xref: /titanic_50/usr/src/uts/common/io/wpi/wpi.c (revision 0dc2366f7b9f9f36e10909b1e95edbf2a261c2ac)
1 /*
2  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Copyright (c) 2006
8  *	Damien Bergamini <damien.bergamini@free.fr>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/byteorder.h>
29 #include <sys/conf.h>
30 #include <sys/cmn_err.h>
31 #include <sys/stat.h>
32 #include <sys/ddi.h>
33 #include <sys/sunddi.h>
34 #include <sys/strsubr.h>
35 #include <sys/ethernet.h>
36 #include <inet/common.h>
37 #include <inet/nd.h>
38 #include <inet/mi.h>
39 #include <sys/note.h>
40 #include <sys/stream.h>
41 #include <sys/strsun.h>
42 #include <sys/modctl.h>
43 #include <sys/devops.h>
44 #include <sys/dlpi.h>
45 #include <sys/mac_provider.h>
46 #include <sys/mac_wifi.h>
47 #include <sys/net80211.h>
48 #include <sys/net80211_proto.h>
49 #include <sys/varargs.h>
50 #include <sys/policy.h>
51 #include <sys/pci.h>
52 
53 #include "wpireg.h"
54 #include "wpivar.h"
55 #include <inet/wifi_ioctl.h>
56 
57 #ifdef DEBUG
58 #define	WPI_DEBUG_80211		(1 << 0)
59 #define	WPI_DEBUG_CMD		(1 << 1)
60 #define	WPI_DEBUG_DMA		(1 << 2)
61 #define	WPI_DEBUG_EEPROM	(1 << 3)
62 #define	WPI_DEBUG_FW		(1 << 4)
63 #define	WPI_DEBUG_HW		(1 << 5)
64 #define	WPI_DEBUG_INTR		(1 << 6)
65 #define	WPI_DEBUG_MRR		(1 << 7)
66 #define	WPI_DEBUG_PIO		(1 << 8)
67 #define	WPI_DEBUG_RX		(1 << 9)
68 #define	WPI_DEBUG_SCAN		(1 << 10)
69 #define	WPI_DEBUG_TX		(1 << 11)
70 #define	WPI_DEBUG_RATECTL	(1 << 12)
71 #define	WPI_DEBUG_RADIO		(1 << 13)
72 #define	WPI_DEBUG_RESUME	(1 << 14)
73 uint32_t wpi_dbg_flags = 0;
74 #define	WPI_DBG(x) \
75 	wpi_dbg x
76 #else
77 #define	WPI_DBG(x)
78 #endif
79 
80 static void	*wpi_soft_state_p = NULL;
81 static uint8_t wpi_fw_bin [] = {
82 #include "fw-wpi/ipw3945.ucode.hex"
83 };
84 
85 /* DMA attributes for a shared page */
86 static ddi_dma_attr_t sh_dma_attr = {
87 	DMA_ATTR_V0,	/* version of this structure */
88 	0,		/* lowest usable address */
89 	0xffffffffU,	/* highest usable address */
90 	0xffffffffU,	/* maximum DMAable byte count */
91 	0x1000,		/* alignment in bytes */
92 	0x1000,		/* burst sizes (any?) */
93 	1,		/* minimum transfer */
94 	0xffffffffU,	/* maximum transfer */
95 	0xffffffffU,	/* maximum segment length */
96 	1,		/* maximum number of segments */
97 	1,		/* granularity */
98 	0,		/* flags (reserved) */
99 };
100 
101 /* DMA attributes for a ring descriptor */
102 static ddi_dma_attr_t ring_desc_dma_attr = {
103 	DMA_ATTR_V0,	/* version of this structure */
104 	0,		/* lowest usable address */
105 	0xffffffffU,	/* highest usable address */
106 	0xffffffffU,	/* maximum DMAable byte count */
107 	0x4000,		/* alignment in bytes */
108 	0x100,		/* burst sizes (any?) */
109 	1,		/* minimum transfer */
110 	0xffffffffU,	/* maximum transfer */
111 	0xffffffffU,	/* maximum segment length */
112 	1,		/* maximum number of segments */
113 	1,		/* granularity */
114 	0,		/* flags (reserved) */
115 };
116 
117 
118 /* DMA attributes for a tx cmd */
119 static ddi_dma_attr_t tx_cmd_dma_attr = {
