const void *)rpl;
6612 	unsigned int i;
6613 
6614 	if (opcode != FW_ERROR_CMD) {
6615 		log(LOG_ERR,
6616 		    "%s: Received WRERR_RPL message with opcode %#x\n",
6617 		    device_get_nameunit(adap->dev), opcode);
6618 		return (EINVAL);
6619 	}
6620 	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
6621 	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
6622 	    "non-fatal");
6623 	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
6624 	case FW_ERROR_TYPE_EXCEPTION:
6625 		log(LOG_ERR, "exception info:\n");
6626 		for (i = 0; i < nitems(e->u.exception.info); i++)
6627 			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
6628 			    be32toh(e->u.exception.info[i]));
6629 		log(LOG_ERR, "\n");
6630 		break;
6631 	case FW_ERROR_TYPE_HWMODULE:
6632 		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
6633 		    be32toh(e->u.hwmodule.regaddr),
6634 		    be32toh(e->u.hwmodule.regval));
6635 		break;
6636 	case FW_ERROR_TYPE_WR:
6637 		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
6638 		    be16toh(e->u.wr.cidx),
6639 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
6640 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
6641 		    be32toh(e->u.wr.eqid));
6642 		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
6643 			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
6644 			    e->u.wr.wrhdr[i]);
6645 		log(LOG_ERR, "\n");
6646 		break;
6647 	case FW_ERROR_TYPE_ACL:
6648 		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
6649 		    be16toh(e->u.acl.cidx),
6650 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
6651 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
6652 		    be32toh(e->u.acl.eqid),
6653 		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
6654 		    "MAC");
6655 		for (i = 0; i < nitems(e->u.acl.val); i++)
6656 			log(LOG_ERR, " %02x", e->u.acl.val[i]);
6657 		log(LOG_ERR, "\n");
6658 		break;
6659 	default:
6660 		log(LOG_ERR, "type %#x\n",
6661 		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
6662 		return (EINVAL);
6663 	}
6664 	return (0);
6665 }
6666 
6667 static inline bool
bufidx_used(struct adapter * sc,int idx)6668 bufidx_used(struct adapter *sc, int idx)
6669 {
6670 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6671 	int i;
6672 
6673 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6674 		if (rxb->size1 > largest_rx_cluster)
6675 			continue;
6676 		if (rxb->hwidx1 == idx || rxb->hwidx2 == idx)
6677 			return (true);
6678 	}
6679 
6680 	return (false);
6681 }
6682 
6683 static int
sysctl_bufsizes(SYSCTL_HANDLER_ARGS)6684 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
6685 {
6686 	struct adapter *sc = arg1;
6687 	struct sge_params *sp = &sc->params.sge;
6688 	int i, rc;
6689 	struct sbuf sb;
6690 	char c;
6691 
6692 	sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
6693 	for (i = 0; i < SGE_FLBUF_SIZES; i++) {
6694 		if (bufidx_used(sc, i))
6695 			c = '*';
6696 		else
6697 			c = '\0';
6698 
6699 		sbuf_printf(&sb, "%u%c ", sp->sge_fl_buffer_size[i], c);
6700 	}
6701 	sbuf_trim(&sb);
6702 	sbuf_finish(&sb);
6703 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
6704 	sbuf_delete(&sb);
6705 	return (rc);
6706 }
6707 
6708 #ifdef RATELIMIT
6709 #if defined(INET) || defined(INET6)
6710 /*
6711  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
6712  */
6713 static inline u_int
txpkt_eo_len16(u_int nsegs,u_int immhdrs,u_int tso)6714 txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso)
6715 {
6716 	u_int n;
6717 
6718 	MPASS(immhdrs > 0);
6719 
6720 	n = roundup2(sizeof(struct fw_eth_tx_eo_wr) +
6721 	    sizeof(struct cpl_tx_pkt_core) + immhdrs, 16);
6722 	if (__predict_false(nsegs == 0))
6723 		goto done;
6724 
6725 	nsegs--; /* first segment is part of ulptx_sgl */
6726 	n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
6727 	if (tso)
6728 		n += sizeof(struct cpl_tx_pkt_lso_core);
6729 
6730 done:
6731 	return (howmany(n, 16));
6732 }
6733 #endif
6734 
6735 #define ETID_FLOWC_NPARAMS 6
6736 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \
6737     ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16))
6738 #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16))
6739 
6740 #if defined(INET) || defined(INET6)
6741 static int
send_etid_flowc_wr(struct cxgbe_rate_tag * cst,struct port_info * pi,struct vi_info * vi)6742 send_etid_flowc_wr(struct cxgbe_rate_tag *cst, struct port_info *pi,
6743     struct vi_info *vi)
6744 {
6745 	struct wrq_cookie cookie;
6746 	u_int pfvf = pi->adapter->pf << S_FW_VIID_PFN;
6747 	struct fw_flowc_wr *flowc;
6748 
6749 	mtx_assert(&cst->lock, MA_OWNED);
6750 	MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) ==
6751 	    EO_FLOWC_PENDING);
6752 
6753 	flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLOWC_LEN16, &cookie);
6754 	if (__predict_false(flowc == NULL))
6755 		return (ENOMEM);
6756 
6757 	bzero(flowc, ETID_FLOWC_LEN);
6758 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6759 	    V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0));
6760 	flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) |
6761 	    V_FW_WR_FLOWID(cst->etid));
6762 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
6763 	flowc->mnemval[0].val = htobe32(pfvf);
6764 	/* Firmware expects hw port and will translate to channel itself. */
6765 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
6766 	flowc->mnemval[1].val = htobe32(pi->hw_port);
6767 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
6768 	flowc->mnemval[2].val = htobe32(pi->hw_port);
6769 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
6770 	flowc->mnemval[3].val = htobe32(cst->iqid);
6771 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE;
6772 	flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
6773 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
6774 	flowc->mnemval[5].val = htobe32(cst->schedcl);
6775 
6776 	commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
6777 
6778 	cst->flags &= ~EO_FLOWC_PENDING;
6779 	cst->flags |= EO_FLOWC_RPL_PENDING;
6780 	MPASS(cst->tx_credits >= ETID_FLOWC_LEN16);	/* flowc is first WR. */
6781 	cst->tx_credits -= ETID_FLOWC_LEN16;
6782 
6783 	return (0);
6784 }
6785 #endif
6786 
6787 #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16))
6788 
6789 void
send_etid_flush_wr(struct cxgbe_rate_tag * cst)6790 send_etid_flush_wr(struct cxgbe_rate_tag *cst)
6791 {
6792 	struct fw_flowc_wr *flowc;
6793 	struct wrq_cookie cookie;
6794 
6795 	mtx_assert(&cst->lock, MA_OWNED);
6796 
6797 	flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLUSH_LEN16, &cookie);
6798 	if (__predict_false(flowc == NULL))
6799 		CXGBE_UNIMPLEMENTED(__func__);
6800 
6801 	bzero(flowc, ETID_FLUSH_LEN16 * 16);
6802 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6803 	    V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL);
6804 	flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) |
6805 	    V_FW_WR_FLOWID(cst->etid));
6806 
6807 	commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
6808 
6809 	cst->flags |= EO_FLUSH_RPL_PENDING;
6810 	MPASS(cst->tx_credits >= ETID_FLUSH_LEN16);
6811 	cst->tx_credits -= ETID_FLUSH_LEN16;
6812 	cst->ncompl++;
6813 }
6814 
6815 static void
write_ethofld_wr(struct cxgbe_rate_tag * cst,struct fw_eth_tx_eo_wr * wr,struct mbuf * m0,int compl)6816 write_ethofld_wr(struct cxgbe_rate_tag *cst, struct fw_eth_tx_eo_wr *wr,
6817     struct mbuf *m0, int compl)
6818 {
6819 	struct cpl_tx_pkt_core *cpl;
6820 	uint64_t ctrl1;
6821 	uint32_t ctrl;	/* used in many unrelated places */
6822 	int len16, pktlen, nsegs, immhdrs;
6823 	uintptr_t p;
6824 	struct ulptx_sgl *usgl;
6825 	struct sglist sg;
6826 	struct sglist_seg segs[38];	/* XXX: find real limit.  XXX: get off the stack */
6827 
6828 	mtx_assert(&cst->lock, MA_OWNED);
6829 	M_ASSERTPKTHDR(m0);
6830 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
6831 	    m0->m_pkthdr.l4hlen > 0,
6832 	    ("%s: ethofld mbuf %p is missing header lengths", __func__, m0));
6833 
6834 	len16 = mbuf_eo_len16(m0);
6835 	nsegs = mbuf_eo_nsegs(m0);
6836 	pktlen = m0->m_pkthdr.len;
6837 	ctrl = sizeof(struct cpl_tx_pkt_core);
