xref: /freebsd/contrib/llvm-project/llvm/lib/MC/XCOFFObjectWriter.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1  //===-- lib/MC/XCOFFObjectWriter.cpp - XCOFF file writer ------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file implements XCOFF object file writer information.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "llvm/BinaryFormat/XCOFF.h"
14  #include "llvm/MC/MCAsmBackend.h"
15  #include "llvm/MC/MCAssembler.h"
16  #include "llvm/MC/MCFixup.h"
17  #include "llvm/MC/MCFixupKindInfo.h"
18  #include "llvm/MC/MCObjectWriter.h"
19  #include "llvm/MC/MCSectionXCOFF.h"
20  #include "llvm/MC/MCSymbolXCOFF.h"
21  #include "llvm/MC/MCValue.h"
22  #include "llvm/MC/MCXCOFFObjectWriter.h"
23  #include "llvm/MC/StringTableBuilder.h"
24  #include "llvm/Support/Casting.h"
25  #include "llvm/Support/EndianStream.h"
26  #include "llvm/Support/ErrorHandling.h"
27  #include "llvm/Support/MathExtras.h"
28  
29  #include <deque>
30  #include <map>
31  
32  using namespace llvm;
33  
34  // An XCOFF object file has a limited set of predefined sections. The most
35  // important ones for us (right now) are:
36  // .text --> contains program code and read-only data.
37  // .data --> contains initialized data, function descriptors, and the TOC.
38  // .bss  --> contains uninitialized data.
39  // Each of these sections is composed of 'Control Sections'. A Control Section
40  // is more commonly referred to as a csect. A csect is an indivisible unit of
41  // code or data, and acts as a container for symbols. A csect is mapped
42  // into a section based on its storage-mapping class, with the exception of
43  // XMC_RW which gets mapped to either .data or .bss based on whether it's
44  // explicitly initialized or not.
45  //
46  // We don't represent the sections in the MC layer as there is nothing
47  // interesting about them at at that level: they carry information that is
48  // only relevant to the ObjectWriter, so we materialize them in this class.
49  namespace {
50  
51  constexpr unsigned DefaultSectionAlign = 4;
52  constexpr int16_t MaxSectionIndex = INT16_MAX;
53  
54  // Packs the csect's alignment and type into a byte.
55  uint8_t getEncodedType(const MCSectionXCOFF *);
56  
57  struct XCOFFRelocation {
58    uint32_t SymbolTableIndex;
59    uint32_t FixupOffsetInCsect;
60    uint8_t SignAndSize;
61    uint8_t Type;
62  };
63  
64  // Wrapper around an MCSymbolXCOFF.
65  struct Symbol {
66    const MCSymbolXCOFF *const MCSym;
67    uint32_t SymbolTableIndex;
68  
getVisibilityType__anon43032e790111::Symbol69    XCOFF::VisibilityType getVisibilityType() const {
70      return MCSym->getVisibilityType();
71    }
72  
getStorageClass__anon43032e790111::Symbol73    XCOFF::StorageClass getStorageClass() const {
74      return MCSym->getStorageClass();
75    }
getSymbolTableName__anon43032e790111::Symbol76    StringRef getSymbolTableName() const { return MCSym->getSymbolTableName(); }
Symbol__anon43032e790111::Symbol77    Symbol(const MCSymbolXCOFF *MCSym) : MCSym(MCSym), SymbolTableIndex(-1) {}
78  };
79  
80  // Wrapper for an MCSectionXCOFF.
81  // It can be a Csect or debug section or DWARF section and so on.
82  struct XCOFFSection {
83    const MCSectionXCOFF *const MCSec;
84    uint32_t SymbolTableIndex;
85    uint64_t Address;
86    uint64_t Size;
87  
88    SmallVector<Symbol, 1> Syms;
89    SmallVector<XCOFFRelocation, 1> Relocations;
getSymbolTableName__anon43032e790111::XCOFFSection90    StringRef getSymbolTableName() const { return MCSec->getSymbolTableName(); }
getVisibilityType__anon43032e790111::XCOFFSection91    XCOFF::VisibilityType getVisibilityType() const {
92      return MCSec->getVisibilityType();
93    }
XCOFFSection__anon43032e790111::XCOFFSection94    XCOFFSection(const MCSectionXCOFF *MCSec)
95        : MCSec(MCSec), SymbolTableIndex(-1), Address(-1), Size(0) {}
96  };
97  
98  // Type to be used for a container representing a set of csects with
99  // (approximately) the same storage mapping class. For example all the csects
100  // with a storage mapping class of `xmc_pr` will get placed into the same
101  // container.
102  using CsectGroup = std::deque<XCOFFSection>;
103  using CsectGroups = std::deque<CsectGroup *>;
104  
105  // The basic section entry defination. This Section represents a section entry
106  // in XCOFF section header table.
107  struct SectionEntry {
108    char Name[XCOFF::NameSize];
109    // The physical/virtual address of the section. For an object file these
110    // values are equivalent, except for in the overflow section header, where
111    // the physical address specifies the number of relocation entries and the
112    // virtual address specifies the number of line number entries.
113    // TODO: Divide Address into PhysicalAddress and VirtualAddress when line
114    // number entries are supported.
115    uint64_t Address;
116    uint64_t Size;
117    uint64_t FileOffsetToData;
118    uint64_t FileOffsetToRelocations;
119    uint32_t RelocationCount;
120    int32_t Flags;
121  
122    int16_t Index;
123  
advanceFileOffset__anon43032e790111::SectionEntry124    virtual uint64_t advanceFileOffset(const uint64_t MaxRawDataSize,
125                                       const uint64_t RawPointer) {
126      FileOffsetToData = RawPointer;
127      uint64_t NewPointer = RawPointer + Size;
128      if (NewPointer > MaxRawDataSize)
129        report_fatal_error("Section raw data overflowed this object file.");
130      return NewPointer;
131    }
132  
133    // XCOFF has special section numbers for symbols:
134    // -2 Specifies N_DEBUG, a special symbolic debugging symbol.
135    // -1 Specifies N_ABS, an absolute symbol. The symbol has a value but is not
136    // relocatable.
137    //  0 Specifies N_UNDEF, an undefined external symbol.
138    // Therefore, we choose -3 (N_DEBUG - 1) to represent a section index that
139    // hasn't been initialized.
140    static constexpr int16_t UninitializedIndex =
141        XCOFF::ReservedSectionNum::N_DEBUG - 1;
142  
SectionEntry__anon43032e790111::SectionEntry143    SectionEntry(StringRef N, int32_t Flags)
144        : Name(), Address(0), Size(0), FileOffsetToData(0),
145          FileOffsetToRelocations(0), RelocationCount(0), Flags(Flags),
146          Index(UninitializedIndex) {
147      assert(N.size() <= XCOFF::NameSize && "section name too long");
148      memcpy(Name, N.data(), N.size());
149    }
150  
reset__anon43032e790111::SectionEntry151    virtual void reset() {
152      Address = 0;
153      Size = 0;
154      FileOffsetToData = 0;
155      FileOffsetToRelocations = 0;
156      RelocationCount = 0;
157      Index = UninitializedIndex;
158    }
159  
160    virtual ~SectionEntry() = default;
161  };
162  
163  // Represents the data related to a section excluding the csects that make up
164  // the raw data of the section. The csects are stored separately as not all
165  // sections contain csects, and some sections contain csects which are better
166  // stored separately, e.g. the .data section containing read-write, descriptor,
167  // TOCBase and TOC-entry csects.
168  struct CsectSectionEntry : public SectionEntry {
169    // Virtual sections do not need storage allocated in the object file.
170    const bool IsVirtual;
171  
172    // This is a section containing csect groups.
173    CsectGroups Groups;
174  
CsectSectionEntry__anon43032e790111::CsectSectionEntry175    CsectSectionEntry(StringRef N, XCOFF::SectionTypeFlags Flags, bool IsVirtual,
176                      CsectGroups Groups)
177        : SectionEntry(N, Flags), IsVirtual(IsVirtual), Groups(Groups) {
178      assert(N.size() <= XCOFF::NameSize && "section name too long");
179      memcpy(Name, N.data(), N.size());
180    }
181  
reset__anon43032e790111::CsectSectionEntry182    void reset() override {
183      SectionEntry::reset();
184      // Clear any csects we have stored.
185      for (auto *Group : Groups)
186        Group->clear();
187    }
188  
189    virtual ~CsectSectionEntry() = default;
190  };
191  
192  struct DwarfSectionEntry : public SectionEntry {
193    // For DWARF section entry.
194    std::unique_ptr<XCOFFSection> DwarfSect;
195  
196    // For DWARF section, we must use real size in the section header. MemorySize
197    // is for the size the DWARF section occupies including paddings.
198    uint32_t MemorySize;
199  
200    // TODO: Remove this override. Loadable sections (e.g., .text, .data) may need
201    // to be aligned. Other sections generally don't need any alignment, but if
202    // they're aligned, the RawPointer should be adjusted before writing the
203    // section. Then a dwarf-specific function wouldn't be needed.
advanceFileOffset__anon43032e790111::DwarfSectionEntry204    uint64_t advanceFileOffset(const uint64_t MaxRawDataSize,
205                               const uint64_t RawPointer) override {
206      FileOffsetToData = RawPointer;
207      uint64_t NewPointer = RawPointer + MemorySize;
208      assert(NewPointer <= MaxRawDataSize &&
209             "Section raw data overflowed this object file.");
210      return NewPointer;
211    }
212  
DwarfSectionEntry__anon43032e790111::DwarfSectionEntry213    DwarfSectionEntry(StringRef N, int32_t Flags,
214                      std::unique_ptr<XCOFFSection> Sect)
215        : SectionEntry(N, Flags | XCOFF::STYP_DWARF), DwarfSect(std::move(Sect)),
216          MemorySize(0) {
217      assert(DwarfSect->MCSec->isDwarfSect() &&
218             "This should be a DWARF section!");
219      assert(N.size() <= XCOFF::NameSize && "section name too long");
220      memcpy(Name, N.data(), N.size());
221    }
222  
223    DwarfSectionEntry(DwarfSectionEntry &&s) = default;
224  
225    virtual ~DwarfSectionEntry() = default;
226  };
227  
228  struct ExceptionTableEntry {
229    const MCSymbol *Trap;
230    uint64_t TrapAddress = ~0ul;
231    unsigned Lang;
232    unsigned Reason;
233  
ExceptionTableEntry__anon43032e790111::ExceptionTableEntry234    ExceptionTableEntry(const MCSymbol *Trap, unsigned Lang, unsigned Reason)
235        : Trap(Trap), Lang(Lang), Reason(Reason) {}
236  };
237  
238  struct ExceptionInfo {
239    const MCSymbol *FunctionSymbol;
240    unsigned FunctionSize;
241    std::vector<ExceptionTableEntry> Entries;
242  };
243  
244  struct ExceptionSectionEntry : public SectionEntry {
245    std::map<const StringRef, ExceptionInfo> ExceptionTable;
246    bool isDebugEnabled = false;
247  
ExceptionSectionEntry__anon43032e790111::ExceptionSectionEntry248    ExceptionSectionEntry(StringRef N, int32_t Flags)
249        : SectionEntry(N, Flags | XCOFF::STYP_EXCEPT) {
250      assert(N.size() <= XCOFF::NameSize && "Section too long.");
251      memcpy(Name, N.data(), N.size());
252    }
253  
254    virtual ~ExceptionSectionEntry() = default;
255  };
256  
257  struct CInfoSymInfo {
258    // Name of the C_INFO symbol associated with the section
259    std::string Name;
260    std::string Metadata;
261    // Offset into the start of the metadata in the section
262    uint64_t Offset;
263  
CInfoSymInfo__anon43032e790111::CInfoSymInfo264    CInfoSymInfo(std::string Name, std::string Metadata)
265        : Name(Name), Metadata(Metadata) {}
266    // Metadata needs to be padded out to an even word size.
