1 /*-
2 * Copyright (c) 2006,2007
3 * Damien Bergamini <damien.bergamini@free.fr>
4 * Benjamin Close <Benjamin.Close@clearchain.com>
5 * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 /*
22 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
23 *
24 * The 3945ABG network adapter doesn't use traditional hardware as
25 * many other adaptors do. Instead at run time the eeprom is set into a known
26 * state and told to load boot firmware. The boot firmware loads an init and a
27 * main binary firmware image into SRAM on the card via DMA.
28 * Once the firmware is loaded, the driver/hw then
29 * communicate by way of circular dma rings via the SRAM to the firmware.
30 *
31 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
32 * The 4 tx data rings allow for prioritization QoS.
33 *
34 * The rx data ring consists of 32 dma buffers. Two registers are used to
35 * indicate where in the ring the driver and the firmware are up to. The
36 * driver sets the initial read index (reg1) and the initial write index (reg2),
37 * the firmware updates the read index (reg1) on rx of a packet and fires an
38 * interrupt. The driver then processes the buffers starting at reg1 indicating
39 * to the firmware which buffers have been accessed by updating reg2. At the
40 * same time allocating new memory for the processed buffer.
41 *
42 * A similar thing happens with the tx rings. The difference is the firmware
43 * stop processing buffers once the queue is full and until confirmation
44 * of a successful transmition (tx_done) has occurred.
45 *
46 * The command ring operates in the same manner as the tx queues.
47 *
48 * All communication direct to the card (ie eeprom) is classed as Stage1
49 * communication
50 *
51 * All communication via the firmware to the card is classed as State2.
52 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
53 * firmware. The bootstrap firmware and runtime firmware are loaded
54 * from host memory via dma to the card then told to execute. From this point
55 * on the majority of communications between the driver and the card goes
56 * via the firmware.
57 */
58
59 #include "opt_wlan.h"
60 #include "opt_wpi.h"
61
62 #include <sys/param.h>
63 #include <sys/sysctl.h>
64 #include <sys/sockio.h>
65 #include <sys/mbuf.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/queue.h>
71 #include <sys/taskqueue.h>
72 #include <sys/module.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/linker.h>
76 #include <sys/firmware.h>
77
78 #include <machine/bus.h>
79 #include <machine/resource.h>
80 #include <sys/rman.h>
81
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84
85 #include <net/bpf.h>
86 #include <net/if.h>
87 #include <net/if_var.h>
88 #include <net/if_arp.h>
89 #include <net/ethernet.h>
90 #include <net/if_dl.h>
91 #include <net/if_media.h>
92 #include <net/if_types.h>
93
94 #include <netinet/in.h>
95 #include <netinet/in_systm.h>
96 #include <netinet/in_var.h>
97 #include <netinet/if_ether.h>
98 #include <netinet/ip.h>
99
100 #include <net80211/ieee80211_var.h>
101 #include <net80211/ieee80211_radiotap.h>
102 #include <net80211/ieee80211_regdomain.h>
103 #include <net80211/ieee80211_ratectl.h>
104
105 #include <dev/wpi/if_wpireg.h>
106 #include <dev/wpi/if_wpivar.h>
107 #include <dev/wpi/if_wpi_debug.h>
108
109 struct wpi_ident {
110 uint16_t vendor;
111 uint16_t device;
112 uint16_t subdevice;
113 const char *name;
114 };
115
116 static const struct wpi_ident wpi_ident_table[] = {
117 /* The below entries support ABG regardless of the subid */
118 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" },
119 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" },
120 /* The below entries only support BG */
121 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" },
122 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" },
123 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" },
124 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" },
125 { 0, 0, 0, NULL }
126 };
127
128 static int wpi_probe(device_t);
129 static int wpi_attach(device_t);
130 static void wpi_radiotap_attach(struct wpi_softc *);
131 static void wpi_sysctlattach(struct wpi_softc *);
132 static void wpi_init_beacon(struct wpi_vap *);
133 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
134 const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
135 const uint8_t [IEEE80211_ADDR_LEN],
136 const uint8_t [IEEE80211_ADDR_LEN]);
137 static void wpi_vap_delete(struct ieee80211vap *);
138 static int wpi_detach(device_t);
139 static int wpi_shutdown(device_t);
140 static int wpi_suspend(device_t);
141 static int wpi_resume(device_t);
142 static int wpi_nic_lock(struct wpi_softc *);
143 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
144 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
145 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
146 void **, bus_size_t, bus_size_t);
147 static void wpi_dma_contig_free(struct wpi_dma_info *);
148 static int wpi_alloc_shared(struct wpi_softc *);
149 static void wpi_free_shared(struct wpi_softc *);
150 static int wpi_alloc_fwmem(struct wpi_softc *);
151 static void wpi_free_fwmem(struct wpi_softc *);
152 static int wpi_alloc_rx_ring(struct wpi_softc *);
153 static void wpi_update_rx_ring(struct wpi_softc *);
154 static void wpi_update_rx_ring_ps(struct wpi_softc *);
155 static void wpi_reset_rx_ring(struct wpi_softc *);
156 static void wpi_free_rx_ring(struct wpi_softc *);
157 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
158 uint8_t);
159 static void wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
160 static void wpi_update_tx_ring_ps(struct wpi_softc *,
161 struct wpi_tx_ring *);
162 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
163 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
164 static int wpi_read_eeprom(struct wpi_softc *,
165 uint8_t macaddr[IEEE80211_ADDR_LEN]);
166 static uint32_t wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
167 static void wpi_read_eeprom_band(struct wpi_softc *, uint8_t, int, int *,
168 struct ieee80211_channel[]);
169 static int wpi_read_eeprom_channels(struct wpi_softc *, uint8_t);
170 static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
171 struct ieee80211_channel *);
172 static void wpi_getradiocaps(struct ieee80211com *, int, int *,
173 struct ieee80211_channel[]);
174 static int wpi_setregdomain(struct ieee80211com *,
175 struct ieee80211_regdomain *, int,
176 struct ieee80211_channel[]);
177 static int wpi_read_eeprom_group(struct wpi_softc *, uint8_t);
178 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
179 const uint8_t mac[IEEE80211_ADDR_LEN]);
180 static void wpi_node_free(struct ieee80211_node *);
181 static void wpi_ibss_recv_mgmt(struct ieee80211_node *, struct mbuf *, int,
182 const struct ieee80211_rx_stats *,
183 int, int);
184 static void wpi_restore_node(void *, struct ieee80211_node *);
185 static void wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *);
186 static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
187 static void wpi_calib_timeout(void *);
188 static void wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
189 struct wpi_rx_data *);
190 static void wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
191 struct wpi_rx_data *);
192 static void wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
193 static void wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
194 static void wpi_notif_intr(struct wpi_softc *);
195 static void wpi_wakeup_intr(struct wpi_softc *);
196 #ifdef WPI_DEBUG
197 static void wpi_debug_registers(struct wpi_softc *);
198 #endif
199 static void wpi_fatal_intr(struct wpi_softc *);
200 static void wpi_intr(void *);
201 static void wpi_free_txfrags(struct wpi_softc *, uint16_t);
202 static int wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
203 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
204 struct ieee80211_node *);
205 static int wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
206 struct ieee80211_node *,
207 const struct ieee80211_bpf_params *);
208 static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
209 const struct ieee80211_bpf_params *);
210 static int wpi_transmit(struct ieee80211com *, struct mbuf *);
211 static void wpi_watchdog_rfkill(void *);
212 static void wpi_scan_timeout(void *);
213 static void wpi_tx_timeout(void *);
214 static void wpi_parent(struct ieee80211com *);
215 static int wpi_cmd(struct wpi_softc *, uint8_t, const void *, uint16_t,
216 int);
217 static int wpi_mrr_setup(struct wpi_softc *);
218 static int wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
219 static int wpi_add_broadcast_node(struct wpi_softc *, int);
220 static int wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
221 static void wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
222 static int wpi_updateedca(struct ieee80211com *);
223 static void wpi_set_promisc(struct wpi_softc *);
224 static void wpi_update_promisc(struct ieee80211com *);
225 static void wpi_update_mcast(struct ieee80211com *);
226 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
227 static int wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
228 static void wpi_power_calibration(struct wpi_softc *);
229 static int wpi_set_txpower(struct wpi_softc *, int);
230 static int wpi_get_power_index(struct wpi_softc *,
231 struct wpi_power_group *, uint8_t, int, int);
232 static int wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
233 static int wpi_send_btcoex(struct wpi_softc *);
234 static int wpi_send_rxon(struct wpi_softc *, int, int);
235 static int wpi_config(struct wpi_softc *);
236 static uint16_t wpi_get_active_dwell_time(struct wpi_softc *,
237 struct ieee80211_channel *, uint8_t);
238 static uint16_t wpi_limit_dwell(struct wpi_softc *, uint16_t);
239 static uint16_t wpi_get_passive_dwell_time(struct wpi_softc *,
240 struct ieee80211_channel *);
241 static uint32_t wpi_get_scan_pause_time(uint32_t, uint16_t);
242 static int wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
243 static int wpi_auth(struct wpi_softc *, struct ieee80211vap *);
244 static int wpi_config_beacon(struct wpi_vap *);
245 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
246 static void wpi_update_beacon(struct ieee80211vap *, int);
247 static void wpi_newassoc(struct ieee80211_node *, int);
248 static int wpi_run(struct wpi_softc *, struct ieee80211vap *);
249 static int wpi_load_key(struct ieee80211_node *,
250 const struct ieee80211_key *);
251 static void wpi_load_key_cb(void *, struct ieee80211_node *);
252 static int wpi_set_global_keys(struct ieee80211_node *);
253 static int wpi_del_key(struct ieee80211_node *,
254 const struct ieee80211_key *);
255 static void wpi_del_key_cb(void *, struct ieee80211_node *);
256 static int wpi_process_key(struct ieee80211vap *,
257 const struct ieee80211_key *, int);
258 static int wpi_key_set(struct ieee80211vap *,
259 const struct ieee80211_key *);
260 static int wpi_key_delete(struct ieee80211vap *,
261 const struct ieee80211_key *);
262 static int wpi_post_alive(struct wpi_softc *);
263 static int wpi_load_bootcode(struct wpi_softc *, const uint8_t *,
264 uint32_t);
265 static int wpi_load_firmware(struct wpi_softc *);
266 static int wpi_read_firmware(struct wpi_softc *);
267 static void wpi_unload_firmware(struct wpi_softc *);
268 static int wpi_clock_wait(struct wpi_softc *);
269 static int wpi_apm_init(struct wpi_softc *);
270 static void wpi_apm_stop_master(struct wpi_softc *);
271 static void wpi_apm_stop(struct wpi_softc *);
272 static void wpi_nic_config(struct wpi_softc *);
273 static int wpi_hw_init(struct wpi_softc *);
274 static void wpi_hw_stop(struct wpi_softc *);
275 static void wpi_radio_on(void *, int);
276 static void wpi_radio_off(void *, int);
277 static int wpi_init(struct wpi_softc *);
278 static void wpi_stop_locked(struct wpi_softc *);
279 static void wpi_stop(struct wpi_softc *);
280 static void wpi_scan_start(struct ieee80211com *);
281 static void wpi_scan_end(struct ieee80211com *);
282 static void wpi_set_channel(struct ieee80211com *);
283 static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
284 static void wpi_scan_mindwell(struct ieee80211_scan_state *);
285
286 static device_method_t wpi_methods[] = {
287 /* Device interface */
288 DEVMETHOD(device_probe, wpi_probe),
289 DEVMETHOD(device_attach, wpi_attach),
290 DEVMETHOD(device_detach, wpi_detach),
291 DEVMETHOD(device_shutdown, wpi_shutdown),
292 DEVMETHOD(device_suspend, wpi_suspend),
293 DEVMETHOD(device_resume, wpi_resume),
294
295 DEVMETHOD_END
296 };
297
298 static driver_t wpi_driver = {
299 "wpi",
300 wpi_methods,
301 sizeof (struct wpi_softc)
302 };
303
304 DRIVER_MODULE(wpi, pci, wpi_driver, NULL, NULL);
305
306 MODULE_VERSION(wpi, 1);
307
308 MODULE_DEPEND(wpi, pci, 1, 1, 1);
309 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
310 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
311
312 static int
wpi_probe(device_t dev)313 wpi_probe(device_t dev)
314 {
315 const struct wpi_ident *ident;
316
317 for (ident = wpi_ident_table; ident->name != NULL; ident++) {
318 if (pci_get_vendor(dev) == ident->vendor &&
319 pci_get_device(dev) == ident->device) {
320 device_set_desc(dev, ident->name);
321 return (BUS_PROBE_DEFAULT);
322 }
323 }
324 return ENXIO;
325 }
326
327 static int
wpi_attach(device_t dev)328 wpi_attach(device_t dev)
329 {
330 struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
331 struct ieee80211com *ic;
332 uint8_t i;
333 int error, rid;
334 #ifdef WPI_DEBUG
335 int supportsa = 1;
336 const struct wpi_ident *ident;
337 #endif
338
339 sc->sc_dev = dev;
340
341 #ifdef WPI_DEBUG
342 error = resource_int_value(device_get_name(sc->sc_dev),
343 device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
344 if (error != 0)
345 sc->sc_debug = 0;
346 #else
347 sc->sc_debug = 0;
348 #endif
349
350 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
351
352 /*
353 * Get the offset of the PCI Express Capability Structure in PCI
354 * Configuration Space.
355 */
356 error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
357 if (error != 0) {
358 device_printf(dev, "PCIe capability structure not found!\n");
359 return error;
360 }
361
362 /*
363 * Some card's only support 802.11b/g not a, check to see if
364 * this is one such card. A 0x0 in the subdevice table indicates
365 * the entire subdevice range is to be ignored.
366 */
367 #ifdef WPI_DEBUG
368 for (ident = wpi_ident_table; ident->name != NULL; ident++) {
369 if (ident->subdevice &&
370 pci_get_subdevice(dev) == ident->subdevice) {
371 supportsa = 0;
372 break;
373 }
374 }
375 #endif
376
377 /* Clear device-specific "PCI retry timeout" register (41h). */
378 pci_write_config(dev, 0x41, 0, 1);
379
380 /* Enable bus-mastering. */
381 pci_enable_busmaster(dev);
382
383 rid = PCIR_BAR(0);
384 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
385 RF_ACTIVE);
386 if (sc->mem == NULL) {
387 device_printf(dev, "can't map mem space\n");
388 return ENOMEM;
389 }
390 sc->sc_st = rman_get_bustag(sc->mem);
391 sc->sc_sh = rman_get_bushandle(sc->mem);
392
393 rid = 1;
394 if (pci_alloc_msi(dev, &rid) == 0)
395 rid = 1;
396 else
397 rid = 0;
398 /* Install interrupt handler. */
399 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
400 (rid != 0 ? 0 : RF_SHAREABLE));
401 if (sc->irq == NULL) {
402 device_printf(dev, "can't map interrupt\n");
403 error = ENOMEM;
404 goto fail;
405 }
406
407 WPI_LOCK_INIT(sc);
408 WPI_TX_LOCK_INIT(sc);
409 WPI_RXON_LOCK_INIT(sc);
410 WPI_NT_LOCK_INIT(sc);
411 WPI_TXQ_LOCK_INIT(sc);
412 WPI_TXQ_STATE_LOCK_INIT(sc);
413
414 /* Allocate DMA memory for firmware transfers. */
415 if ((error = wpi_alloc_fwmem(sc)) != 0) {
416 device_printf(dev,
417 "could not allocate memory for firmware, error %d\n",
418 error);
419 goto fail;
420 }
421
422 /* Allocate shared page. */
423 if ((error = wpi_alloc_shared(sc)) != 0) {
424 device_printf(dev, "could not allocate shared page\n");
425 goto fail;
426 }
427
428 /* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
429 for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
430 if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
431 device_printf(dev,
432 "could not allocate TX ring %d, error %d\n", i,
433 error);
434 goto fail;
435 }
436 }
437
438 /* Allocate RX ring. */
439 if ((error = wpi_alloc_rx_ring(sc)) != 0) {
440 device_printf(dev, "could not allocate RX ring, error %d\n",
441 error);
442 goto fail;
443 }
444
445 /* Clear pending interrupts. */
446 WPI_WRITE(sc, WPI_INT, 0xffffffff);
447
448 ic = &sc->sc_ic;
449 ic->ic_softc = sc;
450 ic->ic_name = device_get_nameunit(dev);
451 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
452 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
453
454 /* Set device capabilities. */
455 ic->ic_caps =
456 IEEE80211_C_STA /* station mode supported */
457 | IEEE80211_C_IBSS /* IBSS mode supported */
458 | IEEE80211_C_HOSTAP /* Host access point mode */
459 | IEEE80211_C_MONITOR /* monitor mode supported */
460 | IEEE80211_C_AHDEMO /* adhoc demo mode */
461 | IEEE80211_C_BGSCAN /* capable of bg scanning */
462 | IEEE80211_C_TXFRAG /* handle tx frags */
463 | IEEE80211_C_TXPMGT /* tx power management */
464 | IEEE80211_C_SHSLOT /* short slot time supported */
465 | IEEE80211_C_WPA /* 802.11i */
466 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
467 | IEEE80211_C_WME /* 802.11e */
468 | IEEE80211_C_PMGT /* Station-side power mgmt */
469 ;
470
471 ic->ic_cryptocaps =
472 IEEE80211_CRYPTO_AES_CCM;
473
474 /*
475 * Read in the eeprom and also setup the channels for
476 * net80211. We don't set the rates as net80211 does this for us
477 */
478 if ((error = wpi_read_eeprom(sc, ic->ic_macaddr)) != 0) {
479 device_printf(dev, "could not read EEPROM, error %d\n",
480 error);
481 goto fail;
482 }
483
484 #ifdef WPI_DEBUG
485 if (bootverbose) {
486 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
487 sc->domain);
488 device_printf(sc->sc_dev, "Hardware Type: %c\n",
489 sc->type > 1 ? 'B': '?');
490 device_printf(sc->sc_dev, "Hardware Revision: %c\n",
491 ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
492 device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
493 supportsa ? "does" : "does not");
494
495 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must
496 check what sc->rev really represents - benjsc 20070615 */
497 }
498 #endif
499
500 ieee80211_ifattach(ic);
501 ic->ic_vap_create = wpi_vap_create;
502 ic->ic_vap_delete = wpi_vap_delete;
503 ic->ic_parent = wpi_parent;
504 ic->ic_raw_xmit = wpi_raw_xmit;
505 ic->ic_transmit = wpi_transmit;
506 ic->ic_node_alloc = wpi_node_alloc;
507 sc->sc_node_free = ic->ic_node_free;
508 ic->ic_node_free = wpi_node_free;
509 ic->ic_wme.wme_update = wpi_updateedca;
510 ic->ic_update_promisc = wpi_update_promisc;
511 ic->ic_update_mcast = wpi_update_mcast;
512 ic->ic_newassoc = wpi_newassoc;
513 ic->ic_scan_start = wpi_scan_start;
514 ic->ic_scan_end = wpi_scan_end;
515 ic->ic_set_channel = wpi_set_channel;
516 ic->ic_scan_curchan = wpi_scan_curchan;
517 ic->ic_scan_mindwell = wpi_scan_mindwell;
518 ic->ic_getradiocaps = wpi_getradiocaps;
519 ic->ic_setregdomain = wpi_setregdomain;
520
521 sc->sc_update_rx_ring = wpi_update_rx_ring;
522 sc->sc_update_tx_ring = wpi_update_tx_ring;
523
524 wpi_radiotap_attach(sc);
525
526 /* Setup Tx status flags (constant). */
527 sc->sc_txs.flags = IEEE80211_RATECTL_STATUS_PKTLEN |
528 IEEE80211_RATECTL_STATUS_SHORT_RETRY |
529 IEEE80211_RATECTL_STATUS_LONG_RETRY;
530
531 callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0);
532 callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0);
533 callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0);
534 callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
535 TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
536 TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
537
538 wpi_sysctlattach(sc);
539
540 /*
541 * Hook our interrupt after all initialization is complete.
542 */
543 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
544 NULL, wpi_intr, sc, &sc->sc_ih);
545 if (error != 0) {
546 device_printf(dev, "can't establish interrupt, error %d\n",
547 error);
548 goto fail;
549 }
550
551 if (bootverbose)
552 ieee80211_announce(ic);
553
554 #ifdef WPI_DEBUG
555 if (sc->sc_debug & WPI_DEBUG_HW)
556 ieee80211_announce_channels(ic);
557 #endif
558
559 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
560 return 0;
561
562 fail: wpi_detach(dev);
563 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
564 return error;
565 }
566
567 /*
568 * Attach the interface to 802.11 radiotap.
569 */
570 static void
wpi_radiotap_attach(struct wpi_softc * sc)571 wpi_radiotap_attach(struct wpi_softc *sc)
572 {
573 struct wpi_rx_radiotap_header *rxtap = &sc->sc_rxtap;
574 struct wpi_tx_radiotap_header *txtap = &sc->sc_txtap;
575
576 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
577 ieee80211_radiotap_attach(&sc->sc_ic,
578 &txtap->wt_ihdr, sizeof(*txtap), WPI_TX_RADIOTAP_PRESENT,
579 &rxtap->wr_ihdr, sizeof(*rxtap), WPI_RX_RADIOTAP_PRESENT);
580 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
581 }
582
583 static void
wpi_sysctlattach(struct wpi_softc * sc)584 wpi_sysctlattach(struct wpi_softc *sc)
585 {
586 #ifdef WPI_DEBUG
587 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
588 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
589
590 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
591 "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
592 "control debugging printfs");
593 #endif
594 }
595
596 static void
wpi_init_beacon(struct wpi_vap * wvp)597 wpi_init_beacon(struct wpi_vap *wvp)
598 {
599 struct wpi_buf *bcn = &wvp->wv_bcbuf;
600 struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
601
602 cmd->id = WPI_ID_BROADCAST;
603 cmd->ofdm_mask = 0xff;
604 cmd->cck_mask = 0x0f;
605 cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
606
607 /*
608 * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue
609 * XXX by using WPI_TX_NEED_ACK instead (with some side effects).