6838 	if (needs_tso(m0))
6839 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
6840 	immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen;
6841 	ctrl += immhdrs;
6842 
6843 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) |
6844 	    V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl));
6845 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) |
6846 	    V_FW_WR_FLOWID(cst->etid));
6847 	wr->r3 = 0;
6848 	if (needs_outer_udp_csum(m0)) {
6849 		wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
6850 		wr->u.udpseg.ethlen = m0->m_pkthdr.l2hlen;
6851 		wr->u.udpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6852 		wr->u.udpseg.udplen = m0->m_pkthdr.l4hlen;
6853 		wr->u.udpseg.rtplen = 0;
6854 		wr->u.udpseg.r4 = 0;
6855 		wr->u.udpseg.mss = htobe16(pktlen - immhdrs);
6856 		wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
6857 		wr->u.udpseg.plen = htobe32(pktlen - immhdrs);
6858 		cpl = (void *)(wr + 1);
6859 	} else {
6860 		MPASS(needs_outer_tcp_csum(m0));
6861 		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
6862 		wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen;
6863 		wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6864 		wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen;
6865 		wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0);
6866 		wr->u.tcpseg.r4 = 0;
6867 		wr->u.tcpseg.r5 = 0;
6868 		wr->u.tcpseg.plen = htobe32(pktlen - immhdrs);
6869 
6870 		if (needs_tso(m0)) {
6871 			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
6872 
6873 			wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz);
6874 
6875 			ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
6876 			    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
6877 			    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
6878 				ETHER_HDR_LEN) >> 2) |
6879 			    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
6880 			    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
6881 			if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
6882 				ctrl |= F_LSO_IPV6;
6883 			lso->lso_ctrl = htobe32(ctrl);
6884 			lso->ipid_ofst = htobe16(0);
6885 			lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
6886 			lso->seqno_offset = htobe32(0);
6887 			lso->len = htobe32(pktlen);
6888 
6889 			cpl = (void *)(lso + 1);
6890 		} else {
6891 			wr->u.tcpseg.mss = htobe16(0xffff);
6892 			cpl = (void *)(wr + 1);
6893 		}
6894 	}
6895 
6896 	/* Checksum offload must be requested for ethofld. */
6897 	MPASS(needs_outer_l4_csum(m0));
6898 	ctrl1 = csum_to_ctrl(cst->adapter, m0);
6899 
6900 	/* VLAN tag insertion */
6901 	if (needs_vlan_insertion(m0)) {
6902 		ctrl1 |= F_TXPKT_VLAN_VLD |
6903 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
6904 	}
6905 
6906 	/* CPL header */
6907 	cpl->ctrl0 = cst->ctrl0;
6908 	cpl->pack = 0;
6909 	cpl->len = htobe16(pktlen);
6910 	cpl->ctrl1 = htobe64(ctrl1);
6911 
6912 	/* Copy Ethernet, IP & TCP/UDP hdrs as immediate data */
6913 	p = (uintptr_t)(cpl + 1);
6914 	m_copydata(m0, 0, immhdrs, (void *)p);
6915 
6916 	/* SGL */
6917 	if (nsegs > 0) {
6918 		int i, pad;
6919 
6920 		/* zero-pad upto next 16Byte boundary, if not 16Byte aligned */
6921 		p += immhdrs;
6922 		pad = 16 - (immhdrs & 0xf);
6923 		bzero((void *)p, pad);
6924 
6925 		usgl = (void *)(p + pad);
6926 		usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6927 		    V_ULPTX_NSGE(nsegs));
6928 
6929 		sglist_init(&sg, nitems(segs), segs);
6930 		for (; m0 != NULL; m0 = m0->m_next) {
6931 			if (__predict_false(m0->m_len == 0))
6932 				continue;
6933 			if (immhdrs >= m0->m_len) {
6934 				immhdrs -= m0->m_len;
6935 				continue;
6936 			}
6937 			if (m0->m_flags & M_EXTPG)
6938 				sglist_append_mbuf_epg(&sg, m0,
6939 				    mtod(m0, vm_offset_t), m0->m_len);
6940                         else
6941 				sglist_append(&sg, mtod(m0, char *) + immhdrs,
6942 				    m0->m_len - immhdrs);
6943 			immhdrs = 0;
6944 		}
6945 		MPASS(sg.sg_nseg == nsegs);
6946 
6947 		/*
6948 		 * Zero pad last 8B in case the WR doesn't end on a 16B
6949 		 * boundary.