paddingSize__anon43032e790111::CInfoSymInfo267    uint32_t paddingSize() const {
268      return alignTo(Metadata.size(), sizeof(uint32_t)) - Metadata.size();
269    };
270  
271    // Total size of the entry, including the 4 byte length
size__anon43032e790111::CInfoSymInfo272    uint32_t size() const {
273      return Metadata.size() + paddingSize() + sizeof(uint32_t);
274    };
275  };
276  
277  struct CInfoSymSectionEntry : public SectionEntry {
278    std::unique_ptr<CInfoSymInfo> Entry;
279  
CInfoSymSectionEntry__anon43032e790111::CInfoSymSectionEntry280    CInfoSymSectionEntry(StringRef N, int32_t Flags) : SectionEntry(N, Flags) {}
281    virtual ~CInfoSymSectionEntry() = default;
addEntry__anon43032e790111::CInfoSymSectionEntry282    void addEntry(std::unique_ptr<CInfoSymInfo> NewEntry) {
283      Entry = std::move(NewEntry);
284      Entry->Offset = sizeof(uint32_t);
285      Size += Entry->size();
286    }
reset__anon43032e790111::CInfoSymSectionEntry287    void reset() override {
288      SectionEntry::reset();
289      Entry.reset();
290    }
291  };
292  
293  class XCOFFObjectWriter : public MCObjectWriter {
294  
295    uint32_t SymbolTableEntryCount = 0;
296    uint64_t SymbolTableOffset = 0;
297    uint16_t SectionCount = 0;
298    uint32_t PaddingsBeforeDwarf = 0;
299    bool HasVisibility = false;
300  
301    support::endian::Writer W;
302    std::unique_ptr<MCXCOFFObjectTargetWriter> TargetObjectWriter;
303    StringTableBuilder Strings;
304  
305    const uint64_t MaxRawDataSize =
306        TargetObjectWriter->is64Bit() ? UINT64_MAX : UINT32_MAX;
307  
308    // Maps the MCSection representation to its corresponding XCOFFSection
309    // wrapper. Needed for finding the XCOFFSection to insert an MCSymbol into
310    // from its containing MCSectionXCOFF.
311    DenseMap<const MCSectionXCOFF *, XCOFFSection *> SectionMap;
312  
313    // Maps the MCSymbol representation to its corrresponding symbol table index.
314    // Needed for relocation.
315    DenseMap<const MCSymbol *, uint32_t> SymbolIndexMap;
316  
317    // CsectGroups. These store the csects which make up different parts of
318    // the sections. Should have one for each set of csects that get mapped into
319    // the same section and get handled in a 'similar' way.
320    CsectGroup UndefinedCsects;
321    CsectGroup ProgramCodeCsects;
322    CsectGroup ReadOnlyCsects;
323    CsectGroup DataCsects;
324    CsectGroup FuncDSCsects;
325    CsectGroup TOCCsects;
326    CsectGroup BSSCsects;
327    CsectGroup TDataCsects;
328    CsectGroup TBSSCsects;
329  
330    // The Predefined sections.
331    CsectSectionEntry Text;
332    CsectSectionEntry Data;
333    CsectSectionEntry BSS;
334    CsectSectionEntry TData;
335    CsectSectionEntry TBSS;
336  
337    // All the XCOFF sections, in the order they will appear in the section header
338    // table.
339    std::array<CsectSectionEntry *const, 5> Sections{
340        {&Text, &Data, &BSS, &TData, &TBSS}};
341  
342    std::vector<DwarfSectionEntry> DwarfSections;
343    std::vector<SectionEntry> OverflowSections;
344  
345    ExceptionSectionEntry ExceptionSection;
346    CInfoSymSectionEntry CInfoSymSection;
347  
348    CsectGroup &getCsectGroup(const MCSectionXCOFF *MCSec);
349  
350    void reset() override;
351  
352    void executePostLayoutBinding(MCAssembler &) override;
353  
354    void recordRelocation(MCAssembler &, const MCFragment *, const MCFixup &,
355                          MCValue, uint64_t &) override;
356  
357    uint64_t writeObject(MCAssembler &) override;
358  
is64Bit() const359    bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
360    bool nameShouldBeInStringTable(const StringRef &);
361    void writeSymbolName(const StringRef &);
362    bool auxFileSymNameShouldBeInStringTable(const StringRef &);
363    void writeAuxFileSymName(const StringRef &);
364  
365    void writeSymbolEntryForCsectMemberLabel(const Symbol &SymbolRef,
366                                             const XCOFFSection &CSectionRef,
367                                             int16_t SectionIndex,
368                                             uint64_t SymbolOffset);
369    void writeSymbolEntryForControlSection(const XCOFFSection &CSectionRef,
370                                           int16_t SectionIndex,
371                                           XCOFF::StorageClass StorageClass);
372    void writeSymbolEntryForDwarfSection(const XCOFFSection &DwarfSectionRef,
373                                         int16_t SectionIndex);
374    void writeFileHeader();
375    void writeAuxFileHeader();
376    void writeSectionHeader(const SectionEntry *Sec);
377    void writeSectionHeaderTable();
378    void writeSections(const MCAssembler &Asm);
379    void writeSectionForControlSectionEntry(const MCAssembler &Asm,
380                                            const CsectSectionEntry &CsectEntry,
381                                            uint64_t &CurrentAddressLocation);
382    void writeSectionForDwarfSectionEntry(const MCAssembler &Asm,
383                                          const DwarfSectionEntry &DwarfEntry,
384                                          uint64_t &CurrentAddressLocation);
385    void
386    writeSectionForExceptionSectionEntry(const MCAssembler &Asm,
387                                         ExceptionSectionEntry &ExceptionEntry,
388                                         uint64_t &CurrentAddressLocation);
389    void writeSectionForCInfoSymSectionEntry(const MCAssembler &Asm,
390                                             CInfoSymSectionEntry &CInfoSymEntry,
391                                             uint64_t &CurrentAddressLocation);
392    void writeSymbolTable(MCAssembler &Asm);
393    void writeSymbolAuxFileEntry(StringRef &Name, uint8_t ftype);
394    void writeSymbolAuxDwarfEntry(uint64_t LengthOfSectionPortion,
395                                  uint64_t NumberOfRelocEnt = 0);
396    void writeSymbolAuxCsectEntry(uint64_t SectionOrLength,
397                                  uint8_t SymbolAlignmentAndType,
398                                  uint8_t StorageMappingClass);
399    void writeSymbolAuxFunctionEntry(uint32_t EntryOffset, uint32_t FunctionSize,
400                                     uint64_t LineNumberPointer,
401                                     uint32_t EndIndex);
402    void writeSymbolAuxExceptionEntry(uint64_t EntryOffset, uint32_t FunctionSize,
403                                      uint32_t EndIndex);
404    void writeSymbolEntry(StringRef SymbolName, uint64_t Value,
405                          int16_t SectionNumber, uint16_t SymbolType,
406                          uint8_t StorageClass, uint8_t NumberOfAuxEntries = 1);
407    void writeRelocations();
408    void writeRelocation(XCOFFRelocation Reloc, const XCOFFSection &Section);
409  
410    // Called after all the csects and symbols have been processed by
411    // `executePostLayoutBinding`, this function handles building up the majority
412    // of the structures in the object file representation. Namely:
413    // *) Calculates physical/virtual addresses, raw-pointer offsets, and section
414    //    sizes.
415    // *) Assigns symbol table indices.
416    // *) Builds up the section header table by adding any non-empty sections to
417    //    `Sections`.
418    void assignAddressesAndIndices(MCAssembler &Asm);
419    // Called after relocations are recorded.
420    void finalizeSectionInfo();
421    void finalizeRelocationInfo(SectionEntry *Sec, uint64_t RelCount);
422    void calcOffsetToRelocations(SectionEntry *Sec, uint64_t &RawPointer);
423  
hasExceptionSection()424    bool hasExceptionSection() {
425      return !ExceptionSection.ExceptionTable.empty();
426    }
427    unsigned getExceptionSectionSize();
428    unsigned getExceptionOffset(const MCSymbol *Symbol);
429  
auxiliaryHeaderSize() const430    size_t auxiliaryHeaderSize() const {
431      // 64-bit object files have no auxiliary header.
432      return HasVisibility && !is64Bit() ? XCOFF::AuxFileHeaderSizeShort : 0;
433    }
434  
435  public:
436    XCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
437                      raw_pwrite_stream &OS);
438  
writeWord(uint64_t Word)439    void writeWord(uint64_t Word) {
440      is64Bit() ? W.write<uint64_t>(Word) : W.write<uint32_t>(Word);
441    }
442  
443    void addExceptionEntry(const MCSymbol *Symbol, const MCSymbol *Trap,
444                           unsigned LanguageCode, unsigned ReasonCode,
445                           unsigned FunctionSize, bool hasDebug);
446    void addCInfoSymEntry(StringRef Name, StringRef Metadata);
447  };
448  
XCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,raw_pwrite_stream & OS)449  XCOFFObjectWriter::XCOFFObjectWriter(
450      std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, raw_pwrite_stream &OS)
451      : W(OS, llvm::endianness::big), TargetObjectWriter(std::move(MOTW)),
452        Strings(StringTableBuilder::XCOFF),
453        Text(".text", XCOFF::STYP_TEXT, /* IsVirtual */ false,
454             CsectGroups{&ProgramCodeCsects, &ReadOnlyCsects}),
455        Data(".data", XCOFF::STYP_DATA, /* IsVirtual */ false,
456             CsectGroups{&DataCsects, &FuncDSCsects, &TOCCsects}),
457        BSS(".bss", XCOFF::STYP_BSS, /* IsVirtual */ true,
458            CsectGroups{&BSSCsects}),
459        TData(".tdata", XCOFF::STYP_TDATA, /* IsVirtual */ false,
460              CsectGroups{&TDataCsects}),
461        TBSS(".tbss", XCOFF::STYP_TBSS, /* IsVirtual */ true,
462             CsectGroups{&TBSSCsects}),
463        ExceptionSection(".except", XCOFF::STYP_EXCEPT),
464        CInfoSymSection(".info", XCOFF::STYP_INFO) {}
465  
reset()466  void XCOFFObjectWriter::reset() {
467    // Clear the mappings we created.