120 	DMA_ATTR_V0,	/* version of this structure */
121 	0,		/* lowest usable address */
122 	0xffffffffU,	/* highest usable address */
123 	0xffffffffU,	/* maximum DMAable byte count */
124 	4,		/* alignment in bytes */
125 	0x100,		/* burst sizes (any?) */
126 	1,		/* minimum transfer */
127 	0xffffffffU,	/* maximum transfer */
128 	0xffffffffU,	/* maximum segment length */
129 	1,		/* maximum number of segments */
130 	1,		/* granularity */
131 	0,		/* flags (reserved) */
132 };
133 
134 /* DMA attributes for a rx buffer */
135 static ddi_dma_attr_t rx_buffer_dma_attr = {
136 	DMA_ATTR_V0,	/* version of this structure */
137 	0,		/* lowest usable address */
138 	0xffffffffU,	/* highest usable address */
139 	0xffffffffU,	/* maximum DMAable byte count */
140 	1,		/* alignment in bytes */
141 	0x100,		/* burst sizes (any?) */
142 	1,		/* minimum transfer */
143 	0xffffffffU,	/* maximum transfer */
144 	0xffffffffU,	/* maximum segment length */
145 	1,		/* maximum number of segments */
146 	1,		/* granularity */
147 	0,		/* flags (reserved) */
148 };
149 
150 /*
151  * DMA attributes for a tx buffer.
152  * the maximum number of segments is 4 for the hardware.
153  * now all the wifi drivers put the whole frame in a single
154  * descriptor, so we define the maximum  number of segments 4,
155  * just the same as the rx_buffer. we consider leverage the HW
156  * ability in the future, that is why we don't define rx and tx
157  * buffer_dma_attr as the same.
158  */
159 static ddi_dma_attr_t tx_buffer_dma_attr = {
160 	DMA_ATTR_V0,	/* version of this structure */
161 	0,		/* lowest usable address */
162 	0xffffffffU,	/* highest usable address */
163 	0xffffffffU,	/* maximum DMAable byte count */
164 	1,		/* alignment in bytes */
165 	0x100,		/* burst sizes (any?) */
166 	1,		/* minimum transfer */
167 	0xffffffffU,	/* maximum transfer */
168 	0xffffffffU,	/* maximum segment length */
169 	1,		/* maximum number of segments */
170 	1,		/* granularity */
171 	0,		/* flags (reserved) */
172 };
173 
174 /* DMA attributes for a load firmware */
175 static ddi_dma_attr_t fw_buffer_dma_attr = {
176 	DMA_ATTR_V0,	/* version of this structure */
177 	0,		/* lowest usable address */
178 	0xffffffffU,	/* highest usable address */
179 	0x7fffffff,	/* maximum DMAable byte count */
180 	4,		/* alignment in bytes */
181 	0x100,		/* burst sizes (any?) */
182 	1,		/* minimum transfer */
183 	0xffffffffU,	/* maximum transfer */
184 	0xffffffffU,	/* maximum segment length */
185 	4,		/* maximum number of segments */
186 	1,		/* granularity */
187 	0,		/* flags (reserved) */
188 };
189 
190 /* regs access attributes */
191 static ddi_device_acc_attr_t wpi_reg_accattr = {
192 	DDI_DEVICE_ATTR_V0,
193 	DDI_STRUCTURE_LE_ACC,
194 	DDI_STRICTORDER_ACC,
195 	DDI_DEFAULT_ACC
196 };
197 
198 /* DMA access attributes */
199 static ddi_device_acc_attr_t wpi_dma_accattr = {
200 	DDI_DEVICE_ATTR_V0,
201 	DDI_NEVERSWAP_ACC,
202 	DDI_STRICTORDER_ACC,
203 	DDI_DEFAULT_ACC
204 };
205 
206 static int	wpi_ring_init(wpi_sc_t *);
207 static void	wpi_ring_free(wpi_sc_t *);