610 */
611 cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP);
612
613 bcn->code = WPI_CMD_SET_BEACON;
614 bcn->ac = WPI_CMD_QUEUE_NUM;
615 bcn->size = sizeof(struct wpi_cmd_beacon);
616 }
617
618 static struct ieee80211vap *
wpi_vap_create(struct ieee80211com * ic,const char name[IFNAMSIZ],int unit,enum ieee80211_opmode opmode,int flags,const uint8_t bssid[IEEE80211_ADDR_LEN],const uint8_t mac[IEEE80211_ADDR_LEN])619 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
620 enum ieee80211_opmode opmode, int flags,
621 const uint8_t bssid[IEEE80211_ADDR_LEN],
622 const uint8_t mac[IEEE80211_ADDR_LEN])
623 {
624 struct wpi_vap *wvp;
625 struct ieee80211vap *vap;
626
627 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
628 return NULL;
629
630 wvp = malloc(sizeof(struct wpi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
631 vap = &wvp->wv_vap;
632 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
633
634 if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
635 WPI_VAP_LOCK_INIT(wvp);
636 wpi_init_beacon(wvp);
637 }
638
639 /* Override with driver methods. */
640 vap->iv_key_set = wpi_key_set;
641 vap->iv_key_delete = wpi_key_delete;
642 if (opmode == IEEE80211_M_IBSS) {
643 wvp->wv_recv_mgmt = vap->iv_recv_mgmt;
644 vap->iv_recv_mgmt = wpi_ibss_recv_mgmt;
645 }
646 wvp->wv_newstate = vap->iv_newstate;
647 vap->iv_newstate = wpi_newstate;
648 vap->iv_update_beacon = wpi_update_beacon;
649 vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
650
651 ieee80211_ratectl_init(vap);
652 /* Complete setup. */
653 ieee80211_vap_attach(vap, ieee80211_media_change,
654 ieee80211_media_status, mac);
655 ic->ic_opmode = opmode;
656 return vap;
657 }
658
659 static void
wpi_vap_delete(struct ieee80211vap * vap)660 wpi_vap_delete(struct ieee80211vap *vap)
661 {
662 struct wpi_vap *wvp = WPI_VAP(vap);
663 struct wpi_buf *bcn = &wvp->wv_bcbuf;
664 enum ieee80211_opmode opmode = vap->iv_opmode;
665
666 ieee80211_ratectl_deinit(vap);
667 ieee80211_vap_detach(vap);
668
669 if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
670 if (bcn->m != NULL)
671 m_freem(bcn->m);
672
673 WPI_VAP_LOCK_DESTROY(wvp);
674 }
675
676 free(wvp, M_80211_VAP);
677 }
678
679 static int
wpi_detach(device_t dev)680 wpi_detach(device_t dev)
681 {
682 struct wpi_softc *sc = device_get_softc(dev);
683 struct ieee80211com *ic = &sc->sc_ic;
684 uint8_t qid;
685
686 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
687
688 if (ic->ic_vap_create == wpi_vap_create) {
689 ieee80211_draintask(ic, &sc->sc_radioon_task);
690 ieee80211_draintask(ic, &sc->sc_radiooff_task);
691
692 wpi_stop(sc);
693
694 callout_drain(&sc->watchdog_rfkill);
695 callout_drain(&sc->tx_timeout);
696 callout_drain(&sc->scan_timeout);
697 callout_drain(&sc->calib_to);
698 ieee80211_ifdetach(ic);
699 }
700
701 /* Uninstall interrupt handler. */
702 if (sc->irq != NULL) {
703 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
704 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
705 sc->irq);
706 pci_release_msi(dev);
707 }
708
709 if (sc->txq[0].data_dmat) {
710 /* Free DMA resources. */
711 for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
712 wpi_free_tx_ring(sc, &sc->txq[qid]);
713
714 wpi_free_rx_ring(sc);
715 wpi_free_shared(sc);
716 }
717
718 if (sc->fw_dma.tag)
719 wpi_free_fwmem(sc);
720
721 if (sc->mem != NULL)
722 bus_release_resource(dev, SYS_RES_MEMORY,
723 rman_get_rid(sc->mem), sc->mem);
724
725 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
726 WPI_TXQ_STATE_LOCK_DESTROY(sc);
727 WPI_TXQ_LOCK_DESTROY(sc);
728 WPI_NT_LOCK_DESTROY(sc);
729 WPI_RXON_LOCK_DESTROY(sc);
730 WPI_TX_LOCK_DESTROY(sc);
731 WPI_LOCK_DESTROY(sc);
732 return 0;
733 }
734
735 static int
wpi_shutdown(device_t dev)736 wpi_shutdown(device_t dev)
737 {
738 struct wpi_softc *sc = device_get_softc(dev);
739
740 wpi_stop(sc);
741 return 0;
742 }
743
744 static int
wpi_suspend(device_t dev)745 wpi_suspend(device_t dev)
746 {
747 struct wpi_softc *sc = device_get_softc(dev);
748 struct ieee80211com *ic = &sc->sc_ic;
749
750 ieee80211_suspend_all(ic);
751 return 0;
752 }
753
754 static int
wpi_resume(device_t dev)755 wpi_resume(device_t dev)
756 {
757 struct wpi_softc *sc = device_get_softc(dev);
758 struct ieee80211com *ic = &sc->sc_ic;
759
760 /* Clear device-specific "PCI retry timeout" register (41h). */
761 pci_write_config(dev, 0x41, 0, 1);
762
763 ieee80211_resume_all(ic);
764 return 0;
765 }
766
767 /*
768 * Grab exclusive access to NIC memory.
769 */
770 static int
wpi_nic_lock(struct wpi_softc * sc)771 wpi_nic_lock(struct wpi_softc *sc)
772 {
773 int ntries;
774
775 /* Request exclusive access to NIC. */
776 WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
777
778 /* Spin until we actually get the lock. */
779 for (ntries = 0; ntries < 1000; ntries++) {
780 if ((WPI_READ(sc, WPI_GP_CNTRL) &
781 (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
782 WPI_GP_CNTRL_MAC_ACCESS_ENA)
783 return 0;
784 DELAY(10);
785 }
786
787 device_printf(sc->sc_dev, "could not lock memory\n");
788
789 return ETIMEDOUT;
790 }
791
792 /*
793 * Release lock on NIC memory.
794 */
795 static __inline void
wpi_nic_unlock(struct wpi_softc * sc)796 wpi_nic_unlock(struct wpi_softc *sc)
797 {
798 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
799 }
800
801 static __inline uint32_t
wpi_prph_read(struct wpi_softc * sc,uint32_t addr)802 wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
803 {
804 WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
805 WPI_BARRIER_READ_WRITE(sc);
806 return WPI_READ(sc, WPI_PRPH_RDATA);
807 }
808
809 static __inline void
wpi_prph_write(struct wpi_softc * sc,uint32_t addr,uint32_t data)810 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
811 {
812 WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
813 WPI_BARRIER_WRITE(sc);
814 WPI_WRITE(sc, WPI_PRPH_WDATA, data);
815 }
816
817 static __inline void
wpi_prph_setbits(struct wpi_softc * sc,uint32_t addr,uint32_t mask)818 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
819 {
820 wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
821 }
822
823 static __inline void
wpi_prph_clrbits(struct wpi_softc * sc,uint32_t addr,uint32_t mask)824 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
825 {
826 wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
827 }
828
829 static __inline void
wpi_prph_write_region_4(struct wpi_softc * sc,uint32_t addr,const uint32_t * data,uint32_t count)830 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
831 const uint32_t *data, uint32_t count)
832 {
833 for (; count != 0; count--, data++, addr += 4)
834 wpi_prph_write(sc, addr, *data);
835 }
836
837 static __inline uint32_t
wpi_mem_read(struct wpi_softc * sc,uint32_t addr)838 wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
839 {
840 WPI_WRITE(sc, WPI_MEM_RADDR, addr);
841 WPI_BARRIER_READ_WRITE(sc);
842 return WPI_READ(sc, WPI_MEM_RDATA);
843 }
844
845 static __inline void
wpi_mem_read_region_4(struct wpi_softc * sc,uint32_t addr,uint32_t * data,int count)846 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
847 int count)
848 {
849 for (; count > 0; count--, addr += 4)
850 *data++ = wpi_mem_read(sc, addr);
851 }
852
853 static int
wpi_read_prom_data(struct wpi_softc * sc,uint32_t addr,void * data,int count)854 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
855 {
856 uint8_t *out = data;
857 uint32_t val;
858 int error, ntries;
859
860 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
861
862 if ((error = wpi_nic_lock(sc)) != 0)
863 return error;
864
865 for (; count > 0; count -= 2, addr++) {
866 WPI_WRITE(sc, WPI_EEPROM, addr << 2);
867 for (ntries = 0; ntries < 10; ntries++) {
868 val = WPI_READ(sc, WPI_EEPROM);
869 if (val & WPI_EEPROM_READ_VALID)
870 break;
871 DELAY(5);
872 }
873 if (ntries == 10) {
874 device_printf(sc->sc_dev,
875 "timeout reading ROM at 0x%x\n", addr);
876 return ETIMEDOUT;
877 }
878 *out++= val >> 16;
879 if (count > 1)
880 *out ++= val >> 24;
881 }
882
883 wpi_nic_unlock(sc);
884
885 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
886
887 return 0;
888 }
889
890 static void
wpi_dma_map_addr(void * arg,bus_dma_segment_t * segs,int nsegs,int error)891 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
892 {
893 if (error != 0)
894 return;
895 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
896 *(bus_addr_t *)arg = segs[0].ds_addr;
897 }
898
899 /*
900 * Allocates a contiguous block of dma memory of the requested size and
901 * alignment.
902 */
903 static int
wpi_dma_contig_alloc(struct wpi_softc * sc,struct wpi_dma_info * dma,void ** kvap,bus_size_t size,bus_size_t alignment)904 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
905 void **kvap, bus_size_t size, bus_size_t alignment)
906 {
907 int error;
908
909 dma->tag = NULL;
910 dma->size = size;
911
912 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
913 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
914 1, size, 0, NULL, NULL, &dma->tag);
915 if (error != 0)
916 goto fail;
917
918 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
919 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
920 if (error != 0)
921 goto fail;
922
923 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
924 wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
925 if (error != 0)
926 goto fail;
927
928 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
929
930 if (kvap != NULL)
931 *kvap = dma->vaddr;
932
933 return 0;
934
935 fail: wpi_dma_contig_free(dma);
936 return error;
937 }
938
939 static void
wpi_dma_contig_free(struct wpi_dma_info * dma)940 wpi_dma_contig_free(struct wpi_dma_info *dma)
941 {
942 if (dma->vaddr != NULL) {
943 bus_dmamap_sync(dma->tag, dma->map,
944 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
945 bus_dmamap_unload(dma->tag, dma->map);
946 bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
947 dma->vaddr = NULL;
948 }
949 if (dma->tag != NULL) {
950 bus_dma_tag_destroy(dma->tag);
951 dma->tag = NULL;
952 }
953 }
954
955 /*
956 * Allocate a shared page between host and NIC.
957 */
958 static int
wpi_alloc_shared(struct wpi_softc * sc)959 wpi_alloc_shared(struct wpi_softc *sc)
960 {
961 /* Shared buffer must be aligned on a 4KB boundary. */
962 return wpi_dma_contig_alloc(sc, &sc->shared_dma,
963 (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
964 }
965
966 static void
wpi_free_shared(struct wpi_softc * sc)967 wpi_free_shared(struct wpi_softc *sc)
968 {
969 wpi_dma_contig_free(&sc->shared_dma);
970 }
971
972 /*
973 * Allocate DMA-safe memory for firmware transfer.
974 */
975 static int
wpi_alloc_fwmem(struct wpi_softc * sc)976 wpi_alloc_fwmem(struct wpi_softc *sc)
977 {
978 /* Must be aligned on a 16-byte boundary. */
979 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
980 WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
981 }
982
983 static void
wpi_free_fwmem(struct wpi_softc * sc)984 wpi_free_fwmem(struct wpi_softc *sc)
985 {
986 wpi_dma_contig_free(&sc->fw_dma);
987 }
988
989 static int
wpi_alloc_rx_ring(struct wpi_softc * sc)990 wpi_alloc_rx_ring(struct wpi_softc *sc)
991 {
992 struct wpi_rx_ring *ring = &sc->rxq;
993 bus_size_t size;
994 int i, error;
995
996 ring->cur = 0;
997 ring->update = 0;
998
999 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1000
1001 /* Allocate RX descriptors (16KB aligned.) */
1002 size = WPI_RX_RING_COUNT * sizeof (uint32_t);
1003 error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1004 (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
1005 if (error != 0) {
1006 device_printf(sc->sc_dev,
1007 "%s: could not allocate RX ring DMA memory, error %d\n",
1008 __func__, error);
1009 goto fail;
1010 }
1011
1012 /* Create RX buffer DMA tag. */
1013 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1014 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1015 MJUMPAGESIZE, 1, MJUMPAGESIZE, 0, NULL, NULL, &ring->data_dmat);
1016 if (error != 0) {
1017 device_printf(sc->sc_dev,
1018 "%s: could not create RX buf DMA tag, error %d\n",
1019 __func__, error);
1020 goto fail;
1021 }
1022
1023 /*
1024 * Allocate and map RX buffers.
1025 */
1026 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1027 struct wpi_rx_data *data = &ring->data[i];
1028 bus_addr_t paddr;
1029
1030 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1031 if (error != 0) {
1032 device_printf(sc->sc_dev,
1033 "%s: could not create RX buf DMA map, error %d\n",
1034 __func__, error);
1035 goto fail;
1036 }
1037
1038 data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1039 if (data->m == NULL) {
1040 device_printf(sc->sc_dev,
1041 "%s: could not allocate RX mbuf\n", __func__);
1042 error = ENOBUFS;
1043 goto fail;
1044 }
1045
1046 error = bus_dmamap_load(ring->data_dmat, data->map,
1047 mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1048 &paddr, BUS_DMA_NOWAIT);
1049 if (error != 0 && error != EFBIG) {
1050 device_printf(sc->sc_dev,
1051 "%s: can't map mbuf (error %d)\n", __func__,
1052 error);
1053 goto fail;
1054 }
1055
1056 /* Set physical address of RX buffer. */
1057 ring->desc[i] = htole32(paddr);
1058 }
1059
1060 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1061 BUS_DMASYNC_PREWRITE);
1062
1063 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1064
1065 return 0;
1066
1067 fail: wpi_free_rx_ring(sc);
1068
1069 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1070
1071 return error;
1072 }
1073
1074 static void
wpi_update_rx_ring(struct wpi_softc * sc)1075 wpi_update_rx_ring(struct wpi_softc *sc)
1076 {
1077 WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7);
1078 }
1079
1080 static void
wpi_update_rx_ring_ps(struct wpi_softc * sc)1081 wpi_update_rx_ring_ps(struct wpi_softc *sc)
1082 {
1083 struct wpi_rx_ring *ring = &sc->rxq;
1084
1085 if (ring->update != 0) {
1086 /* Wait for INT_WAKEUP event. */
1087 return;
1088 }
1089
1090 WPI_TXQ_LOCK(sc);
1091 WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1092 if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1093 DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1094 __func__);
1095 ring->update = 1;
1096 } else {
1097 wpi_update_rx_ring(sc);
1098 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1099 }
1100 WPI_TXQ_UNLOCK(sc);
1101 }
1102
1103 static void
wpi_reset_rx_ring(struct wpi_softc * sc)1104 wpi_reset_rx_ring(struct wpi_softc *sc)
1105 {
1106 struct wpi_rx_ring *ring = &sc->rxq;
1107 int ntries;
1108
1109 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1110
1111 if (wpi_nic_lock(sc) == 0) {
1112 WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1113 for (ntries = 0; ntries < 1000; ntries++) {
1114 if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1115 WPI_FH_RX_STATUS_IDLE)
1116 break;
1117 DELAY(10);
1118 }
1119 wpi_nic_unlock(sc);
1120 }
1121
1122 ring->cur = 0;
1123 ring->update = 0;
1124 }
1125
1126 static void
wpi_free_rx_ring(struct wpi_softc * sc)1127 wpi_free_rx_ring(struct wpi_softc *sc)
1128 {
1129 struct wpi_rx_ring *ring = &sc->rxq;
1130 int i;
1131
1132 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1133
1134 wpi_dma_contig_free(&ring->desc_dma);
1135
1136 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1137 struct wpi_rx_data *data = &ring->data[i];
1138
1139 if (data->m != NULL) {
1140 bus_dmamap_sync(ring->data_dmat, data->map,
1141 BUS_DMASYNC_POSTREAD);
1142 bus_dmamap_unload(ring->data_dmat, data->map);
1143 m_freem(data->m);
1144 data->m = NULL;
1145 }
1146 if (data->map != NULL)
1147 bus_dmamap_destroy(ring->data_dmat, data->map);
1148 }
1149 if (ring->data_dmat != NULL) {
1150 bus_dma_tag_destroy(ring->data_dmat);
1151 ring->data_dmat = NULL;
1152 }
1153 }
1154
1155 static int
wpi_alloc_tx_ring(struct wpi_softc * sc,struct wpi_tx_ring * ring,uint8_t qid)1156 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, uint8_t qid)
1157 {
1158 bus_addr_t paddr;
1159 bus_size_t size;
1160 int i, error;
1161
1162 ring->qid = qid;
1163 ring->queued = 0;
1164 ring->cur = 0;
1165 ring->pending = 0;
1166 ring->update = 0;
1167
1168 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1169
1170 /* Allocate TX descriptors (16KB aligned.) */
1171 size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1172 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1173 size, WPI_RING_DMA_ALIGN);
1174 if (error != 0) {
1175 device_printf(sc->sc_dev,
1176 "%s: could not allocate TX ring DMA memory, error %d\n",
1177 __func__, error);
1178 goto fail;
1179 }
1180
1181 /* Update shared area with ring physical address. */
1182 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1183 bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1184 BUS_DMASYNC_PREWRITE);
1185
1186 size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1187 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1188 size, 4);
1189 if (error != 0) {
1190 device_printf(sc->sc_dev,
1191 "%s: could not allocate TX cmd DMA memory, error %d\n",
1192 __func__, error);
1193 goto fail;
1194 }
1195
1196 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1197 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1198 WPI_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
1199 if (error != 0) {
1200 device_printf(sc->sc_dev,
1201 "%s: could not create TX buf DMA tag, error %d\n",
1202 __func__, error);
1203 goto fail;
1204 }
1205
1206 paddr = ring->cmd_dma.paddr;
1207 for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1208 struct wpi_tx_data *data = &ring->data[i];
1209
1210 data->cmd_paddr = paddr;
1211 paddr += sizeof (struct wpi_tx_cmd);
1212
1213 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1214 if (error != 0) {
1215 device_printf(sc->sc_dev,
1216 "%s: could not create TX buf DMA map, error %d\n",
1217 __func__, error);
1218 goto fail;
1219 }
1220 }
1221
1222 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1223
1224 return 0;
1225
1226 fail: wpi_free_tx_ring(sc, ring);
1227 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1228 return error;
1229 }
1230
1231 static void
wpi_update_tx_ring(struct wpi_softc * sc,struct wpi_tx_ring * ring)1232 wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1233 {
1234 WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1235 }
1236
1237 static void
wpi_update_tx_ring_ps(struct wpi_softc * sc,struct wpi_tx_ring * ring)1238 wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1239 {
1240
1241 if (ring->update != 0) {
1242 /* Wait for INT_WAKEUP event. */
1243 return;
1244 }
1245
1246 WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1247 if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1248 DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1249 __func__, ring->qid);
1250 ring->update = 1;
1251 } else {
1252 wpi_update_tx_ring(sc, ring);
1253 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1254 }
1255 }
1256
1257 static void
wpi_reset_tx_ring(struct wpi_softc * sc,struct wpi_tx_ring * ring)1258 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1259 {
1260 int i;
1261
1262 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1263
1264 for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1265 struct wpi_tx_data *data = &ring->data[i];
1266
1267 if (data->m != NULL) {
1268 bus_dmamap_sync(ring->data_dmat, data->map,
1269 BUS_DMASYNC_POSTWRITE);
1270 bus_dmamap_unload(ring->data_dmat, data->map);
1271 m_freem(data->m);
1272 data->m = NULL;
1273 }
1274 if (data->ni != NULL) {
1275 ieee80211_free_node(data->ni);
1276 data->ni = NULL;
1277 }
1278 }
1279 /* Clear TX descriptors. */
1280 memset(ring->desc, 0, ring->desc_dma.size);
1281 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1282 BUS_DMASYNC_PREWRITE);
1283 ring->queued = 0;
1284 ring->cur = 0;
1285 ring->pending = 0;
1286 ring->update = 0;
1287 }
1288
1289 static void
wpi_free_tx_ring(struct wpi_softc * sc,struct wpi_tx_ring * ring)1290 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1291 {
1292 int i;
1293
1294 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1295
1296 wpi_dma_contig_free(&ring->desc_dma);
1297 wpi_dma_contig_free(&ring->cmd_dma);
1298
1299 for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1300 struct wpi_tx_data *data = &ring->data[i];
1301
1302 if (data->m != NULL) {
1303 bus_dmamap_sync(ring->data_dmat, data->map,
1304 BUS_DMASYNC_POSTWRITE);
1305 bus_dmamap_unload(ring->data_dmat, data->map);
1306 m_freem(data->m);
1307 }
1308 if (data->map != NULL)
1309 bus_dmamap_destroy(ring->data_dmat, data->map);
1310 }
1311 if (ring->data_dmat != NULL) {
1312 bus_dma_tag_destroy(ring->data_dmat);
1313 ring->data_dmat = NULL;
1314 }
1315 }
1316
1317 /*
1318 * Extract various information from EEPROM.
1319 */
1320 static int
wpi_read_eeprom(struct wpi_softc * sc,uint8_t macaddr[IEEE80211_ADDR_LEN])1321 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1322 {
1323 #define WPI_CHK(res) do { \
1324 if ((error = res) != 0) \
1325 goto fail; \
1326 } while (0)
1327 uint8_t i;
1328 int error;
1329
1330 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1331
1332 /* Adapter has to be powered on for EEPROM access to work. */
1333 if ((error = wpi_apm_init(sc)) != 0) {
1334 device_printf(sc->sc_dev,
1335 "%s: could not power ON adapter, error %d\n", __func__,
1336 error);
1337 return error;
1338 }
1339
1340 if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1341 device_printf(sc->sc_dev, "bad EEPROM signature\n");
1342 error = EIO;
1343 goto fail;
1344 }
1345 /* Clear HW ownership of EEPROM. */
1346 WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1347
1348 /* Read the hardware capabilities, revision and SKU type. */
1349 WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1350 sizeof(sc->cap)));
1351 WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1352 sizeof(sc->rev)));
1353 WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1354 sizeof(sc->type)));
1355
1356 sc->rev = le16toh(sc->rev);
1357 DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1358 sc->rev, sc->type);
1359
1360 /* Read the regulatory domain (4 ASCII characters.) */
1361 WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1362 sizeof(sc->domain)));
1363
1364 /* Read MAC address. */
1365 WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1366 IEEE80211_ADDR_LEN));
1367
1368 /* Read the list of authorized channels. */
1369 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1370 WPI_CHK(wpi_read_eeprom_channels(sc, i));
1371
1372 /* Read the list of TX power groups. */
1373 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1374 WPI_CHK(wpi_read_eeprom_group(sc, i));
1375
1376 fail: wpi_apm_stop(sc); /* Power OFF adapter. */
1377
1378 DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1379 __func__);
1380
1381 return error;
1382 #undef WPI_CHK
1383 }
1384
1385 /*
1386 * Translate EEPROM flags to net80211.