468    SymbolIndexMap.clear();
469    SectionMap.clear();
470  
471    UndefinedCsects.clear();
472    // Reset any sections we have written to, and empty the section header table.
473    for (auto *Sec : Sections)
474      Sec->reset();
475    for (auto &DwarfSec : DwarfSections)
476      DwarfSec.reset();
477    for (auto &OverflowSec : OverflowSections)
478      OverflowSec.reset();
479    ExceptionSection.reset();
480    CInfoSymSection.reset();
481  
482    // Reset states in XCOFFObjectWriter.
483    SymbolTableEntryCount = 0;
484    SymbolTableOffset = 0;
485    SectionCount = 0;
486    PaddingsBeforeDwarf = 0;
487    Strings.clear();
488  
489    MCObjectWriter::reset();
490  }
491  
getCsectGroup(const MCSectionXCOFF * MCSec)492  CsectGroup &XCOFFObjectWriter::getCsectGroup(const MCSectionXCOFF *MCSec) {
493    switch (MCSec->getMappingClass()) {
494    case XCOFF::XMC_PR:
495      assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
496             "Only an initialized csect can contain program code.");
497      return ProgramCodeCsects;
498    case XCOFF::XMC_RO:
499      assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
500             "Only an initialized csect can contain read only data.");
501      return ReadOnlyCsects;
502    case XCOFF::XMC_RW:
503      if (XCOFF::XTY_CM == MCSec->getCSectType())
504        return BSSCsects;
505  
506      if (XCOFF::XTY_SD == MCSec->getCSectType())
507        return DataCsects;
508  
509      report_fatal_error("Unhandled mapping of read-write csect to section.");
510    case XCOFF::XMC_DS:
511      return FuncDSCsects;
512    case XCOFF::XMC_BS:
513      assert(XCOFF::XTY_CM == MCSec->getCSectType() &&
514             "Mapping invalid csect. CSECT with bss storage class must be "
515             "common type.");
516      return BSSCsects;
517    case XCOFF::XMC_TL:
518      assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
519             "Mapping invalid csect. CSECT with tdata storage class must be "
520             "an initialized csect.");
521      return TDataCsects;
522    case XCOFF::XMC_UL:
523      assert(XCOFF::XTY_CM == MCSec->getCSectType() &&
524             "Mapping invalid csect. CSECT with tbss storage class must be "
525             "an uninitialized csect.");
526      return TBSSCsects;
527    case XCOFF::XMC_TC0:
528      assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
529             "Only an initialized csect can contain TOC-base.");
530      assert(TOCCsects.empty() &&
531             "We should have only one TOC-base, and it should be the first csect "
532             "in this CsectGroup.");
533      return TOCCsects;
534    case XCOFF::XMC_TC:
535    case XCOFF::XMC_TE:
536      assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
537             "A TOC symbol must be an initialized csect.");
538      assert(!TOCCsects.empty() &&
539             "We should at least have a TOC-base in this CsectGroup.");
540      return TOCCsects;
541    case XCOFF::XMC_TD:
542      assert((XCOFF::XTY_SD == MCSec->getCSectType() ||
543              XCOFF::XTY_CM == MCSec->getCSectType()) &&
544             "Symbol type incompatible with toc-data.");
545      assert(!TOCCsects.empty() &&
546             "We should at least have a TOC-base in this CsectGroup.");
547      return TOCCsects;
548    default:
549      report_fatal_error("Unhandled mapping of csect to section.");
550    }
551  }
552  
getContainingCsect(const MCSymbolXCOFF * XSym)553  static MCSectionXCOFF *getContainingCsect(const MCSymbolXCOFF *XSym) {
554    if (XSym->isDefined())
555      return cast<MCSectionXCOFF>(XSym->getFragment()->getParent());
556    return XSym->getRepresentedCsect();
557  }
558  
executePostLayoutBinding(MCAssembler & Asm)559  void XCOFFObjectWriter::executePostLayoutBinding(MCAssembler &Asm) {
560    for (const auto &S : Asm) {
561      const auto *MCSec = cast<const MCSectionXCOFF>(&S);
562      assert(!SectionMap.contains(MCSec) && "Cannot add a section twice.");
563  
564      // If the name does not fit in the storage provided in the symbol table
565      // entry, add it to the string table.
566      if (nameShouldBeInStringTable(MCSec->getSymbolTableName()))
567        Strings.add(MCSec->getSymbolTableName());
568      if (MCSec->isCsect()) {
569        // A new control section. Its CsectSectionEntry should already be staticly
570        // generated as Text/Data/BSS/TDATA/TBSS. Add this section to the group of
571        // the CsectSectionEntry.
572        assert(XCOFF::XTY_ER != MCSec->getCSectType() &&
573               "An undefined csect should not get registered.");
574        CsectGroup &Group = getCsectGroup(MCSec);
575        Group.emplace_back(MCSec);
576        SectionMap[MCSec] = &Group.back();
577      } else if (MCSec->isDwarfSect()) {
578        // A new DwarfSectionEntry.
579        std::unique_ptr<XCOFFSection> DwarfSec =
580            std::make_unique<XCOFFSection>(MCSec);
581        SectionMap[MCSec] = DwarfSec.get();
582  
583        DwarfSectionEntry SecEntry(MCSec->getName(),
584                                   *MCSec->getDwarfSubtypeFlags(),
585                                   std::move(DwarfSec));
586        DwarfSections.push_back(std::move(SecEntry));
587      } else
588        llvm_unreachable("unsupport section type!");
589    }
590  
591    for (const MCSymbol &S : Asm.symbols()) {
592      // Nothing to do for temporary symbols.
593      if (S.isTemporary())
594        continue;
595  
596      const MCSymbolXCOFF *XSym = cast<MCSymbolXCOFF>(&S);
597      const MCSectionXCOFF *ContainingCsect = getContainingCsect(XSym);
598  
599      if (ContainingCsect->isDwarfSect())
600        continue;
601  
602      if (XSym->getVisibilityType() != XCOFF::SYM_V_UNSPECIFIED)
603        HasVisibility = true;
604  
605      if (ContainingCsect->getCSectType() == XCOFF::XTY_ER) {
606        // Handle undefined symbol.
607        UndefinedCsects.emplace_back(ContainingCsect);
608        SectionMap[ContainingCsect] = &UndefinedCsects.back();
609        if (nameShouldBeInStringTable(ContainingCsect->getSymbolTableName()))
610          Strings.add(ContainingCsect->getSymbolTableName());
611        continue;
612      }
613  
614      // If the symbol is the csect itself, we don't need to put the symbol
615      // into csect's Syms.
616      if (XSym == ContainingCsect->getQualNameSymbol())
617        continue;
618  
619      // Only put a label into the symbol table when it is an external label.
620      if (!XSym->isExternal())
621        continue;
622  
623      assert(SectionMap.contains(ContainingCsect) &&
624             "Expected containing csect to exist in map");
625      XCOFFSection *Csect = SectionMap[ContainingCsect];
626      // Lookup the containing csect and add the symbol to it.
627      assert(Csect->MCSec->isCsect() && "only csect is supported now!");
628      Csect->Syms.emplace_back(XSym);
629  
630      // If the name does not fit in the storage provided in the symbol table
631      // entry, add it to the string table.
632      if (nameShouldBeInStringTable(XSym->getSymbolTableName()))
633        Strings.add(XSym->getSymbolTableName());
634    }
635  
636    std::unique_ptr<CInfoSymInfo> &CISI = CInfoSymSection.Entry;
637    if (CISI && nameShouldBeInStringTable(CISI->Name))
638      Strings.add(CISI->Name);
639  
640    // Emit ".file" as the source file name when there is no file name.
641    if (FileNames.empty())
642      FileNames.emplace_back(".file", 0);
643    for (const std::pair<std::string, size_t> &F : FileNames) {
644      if (auxFileSymNameShouldBeInStringTable(F.first))
645        Strings.add(F.first);
646    }
647  
648    // Always add ".file" to the symbol table. The actual file name will be in
649    // the AUX_FILE auxiliary entry.
650    if (nameShouldBeInStringTable(".file"))
651      Strings.add(".file");
652    StringRef Vers = CompilerVersion;
653    if (auxFileSymNameShouldBeInStringTable(Vers))
654      Strings.add(Vers);
655  
656    Strings.finalize();
657    assignAddressesAndIndices(Asm);
658  }
659  
recordRelocation(MCAssembler & Asm,const MCFragment * Fragment,const MCFixup & Fixup,MCValue Target,uint64_t & FixedValue)660  void XCOFFObjectWriter::recordRelocation(MCAssembler &Asm,
661                                           const MCFragment *Fragment,
662                                           const MCFixup &Fixup, MCValue Target,
663                                           uint64_t &FixedValue) {
664    auto getIndex = [this](const MCSymbol *Sym,
665                           const MCSectionXCOFF *ContainingCsect) {
666      // If we could not find the symbol directly in SymbolIndexMap, this symbol
667      // could either be a temporary symbol or an undefined symbol. In this case,
668      // we would need to have the relocation reference its csect instead.
669      return SymbolIndexMap.contains(Sym)
670                 ? SymbolIndexMap[Sym]
671                 : SymbolIndexMap[ContainingCsect->getQualNameSymbol()];
672    };
673  
674    auto getVirtualAddress =
675        [this, &Asm](const MCSymbol *Sym,
676                     const MCSectionXCOFF *ContainingSect) -> uint64_t {
677      // A DWARF section.
678      if (ContainingSect->isDwarfSect())
679        return Asm.getSymbolOffset(*Sym);
680  
681      // A csect.
682      if (!Sym->isDefined())
683        return SectionMap[ContainingSect]->Address;
684  
685      // A label.
686      assert(Sym->isDefined() && "not a valid object that has address!");
687      return SectionMap[ContainingSect]->Address + Asm.getSymbolOffset(*Sym);
688    };
689  
690    const MCSymbol *const SymA = &Target.getSymA()->getSymbol();
691  
692    MCAsmBackend &Backend = Asm.getBackend();
693    bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
694                   MCFixupKindInfo::FKF_IsPCRel;
695  
696    uint8_t Type;
697    uint8_t SignAndSize;
698    std::tie(Type, SignAndSize) =
699        TargetObjectWriter->getRelocTypeAndSignSize(Target, Fixup, IsPCRel);
700  
701    const MCSectionXCOFF *SymASec = getContainingCsect(cast<MCSymbolXCOFF>(SymA));
702    assert(SectionMap.contains(SymASec) &&
703           "Expected containing csect to exist in map.");
704  
705    assert((Fixup.getOffset() <=
706            MaxRawDataSize - Asm.getFragmentOffset(*Fragment)) &&
707           "Fragment offset + fixup offset is overflowed.");
708    uint32_t FixupOffsetInCsect =
709        Asm.getFragmentOffset(*Fragment) + Fixup.getOffset();
710  
711    const uint32_t Index = getIndex(SymA, SymASec);
712    if (Type == XCOFF::RelocationType::R_POS ||
713        Type == XCOFF::RelocationType::R_TLS ||
714        Type == XCOFF::RelocationType::R_TLS_LE ||
715        Type == XCOFF::RelocationType::R_TLS_IE ||
716        Type == XCOFF::RelocationType::R_TLS_LD)
717      // The FixedValue should be symbol's virtual address in this object file
718      // plus any constant value that we might get.
