xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu_recv.c (revision 61145dc2b94f12f6a47344fb9aac702321880e43)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
26  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
27  * Copyright 2014 HybridCluster. All rights reserved.
28  * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
29  * Copyright (c) 2019, 2024, Klara, Inc.
30  * Copyright (c) 2019, Allan Jude
31  * Copyright (c) 2019 Datto Inc.
32  * Copyright (c) 2022 Axcient.
33  */
34 
35 #include <sys/arc.h>
36 #include <sys/spa_impl.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_impl.h>
39 #include <sys/dmu_send.h>
40 #include <sys/dmu_recv.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dbuf.h>
43 #include <sys/dnode.h>
44 #include <sys/zfs_context.h>
45 #include <sys/dmu_objset.h>
46 #include <sys/dmu_traverse.h>
47 #include <sys/dsl_dataset.h>
48 #include <sys/dsl_dir.h>
49 #include <sys/dsl_prop.h>
50 #include <sys/dsl_pool.h>
51 #include <sys/dsl_synctask.h>
52 #include <sys/zfs_ioctl.h>
53 #include <sys/zap.h>
54 #include <sys/zvol.h>
55 #include <sys/zio_checksum.h>
56 #include <sys/zfs_znode.h>
57 #include <zfs_fletcher.h>
58 #include <sys/avl.h>
59 #include <sys/ddt.h>
60 #include <sys/zfs_onexit.h>
61 #include <sys/dsl_destroy.h>
62 #include <sys/blkptr.h>
63 #include <sys/dsl_bookmark.h>
64 #include <sys/zfeature.h>
65 #include <sys/bqueue.h>
66 #include <sys/objlist.h>
67 #ifdef _KERNEL
68 #include <sys/zfs_vfsops.h>
69 #endif
70 #include <sys/zfs_file.h>
71 
72 static uint_t zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
73 static uint_t zfs_recv_queue_ff = 20;
74 static uint_t zfs_recv_write_batch_size = 1024 * 1024;
75 static int zfs_recv_best_effort_corrective = 0;
76 
77 static const void *const dmu_recv_tag = "dmu_recv_tag";
78 const char *const recv_clone_name = "%recv";
79 
80 typedef enum {
81 	ORNS_NO,
82 	ORNS_YES,
83 	ORNS_MAYBE
84 } or_need_sync_t;
85 
86 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len,
87     void *buf);
88 
89 struct receive_record_arg {
90 	dmu_replay_record_t header;
91 	void *payload; /* Pointer to a buffer containing the payload */
92 	/*
93 	 * If the record is a WRITE or SPILL, pointer to the abd containing the
94 	 * payload.
95 	 */
96 	abd_t *abd;
97 	int payload_size;
98 	uint64_t bytes_read; /* bytes read from stream when record created */
99 	boolean_t eos_marker; /* Marks the end of the stream */
100 	bqueue_node_t node;
101 };
102 
103 struct receive_writer_arg {
104 	objset_t *os;
105 	boolean_t byteswap;
106 	bqueue_t q;
107 
108 	/*
109 	 * These three members are used to signal to the main thread when
110 	 * we're done.
111 	 */
112 	kmutex_t mutex;
113 	kcondvar_t cv;
114 	boolean_t done;
115 
116 	int err;
117 	const char *tofs;
118 	boolean_t heal;
119 	boolean_t resumable;
120 	boolean_t raw;   /* DMU_BACKUP_FEATURE_RAW set */
121 	boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
122 	boolean_t full;  /* this is a full send stream */
123 	uint64_t last_object;
124 	uint64_t last_offset;
125 	uint64_t max_object; /* highest object ID referenced in stream */
126 	uint64_t bytes_read; /* bytes read when current record created */
127 
128 	list_t write_batch;
129 
130 	/* Encryption parameters for the last received DRR_OBJECT_RANGE */
131 	boolean_t or_crypt_params_present;
132 	uint64_t or_firstobj;
133 	uint64_t or_numslots;
134 	uint8_t or_salt[ZIO_DATA_SALT_LEN];
135 	uint8_t or_iv[ZIO_DATA_IV_LEN];
136 	uint8_t or_mac[ZIO_DATA_MAC_LEN];
137 	boolean_t or_byteorder;
138 	zio_t *heal_pio;
139 
140 	/* Keep track of DRR_FREEOBJECTS right after DRR_OBJECT_RANGE */
141 	or_need_sync_t or_need_sync;
142 };
143 
144 typedef struct dmu_recv_begin_arg {
145 	const char *drba_origin;
146 	dmu_recv_cookie_t *drba_cookie;
147 	cred_t *drba_cred;
148 	proc_t *drba_proc;
149 	dsl_crypto_params_t *drba_dcp;
150 } dmu_recv_begin_arg_t;
151 
152 static void
byteswap_record(dmu_replay_record_t * drr)153 byteswap_record(dmu_replay_record_t *drr)
154 {
155 #define	DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
156 #define	DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
157 	drr->drr_type = BSWAP_32(drr->drr_type);
158 	drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
159 
160 	switch (drr->drr_type) {
161 	case DRR_BEGIN:
162 		DO64(drr_begin.drr_magic);
163 		DO64(drr_begin.drr_versioninfo);
164 		DO64(drr_begin.drr_creation_time);
165 		DO32(drr_begin.drr_type);
166 		DO32(drr_begin.drr_flags);
167 		DO64(drr_begin.drr_toguid);
168 		DO64(drr_begin.drr_fromguid);
169 		break;
170 	case DRR_OBJECT:
171 		DO64(drr_object.drr_object);
172 		DO32(drr_object.drr_type);
173 		DO32(drr_object.drr_bonustype);
174 		DO32(drr_object.drr_blksz);
175 		DO32(drr_object.drr_bonuslen);
176 		DO32(drr_object.drr_raw_bonuslen);
177 		DO64(drr_object.drr_toguid);
178 		DO64(drr_object.drr_maxblkid);
179 		break;
180 	case DRR_FREEOBJECTS:
181 		DO64(drr_freeobjects.drr_firstobj);
182 		DO64(drr_freeobjects.drr_numobjs);
183 		DO64(drr_freeobjects.drr_toguid);
184 		break;
185 	case DRR_WRITE:
186 		DO64(drr_write.drr_object);
187 		DO32(drr_write.drr_type);
188 		DO64(drr_write.drr_offset);
189 		DO64(drr_write.drr_logical_size);
190 		DO64(drr_write.drr_toguid);
191 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
192 		DO64(drr_write.drr_key.ddk_prop);
193 		DO64(drr_write.drr_compressed_size);
194 		break;
195 	case DRR_WRITE_EMBEDDED:
196 		DO64(drr_write_embedded.drr_object);
197 		DO64(drr_write_embedded.drr_offset);
198 		DO64(drr_write_embedded.drr_length);
199 		DO64(drr_write_embedded.drr_toguid);
200 		DO32(drr_write_embedded.drr_lsize);
201 		DO32(drr_write_embedded.drr_psize);
202 		break;
203 	case DRR_FREE:
204 		DO64(drr_free.drr_object);
205 		DO64(drr_free.drr_offset);
206 		DO64(drr_free.drr_length);
207 		DO64(drr_free.drr_toguid);
208 		break;
209 	case DRR_SPILL:
210 		DO64(drr_spill.drr_object);
211 		DO64(drr_spill.drr_length);
212 		DO64(drr_spill.drr_toguid);
213 		DO64(drr_spill.drr_compressed_size);
214 		DO32(drr_spill.drr_type);
215 		break;
216 	case DRR_OBJECT_RANGE:
217 		DO64(drr_object_range.drr_firstobj);
218 		DO64(drr_object_range.drr_numslots);
219 		DO64(drr_object_range.drr_toguid);
220 		break;
221 	case DRR_REDACT:
222 		DO64(drr_redact.drr_object);
223 		DO64(drr_redact.drr_offset);
224 		DO64(drr_redact.drr_length);
225 		DO64(drr_redact.drr_toguid);
226 		break;
227 	case DRR_END:
228 		DO64(drr_end.drr_toguid);
229 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
230 		break;
231 	default:
232 		break;
233 	}
234 
235 	if (drr->drr_type != DRR_BEGIN) {
236 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
237 	}
238 
239 #undef DO64
240 #undef DO32
241 }
242 
243 static boolean_t
redact_snaps_contains(uint64_t * snaps,uint64_t num_snaps,uint64_t guid)244 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
245 {
246 	for (int i = 0; i < num_snaps; i++) {
247 		if (snaps[i] == guid)
248 			return (B_TRUE);
249 	}
250 	return (B_FALSE);
251 }
252 
253 /*
254  * Check that the new stream we're trying to receive is redacted with respect to
255  * a subset of the snapshots that the origin was redacted with respect to.  For
256  * the reasons behind this, see the man page on redacted zfs sends and receives.
257  */
258 static boolean_t
compatible_redact_snaps(uint64_t * origin_snaps,uint64_t origin_num_snaps,uint64_t * redact_snaps,uint64_t num_redact_snaps)259 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps,
260     uint64_t *redact_snaps, uint64_t num_redact_snaps)
261 {
262 	/*
263 	 * Short circuit the comparison; if we are redacted with respect to
264 	 * more snapshots than the origin, we can't be redacted with respect
265 	 * to a subset.
266 	 */
267 	if (num_redact_snaps > origin_num_snaps) {
268 		return (B_FALSE);
269 	}
270 
271 	for (int i = 0; i < num_redact_snaps; i++) {
272 		if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
273 		    redact_snaps[i])) {
274 			return (B_FALSE);
275 		}
276 	}
277 	return (B_TRUE);
278 }
279 
280 static boolean_t
redact_check(dmu_recv_begin_arg_t * drba,dsl_dataset_t * origin)281 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin)
282 {
283 	uint64_t *origin_snaps;
284 	uint64_t origin_num_snaps;
285 	dmu_recv_cookie_t *drc = drba->drba_cookie;
286 	struct drr_begin *drrb = drc->drc_drrb;
287 	int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
288 	int err = 0;
289 	boolean_t ret = B_TRUE;
290 	uint64_t *redact_snaps;
291 	uint_t numredactsnaps;
292 
293 	/*
294 	 * If this is a full send stream, we're safe no matter what.
295 	 */
296 	if (drrb->drr_fromguid == 0)
297 		return (ret);
298 
299 	VERIFY(dsl_dataset_get_uint64_array_feature(origin,
300 	    SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps));
301 
302 	if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
303 	    BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) ==
304 	    0) {
305 		/*
306 		 * If the send stream was sent from the redaction bookmark or
307 		 * the redacted version of the dataset, then we're safe.  Verify
308 		 * that this is from the a compatible redaction bookmark or
309 		 * redacted dataset.
310 		 */
311 		if (!compatible_redact_snaps(origin_snaps, origin_num_snaps,
312 		    redact_snaps, numredactsnaps)) {
313 			err = EINVAL;
314 		}
315 	} else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
316 		/*
317 		 * If the stream is redacted, it must be redacted with respect
318 		 * to a subset of what the origin is redacted with respect to.
319 		 * See case number 2 in the zfs man page section on redacted zfs
320 		 * send.
321 		 */
322 		err = nvlist_lookup_uint64_array(drc->drc_begin_nvl,
323 		    BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps);
324 
325 		if (err != 0 || !compatible_redact_snaps(origin_snaps,
326 		    origin_num_snaps, redact_snaps, numredactsnaps)) {
327 			err = EINVAL;
328 		}
329 	} else if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
330 	    drrb->drr_toguid)) {
331 		/*
332 		 * If the stream isn't redacted but the origin is, this must be
333 		 * one of the snapshots the origin is redacted with respect to.
334 		 * See case number 1 in the zfs man page section on redacted zfs
335 		 * send.
336 		 */
337 		err = EINVAL;
338 	}
339 
340 	if (err != 0)
341 		ret = B_FALSE;
342 	return (ret);
343 }
344 
345 /*
346  * If we previously received a stream with --large-block, we don't support
347  * receiving an incremental on top of it without --large-block.  This avoids
348  * forcing a read-modify-write or trying to re-aggregate a string of WRITE
349  * records.
350  */
351 static int
recv_check_large_blocks(dsl_dataset_t * ds,uint64_t featureflags)352 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags)
353 {
354 	if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) &&
355 	    !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
356 		return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH));
357 	return (0);
358 }
359 
360 static int
recv_begin_check_existing_impl(dmu_recv_begin_arg_t * drba,dsl_dataset_t * ds,uint64_t fromguid,uint64_t featureflags)361 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
362     uint64_t fromguid, uint64_t featureflags)
363 {
364 	uint64_t obj;
365 	uint64_t children;
366 	int error;
367 	dsl_dataset_t *snap;
368 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
369 	boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
370 	boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
371 	boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
372 
373 	/* Temporary clone name must not exist. */
374 	error = zap_lookup(dp->dp_meta_objset,
375 	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
376 	    8, 1, &obj);
377 	if (error != ENOENT)
378 		return (error == 0 ? SET_ERROR(EBUSY) : error);
379 
380 	/* Resume state must not be set. */
381 	if (dsl_dataset_has_resume_receive_state(ds))
382 		return (SET_ERROR(EBUSY));
383 
384 	/* New snapshot name must not exist if we're not healing it. */
385 	error = zap_lookup(dp->dp_meta_objset,
386 	    dsl_dataset_phys(ds)->ds_snapnames_zapobj,
387 	    drba->drba_cookie->drc_tosnap, 8, 1, &obj);
388 	if (drba->drba_cookie->drc_heal) {
389 		if (error != 0)
390 			return (error);
391 	} else if (error != ENOENT) {
392 		return (error == 0 ? SET_ERROR(EEXIST) : error);
393 	}
394 
395 	/* Must not have children if receiving a ZVOL. */
396 	error = zap_count(dp->dp_meta_objset,
397 	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
398 	if (error != 0)
399 		return (error);
400 	if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
401 	    children > 0)
402 		return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
403 
404 	/*
405 	 * Check snapshot limit before receiving. We'll recheck again at the
406 	 * end, but might as well abort before receiving if we're already over
407 	 * the limit.
408 	 *
409 	 * Note that we do not check the file system limit with
410 	 * dsl_dir_fscount_check because the temporary %clones don't count
411 	 * against that limit.
412 	 */
413 	error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
414 	    NULL, drba->drba_cred, drba->drba_proc);
415 	if (error != 0)
416 		return (error);
417 
418 	if (drba->drba_cookie->drc_heal) {
419 		/* Encryption is incompatible with embedded data. */
420 		if (encrypted && embed)
421 			return (SET_ERROR(EINVAL));
422 
423 		/* Healing is not supported when in 'force' mode. */
424 		if (drba->drba_cookie->drc_force)
425 			return (SET_ERROR(EINVAL));
426 
427 		/* Must have keys loaded if doing encrypted non-raw recv. */
428 		if (encrypted && !raw) {
429 			if (spa_keystore_lookup_key(dp->dp_spa, ds->ds_object,
430 			    NULL, NULL) != 0)
431 				return (SET_ERROR(EACCES));
432 		}
433 
434 		error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap);
435 		if (error != 0)
436 			return (error);
437 
438 		/*
439 		 * When not doing best effort corrective recv healing can only
440 		 * be done if the send stream is for the same snapshot as the
441 		 * one we are trying to heal.
442 		 */
443 		if (zfs_recv_best_effort_corrective == 0 &&
444 		    drba->drba_cookie->drc_drrb->drr_toguid !=
445 		    dsl_dataset_phys(snap)->ds_guid) {
446 			dsl_dataset_rele(snap, FTAG);
447 			return (SET_ERROR(ENOTSUP));
448 		}
449 		dsl_dataset_rele(snap, FTAG);
450 	} else if (fromguid != 0) {
451 		/* Sanity check the incremental recv */
452 		uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
453 
454 		/* Can't perform a raw receive on top of a non-raw receive */
455 		if (!encrypted && raw)
456 			return (SET_ERROR(EINVAL));
457 
458 		/* Encryption is incompatible with embedded data */
459 		if (encrypted && embed)
460 			return (SET_ERROR(EINVAL));
461 
462 		/* Find snapshot in this dir that matches fromguid. */
463 		while (obj != 0) {
464 			error = dsl_dataset_hold_obj(dp, obj, FTAG,
465 			    &snap);
466 			if (error != 0)
467 				return (SET_ERROR(ENODEV));
468 			if (snap->ds_dir != ds->ds_dir) {
469 				dsl_dataset_rele(snap, FTAG);
470 				return (SET_ERROR(ENODEV));
471 			}
472 			if (dsl_dataset_phys(snap)->ds_guid == fromguid)
473 				break;
474 			obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
475 			dsl_dataset_rele(snap, FTAG);
476 		}
477 		if (obj == 0)
478 			return (SET_ERROR(ENODEV));
479 
480 		if (drba->drba_cookie->drc_force) {
481 			drba->drba_cookie->drc_fromsnapobj = obj;
482 		} else {
483 			/*
484 			 * If we are not forcing, there must be no
485 			 * changes since fromsnap. Raw sends have an
486 			 * additional constraint that requires that
487 			 * no "noop" snapshots exist between fromsnap
488 			 * and tosnap for the IVset checking code to
489 			 * work properly.
490 			 */
491 			if (dsl_dataset_modified_since_snap(ds, snap) ||
492 			    (raw &&
493 			    dsl_dataset_phys(ds)->ds_prev_snap_obj !=
494 			    snap->ds_object)) {
495 				dsl_dataset_rele(snap, FTAG);
496 				return (SET_ERROR(ETXTBSY));
497 			}
498 			drba->drba_cookie->drc_fromsnapobj =
499 			    ds->ds_prev->ds_object;
500 		}
501 
502 		if (dsl_dataset_feature_is_active(snap,
503 		    SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba,
504 		    snap)) {
505 			dsl_dataset_rele(snap, FTAG);
506 			return (SET_ERROR(EINVAL));
507 		}
508 
509 		error = recv_check_large_blocks(snap, featureflags);
510 		if (error != 0) {
511 			dsl_dataset_rele(snap, FTAG);
512 			return (error);
513 		}
514 
515 		dsl_dataset_rele(snap, FTAG);
516 	} else {
517 		/* If full and not healing then must be forced. */
518 		if (!drba->drba_cookie->drc_force)
519 			return (SET_ERROR(EEXIST));
520 
521 		/*
522 		 * We don't support using zfs recv -F to blow away
523 		 * encrypted filesystems. This would require the
524 		 * dsl dir to point to the old encryption key and
525 		 * the new one at the same time during the receive.