1387 */
1388 static uint32_t
wpi_eeprom_channel_flags(struct wpi_eeprom_chan * channel)1389 wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1390 {
1391 uint32_t nflags;
1392
1393 nflags = 0;
1394 if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1395 nflags |= IEEE80211_CHAN_PASSIVE;
1396 if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1397 nflags |= IEEE80211_CHAN_NOADHOC;
1398 if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1399 nflags |= IEEE80211_CHAN_DFS;
1400 /* XXX apparently IBSS may still be marked */
1401 nflags |= IEEE80211_CHAN_NOADHOC;
1402 }
1403
1404 /* XXX HOSTAP uses WPI_MODE_IBSS */
1405 if (nflags & IEEE80211_CHAN_NOADHOC)
1406 nflags |= IEEE80211_CHAN_NOHOSTAP;
1407
1408 return nflags;
1409 }
1410
1411 static void
wpi_read_eeprom_band(struct wpi_softc * sc,uint8_t n,int maxchans,int * nchans,struct ieee80211_channel chans[])1412 wpi_read_eeprom_band(struct wpi_softc *sc, uint8_t n, int maxchans,
1413 int *nchans, struct ieee80211_channel chans[])
1414 {
1415 struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1416 const struct wpi_chan_band *band = &wpi_bands[n];
1417 uint32_t nflags;
1418 uint8_t bands[IEEE80211_MODE_BYTES];
1419 uint8_t chan, i;
1420 int error;
1421
1422 memset(bands, 0, sizeof(bands));
1423
1424 if (n == 0) {
1425 setbit(bands, IEEE80211_MODE_11B);
1426 setbit(bands, IEEE80211_MODE_11G);
1427 } else
1428 setbit(bands, IEEE80211_MODE_11A);
1429
1430 for (i = 0; i < band->nchan; i++) {
1431 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1432 DPRINTF(sc, WPI_DEBUG_EEPROM,
1433 "Channel Not Valid: %d, band %d\n",
1434 band->chan[i],n);
1435 continue;
1436 }
1437
1438 chan = band->chan[i];
1439 nflags = wpi_eeprom_channel_flags(&channels[i]);
1440 error = ieee80211_add_channel(chans, maxchans, nchans,
1441 chan, 0, channels[i].maxpwr, nflags, bands);
1442 if (error != 0)
1443 break;
1444
1445 /* Save maximum allowed TX power for this channel. */
1446 sc->maxpwr[chan] = channels[i].maxpwr;
1447
1448 DPRINTF(sc, WPI_DEBUG_EEPROM,
1449 "adding chan %d flags=0x%x maxpwr=%d, offset %d\n",
1450 chan, channels[i].flags, sc->maxpwr[chan], *nchans);
1451 }
1452 }
1453
1454 /**
1455 * Read the eeprom to find out what channels are valid for the given
1456 * band and update net80211 with what we find.
1457 */
1458 static int
wpi_read_eeprom_channels(struct wpi_softc * sc,uint8_t n)1459 wpi_read_eeprom_channels(struct wpi_softc *sc, uint8_t n)
1460 {
1461 struct ieee80211com *ic = &sc->sc_ic;
1462 const struct wpi_chan_band *band = &wpi_bands[n];
1463 int error;
1464
1465 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1466
1467 error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1468 band->nchan * sizeof (struct wpi_eeprom_chan));
1469 if (error != 0) {
1470 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1471 return error;
1472 }
1473
1474 wpi_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
1475 ic->ic_channels);
1476
1477 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1478
1479 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1480
1481 return 0;
1482 }
1483
1484 static struct wpi_eeprom_chan *
wpi_find_eeprom_channel(struct wpi_softc * sc,struct ieee80211_channel * c)1485 wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1486 {
1487 int i, j;
1488
1489 for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1490 for (i = 0; i < wpi_bands[j].nchan; i++)
1491 if (wpi_bands[j].chan[i] == c->ic_ieee &&
1492 ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
1493 return &sc->eeprom_channels[j][i];
1494
1495 return NULL;
1496 }
1497
1498 static void
wpi_getradiocaps(struct ieee80211com * ic,int maxchans,int * nchans,struct ieee80211_channel chans[])1499 wpi_getradiocaps(struct ieee80211com *ic,
1500 int maxchans, int *nchans, struct ieee80211_channel chans[])
1501 {
1502 struct wpi_softc *sc = ic->ic_softc;
1503 int i;
1504
1505 /* Parse the list of authorized channels. */
1506 for (i = 0; i < WPI_CHAN_BANDS_COUNT && *nchans < maxchans; i++)
1507 wpi_read_eeprom_band(sc, i, maxchans, nchans, chans);
1508 }
1509
1510 /*
1511 * Enforce flags read from EEPROM.
1512 */
1513 static int
wpi_setregdomain(struct ieee80211com * ic,struct ieee80211_regdomain * rd,int nchan,struct ieee80211_channel chans[])1514 wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1515 int nchan, struct ieee80211_channel chans[])
1516 {
1517 struct wpi_softc *sc = ic->ic_softc;
1518 int i;
1519
1520 for (i = 0; i < nchan; i++) {
1521 struct ieee80211_channel *c = &chans[i];
1522 struct wpi_eeprom_chan *channel;
1523
1524 channel = wpi_find_eeprom_channel(sc, c);
1525 if (channel == NULL) {
1526 ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
1527 __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1528 return EINVAL;
1529 }
1530 c->ic_flags |= wpi_eeprom_channel_flags(channel);
1531 }
1532
1533 return 0;
1534 }
1535
1536 static int
wpi_read_eeprom_group(struct wpi_softc * sc,uint8_t n)1537 wpi_read_eeprom_group(struct wpi_softc *sc, uint8_t n)
1538 {
1539 struct wpi_power_group *group = &sc->groups[n];
1540 struct wpi_eeprom_group rgroup;
1541 int i, error;
1542
1543 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1544
1545 if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1546 &rgroup, sizeof rgroup)) != 0) {
1547 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1548 return error;
1549 }
1550
1551 /* Save TX power group information. */
1552 group->chan = rgroup.chan;
1553 group->maxpwr = rgroup.maxpwr;
1554 /* Retrieve temperature at which the samples were taken. */
1555 group->temp = (int16_t)le16toh(rgroup.temp);
1556
1557 DPRINTF(sc, WPI_DEBUG_EEPROM,
1558 "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1559 group->maxpwr, group->temp);
1560
1561 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1562 group->samples[i].index = rgroup.samples[i].index;
1563 group->samples[i].power = rgroup.samples[i].power;
1564
1565 DPRINTF(sc, WPI_DEBUG_EEPROM,
1566 "\tsample %d: index=%d power=%d\n", i,
1567 group->samples[i].index, group->samples[i].power);
1568 }
1569
1570 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1571
1572 return 0;
1573 }
1574
1575 static __inline uint8_t
wpi_add_node_entry_adhoc(struct wpi_softc * sc)1576 wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1577 {
1578 uint8_t newid = WPI_ID_IBSS_MIN;
1579
1580 for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1581 if ((sc->nodesmsk & (1 << newid)) == 0) {
1582 sc->nodesmsk |= 1 << newid;
1583 return newid;
1584 }
1585 }
1586
1587 return WPI_ID_UNDEFINED;
1588 }
1589
1590 static __inline uint8_t
wpi_add_node_entry_sta(struct wpi_softc * sc)1591 wpi_add_node_entry_sta(struct wpi_softc *sc)
1592 {
1593 sc->nodesmsk |= 1 << WPI_ID_BSS;
1594
1595 return WPI_ID_BSS;
1596 }
1597
1598 static __inline int
wpi_check_node_entry(struct wpi_softc * sc,uint8_t id)1599 wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1600 {
1601 if (id == WPI_ID_UNDEFINED)
1602 return 0;
1603
1604 return (sc->nodesmsk >> id) & 1;
1605 }
1606
1607 static __inline void
wpi_clear_node_table(struct wpi_softc * sc)1608 wpi_clear_node_table(struct wpi_softc *sc)
1609 {
1610 sc->nodesmsk = 0;
1611 }
1612
1613 static __inline void
wpi_del_node_entry(struct wpi_softc * sc,uint8_t id)1614 wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1615 {
1616 sc->nodesmsk &= ~(1 << id);
1617 }
1618
1619 static struct ieee80211_node *
wpi_node_alloc(struct ieee80211vap * vap,const uint8_t mac[IEEE80211_ADDR_LEN])1620 wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1621 {
1622 struct wpi_node *wn;
1623
1624 wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1625 M_NOWAIT | M_ZERO);
1626
1627 if (wn == NULL)
1628 return NULL;
1629
1630 wn->id = WPI_ID_UNDEFINED;
1631
1632 return &wn->ni;
1633 }
1634
1635 static void
wpi_node_free(struct ieee80211_node * ni)1636 wpi_node_free(struct ieee80211_node *ni)
1637 {
1638 struct wpi_softc *sc = ni->ni_ic->ic_softc;
1639 struct wpi_node *wn = WPI_NODE(ni);
1640
1641 if (wn->id != WPI_ID_UNDEFINED) {
1642 WPI_NT_LOCK(sc);
1643 if (wpi_check_node_entry(sc, wn->id)) {
1644 wpi_del_node_entry(sc, wn->id);
1645 wpi_del_node(sc, ni);
1646 }
1647 WPI_NT_UNLOCK(sc);
1648 }
1649
1650 sc->sc_node_free(ni);
1651 }
1652
1653 static __inline int
wpi_check_bss_filter(struct wpi_softc * sc)1654 wpi_check_bss_filter(struct wpi_softc *sc)
1655 {
1656 return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0;
1657 }
1658
1659 static void
wpi_ibss_recv_mgmt(struct ieee80211_node * ni,struct mbuf * m,int subtype,const struct ieee80211_rx_stats * rxs,int rssi,int nf)1660 wpi_ibss_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
1661 const struct ieee80211_rx_stats *rxs,
1662 int rssi, int nf)
1663 {
1664 struct ieee80211vap *vap = ni->ni_vap;
1665 struct wpi_softc *sc = vap->iv_ic->ic_softc;
1666 struct wpi_vap *wvp = WPI_VAP(vap);
1667 uint64_t ni_tstamp, rx_tstamp;
1668
1669 wvp->wv_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
1670
1671 if (vap->iv_state == IEEE80211_S_RUN &&
1672 (subtype == IEEE80211_FC0_SUBTYPE_BEACON ||
1673 subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) {
1674 ni_tstamp = le64toh(ni->ni_tstamp.tsf);
1675 rx_tstamp = le64toh(sc->rx_tstamp);
1676
1677 if (ni_tstamp >= rx_tstamp) {
1678 DPRINTF(sc, WPI_DEBUG_STATE,
1679 "ibss merge, tsf %ju tstamp %ju\n",
1680 (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp);
1681 (void) ieee80211_ibss_merge(ni);
1682 }
1683 }
1684 }
1685
1686 static void
wpi_restore_node(void * arg,struct ieee80211_node * ni)1687 wpi_restore_node(void *arg, struct ieee80211_node *ni)
1688 {
1689 struct wpi_softc *sc = arg;
1690 struct wpi_node *wn = WPI_NODE(ni);
1691 int error;
1692
1693 WPI_NT_LOCK(sc);
1694 if (wn->id != WPI_ID_UNDEFINED) {
1695 wn->id = WPI_ID_UNDEFINED;
1696 if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
1697 device_printf(sc->sc_dev,
1698 "%s: could not add IBSS node, error %d\n",
1699 __func__, error);
1700 }
1701 }
1702 WPI_NT_UNLOCK(sc);
1703 }
1704
1705 static void
wpi_restore_node_table(struct wpi_softc * sc,struct wpi_vap * wvp)1706 wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp)
1707 {
1708 struct ieee80211com *ic = &sc->sc_ic;
1709
1710 /* Set group keys once. */
1711 WPI_NT_LOCK(sc);
1712 wvp->wv_gtk = 0;
1713 WPI_NT_UNLOCK(sc);
1714
1715 ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc);
1716 ieee80211_crypto_reload_keys(ic);
1717 }
1718
1719 /**
1720 * Called by net80211 when ever there is a change to 80211 state machine
1721 */
1722 static int
wpi_newstate(struct ieee80211vap * vap,enum ieee80211_state nstate,int arg)1723 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1724 {
1725 struct wpi_vap *wvp = WPI_VAP(vap);
1726 struct ieee80211com *ic = vap->iv_ic;
1727 struct wpi_softc *sc = ic->ic_softc;
1728 int error = 0;
1729
1730 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1731
1732 WPI_TXQ_LOCK(sc);
1733 if (nstate > IEEE80211_S_INIT && sc->sc_running == 0) {
1734 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1735 WPI_TXQ_UNLOCK(sc);
1736
1737 return ENXIO;
1738 }
1739 WPI_TXQ_UNLOCK(sc);
1740
1741 DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1742 ieee80211_state_name[vap->iv_state],
1743 ieee80211_state_name[nstate]);
1744
1745 if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) {
1746 if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) {
1747 device_printf(sc->sc_dev,
1748 "%s: could not set power saving level\n",
1749 __func__);
1750 return error;
1751 }
1752
1753 wpi_set_led(sc, WPI_LED_LINK, 1, 0);
1754 }
1755
1756 switch (nstate) {
1757 case IEEE80211_S_SCAN:
1758 WPI_RXON_LOCK(sc);
1759 if (wpi_check_bss_filter(sc) != 0) {
1760 sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1761 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1762 device_printf(sc->sc_dev,
1763 "%s: could not send RXON\n", __func__);
1764 }
1765 }
1766 WPI_RXON_UNLOCK(sc);
1767 break;
1768
1769 case IEEE80211_S_ASSOC:
1770 if (vap->iv_state != IEEE80211_S_RUN)
1771 break;
1772 /* FALLTHROUGH */
1773 case IEEE80211_S_AUTH:
1774 /*
1775 * NB: do not optimize AUTH -> AUTH state transmission -
1776 * this will break powersave with non-QoS AP!
1777 */
1778
1779 /*
1780 * The node must be registered in the firmware before auth.
1781 * Also the associd must be cleared on RUN -> ASSOC
1782 * transitions.
1783 */
1784 if ((error = wpi_auth(sc, vap)) != 0) {
1785 device_printf(sc->sc_dev,
1786 "%s: could not move to AUTH state, error %d\n",
1787 __func__, error);
1788 }
1789 break;
1790
1791 case IEEE80211_S_RUN:
1792 /*
1793 * RUN -> RUN transition:
1794 * STA mode: Just restart the timers.
1795 * IBSS mode: Process IBSS merge.
1796 */
1797 if (vap->iv_state == IEEE80211_S_RUN) {
1798 if (vap->iv_opmode != IEEE80211_M_IBSS) {
1799 WPI_RXON_LOCK(sc);
1800 wpi_calib_timeout(sc);
1801 WPI_RXON_UNLOCK(sc);
1802 break;
1803 } else {
1804 /*
1805 * Drop the BSS_FILTER bit
1806 * (there is no another way to change bssid).
1807 */
1808 WPI_RXON_LOCK(sc);
1809 sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1810 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1811 device_printf(sc->sc_dev,
1812 "%s: could not send RXON\n",
1813 __func__);
1814 }
1815 WPI_RXON_UNLOCK(sc);
1816
1817 /* Restore all what was lost. */
1818 wpi_restore_node_table(sc, wvp);
1819
1820 /* XXX set conditionally? */
1821 wpi_updateedca(ic);
1822 }
1823 }
1824
1825 /*
1826 * !RUN -> RUN requires setting the association id
1827 * which is done with a firmware cmd. We also defer
1828 * starting the timers until that work is done.
1829 */
1830 if ((error = wpi_run(sc, vap)) != 0) {
1831 device_printf(sc->sc_dev,
1832 "%s: could not move to RUN state\n", __func__);
1833 }
1834 break;
1835
1836 default:
1837 break;
1838 }
1839 if (error != 0) {
1840 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1841 return error;
1842 }
1843
1844 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1845
1846 return wvp->wv_newstate(vap, nstate, arg);
1847 }
1848
1849 static void
wpi_calib_timeout(void * arg)1850 wpi_calib_timeout(void *arg)
1851 {
1852 struct wpi_softc *sc = arg;
1853
1854 if (wpi_check_bss_filter(sc) == 0)
1855 return;
1856
1857 wpi_power_calibration(sc);
1858
1859 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1860 }
1861
1862 static __inline uint8_t
rate2plcp(const uint8_t rate)1863 rate2plcp(const uint8_t rate)
1864 {
1865 switch (rate) {
1866 case 12: return 0xd;
1867 case 18: return 0xf;
1868 case 24: return 0x5;
1869 case 36: return 0x7;
1870 case 48: return 0x9;
1871 case 72: return 0xb;
1872 case 96: return 0x1;
1873 case 108: return 0x3;
1874 case 2: return 10;
1875 case 4: return 20;
1876 case 11: return 55;
1877 case 22: return 110;
1878 default: return 0;
1879 }
1880 }
1881
1882 static __inline uint8_t
plcp2rate(const uint8_t plcp)1883 plcp2rate(const uint8_t plcp)
1884 {
1885 switch (plcp) {
1886 case 0xd: return 12;
1887 case 0xf: return 18;
1888 case 0x5: return 24;
1889 case 0x7: return 36;
1890 case 0x9: return 48;
1891 case 0xb: return 72;
1892 case 0x1: return 96;
1893 case 0x3: return 108;
1894 case 10: return 2;
1895 case 20: return 4;
1896 case 55: return 11;
1897 case 110: return 22;
1898 default: return 0;
1899 }
1900 }
1901
1902 /* Quickly determine if a given rate is CCK or OFDM. */
1903 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1904
1905 static void
wpi_rx_done(struct wpi_softc * sc,struct wpi_rx_desc * desc,struct wpi_rx_data * data)1906 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1907 struct wpi_rx_data *data)
1908 {
1909 struct ieee80211com *ic = &sc->sc_ic;
1910 struct wpi_rx_ring *ring = &sc->rxq;
1911 struct wpi_rx_stat *stat;
1912 struct wpi_rx_head *head;
1913 struct wpi_rx_tail *tail;
1914 struct ieee80211_frame *wh;
1915 struct ieee80211_node *ni;
1916 struct mbuf *m, *m1;
1917 bus_addr_t paddr;
1918 uint32_t flags;
1919 uint16_t len;
1920 int error;
1921
1922 stat = (struct wpi_rx_stat *)(desc + 1);
1923
1924 if (__predict_false(stat->len > WPI_STAT_MAXLEN)) {
1925 device_printf(sc->sc_dev, "invalid RX statistic header\n");
1926 goto fail1;
1927 }
1928
1929 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1930 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1931 len = le16toh(head->len);
1932 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1933 flags = le32toh(tail->flags);
1934
1935 DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1936 " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1937 le32toh(desc->len), len, (int8_t)stat->rssi,
1938 head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1939
1940 /* Discard frames with a bad FCS early. */
1941 if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1942 DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1943 __func__, flags);
1944 goto fail1;
1945 }
1946 /* Discard frames that are too short. */
1947 if (len < sizeof (struct ieee80211_frame_ack)) {
1948 DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1949 __func__, len);
1950 goto fail1;
1951 }
1952
1953 m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1954 if (__predict_false(m1 == NULL)) {
1955 DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1956 __func__);
1957 goto fail1;
1958 }
1959 bus_dmamap_unload(ring->data_dmat, data->map);
1960
1961 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1962 MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1963 if (__predict_false(error != 0 && error != EFBIG)) {
1964 device_printf(sc->sc_dev,
1965 "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1966 m_freem(m1);
1967
1968 /* Try to reload the old mbuf. */
1969 error = bus_dmamap_load(ring->data_dmat, data->map,
1970 mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1971 &paddr, BUS_DMA_NOWAIT);
1972 if (error != 0 && error != EFBIG) {
1973 panic("%s: could not load old RX mbuf", __func__);
1974 }
1975 /* Physical address may have changed. */
1976 ring->desc[ring->cur] = htole32(paddr);
1977 bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1978 BUS_DMASYNC_PREWRITE);
1979 goto fail1;
1980 }
1981
1982 m = data->m;
1983 data->m = m1;
1984 /* Update RX descriptor. */
1985 ring->desc[ring->cur] = htole32(paddr);
1986 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1987 BUS_DMASYNC_PREWRITE);
1988
1989 /* Finalize mbuf. */
1990 m->m_data = (caddr_t)(head + 1);
1991 m->m_pkthdr.len = m->m_len = len;
1992
1993 /* Grab a reference to the source node. */
1994 wh = mtod(m, struct ieee80211_frame *);
1995
1996 if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1997 (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
1998 /* Check whether decryption was successful or not. */
1999 if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
2000 DPRINTF(sc, WPI_DEBUG_RECV,
2001 "CCMP decryption failed 0x%x\n", flags);
2002 goto fail2;
2003 }
2004 m->m_flags |= M_WEP;
2005 }
2006
2007 if (len >= sizeof(struct ieee80211_frame_min))
2008 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2009 else
2010 ni = NULL;
2011
2012 sc->rx_tstamp = tail->tstamp;
2013
2014 if (ieee80211_radiotap_active(ic)) {
2015 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
2016
2017 tap->wr_flags = 0;
2018 if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
2019 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2020 tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
2021 tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
2022 tap->wr_tsft = tail->tstamp;
2023 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
2024 tap->wr_rate = plcp2rate(head->plcp);
2025 }
2026
2027 WPI_UNLOCK(sc);
2028
2029 /* Send the frame to the 802.11 layer. */
2030 if (ni != NULL) {
2031 (void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
2032 /* Node is no longer needed. */
2033 ieee80211_free_node(ni);
2034 } else
2035 (void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
2036
2037 WPI_LOCK(sc);
2038
2039 return;
2040
2041 fail2: m_freem(m);
2042
2043 fail1: counter_u64_add(ic->ic_ierrors, 1);
2044 }
2045
2046 static void
wpi_rx_statistics(struct wpi_softc * sc,struct wpi_rx_desc * desc,struct wpi_rx_data * data)2047 wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
2048 struct wpi_rx_data *data)
2049 {
2050 /* Ignore */
2051 }
2052
2053 static void
wpi_tx_done(struct wpi_softc * sc,struct wpi_rx_desc * desc)2054 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2055 {
2056 struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
2057 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
2058 struct wpi_tx_data *data = &ring->data[desc->idx];
2059 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
2060 struct mbuf *m;
2061 struct ieee80211_node *ni;
2062 uint32_t status = le32toh(stat->status);
2063
2064 KASSERT(data->ni != NULL, ("no node"));
2065 KASSERT(data->m != NULL, ("no mbuf"));
2066
2067 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2068
2069 DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
2070 "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
2071 "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt,
2072 stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
2073
2074 /* Unmap and free mbuf. */
2075 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2076 bus_dmamap_unload(ring->data_dmat, data->map);
2077 m = data->m, data->m = NULL;
2078 ni = data->ni, data->ni = NULL;
2079
2080 /* Restore frame header. */
2081 KASSERT(M_LEADINGSPACE(m) >= data->hdrlen, ("no frame header!"));
2082 M_PREPEND(m, data->hdrlen, M_NOWAIT);
2083 KASSERT(m != NULL, ("%s: m is NULL\n", __func__));
2084
2085 /*
2086 * Update rate control statistics for the node.