719      FixedValue = getVirtualAddress(SymA, SymASec) + Target.getConstant();
720    else if (Type == XCOFF::RelocationType::R_TLSM)
721      // The FixedValue should always be zero since the region handle is only
722      // known at load time.
723      FixedValue = 0;
724    else if (Type == XCOFF::RelocationType::R_TOC ||
725             Type == XCOFF::RelocationType::R_TOCL) {
726      // For non toc-data external symbols, R_TOC type relocation will relocate to
727      // data symbols that have XCOFF::XTY_SD type csect. For toc-data external
728      // symbols, R_TOC type relocation will relocate to data symbols that have
729      // XCOFF_ER type csect. For XCOFF_ER kind symbols, there will be no TOC
730      // entry for them, so the FixedValue should always be 0.
731      if (SymASec->getCSectType() == XCOFF::XTY_ER) {
732        FixedValue = 0;
733      } else {
734        // The FixedValue should be the TOC entry offset from the TOC-base plus
735        // any constant offset value.
736        int64_t TOCEntryOffset = SectionMap[SymASec]->Address -
737                                 TOCCsects.front().Address + Target.getConstant();
738        // For small code model, if the TOCEntryOffset overflows the 16-bit value,
739        // we truncate it back down to 16 bits. The linker will be able to insert
740        // fix-up code when needed.
741        // For non toc-data symbols, we already did the truncation in
742        // PPCAsmPrinter.cpp through setting Target.getConstant() in the
743        // expression above by calling getTOCEntryLoadingExprForXCOFF for the
744        // various TOC PseudoOps.
745        // For toc-data symbols, we were not able to calculate the offset from
746        // the TOC in PPCAsmPrinter.cpp since the TOC has not been finalized at
747        // that point, so we are adjusting it here though
748        // llvm::SignExtend64<16>(TOCEntryOffset);
749        // TODO: Since the time that the handling for offsets over 16-bits was
750        // added in PPCAsmPrinter.cpp using getTOCEntryLoadingExprForXCOFF, the
751        // system assembler and linker have been updated to be able to handle the
752        // overflowing offsets, so we no longer need to keep
753        // getTOCEntryLoadingExprForXCOFF.
754        if (Type == XCOFF::RelocationType::R_TOC && !isInt<16>(TOCEntryOffset))
755          TOCEntryOffset = llvm::SignExtend64<16>(TOCEntryOffset);
756  
757        FixedValue = TOCEntryOffset;
758      }
759    } else if (Type == XCOFF::RelocationType::R_RBR) {
760      MCSectionXCOFF *ParentSec = cast<MCSectionXCOFF>(Fragment->getParent());
761      assert((SymASec->getMappingClass() == XCOFF::XMC_PR &&
762              ParentSec->getMappingClass() == XCOFF::XMC_PR) &&
763             "Only XMC_PR csect may have the R_RBR relocation.");
764  
765      // The address of the branch instruction should be the sum of section
766      // address, fragment offset and Fixup offset.
767      uint64_t BRInstrAddress =
768          SectionMap[ParentSec]->Address + FixupOffsetInCsect;
769      // The FixedValue should be the difference between symbol's virtual address
770      // and BR instr address plus any constant value.
771      FixedValue = getVirtualAddress(SymA, SymASec) - BRInstrAddress +
772                   Target.getConstant();
773    } else if (Type == XCOFF::RelocationType::R_REF) {
774      // The FixedValue and FixupOffsetInCsect should always be 0 since it
775      // specifies a nonrelocating reference.
776      FixedValue = 0;
777      FixupOffsetInCsect = 0;
778    }
779  
780    XCOFFRelocation Reloc = {Index, FixupOffsetInCsect, SignAndSize, Type};
781    MCSectionXCOFF *RelocationSec = cast<MCSectionXCOFF>(Fragment->getParent());
782    assert(SectionMap.contains(RelocationSec) &&
783           "Expected containing csect to exist in map.");
784    SectionMap[RelocationSec]->Relocations.push_back(Reloc);
785  
786    if (!Target.getSymB())
787      return;
788  
789    const MCSymbol *const SymB = &Target.getSymB()->getSymbol();
790    if (SymA == SymB)
791      report_fatal_error("relocation for opposite term is not yet supported");
792  
793    const MCSectionXCOFF *SymBSec = getContainingCsect(cast<MCSymbolXCOFF>(SymB));
794    assert(SectionMap.contains(SymBSec) &&
795           "Expected containing csect to exist in map.");
796    if (SymASec == SymBSec)
797      report_fatal_error(
798          "relocation for paired relocatable term is not yet supported");
799  
800    assert(Type == XCOFF::RelocationType::R_POS &&
801           "SymA must be R_POS here if it's not opposite term or paired "
802           "relocatable term.");
803    const uint32_t IndexB = getIndex(SymB, SymBSec);
804    // SymB must be R_NEG here, given the general form of Target(MCValue) is
805    // "SymbolA - SymbolB + imm64".
806    const uint8_t TypeB = XCOFF::RelocationType::R_NEG;
807    XCOFFRelocation RelocB = {IndexB, FixupOffsetInCsect, SignAndSize, TypeB};
808    SectionMap[RelocationSec]->Relocations.push_back(RelocB);
809    // We already folded "SymbolA + imm64" above when Type is R_POS for SymbolA,
810    // now we just need to fold "- SymbolB" here.
811    FixedValue -= getVirtualAddress(SymB, SymBSec);
812  }
813  
writeSections(const MCAssembler & Asm)814  void XCOFFObjectWriter::writeSections(const MCAssembler &Asm) {
815    uint64_t CurrentAddressLocation = 0;
816    for (const auto *Section : Sections)
817      writeSectionForControlSectionEntry(Asm, *Section, CurrentAddressLocation);
818    for (const auto &DwarfSection : DwarfSections)
819      writeSectionForDwarfSectionEntry(Asm, DwarfSection, CurrentAddressLocation);
820    writeSectionForExceptionSectionEntry(Asm, ExceptionSection,
821                                         CurrentAddressLocation);
822    writeSectionForCInfoSymSectionEntry(Asm, CInfoSymSection,
823                                        CurrentAddressLocation);
824  }
825  
writeObject(MCAssembler & Asm)826  uint64_t XCOFFObjectWriter::writeObject(MCAssembler &Asm) {
827    // We always emit a timestamp of 0 for reproducibility, so ensure incremental
828    // linking is not enabled, in case, like with Windows COFF, such a timestamp
829    // is incompatible with incremental linking of XCOFF.
830  
831    finalizeSectionInfo();
832    uint64_t StartOffset = W.OS.tell();
833  
834    writeFileHeader();
835    writeAuxFileHeader();
836    writeSectionHeaderTable();
837    writeSections(Asm);
838    writeRelocations();
839    writeSymbolTable(Asm);
840    // Write the string table.
841    Strings.write(W.OS);
842  
843    return W.OS.tell() - StartOffset;
844  }
845  
nameShouldBeInStringTable(const StringRef & SymbolName)846  bool XCOFFObjectWriter::nameShouldBeInStringTable(const StringRef &SymbolName) {
847    return SymbolName.size() > XCOFF::NameSize || is64Bit();
848  }
849  
writeSymbolName(const StringRef & SymbolName)850  void XCOFFObjectWriter::writeSymbolName(const StringRef &SymbolName) {
851    // Magic, Offset or SymbolName.
852    if (nameShouldBeInStringTable(SymbolName)) {
853      W.write<int32_t>(0);
854      W.write<uint32_t>(Strings.getOffset(SymbolName));
855    } else {
856      char Name[XCOFF::NameSize + 1];
857      std::strncpy(Name, SymbolName.data(), XCOFF::NameSize);
858      ArrayRef<char> NameRef(Name, XCOFF::NameSize);
859      W.write(NameRef);
860    }
861  }
862  
writeSymbolEntry(StringRef SymbolName,uint64_t Value,int16_t SectionNumber,uint16_t SymbolType,uint8_t StorageClass,uint8_t NumberOfAuxEntries)863  void XCOFFObjectWriter::writeSymbolEntry(StringRef SymbolName, uint64_t Value,
864                                           int16_t SectionNumber,
865                                           uint16_t SymbolType,
866                                           uint8_t StorageClass,
867                                           uint8_t NumberOfAuxEntries) {
868    if (is64Bit()) {
869      W.write<uint64_t>(Value);
870      W.write<uint32_t>(Strings.getOffset(SymbolName));
871    } else {
872      writeSymbolName(SymbolName);
873      W.write<uint32_t>(Value);
874    }
875    W.write<int16_t>(SectionNumber);
876    W.write<uint16_t>(SymbolType);
877    W.write<uint8_t>(StorageClass);
878    W.write<uint8_t>(NumberOfAuxEntries);
879  }
880  
writeSymbolAuxCsectEntry(uint64_t SectionOrLength,uint8_t SymbolAlignmentAndType,uint8_t StorageMappingClass)881  void XCOFFObjectWriter::writeSymbolAuxCsectEntry(uint64_t SectionOrLength,
882                                                   uint8_t SymbolAlignmentAndType,
883                                                   uint8_t StorageMappingClass) {
884    W.write<uint32_t>(is64Bit() ? Lo_32(SectionOrLength) : SectionOrLength);
885    W.write<uint32_t>(0); // ParameterHashIndex
886    W.write<uint16_t>(0); // TypeChkSectNum
887    W.write<uint8_t>(SymbolAlignmentAndType);
888    W.write<uint8_t>(StorageMappingClass);
889    if (is64Bit()) {
890      W.write<uint32_t>(Hi_32(SectionOrLength));
891      W.OS.write_zeros(1); // Reserved
892      W.write<uint8_t>(XCOFF::AUX_CSECT);
893    } else {
894      W.write<uint32_t>(0); // StabInfoIndex
895      W.write<uint16_t>(0); // StabSectNum
896    }
897  }
898  
auxFileSymNameShouldBeInStringTable(const StringRef & SymbolName)899  bool XCOFFObjectWriter::auxFileSymNameShouldBeInStringTable(
900      const StringRef &SymbolName) {
901    return SymbolName.size() > XCOFF::AuxFileEntNameSize;
902  }
903  
writeAuxFileSymName(const StringRef & SymbolName)904  void XCOFFObjectWriter::writeAuxFileSymName(const StringRef &SymbolName) {
905    // Magic, Offset or SymbolName.