208 static int	wpi_alloc_shared(wpi_sc_t *);
209 static void	wpi_free_shared(wpi_sc_t *);
210 static int	wpi_alloc_fw_dma(wpi_sc_t *);
211 static void	wpi_free_fw_dma(wpi_sc_t *);
212 static int	wpi_alloc_rx_ring(wpi_sc_t *);
213 static void	wpi_reset_rx_ring(wpi_sc_t *);
214 static void	wpi_free_rx_ring(wpi_sc_t *);
215 static int	wpi_alloc_tx_ring(wpi_sc_t *, wpi_tx_ring_t *, int, int);
216 static void	wpi_reset_tx_ring(wpi_sc_t *, wpi_tx_ring_t *);
217 static void	wpi_free_tx_ring(wpi_sc_t *, wpi_tx_ring_t *);
218 
219 static ieee80211_node_t *wpi_node_alloc(ieee80211com_t *);
220 static void	wpi_node_free(ieee80211_node_t *);
221 static int	wpi_newstate(ieee80211com_t *, enum ieee80211_state, int);
222 static int	wpi_key_set(ieee80211com_t *, const struct ieee80211_key *,
223     const uint8_t mac[IEEE80211_ADDR_LEN]);
224 static void	wpi_mem_lock(wpi_sc_t *);
225 static void	wpi_mem_unlock(wpi_sc_t *);
226 static uint32_t	wpi_mem_read(wpi_sc_t *, uint16_t);
227 static void	wpi_mem_write(wpi_sc_t *, uint16_t, uint32_t);
228 static void	wpi_mem_write_region_4(wpi_sc_t *, uint16_t,
229 		    const uint32_t *, int);
230 static uint16_t	wpi_read_prom_word(wpi_sc_t *, uint32_t);
231 static int	wpi_load_microcode(wpi_sc_t *);
232 static int	wpi_load_firmware(wpi_sc_t *, uint32_t);
233 static void	wpi_rx_intr(wpi_sc_t *, wpi_rx_desc_t *,
234 		    wpi_rx_data_t *);
235 static void	wpi_tx_intr(wpi_sc_t *, wpi_rx_desc_t *,
236 		    wpi_rx_data_t *);
237 static void	wpi_cmd_intr(wpi_sc_t *, wpi_rx_desc_t *);
238 static uint_t	wpi_intr(caddr_t);
239 static uint_t	wpi_notif_softintr(caddr_t);
240 static uint8_t	wpi_plcp_signal(int);
241 static void	wpi_read_eeprom(wpi_sc_t *);
242 static int	wpi_cmd(wpi_sc_t *, int, const void *, int, int);
243 static int	wpi_mrr_setup(wpi_sc_t *);
244 static void	wpi_set_led(wpi_sc_t *, uint8_t, uint8_t, uint8_t);
245 static int	wpi_auth(wpi_sc_t *);
246 static int	wpi_scan(wpi_sc_t *);
247 static int	wpi_config(wpi_sc_t *);
248 static void	wpi_stop_master(wpi_sc_t *);
249 static int	wpi_power_up(wpi_sc_t *);
250 static int	wpi_reset(wpi_sc_t *);
251 static void	wpi_hw_config(wpi_sc_t *);
252 static int	wpi_init(wpi_sc_t *);
253 static void	wpi_stop(wpi_sc_t *);
254 static int	wpi_quiesce(dev_info_t *dip);
255 static void	wpi_amrr_init(wpi_amrr_t *);
256 static void	wpi_amrr_timeout(wpi_sc_t *);
257 static void	wpi_amrr_ratectl(void *, ieee80211_node_t *);
258 
259 static int wpi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
260 static int wpi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
261 
262 /*
263  * GLD specific operations
264  */
265 static int	wpi_m_stat(void *arg, uint_t stat, uint64_t *val);
266 static int	wpi_m_start(void *arg);
267 static void	wpi_m_stop(void *arg);
268 static int	wpi_m_unicst(void *arg, const uint8_t *macaddr);
269 static int	wpi_m_multicst(void *arg, boolean_t add, const uint8_t *m);
270 static int	wpi_m_promisc(void *arg, boolean_t on);
271 static mblk_t  *wpi_m_tx(void *arg, mblk_t *mp);
272 static void	wpi_m_ioctl(void *arg, queue_t *wq, mblk_t *mp);