526 		 */
527 		if ((!encrypted && raw) || encrypted)
528 			return (SET_ERROR(EINVAL));
529 
530 		/*
531 		 * Perform the same encryption checks we would if
532 		 * we were creating a new dataset from scratch.
533 		 */
534 		if (!raw) {
535 			boolean_t will_encrypt;
536 
537 			error = dmu_objset_create_crypt_check(
538 			    ds->ds_dir->dd_parent, drba->drba_dcp,
539 			    &will_encrypt);
540 			if (error != 0)
541 				return (error);
542 
543 			if (will_encrypt && embed)
544 				return (SET_ERROR(EINVAL));
545 		}
546 	}
547 
548 	return (0);
549 }
550 
551 /*
552  * Check that any feature flags used in the data stream we're receiving are
553  * supported by the pool we are receiving into.
554  *
555  * Note that some of the features we explicitly check here have additional
556  * (implicit) features they depend on, but those dependencies are enforced
557  * through the zfeature_register() calls declaring the features that we
558  * explicitly check.
559  */
560 static int
recv_begin_check_feature_flags_impl(uint64_t featureflags,spa_t * spa)561 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa)
562 {
563 	/*
564 	 * Check if there are any unsupported feature flags.
565 	 */
566 	if (!DMU_STREAM_SUPPORTED(featureflags)) {
567 		return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE));
568 	}
569 
570 	/* Verify pool version supports SA if SA_SPILL feature set */
571 	if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
572 	    spa_version(spa) < SPA_VERSION_SA)
573 		return (SET_ERROR(ENOTSUP));
574 
575 	/*
576 	 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks,
577 	 * and large_dnodes in the stream can only be used if those pool
578 	 * features are enabled because we don't attempt to decompress /
579 	 * un-embed / un-mooch / split up the blocks / dnodes during the
580 	 * receive process.
581 	 */
582 	if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
583 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS))
584 		return (SET_ERROR(ENOTSUP));
585 	if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) &&
586 	    !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS))
587 		return (SET_ERROR(ENOTSUP));
588 	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
589 	    !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA))
590 		return (SET_ERROR(ENOTSUP));
591 	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
592 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
593 		return (SET_ERROR(ENOTSUP));
594 	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
595 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
596 		return (SET_ERROR(ENOTSUP));
597 	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_MICROZAP) &&
598 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_MICROZAP))
599 		return (SET_ERROR(ENOTSUP));
600 
601 	/*
602 	 * Receiving redacted streams requires that redacted datasets are
603 	 * enabled.
604 	 */
605 	if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) &&
606 	    !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS))
607 		return (SET_ERROR(ENOTSUP));
608 
609 	/*
610 	 * If the LONGNAME is not enabled on the target, fail that request.
611 	 */
612 	if ((featureflags & DMU_BACKUP_FEATURE_LONGNAME) &&
613 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LONGNAME))
614 		return (SET_ERROR(ENOTSUP));
615 
616 	return (0);
617 }
618 
619 static int
dmu_recv_begin_check(void * arg,dmu_tx_t * tx)620 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
621 {
622 	dmu_recv_begin_arg_t *drba = arg;
623 	dsl_pool_t *dp = dmu_tx_pool(tx);
624 	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
625 	uint64_t fromguid = drrb->drr_fromguid;
626 	int flags = drrb->drr_flags;
627 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
628 	int error;
629 	uint64_t featureflags = drba->drba_cookie->drc_featureflags;
630 	dsl_dataset_t *ds;
631 	const char *tofs = drba->drba_cookie->drc_tofs;
632 
633 	/* already checked */
634 	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
635 	ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
636 
637 	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
638 	    DMU_COMPOUNDSTREAM ||
639 	    drrb->drr_type >= DMU_OST_NUMTYPES ||
640 	    ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
641 		return (SET_ERROR(EINVAL));
642 
643 	error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa);
644 	if (error != 0)
645 		return (error);
646 
647 	/* Resumable receives require extensible datasets */
648 	if (drba->drba_cookie->drc_resumable &&
649 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
650 		return (SET_ERROR(ENOTSUP));
651 
652 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
653 		/* raw receives require the encryption feature */
654 		if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
655 			return (SET_ERROR(ENOTSUP));
656 
657 		/* embedded data is incompatible with encryption and raw recv */
658 		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
659 			return (SET_ERROR(EINVAL));
660 
661 		/* raw receives require spill block allocation flag */
662 		if (!(flags & DRR_FLAG_SPILL_BLOCK))
663 			return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
664 	} else {
665 		/*
666 		 * We support unencrypted datasets below encrypted ones now,
667 		 * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing
668 		 * with a dataset we may encrypt.
669 		 */
670 		if (drba->drba_dcp == NULL ||
671 		    drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) {
672 			dsflags |= DS_HOLD_FLAG_DECRYPT;
673 		}
674 	}
675 
676 	error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
677 	if (error == 0) {
678 		/* target fs already exists; recv into temp clone */
679 
680 		/* Can't recv a clone into an existing fs */
681 		if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
682 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
683 			return (SET_ERROR(EINVAL));
684 		}
685 
686 		error = recv_begin_check_existing_impl(drba, ds, fromguid,
687 		    featureflags);
688 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
689 	} else if (error == ENOENT) {
690 		/* target fs does not exist; must be a full backup or clone */
691 		char buf[ZFS_MAX_DATASET_NAME_LEN];
692 		objset_t *os;
693 
694 		/* healing recv must be done "into" an existing snapshot */
695 		if (drba->drba_cookie->drc_heal == B_TRUE)
696 			return (SET_ERROR(ENOTSUP));
697 
698 		/*
699 		 * If it's a non-clone incremental, we are missing the
700 		 * target fs, so fail the recv.
701 		 */
702 		if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) ||
703 		    drba->drba_origin))
704 			return (SET_ERROR(ENOENT));
705 
706 		/*
707 		 * If we're receiving a full send as a clone, and it doesn't
708 		 * contain all the necessary free records and freeobject
709 		 * records, reject it.
710 		 */
711 		if (fromguid == 0 && drba->drba_origin != NULL &&
712 		    !(flags & DRR_FLAG_FREERECORDS))
713 			return (SET_ERROR(EINVAL));
714 
715 		/* Open the parent of tofs */
716 		ASSERT3U(strlen(tofs), <, sizeof (buf));
717 		(void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
718 		error = dsl_dataset_hold(dp, buf, FTAG, &ds);
719 		if (error != 0)
720 			return (error);
721 
722 		if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
723 		    drba->drba_origin == NULL) {
724 			boolean_t will_encrypt;
725 
726 			/*
727 			 * Check that we aren't breaking any encryption rules
728 			 * and that we have all the parameters we need to
729 			 * create an encrypted dataset if necessary. If we are
730 			 * making an encrypted dataset the stream can't have
731 			 * embedded data.
732 			 */
733 			error = dmu_objset_create_crypt_check(ds->ds_dir,
734 			    drba->drba_dcp, &will_encrypt);
735 			if (error != 0) {
736 				dsl_dataset_rele(ds, FTAG);
737 				return (error);
738 			}
739 
740 			if (will_encrypt &&
741 			    (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
742 				dsl_dataset_rele(ds, FTAG);
743 				return (SET_ERROR(EINVAL));
744 			}
745 		}
746 
747 		/*
748 		 * Check filesystem and snapshot limits before receiving. We'll
749 		 * recheck snapshot limits again at the end (we create the
750 		 * filesystems and increment those counts during begin_sync).
751 		 */
752 		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
753 		    ZFS_PROP_FILESYSTEM_LIMIT, NULL,
754 		    drba->drba_cred, drba->drba_proc);
755 		if (error != 0) {
756 			dsl_dataset_rele(ds, FTAG);
757 			return (error);
758 		}
759 
760 		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
761 		    ZFS_PROP_SNAPSHOT_LIMIT, NULL,
762 		    drba->drba_cred, drba->drba_proc);
763 		if (error != 0) {
764 			dsl_dataset_rele(ds, FTAG);
765 			return (error);
766 		}
767 
768 		/* can't recv below anything but filesystems (eg. no ZVOLs) */
769 		error = dmu_objset_from_ds(ds, &os);
770 		if (error != 0) {
771 			dsl_dataset_rele(ds, FTAG);
772 			return (error);
773 		}
774 		if (dmu_objset_type(os) != DMU_OST_ZFS) {
775 			dsl_dataset_rele(ds, FTAG);
776 			return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
777 		}
778 
779 		if (drba->drba_origin != NULL) {
780 			dsl_dataset_t *origin;
781 			error = dsl_dataset_hold_flags(dp, drba->drba_origin,
782 			    dsflags, FTAG, &origin);
783 			if (error != 0) {
784 				dsl_dataset_rele(ds, FTAG);
785 				return (error);
786 			}
787 			if (!origin->ds_is_snapshot) {
788 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
789 				dsl_dataset_rele(ds, FTAG);
790 				return (SET_ERROR(EINVAL));
791 			}
792 			if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
793 			    fromguid != 0) {
794 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
795 				dsl_dataset_rele(ds, FTAG);
796 				return (SET_ERROR(ENODEV));
797 			}
798 
799 			if (origin->ds_dir->dd_crypto_obj != 0 &&
800 			    (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
801 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
802 				dsl_dataset_rele(ds, FTAG);
803 				return (SET_ERROR(EINVAL));
804 			}
805 
806 			/*
807 			 * If the origin is redacted we need to verify that this
808 			 * send stream can safely be received on top of the
809 			 * origin.
810 			 */
811 			if (dsl_dataset_feature_is_active(origin,
812 			    SPA_FEATURE_REDACTED_DATASETS)) {
813 				if (!redact_check(drba, origin)) {
814 					dsl_dataset_rele_flags(origin, dsflags,
815 					    FTAG);
816 					dsl_dataset_rele_flags(ds, dsflags,
817 					    FTAG);
818 					return (SET_ERROR(EINVAL));
819 				}
820 			}
821 
822 			error = recv_check_large_blocks(ds, featureflags);
823 			if (error != 0) {
824 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
825 				dsl_dataset_rele_flags(ds, dsflags, FTAG);
826 				return (error);
827 			}
828 
829 			dsl_dataset_rele_flags(origin, dsflags, FTAG);
830 		}
831 
832 		dsl_dataset_rele(ds, FTAG);
833 		error = 0;
834 	}
835 	return (error);
836 }
837 
838 static void
dmu_recv_begin_sync(void * arg,dmu_tx_t * tx)839 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
840 {
841 	dmu_recv_begin_arg_t *drba = arg;
842 	dsl_pool_t *dp = dmu_tx_pool(tx);
843 	objset_t *mos = dp->dp_meta_objset;
844 	dmu_recv_cookie_t *drc = drba->drba_cookie;
845 	struct drr_begin *drrb = drc->drc_drrb;
846 	const char *tofs = drc->drc_tofs;
847 	uint64_t featureflags = drc->drc_featureflags;
848 	dsl_dataset_t *ds, *newds;
849 	objset_t *os;
850 	uint64_t dsobj;
851 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
852 	int error;
853 	uint64_t crflags = 0;
854 	dsl_crypto_params_t dummy_dcp = { 0 };
855 	dsl_crypto_params_t *dcp = drba->drba_dcp;
856 
857 	if (drrb->drr_flags & DRR_FLAG_CI_DATA)
858 		crflags |= DS_FLAG_CI_DATASET;
859 
860 	if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
861 		dsflags |= DS_HOLD_FLAG_DECRYPT;
862 
863 	/*
864 	 * Raw, non-incremental recvs always use a dummy dcp with
865 	 * the raw cmd set. Raw incremental recvs do not use a dcp
866 	 * since the encryption parameters are already set in stone.
867 	 */
868 	if (dcp == NULL && drrb->drr_fromguid == 0 &&
869 	    drba->drba_origin == NULL) {
870 		ASSERT3P(dcp, ==, NULL);
871 		dcp = &dummy_dcp;
872 
873 		if (featureflags & DMU_BACKUP_FEATURE_RAW)
874 			dcp->cp_cmd = DCP_CMD_RAW_RECV;
875 	}
876 
877 	error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
878 	if (error == 0) {
879 		/* Create temporary clone unless we're doing corrective recv */
880 		dsl_dataset_t *snap = NULL;
881 
882 		if (drba->drba_cookie->drc_fromsnapobj != 0) {
883 			VERIFY0(dsl_dataset_hold_obj(dp,
884 			    drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
885 			ASSERT3P(dcp, ==, NULL);
886 		}
887 		if (drc->drc_heal) {
888 			/* When healing we want to use the provided snapshot */
889 			VERIFY0(dsl_dataset_snap_lookup(ds, drc->drc_tosnap,
890 			    &dsobj));
891 		} else {
892 			dsobj = dsl_dataset_create_sync(ds->ds_dir,
893 			    recv_clone_name, snap, crflags, drba->drba_cred,
894 			    dcp, tx);
895 		}
896 		if (drba->drba_cookie->drc_fromsnapobj != 0)
897 			dsl_dataset_rele(snap, FTAG);
898 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
899 	} else {
900 		dsl_dir_t *dd;
901 		const char *tail;
902 		dsl_dataset_t *origin = NULL;
903 
904 		VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
905 
906 		if (drba->drba_origin != NULL) {
907 			VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
908 			    FTAG, &origin));
909 			ASSERT3P(dcp, ==, NULL);
910 		}
911 
912 		/* Create new dataset. */
913 		dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
914 		    origin, crflags, drba->drba_cred, dcp, tx);
915 		if (origin != NULL)
916 			dsl_dataset_rele(origin, FTAG);
917 		dsl_dir_rele(dd, FTAG);
918 		drc->drc_newfs = B_TRUE;
919 	}
920 	VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag,
921 	    &newds));
922 	if (dsl_dataset_feature_is_active(newds,
923 	    SPA_FEATURE_REDACTED_DATASETS)) {
924 		/*
925 		 * If the origin dataset is redacted, the child will be redacted
926 		 * when we create it.  We clear the new dataset's
927 		 * redaction info; if it should be redacted, we'll fill
928 		 * in its information later.
929 		 */
930 		dsl_dataset_deactivate_feature(newds,
931 		    SPA_FEATURE_REDACTED_DATASETS, tx);
932 	}
933 	VERIFY0(dmu_objset_from_ds(newds, &os));
934 
935 	if (drc->drc_resumable) {
936 		dsl_dataset_zapify(newds, tx);
937 		if (drrb->drr_fromguid != 0) {
938 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
939 			    8, 1, &drrb->drr_fromguid, tx));
940 		}
941 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
942 		    8, 1, &drrb->drr_toguid, tx));
943 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
944 		    1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
945 		uint64_t one = 1;
946 		uint64_t zero = 0;
947 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
948 		    8, 1, &one, tx));
949 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
950 		    8, 1, &zero, tx));
951 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
952 		    8, 1, &zero, tx));
953 		if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
954 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
955 			    8, 1, &one, tx));
956 		}
957 		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
958 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
959 			    8, 1, &one, tx));
960 		}
961 		if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
962 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
963 			    8, 1, &one, tx));
964 		}
965 		if (featureflags & DMU_BACKUP_FEATURE_RAW) {
966 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
967 			    8, 1, &one, tx));
968 		}
969 
970 		uint64_t *redact_snaps;
971 		uint_t numredactsnaps;
972 		if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
973 		    BEGINNV_REDACT_FROM_SNAPS, &redact_snaps,
974 		    &numredactsnaps) == 0) {
975 			VERIFY0(zap_add(mos, dsobj,
976 			    DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS,
977 			    sizeof (*redact_snaps), numredactsnaps,
978 			    redact_snaps, tx));
979 		}
980 	}
981 
982 	/*
983 	 * Usually the os->os_encrypted value is tied to the presence of a
984 	 * DSL Crypto Key object in the dd. However, that will not be received
985 	 * until dmu_recv_stream(), so we set the value manually for now.
986 	 */
987 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
988 		os->os_encrypted = B_TRUE;
989 		drba->drba_cookie->drc_raw = B_TRUE;
990 	}
991 
992 	if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
993 		uint64_t *redact_snaps;
994 		uint_t numredactsnaps;
995 		VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl,
996 		    BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps));
997 		dsl_dataset_activate_redaction(newds, redact_snaps,
998 		    numredactsnaps, tx);
999 	}
1000 
1001 	if (featureflags & DMU_BACKUP_FEATURE_LARGE_MICROZAP) {
1002 		/*
1003 		 * The source has seen a large microzap at least once in its
1004 		 * life, so we activate the feature here to match. It's not
1005 		 * strictly necessary since a large microzap is usable without
1006 		 * the feature active, but if that object is sent on from here,
1007 		 * we need this info to know to add the stream feature.
1008 		 *
1009 		 * There may be no large microzap in the incoming stream, or
1010 		 * ever again, but this is a very niche feature and its very
1011 		 * difficult to spot a large microzap in the stream, so its
1012 		 * not worth the effort of trying harder to activate the
1013 		 * feature at first use.
1014 		 */
1015 		dsl_dataset_activate_feature(dsobj, SPA_FEATURE_LARGE_MICROZAP,
1016 		    (void *)B_TRUE, tx);
1017 	}
1018 
1019 	dmu_buf_will_dirty(newds->ds_dbuf, tx);
1020 	dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
1021 
1022 	/*
1023 	 * Activate longname feature if received
1024 	 */
1025 	if (featureflags & DMU_BACKUP_FEATURE_LONGNAME &&
1026 	    !dsl_dataset_feature_is_active(newds, SPA_FEATURE_LONGNAME)) {
1027 		dsl_dataset_activate_feature(newds->ds_object,
1028 		    SPA_FEATURE_LONGNAME, (void *)B_TRUE, tx);
1029 		newds->ds_feature[SPA_FEATURE_LONGNAME] = (void *)B_TRUE;
1030 	}
1031 
1032 	/*
1033 	 * If we actually created a non-clone, we need to create the objset
1034 	 * in our new dataset. If this is a raw send we postpone this until
1035 	 * dmu_recv_stream() so that we can allocate the metadnode with the
1036 	 * properties from the DRR_BEGIN payload.