906    if (auxFileSymNameShouldBeInStringTable(SymbolName)) {
907      W.write<int32_t>(0);
908      W.write<uint32_t>(Strings.getOffset(SymbolName));
909      W.OS.write_zeros(XCOFF::FileNamePadSize);
910    } else {
911      char Name[XCOFF::AuxFileEntNameSize + 1];
912      std::strncpy(Name, SymbolName.data(), XCOFF::AuxFileEntNameSize);
913      ArrayRef<char> NameRef(Name, XCOFF::AuxFileEntNameSize);
914      W.write(NameRef);
915    }
916  }
917  
writeSymbolAuxFileEntry(StringRef & Name,uint8_t ftype)918  void XCOFFObjectWriter::writeSymbolAuxFileEntry(StringRef &Name,
919                                                  uint8_t ftype) {
920    writeAuxFileSymName(Name);
921    W.write<uint8_t>(ftype);
922    W.OS.write_zeros(2);
923    if (is64Bit())
924      W.write<uint8_t>(XCOFF::AUX_FILE);
925    else
926      W.OS.write_zeros(1);
927  }
928  
writeSymbolAuxDwarfEntry(uint64_t LengthOfSectionPortion,uint64_t NumberOfRelocEnt)929  void XCOFFObjectWriter::writeSymbolAuxDwarfEntry(
930      uint64_t LengthOfSectionPortion, uint64_t NumberOfRelocEnt) {
931    writeWord(LengthOfSectionPortion);
932    if (!is64Bit())
933      W.OS.write_zeros(4); // Reserved
934    writeWord(NumberOfRelocEnt);
935    if (is64Bit()) {
936      W.OS.write_zeros(1); // Reserved
937      W.write<uint8_t>(XCOFF::AUX_SECT);
938    } else {
939      W.OS.write_zeros(6); // Reserved
940    }
941  }
942  
writeSymbolEntryForCsectMemberLabel(const Symbol & SymbolRef,const XCOFFSection & CSectionRef,int16_t SectionIndex,uint64_t SymbolOffset)943  void XCOFFObjectWriter::writeSymbolEntryForCsectMemberLabel(
944      const Symbol &SymbolRef, const XCOFFSection &CSectionRef,
945      int16_t SectionIndex, uint64_t SymbolOffset) {
946    assert(SymbolOffset <= MaxRawDataSize - CSectionRef.Address &&
947           "Symbol address overflowed.");
948  
949    auto Entry = ExceptionSection.ExceptionTable.find(SymbolRef.MCSym->getName());
950    if (Entry != ExceptionSection.ExceptionTable.end()) {
951      writeSymbolEntry(SymbolRef.getSymbolTableName(),
952                       CSectionRef.Address + SymbolOffset, SectionIndex,
953                       // In the old version of the 32-bit XCOFF interpretation,
954                       // symbols may require bit 10 (0x0020) to be set if the
955                       // symbol is a function, otherwise the bit should be 0.
956                       is64Bit() ? SymbolRef.getVisibilityType()
957                                 : SymbolRef.getVisibilityType() | 0x0020,
958                       SymbolRef.getStorageClass(),
959                       (is64Bit() && ExceptionSection.isDebugEnabled) ? 3 : 2);
960      if (is64Bit() && ExceptionSection.isDebugEnabled) {
961        // On 64 bit with debugging enabled, we have a csect, exception, and
962        // function auxilliary entries, so we must increment symbol index by 4.
963        writeSymbolAuxExceptionEntry(
964            ExceptionSection.FileOffsetToData +
965                getExceptionOffset(Entry->second.FunctionSymbol),
966            Entry->second.FunctionSize,
967            SymbolIndexMap[Entry->second.FunctionSymbol] + 4);
968      }
969      // For exception section entries, csect and function auxilliary entries
970      // must exist. On 64-bit there is also an exception auxilliary entry.
971      writeSymbolAuxFunctionEntry(
972          ExceptionSection.FileOffsetToData +
973              getExceptionOffset(Entry->second.FunctionSymbol),
974          Entry->second.FunctionSize, 0,
975          (is64Bit() && ExceptionSection.isDebugEnabled)
976              ? SymbolIndexMap[Entry->second.FunctionSymbol] + 4
977              : SymbolIndexMap[Entry->second.FunctionSymbol] + 3);
978    } else {
979      writeSymbolEntry(SymbolRef.getSymbolTableName(),
980                       CSectionRef.Address + SymbolOffset, SectionIndex,
981                       SymbolRef.getVisibilityType(),
982                       SymbolRef.getStorageClass());
983    }
984    writeSymbolAuxCsectEntry(CSectionRef.SymbolTableIndex, XCOFF::XTY_LD,
985                             CSectionRef.MCSec->getMappingClass());
986  }
987  
writeSymbolEntryForDwarfSection(const XCOFFSection & DwarfSectionRef,int16_t SectionIndex)988  void XCOFFObjectWriter::writeSymbolEntryForDwarfSection(
989      const XCOFFSection &DwarfSectionRef, int16_t SectionIndex) {
990    assert(DwarfSectionRef.MCSec->isDwarfSect() && "Not a DWARF section!");
991  
992    writeSymbolEntry(DwarfSectionRef.getSymbolTableName(), /*Value=*/0,
993                     SectionIndex, /*SymbolType=*/0, XCOFF::C_DWARF);
994  
995    writeSymbolAuxDwarfEntry(DwarfSectionRef.Size);
996  }
997  
writeSymbolEntryForControlSection(const XCOFFSection & CSectionRef,int16_t SectionIndex,XCOFF::StorageClass StorageClass)998  void XCOFFObjectWriter::writeSymbolEntryForControlSection(
999      const XCOFFSection &CSectionRef, int16_t SectionIndex,
1000      XCOFF::StorageClass StorageClass) {
1001    writeSymbolEntry(CSectionRef.getSymbolTableName(), CSectionRef.Address,
1002                     SectionIndex, CSectionRef.getVisibilityType(), StorageClass);
1003  
1004    writeSymbolAuxCsectEntry(CSectionRef.Size, getEncodedType(CSectionRef.MCSec),
1005                             CSectionRef.MCSec->getMappingClass());
1006  }
1007  
writeSymbolAuxFunctionEntry(uint32_t EntryOffset,uint32_t FunctionSize,uint64_t LineNumberPointer,uint32_t EndIndex)1008  void XCOFFObjectWriter::writeSymbolAuxFunctionEntry(uint32_t EntryOffset,
1009                                                      uint32_t FunctionSize,
1010                                                      uint64_t LineNumberPointer,
1011                                                      uint32_t EndIndex) {
1012    if (is64Bit())
1013      writeWord(LineNumberPointer);
1014    else
1015      W.write<uint32_t>(EntryOffset);
1016    W.write<uint32_t>(FunctionSize);
1017    if (!is64Bit())
1018      writeWord(LineNumberPointer);
1019    W.write<uint32_t>(EndIndex);
1020    if (is64Bit()) {
1021      W.OS.write_zeros(1);
1022      W.write<uint8_t>(XCOFF::AUX_FCN);
1023    } else {
1024      W.OS.write_zeros(2);
1025    }
1026  }
1027  
writeSymbolAuxExceptionEntry(uint64_t EntryOffset,uint32_t FunctionSize,uint32_t EndIndex)1028  void XCOFFObjectWriter::writeSymbolAuxExceptionEntry(uint64_t EntryOffset,
1029                                                       uint32_t FunctionSize,
1030                                                       uint32_t EndIndex) {
1031    assert(is64Bit() && "Exception auxilliary entries are 64-bit only.");
1032    W.write<uint64_t>(EntryOffset);
1033    W.write<uint32_t>(FunctionSize);
1034    W.write<uint32_t>(EndIndex);
1035    W.OS.write_zeros(1); // Pad (unused)
1036    W.write<uint8_t>(XCOFF::AUX_EXCEPT);
1037  }
1038  
writeFileHeader()1039  void XCOFFObjectWriter::writeFileHeader() {
1040    W.write<uint16_t>(is64Bit() ? XCOFF::XCOFF64 : XCOFF::XCOFF32);
1041    W.write<uint16_t>(SectionCount);
1042    W.write<int32_t>(0); // TimeStamp
1043    writeWord(SymbolTableOffset);
1044    if (is64Bit()) {
1045      W.write<uint16_t>(auxiliaryHeaderSize());
1046      W.write<uint16_t>(0); // Flags
1047      W.write<int32_t>(SymbolTableEntryCount);
1048    } else {
1049      W.write<int32_t>(SymbolTableEntryCount);
1050      W.write<uint16_t>(auxiliaryHeaderSize());
1051      W.write<uint16_t>(0); // Flags
1052    }
1053  }
1054  
writeAuxFileHeader()1055  void XCOFFObjectWriter::writeAuxFileHeader() {
1056    if (!auxiliaryHeaderSize())
1057      return;
1058    W.write<uint16_t>(0); // Magic
1059    W.write<uint16_t>(
1060        XCOFF::NEW_XCOFF_INTERPRET); // Version. The new interpretation of the
1061                                     // n_type field in the symbol table entry is
1062                                     // used in XCOFF32.
1063    W.write<uint32_t>(Sections[0]->Size);    // TextSize
1064    W.write<uint32_t>(Sections[1]->Size);    // InitDataSize
1065    W.write<uint32_t>(Sections[2]->Size);    // BssDataSize
1066    W.write<uint32_t>(0);                    // EntryPointAddr
1067    W.write<uint32_t>(Sections[0]->Address); // TextStartAddr
1068    W.write<uint32_t>(Sections[1]->Address); // DataStartAddr
1069  }
1070  
writeSectionHeader(const SectionEntry * Sec)1071  void XCOFFObjectWriter::writeSectionHeader(const SectionEntry *Sec) {
1072    bool IsDwarf = (Sec->Flags & XCOFF::STYP_DWARF) != 0;
1073    bool IsOvrflo = (Sec->Flags & XCOFF::STYP_OVRFLO) != 0;
1074    // Nothing to write for this Section.
1075    if (Sec->Index == SectionEntry::UninitializedIndex)
1076      return;
1077  
1078    // Write Name.
1079    ArrayRef<char> NameRef(Sec->Name, XCOFF::NameSize);
1080    W.write(NameRef);
1081  
1082    // Write the Physical Address and Virtual Address.
1083    // We use 0 for DWARF sections' Physical and Virtual Addresses.
1084    writeWord(IsDwarf ? 0 : Sec->Address);
1085    // Since line number is not supported, we set it to 0 for overflow sections.
1086    writeWord((IsDwarf || IsOvrflo) ? 0 : Sec->Address);
1087  
1088    writeWord(Sec->Size);
1089    writeWord(Sec->FileOffsetToData);
1090    writeWord(Sec->FileOffsetToRelocations);
1091    writeWord(0); // FileOffsetToLineNumberInfo. Not supported yet.