273 static int	wpi_m_setprop(void *arg, const char *pr_name,
274     mac_prop_id_t wldp_pr_num, uint_t wldp_length, const void *wldp_buf);
275 static int	wpi_m_getprop(void *arg, const char *pr_name,
276     mac_prop_id_t wldp_pr_num, uint_t wldp_lenth, void *wldp_buf);
277 static void	wpi_m_propinfo(void *arg, const char *pr_name,
278     mac_prop_id_t wldp_pr_num, mac_prop_info_handle_t mph);
279 static void	wpi_destroy_locks(wpi_sc_t *sc);
280 static int	wpi_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type);
281 static void	wpi_thread(wpi_sc_t *sc);
282 static int	wpi_fast_recover(wpi_sc_t *sc);
283 
284 /*
285  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
286  */
287 static const struct ieee80211_rateset wpi_rateset_11b =
288 	{ 4, { 2, 4, 11, 22 } };
289 
290 static const struct ieee80211_rateset wpi_rateset_11g =
291 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
292 
293 static const uint8_t wpi_ridx_to_signal[] = {
294 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
295 	/* R1-R4 (ral/ural is R4-R1) */
296 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
297 	/* CCK: device-dependent */
298 	10, 20, 55, 110
299 };
300 
301 /*
302  * For mfthread only
303  */
304 extern pri_t minclsyspri;
305 
306 /*
307  * Module Loading Data & Entry Points
308  */
309 DDI_DEFINE_STREAM_OPS(wpi_devops, nulldev, nulldev, wpi_attach,
310     wpi_detach, nodev, NULL, D_MP, NULL, wpi_quiesce);
311 
312 static struct modldrv wpi_modldrv = {
313 	&mod_driverops,
314 	"Intel(R) PRO/Wireless 3945ABG driver",
315 	&wpi_devops
316 };
317 
318 static struct modlinkage wpi_modlinkage = {
319 	MODREV_1,
320 	&wpi_modldrv,
321 	NULL
322 };
323 
324 int
_init(void)325 _init(void)
326 {
327 	int	status;
328 
329 	status = ddi_soft_state_init(&wpi_soft_state_p,
330 	    sizeof (wpi_sc_t), 1);
331 	if (status != DDI_SUCCESS)
332 		return (status);
333 
334 	mac_init_ops(&wpi_devops, "wpi");
335 	status = mod_install(&wpi_modlinkage);
336 	if (status != DDI_SUCCESS) {
337 		mac_fini_ops(&wpi_devops);
338 		ddi_soft_state_fini(&wpi_soft_state_p);
339 	}
340 
341 	return (status);
342 }
343 
344 int
_fini(void)345 _fini(void)
346 {
347 	int status;
348 
349 	status = mod_remove(&wpi_modlinkage);
350 	if (status == DDI_SUCCESS) {
351 		mac_fini_ops(&wpi_devops);
352 		ddi_soft_state_fini(&wpi_soft_state_p);
353 	}
354 
355 	return (status);
356 }
357 
358 int
_info(struct modinfo * mip)359 _info(struct modinfo *mip)
360 {
361 	return (mod_info(&wpi_modlinkage, mip));
362 }
363 
364 /*
365  * Mac Call Back entries
366  */
367 mac_callbacks_t	wpi_m_callbacks = {
368 	MC_IOCTL | MC_SETPROP | MC_GETPROP | MC_PROPINFO,
369 	wpi_m_stat,
370 	wpi_m_start,
371 	wpi_m_stop,
372 	wpi_m_promisc,
373 	wpi_m_multicst,
374 	wpi_m_unicst,
375 	wpi_m_tx,
376 	NULL,
377 	wpi_m_ioctl,
378 	NULL,
379 	NULL,
380 	NULL,
381 	wpi_m_setprop,
382 	wpi_m_getprop,
383 	wpi_m_propinfo
384 };
385 
386 #ifdef DEBUG
387 void
wpi_dbg(uint32_t flags,const char * fmt,...)388 wpi_dbg(uint32_t flags, const char *fmt, ...)