2087 */
2088 txs->pktlen = m->m_pkthdr.len;
2089 txs->short_retries = stat->rtsfailcnt;
2090 txs->long_retries = stat->ackfailcnt / WPI_NTRIES_DEFAULT;
2091 if (!(status & WPI_TX_STATUS_FAIL))
2092 txs->status = IEEE80211_RATECTL_TX_SUCCESS;
2093 else {
2094 switch (status & 0xff) {
2095 case WPI_TX_STATUS_FAIL_SHORT_LIMIT:
2096 txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
2097 break;
2098 case WPI_TX_STATUS_FAIL_LONG_LIMIT:
2099 txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
2100 break;
2101 case WPI_TX_STATUS_FAIL_LIFE_EXPIRE:
2102 txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
2103 break;
2104 default:
2105 txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
2106 break;
2107 }
2108 }
2109
2110 ieee80211_ratectl_tx_complete(ni, txs);
2111 ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0);
2112
2113 WPI_TXQ_STATE_LOCK(sc);
2114 if (--ring->queued > 0)
2115 callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2116 else
2117 callout_stop(&sc->tx_timeout);
2118 WPI_TXQ_STATE_UNLOCK(sc);
2119
2120 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2121 }
2122
2123 /*
2124 * Process a "command done" firmware notification. This is where we wakeup
2125 * processes waiting for a synchronous command completion.
2126 */
2127 static void
wpi_cmd_done(struct wpi_softc * sc,struct wpi_rx_desc * desc)2128 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2129 {
2130 struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2131 struct wpi_tx_data *data;
2132 struct wpi_tx_cmd *cmd;
2133
2134 DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
2135 "type %s len %d\n", desc->qid, desc->idx,
2136 desc->flags, wpi_cmd_str(desc->type),
2137 le32toh(desc->len));
2138
2139 if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
2140 return; /* Not a command ack. */
2141
2142 KASSERT(ring->queued == 0, ("ring->queued must be 0"));
2143
2144 data = &ring->data[desc->idx];
2145 cmd = &ring->cmd[desc->idx];
2146
2147 /* If the command was mapped in an mbuf, free it. */
2148 if (data->m != NULL) {
2149 bus_dmamap_sync(ring->data_dmat, data->map,
2150 BUS_DMASYNC_POSTWRITE);
2151 bus_dmamap_unload(ring->data_dmat, data->map);
2152 m_freem(data->m);
2153 data->m = NULL;
2154 }
2155
2156 wakeup(cmd);
2157
2158 if (desc->type == WPI_CMD_SET_POWER_MODE) {
2159 struct wpi_pmgt_cmd *pcmd = (struct wpi_pmgt_cmd *)cmd->data;
2160
2161 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2162 BUS_DMASYNC_POSTREAD);
2163
2164 WPI_TXQ_LOCK(sc);
2165 if (le16toh(pcmd->flags) & WPI_PS_ALLOW_SLEEP) {
2166 sc->sc_update_rx_ring = wpi_update_rx_ring_ps;
2167 sc->sc_update_tx_ring = wpi_update_tx_ring_ps;
2168 } else {
2169 sc->sc_update_rx_ring = wpi_update_rx_ring;
2170 sc->sc_update_tx_ring = wpi_update_tx_ring;
2171 }
2172 WPI_TXQ_UNLOCK(sc);
2173 }
2174 }
2175
2176 static void
wpi_notif_intr(struct wpi_softc * sc)2177 wpi_notif_intr(struct wpi_softc *sc)
2178 {
2179 struct ieee80211com *ic = &sc->sc_ic;
2180 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2181 uint32_t hw;
2182
2183 bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
2184 BUS_DMASYNC_POSTREAD);
2185
2186 hw = le32toh(sc->shared->next) & 0xfff;
2187 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
2188
2189 while (sc->rxq.cur != hw) {
2190 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2191
2192 struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2193 struct wpi_rx_desc *desc;
2194
2195 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2196 BUS_DMASYNC_POSTREAD);
2197 desc = mtod(data->m, struct wpi_rx_desc *);
2198
2199 DPRINTF(sc, WPI_DEBUG_NOTIFY,
2200 "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2201 __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2202 desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2203
2204 if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2205 /* Reply to a command. */
2206 wpi_cmd_done(sc, desc);
2207 }
2208
2209 switch (desc->type) {
2210 case WPI_RX_DONE:
2211 /* An 802.11 frame has been received. */
2212 wpi_rx_done(sc, desc, data);
2213
2214 if (__predict_false(sc->sc_running == 0)) {
2215 /* wpi_stop() was called. */
2216 return;
2217 }
2218
2219 break;
2220
2221 case WPI_TX_DONE:
2222 /* An 802.11 frame has been transmitted. */
2223 wpi_tx_done(sc, desc);
2224 break;
2225
2226 case WPI_RX_STATISTICS:
2227 case WPI_BEACON_STATISTICS:
2228 wpi_rx_statistics(sc, desc, data);
2229 break;
2230
2231 case WPI_BEACON_MISSED:
2232 {
2233 struct wpi_beacon_missed *miss =
2234 (struct wpi_beacon_missed *)(desc + 1);
2235 uint32_t expected, misses, received, threshold;
2236
2237 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2238 BUS_DMASYNC_POSTREAD);
2239
2240 misses = le32toh(miss->consecutive);
2241 expected = le32toh(miss->expected);
2242 received = le32toh(miss->received);
2243 threshold = MAX(2, vap->iv_bmissthreshold);
2244
2245 DPRINTF(sc, WPI_DEBUG_BMISS,
2246 "%s: beacons missed %u(%u) (received %u/%u)\n",
2247 __func__, misses, le32toh(miss->total), received,
2248 expected);
2249
2250 if (misses >= threshold ||
2251 (received == 0 && expected >= threshold)) {
2252 WPI_RXON_LOCK(sc);
2253 if (callout_pending(&sc->scan_timeout)) {
2254 wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL,
2255 0, 1);
2256 }
2257 WPI_RXON_UNLOCK(sc);
2258 if (vap->iv_state == IEEE80211_S_RUN &&
2259 (ic->ic_flags & IEEE80211_F_SCAN) == 0)
2260 ieee80211_beacon_miss(ic);
2261 }
2262
2263 break;
2264 }
2265 #ifdef WPI_DEBUG
2266 case WPI_BEACON_SENT:
2267 {
2268 struct wpi_tx_stat *stat =
2269 (struct wpi_tx_stat *)(desc + 1);
2270 uint64_t *tsf = (uint64_t *)(stat + 1);
2271 uint32_t *mode = (uint32_t *)(tsf + 1);
2272
2273 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2274 BUS_DMASYNC_POSTREAD);
2275
2276 DPRINTF(sc, WPI_DEBUG_BEACON,
2277 "beacon sent: rts %u, ack %u, btkill %u, rate %u, "
2278 "duration %u, status %x, tsf %ju, mode %x\n",
2279 stat->rtsfailcnt, stat->ackfailcnt,
2280 stat->btkillcnt, stat->rate, le32toh(stat->duration),
2281 le32toh(stat->status), le64toh(*tsf),
2282 le32toh(*mode));
2283
2284 break;
2285 }
2286 #endif
2287 case WPI_UC_READY:
2288 {
2289 struct wpi_ucode_info *uc =
2290 (struct wpi_ucode_info *)(desc + 1);
2291
2292 /* The microcontroller is ready. */
2293 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2294 BUS_DMASYNC_POSTREAD);
2295 DPRINTF(sc, WPI_DEBUG_RESET,
2296 "microcode alive notification version=%d.%d "
2297 "subtype=%x alive=%x\n", uc->major, uc->minor,
2298 uc->subtype, le32toh(uc->valid));
2299
2300 if (le32toh(uc->valid) != 1) {
2301 device_printf(sc->sc_dev,
2302 "microcontroller initialization failed\n");
2303 wpi_stop_locked(sc);
2304 return;
2305 }
2306 /* Save the address of the error log in SRAM. */
2307 sc->errptr = le32toh(uc->errptr);
2308 break;
2309 }
2310 case WPI_STATE_CHANGED:
2311 {
2312 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2313 BUS_DMASYNC_POSTREAD);
2314
2315 uint32_t *status = (uint32_t *)(desc + 1);
2316
2317 DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2318 le32toh(*status));
2319
2320 if (le32toh(*status) & 1) {
2321 WPI_NT_LOCK(sc);
2322 wpi_clear_node_table(sc);
2323 WPI_NT_UNLOCK(sc);
2324 ieee80211_runtask(ic,
2325 &sc->sc_radiooff_task);
2326 return;
2327 }
2328 break;
2329 }
2330 #ifdef WPI_DEBUG
2331 case WPI_START_SCAN:
2332 {
2333 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2334 BUS_DMASYNC_POSTREAD);
2335
2336 struct wpi_start_scan *scan =
2337 (struct wpi_start_scan *)(desc + 1);
2338 DPRINTF(sc, WPI_DEBUG_SCAN,
2339 "%s: scanning channel %d status %x\n",
2340 __func__, scan->chan, le32toh(scan->status));
2341
2342 break;
2343 }
2344 #endif
2345 case WPI_STOP_SCAN:
2346 {
2347 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2348 BUS_DMASYNC_POSTREAD);
2349
2350 struct wpi_stop_scan *scan =
2351 (struct wpi_stop_scan *)(desc + 1);
2352
2353 DPRINTF(sc, WPI_DEBUG_SCAN,
2354 "scan finished nchan=%d status=%d chan=%d\n",
2355 scan->nchan, scan->status, scan->chan);
2356
2357 WPI_RXON_LOCK(sc);
2358 callout_stop(&sc->scan_timeout);
2359 WPI_RXON_UNLOCK(sc);
2360 if (scan->status == WPI_SCAN_ABORTED)
2361 ieee80211_cancel_scan(vap);
2362 else
2363 ieee80211_scan_next(vap);
2364 break;
2365 }
2366 }
2367
2368 if (sc->rxq.cur % 8 == 0) {
2369 /* Tell the firmware what we have processed. */
2370 sc->sc_update_rx_ring(sc);
2371 }
2372 }
2373 }
2374
2375 /*
2376 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2377 * from power-down sleep mode.
2378 */
2379 static void
wpi_wakeup_intr(struct wpi_softc * sc)2380 wpi_wakeup_intr(struct wpi_softc *sc)
2381 {
2382 int qid;
2383
2384 DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2385 "%s: ucode wakeup from power-down sleep\n", __func__);
2386
2387 /* Wakeup RX and TX rings. */
2388 if (sc->rxq.update) {
2389 sc->rxq.update = 0;
2390 wpi_update_rx_ring(sc);
2391 }
2392 WPI_TXQ_LOCK(sc);
2393 for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2394 struct wpi_tx_ring *ring = &sc->txq[qid];
2395
2396 if (ring->update) {
2397 ring->update = 0;
2398 wpi_update_tx_ring(sc, ring);
2399 }
2400 }
2401 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2402 WPI_TXQ_UNLOCK(sc);
2403 }
2404
2405 /*
2406 * This function prints firmware registers
2407 */
2408 #ifdef WPI_DEBUG
2409 static void
wpi_debug_registers(struct wpi_softc * sc)2410 wpi_debug_registers(struct wpi_softc *sc)
2411 {
2412 size_t i;
2413 static const uint32_t csr_tbl[] = {
2414 WPI_HW_IF_CONFIG,
2415 WPI_INT,
2416 WPI_INT_MASK,
2417 WPI_FH_INT,
2418 WPI_GPIO_IN,
2419 WPI_RESET,
2420 WPI_GP_CNTRL,
2421 WPI_EEPROM,
2422 WPI_EEPROM_GP,
2423 WPI_GIO,
2424 WPI_UCODE_GP1,
2425 WPI_UCODE_GP2,
2426 WPI_GIO_CHICKEN,
2427 WPI_ANA_PLL,
2428 WPI_DBG_HPET_MEM,
2429 };
2430 static const uint32_t prph_tbl[] = {
2431 WPI_APMG_CLK_CTRL,
2432 WPI_APMG_PS,
2433 WPI_APMG_PCI_STT,
2434 WPI_APMG_RFKILL,
2435 };
2436
2437 DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
2438
2439 for (i = 0; i < nitems(csr_tbl); i++) {
2440 DPRINTF(sc, WPI_DEBUG_REGISTER, " %-18s: 0x%08x ",
2441 wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
2442
2443 if ((i + 1) % 2 == 0)
2444 DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2445 }
2446 DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
2447
2448 if (wpi_nic_lock(sc) == 0) {
2449 for (i = 0; i < nitems(prph_tbl); i++) {
2450 DPRINTF(sc, WPI_DEBUG_REGISTER, " %-18s: 0x%08x ",
2451 wpi_get_prph_string(prph_tbl[i]),
2452 wpi_prph_read(sc, prph_tbl[i]));
2453
2454 if ((i + 1) % 2 == 0)
2455 DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2456 }
2457 DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2458 wpi_nic_unlock(sc);
2459 } else {
2460 DPRINTF(sc, WPI_DEBUG_REGISTER,
2461 "Cannot access internal registers.\n");
2462 }
2463 }
2464 #endif
2465
2466 /*
2467 * Dump the error log of the firmware when a firmware panic occurs. Although
2468 * we can't debug the firmware because it is neither open source nor free, it
2469 * can help us to identify certain classes of problems.
2470 */
2471 static void
wpi_fatal_intr(struct wpi_softc * sc)2472 wpi_fatal_intr(struct wpi_softc *sc)
2473 {
2474 struct wpi_fw_dump dump;
2475 uint32_t i, offset, count;
2476
2477 /* Check that the error log address is valid. */
2478 if (sc->errptr < WPI_FW_DATA_BASE ||
2479 sc->errptr + sizeof (dump) >
2480 WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2481 printf("%s: bad firmware error log address 0x%08x\n", __func__,
2482 sc->errptr);
2483 return;
2484 }
2485 if (wpi_nic_lock(sc) != 0) {
2486 printf("%s: could not read firmware error log\n", __func__);
2487 return;
2488 }
2489 /* Read number of entries in the log. */
2490 count = wpi_mem_read(sc, sc->errptr);
2491 if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2492 printf("%s: invalid count field (count = %u)\n", __func__,
2493 count);
2494 wpi_nic_unlock(sc);
2495 return;
2496 }
2497 /* Skip "count" field. */
2498 offset = sc->errptr + sizeof (uint32_t);
2499 printf("firmware error log (count = %u):\n", count);
2500 for (i = 0; i < count; i++) {
2501 wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2502 sizeof (dump) / sizeof (uint32_t));
2503
2504 printf(" error type = \"%s\" (0x%08X)\n",
2505 (dump.desc < nitems(wpi_fw_errmsg)) ?
2506 wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2507 dump.desc);
2508 printf(" error data = 0x%08X\n",
2509 dump.data);
2510 printf(" branch link = 0x%08X%08X\n",
2511 dump.blink[0], dump.blink[1]);
2512 printf(" interrupt link = 0x%08X%08X\n",
2513 dump.ilink[0], dump.ilink[1]);
2514 printf(" time = %u\n", dump.time);
2515
2516 offset += sizeof (dump);
2517 }
2518 wpi_nic_unlock(sc);
2519 /* Dump driver status (TX and RX rings) while we're here. */
2520 printf("driver status:\n");
2521 WPI_TXQ_LOCK(sc);
2522 for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2523 struct wpi_tx_ring *ring = &sc->txq[i];
2524 printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2525 i, ring->qid, ring->cur, ring->queued);
2526 }
2527 WPI_TXQ_UNLOCK(sc);
2528 printf(" rx ring: cur=%d\n", sc->rxq.cur);
2529 }
2530
2531 static void
wpi_intr(void * arg)2532 wpi_intr(void *arg)
2533 {
2534 struct wpi_softc *sc = arg;
2535 uint32_t r1, r2;
2536
2537 WPI_LOCK(sc);
2538
2539 /* Disable interrupts. */
2540 WPI_WRITE(sc, WPI_INT_MASK, 0);
2541
2542 r1 = WPI_READ(sc, WPI_INT);
2543
2544 if (__predict_false(r1 == 0xffffffff ||
2545 (r1 & 0xfffffff0) == 0xa5a5a5a0))
2546 goto end; /* Hardware gone! */
2547
2548 r2 = WPI_READ(sc, WPI_FH_INT);
2549
2550 DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2551 r1, r2);
2552
2553 if (r1 == 0 && r2 == 0)
2554 goto done; /* Interrupt not for us. */
2555
2556 /* Acknowledge interrupts. */
2557 WPI_WRITE(sc, WPI_INT, r1);
2558 WPI_WRITE(sc, WPI_FH_INT, r2);
2559
2560 if (__predict_false(r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR))) {
2561 struct ieee80211com *ic = &sc->sc_ic;
2562
2563 device_printf(sc->sc_dev, "fatal firmware error\n");
2564 #ifdef WPI_DEBUG
2565 wpi_debug_registers(sc);
2566 #endif
2567 wpi_fatal_intr(sc);
2568 DPRINTF(sc, WPI_DEBUG_HW,
2569 "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2570 "(Hardware Error)");
2571 ieee80211_restart_all(ic);
2572 goto end;
2573 }
2574
2575 if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2576 (r2 & WPI_FH_INT_RX))
2577 wpi_notif_intr(sc);
2578
2579 if (r1 & WPI_INT_ALIVE)
2580 wakeup(sc); /* Firmware is alive. */
2581
2582 if (r1 & WPI_INT_WAKEUP)
2583 wpi_wakeup_intr(sc);
2584
2585 done:
2586 /* Re-enable interrupts. */
2587 if (__predict_true(sc->sc_running))
2588 WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2589
2590 end: WPI_UNLOCK(sc);
2591 }
2592
2593 static void
wpi_free_txfrags(struct wpi_softc * sc,uint16_t ac)2594 wpi_free_txfrags(struct wpi_softc *sc, uint16_t ac)
2595 {
2596 struct wpi_tx_ring *ring;
2597 struct wpi_tx_data *data;
2598 uint8_t cur;
2599
2600 WPI_TXQ_LOCK(sc);
2601 ring = &sc->txq[ac];
2602
2603 while (ring->pending != 0) {
2604 ring->pending--;
2605 cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2606 data = &ring->data[cur];
2607
2608 bus_dmamap_sync(ring->data_dmat, data->map,
2609 BUS_DMASYNC_POSTWRITE);
2610 bus_dmamap_unload(ring->data_dmat, data->map);
2611 m_freem(data->m);
2612 data->m = NULL;
2613
2614 ieee80211_node_decref(data->ni);
2615 data->ni = NULL;
2616 }
2617
2618 WPI_TXQ_UNLOCK(sc);
2619 }
2620
2621 static int
wpi_cmd2(struct wpi_softc * sc,struct wpi_buf * buf)2622 wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2623 {
2624 struct ieee80211_frame *wh;
2625 struct wpi_tx_cmd *cmd;
2626 struct wpi_tx_data *data;
2627 struct wpi_tx_desc *desc;
2628 struct wpi_tx_ring *ring;
2629 struct mbuf *m1;
2630 bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2631 uint8_t cur, pad;
2632 uint16_t hdrlen;
2633 int error, i, nsegs, totlen, frag;
2634
2635 WPI_TXQ_LOCK(sc);
2636
2637 KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
2638
2639 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2640
2641 if (__predict_false(sc->sc_running == 0)) {
2642 /* wpi_stop() was called */
2643 error = ENETDOWN;
2644 goto end;
2645 }
2646
2647 wh = mtod(buf->m, struct ieee80211_frame *);
2648 hdrlen = ieee80211_anyhdrsize(wh);
2649 totlen = buf->m->m_pkthdr.len;
2650 frag = ((buf->m->m_flags & (M_FRAG | M_LASTFRAG)) == M_FRAG);
2651
2652 if (__predict_false(totlen < sizeof(struct ieee80211_frame_min))) {
2653 error = EINVAL;
2654 goto end;
2655 }
2656
2657 if (hdrlen & 3) {
2658 /* First segment length must be a multiple of 4. */
2659 pad = 4 - (hdrlen & 3);
2660 } else
2661 pad = 0;
2662
2663 ring = &sc->txq[buf->ac];
2664 cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2665 desc = &ring->desc[cur];
2666 data = &ring->data[cur];
2667
2668 /* Prepare TX firmware command. */
2669 cmd = &ring->cmd[cur];
2670 cmd->code = buf->code;
2671 cmd->flags = 0;
2672 cmd->qid = ring->qid;
2673 cmd->idx = cur;
2674
2675 memcpy(cmd->data, buf->data, buf->size);
2676
2677 /* Save and trim IEEE802.11 header. */
2678 memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2679 m_adj(buf->m, hdrlen);
2680
2681 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2682 segs, &nsegs, BUS_DMA_NOWAIT);
2683 if (error != 0 && error != EFBIG) {
2684 device_printf(sc->sc_dev,
2685 "%s: can't map mbuf (error %d)\n", __func__, error);
2686 goto end;
2687 }
2688 if (error != 0) {
2689 /* Too many DMA segments, linearize mbuf. */
2690 m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2691 if (m1 == NULL) {
2692 device_printf(sc->sc_dev,
2693 "%s: could not defrag mbuf\n", __func__);
2694 error = ENOBUFS;
2695 goto end;
2696 }
2697 buf->m = m1;
2698
2699 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2700 buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2701 if (__predict_false(error != 0)) {
2702 /* XXX fix this (applicable to the iwn(4) too) */
2703 /*
2704 * NB: Do not return error;
2705 * original mbuf does not exist anymore.