1092  
1093    if (is64Bit()) {
1094      W.write<uint32_t>(Sec->RelocationCount);
1095      W.write<uint32_t>(0); // NumberOfLineNumbers. Not supported yet.
1096      W.write<int32_t>(Sec->Flags);
1097      W.OS.write_zeros(4);
1098    } else {
1099      // For the overflow section header, s_nreloc provides a reference to the
1100      // primary section header and s_nlnno must have the same value.
1101      // For common section headers, if either of s_nreloc or s_nlnno are set to
1102      // 65535, the other one must also be set to 65535.
1103      W.write<uint16_t>(Sec->RelocationCount);
1104      W.write<uint16_t>((IsOvrflo || Sec->RelocationCount == XCOFF::RelocOverflow)
1105                            ? Sec->RelocationCount
1106                            : 0); // NumberOfLineNumbers. Not supported yet.
1107      W.write<int32_t>(Sec->Flags);
1108    }
1109  }
1110  
writeSectionHeaderTable()1111  void XCOFFObjectWriter::writeSectionHeaderTable() {
1112    for (const auto *CsectSec : Sections)
1113      writeSectionHeader(CsectSec);
1114    for (const auto &DwarfSec : DwarfSections)
1115      writeSectionHeader(&DwarfSec);
1116    for (const auto &OverflowSec : OverflowSections)
1117      writeSectionHeader(&OverflowSec);
1118    if (hasExceptionSection())
1119      writeSectionHeader(&ExceptionSection);
1120    if (CInfoSymSection.Entry)
1121      writeSectionHeader(&CInfoSymSection);
1122  }
1123  
writeRelocation(XCOFFRelocation Reloc,const XCOFFSection & Section)1124  void XCOFFObjectWriter::writeRelocation(XCOFFRelocation Reloc,
1125                                          const XCOFFSection &Section) {
1126    if (Section.MCSec->isCsect())
1127      writeWord(Section.Address + Reloc.FixupOffsetInCsect);
1128    else {
1129      // DWARF sections' address is set to 0.
1130      assert(Section.MCSec->isDwarfSect() && "unsupport section type!");
1131      writeWord(Reloc.FixupOffsetInCsect);
1132    }
1133    W.write<uint32_t>(Reloc.SymbolTableIndex);
1134    W.write<uint8_t>(Reloc.SignAndSize);
1135    W.write<uint8_t>(Reloc.Type);
1136  }
1137  
writeRelocations()1138  void XCOFFObjectWriter::writeRelocations() {
1139    for (const auto *Section : Sections) {
1140      if (Section->Index == SectionEntry::UninitializedIndex)
1141        // Nothing to write for this Section.
1142        continue;
1143  
1144      for (const auto *Group : Section->Groups) {
1145        if (Group->empty())
1146          continue;
1147  
1148        for (const auto &Csect : *Group) {
1149          for (const auto Reloc : Csect.Relocations)
1150            writeRelocation(Reloc, Csect);
1151        }
1152      }
1153    }
1154  
1155    for (const auto &DwarfSection : DwarfSections)
1156      for (const auto &Reloc : DwarfSection.DwarfSect->Relocations)
1157        writeRelocation(Reloc, *DwarfSection.DwarfSect);
1158  }
1159  
writeSymbolTable(MCAssembler & Asm)1160  void XCOFFObjectWriter::writeSymbolTable(MCAssembler &Asm) {
1161    // Write C_FILE symbols.
1162    StringRef Vers = CompilerVersion;
1163  
1164    for (const std::pair<std::string, size_t> &F : FileNames) {
1165      // The n_name of a C_FILE symbol is the source file's name when no auxiliary
1166      // entries are present.
1167      StringRef FileName = F.first;
1168  
1169      // For C_FILE symbols, the Source Language ID overlays the high-order byte
1170      // of the SymbolType field, and the CPU Version ID is defined as the
1171      // low-order byte.
1172      // AIX's system assembler determines the source language ID based on the
1173      // source file's name suffix, and the behavior here is consistent with it.
1174      uint8_t LangID;
1175      if (FileName.ends_with(".c"))
1176        LangID = XCOFF::TB_C;
1177      else if (FileName.ends_with_insensitive(".f") ||
1178               FileName.ends_with_insensitive(".f77") ||
1179               FileName.ends_with_insensitive(".f90") ||
1180               FileName.ends_with_insensitive(".f95") ||
1181               FileName.ends_with_insensitive(".f03") ||
1182               FileName.ends_with_insensitive(".f08"))
1183        LangID = XCOFF::TB_Fortran;
1184      else
1185        LangID = XCOFF::TB_CPLUSPLUS;
1186      uint8_t CpuID;
1187      if (is64Bit())
1188        CpuID = XCOFF::TCPU_PPC64;
1189      else
1190        CpuID = XCOFF::TCPU_COM;
1191  
1192      int NumberOfFileAuxEntries = 1;
1193      if (!Vers.empty())
1194        ++NumberOfFileAuxEntries;
1195      writeSymbolEntry(".file", /*Value=*/0, XCOFF::ReservedSectionNum::N_DEBUG,
1196                       /*SymbolType=*/(LangID << 8) | CpuID, XCOFF::C_FILE,
1197                       NumberOfFileAuxEntries);
1198      writeSymbolAuxFileEntry(FileName, XCOFF::XFT_FN);
1199      if (!Vers.empty())
1200        writeSymbolAuxFileEntry(Vers, XCOFF::XFT_CV);
1201    }
1202  
1203    if (CInfoSymSection.Entry)
1204      writeSymbolEntry(CInfoSymSection.Entry->Name, CInfoSymSection.Entry->Offset,
1205                       CInfoSymSection.Index,
1206                       /*SymbolType=*/0, XCOFF::C_INFO,
1207                       /*NumberOfAuxEntries=*/0);
1208  
1209    for (const auto &Csect : UndefinedCsects) {
1210      writeSymbolEntryForControlSection(Csect, XCOFF::ReservedSectionNum::N_UNDEF,
1211                                        Csect.MCSec->getStorageClass());
1212    }
1213  
1214    for (const auto *Section : Sections) {
1215      if (Section->Index == SectionEntry::UninitializedIndex)
1216        // Nothing to write for this Section.
1217        continue;
1218  
1219      for (const auto *Group : Section->Groups) {
1220        if (Group->empty())
1221          continue;
1222  
1223        const int16_t SectionIndex = Section->Index;
1224        for (const auto &Csect : *Group) {
1225          // Write out the control section first and then each symbol in it.
1226          writeSymbolEntryForControlSection(Csect, SectionIndex,
1227                                            Csect.MCSec->getStorageClass());
1228  
1229          for (const auto &Sym : Csect.Syms)
1230            writeSymbolEntryForCsectMemberLabel(
1231                Sym, Csect, SectionIndex, Asm.getSymbolOffset(*(Sym.MCSym)));
1232        }
1233      }
1234    }
1235  
1236    for (const auto &DwarfSection : DwarfSections)
1237      writeSymbolEntryForDwarfSection(*DwarfSection.DwarfSect,
1238                                      DwarfSection.Index);
1239  }
1240  
finalizeRelocationInfo(SectionEntry * Sec,uint64_t RelCount)1241  void XCOFFObjectWriter::finalizeRelocationInfo(SectionEntry *Sec,
1242                                                 uint64_t RelCount) {
1243    // Handles relocation field overflows in an XCOFF32 file. An XCOFF64 file
1244    // may not contain an overflow section header.
1245    if (!is64Bit() && (RelCount >= static_cast<uint32_t>(XCOFF::RelocOverflow))) {
1246      // Generate an overflow section header.
1247      SectionEntry SecEntry(".ovrflo", XCOFF::STYP_OVRFLO);
1248  
1249      // This field specifies the file section number of the section header that
1250      // overflowed.
1251      SecEntry.RelocationCount = Sec->Index;
1252  
1253      // This field specifies the number of relocation entries actually
1254      // required.
1255      SecEntry.Address = RelCount;
1256      SecEntry.Index = ++SectionCount;
1257      OverflowSections.push_back(std::move(SecEntry));
1258  
1259      // The field in the primary section header is always 65535
1260      // (XCOFF::RelocOverflow).
1261      Sec->RelocationCount = XCOFF::RelocOverflow;
1262    } else {
1263      Sec->RelocationCount = RelCount;
1264    }
1265  }
1266  
calcOffsetToRelocations(SectionEntry * Sec,uint64_t & RawPointer)1267  void XCOFFObjectWriter::calcOffsetToRelocations(SectionEntry *Sec,
1268                                                  uint64_t &RawPointer) {
1269    if (!Sec->RelocationCount)
1270      return;
1271  
1272    Sec->FileOffsetToRelocations = RawPointer;
1273    uint64_t RelocationSizeInSec = 0;
1274    if (!is64Bit() &&
1275        Sec->RelocationCount == static_cast<uint32_t>(XCOFF::RelocOverflow)) {
1276      // Find its corresponding overflow section.
1277      for (auto &OverflowSec : OverflowSections) {
1278        if (OverflowSec.RelocationCount == static_cast<uint32_t>(Sec->Index)) {
1279          RelocationSizeInSec =
1280              OverflowSec.Address * XCOFF::RelocationSerializationSize32;
1281  
1282          // This field must have the same values as in the corresponding
1283          // primary section header.
1284          OverflowSec.FileOffsetToRelocations = Sec->FileOffsetToRelocations;
1285        }
1286      }
1287      assert(RelocationSizeInSec && "Overflow section header doesn't exist.");
1288    } else {
1289      RelocationSizeInSec = Sec->RelocationCount *
1290                            (is64Bit() ? XCOFF::RelocationSerializationSize64
1291                                       : XCOFF::RelocationSerializationSize32);
1292    }
1293  
1294    RawPointer += RelocationSizeInSec;
1295    if (RawPointer > MaxRawDataSize)
1296      report_fatal_error("Relocation data overflowed this object file.");
1297  }
1298  
finalizeSectionInfo()1299  void XCOFFObjectWriter::finalizeSectionInfo() {
1300    for (auto *Section : Sections) {
1301      if (Section->Index == SectionEntry::UninitializedIndex)
1302        // Nothing to record for this Section.
1303        continue;
1304  
1305      uint64_t RelCount = 0;
1306      for (const auto *Group : Section->Groups) {
1307        if (Group->empty())
1308          continue;
1309  
1310        for (auto &Csect : *Group)
1311          RelCount += Csect.Relocations.size();
1312      }
1313      finalizeRelocationInfo(Section, RelCount);
1314    }
1315  
1316    for (auto &DwarfSection : DwarfSections)
1317      finalizeRelocationInfo(&DwarfSection,
1318                             DwarfSection.DwarfSect->Relocations.size());
1319  
1320    // Calculate the RawPointer value for all headers.