6950 		 */
6951 		*(uint64_t *)((char *)wr + len16 * 16 - 8) = 0;
6952 
6953 		usgl->len0 = htobe32(segs[0].ss_len);
6954 		usgl->addr0 = htobe64(segs[0].ss_paddr);
6955 		for (i = 0; i < nsegs - 1; i++) {
6956 			usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len);
6957 			usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr);
6958 		}
6959 		if (i & 1)
6960 			usgl->sge[i / 2].len[1] = htobe32(0);
6961 	}
6962 
6963 }
6964 
6965 static void
ethofld_tx(struct cxgbe_rate_tag * cst)6966 ethofld_tx(struct cxgbe_rate_tag *cst)
6967 {
6968 	struct mbuf *m;
6969 	struct wrq_cookie cookie;
6970 	int next_credits, compl;
6971 	struct fw_eth_tx_eo_wr *wr;
6972 
6973 	mtx_assert(&cst->lock, MA_OWNED);
6974 
6975 	while ((m = mbufq_first(&cst->pending_tx)) != NULL) {
6976 		M_ASSERTPKTHDR(m);
6977 
6978 		/* How many len16 credits do we need to send this mbuf. */
6979 		next_credits = mbuf_eo_len16(m);
6980 		MPASS(next_credits > 0);
6981 		if (next_credits > cst->tx_credits) {
6982 			/*
6983 			 * Tx will make progress eventually because there is at
6984 			 * least one outstanding fw4_ack that will return
6985 			 * credits and kick the tx.
6986 			 */
6987 			MPASS(cst->ncompl > 0);
6988 			return;
6989 		}
6990 		wr = start_wrq_wr(&cst->eo_txq->wrq, next_credits, &cookie);
6991 		if (__predict_false(wr == NULL)) {
6992 			/* XXX: wishful thinking, not a real assertion. */
6993 			MPASS(cst->ncompl > 0);
6994 			return;
6995 		}
6996 		cst->tx_credits -= next_credits;
6997 		cst->tx_nocompl += next_credits;
6998 		compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2;
6999 		ETHER_BPF_MTAP(cst->com.ifp, m);
7000 		write_ethofld_wr(cst, wr, m, compl);
7001 		commit_wrq_wr(&cst->eo_txq->wrq, wr, &cookie);
7002 		if (compl) {
7003 			cst->ncompl++;
7004 			cst->tx_nocompl	= 0;
7005 		}
7006 		(void) mbufq_dequeue(&cst->pending_tx);
7007 
7008 		/*
7009 		 * Drop the mbuf's reference on the tag now rather
7010 		 * than waiting until m_freem().  This ensures that
7011 		 * cxgbe_rate_tag_free gets called when the inp drops
7012 		 * its reference on the tag and there are no more
7013 		 * mbufs in the pending_tx queue and can flush any
7014 		 * pending requests.  Otherwise if the last mbuf
7015 		 * doesn't request a completion the etid will never be
7016 		 * released.
7017 		 */
7018 		m->m_pkthdr.snd_tag = NULL;
7019 		m->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
7020 		m_snd_tag_rele(&cst->com);
7021 
7022 		mbufq_enqueue(&cst->pending_fwack, m);
7023 	}
7024 }
7025 
7026 #if defined(INET) || defined(INET6)
7027 static int
ethofld_transmit(if_t ifp,struct mbuf * m0)7028 ethofld_transmit(if_t ifp, struct mbuf *m0)
7029 {
7030 	struct cxgbe_rate_tag *cst;
7031 	int rc;
7032 
7033 	MPASS(m0->m_nextpkt == NULL);
7034 	MPASS(m0->m_pkthdr.csum_flags & CSUM_SND_TAG);
7035 	MPASS(m0->m_pkthdr.snd_tag != NULL);
7036 	cst = mst_to_crt(m0->m_pkthdr.snd_tag);
7037 
7038 	mtx_lock(&cst->lock);
7039 	MPASS(cst->flags & EO_SND_TAG_REF);
7040 
7041 	if (__predict_false(cst->flags & EO_FLOWC_PENDING)) {
7042 		struct vi_info *vi = if_getsoftc(ifp);
7043 		struct port_info *pi = vi->pi;
7044 		struct adapter *sc = pi->adapter;
7045 		const uint32_t rss_mask = vi->rss_size - 1;
7046 		uint32_t rss_hash;
7047 
7048 		cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq];
7049 		if (M_HASHTYPE_ISHASH(m0))
7050 			rss_hash = m0->m_pkthdr.flowid;
7051 		else
7052 			rss_hash = arc4random();
7053 		/* We assume RSS hashing */
7054 		cst->iqid = vi->rss[rss_hash & rss_mask];
7055 		cst->eo_txq += rss_hash % vi->nofldtxq;
7056 		rc = send_etid_flowc_wr(cst, pi, vi);
7057 		if (rc != 0)
7058 			goto done;
7059 	}
7060 
7061 	if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) {
7062 		rc = ENOBUFS;
7063 		goto done;
7064 	}
7065 
7066 	mbufq_enqueue(&cst->pending_tx, m0);
7067 	cst->plen += m0->m_pkthdr.len;
7068 
7069 	/*
7070 	 * Hold an extra reference on the tag while generating work
7071 	 * requests to ensure that we don't try to free the tag during
7072 	 * ethofld_tx() in case we are sending the final mbuf after
7073 	 * the inp was freed.