2706 */
2707 device_printf(sc->sc_dev,
2708 "%s: can't map mbuf (error %d)\n", __func__,
2709 error);
2710 if (ring->qid < WPI_CMD_QUEUE_NUM) {
2711 if_inc_counter(buf->ni->ni_vap->iv_ifp,
2712 IFCOUNTER_OERRORS, 1);
2713 if (!frag)
2714 ieee80211_free_node(buf->ni);
2715 }
2716 m_freem(buf->m);
2717 error = 0;
2718 goto end;
2719 }
2720 }
2721
2722 KASSERT(nsegs < WPI_MAX_SCATTER,
2723 ("too many DMA segments, nsegs (%d) should be less than %d",
2724 nsegs, WPI_MAX_SCATTER));
2725
2726 data->m = buf->m;
2727 data->ni = buf->ni;
2728 data->hdrlen = hdrlen;
2729
2730 DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2731 __func__, ring->qid, cur, totlen, nsegs);
2732
2733 /* Fill TX descriptor. */
2734 desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2735 /* First DMA segment is used by the TX command. */
2736 desc->segs[0].addr = htole32(data->cmd_paddr);
2737 desc->segs[0].len = htole32(4 + buf->size + hdrlen + pad);
2738 /* Other DMA segments are for data payload. */
2739 seg = &segs[0];
2740 for (i = 1; i <= nsegs; i++) {
2741 desc->segs[i].addr = htole32(seg->ds_addr);
2742 desc->segs[i].len = htole32(seg->ds_len);
2743 seg++;
2744 }
2745
2746 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2747 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2748 BUS_DMASYNC_PREWRITE);
2749 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2750 BUS_DMASYNC_PREWRITE);
2751
2752 ring->pending += 1;
2753
2754 if (!frag) {
2755 if (ring->qid < WPI_CMD_QUEUE_NUM) {
2756 WPI_TXQ_STATE_LOCK(sc);
2757 ring->queued += ring->pending;
2758 callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout,
2759 sc);
2760 WPI_TXQ_STATE_UNLOCK(sc);
2761 }
2762
2763 /* Kick TX ring. */
2764 ring->cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2765 ring->pending = 0;
2766 sc->sc_update_tx_ring(sc, ring);
2767 } else
2768 (void) ieee80211_ref_node(data->ni);
2769
2770 end: DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
2771 __func__);
2772
2773 WPI_TXQ_UNLOCK(sc);
2774
2775 return (error);
2776 }
2777
2778 /*
2779 * Construct the data packet for a transmit buffer.
2780 */
2781 static int
wpi_tx_data(struct wpi_softc * sc,struct mbuf * m,struct ieee80211_node * ni)2782 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2783 {
2784 const struct ieee80211_txparam *tp = ni->ni_txparms;
2785 struct ieee80211vap *vap = ni->ni_vap;
2786 struct ieee80211com *ic = ni->ni_ic;
2787 struct wpi_node *wn = WPI_NODE(ni);
2788 struct ieee80211_frame *wh;
2789 struct ieee80211_key *k = NULL;
2790 struct wpi_buf tx_data;
2791 struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2792 uint32_t flags;
2793 uint16_t ac, qos;
2794 uint8_t tid, type, rate;
2795 int swcrypt, ismcast, totlen;
2796
2797 wh = mtod(m, struct ieee80211_frame *);
2798 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2799 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2800 swcrypt = 1;
2801
2802 /* Select EDCA Access Category and TX ring for this frame. */
2803 if (IEEE80211_QOS_HAS_SEQ(wh)) {
2804 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2805 tid = qos & IEEE80211_QOS_TID;
2806 } else {
2807 qos = 0;
2808 tid = 0;
2809 }
2810 ac = M_WME_GETAC(m);
2811
2812 /* Choose a TX rate index. */
2813 if (type == IEEE80211_FC0_TYPE_MGT ||
2814 type == IEEE80211_FC0_TYPE_CTL ||
2815 (m->m_flags & M_EAPOL) != 0)
2816 rate = tp->mgmtrate;
2817 else if (ismcast)
2818 rate = tp->mcastrate;
2819 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2820 rate = tp->ucastrate;
2821 else {
2822 /* XXX pass pktlen */
2823 (void) ieee80211_ratectl_rate(ni, NULL, 0);
2824 rate = ni->ni_txrate;
2825 }
2826
2827 /* Encrypt the frame if need be. */
2828 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2829 /* Retrieve key for TX. */
2830 k = ieee80211_crypto_encap(ni, m);
2831 if (k == NULL)
2832 return (ENOBUFS);
2833
2834 swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2835
2836 /* 802.11 header may have moved. */
2837 wh = mtod(m, struct ieee80211_frame *);
2838 }
2839 totlen = m->m_pkthdr.len;
2840
2841 if (ieee80211_radiotap_active_vap(vap)) {
2842 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2843
2844 tap->wt_flags = 0;
2845 tap->wt_rate = rate;
2846 if (k != NULL)
2847 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2848 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2849 tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
2850
2851 ieee80211_radiotap_tx(vap, m);
2852 }
2853
2854 flags = 0;
2855 if (!ismcast) {
2856 /* Unicast frame, check if an ACK is expected. */
2857 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2858 IEEE80211_QOS_ACKPOLICY_NOACK)
2859 flags |= WPI_TX_NEED_ACK;
2860 }
2861
2862 if (!IEEE80211_QOS_HAS_SEQ(wh))
2863 flags |= WPI_TX_AUTO_SEQ;
2864 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2865 flags |= WPI_TX_MORE_FRAG;
2866
2867 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2868 if (!ismcast) {
2869 /* NB: Group frames are sent using CCK in 802.11b/g. */
2870 if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2871 flags |= WPI_TX_NEED_RTS;
2872 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2873 WPI_RATE_IS_OFDM(rate)) {
2874 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2875 flags |= WPI_TX_NEED_CTS;
2876 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2877 flags |= WPI_TX_NEED_RTS;
2878 }
2879
2880 if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2881 flags |= WPI_TX_FULL_TXOP;
2882 }
2883
2884 memset(tx, 0, sizeof (struct wpi_cmd_data));
2885 if (type == IEEE80211_FC0_TYPE_MGT) {
2886 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2887
2888 /* Tell HW to set timestamp in probe responses. */
2889 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2890 flags |= WPI_TX_INSERT_TSTAMP;
2891 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2892 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2893 tx->timeout = htole16(3);
2894 else
2895 tx->timeout = htole16(2);
2896 }
2897
2898 if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2899 tx->id = WPI_ID_BROADCAST;
2900 else {
2901 if (wn->id == WPI_ID_UNDEFINED) {
2902 device_printf(sc->sc_dev,
2903 "%s: undefined node id\n", __func__);
2904 return (EINVAL);
2905 }
2906
2907 tx->id = wn->id;
2908 }
2909
2910 if (!swcrypt) {
2911 switch (k->wk_cipher->ic_cipher) {
2912 case IEEE80211_CIPHER_AES_CCM:
2913 tx->security = WPI_CIPHER_CCMP;
2914 break;
2915
2916 default:
2917 break;
2918 }
2919
2920 memcpy(tx->key, k->wk_key, k->wk_keylen);
2921 }
2922
2923 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
2924 struct mbuf *next = m->m_nextpkt;
2925
2926 tx->lnext = htole16(next->m_pkthdr.len);
2927 tx->fnext = htole32(tx->security |
2928 (flags & WPI_TX_NEED_ACK) |
2929 WPI_NEXT_STA_ID(tx->id));
2930 }
2931
2932 tx->len = htole16(totlen);
2933 tx->flags = htole32(flags);
2934 tx->plcp = rate2plcp(rate);
2935 tx->tid = tid;
2936 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2937 tx->ofdm_mask = 0xff;
2938 tx->cck_mask = 0x0f;
2939 tx->rts_ntries = 7;
2940 tx->data_ntries = tp->maxretry;
2941
2942 tx_data.ni = ni;
2943 tx_data.m = m;
2944 tx_data.size = sizeof(struct wpi_cmd_data);
2945 tx_data.code = WPI_CMD_TX_DATA;
2946 tx_data.ac = ac;
2947
2948 return wpi_cmd2(sc, &tx_data);
2949 }
2950
2951 static int
wpi_tx_data_raw(struct wpi_softc * sc,struct mbuf * m,struct ieee80211_node * ni,const struct ieee80211_bpf_params * params)2952 wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2953 struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2954 {
2955 struct ieee80211vap *vap = ni->ni_vap;
2956 struct ieee80211_key *k = NULL;
2957 struct ieee80211_frame *wh;
2958 struct wpi_buf tx_data;
2959 struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2960 uint32_t flags;
2961 uint8_t ac, type, rate;
2962 int swcrypt, totlen;
2963
2964 wh = mtod(m, struct ieee80211_frame *);
2965 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2966 swcrypt = 1;
2967
2968 ac = params->ibp_pri & 3;
2969
2970 /* Choose a TX rate index. */
2971 rate = params->ibp_rate0;
2972
2973 flags = 0;
2974 if (!IEEE80211_QOS_HAS_SEQ(wh))
2975 flags |= WPI_TX_AUTO_SEQ;
2976 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2977 flags |= WPI_TX_NEED_ACK;
2978 if (params->ibp_flags & IEEE80211_BPF_RTS)
2979 flags |= WPI_TX_NEED_RTS;
2980 if (params->ibp_flags & IEEE80211_BPF_CTS)
2981 flags |= WPI_TX_NEED_CTS;
2982 if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2983 flags |= WPI_TX_FULL_TXOP;
2984
2985 /* Encrypt the frame if need be. */
2986 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
2987 /* Retrieve key for TX. */
2988 k = ieee80211_crypto_encap(ni, m);
2989 if (k == NULL)
2990 return (ENOBUFS);
2991
2992 swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2993
2994 /* 802.11 header may have moved. */
2995 wh = mtod(m, struct ieee80211_frame *);
2996 }
2997 totlen = m->m_pkthdr.len;
2998
2999 if (ieee80211_radiotap_active_vap(vap)) {
3000 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
3001
3002 tap->wt_flags = 0;
3003 tap->wt_rate = rate;
3004 if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
3005 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3006
3007 ieee80211_radiotap_tx(vap, m);
3008 }
3009
3010 memset(tx, 0, sizeof (struct wpi_cmd_data));
3011 if (type == IEEE80211_FC0_TYPE_MGT) {
3012 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3013
3014 /* Tell HW to set timestamp in probe responses. */
3015 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3016 flags |= WPI_TX_INSERT_TSTAMP;
3017 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3018 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3019 tx->timeout = htole16(3);
3020 else
3021 tx->timeout = htole16(2);
3022 }
3023
3024 if (!swcrypt) {
3025 switch (k->wk_cipher->ic_cipher) {
3026 case IEEE80211_CIPHER_AES_CCM:
3027 tx->security = WPI_CIPHER_CCMP;
3028 break;
3029
3030 default:
3031 break;
3032 }
3033
3034 memcpy(tx->key, k->wk_key, k->wk_keylen);
3035 }
3036
3037 tx->len = htole16(totlen);
3038 tx->flags = htole32(flags);
3039 tx->plcp = rate2plcp(rate);
3040 tx->id = WPI_ID_BROADCAST;
3041 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3042 tx->rts_ntries = params->ibp_try1;
3043 tx->data_ntries = params->ibp_try0;
3044
3045 tx_data.ni = ni;
3046 tx_data.m = m;
3047 tx_data.size = sizeof(struct wpi_cmd_data);
3048 tx_data.code = WPI_CMD_TX_DATA;
3049 tx_data.ac = ac;
3050
3051 return wpi_cmd2(sc, &tx_data);
3052 }
3053
3054 static __inline int
wpi_tx_ring_free_space(struct wpi_softc * sc,uint16_t ac)3055 wpi_tx_ring_free_space(struct wpi_softc *sc, uint16_t ac)
3056 {
3057 struct wpi_tx_ring *ring = &sc->txq[ac];
3058 int retval;
3059
3060 WPI_TXQ_STATE_LOCK(sc);
3061 retval = WPI_TX_RING_HIMARK - ring->queued;
3062 WPI_TXQ_STATE_UNLOCK(sc);
3063
3064 return retval;
3065 }
3066
3067 static int
wpi_raw_xmit(struct ieee80211_node * ni,struct mbuf * m,const struct ieee80211_bpf_params * params)3068 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3069 const struct ieee80211_bpf_params *params)
3070 {
3071 struct ieee80211com *ic = ni->ni_ic;
3072 struct wpi_softc *sc = ic->ic_softc;
3073 uint16_t ac;
3074 int error = 0;
3075
3076 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3077
3078 ac = M_WME_GETAC(m);
3079
3080 WPI_TX_LOCK(sc);
3081
3082 /* NB: no fragments here */
3083 if (sc->sc_running == 0 || wpi_tx_ring_free_space(sc, ac) < 1) {
3084 error = sc->sc_running ? ENOBUFS : ENETDOWN;
3085 goto unlock;
3086 }
3087
3088 if (params == NULL) {
3089 /*
3090 * Legacy path; interpret frame contents to decide
3091 * precisely how to send the frame.
3092 */
3093 error = wpi_tx_data(sc, m, ni);
3094 } else {
3095 /*
3096 * Caller supplied explicit parameters to use in
3097 * sending the frame.
3098 */
3099 error = wpi_tx_data_raw(sc, m, ni, params);
3100 }
3101
3102 unlock: WPI_TX_UNLOCK(sc);
3103
3104 if (error != 0) {
3105 m_freem(m);
3106 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3107
3108 return error;
3109 }
3110
3111 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3112
3113 return 0;
3114 }
3115
3116 static int
wpi_transmit(struct ieee80211com * ic,struct mbuf * m)3117 wpi_transmit(struct ieee80211com *ic, struct mbuf *m)
3118 {
3119 struct wpi_softc *sc = ic->ic_softc;
3120 struct ieee80211_node *ni;
3121 struct mbuf *mnext;
3122 uint16_t ac;
3123 int error, nmbufs;
3124
3125 WPI_TX_LOCK(sc);
3126 DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
3127
3128 /* Check if interface is up & running. */
3129 if (__predict_false(sc->sc_running == 0)) {
3130 error = ENXIO;
3131 goto unlock;
3132 }
3133
3134 nmbufs = 1;
3135 for (mnext = m->m_nextpkt; mnext != NULL; mnext = mnext->m_nextpkt)
3136 nmbufs++;
3137
3138 /* Check for available space. */
3139 ac = M_WME_GETAC(m);
3140 if (wpi_tx_ring_free_space(sc, ac) < nmbufs) {
3141 error = ENOBUFS;
3142 goto unlock;
3143 }
3144
3145 error = 0;
3146 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3147 do {
3148 mnext = m->m_nextpkt;
3149 if (wpi_tx_data(sc, m, ni) != 0) {
3150 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS,
3151 nmbufs);
3152 wpi_free_txfrags(sc, ac);
3153 ieee80211_free_mbuf(m);
3154 ieee80211_free_node(ni);
3155 break;
3156 }
3157 } while((m = mnext) != NULL);
3158
3159 DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
3160
3161 unlock: WPI_TX_UNLOCK(sc);
3162
3163 return (error);
3164 }
3165
3166 static void
wpi_watchdog_rfkill(void * arg)3167 wpi_watchdog_rfkill(void *arg)
3168 {
3169 struct wpi_softc *sc = arg;
3170 struct ieee80211com *ic = &sc->sc_ic;
3171
3172 DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
3173
3174 /* No need to lock firmware memory. */
3175 if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
3176 /* Radio kill switch is still off. */
3177 callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
3178 sc);
3179 } else
3180 ieee80211_runtask(ic, &sc->sc_radioon_task);
3181 }
3182
3183 static void
wpi_scan_timeout(void * arg)3184 wpi_scan_timeout(void *arg)
3185 {
3186 struct wpi_softc *sc = arg;
3187 struct ieee80211com *ic = &sc->sc_ic;
3188
3189 ic_printf(ic, "scan timeout\n");
3190 ieee80211_restart_all(ic);
3191 }
3192
3193 static void
wpi_tx_timeout(void * arg)3194 wpi_tx_timeout(void *arg)
3195 {
3196 struct wpi_softc *sc = arg;
3197 struct ieee80211com *ic = &sc->sc_ic;
3198
3199 ic_printf(ic, "device timeout\n");
3200 ieee80211_restart_all(ic);
3201 }
3202
3203 static void
wpi_parent(struct ieee80211com * ic)3204 wpi_parent(struct ieee80211com *ic)
3205 {
3206 struct wpi_softc *sc = ic->ic_softc;
3207 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3208
3209 if (ic->ic_nrunning > 0) {
3210 if (wpi_init(sc) == 0) {
3211 ieee80211_notify_radio(ic, 1);
3212 ieee80211_start_all(ic);
3213 } else {
3214 ieee80211_notify_radio(ic, 0);
3215 ieee80211_stop(vap);
3216 }
3217 } else {
3218 ieee80211_notify_radio(ic, 0);
3219 wpi_stop(sc);
3220 }
3221 }
3222
3223 /*
3224 * Send a command to the firmware.
3225 */
3226 static int
wpi_cmd(struct wpi_softc * sc,uint8_t code,const void * buf,uint16_t size,int async)3227 wpi_cmd(struct wpi_softc *sc, uint8_t code, const void *buf, uint16_t size,
3228 int async)
3229 {
3230 struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
3231 struct wpi_tx_desc *desc;
3232 struct wpi_tx_data *data;
3233 struct wpi_tx_cmd *cmd;
3234 struct mbuf *m;
3235 bus_addr_t paddr;
3236 uint16_t totlen;
3237 int error;
3238
3239 WPI_TXQ_LOCK(sc);
3240
3241 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3242
3243 if (__predict_false(sc->sc_running == 0)) {
3244 /* wpi_stop() was called */
3245 if (code == WPI_CMD_SCAN)
3246 error = ENETDOWN;
3247 else
3248 error = 0;
3249
3250 goto fail;
3251 }
3252
3253 if (async == 0)
3254 WPI_LOCK_ASSERT(sc);
3255
3256 DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %u async %d\n",
3257 __func__, wpi_cmd_str(code), size, async);
3258
3259 desc = &ring->desc[ring->cur];
3260 data = &ring->data[ring->cur];
3261 totlen = 4 + size;
3262
3263 if (size > sizeof cmd->data) {
3264 /* Command is too large to fit in a descriptor. */
3265 if (totlen > MCLBYTES) {
3266 error = EINVAL;
3267 goto fail;
3268 }
3269 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3270 if (m == NULL) {
3271 error = ENOMEM;
3272 goto fail;
3273 }
3274 cmd = mtod(m, struct wpi_tx_cmd *);
3275 error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3276 totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3277 if (error != 0) {
3278 m_freem(m);
3279 goto fail;
3280 }
3281 data->m = m;
3282 } else {
3283 cmd = &ring->cmd[ring->cur];
3284 paddr = data->cmd_paddr;
3285 }
3286
3287 cmd->code = code;
3288 cmd->flags = 0;
3289 cmd->qid = ring->qid;
3290 cmd->idx = ring->cur;
3291 memcpy(cmd->data, buf, size);
3292
3293 desc->nsegs = 1 + (WPI_PAD32(size) << 4);
3294 desc->segs[0].addr = htole32(paddr);
3295 desc->segs[0].len = htole32(totlen);
3296
3297 if (size > sizeof cmd->data) {
3298 bus_dmamap_sync(ring->data_dmat, data->map,
3299 BUS_DMASYNC_PREWRITE);
3300 } else {
3301 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3302 BUS_DMASYNC_PREWRITE);
3303 }
3304 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3305 BUS_DMASYNC_PREWRITE);
3306
3307 /* Kick command ring. */
3308 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
3309 sc->sc_update_tx_ring(sc, ring);
3310
3311 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3312
3313 WPI_TXQ_UNLOCK(sc);
3314
3315 return async ? 0 : mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3316
3317 fail: DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3318
3319 WPI_TXQ_UNLOCK(sc);
3320
3321 return error;
3322 }
3323
3324 /*
3325 * Configure HW multi-rate retries.
3326 */
3327 static int
wpi_mrr_setup(struct wpi_softc * sc)3328 wpi_mrr_setup(struct wpi_softc *sc)
3329 {
3330 struct ieee80211com *ic = &sc->sc_ic;
3331 struct wpi_mrr_setup mrr;
3332 uint8_t i;
3333 int error;
3334
3335 /* CCK rates (not used with 802.11a). */
3336 for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
3337 mrr.rates[i].flags = 0;
3338 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3339 /* Fallback to the immediate lower CCK rate (if any.) */
3340 mrr.rates[i].next =
3341 (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
3342 /* Try twice at this rate before falling back to "next". */
3343 mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3344 }
3345 /* OFDM rates (not used with 802.11b). */
3346 for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3347 mrr.rates[i].flags = 0;
3348 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3349 /* Fallback to the immediate lower rate (if any.) */
3350 /* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3351 mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3352 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3353 WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3354 i - 1;
3355 /* Try twice at this rate before falling back to "next". */
3356 mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3357 }
3358 /* Setup MRR for control frames. */
3359 mrr.which = htole32(WPI_MRR_CTL);
3360 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3361 if (error != 0) {
3362 device_printf(sc->sc_dev,
3363 "could not setup MRR for control frames\n");
3364 return error;
3365 }
3366 /* Setup MRR for data frames. */
3367 mrr.which = htole32(WPI_MRR_DATA);
3368 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3369 if (error != 0) {
3370 device_printf(sc->sc_dev,
3371 "could not setup MRR for data frames\n");
3372 return error;
3373 }
3374 return 0;
3375 }
3376
3377 static int
wpi_add_node(struct wpi_softc * sc,struct ieee80211_node * ni)3378 wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3379 {
3380 struct ieee80211com *ic = ni->ni_ic;
3381 struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
3382 struct wpi_node *wn = WPI_NODE(ni);
3383 struct wpi_node_info node;
3384 int error;
3385
3386 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3387
3388 if (wn->id == WPI_ID_UNDEFINED)
3389 return EINVAL;
3390
3391 memset(&node, 0, sizeof node);
3392 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3393 node.id = wn->id;
3394 node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3395 wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3396 node.action = htole32(WPI_ACTION_SET_RATE);
3397 node.antenna = WPI_ANTENNA_BOTH;
3398
3399 DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
3400 wn->id, ether_sprintf(ni->ni_macaddr));
3401
3402 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3403 if (error != 0) {
3404 device_printf(sc->sc_dev,
3405 "%s: wpi_cmd() call failed with error code %d\n", __func__,
3406 error);
3407 return error;
3408 }
3409
3410 if (wvp->wv_gtk != 0) {
3411 error = wpi_set_global_keys(ni);
3412 if (error != 0) {
3413 device_printf(sc->sc_dev,
3414 "%s: error while setting global keys\n", __func__);
3415 return ENXIO;
3416 }
3417 }
3418
3419 return 0;
3420 }
3421
3422 /*
3423 * Broadcast node is used to send group-addressed and management frames.