1037 	 */
1038 	rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
1039 	if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
1040 	    (featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
1041 	    !drc->drc_heal) {
1042 		(void) dmu_objset_create_impl(dp->dp_spa,
1043 		    newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
1044 	}
1045 	rrw_exit(&newds->ds_bp_rwlock, FTAG);
1046 
1047 	drba->drba_cookie->drc_ds = newds;
1048 	drba->drba_cookie->drc_os = os;
1049 
1050 	spa_history_log_internal_ds(newds, "receive", tx, " ");
1051 }
1052 
1053 static int
dmu_recv_resume_begin_check(void * arg,dmu_tx_t * tx)1054 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1055 {
1056 	dmu_recv_begin_arg_t *drba = arg;
1057 	dmu_recv_cookie_t *drc = drba->drba_cookie;
1058 	dsl_pool_t *dp = dmu_tx_pool(tx);
1059 	struct drr_begin *drrb = drc->drc_drrb;
1060 	int error;
1061 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1062 	dsl_dataset_t *ds;
1063 	const char *tofs = drc->drc_tofs;
1064 
1065 	/* already checked */
1066 	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1067 	ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING);
1068 
1069 	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1070 	    DMU_COMPOUNDSTREAM ||
1071 	    drrb->drr_type >= DMU_OST_NUMTYPES)
1072 		return (SET_ERROR(EINVAL));
1073 
1074 	/*
1075 	 * This is mostly a sanity check since we should have already done these
1076 	 * checks during a previous attempt to receive the data.
1077 	 */
1078 	error = recv_begin_check_feature_flags_impl(drc->drc_featureflags,
1079 	    dp->dp_spa);
1080 	if (error != 0)
1081 		return (error);
1082 
1083 	/* 6 extra bytes for /%recv */
1084 	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1085 
1086 	(void) snprintf(recvname, sizeof (recvname), "%s/%s",
1087 	    tofs, recv_clone_name);
1088 
1089 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
1090 		/* raw receives require spill block allocation flag */
1091 		if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
1092 			return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
1093 	} else {
1094 		dsflags |= DS_HOLD_FLAG_DECRYPT;
1095 	}
1096 
1097 	boolean_t recvexist = B_TRUE;
1098 	if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
1099 		/* %recv does not exist; continue in tofs */
1100 		recvexist = B_FALSE;
1101 		error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
1102 		if (error != 0)
1103 			return (error);
1104 	}
1105 
1106 	/*
1107 	 * Resume of full/newfs recv on existing dataset should be done with
1108 	 * force flag
1109 	 */
1110 	if (recvexist && drrb->drr_fromguid == 0 && !drc->drc_force) {
1111 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1112 		return (SET_ERROR(ZFS_ERR_RESUME_EXISTS));
1113 	}
1114 
1115 	/* check that ds is marked inconsistent */
1116 	if (!DS_IS_INCONSISTENT(ds)) {
1117 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1118 		return (SET_ERROR(EINVAL));
1119 	}
1120 
1121 	/* check that there is resuming data, and that the toguid matches */
1122 	if (!dsl_dataset_is_zapified(ds)) {
1123 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1124 		return (SET_ERROR(EINVAL));
1125 	}
1126 	uint64_t val;
1127 	error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1128 	    DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1129 	if (error != 0 || drrb->drr_toguid != val) {
1130 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1131 		return (SET_ERROR(EINVAL));
1132 	}
1133 
1134 	/*
1135 	 * Check if the receive is still running.  If so, it will be owned.
1136 	 * Note that nothing else can own the dataset (e.g. after the receive
1137 	 * fails) because it will be marked inconsistent.
1138 	 */
1139 	if (dsl_dataset_has_owner(ds)) {
1140 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1141 		return (SET_ERROR(EBUSY));
1142 	}
1143 
1144 	/* There should not be any snapshots of this fs yet. */
1145 	if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1146 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1147 		return (SET_ERROR(EINVAL));
1148 	}
1149 
1150 	/*
1151 	 * Note: resume point will be checked when we process the first WRITE
1152 	 * record.
1153 	 */
1154 
1155 	/* check that the origin matches */
1156 	val = 0;
1157 	(void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1158 	    DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1159 	if (drrb->drr_fromguid != val) {
1160 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1161 		return (SET_ERROR(EINVAL));
1162 	}
1163 
1164 	if (ds->ds_prev != NULL && drrb->drr_fromguid != 0)
1165 		drc->drc_fromsnapobj = ds->ds_prev->ds_object;
1166 
1167 	/*
1168 	 * If we're resuming, and the send is redacted, then the original send
1169 	 * must have been redacted, and must have been redacted with respect to
1170 	 * the same snapshots.
1171 	 */
1172 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) {
1173 		uint64_t num_ds_redact_snaps;
1174 		uint64_t *ds_redact_snaps;
1175 
1176 		uint_t num_stream_redact_snaps;
1177 		uint64_t *stream_redact_snaps;
1178 
1179 		if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
1180 		    BEGINNV_REDACT_SNAPS, &stream_redact_snaps,
1181 		    &num_stream_redact_snaps) != 0) {
1182 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
1183 			return (SET_ERROR(EINVAL));
1184 		}
1185 
1186 		if (!dsl_dataset_get_uint64_array_feature(ds,
1187 		    SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps,
1188 		    &ds_redact_snaps)) {
1189 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
1190 			return (SET_ERROR(EINVAL));
1191 		}
1192 
1193 		for (int i = 0; i < num_ds_redact_snaps; i++) {
1194 			if (!redact_snaps_contains(ds_redact_snaps,
1195 			    num_ds_redact_snaps, stream_redact_snaps[i])) {
1196 				dsl_dataset_rele_flags(ds, dsflags, FTAG);
1197 				return (SET_ERROR(EINVAL));
1198 			}
1199 		}
1200 	}
1201 
1202 	error = recv_check_large_blocks(ds, drc->drc_featureflags);
1203 	if (error != 0) {
1204 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1205 		return (error);
1206 	}
1207 
1208 	dsl_dataset_rele_flags(ds, dsflags, FTAG);
1209 	return (0);
1210 }
1211 
1212 static void
dmu_recv_resume_begin_sync(void * arg,dmu_tx_t * tx)1213 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1214 {
1215 	dmu_recv_begin_arg_t *drba = arg;
1216 	dsl_pool_t *dp = dmu_tx_pool(tx);
1217 	const char *tofs = drba->drba_cookie->drc_tofs;
1218 	uint64_t featureflags = drba->drba_cookie->drc_featureflags;
1219 	dsl_dataset_t *ds;
1220 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1221 	/* 6 extra bytes for /%recv */
1222 	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1223 
1224 	(void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs,
1225 	    recv_clone_name);
1226 
1227 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
1228 		drba->drba_cookie->drc_raw = B_TRUE;
1229 	} else {
1230 		dsflags |= DS_HOLD_FLAG_DECRYPT;
1231 	}
1232 
1233 	if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds)
1234 	    != 0) {
1235 		/* %recv does not exist; continue in tofs */
1236 		VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag,
1237 		    &ds));
1238 		drba->drba_cookie->drc_newfs = B_TRUE;
1239 	}
1240 
1241 	ASSERT(DS_IS_INCONSISTENT(ds));
1242 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1243 	ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
1244 	    drba->drba_cookie->drc_raw);
1245 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
1246 
1247 	drba->drba_cookie->drc_ds = ds;
1248 	VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os));
1249 	drba->drba_cookie->drc_should_save = B_TRUE;
1250 
1251 	spa_history_log_internal_ds(ds, "resume receive", tx, " ");
1252 }
1253 
1254 /*
1255  * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1256  * succeeds; otherwise we will leak the holds on the datasets.
1257  */
1258 int
dmu_recv_begin(const char * tofs,const char * tosnap,dmu_replay_record_t * drr_begin,boolean_t force,boolean_t heal,boolean_t resumable,nvlist_t * localprops,nvlist_t * hidden_args,const char * origin,dmu_recv_cookie_t * drc,zfs_file_t * fp,offset_t * voffp)1259 dmu_recv_begin(const char *tofs, const char *tosnap,
1260     dmu_replay_record_t *drr_begin, boolean_t force, boolean_t heal,
1261     boolean_t resumable, nvlist_t *localprops, nvlist_t *hidden_args,
1262     const char *origin, dmu_recv_cookie_t *drc, zfs_file_t *fp,
1263     offset_t *voffp)
1264 {
1265 	dmu_recv_begin_arg_t drba = { 0 };
1266 	int err = 0;
1267 
1268 	memset(drc, 0, sizeof (dmu_recv_cookie_t));
1269 	drc->drc_drr_begin = drr_begin;
1270 	drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1271 	drc->drc_tosnap = tosnap;
1272 	drc->drc_tofs = tofs;
1273 	drc->drc_force = force;
1274 	drc->drc_heal = heal;
1275 	drc->drc_resumable = resumable;
1276 	drc->drc_cred = CRED();
1277 	drc->drc_proc = curproc;
1278 	drc->drc_clone = (origin != NULL);
1279 
1280 	if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1281 		drc->drc_byteswap = B_TRUE;
1282 		(void) fletcher_4_incremental_byteswap(drr_begin,
1283 		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1284 		byteswap_record(drr_begin);
1285 	} else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1286 		(void) fletcher_4_incremental_native(drr_begin,
1287 		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1288 	} else {
1289 		return (SET_ERROR(EINVAL));
1290 	}
1291 
1292 	drc->drc_fp = fp;
1293 	drc->drc_voff = *voffp;
1294 	drc->drc_featureflags =
1295 	    DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
1296 
1297 	uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
1298 
1299 	/*
1300 	 * Since OpenZFS 2.0.0, we have enforced a 64MB limit in userspace
1301 	 * configurable via ZFS_SENDRECV_MAX_NVLIST. We enforce 256MB as a hard
1302 	 * upper limit. Systems with less than 1GB of RAM will see a lower
1303 	 * limit from `arc_all_memory() / 4`.
1304 	 */
1305 	if (payloadlen > (MIN((1U << 28), arc_all_memory() / 4)))
1306 		return (E2BIG);
1307 
1308 
1309 	if (payloadlen != 0) {
1310 		void *payload = vmem_alloc(payloadlen, KM_SLEEP);
1311 		/*
1312 		 * For compatibility with recursive send streams, we don't do
1313 		 * this here if the stream could be part of a package. Instead,
1314 		 * we'll do it in dmu_recv_stream. If we pull the next header
1315 		 * too early, and it's the END record, we break the `recv_skip`
1316 		 * logic.
1317 		 */
1318 
1319 		err = receive_read_payload_and_next_header(drc, payloadlen,
1320 		    payload);
1321 		if (err != 0) {
1322 			vmem_free(payload, payloadlen);
1323 			return (err);
1324 		}
1325 		err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl,
1326 		    KM_SLEEP);
1327 		vmem_free(payload, payloadlen);
1328 		if (err != 0) {
1329 			kmem_free(drc->drc_next_rrd,
1330 			    sizeof (*drc->drc_next_rrd));
1331 			return (err);
1332 		}
1333 	}
1334 
1335 	if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
1336 		drc->drc_spill = B_TRUE;
1337 
1338 	drba.drba_origin = origin;
1339 	drba.drba_cookie = drc;
1340 	drba.drba_cred = CRED();
1341 	drba.drba_proc = curproc;
1342 
1343 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
1344 		err = dsl_sync_task(tofs,
1345 		    dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1346 		    &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1347 	} else {
1348 		/*
1349 		 * For non-raw, non-incremental, non-resuming receives the
1350 		 * user can specify encryption parameters on the command line
1351 		 * with "zfs recv -o". For these receives we create a dcp and
1352 		 * pass it to the sync task. Creating the dcp will implicitly
1353 		 * remove the encryption params from the localprops nvlist,
1354 		 * which avoids errors when trying to set these normally
1355 		 * read-only properties. Any other kind of receive that
1356 		 * attempts to set these properties will fail as a result.
1357 		 */
1358 		if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1359 		    DMU_BACKUP_FEATURE_RAW) == 0 &&
1360 		    origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
1361 			err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
1362 			    localprops, hidden_args, &drba.drba_dcp);
1363 		}
1364 
1365 		if (err == 0) {
1366 			err = dsl_sync_task(tofs,
1367 			    dmu_recv_begin_check, dmu_recv_begin_sync,
1368 			    &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1369 			dsl_crypto_params_free(drba.drba_dcp, !!err);
1370 		}
1371 	}
1372 
1373 	if (err != 0) {
1374 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
1375 		nvlist_free(drc->drc_begin_nvl);
1376 	}
1377 	return (err);
1378 }
1379 
1380 /*
1381  * Holds data need for corrective recv callback
1382  */
1383 typedef struct cr_cb_data {
1384 	uint64_t size;
1385 	zbookmark_phys_t zb;
1386 	spa_t *spa;
1387 } cr_cb_data_t;
1388 
1389 static void
corrective_read_done(zio_t * zio)1390 corrective_read_done(zio_t *zio)
1391 {
1392 	cr_cb_data_t *data = zio->io_private;
1393 	/* Corruption corrected; update error log if needed */
1394 	if (zio->io_error == 0) {
1395 		spa_remove_error(data->spa, &data->zb,
1396 		    BP_GET_LOGICAL_BIRTH(zio->io_bp));
1397 	}
1398 	kmem_free(data, sizeof (cr_cb_data_t));
1399 	abd_free(zio->io_abd);
1400 }
1401 
1402 /*
1403  * zio_rewrite the data pointed to by bp with the data from the rrd's abd.
1404  */
1405 static int
do_corrective_recv(struct receive_writer_arg * rwa,struct drr_write * drrw,struct receive_record_arg * rrd,blkptr_t * bp)1406 do_corrective_recv(struct receive_writer_arg *rwa, struct drr_write *drrw,
1407     struct receive_record_arg *rrd, blkptr_t *bp)
1408 {
1409 	int err;
1410 	zio_t *io;
1411 	zbookmark_phys_t zb;
1412 	dnode_t *dn;
1413 	abd_t *abd = rrd->abd;
1414 	zio_cksum_t bp_cksum = bp->blk_cksum;
1415 	zio_flag_t flags = ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_RETRY |
1416 	    ZIO_FLAG_CANFAIL;
1417 
1418 	if (rwa->raw)
1419 		flags |= ZIO_FLAG_RAW;
1420 
1421 	err = dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn);
1422 	if (err != 0)
1423 		return (err);
1424 	SET_BOOKMARK(&zb, dmu_objset_id(rwa->os), drrw->drr_object, 0,
1425 	    dbuf_whichblock(dn, 0, drrw->drr_offset));
1426 	dnode_rele(dn, FTAG);
1427 
1428 	if (!rwa->raw && DRR_WRITE_COMPRESSED(drrw)) {
1429 		/* Decompress the stream data */
1430 		abd_t *dabd = abd_alloc_linear(
1431 		    drrw->drr_logical_size, B_FALSE);
1432 		err = zio_decompress_data(drrw->drr_compressiontype,
1433 		    abd, dabd, abd_get_size(abd),
1434 		    abd_get_size(dabd), NULL);
1435 
1436 		if (err != 0) {
1437 			abd_free(dabd);
1438 			return (err);
1439 		}
1440 		/* Swap in the newly decompressed data into the abd */
1441 		abd_free(abd);
1442 		abd = dabd;
1443 	}
1444 
1445 	if (!rwa->raw && BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
1446 		/* Recompress the data */
1447 		abd_t *cabd = abd_alloc_linear(BP_GET_PSIZE(bp),
1448 		    B_FALSE);
1449 		uint64_t csize = zio_compress_data(BP_GET_COMPRESS(bp),
1450 		    abd, &cabd, abd_get_size(abd), BP_GET_PSIZE(bp),
1451 		    rwa->os->os_complevel);
1452 		abd_zero_off(cabd, csize, BP_GET_PSIZE(bp) - csize);
1453 		/* Swap in newly compressed data into the abd */
1454 		abd_free(abd);
1455 		abd = cabd;
1456 		flags |= ZIO_FLAG_RAW_COMPRESS;
1457 	}
1458 
1459 	/*
1460 	 * The stream is not encrypted but the data on-disk is.
1461 	 * We need to re-encrypt the buf using the same
1462 	 * encryption type, salt, iv, and mac that was used to encrypt
1463 	 * the block previosly.