389 {
390 	va_list	ap;
391 
392 	if (flags & wpi_dbg_flags) {
393 		va_start(ap, fmt);
394 		vcmn_err(CE_NOTE, fmt, ap);
395 		va_end(ap);
396 	}
397 }
398 #endif
399 /*
400  * device operations
401  */
402 int
wpi_attach(dev_info_t * dip,ddi_attach_cmd_t cmd)403 wpi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
404 {
405 	wpi_sc_t		*sc;
406 	ddi_acc_handle_t	cfg_handle;
407 	caddr_t			cfg_base;
408 	ieee80211com_t	*ic;
409 	int			instance, err, i;
410 	char			strbuf[32];
411 	wifi_data_t		wd = { 0 };
412 	mac_register_t		*macp;
413 
414 	switch (cmd) {
415 	case DDI_ATTACH:
416 		break;
417 	case DDI_RESUME:
418 		sc = ddi_get_soft_state(wpi_soft_state_p,
419 		    ddi_get_instance(dip));
420 		ASSERT(sc != NULL);
421 
422 		mutex_enter(&sc->sc_glock);
423 		sc->sc_flags &= ~WPI_F_SUSPEND;
424 		mutex_exit(&sc->sc_glock);
425 
426 		if (sc->sc_flags & WPI_F_RUNNING)
427 			(void) wpi_init(sc);
428 
429 		mutex_enter(&sc->sc_glock);
430 		sc->sc_flags |= WPI_F_LAZY_RESUME;
431 		mutex_exit(&sc->sc_glock);
432 
433 		WPI_DBG((WPI_DEBUG_RESUME, "wpi: resume \n"));
434 		return (DDI_SUCCESS);
435 	default:
436 		err = DDI_FAILURE;
437 		goto attach_fail1;
438 	}
439 
440 	instance = ddi_get_instance(dip);
441 	err = ddi_soft_state_zalloc(wpi_soft_state_p, instance);
442 	if (err != DDI_SUCCESS) {
443 		cmn_err(CE_WARN,
444 		    "wpi_attach(): failed to allocate soft state\n");
445 		goto attach_fail1;
446 	}
447 	sc = ddi_get_soft_state(wpi_soft_state_p, instance);
448 	sc->sc_dip = dip;
449 
450 	err = ddi_regs_map_setup(dip, 0, &cfg_base, 0, 0,
451 	    &wpi_reg_accattr, &cfg_handle);
452 	if (err != DDI_SUCCESS) {
453 		cmn_err(CE_WARN,
454 		    "wpi_attach(): failed to map config spaces regs\n");
455 		goto attach_fail2;
456 	}
457 	sc->sc_rev = ddi_get8(cfg_handle,
458 	    (uint8_t *)(cfg_base + PCI_CONF_REVID));
459 	ddi_put8(cfg_handle, (uint8_t *)(cfg_base + 0x41), 0);
460 	sc->sc_clsz = ddi_get16(cfg_handle,
461 	    (uint16_t *)(cfg_base + PCI_CONF_CACHE_LINESZ));
462 	ddi_regs_map_free(&cfg_handle);
463 	if (!sc->sc_clsz)
464 		sc->sc_clsz = 16;
465 	sc->sc_clsz = (sc->sc_clsz << 2);
466 	sc->sc_dmabuf_sz = roundup(0x1000 + sizeof (struct ieee80211_frame) +
467 	    IEEE80211_MTU + IEEE80211_CRC_LEN +
468 	    (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
469 	    IEEE80211_WEP_CRCLEN), sc->sc_clsz);
470 	/*
471 	 * Map operating registers
472 	 */
473 	err = ddi_regs_map_setup(dip, 1, &sc->sc_base,
474 	    0, 0, &wpi_reg_accattr, &sc->sc_handle);
475 	if (err != DDI_SUCCESS) {
476 		cmn_err(CE_WARN,
477 		    "wpi_attach(): failed to map device regs\n");
478 		goto attach_fail2;
479 	}
480 
481 	/*
482 	 * Allocate shared page.
483 	 */
484 	err = wpi_alloc_shared(sc);
485 	if (err != DDI_SUCCESS) {
486 		cmn_err(CE_WARN, "failed to allocate shared page\n");
487 		goto attach_fail3;
488 	}
489 
490 	/*
491 	 * Get the hw conf, including MAC address, then init all rings.