3424 */
3425 static int
wpi_add_broadcast_node(struct wpi_softc * sc,int async)3426 wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3427 {
3428 struct ieee80211com *ic = &sc->sc_ic;
3429 struct wpi_node_info node;
3430
3431 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3432
3433 memset(&node, 0, sizeof node);
3434 IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
3435 node.id = WPI_ID_BROADCAST;
3436 node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3437 wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3438 node.action = htole32(WPI_ACTION_SET_RATE);
3439 node.antenna = WPI_ANTENNA_BOTH;
3440
3441 DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
3442
3443 return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3444 }
3445
3446 static int
wpi_add_sta_node(struct wpi_softc * sc,struct ieee80211_node * ni)3447 wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3448 {
3449 struct wpi_node *wn = WPI_NODE(ni);
3450 int error;
3451
3452 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3453
3454 wn->id = wpi_add_node_entry_sta(sc);
3455
3456 if ((error = wpi_add_node(sc, ni)) != 0) {
3457 wpi_del_node_entry(sc, wn->id);
3458 wn->id = WPI_ID_UNDEFINED;
3459 return error;
3460 }
3461
3462 return 0;
3463 }
3464
3465 static int
wpi_add_ibss_node(struct wpi_softc * sc,struct ieee80211_node * ni)3466 wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3467 {
3468 struct wpi_node *wn = WPI_NODE(ni);
3469 int error;
3470
3471 KASSERT(wn->id == WPI_ID_UNDEFINED,
3472 ("the node %d was added before", wn->id));
3473
3474 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3475
3476 if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3477 device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3478 return ENOMEM;
3479 }
3480
3481 if ((error = wpi_add_node(sc, ni)) != 0) {
3482 wpi_del_node_entry(sc, wn->id);
3483 wn->id = WPI_ID_UNDEFINED;
3484 return error;
3485 }
3486
3487 return 0;
3488 }
3489
3490 static void
wpi_del_node(struct wpi_softc * sc,struct ieee80211_node * ni)3491 wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3492 {
3493 struct wpi_node *wn = WPI_NODE(ni);
3494 struct wpi_cmd_del_node node;
3495 int error;
3496
3497 KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
3498
3499 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3500
3501 memset(&node, 0, sizeof node);
3502 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3503 node.count = 1;
3504
3505 DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
3506 wn->id, ether_sprintf(ni->ni_macaddr));
3507
3508 error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3509 if (error != 0) {
3510 device_printf(sc->sc_dev,
3511 "%s: could not delete node %u, error %d\n", __func__,
3512 wn->id, error);
3513 }
3514 }
3515
3516 static int
wpi_updateedca(struct ieee80211com * ic)3517 wpi_updateedca(struct ieee80211com *ic)
3518 {
3519 #define WPI_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */
3520 struct wpi_softc *sc = ic->ic_softc;
3521 struct chanAccParams chp;
3522 struct wpi_edca_params cmd;
3523 int aci, error;
3524
3525 ieee80211_wme_ic_getparams(ic, &chp);
3526
3527 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3528
3529 memset(&cmd, 0, sizeof cmd);
3530 cmd.flags = htole32(WPI_EDCA_UPDATE);
3531 for (aci = 0; aci < WME_NUM_AC; aci++) {
3532 const struct wmeParams *ac = &chp.cap_wmeParams[aci];
3533 cmd.ac[aci].aifsn = ac->wmep_aifsn;
3534 cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3535 cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3536 cmd.ac[aci].txoplimit =
3537 htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3538
3539 DPRINTF(sc, WPI_DEBUG_EDCA,
3540 "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3541 "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3542 cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3543 cmd.ac[aci].txoplimit);
3544 }
3545 error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3546
3547 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3548
3549 return error;
3550 #undef WPI_EXP2
3551 }
3552
3553 static void
wpi_set_promisc(struct wpi_softc * sc)3554 wpi_set_promisc(struct wpi_softc *sc)
3555 {
3556 struct ieee80211com *ic = &sc->sc_ic;
3557 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3558 uint32_t promisc_filter;
3559
3560 promisc_filter = WPI_FILTER_CTL;
3561 if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
3562 promisc_filter |= WPI_FILTER_PROMISC;
3563
3564 if (ic->ic_promisc > 0)
3565 sc->rxon.filter |= htole32(promisc_filter);
3566 else
3567 sc->rxon.filter &= ~htole32(promisc_filter);
3568 }
3569
3570 static void
wpi_update_promisc(struct ieee80211com * ic)3571 wpi_update_promisc(struct ieee80211com *ic)
3572 {
3573 struct wpi_softc *sc = ic->ic_softc;
3574
3575 WPI_LOCK(sc);
3576 if (sc->sc_running == 0) {
3577 WPI_UNLOCK(sc);
3578 return;
3579 }
3580 WPI_UNLOCK(sc);
3581
3582 WPI_RXON_LOCK(sc);
3583 wpi_set_promisc(sc);
3584
3585 if (wpi_send_rxon(sc, 1, 1) != 0) {
3586 device_printf(sc->sc_dev, "%s: could not send RXON\n",
3587 __func__);
3588 }
3589 WPI_RXON_UNLOCK(sc);
3590 }
3591
3592 static void
wpi_update_mcast(struct ieee80211com * ic)3593 wpi_update_mcast(struct ieee80211com *ic)
3594 {
3595 /* Ignore */
3596 }
3597
3598 static void
wpi_set_led(struct wpi_softc * sc,uint8_t which,uint8_t off,uint8_t on)3599 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3600 {
3601 struct wpi_cmd_led led;
3602
3603 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3604
3605 led.which = which;
3606 led.unit = htole32(100000); /* on/off in unit of 100ms */
3607 led.off = off;
3608 led.on = on;
3609 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3610 }
3611
3612 static int
wpi_set_timing(struct wpi_softc * sc,struct ieee80211_node * ni)3613 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3614 {
3615 struct wpi_cmd_timing cmd;
3616 uint64_t val, mod;
3617
3618 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3619
3620 memset(&cmd, 0, sizeof cmd);
3621 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3622 cmd.bintval = htole16(ni->ni_intval);
3623 cmd.lintval = htole16(10);
3624
3625 /* Compute remaining time until next beacon. */
3626 val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3627 mod = le64toh(cmd.tstamp) % val;
3628 cmd.binitval = htole32((uint32_t)(val - mod));
3629
3630 DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3631 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3632
3633 return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3634 }
3635
3636 /*
3637 * This function is called periodically (every 60 seconds) to adjust output
3638 * power to temperature changes.
3639 */
3640 static void
wpi_power_calibration(struct wpi_softc * sc)3641 wpi_power_calibration(struct wpi_softc *sc)
3642 {
3643 int temp;
3644
3645 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3646
3647 /* Update sensor data. */
3648 temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3649 DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3650
3651 /* Sanity-check read value. */
3652 if (temp < -260 || temp > 25) {
3653 /* This can't be correct, ignore. */
3654 DPRINTF(sc, WPI_DEBUG_TEMP,
3655 "out-of-range temperature reported: %d\n", temp);
3656 return;
3657 }
3658
3659 DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3660
3661 /* Adjust Tx power if need be. */
3662 if (abs(temp - sc->temp) <= 6)
3663 return;
3664
3665 sc->temp = temp;
3666
3667 if (wpi_set_txpower(sc, 1) != 0) {
3668 /* just warn, too bad for the automatic calibration... */
3669 device_printf(sc->sc_dev,"could not adjust Tx power\n");
3670 }
3671 }
3672
3673 /*
3674 * Set TX power for current channel.
3675 */
3676 static int
wpi_set_txpower(struct wpi_softc * sc,int async)3677 wpi_set_txpower(struct wpi_softc *sc, int async)
3678 {
3679 struct wpi_power_group *group;
3680 struct wpi_cmd_txpower cmd;
3681 uint8_t chan;
3682 int idx, is_chan_5ghz, i;
3683
3684 /* Retrieve current channel from last RXON. */
3685 chan = sc->rxon.chan;
3686 is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0;
3687
3688 /* Find the TX power group to which this channel belongs. */
3689 if (is_chan_5ghz) {
3690 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3691 if (chan <= group->chan)
3692 break;
3693 } else
3694 group = &sc->groups[0];
3695
3696 memset(&cmd, 0, sizeof cmd);
3697 cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ;
3698 cmd.chan = htole16(chan);
3699
3700 /* Set TX power for all OFDM and CCK rates. */
3701 for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3702 /* Retrieve TX power for this channel/rate. */
3703 idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i);
3704
3705 cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3706
3707 if (is_chan_5ghz) {
3708 cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3709 cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3710 } else {
3711 cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3712 cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3713 }
3714 DPRINTF(sc, WPI_DEBUG_TEMP,
3715 "chan %d/ridx %d: power index %d\n", chan, i, idx);
3716 }
3717
3718 return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3719 }
3720
3721 /*
3722 * Determine Tx power index for a given channel/rate combination.
3723 * This takes into account the regulatory information from EEPROM and the
3724 * current temperature.
3725 */
3726 static int
wpi_get_power_index(struct wpi_softc * sc,struct wpi_power_group * group,uint8_t chan,int is_chan_5ghz,int ridx)3727 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3728 uint8_t chan, int is_chan_5ghz, int ridx)
3729 {
3730 /* Fixed-point arithmetic division using a n-bit fractional part. */
3731 #define fdivround(a, b, n) \
3732 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3733
3734 /* Linear interpolation. */
3735 #define interpolate(x, x1, y1, x2, y2, n) \
3736 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3737
3738 struct wpi_power_sample *sample;
3739 int pwr, idx;
3740
3741 /* Default TX power is group maximum TX power minus 3dB. */
3742 pwr = group->maxpwr / 2;
3743
3744 /* Decrease TX power for highest OFDM rates to reduce distortion. */
3745 switch (ridx) {
3746 case WPI_RIDX_OFDM36:
3747 pwr -= is_chan_5ghz ? 5 : 0;
3748 break;
3749 case WPI_RIDX_OFDM48:
3750 pwr -= is_chan_5ghz ? 10 : 7;
3751 break;
3752 case WPI_RIDX_OFDM54:
3753 pwr -= is_chan_5ghz ? 12 : 9;
3754 break;
3755 }
3756
3757 /* Never exceed the channel maximum allowed TX power. */
3758 pwr = min(pwr, sc->maxpwr[chan]);
3759
3760 /* Retrieve TX power index into gain tables from samples. */
3761 for (sample = group->samples; sample < &group->samples[3]; sample++)
3762 if (pwr > sample[1].power)
3763 break;
3764 /* Fixed-point linear interpolation using a 19-bit fractional part. */
3765 idx = interpolate(pwr, sample[0].power, sample[0].index,
3766 sample[1].power, sample[1].index, 19);
3767
3768 /*-
3769 * Adjust power index based on current temperature:
3770 * - if cooler than factory-calibrated: decrease output power
3771 * - if warmer than factory-calibrated: increase output power
3772 */
3773 idx -= (sc->temp - group->temp) * 11 / 100;
3774
3775 /* Decrease TX power for CCK rates (-5dB). */
3776 if (ridx >= WPI_RIDX_CCK1)
3777 idx += 10;
3778
3779 /* Make sure idx stays in a valid range. */
3780 if (idx < 0)
3781 return 0;
3782 if (idx > WPI_MAX_PWR_INDEX)
3783 return WPI_MAX_PWR_INDEX;
3784 return idx;
3785
3786 #undef interpolate
3787 #undef fdivround
3788 }
3789
3790 /*
3791 * Set STA mode power saving level (between 0 and 5).
3792 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3793 */
3794 static int
wpi_set_pslevel(struct wpi_softc * sc,uint8_t dtim,int level,int async)3795 wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3796 {
3797 struct wpi_pmgt_cmd cmd;
3798 const struct wpi_pmgt *pmgt;
3799 uint32_t max, reg;
3800 uint8_t skip_dtim;
3801 int i;
3802
3803 DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3804 "%s: dtim=%d, level=%d, async=%d\n",
3805 __func__, dtim, level, async);
3806
3807 /* Select which PS parameters to use. */
3808 if (dtim <= 10)
3809 pmgt = &wpi_pmgt[0][level];
3810 else
3811 pmgt = &wpi_pmgt[1][level];
3812
3813 memset(&cmd, 0, sizeof cmd);
3814 if (level != 0) /* not CAM */
3815 cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3816 /* Retrieve PCIe Active State Power Management (ASPM). */
3817 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1);
3818 if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S)) /* L0s Entry disabled. */
3819 cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3820
3821 cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3822 cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3823
3824 if (dtim == 0) {
3825 dtim = 1;
3826 skip_dtim = 0;
3827 } else
3828 skip_dtim = pmgt->skip_dtim;
3829
3830 if (skip_dtim != 0) {
3831 cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3832 max = pmgt->intval[4];
3833 if (max == (uint32_t)-1)
3834 max = dtim * (skip_dtim + 1);
3835 else if (max > dtim)
3836 max = rounddown(max, dtim);
3837 } else
3838 max = dtim;
3839
3840 for (i = 0; i < 5; i++)
3841 cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3842
3843 return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3844 }
3845
3846 static int
wpi_send_btcoex(struct wpi_softc * sc)3847 wpi_send_btcoex(struct wpi_softc *sc)
3848 {
3849 struct wpi_bluetooth cmd;
3850
3851 memset(&cmd, 0, sizeof cmd);
3852 cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3853 cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3854 cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3855 DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3856 __func__);
3857 return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3858 }
3859
3860 static int
wpi_send_rxon(struct wpi_softc * sc,int assoc,int async)3861 wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3862 {
3863 int error;
3864
3865 if (async)
3866 WPI_RXON_LOCK_ASSERT(sc);
3867
3868 if (assoc && wpi_check_bss_filter(sc) != 0) {
3869 struct wpi_assoc rxon_assoc;
3870
3871 rxon_assoc.flags = sc->rxon.flags;
3872 rxon_assoc.filter = sc->rxon.filter;
3873 rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3874 rxon_assoc.cck_mask = sc->rxon.cck_mask;
3875 rxon_assoc.reserved = 0;
3876
3877 error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3878 sizeof (struct wpi_assoc), async);
3879 if (error != 0) {
3880 device_printf(sc->sc_dev,
3881 "RXON_ASSOC command failed, error %d\n", error);
3882 return error;
3883 }
3884 } else {
3885 if (async) {
3886 WPI_NT_LOCK(sc);
3887 error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3888 sizeof (struct wpi_rxon), async);
3889 if (error == 0)
3890 wpi_clear_node_table(sc);
3891 WPI_NT_UNLOCK(sc);
3892 } else {
3893 error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3894 sizeof (struct wpi_rxon), async);
3895 if (error == 0)
3896 wpi_clear_node_table(sc);
3897 }
3898
3899 if (error != 0) {
3900 device_printf(sc->sc_dev,
3901 "RXON command failed, error %d\n", error);
3902 return error;
3903 }
3904
3905 /* Add broadcast node. */
3906 error = wpi_add_broadcast_node(sc, async);
3907 if (error != 0) {
3908 device_printf(sc->sc_dev,
3909 "could not add broadcast node, error %d\n", error);
3910 return error;
3911 }
3912 }
3913
3914 /* Configuration has changed, set Tx power accordingly. */
3915 if ((error = wpi_set_txpower(sc, async)) != 0) {
3916 device_printf(sc->sc_dev,
3917 "%s: could not set TX power, error %d\n", __func__, error);
3918 return error;
3919 }
3920
3921 return 0;
3922 }
3923
3924 /**
3925 * Configure the card to listen to a particular channel, this transisions the
3926 * card in to being able to receive frames from remote devices.
3927 */
3928 static int
wpi_config(struct wpi_softc * sc)3929 wpi_config(struct wpi_softc *sc)
3930 {
3931 struct ieee80211com *ic = &sc->sc_ic;
3932 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3933 struct ieee80211_channel *c = ic->ic_curchan;
3934 int error;
3935
3936 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3937
3938 /* Set power saving level to CAM during initialization. */
3939 if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3940 device_printf(sc->sc_dev,
3941 "%s: could not set power saving level\n", __func__);
3942 return error;
3943 }
3944
3945 /* Configure bluetooth coexistence. */
3946 if ((error = wpi_send_btcoex(sc)) != 0) {
3947 device_printf(sc->sc_dev,
3948 "could not configure bluetooth coexistence\n");
3949 return error;
3950 }
3951
3952 /* Configure adapter. */
3953 memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3954 IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3955
3956 /* Set default channel. */
3957 sc->rxon.chan = ieee80211_chan2ieee(ic, c);
3958 sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3959 if (IEEE80211_IS_CHAN_2GHZ(c))
3960 sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3961
3962 sc->rxon.filter = WPI_FILTER_MULTICAST;
3963 switch (ic->ic_opmode) {
3964 case IEEE80211_M_STA:
3965 sc->rxon.mode = WPI_MODE_STA;
3966 break;
3967 case IEEE80211_M_IBSS:
3968 sc->rxon.mode = WPI_MODE_IBSS;
3969 sc->rxon.filter |= WPI_FILTER_BEACON;
3970 break;
3971 case IEEE80211_M_HOSTAP:
3972 /* XXX workaround for beaconing */
3973 sc->rxon.mode = WPI_MODE_IBSS;
3974 sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
3975 break;
3976 case IEEE80211_M_AHDEMO:
3977 sc->rxon.mode = WPI_MODE_HOSTAP;
3978 break;
3979 case IEEE80211_M_MONITOR:
3980 sc->rxon.mode = WPI_MODE_MONITOR;
3981 break;
3982 default:
3983 device_printf(sc->sc_dev, "unknown opmode %d\n",
3984 ic->ic_opmode);
3985 return EINVAL;
3986 }
3987 sc->rxon.filter = htole32(sc->rxon.filter);
3988 wpi_set_promisc(sc);
3989 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */
3990 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */
3991
3992 if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3993 device_printf(sc->sc_dev, "%s: could not send RXON\n",
3994 __func__);
3995 return error;
3996 }
3997
3998 /* Setup rate scalling. */
3999 if ((error = wpi_mrr_setup(sc)) != 0) {
4000 device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
4001 error);
4002 return error;
4003 }
4004
4005 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4006
4007 return 0;
4008 }
4009
4010 static uint16_t
wpi_get_active_dwell_time(struct wpi_softc * sc,struct ieee80211_channel * c,uint8_t n_probes)4011 wpi_get_active_dwell_time(struct wpi_softc *sc,
4012 struct ieee80211_channel *c, uint8_t n_probes)
4013 {
4014 /* No channel? Default to 2GHz settings. */
4015 if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
4016 return (WPI_ACTIVE_DWELL_TIME_2GHZ +
4017 WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
4018 }
4019
4020 /* 5GHz dwell time. */
4021 return (WPI_ACTIVE_DWELL_TIME_5GHZ +
4022 WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
4023 }
4024
4025 /*
4026 * Limit the total dwell time.
4027 *
4028 * Returns the dwell time in milliseconds.
4029 */
4030 static uint16_t
wpi_limit_dwell(struct wpi_softc * sc,uint16_t dwell_time)4031 wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
4032 {
4033 struct ieee80211com *ic = &sc->sc_ic;
4034 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4035 uint16_t bintval = 0;
4036
4037 /* bintval is in TU (1.024mS) */
4038 if (vap != NULL)
4039 bintval = vap->iv_bss->ni_intval;
4040
4041 /*
4042 * If it's non-zero, we should calculate the minimum of
4043 * it and the DWELL_BASE.
4044 *
4045 * XXX Yes, the math should take into account that bintval
4046 * is 1.024mS, not 1mS..
4047 */
4048 if (bintval > 0) {
4049 DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
4050 bintval);
4051 return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2));
4052 }
4053
4054 /* No association context? Default. */
4055 return dwell_time;
4056 }
4057
4058 static uint16_t
wpi_get_passive_dwell_time(struct wpi_softc * sc,struct ieee80211_channel * c)4059 wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
4060 {
4061 uint16_t passive;
4062
4063 if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
4064 passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
4065 else
4066 passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
4067
4068 /* Clamp to the beacon interval if we're associated. */
4069 return (wpi_limit_dwell(sc, passive));
4070 }
4071
4072 static uint32_t
wpi_get_scan_pause_time(uint32_t time,uint16_t bintval)4073 wpi_get_scan_pause_time(uint32_t time, uint16_t bintval)
4074 {
4075 uint32_t mod = (time % bintval) * IEEE80211_DUR_TU;
4076 uint32_t nbeacons = time / bintval;
4077
4078 if (mod > WPI_PAUSE_MAX_TIME)
4079 mod = WPI_PAUSE_MAX_TIME;
4080
4081 return WPI_PAUSE_SCAN(nbeacons, mod);
4082 }
4083
4084 /*
4085 * Send a scan request to the firmware.
4086 */
4087 static int
wpi_scan(struct wpi_softc * sc,struct ieee80211_channel * c)4088 wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
4089 {
4090 struct ieee80211com *ic = &sc->sc_ic;
4091 struct ieee80211_scan_state *ss = ic->ic_scan;
4092 struct ieee80211vap *vap = ss->ss_vap;
4093 struct wpi_scan_hdr *hdr;
4094 struct wpi_cmd_data *tx;
4095 struct wpi_scan_essid *essids;
4096 struct wpi_scan_chan *chan;
4097 struct ieee80211_frame *wh;
4098 struct ieee80211_rateset *rs;
4099 uint16_t bintval, buflen, dwell_active, dwell_passive;
4100 uint8_t *buf, *frm, i, nssid;
4101 int bgscan, error;
4102
4103 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4104
4105 /*
4106 * We are absolutely not allowed to send a scan command when another
4107 * scan command is pending.
4108 */
4109 if (callout_pending(&sc->scan_timeout)) {
4110 device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
4111 __func__);
4112 error = EAGAIN;
4113 goto fail;
4114 }
4115
4116 bgscan = wpi_check_bss_filter(sc);
4117 bintval = vap->iv_bss->ni_intval;
4118 if (bgscan != 0 &&
4119 bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) {
4120 error = EOPNOTSUPP;
4121 goto fail;
4122 }
4123
4124 buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4125 if (buf == NULL) {
4126 device_printf(sc->sc_dev,
4127 "%s: could not allocate buffer for scan command\n",
4128 __func__);
4129 error = ENOMEM;
4130 goto fail;
4131 }
4132 hdr = (struct wpi_scan_hdr *)buf;
4133
4134 /*
4135 * Move to the next channel if no packets are received within 10 msecs
4136 * after sending the probe request.
4137 */
4138 hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT);
4139 hdr->quiet_threshold = htole16(1);
4140
4141 if (bgscan != 0) {
4142 /*
4143 * Max needs to be greater than active and passive and quiet!
4144 * It's also in microseconds!
4145 */
4146 hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
4147 hdr->pause_svc = htole32(wpi_get_scan_pause_time(100,
4148 bintval));
4149 }
4150
4151 hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
4152
4153 tx = (struct wpi_cmd_data *)(hdr + 1);
4154 tx->flags = htole32(WPI_TX_AUTO_SEQ);
4155 tx->id = WPI_ID_BROADCAST;
4156 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
4157
4158 if (IEEE80211_IS_CHAN_5GHZ(c)) {
4159 /* Send probe requests at 6Mbps. */
4160 tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
4161 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4162 } else {
4163 hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
4164 /* Send probe requests at 1Mbps. */
4165 tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4166 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4167 }
4168
4169 essids = (struct wpi_scan_essid *)(tx + 1);
4170 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
4171 for (i = 0; i < nssid; i++) {
4172 essids[i].id = IEEE80211_ELEMID_SSID;
4173 essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
4174 memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
4175 #ifdef WPI_DEBUG
4176 if (sc->sc_debug & WPI_DEBUG_SCAN) {
4177 printf("Scanning Essid: ");
4178 ieee80211_print_essid(essids[i].data, essids[i].len);
4179 printf("\n");
4180 }
4181 #endif
4182 }
4183
4184 /*
4185 * Build a probe request frame. Most of the following code is a
4186 * copy & paste of what is done in net80211.