7074 	 */
7075 	m_snd_tag_ref(&cst->com);
7076 	ethofld_tx(cst);
7077 	mtx_unlock(&cst->lock);
7078 	m_snd_tag_rele(&cst->com);
7079 	return (0);
7080 
7081 done:
7082 	mtx_unlock(&cst->lock);
7083 	return (rc);
7084 }
7085 #endif
7086 
7087 static int
ethofld_fw4_ack(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m0)7088 ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
7089 {
7090 	struct adapter *sc = iq->adapter;
7091 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
7092 	struct mbuf *m;
7093 	u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
7094 	struct cxgbe_rate_tag *cst;
7095 	uint8_t credits = cpl->credits;
7096 
7097 	cst = lookup_etid(sc, etid);
7098 	mtx_lock(&cst->lock);
7099 	if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) {
7100 		MPASS(credits >= ETID_FLOWC_LEN16);
7101 		credits -= ETID_FLOWC_LEN16;
7102 		cst->flags &= ~EO_FLOWC_RPL_PENDING;
7103 	}
7104 
7105 	KASSERT(cst->ncompl > 0,
7106 	    ("%s: etid %u (%p) wasn't expecting completion.",
7107 	    __func__, etid, cst));
7108 	cst->ncompl--;
7109 
7110 	while (credits > 0) {
7111 		m = mbufq_dequeue(&cst->pending_fwack);
7112 		if (__predict_false(m == NULL)) {
7113 			/*
7114 			 * The remaining credits are for the final flush that
7115 			 * was issued when the tag was freed by the kernel.
7116 			 */
7117 			MPASS((cst->flags &
7118 			    (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) ==
7119 			    EO_FLUSH_RPL_PENDING);
7120 			MPASS(credits == ETID_FLUSH_LEN16);
7121 			MPASS(cst->tx_credits + cpl->credits == cst->tx_total);
7122 			MPASS(cst->ncompl == 0);
7123 
7124 			cst->flags &= ~EO_FLUSH_RPL_PENDING;
7125 			cst->tx_credits += cpl->credits;
7126 			cxgbe_rate_tag_free_locked(cst);
7127 			return (0);	/* cst is gone. */
7128 		}
7129 		KASSERT(m != NULL,
7130 		    ("%s: too many credits (%u, %u)", __func__, cpl->credits,
7131 		    credits));
7132 		KASSERT(credits >= mbuf_eo_len16(m),
7133 		    ("%s: too few credits (%u, %u, %u)", __func__,
7134 		    cpl->credits, credits, mbuf_eo_len16(m)));
7135 		credits -= mbuf_eo_len16(m);
7136 		cst->plen -= m->m_pkthdr.len;
7137 		m_freem(m);
7138 	}
7139 
7140 	cst->tx_credits += cpl->credits;
7141 	MPASS(cst->tx_credits <= cst->tx_total);
7142 
7143 	if (cst->flags & EO_SND_TAG_REF) {
7144 		/*
7145 		 * As with ethofld_transmit(), hold an extra reference
7146 		 * so that the tag is stable across ethold_tx().
7147 		 */
7148 		m_snd_tag_ref(&cst->com);
7149 		m = mbufq_first(&cst->pending_tx);
7150 		if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m))
7151 			ethofld_tx(cst);
7152 		mtx_unlock(&cst->lock);
7153 		m_snd_tag_rele(&cst->com);
7154 	} else {
7155 		/*
7156 		 * There shouldn't be any pending packets if the tag
7157 		 * was freed by the kernel since any pending packet
7158 		 * should hold a reference to the tag.
7159 		 */
7160 		MPASS(mbufq_first(&cst->pending_tx) == NULL);
7161 		mtx_unlock(&cst->lock);
7162 	}
7163 
7164 	return (0);
7165 }
7166 #endif
7167