492 	 */
493 	wpi_read_eeprom(sc);
494 	err = wpi_ring_init(sc);
495 	if (err != DDI_SUCCESS) {
496 		cmn_err(CE_WARN, "wpi_attach(): "
497 		    "failed to allocate and initialize ring\n");
498 		goto attach_fail4;
499 	}
500 
501 	sc->sc_hdr = (const wpi_firmware_hdr_t *)wpi_fw_bin;
502 
503 	/* firmware image layout: |HDR|<--TEXT-->|<--DATA-->|<--BOOT-->| */
504 	sc->sc_text = (const char *)(sc->sc_hdr + 1);
505 	sc->sc_data = sc->sc_text + LE_32(sc->sc_hdr->textsz);
506 	sc->sc_boot = sc->sc_data + LE_32(sc->sc_hdr->datasz);
507 	err = wpi_alloc_fw_dma(sc);
508 	if (err != DDI_SUCCESS) {
509 		cmn_err(CE_WARN, "wpi_attach(): "
510 		    "failed to allocate firmware dma\n");
511 		goto attach_fail5;
512 	}
513 
514 	/*
515 	 * Initialize mutexs and condvars
516 	 */
517 	err = ddi_get_iblock_cookie(dip, 0, &sc->sc_iblk);
518 	if (err != DDI_SUCCESS) {
519 		cmn_err(CE_WARN,
520 		    "wpi_attach(): failed to do ddi_get_iblock_cookie()\n");
521 		goto attach_fail6;
522 	}
523 	mutex_init(&sc->sc_glock, NULL, MUTEX_DRIVER, sc->sc_iblk);
524 	mutex_init(&sc->sc_tx_lock, NULL, MUTEX_DRIVER, sc->sc_iblk);
525 	cv_init(&sc->sc_fw_cv, NULL, CV_DRIVER, NULL);
526 	cv_init(&sc->sc_cmd_cv, NULL, CV_DRIVER, NULL);
527 
528 	/*
529 	 * initialize the mfthread
530 	 */
531 	mutex_init(&sc->sc_mt_lock, NULL, MUTEX_DRIVER,
532 	    (void *) sc->sc_iblk);
533 	cv_init(&sc->sc_mt_cv, NULL, CV_DRIVER, NULL);
534 	sc->sc_mf_thread = NULL;
535 	sc->sc_mf_thread_switch = 0;
536 	/*
537 	 * Initialize the wifi part, which will be used by
538 	 * generic layer
539 	 */
540 	ic = &sc->sc_ic;
541 	ic->ic_phytype  = IEEE80211_T_OFDM;
542 	ic->ic_opmode   = IEEE80211_M_STA; /* default to BSS mode */
543 	ic->ic_state    = IEEE80211_S_INIT;
544 	ic->ic_maxrssi  = 70; /* experimental number */
545 	ic->ic_caps = IEEE80211_C_SHPREAMBLE | IEEE80211_C_TXPMGT |
546 	    IEEE80211_C_PMGT | IEEE80211_C_SHSLOT;
547 
548 	/*
549 	 * use software WEP and TKIP, hardware CCMP;
550 	 */
551 	ic->ic_caps |= IEEE80211_C_AES_CCM;
552 	ic->ic_caps |= IEEE80211_C_WPA; /* Support WPA/WPA2 */
553 
554 	/* set supported .11b and .11g rates */
555 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
556 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
557 
558 	/* set supported .11b and .11g channels (1 through 14) */
559 	for (i = 1; i <= 14; i++) {
560 		ic->ic_sup_channels[i].ich_freq =
561 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
562 		ic->ic_sup_channels[i].ich_flags =
563 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
564 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ |
565 		    IEEE80211_CHAN_PASSIVE;
566 	}
567 	ic->ic_ibss_chan = &ic->ic_sup_channels[0];
568 	ic->ic_xmit = wpi_send;