1464 	 */
1465 	if (!rwa->raw && BP_USES_CRYPT(bp)) {
1466 		dsl_dataset_t *ds;
1467 		dsl_crypto_key_t *dck = NULL;
1468 		uint8_t salt[ZIO_DATA_SALT_LEN];
1469 		uint8_t iv[ZIO_DATA_IV_LEN];
1470 		uint8_t mac[ZIO_DATA_MAC_LEN];
1471 		boolean_t no_crypt = B_FALSE;
1472 		dsl_pool_t *dp = dmu_objset_pool(rwa->os);
1473 		abd_t *eabd = abd_alloc_linear(BP_GET_PSIZE(bp), B_FALSE);
1474 
1475 		zio_crypt_decode_params_bp(bp, salt, iv);
1476 		zio_crypt_decode_mac_bp(bp, mac);
1477 
1478 		dsl_pool_config_enter(dp, FTAG);
1479 		err = dsl_dataset_hold_flags(dp, rwa->tofs,
1480 		    DS_HOLD_FLAG_DECRYPT, FTAG, &ds);
1481 		if (err != 0) {
1482 			dsl_pool_config_exit(dp, FTAG);
1483 			abd_free(eabd);
1484 			return (SET_ERROR(EACCES));
1485 		}
1486 
1487 		/* Look up the key from the spa's keystore */
1488 		err = spa_keystore_lookup_key(rwa->os->os_spa,
1489 		    zb.zb_objset, FTAG, &dck);
1490 		if (err != 0) {
1491 			dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT,
1492 			    FTAG);
1493 			dsl_pool_config_exit(dp, FTAG);
1494 			abd_free(eabd);
1495 			return (SET_ERROR(EACCES));
1496 		}
1497 
1498 		err = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
1499 		    BP_GET_TYPE(bp), BP_SHOULD_BYTESWAP(bp), salt, iv,
1500 		    mac, abd_get_size(abd), abd, eabd, &no_crypt);
1501 
1502 		spa_keystore_dsl_key_rele(rwa->os->os_spa, dck, FTAG);
1503 		dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
1504 		dsl_pool_config_exit(dp, FTAG);
1505 
1506 		ASSERT0(no_crypt);
1507 		if (err != 0) {
1508 			abd_free(eabd);
1509 			return (err);
1510 		}
1511 		/* Swap in the newly encrypted data into the abd */
1512 		abd_free(abd);
1513 		abd = eabd;
1514 
1515 		/*
1516 		 * We want to prevent zio_rewrite() from trying to
1517 		 * encrypt the data again
1518 		 */
1519 		flags |= ZIO_FLAG_RAW_ENCRYPT;
1520 	}
1521 	rrd->abd = abd;
1522 
1523 	io = zio_rewrite(NULL, rwa->os->os_spa, BP_GET_LOGICAL_BIRTH(bp), bp,
1524 	    abd, BP_GET_PSIZE(bp), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, flags,
1525 	    &zb);
1526 
1527 	ASSERT(abd_get_size(abd) == BP_GET_LSIZE(bp) ||
1528 	    abd_get_size(abd) == BP_GET_PSIZE(bp));
1529 
1530 	/* compute new bp checksum value and make sure it matches the old one */
1531 	zio_checksum_compute(io, BP_GET_CHECKSUM(bp), abd, abd_get_size(abd));
1532 	if (!ZIO_CHECKSUM_EQUAL(bp_cksum, io->io_bp->blk_cksum)) {
1533 		zio_destroy(io);
1534 		if (zfs_recv_best_effort_corrective != 0)
1535 			return (0);
1536 		return (SET_ERROR(ECKSUM));
1537 	}
1538 
1539 	/* Correct the corruption in place */
1540 	err = zio_wait(io);
1541 	if (err == 0) {
1542 		cr_cb_data_t *cb_data =
1543 		    kmem_alloc(sizeof (cr_cb_data_t), KM_SLEEP);
1544 		cb_data->spa = rwa->os->os_spa;
1545 		cb_data->size = drrw->drr_logical_size;
1546 		cb_data->zb = zb;
1547 		/* Test if healing worked by re-reading the bp */
1548 		err = zio_wait(zio_read(rwa->heal_pio, rwa->os->os_spa, bp,
1549 		    abd_alloc_for_io(drrw->drr_logical_size, B_FALSE),
1550 		    drrw->drr_logical_size, corrective_read_done,
1551 		    cb_data, ZIO_PRIORITY_ASYNC_READ, flags, NULL));
1552 	}
1553 	if (err != 0 && zfs_recv_best_effort_corrective != 0)
1554 		err = 0;
1555 
1556 	return (err);
1557 }
1558 
1559 static int
receive_read(dmu_recv_cookie_t * drc,int len,void * buf)1560 receive_read(dmu_recv_cookie_t *drc, int len, void *buf)
1561 {
1562 	int done = 0;
1563 
1564 	/*
1565 	 * The code doesn't rely on this (lengths being multiples of 8).  See
1566 	 * comment in dump_bytes.
1567 	 */
1568 	ASSERT(len % 8 == 0 ||
1569 	    (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
1570 
1571 	while (done < len) {
1572 		ssize_t resid = len - done;
1573 		zfs_file_t *fp = drc->drc_fp;
1574 		int err = zfs_file_read(fp, (char *)buf + done,
1575 		    len - done, &resid);
1576 		if (err == 0 && resid == len - done) {
1577 			/*
1578 			 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates
1579 			 * that the receive was interrupted and can
1580 			 * potentially be resumed.
1581 			 */
1582 			err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED);
1583 		}
1584 		drc->drc_voff += len - done - resid;
1585 		done = len - resid;
1586 		if (err != 0)
1587 			return (err);
1588 	}
1589 
1590 	drc->drc_bytes_read += len;
1591 
1592 	ASSERT3U(done, ==, len);
1593 	return (0);
1594 }
1595 
1596 static inline uint8_t
deduce_nblkptr(dmu_object_type_t bonus_type,uint64_t bonus_size)1597 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1598 {
1599 	if (bonus_type == DMU_OT_SA) {
1600 		return (1);
1601 	} else {
1602 		return (1 +
1603 		    ((DN_OLD_MAX_BONUSLEN -
1604 		    MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
1605 	}
1606 }
1607 
1608 static void
save_resume_state(struct receive_writer_arg * rwa,uint64_t object,uint64_t offset,dmu_tx_t * tx)1609 save_resume_state(struct receive_writer_arg *rwa,
1610     uint64_t object, uint64_t offset, dmu_tx_t *tx)
1611 {
1612 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1613 
1614 	if (!rwa->resumable)
1615 		return;
1616 
1617 	/*
1618 	 * We use ds_resume_bytes[] != 0 to indicate that we need to
1619 	 * update this on disk, so it must not be 0.
1620 	 */
1621 	ASSERT(rwa->bytes_read != 0);
1622 
1623 	/*
1624 	 * We only resume from write records, which have a valid
1625 	 * (non-meta-dnode) object number.
1626 	 */
1627 	ASSERT(object != 0);
1628 
1629 	/*
1630 	 * For resuming to work correctly, we must receive records in order,
1631 	 * sorted by object,offset.  This is checked by the callers, but
1632 	 * assert it here for good measure.
1633 	 */
1634 	ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1635 	ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1636 	    offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1637 	ASSERT3U(rwa->bytes_read, >=,
1638 	    rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1639 
1640 	rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1641 	rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1642 	rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1643 }
1644 
1645 static int
receive_object_is_same_generation(objset_t * os,uint64_t object,dmu_object_type_t old_bonus_type,dmu_object_type_t new_bonus_type,const void * new_bonus,boolean_t * samegenp)1646 receive_object_is_same_generation(objset_t *os, uint64_t object,
1647     dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type,
1648     const void *new_bonus, boolean_t *samegenp)
1649 {
1650 	zfs_file_info_t zoi;
1651 	int err;
1652 
1653 	dmu_buf_t *old_bonus_dbuf;
1654 	err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf);
1655 	if (err != 0)
1656 		return (err);
1657 	err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data,
1658 	    &zoi);
1659 	dmu_buf_rele(old_bonus_dbuf, FTAG);
1660 	if (err != 0)
1661 		return (err);
1662 	uint64_t old_gen = zoi.zfi_generation;
1663 
1664 	err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi);
1665 	if (err != 0)
1666 		return (err);
1667 	uint64_t new_gen = zoi.zfi_generation;
1668 
1669 	*samegenp = (old_gen == new_gen);
1670 	return (0);
1671 }
1672 
1673 static int
receive_handle_existing_object(const struct receive_writer_arg * rwa,const struct drr_object * drro,const dmu_object_info_t * doi,const void * bonus_data,uint64_t * object_to_hold,uint32_t * new_blksz)1674 receive_handle_existing_object(const struct receive_writer_arg *rwa,
1675     const struct drr_object *drro, const dmu_object_info_t *doi,
1676     const void *bonus_data,
1677     uint64_t *object_to_hold, uint32_t *new_blksz)
1678 {
1679 	uint32_t indblksz = drro->drr_indblkshift ?
1680 	    1ULL << drro->drr_indblkshift : 0;
1681 	int nblkptr = deduce_nblkptr(drro->drr_bonustype,
1682 	    drro->drr_bonuslen);
1683 	uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1684 	    drro->drr_dn_slots : DNODE_MIN_SLOTS;
1685 	boolean_t do_free_range = B_FALSE;
1686 	int err;
1687 
1688 	*object_to_hold = drro->drr_object;
1689 
1690 	/* nblkptr should be bounded by the bonus size and type */
1691 	if (rwa->raw && nblkptr != drro->drr_nblkptr)
1692 		return (SET_ERROR(EINVAL));
1693 
1694 	/*
1695 	 * After the previous send stream, the sending system may
1696 	 * have freed this object, and then happened to re-allocate
1697 	 * this object number in a later txg. In this case, we are
1698 	 * receiving a different logical file, and the block size may
1699 	 * appear to be different.  i.e. we may have a different
1700 	 * block size for this object than what the send stream says.
1701 	 * In this case we need to remove the object's contents,
1702 	 * so that its structure can be changed and then its contents
1703 	 * entirely replaced by subsequent WRITE records.
1704 	 *
1705 	 * If this is a -L (--large-block) incremental stream, and
1706 	 * the previous stream was not -L, the block size may appear
1707 	 * to increase.  i.e. we may have a smaller block size for
1708 	 * this object than what the send stream says.  In this case
1709 	 * we need to keep the object's contents and block size
1710 	 * intact, so that we don't lose parts of the object's
1711 	 * contents that are not changed by this incremental send
1712 	 * stream.
1713 	 *
1714 	 * We can distinguish between the two above cases by using
1715 	 * the ZPL's generation number (see
1716 	 * receive_object_is_same_generation()).  However, we only
1717 	 * want to rely on the generation number when absolutely
1718 	 * necessary, because with raw receives, the generation is
1719 	 * encrypted.  We also want to minimize dependence on the
1720 	 * ZPL, so that other types of datasets can also be received
1721 	 * (e.g. ZVOLs, although note that ZVOLS currently do not
1722 	 * reallocate their objects or change their structure).
1723 	 * Therefore, we check a number of different cases where we
1724 	 * know it is safe to discard the object's contents, before
1725 	 * using the ZPL's generation number to make the above
1726 	 * distinction.
1727 	 */
1728 	if (drro->drr_blksz != doi->doi_data_block_size) {
1729 		if (rwa->raw) {
1730 			/*
1731 			 * RAW streams always have large blocks, so
1732 			 * we are sure that the data is not needed
1733 			 * due to changing --large-block to be on.
1734 			 * Which is fortunate since the bonus buffer
1735 			 * (which contains the ZPL generation) is
1736 			 * encrypted, and the key might not be
1737 			 * loaded.
1738 			 */
1739 			do_free_range = B_TRUE;
1740 		} else if (rwa->full) {
1741 			/*
1742 			 * This is a full send stream, so it always
1743 			 * replaces what we have.  Even if the
1744 			 * generation numbers happen to match, this
1745 			 * can not actually be the same logical file.
1746 			 * This is relevant when receiving a full
1747 			 * send as a clone.
1748 			 */
1749 			do_free_range = B_TRUE;
1750 		} else if (drro->drr_type !=
1751 		    DMU_OT_PLAIN_FILE_CONTENTS ||
1752 		    doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) {
1753 			/*
1754 			 * PLAIN_FILE_CONTENTS are the only type of
1755 			 * objects that have ever been stored with
1756 			 * large blocks, so we don't need the special
1757 			 * logic below.  ZAP blocks can shrink (when
1758 			 * there's only one block), so we don't want
1759 			 * to hit the error below about block size
1760 			 * only increasing.
1761 			 */
1762 			do_free_range = B_TRUE;
1763 		} else if (doi->doi_max_offset <=
1764 		    doi->doi_data_block_size) {
1765 			/*
1766 			 * There is only one block.  We can free it,
1767 			 * because its contents will be replaced by a
1768 			 * WRITE record.  This can not be the no-L ->
1769 			 * -L case, because the no-L case would have
1770 			 * resulted in multiple blocks.  If we
1771 			 * supported -L -> no-L, it would not be safe
1772 			 * to free the file's contents.  Fortunately,
1773 			 * that is not allowed (see
1774 			 * recv_check_large_blocks()).
1775 			 */
1776 			do_free_range = B_TRUE;
1777 		} else {
1778 			boolean_t is_same_gen;
1779 			err = receive_object_is_same_generation(rwa->os,
1780 			    drro->drr_object, doi->doi_bonus_type,
1781 			    drro->drr_bonustype, bonus_data, &is_same_gen);
1782 			if (err != 0)
1783 				return (SET_ERROR(EINVAL));
1784 
1785 			if (is_same_gen) {
1786 				/*
1787 				 * This is the same logical file, and
1788 				 * the block size must be increasing.
1789 				 * It could only decrease if
1790 				 * --large-block was changed to be
1791 				 * off, which is checked in
1792 				 * recv_check_large_blocks().
1793 				 */
1794 				if (drro->drr_blksz <=
1795 				    doi->doi_data_block_size)
1796 					return (SET_ERROR(EINVAL));
1797 				/*
1798 				 * We keep the existing blocksize and
1799 				 * contents.
1800 				 */
1801 				*new_blksz =
1802 				    doi->doi_data_block_size;
1803 			} else {
1804 				do_free_range = B_TRUE;
1805 			}
1806 		}
1807 	}
1808 
1809 	/* nblkptr can only decrease if the object was reallocated */
1810 	if (nblkptr < doi->doi_nblkptr)
1811 		do_free_range = B_TRUE;
1812 
1813 	/* number of slots can only change on reallocation */
1814 	if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT)
1815 		do_free_range = B_TRUE;
1816 
1817 	/*
1818 	 * For raw sends we also check a few other fields to
1819 	 * ensure we are preserving the objset structure exactly
1820 	 * as it was on the receive side:
1821 	 *     - A changed indirect block size
1822 	 *     - A smaller nlevels
1823 	 */
1824 	if (rwa->raw) {
1825 		if (indblksz != doi->doi_metadata_block_size)
1826 			do_free_range = B_TRUE;
1827 		if (drro->drr_nlevels < doi->doi_indirection)
1828 			do_free_range = B_TRUE;
1829 	}
1830 
1831 	if (do_free_range) {
1832 		err = dmu_free_long_range(rwa->os, drro->drr_object,
1833 		    0, DMU_OBJECT_END);
1834 		if (err != 0)
1835 			return (SET_ERROR(EINVAL));
1836 	}
1837 
1838 	/*
1839 	 * The dmu does not currently support decreasing nlevels or changing
1840 	 * indirect block size if there is already one, same as changing the
1841 	 * number of of dnode slots on an object.  For non-raw sends this
1842 	 * does not matter and the new object can just use the previous one's
1843 	 * parameters.  For raw sends, however, the structure of the received
1844 	 * dnode (including indirects and dnode slots) must match that of the
1845 	 * send side.  Therefore, instead of using dmu_object_reclaim(), we
1846 	 * must free the object completely and call dmu_object_claim_dnsize()
1847 	 * instead.
1848 	 */
1849 	if ((rwa->raw && ((doi->doi_indirection > 1 &&
1850 	    indblksz != doi->doi_metadata_block_size) ||
1851 	    drro->drr_nlevels < doi->doi_indirection)) ||
1852 	    dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) {
1853 		err = dmu_free_long_object(rwa->os, drro->drr_object);
1854 		if (err != 0)
1855 			return (SET_ERROR(EINVAL));
1856 
1857 		txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1858 		*object_to_hold = DMU_NEW_OBJECT;
1859 	}
1860 
1861 	/*
1862 	 * For raw receives, free everything beyond the new incoming
1863 	 * maxblkid. Normally this would be done with a DRR_FREE
1864 	 * record that would come after this DRR_OBJECT record is
1865 	 * processed. However, for raw receives we manually set the
1866 	 * maxblkid from the drr_maxblkid and so we must first free
1867 	 * everything above that blkid to ensure the DMU is always
1868 	 * consistent with itself. We will never free the first block
1869 	 * of the object here because a maxblkid of 0 could indicate
1870 	 * an object with a single block or one with no blocks. This
1871 	 * free may be skipped when dmu_free_long_range() was called
1872 	 * above since it covers the entire object's contents.
1873 	 */
1874 	if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) {
1875 		err = dmu_free_long_range(rwa->os, drro->drr_object,
1876 		    (drro->drr_maxblkid + 1) * doi->doi_data_block_size,
1877 		    DMU_OBJECT_END);
1878 		if (err != 0)
1879 			return (SET_ERROR(EINVAL));
1880 	}
1881 	return (0);
1882 }
1883 
1884 noinline static int
receive_object(struct receive_writer_arg * rwa,struct drr_object * drro,void * data)1885 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1886     void *data)
1887 {
1888 	dmu_object_info_t doi;
1889 	dmu_tx_t *tx;
1890 	int err;
1891 	uint32_t new_blksz = drro->drr_blksz;
1892 	uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1893 	    drro->drr_dn_slots : DNODE_MIN_SLOTS;
1894 
1895 	if (drro->drr_type == DMU_OT_NONE ||
1896 	    !DMU_OT_IS_VALID(drro->drr_type) ||
1897 	    !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1898 	    drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1899 	    drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1900 	    P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1901 	    drro->drr_blksz < SPA_MINBLOCKSIZE ||
1902 	    drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1903 	    drro->drr_bonuslen >
1904 	    DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
1905 	    dn_slots >
1906 	    (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
1907 		return (SET_ERROR(EINVAL));
1908 	}
1909 
1910 	if (rwa->raw) {
1911 		/*
1912 		 * We should have received a DRR_OBJECT_RANGE record
1913 		 * containing this block and stored it in rwa.
1914 		 */
1915 		if (drro->drr_object < rwa->or_firstobj ||
1916 		    drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
1917 		    drro->drr_raw_bonuslen < drro->drr_bonuslen ||
1918 		    drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
1919 		    drro->drr_nlevels > DN_MAX_LEVELS ||
1920 		    drro->drr_nblkptr > DN_MAX_NBLKPTR ||
1921 		    DN_SLOTS_TO_BONUSLEN(dn_slots) <
1922 		    drro->drr_raw_bonuslen)
1923 			return (SET_ERROR(EINVAL));
1924 	} else {
1925 		/*
1926 		 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
1927 		 * record indicates this by setting DRR_FLAG_SPILL_BLOCK.