4187 */
4188 wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
4189 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4190 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4191 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4192 IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr);
4193 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
4194 IEEE80211_ADDR_COPY(wh->i_addr3, ieee80211broadcastaddr);
4195
4196 frm = (uint8_t *)(wh + 1);
4197 frm = ieee80211_add_ssid(frm, NULL, 0);
4198 frm = ieee80211_add_rates(frm, rs);
4199 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4200 frm = ieee80211_add_xrates(frm, rs);
4201
4202 /* Set length of probe request. */
4203 tx->len = htole16(frm - (uint8_t *)wh);
4204
4205 /*
4206 * Construct information about the channel that we
4207 * want to scan. The firmware expects this to be directly
4208 * after the scan probe request
4209 */
4210 chan = (struct wpi_scan_chan *)frm;
4211 chan->chan = ieee80211_chan2ieee(ic, c);
4212 chan->flags = 0;
4213 if (nssid) {
4214 hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
4215 chan->flags |= WPI_CHAN_NPBREQS(nssid);
4216 } else
4217 hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
4218
4219 if (!IEEE80211_IS_CHAN_PASSIVE(c))
4220 chan->flags |= WPI_CHAN_ACTIVE;
4221
4222 /*
4223 * Calculate the active/passive dwell times.
4224 */
4225 dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
4226 dwell_passive = wpi_get_passive_dwell_time(sc, c);
4227
4228 /* Make sure they're valid. */
4229 if (dwell_active > dwell_passive)
4230 dwell_active = dwell_passive;
4231
4232 chan->active = htole16(dwell_active);
4233 chan->passive = htole16(dwell_passive);
4234
4235 chan->dsp_gain = 0x6e; /* Default level */
4236
4237 if (IEEE80211_IS_CHAN_5GHZ(c))
4238 chan->rf_gain = 0x3b;
4239 else
4240 chan->rf_gain = 0x28;
4241
4242 DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
4243 chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
4244
4245 hdr->nchan++;
4246
4247 if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) {
4248 /* XXX Force probe request transmission. */
4249 memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan));
4250
4251 chan++;
4252
4253 /* Reduce unnecessary delay. */
4254 chan->flags = 0;
4255 chan->passive = chan->active = hdr->quiet_time;
4256
4257 hdr->nchan++;
4258 }
4259
4260 chan++;
4261
4262 buflen = (uint8_t *)chan - buf;
4263 hdr->len = htole16(buflen);
4264
4265 DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
4266 hdr->nchan);
4267 error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
4268 free(buf, M_DEVBUF);
4269
4270 if (error != 0)
4271 goto fail;
4272
4273 callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
4274
4275 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4276
4277 return 0;
4278
4279 fail: DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4280
4281 return error;
4282 }
4283
4284 static int
wpi_auth(struct wpi_softc * sc,struct ieee80211vap * vap)4285 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
4286 {
4287 struct ieee80211com *ic = vap->iv_ic;
4288 struct ieee80211_node *ni = vap->iv_bss;
4289 struct ieee80211_channel *c = ni->ni_chan;
4290 int error;
4291
4292 WPI_RXON_LOCK(sc);
4293
4294 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4295
4296 /* Update adapter configuration. */
4297 sc->rxon.associd = 0;
4298 sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
4299 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4300 sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4301 sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4302 if (IEEE80211_IS_CHAN_2GHZ(c))
4303 sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4304 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4305 sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4306 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4307 sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4308 if (IEEE80211_IS_CHAN_A(c)) {
4309 sc->rxon.cck_mask = 0;
4310 sc->rxon.ofdm_mask = 0x15;
4311 } else if (IEEE80211_IS_CHAN_B(c)) {
4312 sc->rxon.cck_mask = 0x03;
4313 sc->rxon.ofdm_mask = 0;
4314 } else {
4315 /* Assume 802.11b/g. */
4316 sc->rxon.cck_mask = 0x0f;
4317 sc->rxon.ofdm_mask = 0x15;
4318 }
4319
4320 DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
4321 sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
4322 sc->rxon.ofdm_mask);
4323
4324 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4325 device_printf(sc->sc_dev, "%s: could not send RXON\n",
4326 __func__);
4327 }
4328
4329 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4330
4331 WPI_RXON_UNLOCK(sc);
4332
4333 return error;
4334 }
4335
4336 static int
wpi_config_beacon(struct wpi_vap * wvp)4337 wpi_config_beacon(struct wpi_vap *wvp)
4338 {
4339 struct ieee80211vap *vap = &wvp->wv_vap;
4340 struct ieee80211com *ic = vap->iv_ic;
4341 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4342 struct wpi_buf *bcn = &wvp->wv_bcbuf;
4343 struct wpi_softc *sc = ic->ic_softc;
4344 struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
4345 struct ieee80211_tim_ie *tie;
4346 struct mbuf *m;
4347 uint8_t *ptr;
4348 int error;
4349
4350 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4351
4352 WPI_VAP_LOCK_ASSERT(wvp);
4353
4354 cmd->len = htole16(bcn->m->m_pkthdr.len);
4355 cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4356 wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4357
4358 /* XXX seems to be unused */
4359 if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
4360 tie = (struct ieee80211_tim_ie *) bo->bo_tim;
4361 ptr = mtod(bcn->m, uint8_t *);
4362
4363 cmd->tim = htole16(bo->bo_tim - ptr);
4364 cmd->timsz = tie->tim_len;
4365 }
4366
4367 /* Necessary for recursion in ieee80211_beacon_update(). */
4368 m = bcn->m;
4369 bcn->m = m_dup(m, M_NOWAIT);
4370 if (bcn->m == NULL) {
4371 device_printf(sc->sc_dev,
4372 "%s: could not copy beacon frame\n", __func__);
4373 error = ENOMEM;
4374 goto end;
4375 }
4376
4377 if ((error = wpi_cmd2(sc, bcn)) != 0) {
4378 device_printf(sc->sc_dev,
4379 "%s: could not update beacon frame, error %d", __func__,
4380 error);
4381 m_freem(bcn->m);
4382 }
4383
4384 /* Restore mbuf. */
4385 end: bcn->m = m;
4386
4387 return error;
4388 }
4389
4390 static int
wpi_setup_beacon(struct wpi_softc * sc,struct ieee80211_node * ni)4391 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
4392 {
4393 struct ieee80211vap *vap = ni->ni_vap;
4394 struct wpi_vap *wvp = WPI_VAP(vap);
4395 struct wpi_buf *bcn = &wvp->wv_bcbuf;
4396 struct mbuf *m;
4397 int error;
4398
4399 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4400
4401 if (ni->ni_chan == IEEE80211_CHAN_ANYC)
4402 return EINVAL;
4403
4404 m = ieee80211_beacon_alloc(ni);
4405 if (m == NULL) {
4406 device_printf(sc->sc_dev,
4407 "%s: could not allocate beacon frame\n", __func__);
4408 return ENOMEM;
4409 }
4410
4411 WPI_VAP_LOCK(wvp);
4412 if (bcn->m != NULL)
4413 m_freem(bcn->m);
4414
4415 bcn->m = m;
4416
4417 error = wpi_config_beacon(wvp);
4418 WPI_VAP_UNLOCK(wvp);
4419
4420 return error;
4421 }
4422
4423 static void
wpi_update_beacon(struct ieee80211vap * vap,int item)4424 wpi_update_beacon(struct ieee80211vap *vap, int item)
4425 {
4426 struct wpi_softc *sc = vap->iv_ic->ic_softc;
4427 struct wpi_vap *wvp = WPI_VAP(vap);
4428 struct wpi_buf *bcn = &wvp->wv_bcbuf;
4429 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4430 struct ieee80211_node *ni = vap->iv_bss;
4431 int mcast = 0;
4432
4433 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4434
4435 WPI_VAP_LOCK(wvp);
4436 if (bcn->m == NULL) {
4437 bcn->m = ieee80211_beacon_alloc(ni);
4438 if (bcn->m == NULL) {
4439 device_printf(sc->sc_dev,
4440 "%s: could not allocate beacon frame\n", __func__);
4441
4442 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
4443 __func__);
4444
4445 WPI_VAP_UNLOCK(wvp);
4446 return;
4447 }
4448 }
4449 WPI_VAP_UNLOCK(wvp);
4450
4451 if (item == IEEE80211_BEACON_TIM)
4452 mcast = 1; /* TODO */
4453
4454 setbit(bo->bo_flags, item);
4455 ieee80211_beacon_update(ni, bcn->m, mcast);
4456
4457 WPI_VAP_LOCK(wvp);
4458 wpi_config_beacon(wvp);
4459 WPI_VAP_UNLOCK(wvp);
4460
4461 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4462 }
4463
4464 static void
wpi_newassoc(struct ieee80211_node * ni,int isnew)4465 wpi_newassoc(struct ieee80211_node *ni, int isnew)
4466 {
4467 struct ieee80211vap *vap = ni->ni_vap;
4468 struct wpi_softc *sc = ni->ni_ic->ic_softc;
4469 struct wpi_node *wn = WPI_NODE(ni);
4470 int error;
4471
4472 WPI_NT_LOCK(sc);
4473
4474 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4475
4476 if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
4477 if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
4478 device_printf(sc->sc_dev,
4479 "%s: could not add IBSS node, error %d\n",
4480 __func__, error);
4481 }
4482 }
4483 WPI_NT_UNLOCK(sc);
4484 }
4485
4486 static int
wpi_run(struct wpi_softc * sc,struct ieee80211vap * vap)4487 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
4488 {
4489 struct ieee80211com *ic = vap->iv_ic;
4490 struct ieee80211_node *ni = vap->iv_bss;
4491 struct ieee80211_channel *c = ni->ni_chan;
4492 int error;
4493
4494 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4495
4496 if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4497 /* Link LED blinks while monitoring. */
4498 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4499 return 0;
4500 }
4501
4502 /* XXX kernel panic workaround */
4503 if (c == IEEE80211_CHAN_ANYC) {
4504 device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4505 __func__);
4506 return EINVAL;
4507 }
4508
4509 if ((error = wpi_set_timing(sc, ni)) != 0) {
4510 device_printf(sc->sc_dev,
4511 "%s: could not set timing, error %d\n", __func__, error);
4512 return error;
4513 }
4514
4515 /* Update adapter configuration. */
4516 WPI_RXON_LOCK(sc);
4517 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4518 sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4519 sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4520 sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4521 if (IEEE80211_IS_CHAN_2GHZ(c))
4522 sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4523 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4524 sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4525 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4526 sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4527 if (IEEE80211_IS_CHAN_A(c)) {
4528 sc->rxon.cck_mask = 0;
4529 sc->rxon.ofdm_mask = 0x15;
4530 } else if (IEEE80211_IS_CHAN_B(c)) {
4531 sc->rxon.cck_mask = 0x03;
4532 sc->rxon.ofdm_mask = 0;
4533 } else {
4534 /* Assume 802.11b/g. */
4535 sc->rxon.cck_mask = 0x0f;
4536 sc->rxon.ofdm_mask = 0x15;
4537 }
4538 sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4539
4540 DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4541 sc->rxon.chan, sc->rxon.flags);
4542
4543 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4544 WPI_RXON_UNLOCK(sc);
4545 device_printf(sc->sc_dev, "%s: could not send RXON\n",
4546 __func__);
4547 return error;
4548 }
4549
4550 /* Start periodic calibration timer. */
4551 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4552
4553 WPI_RXON_UNLOCK(sc);
4554
4555 if (vap->iv_opmode == IEEE80211_M_IBSS ||
4556 vap->iv_opmode == IEEE80211_M_HOSTAP) {
4557 if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4558 device_printf(sc->sc_dev,
4559 "%s: could not setup beacon, error %d\n", __func__,
4560 error);
4561 return error;
4562 }
4563 }
4564
4565 if (vap->iv_opmode == IEEE80211_M_STA) {
4566 /* Add BSS node. */
4567 WPI_NT_LOCK(sc);
4568 error = wpi_add_sta_node(sc, ni);
4569 WPI_NT_UNLOCK(sc);
4570 if (error != 0) {
4571 device_printf(sc->sc_dev,
4572 "%s: could not add BSS node, error %d\n", __func__,
4573 error);
4574 return error;
4575 }
4576 }
4577
4578 /* Link LED always on while associated. */
4579 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4580
4581 /* Enable power-saving mode if requested by user. */
4582 if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
4583 vap->iv_opmode != IEEE80211_M_IBSS)
4584 (void)wpi_set_pslevel(sc, 0, 3, 1);
4585
4586 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4587
4588 return 0;
4589 }
4590
4591 static int
wpi_load_key(struct ieee80211_node * ni,const struct ieee80211_key * k)4592 wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4593 {
4594 const struct ieee80211_cipher *cip = k->wk_cipher;
4595 struct ieee80211vap *vap = ni->ni_vap;
4596 struct wpi_softc *sc = ni->ni_ic->ic_softc;
4597 struct wpi_node *wn = WPI_NODE(ni);
4598 struct wpi_node_info node;
4599 uint16_t kflags;
4600 int error;
4601
4602 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4603
4604 if (wpi_check_node_entry(sc, wn->id) == 0) {
4605 device_printf(sc->sc_dev, "%s: node does not exist\n",
4606 __func__);
4607 return 0;
4608 }
4609
4610 switch (cip->ic_cipher) {
4611 case IEEE80211_CIPHER_AES_CCM:
4612 kflags = WPI_KFLAG_CCMP;
4613 break;
4614
4615 default:
4616 device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
4617 cip->ic_cipher);
4618 return 0;
4619 }
4620
4621 kflags |= WPI_KFLAG_KID(k->wk_keyix);
4622 if (k->wk_flags & IEEE80211_KEY_GROUP)
4623 kflags |= WPI_KFLAG_MULTICAST;
4624
4625 memset(&node, 0, sizeof node);
4626 node.id = wn->id;
4627 node.control = WPI_NODE_UPDATE;
4628 node.flags = WPI_FLAG_KEY_SET;
4629 node.kflags = htole16(kflags);
4630 memcpy(node.key, k->wk_key, k->wk_keylen);
4631 again:
4632 DPRINTF(sc, WPI_DEBUG_KEY,
4633 "%s: setting %s key id %d for node %d (%s)\n", __func__,
4634 (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
4635 node.id, ether_sprintf(ni->ni_macaddr));
4636
4637 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4638 if (error != 0) {
4639 device_printf(sc->sc_dev, "can't update node info, error %d\n",
4640 error);
4641 return !error;
4642 }
4643
4644 if (!(kflags & WPI_KFLAG_MULTICAST) &&
4645 ieee80211_is_key_global(vap, k)) {
4646 kflags |= WPI_KFLAG_MULTICAST;
4647 node.kflags = htole16(kflags);
4648
4649 goto again;
4650 }
4651
4652 return 1;
4653 }
4654
4655 static void
wpi_load_key_cb(void * arg,struct ieee80211_node * ni)4656 wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
4657 {
4658 const struct ieee80211_key *k = arg;
4659 struct ieee80211vap *vap = ni->ni_vap;
4660 struct wpi_softc *sc = ni->ni_ic->ic_softc;
4661 struct wpi_node *wn = WPI_NODE(ni);
4662 int error;
4663
4664 if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4665 return;
4666
4667 WPI_NT_LOCK(sc);
4668 error = wpi_load_key(ni, k);
4669 WPI_NT_UNLOCK(sc);
4670
4671 if (error == 0) {
4672 device_printf(sc->sc_dev, "%s: error while setting key\n",
4673 __func__);
4674 }
4675 }
4676
4677 static int
wpi_set_global_keys(struct ieee80211_node * ni)4678 wpi_set_global_keys(struct ieee80211_node *ni)
4679 {
4680 struct ieee80211vap *vap = ni->ni_vap;
4681 struct ieee80211_key *wk = &vap->iv_nw_keys[0];
4682 int error = 1;
4683
4684 for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
4685 if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4686 error = wpi_load_key(ni, wk);
4687
4688 return !error;
4689 }
4690
4691 static int
wpi_del_key(struct ieee80211_node * ni,const struct ieee80211_key * k)4692 wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4693 {
4694 struct ieee80211vap *vap = ni->ni_vap;
4695 struct wpi_softc *sc = ni->ni_ic->ic_softc;
4696 struct wpi_node *wn = WPI_NODE(ni);
4697 struct wpi_node_info node;
4698 uint16_t kflags;
4699 int error;
4700
4701 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4702
4703 if (wpi_check_node_entry(sc, wn->id) == 0) {
4704 DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
4705 return 1; /* Nothing to do. */
4706 }
4707
4708 kflags = WPI_KFLAG_KID(k->wk_keyix);
4709 if (k->wk_flags & IEEE80211_KEY_GROUP)
4710 kflags |= WPI_KFLAG_MULTICAST;
4711
4712 memset(&node, 0, sizeof node);
4713 node.id = wn->id;
4714 node.control = WPI_NODE_UPDATE;
4715 node.flags = WPI_FLAG_KEY_SET;
4716 node.kflags = htole16(kflags);
4717 again:
4718 DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
4719 __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
4720 k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
4721
4722 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4723 if (error != 0) {
4724 device_printf(sc->sc_dev, "can't update node info, error %d\n",
4725 error);
4726 return !error;
4727 }
4728
4729 if (!(kflags & WPI_KFLAG_MULTICAST) &&
4730 ieee80211_is_key_global(vap, k)) {
4731 kflags |= WPI_KFLAG_MULTICAST;
4732 node.kflags = htole16(kflags);
4733
4734 goto again;
4735 }
4736
4737 return 1;
4738 }
4739
4740 static void
wpi_del_key_cb(void * arg,struct ieee80211_node * ni)4741 wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
4742 {
4743 const struct ieee80211_key *k = arg;
4744 struct ieee80211vap *vap = ni->ni_vap;
4745 struct wpi_softc *sc = ni->ni_ic->ic_softc;
4746 struct wpi_node *wn = WPI_NODE(ni);
4747 int error;
4748
4749 if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4750 return;
4751
4752 WPI_NT_LOCK(sc);
4753 error = wpi_del_key(ni, k);
4754 WPI_NT_UNLOCK(sc);
4755
4756 if (error == 0) {
4757 device_printf(sc->sc_dev, "%s: error while deleting key\n",
4758 __func__);
4759 }
4760 }
4761
4762 static int
wpi_process_key(struct ieee80211vap * vap,const struct ieee80211_key * k,int set)4763 wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
4764 int set)
4765 {
4766 struct ieee80211com *ic = vap->iv_ic;
4767 struct wpi_softc *sc = ic->ic_softc;
4768 struct wpi_vap *wvp = WPI_VAP(vap);
4769 struct ieee80211_node *ni;
4770 int error, ni_ref = 0;
4771
4772 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4773
4774 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
4775 /* Not for us. */
4776 return 1;
4777 }
4778
4779 if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
4780 /* XMIT keys are handled in wpi_tx_data(). */
4781 return 1;
4782 }
4783
4784 /* Handle group keys. */
4785 if (ieee80211_is_key_global(vap, k)) {
4786 WPI_NT_LOCK(sc);
4787 if (set)
4788 wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
4789 else
4790 wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
4791 WPI_NT_UNLOCK(sc);
4792
4793 if (vap->iv_state == IEEE80211_S_RUN) {
4794 ieee80211_iterate_nodes(&ic->ic_sta,
4795 set ? wpi_load_key_cb : wpi_del_key_cb,
4796 __DECONST(void *, k));
4797 }
4798
4799 return 1;
4800 }
4801
4802 switch (vap->iv_opmode) {
4803 case IEEE80211_M_STA:
4804 ni = vap->iv_bss;
4805 break;
4806
4807 case IEEE80211_M_IBSS:
4808 case IEEE80211_M_AHDEMO:
4809 case IEEE80211_M_HOSTAP:
4810 ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
4811 if (ni == NULL)
4812 return 0; /* should not happen */
4813
4814 ni_ref = 1;
4815 break;
4816
4817 default:
4818 device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
4819 vap->iv_opmode);
4820 return 0;
4821 }
4822
4823 WPI_NT_LOCK(sc);
4824 if (set)
4825 error = wpi_load_key(ni, k);
4826 else
4827 error = wpi_del_key(ni, k);
4828 WPI_NT_UNLOCK(sc);
4829
4830 if (ni_ref)
4831 ieee80211_node_decref(ni);
4832
4833 return error;
4834 }
4835
4836 static int
wpi_key_set(struct ieee80211vap * vap,const struct ieee80211_key * k)4837 wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
4838 {
4839 return wpi_process_key(vap, k, 1);
4840 }
4841
4842 static int
wpi_key_delete(struct ieee80211vap * vap,const struct ieee80211_key * k)4843 wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4844 {
4845 return wpi_process_key(vap, k, 0);
4846 }
4847
4848 /*
4849 * This function is called after the runtime firmware notifies us of its
4850 * readiness (called in a process context).
4851 */
4852 static int
wpi_post_alive(struct wpi_softc * sc)4853 wpi_post_alive(struct wpi_softc *sc)
4854 {
4855 int ntries, error;
4856
4857 /* Check (again) that the radio is not disabled. */
4858 if ((error = wpi_nic_lock(sc)) != 0)
4859 return error;
4860
4861 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4862
4863 /* NB: Runtime firmware must be up and running. */
4864 if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4865 device_printf(sc->sc_dev,
4866 "RF switch: radio disabled (%s)\n", __func__);
4867 wpi_nic_unlock(sc);
4868 return EPERM; /* :-) */
4869 }
4870 wpi_nic_unlock(sc);
4871
4872 /* Wait for thermal sensor to calibrate. */
4873 for (ntries = 0; ntries < 1000; ntries++) {
4874 if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4875 break;
4876 DELAY(10);
4877 }
4878
4879 if (ntries == 1000) {
4880 device_printf(sc->sc_dev,
4881 "timeout waiting for thermal sensor calibration\n");
4882 return ETIMEDOUT;
4883 }
4884
4885 DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4886 return 0;
4887 }
4888
4889 /*
4890 * The firmware boot code is small and is intended to be copied directly into
4891 * the NIC internal memory (no DMA transfer).