569 	/*
570 	 * init Wifi layer
571 	 */
572 	ieee80211_attach(ic);
573 
574 	/* register WPA door */
575 	ieee80211_register_door(ic, ddi_driver_name(dip),
576 	    ddi_get_instance(dip));
577 
578 	/*
579 	 * Override 80211 default routines
580 	 */
581 	sc->sc_newstate = ic->ic_newstate;
582 	ic->ic_newstate = wpi_newstate;
583 	ic->ic_node_alloc = wpi_node_alloc;
584 	ic->ic_node_free = wpi_node_free;
585 	ic->ic_crypto.cs_key_set = wpi_key_set;
586 	ieee80211_media_init(ic);
587 	/*
588 	 * initialize default tx key
589 	 */
590 	ic->ic_def_txkey = 0;
591 
592 	err = ddi_add_softintr(dip, DDI_SOFTINT_LOW,
593 	    &sc->sc_notif_softint_id, &sc->sc_iblk, NULL, wpi_notif_softintr,
594 	    (caddr_t)sc);
595 	if (err != DDI_SUCCESS) {
596 		cmn_err(CE_WARN,
597 		    "wpi_attach(): failed to do ddi_add_softintr()\n");
598 		goto attach_fail7;
599 	}
600 
601 	/*
602 	 * Add the interrupt handler
603 	 */
604 	err = ddi_add_intr(dip, 0, &sc->sc_iblk, NULL,
605 	    wpi_intr, (caddr_t)sc);
606 	if (err != DDI_SUCCESS) {
607 		cmn_err(CE_WARN,
608 		    "wpi_attach(): failed to do ddi_add_intr()\n");
609 		goto attach_fail8;
610 	}
611 
612 	/*
613 	 * Initialize pointer to device specific functions
614 	 */
615 	wd.wd_secalloc = WIFI_SEC_NONE;
616 	wd.wd_opmode = ic->ic_opmode;
617 	IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_macaddr);
618 
619 	macp = mac_alloc(MAC_VERSION);
620 	if (err != DDI_SUCCESS) {
621 		cmn_err(CE_WARN,
622 		    "wpi_attach(): failed to do mac_alloc()\n");
623 		goto attach_fail9;
624 	}
625 
626 	macp->m_type_ident	= MAC_PLUGIN_IDENT_WIFI;
627 	macp->m_driver		= sc;
628 	macp->m_dip		= dip;
629 	macp->m_src_addr	= ic->ic_macaddr;
630 	macp->m_callbacks	= &wpi_m_callbacks;
631 	macp->m_min_sdu		= 0;
632 	macp->m_max_sdu		= IEEE80211_MTU;
633 	macp->m_pdata		= &wd;
634 	macp->m_pdata_size	= sizeof (wd);
635 
636 	/*
637 	 * Register the macp to mac
638 	 */
639 	err = mac_register(macp, &ic->ic_mach);
640 	mac_free(macp);
641 	if (err != DDI_SUCCESS) {
642 		cmn_err(CE_WARN,
643 		    "wpi_attach(): failed to do mac_register()\n");
644 		goto attach_fail9;
645 	}
646 
647 	/*
648 	 * Create minor node of type DDI_NT_NET_WIFI
649 	 */
650 	(void) snprintf(strbuf, sizeof (strbuf), "wpi%d", instance);
651 	err = ddi_create_minor_node(dip, strbuf, S_IFCHR,
652 	    instance + 1, DDI_NT_NET_WIFI, 0);
653 	if (err != DDI_SUCCESS)
654 		cmn_err(CE_WARN,
655 		    "wpi_attach(): failed to do ddi_create_minor_node()\n");
656 
657 	/*
658 	 * Notify link is down now
659 	 */
660 	mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
661 
662 	/*
663 	 * create the mf thread to handle the link status,
664 	 * recovery fatal error, etc.