1928 		 */
1929 		if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
1930 		    (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
1931 			return (SET_ERROR(EINVAL));
1932 		}
1933 
1934 		if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
1935 		    drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
1936 			return (SET_ERROR(EINVAL));
1937 		}
1938 	}
1939 
1940 	err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1941 
1942 	if (err != 0 && err != ENOENT && err != EEXIST)
1943 		return (SET_ERROR(EINVAL));
1944 
1945 	if (drro->drr_object > rwa->max_object)
1946 		rwa->max_object = drro->drr_object;
1947 
1948 	/*
1949 	 * If we are losing blkptrs or changing the block size this must
1950 	 * be a new file instance.  We must clear out the previous file
1951 	 * contents before we can change this type of metadata in the dnode.
1952 	 * Raw receives will also check that the indirect structure of the
1953 	 * dnode hasn't changed.
1954 	 */
1955 	uint64_t object_to_hold;
1956 	if (err == 0) {
1957 		err = receive_handle_existing_object(rwa, drro, &doi, data,
1958 		    &object_to_hold, &new_blksz);
1959 		if (err != 0)
1960 			return (err);
1961 	} else if (err == EEXIST) {
1962 		/*
1963 		 * The object requested is currently an interior slot of a
1964 		 * multi-slot dnode. This will be resolved when the next txg
1965 		 * is synced out, since the send stream will have told us
1966 		 * to free this slot when we freed the associated dnode
1967 		 * earlier in the stream.
1968 		 */
1969 		txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1970 
1971 		if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
1972 			return (SET_ERROR(EINVAL));
1973 
1974 		/* object was freed and we are about to allocate a new one */
1975 		object_to_hold = DMU_NEW_OBJECT;
1976 	} else {
1977 		/*
1978 		 * If the only record in this range so far was DRR_FREEOBJECTS
1979 		 * with at least one actually freed object, it's possible that
1980 		 * the block will now be converted to a hole. We need to wait
1981 		 * for the txg to sync to prevent races.
1982 		 */
1983 		if (rwa->or_need_sync == ORNS_YES)
1984 			txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1985 
1986 		/* object is free and we are about to allocate a new one */
1987 		object_to_hold = DMU_NEW_OBJECT;
1988 	}
1989 
1990 	/* Only relevant for the first object in the range */
1991 	rwa->or_need_sync = ORNS_NO;
1992 
1993 	/*
1994 	 * If this is a multi-slot dnode there is a chance that this
1995 	 * object will expand into a slot that is already used by
1996 	 * another object from the previous snapshot. We must free
1997 	 * these objects before we attempt to allocate the new dnode.
1998 	 */
1999 	if (dn_slots > 1) {
2000 		boolean_t need_sync = B_FALSE;
2001 
2002 		for (uint64_t slot = drro->drr_object + 1;
2003 		    slot < drro->drr_object + dn_slots;
2004 		    slot++) {
2005 			dmu_object_info_t slot_doi;
2006 
2007 			err = dmu_object_info(rwa->os, slot, &slot_doi);
2008 			if (err == ENOENT || err == EEXIST)
2009 				continue;
2010 			else if (err != 0)
2011 				return (err);
2012 
2013 			err = dmu_free_long_object(rwa->os, slot);
2014 			if (err != 0)
2015 				return (err);
2016 
2017 			need_sync = B_TRUE;
2018 		}
2019 
2020 		if (need_sync)
2021 			txg_wait_synced(dmu_objset_pool(rwa->os), 0);
2022 	}
2023 
2024 	tx = dmu_tx_create(rwa->os);
2025 	dmu_tx_hold_bonus(tx, object_to_hold);
2026 	dmu_tx_hold_write(tx, object_to_hold, 0, 0);
2027 	err = dmu_tx_assign(tx, DMU_TX_WAIT);
2028 	if (err != 0) {
2029 		dmu_tx_abort(tx);
2030 		return (err);
2031 	}
2032 
2033 	if (object_to_hold == DMU_NEW_OBJECT) {
2034 		/* Currently free, wants to be allocated */
2035 		err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
2036 		    drro->drr_type, new_blksz,
2037 		    drro->drr_bonustype, drro->drr_bonuslen,
2038 		    dn_slots << DNODE_SHIFT, tx);
2039 	} else if (drro->drr_type != doi.doi_type ||
2040 	    new_blksz != doi.doi_data_block_size ||
2041 	    drro->drr_bonustype != doi.doi_bonus_type ||
2042 	    drro->drr_bonuslen != doi.doi_bonus_size) {
2043 		/* Currently allocated, but with different properties */
2044 		err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
2045 		    drro->drr_type, new_blksz,
2046 		    drro->drr_bonustype, drro->drr_bonuslen,
2047 		    dn_slots << DNODE_SHIFT, rwa->spill ?
2048 		    DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
2049 	} else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
2050 		/*
2051 		 * Currently allocated, the existing version of this object
2052 		 * may reference a spill block that is no longer allocated
2053 		 * at the source and needs to be freed.
2054 		 */
2055 		err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
2056 	}
2057 
2058 	if (err != 0) {
2059 		dmu_tx_commit(tx);
2060 		return (SET_ERROR(EINVAL));
2061 	}
2062 
2063 	if (rwa->or_crypt_params_present) {
2064 		/*
2065 		 * Set the crypt params for the buffer associated with this
2066 		 * range of dnodes.  This causes the blkptr_t to have the
2067 		 * same crypt params (byteorder, salt, iv, mac) as on the
2068 		 * sending side.
2069 		 *
2070 		 * Since we are committing this tx now, it is possible for
2071 		 * the dnode block to end up on-disk with the incorrect MAC,
2072 		 * if subsequent objects in this block are received in a
2073 		 * different txg.  However, since the dataset is marked as
2074 		 * inconsistent, no code paths will do a non-raw read (or
2075 		 * decrypt the block / verify the MAC). The receive code and
2076 		 * scrub code can safely do raw reads and verify the
2077 		 * checksum.  They don't need to verify the MAC.
2078 		 */
2079 		dmu_buf_t *db = NULL;
2080 		uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
2081 
2082 		err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
2083 		    offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
2084 		if (err != 0) {
2085 			dmu_tx_commit(tx);
2086 			return (SET_ERROR(EINVAL));
2087 		}
2088 
2089 		dmu_buf_set_crypt_params(db, rwa->or_byteorder,
2090 		    rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
2091 
2092 		dmu_buf_rele(db, FTAG);
2093 
2094 		rwa->or_crypt_params_present = B_FALSE;
2095 	}
2096 
2097 	dmu_object_set_checksum(rwa->os, drro->drr_object,
2098 	    drro->drr_checksumtype, tx);
2099 	dmu_object_set_compress(rwa->os, drro->drr_object,
2100 	    drro->drr_compress, tx);
2101 
2102 	/* handle more restrictive dnode structuring for raw recvs */
2103 	if (rwa->raw) {
2104 		/*
2105 		 * Set the indirect block size, block shift, nlevels.
2106 		 * This will not fail because we ensured all of the
2107 		 * blocks were freed earlier if this is a new object.
2108 		 * For non-new objects block size and indirect block
2109 		 * shift cannot change and nlevels can only increase.
2110 		 */
2111 		ASSERT3U(new_blksz, ==, drro->drr_blksz);
2112 		VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
2113 		    drro->drr_blksz, drro->drr_indblkshift, tx));
2114 		VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
2115 		    drro->drr_nlevels, tx));
2116 
2117 		/*
2118 		 * Set the maxblkid. This will always succeed because
2119 		 * we freed all blocks beyond the new maxblkid above.
2120 		 */
2121 		VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
2122 		    drro->drr_maxblkid, tx));
2123 	}
2124 
2125 	if (data != NULL) {
2126 		dmu_buf_t *db;
2127 		dnode_t *dn;
2128 		uint32_t flags = DMU_READ_NO_PREFETCH;
2129 
2130 		if (rwa->raw)
2131 			flags |= DMU_READ_NO_DECRYPT;
2132 
2133 		VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
2134 		VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
2135 
2136 		dmu_buf_will_dirty(db, tx);
2137 
2138 		ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
2139 		memcpy(db->db_data, data, DRR_OBJECT_PAYLOAD_SIZE(drro));
2140 
2141 		/*
2142 		 * Raw bonus buffers have their byteorder determined by the
2143 		 * DRR_OBJECT_RANGE record.
2144 		 */
2145 		if (rwa->byteswap && !rwa->raw) {
2146 			dmu_object_byteswap_t byteswap =
2147 			    DMU_OT_BYTESWAP(drro->drr_bonustype);
2148 			dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2149 			    DRR_OBJECT_PAYLOAD_SIZE(drro));
2150 		}
2151 		dmu_buf_rele(db, FTAG);
2152 		dnode_rele(dn, FTAG);
2153 	}
2154 
2155 	/*
2156 	 * If the receive fails, we want the resume stream to start with the
2157 	 * same record that we last successfully received. There is no way to
2158 	 * request resume from the object record, but we can benefit from the
2159 	 * fact that sender always sends object record before anything else,
2160 	 * after which it will "resend" data at offset 0 and resume normally.
2161 	 */
2162 	save_resume_state(rwa, drro->drr_object, 0, tx);
2163 
2164 	dmu_tx_commit(tx);
2165 
2166 	return (0);
2167 }
2168 
2169 noinline static int
receive_freeobjects(struct receive_writer_arg * rwa,struct drr_freeobjects * drrfo)2170 receive_freeobjects(struct receive_writer_arg *rwa,
2171     struct drr_freeobjects *drrfo)
2172 {
2173 	uint64_t obj;
2174 	int next_err = 0;
2175 
2176 	if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2177 		return (SET_ERROR(EINVAL));
2178 
2179 	for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
2180 	    obj < drrfo->drr_firstobj + drrfo->drr_numobjs &&
2181 	    obj < DN_MAX_OBJECT && next_err == 0;
2182 	    next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2183 		dmu_object_info_t doi;
2184 		int err;
2185 
2186 		err = dmu_object_info(rwa->os, obj, &doi);
2187 		if (err == ENOENT)
2188 			continue;
2189 		else if (err != 0)
2190 			return (err);
2191 
2192 		err = dmu_free_long_object(rwa->os, obj);
2193 
2194 		if (err != 0)
2195 			return (err);
2196 
2197 		if (rwa->or_need_sync == ORNS_MAYBE)
2198 			rwa->or_need_sync = ORNS_YES;
2199 	}
2200 	if (next_err != ESRCH)
2201 		return (next_err);
2202 	return (0);
2203 }
2204 
2205 /*
2206  * Note: if this fails, the caller will clean up any records left on the
2207  * rwa->write_batch list.
2208  */
2209 static int
flush_write_batch_impl(struct receive_writer_arg * rwa)2210 flush_write_batch_impl(struct receive_writer_arg *rwa)
2211 {
2212 	dnode_t *dn;
2213 	int err;
2214 
2215 	if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0)
2216 		return (SET_ERROR(EINVAL));
2217 
2218 	struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch);
2219 	struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write;
2220 
2221 	struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2222 	struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2223 
2224 	ASSERT3U(rwa->last_object, ==, last_drrw->drr_object);
2225 	ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset);
2226 
2227 	dmu_tx_t *tx = dmu_tx_create(rwa->os);
2228 	dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset,
2229 	    last_drrw->drr_offset - first_drrw->drr_offset +
2230 	    last_drrw->drr_logical_size);
2231 	err = dmu_tx_assign(tx, DMU_TX_WAIT);
2232 	if (err != 0) {
2233 		dmu_tx_abort(tx);
2234 		dnode_rele(dn, FTAG);
2235 		return (err);
2236 	}
2237 
2238 	struct receive_record_arg *rrd;
2239 	while ((rrd = list_head(&rwa->write_batch)) != NULL) {
2240 		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2241 		abd_t *abd = rrd->abd;
2242 
2243 		ASSERT3U(drrw->drr_object, ==, rwa->last_object);
2244 
2245 		if (drrw->drr_logical_size != dn->dn_datablksz) {
2246 			/*
2247 			 * The WRITE record is larger than the object's block
2248 			 * size.  We must be receiving an incremental
2249 			 * large-block stream into a dataset that previously did
2250 			 * a non-large-block receive.  Lightweight writes must
2251 			 * be exactly one block, so we need to decompress the
2252 			 * data (if compressed) and do a normal dmu_write().
2253 			 */
2254 			ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz);
2255 			if (DRR_WRITE_COMPRESSED(drrw)) {
2256 				abd_t *decomp_abd =
2257 				    abd_alloc_linear(drrw->drr_logical_size,
2258 				    B_FALSE);
2259 
2260 				err = zio_decompress_data(
2261 				    drrw->drr_compressiontype,
2262 				    abd, decomp_abd,
2263 				    abd_get_size(abd),
2264 				    abd_get_size(decomp_abd), NULL);
2265 
2266 				if (err == 0) {
2267 					dmu_write_by_dnode(dn,
2268 					    drrw->drr_offset,
2269 					    drrw->drr_logical_size,
2270 					    abd_to_buf(decomp_abd), tx);
2271 				}
2272 				abd_free(decomp_abd);
2273 			} else {
2274 				dmu_write_by_dnode(dn,
2275 				    drrw->drr_offset,
2276 				    drrw->drr_logical_size,
2277 				    abd_to_buf(abd), tx);
2278 			}
2279 			if (err == 0)
2280 				abd_free(abd);
2281 		} else {
2282 			zio_prop_t zp = {0};
2283 			dmu_write_policy(rwa->os, dn, 0, 0, &zp);
2284 
2285 			zio_flag_t zio_flags = 0;
2286 
2287 			if (rwa->raw) {
2288 				zp.zp_encrypt = B_TRUE;
2289 				zp.zp_compress = drrw->drr_compressiontype;
2290 				zp.zp_byteorder = ZFS_HOST_BYTEORDER ^
2291 				    !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
2292 				    rwa->byteswap;
2293 				memcpy(zp.zp_salt, drrw->drr_salt,
2294 				    ZIO_DATA_SALT_LEN);
2295 				memcpy(zp.zp_iv, drrw->drr_iv,
2296 				    ZIO_DATA_IV_LEN);
2297 				memcpy(zp.zp_mac, drrw->drr_mac,
2298 				    ZIO_DATA_MAC_LEN);
2299 				if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) {
2300 					zp.zp_nopwrite = B_FALSE;
2301 					zp.zp_copies = MIN(zp.zp_copies,
2302 					    SPA_DVAS_PER_BP - 1);
2303 					zp.zp_gang_copies =
2304 					    MIN(zp.zp_gang_copies,
2305 					    SPA_DVAS_PER_BP - 1);
2306 				}
2307 				zio_flags |= ZIO_FLAG_RAW;
2308 			} else if (DRR_WRITE_COMPRESSED(drrw)) {
2309 				ASSERT3U(drrw->drr_compressed_size, >, 0);
2310 				ASSERT3U(drrw->drr_logical_size, >=,
2311 				    drrw->drr_compressed_size);
2312 				zp.zp_compress = drrw->drr_compressiontype;
2313 				zio_flags |= ZIO_FLAG_RAW_COMPRESS;
2314 			} else if (rwa->byteswap) {
2315 				/*
2316 				 * Note: compressed blocks never need to be
2317 				 * byteswapped, because WRITE records for
2318 				 * metadata blocks are never compressed. The
2319 				 * exception is raw streams, which are written
2320 				 * in the original byteorder, and the byteorder
2321 				 * bit is preserved in the BP by setting
2322 				 * zp_byteorder above.
2323 				 */
2324 				dmu_object_byteswap_t byteswap =
2325 				    DMU_OT_BYTESWAP(drrw->drr_type);
2326 				dmu_ot_byteswap[byteswap].ob_func(
2327 				    abd_to_buf(abd),
2328 				    DRR_WRITE_PAYLOAD_SIZE(drrw));
2329 			}
2330 
2331 			/*
2332 			 * Since this data can't be read until the receive
2333 			 * completes, we can do a "lightweight" write for
2334 			 * improved performance.
2335 			 */
2336 			err = dmu_lightweight_write_by_dnode(dn,
2337 			    drrw->drr_offset, abd, &zp, zio_flags, tx);
2338 		}
2339 
2340 		if (err != 0) {
2341 			/*
2342 			 * This rrd is left on the list, so the caller will
2343 			 * free it (and the abd).
2344 			 */
2345 			break;
2346 		}
2347 
2348 		/*
2349 		 * Note: If the receive fails, we want the resume stream to
2350 		 * start with the same record that we last successfully
2351 		 * received (as opposed to the next record), so that we can
2352 		 * verify that we are resuming from the correct location.
2353 		 */
2354 		save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2355 
2356 		list_remove(&rwa->write_batch, rrd);
2357 		kmem_free(rrd, sizeof (*rrd));
2358 	}
2359 
2360 	dmu_tx_commit(tx);
2361 	dnode_rele(dn, FTAG);
2362 	return (err);
2363 }
2364 
2365 noinline static int
flush_write_batch(struct receive_writer_arg * rwa)2366 flush_write_batch(struct receive_writer_arg *rwa)
2367 {
2368 	if (list_is_empty(&rwa->write_batch))
2369 		return (0);
2370 	int err = rwa->err;
2371 	if (err == 0)
2372 		err = flush_write_batch_impl(rwa);
2373 	if (err != 0) {
2374 		struct receive_record_arg *rrd;
2375 		while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) {
2376 			abd_free(rrd->abd);
2377 			kmem_free(rrd, sizeof (*rrd));
2378 		}
2379 	}
2380 	ASSERT(list_is_empty(&rwa->write_batch));
2381 	return (err);
2382 }
2383 
2384 noinline static int
receive_process_write_record(struct receive_writer_arg * rwa,struct receive_record_arg * rrd)2385 receive_process_write_record(struct receive_writer_arg *rwa,
2386     struct receive_record_arg *rrd)
2387 {
2388 	int err = 0;
2389 
2390 	ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE);
2391 	struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2392 
2393 	if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2394 	    !DMU_OT_IS_VALID(drrw->drr_type))
2395 		return (SET_ERROR(EINVAL));
2396 
2397 	if (rwa->heal) {
2398 		blkptr_t *bp;
2399 		dmu_buf_t *dbp;
2400 		int flags = DB_RF_CANFAIL;
2401 
2402 		if (rwa->raw)
2403 			flags |= DB_RF_NO_DECRYPT;
2404 
2405 		if (rwa->byteswap) {
2406 			dmu_object_byteswap_t byteswap =
2407 			    DMU_OT_BYTESWAP(drrw->drr_type);
2408 			dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(rrd->abd),
2409 			    DRR_WRITE_PAYLOAD_SIZE(drrw));
2410 		}
2411 
2412 		err = dmu_buf_hold_noread(rwa->os, drrw->drr_object,
2413 		    drrw->drr_offset, FTAG, &dbp);
2414 		if (err != 0)
2415 			return (err);
2416 
2417 		/* Try to read the object to see if it needs healing */
2418 		err = dbuf_read((dmu_buf_impl_t *)dbp, NULL, flags);
2419 		/*
2420 		 * We only try to heal when dbuf_read() returns a ECKSUMs.