4892 */
4893 static int
wpi_load_bootcode(struct wpi_softc * sc,const uint8_t * ucode,uint32_t size)4894 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, uint32_t size)
4895 {
4896 int error, ntries;
4897
4898 DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4899
4900 size /= sizeof (uint32_t);
4901
4902 if ((error = wpi_nic_lock(sc)) != 0)
4903 return error;
4904
4905 /* Copy microcode image into NIC memory. */
4906 wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4907 (const uint32_t *)ucode, size);
4908
4909 wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4910 wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4911 wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4912
4913 /* Start boot load now. */
4914 wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4915
4916 /* Wait for transfer to complete. */
4917 for (ntries = 0; ntries < 1000; ntries++) {
4918 uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4919 DPRINTF(sc, WPI_DEBUG_HW,
4920 "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4921 WPI_FH_TX_STATUS_IDLE(6),
4922 status & WPI_FH_TX_STATUS_IDLE(6));
4923 if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4924 DPRINTF(sc, WPI_DEBUG_HW,
4925 "Status Match! - ntries = %d\n", ntries);
4926 break;
4927 }
4928 DELAY(10);
4929 }
4930 if (ntries == 1000) {
4931 device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4932 __func__);
4933 wpi_nic_unlock(sc);
4934 return ETIMEDOUT;
4935 }
4936
4937 /* Enable boot after power up. */
4938 wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4939
4940 wpi_nic_unlock(sc);
4941 return 0;
4942 }
4943
4944 static int
wpi_load_firmware(struct wpi_softc * sc)4945 wpi_load_firmware(struct wpi_softc *sc)
4946 {
4947 struct wpi_fw_info *fw = &sc->fw;
4948 struct wpi_dma_info *dma = &sc->fw_dma;
4949 int error;
4950
4951 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4952
4953 /* Copy initialization sections into pre-allocated DMA-safe memory. */
4954 memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4955 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4956 memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4957 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4958
4959 /* Tell adapter where to find initialization sections. */
4960 if ((error = wpi_nic_lock(sc)) != 0)
4961 return error;
4962 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4963 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4964 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4965 dma->paddr + WPI_FW_DATA_MAXSZ);
4966 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4967 wpi_nic_unlock(sc);
4968
4969 /* Load firmware boot code. */
4970 error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4971 if (error != 0) {
4972 device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4973 __func__);
4974 return error;
4975 }
4976
4977 /* Now press "execute". */
4978 WPI_WRITE(sc, WPI_RESET, 0);
4979
4980 /* Wait at most one second for first alive notification. */
4981 if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4982 device_printf(sc->sc_dev,
4983 "%s: timeout waiting for adapter to initialize, error %d\n",
4984 __func__, error);
4985 return error;
4986 }
4987
4988 /* Copy runtime sections into pre-allocated DMA-safe memory. */
4989 memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4990 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4991 memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4992 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4993
4994 /* Tell adapter where to find runtime sections. */
4995 if ((error = wpi_nic_lock(sc)) != 0)
4996 return error;
4997 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4998 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4999 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
5000 dma->paddr + WPI_FW_DATA_MAXSZ);
5001 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
5002 WPI_FW_UPDATED | fw->main.textsz);
5003 wpi_nic_unlock(sc);
5004
5005 return 0;
5006 }
5007
5008 static int
wpi_read_firmware(struct wpi_softc * sc)5009 wpi_read_firmware(struct wpi_softc *sc)
5010 {
5011 const struct firmware *fp;
5012 struct wpi_fw_info *fw = &sc->fw;
5013 const struct wpi_firmware_hdr *hdr;
5014 int error;
5015
5016 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5017
5018 DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5019 "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
5020
5021 WPI_UNLOCK(sc);
5022 fp = firmware_get(WPI_FW_NAME);
5023 WPI_LOCK(sc);
5024
5025 if (fp == NULL) {
5026 device_printf(sc->sc_dev,
5027 "could not load firmware image '%s'\n", WPI_FW_NAME);
5028 return EINVAL;
5029 }
5030
5031 sc->fw_fp = fp;
5032
5033 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
5034 device_printf(sc->sc_dev,
5035 "firmware file too short: %zu bytes\n", fp->datasize);
5036 error = EINVAL;
5037 goto fail;
5038 }
5039
5040 fw->size = fp->datasize;
5041 fw->data = (const uint8_t *)fp->data;
5042
5043 /* Extract firmware header information. */
5044 hdr = (const struct wpi_firmware_hdr *)fw->data;
5045
5046 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW |
5047 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
5048
5049 fw->main.textsz = le32toh(hdr->rtextsz);
5050 fw->main.datasz = le32toh(hdr->rdatasz);
5051 fw->init.textsz = le32toh(hdr->itextsz);
5052 fw->init.datasz = le32toh(hdr->idatasz);
5053 fw->boot.textsz = le32toh(hdr->btextsz);
5054 fw->boot.datasz = 0;
5055
5056 /* Sanity-check firmware header. */
5057 if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
5058 fw->main.datasz > WPI_FW_DATA_MAXSZ ||
5059 fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
5060 fw->init.datasz > WPI_FW_DATA_MAXSZ ||
5061 fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
5062 (fw->boot.textsz & 3) != 0) {
5063 device_printf(sc->sc_dev, "invalid firmware header\n");
5064 error = EINVAL;
5065 goto fail;
5066 }
5067
5068 /* Check that all firmware sections fit. */
5069 if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
5070 fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5071 device_printf(sc->sc_dev,
5072 "firmware file too short: %zu bytes\n", fw->size);
5073 error = EINVAL;
5074 goto fail;
5075 }
5076
5077 /* Get pointers to firmware sections. */
5078 fw->main.text = (const uint8_t *)(hdr + 1);
5079 fw->main.data = fw->main.text + fw->main.textsz;
5080 fw->init.text = fw->main.data + fw->main.datasz;
5081 fw->init.data = fw->init.text + fw->init.textsz;
5082 fw->boot.text = fw->init.data + fw->init.datasz;
5083
5084 DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5085 "Firmware Version: Major %d, Minor %d, Driver %d, \n"
5086 "runtime (text: %u, data: %u) init (text: %u, data %u) "
5087 "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
5088 fw->main.textsz, fw->main.datasz,
5089 fw->init.textsz, fw->init.datasz, fw->boot.textsz);
5090
5091 DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
5092 DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
5093 DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
5094 DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
5095 DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
5096
5097 return 0;
5098
5099 fail: wpi_unload_firmware(sc);
5100 return error;
5101 }
5102
5103 /**
5104 * Free the referenced firmware image
5105 */
5106 static void
wpi_unload_firmware(struct wpi_softc * sc)5107 wpi_unload_firmware(struct wpi_softc *sc)
5108 {
5109 if (sc->fw_fp != NULL) {
5110 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
5111 sc->fw_fp = NULL;
5112 }
5113 }
5114
5115 static int
wpi_clock_wait(struct wpi_softc * sc)5116 wpi_clock_wait(struct wpi_softc *sc)
5117 {
5118 int ntries;
5119
5120 /* Set "initialization complete" bit. */
5121 WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5122
5123 /* Wait for clock stabilization. */
5124 for (ntries = 0; ntries < 2500; ntries++) {
5125 if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
5126 return 0;
5127 DELAY(100);
5128 }
5129 device_printf(sc->sc_dev,
5130 "%s: timeout waiting for clock stabilization\n", __func__);
5131
5132 return ETIMEDOUT;
5133 }
5134
5135 static int
wpi_apm_init(struct wpi_softc * sc)5136 wpi_apm_init(struct wpi_softc *sc)
5137 {
5138 uint32_t reg;
5139 int error;
5140
5141 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5142
5143 /* Disable L0s exit timer (NMI bug workaround). */
5144 WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
5145 /* Don't wait for ICH L0s (ICH bug workaround). */
5146 WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
5147
5148 /* Set FH wait threshold to max (HW bug under stress workaround). */
5149 WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
5150
5151 /* Retrieve PCIe Active State Power Management (ASPM). */
5152 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1);
5153 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5154 if (reg & PCIEM_LINK_CTL_ASPMC_L1) /* L1 Entry enabled. */
5155 WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5156 else
5157 WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5158
5159 WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
5160
5161 /* Wait for clock stabilization before accessing prph. */
5162 if ((error = wpi_clock_wait(sc)) != 0)
5163 return error;
5164
5165 if ((error = wpi_nic_lock(sc)) != 0)
5166 return error;
5167 /* Cleanup. */
5168 wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
5169 wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200);
5170
5171 /* Enable DMA and BSM (Bootstrap State Machine). */
5172 wpi_prph_write(sc, WPI_APMG_CLK_EN,
5173 WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
5174 DELAY(20);
5175 /* Disable L1-Active. */
5176 wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
5177 wpi_nic_unlock(sc);
5178
5179 return 0;
5180 }
5181
5182 static void
wpi_apm_stop_master(struct wpi_softc * sc)5183 wpi_apm_stop_master(struct wpi_softc *sc)
5184 {
5185 int ntries;
5186
5187 /* Stop busmaster DMA activity. */
5188 WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
5189
5190 if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
5191 WPI_GP_CNTRL_MAC_PS)
5192 return; /* Already asleep. */
5193
5194 for (ntries = 0; ntries < 100; ntries++) {
5195 if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
5196 return;
5197 DELAY(10);
5198 }
5199 device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5200 __func__);
5201 }
5202
5203 static void
wpi_apm_stop(struct wpi_softc * sc)5204 wpi_apm_stop(struct wpi_softc *sc)
5205 {
5206 wpi_apm_stop_master(sc);
5207
5208 /* Reset the entire device. */
5209 WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
5210 DELAY(10);
5211 /* Clear "initialization complete" bit. */
5212 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5213 }
5214
5215 static void
wpi_nic_config(struct wpi_softc * sc)5216 wpi_nic_config(struct wpi_softc *sc)
5217 {
5218 uint32_t rev;
5219
5220 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5221
5222 /* voodoo from the Linux "driver".. */
5223 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
5224 if ((rev & 0xc0) == 0x40)
5225 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
5226 else if (!(rev & 0x80))
5227 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
5228
5229 if (sc->cap == 0x80)
5230 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
5231
5232 if ((sc->rev & 0xf0) == 0xd0)
5233 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5234 else
5235 WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5236
5237 if (sc->type > 1)
5238 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
5239 }
5240
5241 static int
wpi_hw_init(struct wpi_softc * sc)5242 wpi_hw_init(struct wpi_softc *sc)
5243 {
5244 uint8_t chnl;
5245 int ntries, error;
5246
5247 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5248
5249 /* Clear pending interrupts. */
5250 WPI_WRITE(sc, WPI_INT, 0xffffffff);
5251
5252 if ((error = wpi_apm_init(sc)) != 0) {
5253 device_printf(sc->sc_dev,
5254 "%s: could not power ON adapter, error %d\n", __func__,
5255 error);
5256 return error;
5257 }
5258
5259 /* Select VMAIN power source. */
5260 if ((error = wpi_nic_lock(sc)) != 0)
5261 return error;
5262 wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
5263 wpi_nic_unlock(sc);
5264 /* Spin until VMAIN gets selected. */
5265 for (ntries = 0; ntries < 5000; ntries++) {
5266 if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
5267 break;
5268 DELAY(10);
5269 }
5270 if (ntries == 5000) {
5271 device_printf(sc->sc_dev, "timeout selecting power source\n");
5272 return ETIMEDOUT;
5273 }
5274
5275 /* Perform adapter initialization. */
5276 wpi_nic_config(sc);
5277
5278 /* Initialize RX ring. */
5279 if ((error = wpi_nic_lock(sc)) != 0)
5280 return error;
5281 /* Set physical address of RX ring. */
5282 WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
5283 /* Set physical address of RX read pointer. */
5284 WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
5285 offsetof(struct wpi_shared, next));
5286 WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
5287 /* Enable RX. */
5288 WPI_WRITE(sc, WPI_FH_RX_CONFIG,
5289 WPI_FH_RX_CONFIG_DMA_ENA |
5290 WPI_FH_RX_CONFIG_RDRBD_ENA |
5291 WPI_FH_RX_CONFIG_WRSTATUS_ENA |
5292 WPI_FH_RX_CONFIG_MAXFRAG |
5293 WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
5294 WPI_FH_RX_CONFIG_IRQ_DST_HOST |
5295 WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
5296 (void)WPI_READ(sc, WPI_FH_RSSR_TBL); /* barrier */
5297 wpi_nic_unlock(sc);
5298 WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
5299
5300 /* Initialize TX rings. */
5301 if ((error = wpi_nic_lock(sc)) != 0)
5302 return error;
5303 wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2); /* bypass mode */
5304 wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1); /* enable RA0 */
5305 /* Enable all 6 TX rings. */
5306 wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
5307 wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
5308 wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
5309 wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
5310 wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
5311 /* Set physical address of TX rings. */
5312 WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
5313 WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
5314
5315 /* Enable all DMA channels. */
5316 for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5317 WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
5318 WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
5319 WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
5320 }
5321 wpi_nic_unlock(sc);
5322 (void)WPI_READ(sc, WPI_FH_TX_BASE); /* barrier */
5323
5324 /* Clear "radio off" and "commands blocked" bits. */
5325 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5326 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
5327
5328 /* Clear pending interrupts. */
5329 WPI_WRITE(sc, WPI_INT, 0xffffffff);
5330 /* Enable interrupts. */
5331 WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
5332
5333 /* _Really_ make sure "radio off" bit is cleared! */
5334 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5335 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5336
5337 if ((error = wpi_load_firmware(sc)) != 0) {
5338 device_printf(sc->sc_dev,
5339 "%s: could not load firmware, error %d\n", __func__,
5340 error);
5341 return error;
5342 }
5343 /* Wait at most one second for firmware alive notification. */
5344 if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5345 device_printf(sc->sc_dev,
5346 "%s: timeout waiting for adapter to initialize, error %d\n",
5347 __func__, error);
5348 return error;
5349 }
5350
5351 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5352
5353 /* Do post-firmware initialization. */
5354 return wpi_post_alive(sc);
5355 }
5356
5357 static void
wpi_hw_stop(struct wpi_softc * sc)5358 wpi_hw_stop(struct wpi_softc *sc)
5359 {
5360 uint8_t chnl, qid;
5361 int ntries;
5362
5363 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5364
5365 if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
5366 wpi_nic_lock(sc);
5367
5368 WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
5369
5370 /* Disable interrupts. */
5371 WPI_WRITE(sc, WPI_INT_MASK, 0);
5372 WPI_WRITE(sc, WPI_INT, 0xffffffff);
5373 WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
5374
5375 /* Make sure we no longer hold the NIC lock. */
5376 wpi_nic_unlock(sc);
5377
5378 if (wpi_nic_lock(sc) == 0) {
5379 /* Stop TX scheduler. */
5380 wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
5381 wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
5382
5383 /* Stop all DMA channels. */
5384 for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5385 WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
5386 for (ntries = 0; ntries < 200; ntries++) {
5387 if (WPI_READ(sc, WPI_FH_TX_STATUS) &
5388 WPI_FH_TX_STATUS_IDLE(chnl))
5389 break;
5390 DELAY(10);
5391 }
5392 }
5393 wpi_nic_unlock(sc);
5394 }
5395
5396 /* Stop RX ring. */
5397 wpi_reset_rx_ring(sc);
5398
5399 /* Reset all TX rings. */
5400 for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
5401 wpi_reset_tx_ring(sc, &sc->txq[qid]);
5402
5403 if (wpi_nic_lock(sc) == 0) {
5404 wpi_prph_write(sc, WPI_APMG_CLK_DIS,
5405 WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
5406 wpi_nic_unlock(sc);
5407 }
5408 DELAY(5);
5409 /* Power OFF adapter. */
5410 wpi_apm_stop(sc);
5411 }
5412
5413 static void
wpi_radio_on(void * arg0,int pending)5414 wpi_radio_on(void *arg0, int pending)
5415 {
5416 struct wpi_softc *sc = arg0;
5417 struct ieee80211com *ic = &sc->sc_ic;
5418 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5419
5420 device_printf(sc->sc_dev, "RF switch: radio enabled\n");
5421
5422 WPI_LOCK(sc);
5423 callout_stop(&sc->watchdog_rfkill);
5424 WPI_UNLOCK(sc);
5425
5426 if (vap != NULL)
5427 ieee80211_init(vap);
5428 }
5429
5430 static void
wpi_radio_off(void * arg0,int pending)5431 wpi_radio_off(void *arg0, int pending)
5432 {
5433 struct wpi_softc *sc = arg0;
5434 struct ieee80211com *ic = &sc->sc_ic;
5435 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5436
5437 device_printf(sc->sc_dev, "RF switch: radio disabled\n");
5438
5439 ieee80211_notify_radio(ic, 0);
5440 wpi_stop(sc);
5441 if (vap != NULL)
5442 ieee80211_stop(vap);
5443
5444 WPI_LOCK(sc);
5445 callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
5446 WPI_UNLOCK(sc);
5447 }
5448
5449 static int
wpi_init(struct wpi_softc * sc)5450 wpi_init(struct wpi_softc *sc)
5451 {
5452 int error = 0;
5453
5454 WPI_LOCK(sc);
5455
5456 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5457
5458 if (sc->sc_running != 0)
5459 goto end;
5460
5461 /* Check that the radio is not disabled by hardware switch. */
5462 if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
5463 device_printf(sc->sc_dev,
5464 "RF switch: radio disabled (%s)\n", __func__);
5465 callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
5466 sc);
5467 error = EINPROGRESS;
5468 goto end;
5469 }
5470
5471 /* Read firmware images from the filesystem. */
5472 if ((error = wpi_read_firmware(sc)) != 0) {
5473 device_printf(sc->sc_dev,
5474 "%s: could not read firmware, error %d\n", __func__,
5475 error);
5476 goto end;
5477 }
5478
5479 sc->sc_running = 1;
5480
5481 /* Initialize hardware and upload firmware. */
5482 error = wpi_hw_init(sc);
5483 wpi_unload_firmware(sc);
5484 if (error != 0) {
5485 device_printf(sc->sc_dev,
5486 "%s: could not initialize hardware, error %d\n", __func__,
5487 error);
5488 goto fail;
5489 }
5490
5491 /* Configure adapter now that it is ready. */
5492 if ((error = wpi_config(sc)) != 0) {
5493 device_printf(sc->sc_dev,
5494 "%s: could not configure device, error %d\n", __func__,
5495 error);
5496 goto fail;
5497 }
5498
5499 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5500
5501 WPI_UNLOCK(sc);
5502
5503 return 0;
5504
5505 fail: wpi_stop_locked(sc);
5506
5507 end: DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
5508 WPI_UNLOCK(sc);
5509
5510 return error;
5511 }
5512
5513 static void
wpi_stop_locked(struct wpi_softc * sc)5514 wpi_stop_locked(struct wpi_softc *sc)
5515 {
5516
5517 WPI_LOCK_ASSERT(sc);
5518
5519 if (sc->sc_running == 0)
5520 return;
5521
5522 WPI_TX_LOCK(sc);
5523 WPI_TXQ_LOCK(sc);
5524 sc->sc_running = 0;
5525 WPI_TXQ_UNLOCK(sc);
5526 WPI_TX_UNLOCK(sc);
5527
5528 WPI_TXQ_STATE_LOCK(sc);
5529 callout_stop(&sc->tx_timeout);
5530 WPI_TXQ_STATE_UNLOCK(sc);
5531
5532 WPI_RXON_LOCK(sc);
5533 callout_stop(&sc->scan_timeout);
5534 callout_stop(&sc->calib_to);
5535 WPI_RXON_UNLOCK(sc);
5536
5537 /* Power OFF hardware. */
5538 wpi_hw_stop(sc);
5539 }
5540
5541 static void
wpi_stop(struct wpi_softc * sc)5542 wpi_stop(struct wpi_softc *sc)
5543 {
5544 WPI_LOCK(sc);
5545 wpi_stop_locked(sc);
5546 WPI_UNLOCK(sc);
5547 }
5548
5549 /*
5550 * Callback from net80211 to start a scan.
5551 */
5552 static void
wpi_scan_start(struct ieee80211com * ic)5553 wpi_scan_start(struct ieee80211com *ic)
5554 {
5555 struct wpi_softc *sc = ic->ic_softc;
5556
5557 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
5558 }
5559
5560 /*
5561 * Callback from net80211 to terminate a scan.
5562 */
5563 static void
wpi_scan_end(struct ieee80211com * ic)5564 wpi_scan_end(struct ieee80211com *ic)
5565 {
5566 struct wpi_softc *sc = ic->ic_softc;
5567 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5568
5569 if (vap->iv_state == IEEE80211_S_RUN)
5570 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
5571 }
5572
5573 /**
5574 * Called by the net80211 framework to indicate to the driver
5575 * that the channel should be changed
5576 */
5577 static void
wpi_set_channel(struct ieee80211com * ic)5578 wpi_set_channel(struct ieee80211com *ic)
5579 {
5580 const struct ieee80211_channel *c = ic->ic_curchan;
5581 struct wpi_softc *sc = ic->ic_softc;
5582 int error;
5583
5584 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5585
5586 WPI_LOCK(sc);
5587 sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
5588 sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
5589 WPI_UNLOCK(sc);
5590 WPI_TX_LOCK(sc);
5591 sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
5592 sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
5593 WPI_TX_UNLOCK(sc);
5594
5595 /*
5596 * Only need to set the channel in Monitor mode. AP scanning and auth
5597 * are already taken care of by their respective firmware commands.
5598 */
5599 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5600 WPI_RXON_LOCK(sc);
5601 sc->rxon.chan = ieee80211_chan2ieee(ic, c);
5602 if (IEEE80211_IS_CHAN_2GHZ(c)) {
5603 sc->rxon.flags |= htole32(WPI_RXON_AUTO |
5604 WPI_RXON_24GHZ);
5605 } else {
5606 sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
5607 WPI_RXON_24GHZ);
5608 }
5609 if ((error = wpi_send_rxon(sc, 0, 1)) != 0)
5610 device_printf(sc->sc_dev,
5611 "%s: error %d setting channel\n", __func__,
5612 error);
5613 WPI_RXON_UNLOCK(sc);
5614 }
5615 }
5616
5617 /**
5618 * Called by net80211 to indicate that we need to scan the current
5619 * channel. The channel is previously be set via the wpi_set_channel
5620 * callback.
5621 */
5622 static void
wpi_scan_curchan(struct ieee80211_scan_state * ss,unsigned long maxdwell)5623 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
5624 {
5625 struct ieee80211vap *vap = ss->ss_vap;
5626 struct ieee80211com *ic = vap->iv_ic;
5627 struct wpi_softc *sc = ic->ic_softc;
5628 int error;
5629
5630 WPI_RXON_LOCK(sc);
5631 error = wpi_scan(sc, ic->ic_curchan);
5632 WPI_RXON_UNLOCK(sc);
5633 if (error != 0)
5634 ieee80211_cancel_scan(vap);
5635 }
5636
5637 /**
5638 * Called by the net80211 framework to indicate
5639 * the minimum dwell time has been met, terminate the scan.
5640 * We don't actually terminate the scan as the firmware will notify
5641 * us when it's finished and we have no way to interrupt it.
5642 */
5643 static void
wpi_scan_mindwell(struct ieee80211_scan_state * ss)5644 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
5645 {
5646 /* NB: don't try to abort scan; wait for firmware to finish */
5647 }
5648