1321    uint64_t RawPointer =
1322        (is64Bit() ? (XCOFF::FileHeaderSize64 +
1323                      SectionCount * XCOFF::SectionHeaderSize64)
1324                   : (XCOFF::FileHeaderSize32 +
1325                      SectionCount * XCOFF::SectionHeaderSize32)) +
1326        auxiliaryHeaderSize();
1327  
1328    // Calculate the file offset to the section data.
1329    for (auto *Sec : Sections) {
1330      if (Sec->Index == SectionEntry::UninitializedIndex || Sec->IsVirtual)
1331        continue;
1332  
1333      RawPointer = Sec->advanceFileOffset(MaxRawDataSize, RawPointer);
1334    }
1335  
1336    if (!DwarfSections.empty()) {
1337      RawPointer += PaddingsBeforeDwarf;
1338      for (auto &DwarfSection : DwarfSections) {
1339        RawPointer = DwarfSection.advanceFileOffset(MaxRawDataSize, RawPointer);
1340      }
1341    }
1342  
1343    if (hasExceptionSection())
1344      RawPointer = ExceptionSection.advanceFileOffset(MaxRawDataSize, RawPointer);
1345  
1346    if (CInfoSymSection.Entry)
1347      RawPointer = CInfoSymSection.advanceFileOffset(MaxRawDataSize, RawPointer);
1348  
1349    for (auto *Sec : Sections) {
1350      if (Sec->Index != SectionEntry::UninitializedIndex)
1351        calcOffsetToRelocations(Sec, RawPointer);
1352    }
1353  
1354    for (auto &DwarfSec : DwarfSections)
1355      calcOffsetToRelocations(&DwarfSec, RawPointer);
1356  
1357    // TODO Error check that the number of symbol table entries fits in 32-bits
1358    // signed ...
1359    if (SymbolTableEntryCount)
1360      SymbolTableOffset = RawPointer;
1361  }
1362  
addExceptionEntry(const MCSymbol * Symbol,const MCSymbol * Trap,unsigned LanguageCode,unsigned ReasonCode,unsigned FunctionSize,bool hasDebug)1363  void XCOFFObjectWriter::addExceptionEntry(
1364      const MCSymbol *Symbol, const MCSymbol *Trap, unsigned LanguageCode,
1365      unsigned ReasonCode, unsigned FunctionSize, bool hasDebug) {
1366    // If a module had debug info, debugging is enabled and XCOFF emits the
1367    // exception auxilliary entry.
1368    if (hasDebug)
1369      ExceptionSection.isDebugEnabled = true;
1370    auto Entry = ExceptionSection.ExceptionTable.find(Symbol->getName());
1371    if (Entry != ExceptionSection.ExceptionTable.end()) {
1372      Entry->second.Entries.push_back(
1373          ExceptionTableEntry(Trap, LanguageCode, ReasonCode));
1374      return;
1375    }
1376    ExceptionInfo NewEntry;
1377    NewEntry.FunctionSymbol = Symbol;
1378    NewEntry.FunctionSize = FunctionSize;
1379    NewEntry.Entries.push_back(
1380        ExceptionTableEntry(Trap, LanguageCode, ReasonCode));
1381    ExceptionSection.ExceptionTable.insert(
1382        std::pair<const StringRef, ExceptionInfo>(Symbol->getName(), NewEntry));
1383  }
1384  
getExceptionSectionSize()1385  unsigned XCOFFObjectWriter::getExceptionSectionSize() {
1386    unsigned EntryNum = 0;
1387  
1388    for (const auto &TableEntry : ExceptionSection.ExceptionTable)
1389      // The size() gets +1 to account for the initial entry containing the
1390      // symbol table index.
1391      EntryNum += TableEntry.second.Entries.size() + 1;
1392  
1393    return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64
1394                                 : XCOFF::ExceptionSectionEntrySize32);
1395  }
1396  
getExceptionOffset(const MCSymbol * Symbol)1397  unsigned XCOFFObjectWriter::getExceptionOffset(const MCSymbol *Symbol) {
1398    unsigned EntryNum = 0;
1399    for (const auto &TableEntry : ExceptionSection.ExceptionTable) {
1400      if (Symbol == TableEntry.second.FunctionSymbol)
1401        break;
1402      EntryNum += TableEntry.second.Entries.size() + 1;
1403    }
1404    return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64
1405                                 : XCOFF::ExceptionSectionEntrySize32);
1406  }
1407  
addCInfoSymEntry(StringRef Name,StringRef Metadata)1408  void XCOFFObjectWriter::addCInfoSymEntry(StringRef Name, StringRef Metadata) {
1409    assert(!CInfoSymSection.Entry && "Multiple entries are not supported");
1410    CInfoSymSection.addEntry(
1411        std::make_unique<CInfoSymInfo>(Name.str(), Metadata.str()));
1412  }
1413  
assignAddressesAndIndices(MCAssembler & Asm)1414  void XCOFFObjectWriter::assignAddressesAndIndices(MCAssembler &Asm) {
1415    // The symbol table starts with all the C_FILE symbols. Each C_FILE symbol
1416    // requires 1 or 2 auxiliary entries.
1417    uint32_t SymbolTableIndex =
1418        (2 + (CompilerVersion.empty() ? 0 : 1)) * FileNames.size();
1419  
1420    if (CInfoSymSection.Entry)
1421      SymbolTableIndex++;
1422  
1423    // Calculate indices for undefined symbols.
1424    for (auto &Csect : UndefinedCsects) {
1425      Csect.Size = 0;
1426      Csect.Address = 0;
1427      Csect.SymbolTableIndex = SymbolTableIndex;
1428      SymbolIndexMap[Csect.MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex;
1429      // 1 main and 1 auxiliary symbol table entry for each contained symbol.
1430      SymbolTableIndex += 2;
1431    }
1432  
1433    // The address corrresponds to the address of sections and symbols in the
1434    // object file. We place the shared address 0 immediately after the
1435    // section header table.
1436    uint64_t Address = 0;
1437    // Section indices are 1-based in XCOFF.
1438    int32_t SectionIndex = 1;
1439    bool HasTDataSection = false;
1440  
1441    for (auto *Section : Sections) {
1442      const bool IsEmpty =
1443          llvm::all_of(Section->Groups,
1444                       [](const CsectGroup *Group) { return Group->empty(); });
1445      if (IsEmpty)
1446        continue;
1447  
1448      if (SectionIndex > MaxSectionIndex)
1449        report_fatal_error("Section index overflow!");
1450      Section->Index = SectionIndex++;
1451      SectionCount++;
1452  
1453      bool SectionAddressSet = false;
1454      // Reset the starting address to 0 for TData section.
1455      if (Section->Flags == XCOFF::STYP_TDATA) {
1456        Address = 0;
1457        HasTDataSection = true;
1458      }
1459      // Reset the starting address to 0 for TBSS section if the object file does
1460      // not contain TData Section.
1461      if ((Section->Flags == XCOFF::STYP_TBSS) && !HasTDataSection)
1462        Address = 0;
1463  
1464      for (auto *Group : Section->Groups) {
1465        if (Group->empty())
1466          continue;
1467  
1468        for (auto &Csect : *Group) {
1469          const MCSectionXCOFF *MCSec = Csect.MCSec;
1470          Csect.Address = alignTo(Address, MCSec->getAlign());
1471          Csect.Size = Asm.getSectionAddressSize(*MCSec);
1472          Address = Csect.Address + Csect.Size;
1473          Csect.SymbolTableIndex = SymbolTableIndex;
1474          SymbolIndexMap[MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex;
1475          // 1 main and 1 auxiliary symbol table entry for the csect.
1476          SymbolTableIndex += 2;
1477  
1478          for (auto &Sym : Csect.Syms) {
1479            bool hasExceptEntry = false;
1480            auto Entry =
1481                ExceptionSection.ExceptionTable.find(Sym.MCSym->getName());
1482            if (Entry != ExceptionSection.ExceptionTable.end()) {
1483              hasExceptEntry = true;
1484              for (auto &TrapEntry : Entry->second.Entries) {
1485                TrapEntry.TrapAddress = Asm.getSymbolOffset(*(Sym.MCSym)) +
1486                                        TrapEntry.Trap->getOffset();
1487              }
1488            }
1489            Sym.SymbolTableIndex = SymbolTableIndex;
1490            SymbolIndexMap[Sym.MCSym] = Sym.SymbolTableIndex;
1491            // 1 main and 1 auxiliary symbol table entry for each contained
1492            // symbol. For symbols with exception section entries, a function
1493            // auxilliary entry is needed, and on 64-bit XCOFF with debugging
1494            // enabled, an additional exception auxilliary entry is needed.
1495            SymbolTableIndex += 2;
1496            if (hasExceptionSection() && hasExceptEntry) {
1497              if (is64Bit() && ExceptionSection.isDebugEnabled)
1498                SymbolTableIndex += 2;
1499              else
1500                SymbolTableIndex += 1;
1501            }
1502          }
1503        }
1504  
1505        if (!SectionAddressSet) {
1506          Section->Address = Group->front().Address;
1507          SectionAddressSet = true;
1508        }
1509      }
1510  
1511      // Make sure the address of the next section aligned to
1512      // DefaultSectionAlign.
1513      Address = alignTo(Address, DefaultSectionAlign);
1514      Section->Size = Address - Section->Address;
1515    }
1516  
1517    // Start to generate DWARF sections. Sections other than DWARF section use
1518    // DefaultSectionAlign as the default alignment, while DWARF sections have
1519    // their own alignments. If these two alignments are not the same, we need
1520    // some paddings here and record the paddings bytes for FileOffsetToData
1521    // calculation.
1522    if (!DwarfSections.empty())
1523      PaddingsBeforeDwarf =
1524          alignTo(Address,
1525                  (*DwarfSections.begin()).DwarfSect->MCSec->getAlign()) -
1526          Address;
1527  
1528    DwarfSectionEntry *LastDwarfSection = nullptr;
1529    for (auto &DwarfSection : DwarfSections) {
1530      assert((SectionIndex <= MaxSectionIndex) && "Section index overflow!");
1531  
1532      XCOFFSection &DwarfSect = *DwarfSection.DwarfSect;
1533      const MCSectionXCOFF *MCSec = DwarfSect.MCSec;
1534  
1535      // Section index.
1536      DwarfSection.Index = SectionIndex++;
1537      SectionCount++;
1538  
1539      // Symbol index.
1540      DwarfSect.SymbolTableIndex = SymbolTableIndex;
1541      SymbolIndexMap[MCSec->getQualNameSymbol()] = DwarfSect.SymbolTableIndex;
1542      // 1 main and 1 auxiliary symbol table entry for the csect.
1543      SymbolTableIndex += 2;
1544  
1545      // Section address. Make it align to section alignment.
1546      // We use address 0 for DWARF sections' Physical and Virtual Addresses.
1547      // This address is used to tell where is the section in the final object.