2421 		 * Other errors (even EIO) get returned to caller.
2422 		 * EIO indicates that the device is not present/accessible,
2423 		 * so writing to it will likely fail.
2424 		 * If the block is healthy, we don't want to overwrite it
2425 		 * unnecessarily.
2426 		 */
2427 		if (err != ECKSUM) {
2428 			dmu_buf_rele(dbp, FTAG);
2429 			return (err);
2430 		}
2431 		/* Make sure the on-disk block and recv record sizes match */
2432 		if (drrw->drr_logical_size != dbp->db_size) {
2433 			err = ENOTSUP;
2434 			dmu_buf_rele(dbp, FTAG);
2435 			return (err);
2436 		}
2437 		/* Get the block pointer for the corrupted block */
2438 		bp = dmu_buf_get_blkptr(dbp);
2439 		err = do_corrective_recv(rwa, drrw, rrd, bp);
2440 		dmu_buf_rele(dbp, FTAG);
2441 		return (err);
2442 	}
2443 
2444 	/*
2445 	 * For resuming to work, records must be in increasing order
2446 	 * by (object, offset).
2447 	 */
2448 	if (drrw->drr_object < rwa->last_object ||
2449 	    (drrw->drr_object == rwa->last_object &&
2450 	    drrw->drr_offset < rwa->last_offset)) {
2451 		return (SET_ERROR(EINVAL));
2452 	}
2453 
2454 	struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2455 	struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2456 	uint64_t batch_size =
2457 	    MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2);
2458 	if (first_rrd != NULL &&
2459 	    (drrw->drr_object != first_drrw->drr_object ||
2460 	    drrw->drr_offset >= first_drrw->drr_offset + batch_size)) {
2461 		err = flush_write_batch(rwa);
2462 		if (err != 0)
2463 			return (err);
2464 	}
2465 
2466 	rwa->last_object = drrw->drr_object;
2467 	rwa->last_offset = drrw->drr_offset;
2468 
2469 	if (rwa->last_object > rwa->max_object)
2470 		rwa->max_object = rwa->last_object;
2471 
2472 	list_insert_tail(&rwa->write_batch, rrd);
2473 	/*
2474 	 * Return EAGAIN to indicate that we will use this rrd again,
2475 	 * so the caller should not free it
2476 	 */
2477 	return (EAGAIN);
2478 }
2479 
2480 static int
receive_write_embedded(struct receive_writer_arg * rwa,struct drr_write_embedded * drrwe,void * data)2481 receive_write_embedded(struct receive_writer_arg *rwa,
2482     struct drr_write_embedded *drrwe, void *data)
2483 {
2484 	dmu_tx_t *tx;
2485 	int err;
2486 
2487 	if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2488 		return (SET_ERROR(EINVAL));
2489 
2490 	if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2491 		return (SET_ERROR(EINVAL));
2492 
2493 	if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2494 		return (SET_ERROR(EINVAL));
2495 	if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2496 		return (SET_ERROR(EINVAL));
2497 	if (rwa->raw)
2498 		return (SET_ERROR(EINVAL));
2499 
2500 	if (drrwe->drr_object > rwa->max_object)
2501 		rwa->max_object = drrwe->drr_object;
2502 
2503 	tx = dmu_tx_create(rwa->os);
2504 
2505 	dmu_tx_hold_write(tx, drrwe->drr_object,
2506 	    drrwe->drr_offset, drrwe->drr_length);
2507 	err = dmu_tx_assign(tx, DMU_TX_WAIT);
2508 	if (err != 0) {
2509 		dmu_tx_abort(tx);
2510 		return (err);
2511 	}
2512 
2513 	dmu_write_embedded(rwa->os, drrwe->drr_object,
2514 	    drrwe->drr_offset, data, drrwe->drr_etype,
2515 	    drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2516 	    rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2517 
2518 	/* See comment in restore_write. */
2519 	save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2520 	dmu_tx_commit(tx);
2521 	return (0);
2522 }
2523 
2524 static int
receive_spill(struct receive_writer_arg * rwa,struct drr_spill * drrs,abd_t * abd)2525 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2526     abd_t *abd)
2527 {
2528 	dmu_buf_t *db, *db_spill;
2529 	int err;
2530 
2531 	if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2532 	    drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2533 		return (SET_ERROR(EINVAL));
2534 
2535 	/*
2536 	 * This is an unmodified spill block which was added to the stream
2537 	 * to resolve an issue with incorrectly removing spill blocks.  It
2538 	 * should be ignored by current versions of the code which support
2539 	 * the DRR_FLAG_SPILL_BLOCK flag.
2540 	 */
2541 	if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
2542 		abd_free(abd);
2543 		return (0);
2544 	}
2545 
2546 	if (rwa->raw) {
2547 		if (!DMU_OT_IS_VALID(drrs->drr_type) ||
2548 		    drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
2549 		    drrs->drr_compressed_size == 0)
2550 			return (SET_ERROR(EINVAL));
2551 	}
2552 
2553 	if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2554 		return (SET_ERROR(EINVAL));
2555 
2556 	if (drrs->drr_object > rwa->max_object)
2557 		rwa->max_object = drrs->drr_object;
2558 
2559 	VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2560 	if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
2561 	    &db_spill)) != 0) {
2562 		dmu_buf_rele(db, FTAG);
2563 		return (err);
2564 	}
2565 
2566 	dmu_tx_t *tx = dmu_tx_create(rwa->os);
2567 
2568 	dmu_tx_hold_spill(tx, db->db_object);
2569 
2570 	err = dmu_tx_assign(tx, DMU_TX_WAIT);
2571 	if (err != 0) {
2572 		dmu_buf_rele(db, FTAG);
2573 		dmu_buf_rele(db_spill, FTAG);
2574 		dmu_tx_abort(tx);
2575 		return (err);
2576 	}
2577 
2578 	/*
2579 	 * Spill blocks may both grow and shrink.  When a change in size
2580 	 * occurs any existing dbuf must be updated to match the logical
2581 	 * size of the provided arc_buf_t.
2582 	 */
2583 	if (db_spill->db_size != drrs->drr_length) {
2584 		dmu_buf_will_fill(db_spill, tx, B_FALSE);
2585 		VERIFY0(dbuf_spill_set_blksz(db_spill,
2586 		    drrs->drr_length, tx));
2587 	}
2588 
2589 	arc_buf_t *abuf;
2590 	if (rwa->raw) {
2591 		boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2592 		    !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
2593 		    rwa->byteswap;
2594 
2595 		abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os),
2596 		    drrs->drr_object, byteorder, drrs->drr_salt,
2597 		    drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
2598 		    drrs->drr_compressed_size, drrs->drr_length,
2599 		    drrs->drr_compressiontype, 0);
2600 	} else {
2601 		abuf = arc_loan_buf(dmu_objset_spa(rwa->os),
2602 		    DMU_OT_IS_METADATA(drrs->drr_type),
2603 		    drrs->drr_length);
2604 		if (rwa->byteswap) {
2605 			dmu_object_byteswap_t byteswap =
2606 			    DMU_OT_BYTESWAP(drrs->drr_type);
2607 			dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd),
2608 			    DRR_SPILL_PAYLOAD_SIZE(drrs));
2609 		}
2610 	}
2611 
2612 	memcpy(abuf->b_data, abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs));
2613 	abd_free(abd);
2614 	dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
2615 
2616 	dmu_buf_rele(db, FTAG);
2617 	dmu_buf_rele(db_spill, FTAG);
2618 
2619 	dmu_tx_commit(tx);
2620 	return (0);
2621 }
2622 
2623 noinline static int
receive_free(struct receive_writer_arg * rwa,struct drr_free * drrf)2624 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2625 {
2626 	int err;
2627 
2628 	if (drrf->drr_length != -1ULL &&
2629 	    drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2630 		return (SET_ERROR(EINVAL));
2631 
2632 	if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2633 		return (SET_ERROR(EINVAL));
2634 
2635 	if (drrf->drr_object > rwa->max_object)
2636 		rwa->max_object = drrf->drr_object;
2637 
2638 	err = dmu_free_long_range(rwa->os, drrf->drr_object,
2639 	    drrf->drr_offset, drrf->drr_length);
2640 
2641 	return (err);
2642 }
2643 
2644 static int
receive_object_range(struct receive_writer_arg * rwa,struct drr_object_range * drror)2645 receive_object_range(struct receive_writer_arg *rwa,
2646     struct drr_object_range *drror)
2647 {
2648 	/*
2649 	 * By default, we assume this block is in our native format
2650 	 * (ZFS_HOST_BYTEORDER). We then take into account whether
2651 	 * the send stream is byteswapped (rwa->byteswap). Finally,
2652 	 * we need to byteswap again if this particular block was
2653 	 * in non-native format on the send side.
2654 	 */
2655 	boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
2656 	    !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
2657 
2658 	/*
2659 	 * Since dnode block sizes are constant, we should not need to worry
2660 	 * about making sure that the dnode block size is the same on the
2661 	 * sending and receiving sides for the time being. For non-raw sends,
2662 	 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
2663 	 * record at all). Raw sends require this record type because the
2664 	 * encryption parameters are used to protect an entire block of bonus
2665 	 * buffers. If the size of dnode blocks ever becomes variable,
2666 	 * handling will need to be added to ensure that dnode block sizes
2667 	 * match on the sending and receiving side.
2668 	 */
2669 	if (drror->drr_numslots != DNODES_PER_BLOCK ||
2670 	    P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
2671 	    !rwa->raw)
2672 		return (SET_ERROR(EINVAL));
2673 
2674 	if (drror->drr_firstobj > rwa->max_object)
2675 		rwa->max_object = drror->drr_firstobj;
2676 
2677 	/*
2678 	 * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
2679 	 * so that the block of dnodes is not written out when it's empty,
2680 	 * and converted to a HOLE BP.
2681 	 */
2682 	rwa->or_crypt_params_present = B_TRUE;
2683 	rwa->or_firstobj = drror->drr_firstobj;
2684 	rwa->or_numslots = drror->drr_numslots;
2685 	memcpy(rwa->or_salt, drror->drr_salt, ZIO_DATA_SALT_LEN);
2686 	memcpy(rwa->or_iv, drror->drr_iv, ZIO_DATA_IV_LEN);
2687 	memcpy(rwa->or_mac, drror->drr_mac, ZIO_DATA_MAC_LEN);
2688 	rwa->or_byteorder = byteorder;
2689 
2690 	rwa->or_need_sync = ORNS_MAYBE;
2691 
2692 	return (0);
2693 }
2694 
2695 /*
2696  * Until we have the ability to redact large ranges of data efficiently, we
2697  * process these records as frees.
2698  */
2699 noinline static int
receive_redact(struct receive_writer_arg * rwa,struct drr_redact * drrr)2700 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr)
2701 {
2702 	struct drr_free drrf = {0};
2703 	drrf.drr_length = drrr->drr_length;
2704 	drrf.drr_object = drrr->drr_object;
2705 	drrf.drr_offset = drrr->drr_offset;
2706 	drrf.drr_toguid = drrr->drr_toguid;
2707 	return (receive_free(rwa, &drrf));
2708 }
2709 
2710 /* used to destroy the drc_ds on error */
2711 static void
dmu_recv_cleanup_ds(dmu_recv_cookie_t * drc)2712 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2713 {
2714 	dsl_dataset_t *ds = drc->drc_ds;
2715 	ds_hold_flags_t dsflags;
2716 
2717 	dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2718 	/*
2719 	 * Wait for the txg sync before cleaning up the receive. For
2720 	 * resumable receives, this ensures that our resume state has
2721 	 * been written out to disk. For raw receives, this ensures
2722 	 * that the user accounting code will not attempt to do anything
2723 	 * after we stopped receiving the dataset.
2724 	 */
2725 	txg_wait_synced(ds->ds_dir->dd_pool, 0);
2726 	ds->ds_objset->os_raw_receive = B_FALSE;
2727 
2728 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2729 	if (drc->drc_resumable && drc->drc_should_save &&
2730 	    !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
2731 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
2732 		dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2733 	} else {
2734 		char name[ZFS_MAX_DATASET_NAME_LEN];
2735 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
2736 		dsl_dataset_name(ds, name);
2737 		dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2738 		if (!drc->drc_heal)
2739 			(void) dsl_destroy_head(name);
2740 	}
2741 }
2742 
2743 static void
receive_cksum(dmu_recv_cookie_t * drc,int len,void * buf)2744 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf)
2745 {
2746 	if (drc->drc_byteswap) {
2747 		(void) fletcher_4_incremental_byteswap(buf, len,
2748 		    &drc->drc_cksum);
2749 	} else {
2750 		(void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum);
2751 	}
2752 }
2753 
2754 /*
2755  * Read the payload into a buffer of size len, and update the current record's
2756  * payload field.
2757  * Allocate drc->drc_next_rrd and read the next record's header into
2758  * drc->drc_next_rrd->header.
2759  * Verify checksum of payload and next record.
2760  */
2761 static int
receive_read_payload_and_next_header(dmu_recv_cookie_t * drc,int len,void * buf)2762 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf)
2763 {
2764 	int err;
2765 
2766 	if (len != 0) {
2767 		ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2768 		err = receive_read(drc, len, buf);
2769 		if (err != 0)
2770 			return (err);
2771 		receive_cksum(drc, len, buf);
2772 
2773 		/* note: rrd is NULL when reading the begin record's payload */
2774 		if (drc->drc_rrd != NULL) {
2775 			drc->drc_rrd->payload = buf;
2776 			drc->drc_rrd->payload_size = len;
2777 			drc->drc_rrd->bytes_read = drc->drc_bytes_read;
2778 		}
2779 	} else {
2780 		ASSERT3P(buf, ==, NULL);
2781 	}
2782 
2783 	drc->drc_prev_cksum = drc->drc_cksum;
2784 
2785 	drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP);
2786 	err = receive_read(drc, sizeof (drc->drc_next_rrd->header),
2787 	    &drc->drc_next_rrd->header);
2788 	drc->drc_next_rrd->bytes_read = drc->drc_bytes_read;
2789 
2790 	if (err != 0) {
2791 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2792 		drc->drc_next_rrd = NULL;
2793 		return (err);
2794 	}
2795 	if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) {
2796 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2797 		drc->drc_next_rrd = NULL;
2798 		return (SET_ERROR(EINVAL));
2799 	}
2800 
2801 	/*
2802 	 * Note: checksum is of everything up to but not including the
2803 	 * checksum itself.
2804 	 */
2805 	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2806 	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2807 	receive_cksum(drc,
2808 	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2809 	    &drc->drc_next_rrd->header);
2810 
2811 	zio_cksum_t cksum_orig =
2812 	    drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2813 	zio_cksum_t *cksump =
2814 	    &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2815 
2816 	if (drc->drc_byteswap)
2817 		byteswap_record(&drc->drc_next_rrd->header);
2818 
2819 	if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2820 	    !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) {
2821 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2822 		drc->drc_next_rrd = NULL;
2823 		return (SET_ERROR(ECKSUM));
2824 	}
2825 
2826 	receive_cksum(drc, sizeof (cksum_orig), &cksum_orig);
2827 
2828 	return (0);
2829 }
2830 
2831 /*
2832  * Issue the prefetch reads for any necessary indirect blocks.
2833  *
2834  * We use the object ignore list to tell us whether or not to issue prefetches
2835  * for a given object.  We do this for both correctness (in case the blocksize
2836  * of an object has changed) and performance (if the object doesn't exist, don't
2837  * needlessly try to issue prefetches).  We also trim the list as we go through
2838  * the stream to prevent it from growing to an unbounded size.
2839  *
2840  * The object numbers within will always be in sorted order, and any write
2841  * records we see will also be in sorted order, but they're not sorted with
2842  * respect to each other (i.e. we can get several object records before
2843  * receiving each object's write records).  As a result, once we've reached a
2844  * given object number, we can safely remove any reference to lower object
2845  * numbers in the ignore list. In practice, we receive up to 32 object records
2846  * before receiving write records, so the list can have up to 32 nodes in it.
2847  */
2848 static void
receive_read_prefetch(dmu_recv_cookie_t * drc,uint64_t object,uint64_t offset,uint64_t length)2849 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset,
2850     uint64_t length)
2851 {
2852 	if (!objlist_exists(drc->drc_ignore_objlist, object)) {
2853 		dmu_prefetch(drc->drc_os, object, 1, offset, length,
2854 		    ZIO_PRIORITY_SYNC_READ);
2855 	}
2856 }
2857 
2858 /*
2859  * Read records off the stream, issuing any necessary prefetches.
2860  */
2861 static int
receive_read_record(dmu_recv_cookie_t * drc)2862 receive_read_record(dmu_recv_cookie_t *drc)
2863 {
2864 	int err;
2865 
2866 	switch (drc->drc_rrd->header.drr_type) {
2867 	case DRR_OBJECT:
2868 	{
2869 		struct drr_object *drro =
2870 		    &drc->drc_rrd->header.drr_u.drr_object;
2871 		uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
2872 		void *buf = NULL;
2873 		dmu_object_info_t doi;
2874 
2875 		if (size != 0)
2876 			buf = kmem_zalloc(size, KM_SLEEP);
2877 
2878 		err = receive_read_payload_and_next_header(drc, size, buf);
2879 		if (err != 0) {
2880 			kmem_free(buf, size);
2881 			return (err);
2882 		}
2883 		err = dmu_object_info(drc->drc_os, drro->drr_object, &doi);
2884 		/*
2885 		 * See receive_read_prefetch for an explanation why we're
2886 		 * storing this object in the ignore_obj_list.
2887 		 */
2888 		if (err == ENOENT || err == EEXIST ||
2889 		    (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2890 			objlist_insert(drc->drc_ignore_objlist,
2891 			    drro->drr_object);
2892 			err = 0;
2893 		}
2894 		return (err);
2895 	}
2896 	case DRR_FREEOBJECTS:
2897 	{
2898 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2899 		return (err);
2900 	}
2901 	case DRR_WRITE:
2902 	{
2903 		struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write;
2904 		int size = DRR_WRITE_PAYLOAD_SIZE(drrw);
2905 		abd_t *abd = abd_alloc_linear(size, B_FALSE);
2906 		err = receive_read_payload_and_next_header(drc, size,
2907 		    abd_to_buf(abd));
2908 		if (err != 0) {
2909 			abd_free(abd);
2910 			return (err);
2911 		}
2912 		drc->drc_rrd->abd = abd;
2913 		receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset,
2914 		    drrw->drr_logical_size);
2915 		return (err);
2916 	}
2917 	case DRR_WRITE_EMBEDDED:
2918 	{
2919 		struct drr_write_embedded *drrwe =
2920 		    &drc->drc_rrd->header.drr_u.drr_write_embedded;
2921 		uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2922 		void *buf = kmem_zalloc(size, KM_SLEEP);
2923 
2924 		err = receive_read_payload_and_next_header(drc, size, buf);
2925 		if (err != 0) {
2926 			kmem_free(buf, size);
2927 			return (err);
2928 		}
2929 
2930 		receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset,
2931 		    drrwe->drr_length);
2932 		return (err);
2933 	}
2934 	case DRR_FREE:
2935 	case DRR_REDACT:
2936 	{
2937 		/*
2938 		 * It might be beneficial to prefetch indirect blocks here, but
2939 		 * we don't really have the data to decide for sure.
2940 		 */
2941 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2942 		return (err);
2943 	}
2944 	case DRR_END:
2945 	{
2946 		struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end;
2947 		if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum,
2948 		    drre->drr_checksum))
2949 			return (SET_ERROR(ECKSUM));
2950 		return (0);
2951 	}
2952 	case DRR_SPILL:
2953 	{
2954 		struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill;
2955 		int size = DRR_SPILL_PAYLOAD_SIZE(drrs);
2956 		abd_t *abd = abd_alloc_linear(size, B_FALSE);
2957 		err = receive_read_payload_and_next_header(drc, size,
2958 		    abd_to_buf(abd));
2959 		if (err != 0)
2960 			abd_free(abd);
2961 		else
2962 			drc->drc_rrd->abd = abd;
2963 		return (err);
2964 	}
2965 	case DRR_OBJECT_RANGE:
2966 	{
2967 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2968 		return (err);
2969 
2970 	}
2971 	default:
2972 		return (SET_ERROR(EINVAL));
2973 	}
2974 }
2975 
2976 
2977 
2978 static void
dprintf_drr(struct receive_record_arg * rrd,int err)2979 dprintf_drr(struct receive_record_arg *rrd, int err)
2980 {
2981 #ifdef ZFS_DEBUG
2982 	switch (rrd->header.drr_type) {
2983 	case DRR_OBJECT:
2984 	{
2985 		struct drr_object *drro = &rrd->header.drr_u.drr_object;
2986 		dprintf("drr_type = OBJECT obj = %llu type = %u "
2987 		    "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
2988 		    "compress = %u dn_slots = %u err = %d\n",
2989 		    (u_longlong_t)drro->drr_object, drro->drr_type,
2990 		    drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen,
2991 		    drro->drr_checksumtype, drro->drr_compress,
2992 		    drro->drr_dn_slots, err);
2993 		break;
2994 	}
2995 	case DRR_FREEOBJECTS:
2996 	{
2997 		struct drr_freeobjects *drrfo =
2998 		    &rrd->header.drr_u.drr_freeobjects;
2999 		dprintf("drr_type = FREEOBJECTS firstobj = %llu "
3000 		    "numobjs = %llu err = %d\n",
3001 		    (u_longlong_t)drrfo->drr_firstobj,
3002 		    (u_longlong_t)drrfo->drr_numobjs, err);
3003 		break;
3004 	}
3005 	case DRR_WRITE:
3006 	{
3007 		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
3008 		dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
3009 		    "lsize = %llu cksumtype = %u flags = %u "
3010 		    "compress = %u psize = %llu err = %d\n",
3011 		    (u_longlong_t)drrw->drr_object, drrw->drr_type,
3012 		    (u_longlong_t)drrw->drr_offset,
3013 		    (u_longlong_t)drrw->drr_logical_size,
3014 		    drrw->drr_checksumtype, drrw->drr_flags,
3015 		    drrw->drr_compressiontype,
3016 		    (u_longlong_t)drrw->drr_compressed_size, err);
3017 		break;
3018 	}
3019 	case DRR_WRITE_BYREF:
3020 	{
3021 		struct drr_write_byref *drrwbr =
3022 		    &rrd->header.drr_u.drr_write_byref;
3023 		dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
3024 		    "length = %llu toguid = %llx refguid = %llx "
3025 		    "refobject = %llu refoffset = %llu cksumtype = %u "
3026 		    "flags = %u err = %d\n",
3027 		    (u_longlong_t)drrwbr->drr_object,
3028 		    (u_longlong_t)drrwbr->drr_offset,
3029 		    (u_longlong_t)drrwbr->drr_length,
3030 		    (u_longlong_t)drrwbr->drr_toguid,
3031 		    (u_longlong_t)drrwbr->drr_refguid,
3032 		    (u_longlong_t)drrwbr->drr_refobject,
3033 		    (u_longlong_t)drrwbr->drr_refoffset,
3034 		    drrwbr->drr_checksumtype, drrwbr->drr_flags, err);
3035 		break;
3036 	}
3037 	case DRR_WRITE_EMBEDDED:
3038 	{
3039 		struct drr_write_embedded *drrwe =
3040 		    &rrd->header.drr_u.drr_write_embedded;
3041 		dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
3042 		    "length = %llu compress = %u etype = %u lsize = %u "
3043 		    "psize = %u err = %d\n",
3044 		    (u_longlong_t)drrwe->drr_object,
3045 		    (u_longlong_t)drrwe->drr_offset,
3046 		    (u_longlong_t)drrwe->drr_length,
3047 		    drrwe->drr_compression, drrwe->drr_etype,
3048 		    drrwe->drr_lsize, drrwe->drr_psize, err);
3049 		break;
3050 	}
3051 	case DRR_FREE:
3052 	{
3053 		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
3054 		dprintf("drr_type = FREE obj = %llu offset = %llu "
3055 		    "length = %lld err = %d\n",
3056 		    (u_longlong_t)drrf->drr_object,
3057 		    (u_longlong_t)drrf->drr_offset,
3058 		    (longlong_t)drrf->drr_length,
3059 		    err);
3060 		break;
3061 	}
3062 	case DRR_SPILL:
3063 	{
3064 		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
3065 		dprintf("drr_type = SPILL obj = %llu length = %llu "
3066 		    "err = %d\n", (u_longlong_t)drrs->drr_object,
3067 		    (u_longlong_t)drrs->drr_length, err);
3068 		break;
3069 	}
3070 	case DRR_OBJECT_RANGE:
3071 	{
3072 		struct drr_object_range *drror =
3073 		    &rrd->header.drr_u.drr_object_range;
3074 		dprintf("drr_type = OBJECT_RANGE firstobj = %llu "
3075 		    "numslots = %llu flags = %u err = %d\n",
3076 		    (u_longlong_t)drror->drr_firstobj,
3077 		    (u_longlong_t)drror->drr_numslots,
3078 		    drror->drr_flags, err);
3079 		break;
3080 	}
3081 	default:
3082 		return;
3083 	}
3084 #endif
3085 }
3086 
3087 /*
3088  * Commit the records to the pool.
3089  */
3090 static int
receive_process_record(struct receive_writer_arg * rwa,struct receive_record_arg * rrd)3091 receive_process_record(struct receive_writer_arg *rwa,
3092     struct receive_record_arg *rrd)
3093 {
3094 	int err;
3095 
3096 	/* Processing in order, therefore bytes_read should be increasing. */
3097 	ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
3098 	rwa->bytes_read = rrd->bytes_read;
3099 
3100 	/* We can only heal write records; other ones get ignored */
3101 	if (rwa->heal && rrd->header.drr_type != DRR_WRITE) {
3102 		if (rrd->abd != NULL) {
3103 			abd_free(rrd->abd);
3104 			rrd->abd = NULL;
3105 		} else if (rrd->payload != NULL) {
3106 			kmem_free(rrd->payload, rrd->payload_size);
3107 			rrd->payload = NULL;
3108 		}
3109 		return (0);
3110 	}
3111 
3112 	if (!rwa->heal && rrd->header.drr_type != DRR_WRITE) {
3113 		err = flush_write_batch(rwa);
3114 		if (err != 0) {
3115 			if (rrd->abd != NULL) {
3116 				abd_free(rrd->abd);
3117 				rrd->abd = NULL;
3118 				rrd->payload = NULL;
3119 			} else if (rrd->payload != NULL) {
3120 				kmem_free(rrd->payload, rrd->payload_size);
3121 				rrd->payload = NULL;
3122 			}
3123 
3124 			return (err);
3125 		}
3126 	}
3127 
3128 	switch (rrd->header.drr_type) {
3129 	case DRR_OBJECT:
3130 	{
3131 		struct drr_object *drro = &rrd->header.drr_u.drr_object;
3132 		err = receive_object(rwa, drro, rrd->payload);
3133 		kmem_free(rrd->payload, rrd->payload_size);
3134 		rrd->payload = NULL;
3135 		break;
3136 	}
3137 	case DRR_FREEOBJECTS:
3138 	{
3139 		struct drr_freeobjects *drrfo =
3140 		    &rrd->header.drr_u.drr_freeobjects;
3141 		err = receive_freeobjects(rwa, drrfo);
3142 		break;
3143 	}
3144 	case DRR_WRITE:
3145 	{
3146 		err = receive_process_write_record(rwa, rrd);
3147 		if (rwa->heal) {
3148 			/*
3149 			 * If healing - always free the abd after processing
3150 			 */
3151 			abd_free(rrd->abd);
3152 			rrd->abd = NULL;
3153 		} else if (err != EAGAIN) {
3154 			/*
3155 			 * On success, a non-healing
3156 			 * receive_process_write_record() returns
3157 			 * EAGAIN to indicate that we do not want to free
3158 			 * the rrd or arc_buf.
3159 			 */
3160 			ASSERT(err != 0);
3161 			abd_free(rrd->abd);
3162 			rrd->abd = NULL;
3163 		}
3164 		break;
3165 	}
3166 	case DRR_WRITE_EMBEDDED:
3167 	{
3168 		struct drr_write_embedded *drrwe =
3169 		    &rrd->header.drr_u.drr_write_embedded;
3170 		err = receive_write_embedded(rwa, drrwe, rrd->payload);
3171 		kmem_free(rrd->payload, rrd->payload_size);
3172 		rrd->payload = NULL;
3173 		break;
3174 	}
3175 	case DRR_FREE:
3176 	{
3177 		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
3178 		err = receive_free(rwa, drrf);
3179 		break;
3180 	}
3181 	case DRR_SPILL:
3182 	{
3183 		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
3184 		err = receive_spill(rwa, drrs, rrd->abd);
3185 		if (err != 0)
3186 			abd_free(rrd->abd);
3187 		rrd->abd = NULL;
3188 		rrd->payload = NULL;
3189 		break;
3190 	}
3191 	case DRR_OBJECT_RANGE:
3192 	{
3193 		struct drr_object_range *drror =
3194 		    &rrd->header.drr_u.drr_object_range;
3195 		err = receive_object_range(rwa, drror);
3196 		break;
3197 	}
3198 	case DRR_REDACT:
3199 	{
3200 		struct drr_redact *drrr = &rrd->header.drr_u.drr_redact;
3201 		err = receive_redact(rwa, drrr);
3202 		break;
3203 	}
3204 	default:
3205 		err = (SET_ERROR(EINVAL));
3206 	}
3207 
3208 	if (err != 0)
3209 		dprintf_drr(rrd, err);
3210 
3211 	return (err);
3212 }
3213 
3214 /*
3215  * dmu_recv_stream's worker thread; pull records off the queue, and then call
3216  * receive_process_record  When we're done, signal the main thread and exit.
3217  */
3218 static __attribute__((noreturn)) void
receive_writer_thread(void * arg)3219 receive_writer_thread(void *arg)
3220 {
3221 	struct receive_writer_arg *rwa = arg;
3222 	struct receive_record_arg *rrd;
3223 	fstrans_cookie_t cookie = spl_fstrans_mark();
3224 
3225 	for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
3226 	    rrd = bqueue_dequeue(&rwa->q)) {
3227 		/*
3228 		 * If there's an error, the main thread will stop putting things
3229 		 * on the queue, but we need to clear everything in it before we
3230 		 * can exit.
3231 		 */
3232 		int err = 0;
3233 		if (rwa->err == 0) {
3234 			err = receive_process_record(rwa, rrd);
3235 		} else if (rrd->abd != NULL) {
3236 			abd_free(rrd->abd);
3237 			rrd->abd = NULL;
3238 			rrd->payload = NULL;
3239 		} else if (rrd->payload != NULL) {
3240 			kmem_free(rrd->payload, rrd->payload_size);
3241 			rrd->payload = NULL;
3242 		}
3243 		/*
3244 		 * EAGAIN indicates that this record has been saved (on
3245 		 * raw->write_batch), and will be used again, so we don't
3246 		 * free it.
3247 		 * When healing data we always need to free the record.
3248 		 */
3249 		if (err != EAGAIN || rwa->heal) {
3250 			if (rwa->err == 0)
3251 				rwa->err = err;
3252 			kmem_free(rrd, sizeof (*rrd));
3253 		}
3254 	}
3255 	kmem_free(rrd, sizeof (*rrd));
3256 
3257 	if (rwa->heal) {
3258 		zio_wait(rwa->heal_pio);
3259 	} else {
3260 		int err = flush_write_batch(rwa);
3261 		if (rwa->err == 0)
3262 			rwa->err = err;
3263 	}
3264 	mutex_enter(&rwa->mutex);
3265 	rwa->done = B_TRUE;
3266 	cv_signal(&rwa->cv);
3267 	mutex_exit(&rwa->mutex);
3268 	spl_fstrans_unmark(cookie);
3269 	thread_exit();
3270 }
3271 
3272 static int
resume_check(dmu_recv_cookie_t * drc,nvlist_t * begin_nvl)3273 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl)
3274 {
3275 	uint64_t val;
3276 	objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset;
3277 	uint64_t dsobj = dmu_objset_id(drc->drc_os);
3278 	uint64_t resume_obj, resume_off;
3279 
3280 	if (nvlist_lookup_uint64(begin_nvl,
3281 	    "resume_object", &resume_obj) != 0 ||
3282 	    nvlist_lookup_uint64(begin_nvl,
3283 	    "resume_offset", &resume_off) != 0) {
3284 		return (SET_ERROR(EINVAL));
3285 	}
3286 	VERIFY0(zap_lookup(mos, dsobj,
3287 	    DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
3288 	if (resume_obj != val)
3289 		return (SET_ERROR(EINVAL));
3290 	VERIFY0(zap_lookup(mos, dsobj,
3291 	    DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
3292 	if (resume_off != val)
3293 		return (SET_ERROR(EINVAL));
3294 
3295 	return (0);
3296 }
3297 
3298 /*
3299  * Read in the stream's records, one by one, and apply them to the pool.  There
3300  * are two threads involved; the thread that calls this function will spin up a
3301  * worker thread, read the records off the stream one by one, and issue
3302  * prefetches for any necessary indirect blocks.  It will then push the records
3303  * onto an internal blocking queue.  The worker thread will pull the records off
3304  * the queue, and actually write the data into the DMU.  This way, the worker
3305  * thread doesn't have to wait for reads to complete, since everything it needs
3306  * (the indirect blocks) will be prefetched.
3307  *
3308  * NB: callers *must* call dmu_recv_end() if this succeeds.
3309  */
3310 int
dmu_recv_stream(dmu_recv_cookie_t * drc,offset_t * voffp)3311 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp)
3312 {
3313 	int err = 0;
3314 	struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
3315 
3316 	if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) {
3317 		uint64_t bytes = 0;
3318 		(void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
3319 		    drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
3320 		    sizeof (bytes), 1, &bytes);
3321 		drc->drc_bytes_read += bytes;
3322 	}
3323 
3324 	drc->drc_ignore_objlist = objlist_create();
3325 
3326 	/* these were verified in dmu_recv_begin */
3327 	ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
3328 	    DMU_SUBSTREAM);
3329 	ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
3330 
3331 	ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
3332 	ASSERT0(drc->drc_os->os_encrypted &&
3333 	    (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
3334 
3335 	/* handle DSL encryption key payload */
3336 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
3337 		nvlist_t *keynvl = NULL;
3338 
3339 		ASSERT(drc->drc_os->os_encrypted);
3340 		ASSERT(drc->drc_raw);
3341 
3342 		err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata",
3343 		    &keynvl);
3344 		if (err != 0)
3345 			goto out;
3346 
3347 		if (!drc->drc_heal) {
3348 			/*
3349 			 * If this is a new dataset we set the key immediately.
3350 			 * Otherwise we don't want to change the key until we
3351 			 * are sure the rest of the receive succeeded so we
3352 			 * stash the keynvl away until then.