1548      // See writeSectionForDwarfSectionEntry().
1549      DwarfSection.Address = DwarfSect.Address =
1550          alignTo(Address, MCSec->getAlign());
1551  
1552      // Section size.
1553      // For DWARF section, we must use the real size which may be not aligned.
1554      DwarfSection.Size = DwarfSect.Size = Asm.getSectionAddressSize(*MCSec);
1555  
1556      Address = DwarfSection.Address + DwarfSection.Size;
1557  
1558      if (LastDwarfSection)
1559        LastDwarfSection->MemorySize =
1560            DwarfSection.Address - LastDwarfSection->Address;
1561      LastDwarfSection = &DwarfSection;
1562    }
1563    if (LastDwarfSection) {
1564      // Make the final DWARF section address align to the default section
1565      // alignment for follow contents.
1566      Address = alignTo(LastDwarfSection->Address + LastDwarfSection->Size,
1567                        DefaultSectionAlign);
1568      LastDwarfSection->MemorySize = Address - LastDwarfSection->Address;
1569    }
1570    if (hasExceptionSection()) {
1571      ExceptionSection.Index = SectionIndex++;
1572      SectionCount++;
1573      ExceptionSection.Address = 0;
1574      ExceptionSection.Size = getExceptionSectionSize();
1575      Address += ExceptionSection.Size;
1576      Address = alignTo(Address, DefaultSectionAlign);
1577    }
1578  
1579    if (CInfoSymSection.Entry) {
1580      CInfoSymSection.Index = SectionIndex++;
1581      SectionCount++;
1582      CInfoSymSection.Address = 0;
1583      Address += CInfoSymSection.Size;
1584      Address = alignTo(Address, DefaultSectionAlign);
1585    }
1586  
1587    SymbolTableEntryCount = SymbolTableIndex;
1588  }
1589  
writeSectionForControlSectionEntry(const MCAssembler & Asm,const CsectSectionEntry & CsectEntry,uint64_t & CurrentAddressLocation)1590  void XCOFFObjectWriter::writeSectionForControlSectionEntry(
1591      const MCAssembler &Asm, const CsectSectionEntry &CsectEntry,
1592      uint64_t &CurrentAddressLocation) {
1593    // Nothing to write for this Section.
1594    if (CsectEntry.Index == SectionEntry::UninitializedIndex)
1595      return;
1596  
1597    // There could be a gap (without corresponding zero padding) between
1598    // sections.
1599    // There could be a gap (without corresponding zero padding) between
1600    // sections.
1601    assert(((CurrentAddressLocation <= CsectEntry.Address) ||
1602            (CsectEntry.Flags == XCOFF::STYP_TDATA) ||
1603            (CsectEntry.Flags == XCOFF::STYP_TBSS)) &&
1604           "CurrentAddressLocation should be less than or equal to section "
1605           "address if the section is not TData or TBSS.");
1606  
1607    CurrentAddressLocation = CsectEntry.Address;
1608  
1609    // For virtual sections, nothing to write. But need to increase
1610    // CurrentAddressLocation for later sections like DWARF section has a correct
1611    // writing location.
1612    if (CsectEntry.IsVirtual) {
1613      CurrentAddressLocation += CsectEntry.Size;
1614      return;
1615    }
1616  
1617    for (const auto &Group : CsectEntry.Groups) {
1618      for (const auto &Csect : *Group) {
1619        if (uint32_t PaddingSize = Csect.Address - CurrentAddressLocation)
1620          W.OS.write_zeros(PaddingSize);
1621        if (Csect.Size)
1622          Asm.writeSectionData(W.OS, Csect.MCSec);
1623        CurrentAddressLocation = Csect.Address + Csect.Size;
1624      }
1625    }
1626  
1627    // The size of the tail padding in a section is the end virtual address of
1628    // the current section minus the end virtual address of the last csect
1629    // in that section.
1630    if (uint64_t PaddingSize =
1631            CsectEntry.Address + CsectEntry.Size - CurrentAddressLocation) {
1632      W.OS.write_zeros(PaddingSize);
1633      CurrentAddressLocation += PaddingSize;
1634    }
1635  }
1636  
writeSectionForDwarfSectionEntry(const MCAssembler & Asm,const DwarfSectionEntry & DwarfEntry,uint64_t & CurrentAddressLocation)1637  void XCOFFObjectWriter::writeSectionForDwarfSectionEntry(
1638      const MCAssembler &Asm, const DwarfSectionEntry &DwarfEntry,
1639      uint64_t &CurrentAddressLocation) {
1640    // There could be a gap (without corresponding zero padding) between
1641    // sections. For example DWARF section alignment is bigger than
1642    // DefaultSectionAlign.
1643    assert(CurrentAddressLocation <= DwarfEntry.Address &&
1644           "CurrentAddressLocation should be less than or equal to section "
1645           "address.");
1646  
1647    if (uint64_t PaddingSize = DwarfEntry.Address - CurrentAddressLocation)
1648      W.OS.write_zeros(PaddingSize);
1649  
1650    if (DwarfEntry.Size)
1651      Asm.writeSectionData(W.OS, DwarfEntry.DwarfSect->MCSec);
1652  
1653    CurrentAddressLocation = DwarfEntry.Address + DwarfEntry.Size;
1654  
1655    // DWARF section size is not aligned to DefaultSectionAlign.
1656    // Make sure CurrentAddressLocation is aligned to DefaultSectionAlign.
1657    uint32_t Mod = CurrentAddressLocation % DefaultSectionAlign;
1658    uint32_t TailPaddingSize = Mod ? DefaultSectionAlign - Mod : 0;
1659    if (TailPaddingSize)
1660      W.OS.write_zeros(TailPaddingSize);
1661  
1662    CurrentAddressLocation += TailPaddingSize;
1663  }
1664  
writeSectionForExceptionSectionEntry(const MCAssembler & Asm,ExceptionSectionEntry & ExceptionEntry,uint64_t & CurrentAddressLocation)1665  void XCOFFObjectWriter::writeSectionForExceptionSectionEntry(
1666      const MCAssembler &Asm, ExceptionSectionEntry &ExceptionEntry,
1667      uint64_t &CurrentAddressLocation) {
1668    for (const auto &TableEntry : ExceptionEntry.ExceptionTable) {
1669      // For every symbol that has exception entries, you must start the entries
1670      // with an initial symbol table index entry
1671      W.write<uint32_t>(SymbolIndexMap[TableEntry.second.FunctionSymbol]);
1672      if (is64Bit()) {
1673        // 4-byte padding on 64-bit.
1674        W.OS.write_zeros(4);
1675      }
1676      W.OS.write_zeros(2);
1677      for (auto &TrapEntry : TableEntry.second.Entries) {
1678        writeWord(TrapEntry.TrapAddress);
1679        W.write<uint8_t>(TrapEntry.Lang);
1680        W.write<uint8_t>(TrapEntry.Reason);
1681      }
1682    }
1683  
1684    CurrentAddressLocation += getExceptionSectionSize();
1685  }
1686  
writeSectionForCInfoSymSectionEntry(const MCAssembler & Asm,CInfoSymSectionEntry & CInfoSymEntry,uint64_t & CurrentAddressLocation)1687  void XCOFFObjectWriter::writeSectionForCInfoSymSectionEntry(
1688      const MCAssembler &Asm, CInfoSymSectionEntry &CInfoSymEntry,
1689      uint64_t &CurrentAddressLocation) {
1690    if (!CInfoSymSection.Entry)
1691      return;
1692  
1693    constexpr int WordSize = sizeof(uint32_t);
1694    std::unique_ptr<CInfoSymInfo> &CISI = CInfoSymEntry.Entry;
1695    const std::string &Metadata = CISI->Metadata;
1696  
1697    // Emit the 4-byte length of the metadata.
1698    W.write<uint32_t>(Metadata.size());
1699  
1700    if (Metadata.size() == 0)
1701      return;
1702  
1703    // Write out the payload one word at a time.
1704    size_t Index = 0;
1705    while (Index + WordSize <= Metadata.size()) {
1706      uint32_t NextWord =
1707          llvm::support::endian::read32be(Metadata.data() + Index);
1708      W.write<uint32_t>(NextWord);
1709      Index += WordSize;
1710    }
1711  
1712    // If there is padding, we have at least one byte of payload left to emit.
1713    if (CISI->paddingSize()) {
1714      std::array<uint8_t, WordSize> LastWord = {0};
1715      ::memcpy(LastWord.data(), Metadata.data() + Index, Metadata.size() - Index);
1716      W.write<uint32_t>(llvm::support::endian::read32be(LastWord.data()));
1717    }
1718  
1719    CurrentAddressLocation += CISI->size();
1720  }
1721  
1722  // Takes the log base 2 of the alignment and shifts the result into the 5 most
1723  // significant bits of a byte, then or's in the csect type into the least
1724  // significant 3 bits.
getEncodedType(const MCSectionXCOFF * Sec)1725  uint8_t getEncodedType(const MCSectionXCOFF *Sec) {
1726    unsigned Log2Align = Log2(Sec->getAlign());
1727    // Result is a number in the range [0, 31] which fits in the 5 least
1728    // significant bits. Shift this value into the 5 most significant bits, and
1729    // bitwise-or in the csect type.
1730    uint8_t EncodedAlign = Log2Align << 3;
1731    return EncodedAlign | Sec->getCSectType();
1732  }
1733  
1734  } // end anonymous namespace
1735  
1736  std::unique_ptr<MCObjectWriter>
createXCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,raw_pwrite_stream & OS)1737  llvm::createXCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
1738                                raw_pwrite_stream &OS) {
1739    return std::make_unique<XCOFFObjectWriter>(std::move(MOTW), OS);
1740  }
1741  
1742  // TODO: Export XCOFFObjectWriter to llvm/MC/MCXCOFFObjectWriter.h and remove
1743  // the forwarders.
addExceptionEntry(MCObjectWriter & Writer,const MCSymbol * Symbol,const MCSymbol * Trap,unsigned LanguageCode,unsigned ReasonCode,unsigned FunctionSize,bool hasDebug)1744  void XCOFF::addExceptionEntry(MCObjectWriter &Writer, const MCSymbol *Symbol,
1745                                const MCSymbol *Trap, unsigned LanguageCode,
1746                                unsigned ReasonCode, unsigned FunctionSize,
1747                                bool hasDebug) {
1748    static_cast<XCOFFObjectWriter &>(Writer).addExceptionEntry(
1749        Symbol, Trap, LanguageCode, ReasonCode, FunctionSize, hasDebug);
1750  }
1751  
addCInfoSymEntry(MCObjectWriter & Writer,StringRef Name,StringRef Metadata)1752  void XCOFF::addCInfoSymEntry(MCObjectWriter &Writer, StringRef Name,
1753                               StringRef Metadata) {
1754    static_cast<XCOFFObjectWriter &>(Writer).addCInfoSymEntry(Name, Metadata);
1755  }
1756