3353 			 */
3354 			err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa),
3355 			    drc->drc_ds->ds_object, drc->drc_fromsnapobj,
3356 			    drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
3357 			if (err != 0)
3358 				goto out;
3359 		}
3360 
3361 		/* see comment in dmu_recv_end_sync() */
3362 		drc->drc_ivset_guid = 0;
3363 		(void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
3364 		    &drc->drc_ivset_guid);
3365 
3366 		if (!drc->drc_newfs)
3367 			drc->drc_keynvl = fnvlist_dup(keynvl);
3368 	}
3369 
3370 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
3371 		err = resume_check(drc, drc->drc_begin_nvl);
3372 		if (err != 0)
3373 			goto out;
3374 	}
3375 
3376 	/*
3377 	 * For compatibility with recursive send streams, we do this here,
3378 	 * rather than in dmu_recv_begin. If we pull the next header too
3379 	 * early, and it's the END record, we break the `recv_skip` logic.
3380 	 */
3381 	if (drc->drc_drr_begin->drr_payloadlen == 0) {
3382 		err = receive_read_payload_and_next_header(drc, 0, NULL);
3383 		if (err != 0)
3384 			goto out;
3385 	}
3386 
3387 	/*
3388 	 * If we failed before this point we will clean up any new resume
3389 	 * state that was created. Now that we've gotten past the initial
3390 	 * checks we are ok to retain that resume state.
3391 	 */
3392 	drc->drc_should_save = B_TRUE;
3393 
3394 	(void) bqueue_init(&rwa->q, zfs_recv_queue_ff,
3395 	    MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
3396 	    offsetof(struct receive_record_arg, node));
3397 	cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
3398 	mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
3399 	rwa->os = drc->drc_os;
3400 	rwa->byteswap = drc->drc_byteswap;
3401 	rwa->heal = drc->drc_heal;
3402 	rwa->tofs = drc->drc_tofs;
3403 	rwa->resumable = drc->drc_resumable;
3404 	rwa->raw = drc->drc_raw;
3405 	rwa->spill = drc->drc_spill;
3406 	rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0);
3407 	rwa->os->os_raw_receive = drc->drc_raw;
3408 	if (drc->drc_heal) {
3409 		rwa->heal_pio = zio_root(drc->drc_os->os_spa, NULL, NULL,
3410 		    ZIO_FLAG_GODFATHER);
3411 	}
3412 	list_create(&rwa->write_batch, sizeof (struct receive_record_arg),
3413 	    offsetof(struct receive_record_arg, node.bqn_node));
3414 
3415 	(void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
3416 	    TS_RUN, minclsyspri);
3417 	/*
3418 	 * We're reading rwa->err without locks, which is safe since we are the
3419 	 * only reader, and the worker thread is the only writer.  It's ok if we
3420 	 * miss a write for an iteration or two of the loop, since the writer
3421 	 * thread will keep freeing records we send it until we send it an eos
3422 	 * marker.
3423 	 *
3424 	 * We can leave this loop in 3 ways:  First, if rwa->err is
3425 	 * non-zero.  In that case, the writer thread will free the rrd we just
3426 	 * pushed.  Second, if  we're interrupted; in that case, either it's the
3427 	 * first loop and drc->drc_rrd was never allocated, or it's later, and
3428 	 * drc->drc_rrd has been handed off to the writer thread who will free
3429 	 * it.  Finally, if receive_read_record fails or we're at the end of the
3430 	 * stream, then we free drc->drc_rrd and exit.
3431 	 */
3432 	while (rwa->err == 0) {
3433 		if (issig()) {
3434 			err = SET_ERROR(EINTR);
3435 			break;
3436 		}
3437 
3438 		ASSERT3P(drc->drc_rrd, ==, NULL);
3439 		drc->drc_rrd = drc->drc_next_rrd;
3440 		drc->drc_next_rrd = NULL;
3441 		/* Allocates and loads header into drc->drc_next_rrd */
3442 		err = receive_read_record(drc);
3443 
3444 		if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) {
3445 			kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd));
3446 			drc->drc_rrd = NULL;
3447 			break;
3448 		}
3449 
3450 		bqueue_enqueue(&rwa->q, drc->drc_rrd,
3451 		    sizeof (struct receive_record_arg) +
3452 		    drc->drc_rrd->payload_size);
3453 		drc->drc_rrd = NULL;
3454 	}
3455 
3456 	ASSERT3P(drc->drc_rrd, ==, NULL);
3457 	drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP);
3458 	drc->drc_rrd->eos_marker = B_TRUE;
3459 	bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1);
3460 
3461 	mutex_enter(&rwa->mutex);
3462 	while (!rwa->done) {
3463 		/*
3464 		 * We need to use cv_wait_sig() so that any process that may
3465 		 * be sleeping here can still fork.
3466 		 */
3467 		(void) cv_wait_sig(&rwa->cv, &rwa->mutex);
3468 	}
3469 	mutex_exit(&rwa->mutex);
3470 
3471 	/*
3472 	 * If we are receiving a full stream as a clone, all object IDs which
3473 	 * are greater than the maximum ID referenced in the stream are
3474 	 * by definition unused and must be freed.
3475 	 */
3476 	if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
3477 		uint64_t obj = rwa->max_object + 1;
3478 		int free_err = 0;
3479 		int next_err = 0;
3480 
3481 		while (next_err == 0) {
3482 			free_err = dmu_free_long_object(rwa->os, obj);
3483 			if (free_err != 0 && free_err != ENOENT)
3484 				break;
3485 
3486 			next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
3487 		}
3488 
3489 		if (err == 0) {
3490 			if (free_err != 0 && free_err != ENOENT)
3491 				err = free_err;
3492 			else if (next_err != ESRCH)
3493 				err = next_err;
3494 		}
3495 	}
3496 
3497 	cv_destroy(&rwa->cv);
3498 	mutex_destroy(&rwa->mutex);
3499 	bqueue_destroy(&rwa->q);
3500 	list_destroy(&rwa->write_batch);
3501 	if (err == 0)
3502 		err = rwa->err;
3503 
3504 out:
3505 	/*
3506 	 * If we hit an error before we started the receive_writer_thread
3507 	 * we need to clean up the next_rrd we create by processing the
3508 	 * DRR_BEGIN record.
3509 	 */
3510 	if (drc->drc_next_rrd != NULL)
3511 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
3512 
3513 	/*
3514 	 * The objset will be invalidated by dmu_recv_end() when we do
3515 	 * dsl_dataset_clone_swap_sync_impl().
3516 	 */
3517 	drc->drc_os = NULL;
3518 
3519 	kmem_free(rwa, sizeof (*rwa));
3520 	nvlist_free(drc->drc_begin_nvl);
3521 
3522 	if (err != 0) {
3523 		/*
3524 		 * Clean up references. If receive is not resumable,
3525 		 * destroy what we created, so we don't leave it in
3526 		 * the inconsistent state.
3527 		 */
3528 		dmu_recv_cleanup_ds(drc);
3529 		nvlist_free(drc->drc_keynvl);
3530 	}
3531 
3532 	objlist_destroy(drc->drc_ignore_objlist);
3533 	drc->drc_ignore_objlist = NULL;
3534 	*voffp = drc->drc_voff;
3535 	return (err);
3536 }
3537 
3538 static int
dmu_recv_end_check(void * arg,dmu_tx_t * tx)3539 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3540 {
3541 	dmu_recv_cookie_t *drc = arg;
3542 	dsl_pool_t *dp = dmu_tx_pool(tx);
3543 	int error;
3544 
3545 	ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3546 
3547 	if (drc->drc_heal) {
3548 		error = 0;
3549 	} else if (!drc->drc_newfs) {
3550 		dsl_dataset_t *origin_head;
3551 
3552 		error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3553 		if (error != 0)
3554 			return (error);
3555 		if (drc->drc_force) {
3556 			/*
3557 			 * We will destroy any snapshots in tofs (i.e. before
3558 			 * origin_head) that are after the origin (which is
3559 			 * the snap before drc_ds, because drc_ds can not
3560 			 * have any snaps of its own).
3561 			 */
3562 			uint64_t obj;
3563 
3564 			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3565 			while (obj !=
3566 			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3567 				dsl_dataset_t *snap;
3568 				error = dsl_dataset_hold_obj(dp, obj, FTAG,
3569 				    &snap);
3570 				if (error != 0)
3571 					break;
3572 				if (snap->ds_dir != origin_head->ds_dir)
3573 					error = SET_ERROR(EINVAL);
3574 				if (error == 0)  {
3575 					error = dsl_destroy_snapshot_check_impl(
3576 					    snap, B_FALSE);
3577 				}
3578 				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3579 				dsl_dataset_rele(snap, FTAG);
3580 				if (error != 0)
3581 					break;
3582 			}
3583 			if (error != 0) {
3584 				dsl_dataset_rele(origin_head, FTAG);
3585 				return (error);
3586 			}
3587 		}
3588 		if (drc->drc_keynvl != NULL) {
3589 			error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
3590 			    drc->drc_keynvl, tx);
3591 			if (error != 0) {
3592 				dsl_dataset_rele(origin_head, FTAG);
3593 				return (error);
3594 			}
3595 		}
3596 
3597 		error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3598 		    origin_head, drc->drc_force, drc->drc_owner, tx);
3599 		if (error != 0) {
3600 			dsl_dataset_rele(origin_head, FTAG);
3601 			return (error);
3602 		}
3603 		error = dsl_dataset_snapshot_check_impl(origin_head,
3604 		    drc->drc_tosnap, tx, B_TRUE, 1,
3605 		    drc->drc_cred, drc->drc_proc);
3606 		dsl_dataset_rele(origin_head, FTAG);
3607 		if (error != 0)
3608 			return (error);
3609 
3610 		error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3611 	} else {
3612 		error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3613 		    drc->drc_tosnap, tx, B_TRUE, 1,
3614 		    drc->drc_cred, drc->drc_proc);
3615 	}
3616 	return (error);
3617 }
3618 
3619 static void
dmu_recv_end_sync(void * arg,dmu_tx_t * tx)3620 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3621 {
3622 	dmu_recv_cookie_t *drc = arg;
3623 	dsl_pool_t *dp = dmu_tx_pool(tx);
3624 	boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
3625 	uint64_t newsnapobj = 0;
3626 
3627 	spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3628 	    tx, "snap=%s", drc->drc_tosnap);
3629 	drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
3630 
3631 	if (drc->drc_heal) {
3632 		if (drc->drc_keynvl != NULL) {
3633 			nvlist_free(drc->drc_keynvl);
3634 			drc->drc_keynvl = NULL;
3635 		}
3636 	} else if (!drc->drc_newfs) {
3637 		dsl_dataset_t *origin_head;
3638 
3639 		VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3640 		    &origin_head));
3641 
3642 		if (drc->drc_force) {
3643 			/*
3644 			 * Destroy any snapshots of drc_tofs (origin_head)
3645 			 * after the origin (the snap before drc_ds).
3646 			 */
3647 			uint64_t obj;
3648 
3649 			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3650 			while (obj !=
3651 			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3652 				dsl_dataset_t *snap;
3653 				VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3654 				    &snap));
3655 				ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3656 				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3657 				dsl_destroy_snapshot_sync_impl(snap,
3658 				    B_FALSE, tx);
3659 				dsl_dataset_rele(snap, FTAG);
3660 			}
3661 		}
3662 		if (drc->drc_keynvl != NULL) {
3663 			dsl_crypto_recv_raw_key_sync(drc->drc_ds,
3664 			    drc->drc_keynvl, tx);
3665 			nvlist_free(drc->drc_keynvl);
3666 			drc->drc_keynvl = NULL;
3667 		}
3668 
3669 		VERIFY3P(drc->drc_ds->ds_prev, ==,
3670 		    origin_head->ds_prev);
3671 
3672 		dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3673 		    origin_head, tx);
3674 		/*
3675 		 * The objset was evicted by dsl_dataset_clone_swap_sync_impl,
3676 		 * so drc_os is no longer valid.
3677 		 */
3678 		drc->drc_os = NULL;
3679 
3680 		dsl_dataset_snapshot_sync_impl(origin_head,
3681 		    drc->drc_tosnap, tx);
3682 
3683 		/* set snapshot's creation time and guid */
3684 		dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3685 		dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3686 		    drc->drc_drrb->drr_creation_time;
3687 		dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3688 		    drc->drc_drrb->drr_toguid;
3689 		dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3690 		    ~DS_FLAG_INCONSISTENT;
3691 
3692 		dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3693 		dsl_dataset_phys(origin_head)->ds_flags &=
3694 		    ~DS_FLAG_INCONSISTENT;
3695 
3696 		newsnapobj =
3697 		    dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3698 
3699 		dsl_dataset_rele(origin_head, FTAG);
3700 		dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3701 
3702 		if (drc->drc_owner != NULL)
3703 			VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3704 	} else {
3705 		dsl_dataset_t *ds = drc->drc_ds;
3706 
3707 		dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3708 
3709 		/* set snapshot's creation time and guid */
3710 		dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3711 		dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3712 		    drc->drc_drrb->drr_creation_time;
3713 		dsl_dataset_phys(ds->ds_prev)->ds_guid =
3714 		    drc->drc_drrb->drr_toguid;
3715 		dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3716 		    ~DS_FLAG_INCONSISTENT;
3717 
3718 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
3719 		dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3720 		if (dsl_dataset_has_resume_receive_state(ds)) {
3721 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3722 			    DS_FIELD_RESUME_FROMGUID, tx);
3723 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3724 			    DS_FIELD_RESUME_OBJECT, tx);
3725 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3726 			    DS_FIELD_RESUME_OFFSET, tx);
3727 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3728 			    DS_FIELD_RESUME_BYTES, tx);
3729 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3730 			    DS_FIELD_RESUME_TOGUID, tx);
3731 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3732 			    DS_FIELD_RESUME_TONAME, tx);
3733 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3734 			    DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx);
3735 		}
3736 		newsnapobj =
3737 		    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3738 	}
3739 
3740 	/*
3741 	 * If this is a raw receive, the crypt_keydata nvlist will include
3742 	 * a to_ivset_guid for us to set on the new snapshot. This value
3743 	 * will override the value generated by the snapshot code. However,
3744 	 * this value may not be present, because older implementations of
3745 	 * the raw send code did not include this value, and we are still
3746 	 * allowed to receive them if the zfs_disable_ivset_guid_check
3747 	 * tunable is set, in which case we will leave the newly-generated
3748 	 * value.
3749 	 */
3750 	if (!drc->drc_heal && drc->drc_raw && drc->drc_ivset_guid != 0) {
3751 		dmu_object_zapify(dp->dp_meta_objset, newsnapobj,
3752 		    DMU_OT_DSL_DATASET, tx);
3753 		VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj,
3754 		    DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
3755 		    &drc->drc_ivset_guid, tx));
3756 	}
3757 
3758 	/*
3759 	 * Release the hold from dmu_recv_begin.  This must be done before
3760 	 * we return to open context, so that when we free the dataset's dnode
3761 	 * we can evict its bonus buffer. Since the dataset may be destroyed
3762 	 * at this point (and therefore won't have a valid pointer to the spa)
3763 	 * we release the key mapping manually here while we do have a valid
3764 	 * pointer, if it exists.
3765 	 */
3766 	if (!drc->drc_raw && encrypted) {
3767 		(void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
3768 		    drc->drc_ds->ds_object, drc->drc_ds);
3769 	}
3770 	dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
3771 	drc->drc_ds = NULL;
3772 }
3773 
3774 static int dmu_recv_end_modified_blocks = 3;
3775 
3776 static int
dmu_recv_existing_end(dmu_recv_cookie_t * drc)3777 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3778 {
3779 #ifdef _KERNEL
3780 	/*
3781 	 * We will be destroying the ds; make sure its origin is unmounted if
3782 	 * necessary.
3783 	 */
3784 	char name[ZFS_MAX_DATASET_NAME_LEN];
3785 	dsl_dataset_name(drc->drc_ds, name);
3786 	zfs_destroy_unmount_origin(name);
3787 #endif
3788 
3789 	return (dsl_sync_task(drc->drc_tofs,
3790 	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3791 	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3792 }
3793 
3794 static int
dmu_recv_new_end(dmu_recv_cookie_t * drc)3795 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3796 {
3797 	return (dsl_sync_task(drc->drc_tofs,
3798 	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3799 	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3800 }
3801 
3802 int
dmu_recv_end(dmu_recv_cookie_t * drc,void * owner)3803 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3804 {
3805 	int error;
3806 
3807 	drc->drc_owner = owner;
3808 
3809 	if (drc->drc_newfs)
3810 		error = dmu_recv_new_end(drc);
3811 	else
3812 		error = dmu_recv_existing_end(drc);
3813 
3814 	if (error != 0) {
3815 		dmu_recv_cleanup_ds(drc);
3816 		nvlist_free(drc->drc_keynvl);
3817 	} else if (!drc->drc_heal) {
3818 		if (drc->drc_newfs) {
3819 			zvol_create_minor(drc->drc_tofs);
3820 		}
3821 		char *snapname = kmem_asprintf("%s@%s",
3822 		    drc->drc_tofs, drc->drc_tosnap);
3823 		zvol_create_minor(snapname);
3824 		kmem_strfree(snapname);
3825 	}
3826 	return (error);
3827 }
3828 
3829 /*
3830  * Return TRUE if this objset is currently being received into.
3831  */
3832 boolean_t
dmu_objset_is_receiving(objset_t * os)3833 dmu_objset_is_receiving(objset_t *os)
3834 {
3835 	return (os->os_dsl_dataset != NULL &&
3836 	    os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3837 }
3838 
3839 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, UINT, ZMOD_RW,
3840 	"Maximum receive queue length");
3841 
3842 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, UINT, ZMOD_RW,
3843 	"Receive queue fill fraction");
3844 
3845 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, UINT, ZMOD_RW,
3846 	"Maximum amount of writes to batch into one transaction");
3847 
3848 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, best_effort_corrective, INT, ZMOD_RW,
3849 	"Ignore errors during corrective receive");
3850