665 	 */
666 
667 	sc->sc_mf_thread_switch = 1;
668 	if (sc->sc_mf_thread == NULL)
669 		sc->sc_mf_thread = thread_create((caddr_t)NULL, 0,
670 		    wpi_thread, sc, 0, &p0, TS_RUN, minclsyspri);
671 
672 	sc->sc_flags |= WPI_F_ATTACHED;
673 
674 	return (DDI_SUCCESS);
675 attach_fail9:
676 	ddi_remove_intr(dip, 0, sc->sc_iblk);
677 attach_fail8:
678 	ddi_remove_softintr(sc->sc_notif_softint_id);
679 	sc->sc_notif_softint_id = NULL;
680 attach_fail7:
681 	ieee80211_detach(ic);
682 	wpi_destroy_locks(sc);
683 attach_fail6:
684 	wpi_free_fw_dma(sc);
685 attach_fail5:
686 	wpi_ring_free(sc);
687 attach_fail4:
688 	wpi_free_shared(sc);
689 attach_fail3:
690 	ddi_regs_map_free(&sc->sc_handle);
691 attach_fail2:
692 	ddi_soft_state_free(wpi_soft_state_p, instance);
693 attach_fail1:
694 	return (err);
695 }
696 
697 int
wpi_detach(dev_info_t * dip,ddi_detach_cmd_t cmd)698 wpi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
699 {
700 	wpi_sc_t	*sc;
701 	int err;
702 
703 	sc = ddi_get_soft_state(wpi_soft_state_p, ddi_get_instance(dip));
704 	ASSERT(sc != NULL);
705 
706 	switch (cmd) {
707 	case DDI_DETACH:
708 		break;
709 	case DDI_SUSPEND:
710 		mutex_enter(&sc->sc_glock);
711 		sc->sc_flags |= WPI_F_SUSPEND;
712 		mutex_exit(&sc->sc_glock);
713 
714 		if (sc->sc_flags & WPI_F_RUNNING) {
715 			wpi_stop(sc);
716 		}
717 
718 		WPI_DBG((WPI_DEBUG_RESUME, "wpi: suspend \n"));
719 		return (DDI_SUCCESS);
720 	default:
721 		return (DDI_FAILURE);
722 	}
723 	if (!(sc->sc_flags & WPI_F_ATTACHED))
724 		return (DDI_FAILURE);
725 
726 	err = mac_disable(sc->sc_ic.ic_mach);
727 	if (err != DDI_SUCCESS)
728 		return (err);
729 
730 	/*
731 	 * Destroy the mf_thread
732 	 */
733 	mutex_enter(&sc->sc_mt_lock);
734 	sc->sc_mf_thread_switch = 0;
735 	while (sc->sc_mf_thread != NULL) {
736 		if (cv_wait_sig(&sc->sc_mt_cv, &sc->sc_mt_lock) == 0)
737 			break;
738 	}
739 	mutex_exit(&sc->sc_mt_lock);
740 
741 	wpi_stop(sc);
742 
743 	/*
744 	 * Unregiste from the MAC layer subsystem
745 	 */
746 	(void) mac_unregister(sc->sc_ic.ic_mach);
747 
748 	mutex_enter(&sc->sc_glock);
749 	wpi_free_fw_dma(sc);
750 	wpi_ring_free(sc);
751 	wpi_free_shared(sc);
752 	mutex_exit(&sc->sc_glock);
753 
754 	ddi_remove_intr(dip, 0, sc->sc_iblk);
755 	ddi_remove_softintr(sc->sc_notif_softint_id);
756 	sc->sc_notif_softint_id = NULL;
757 
758 	/*
759 	 * detach ieee80211
760 	 */
761 	ieee80211_detach(&sc->sc_ic);
762 
763 	wpi_destroy_locks(sc);
764 
765 	ddi_regs_map_free(&sc->sc_handle);
766 	ddi_remove_minor_node(dip, NULL);
767 	ddi_soft_state_free(wpi_soft_state_p, ddi_get_instance(dip));
768 
769 	return (DDI_SUCCESS);
770 }
771 
772 static void
wpi_destroy_locks(wpi_sc_t * sc)773 wpi_destroy_locks(wpi_sc_t *sc)
774 {
775 	cv_destroy(&sc->sc_mt_cv);
776 	mutex_destroy(&sc->sc_mt_lock);
777 	cv_destroy(&sc->sc_cmd_cv);
778 	cv_destroy(&sc->sc_fw_cv);
779 	mutex_destroy(&sc->sc_tx_lock);
780 	mutex_destroy(&sc->sc_glock);
781 }
782 
783 /*
784  * Allocate an area of memory and a DMA handle for accessing it
785  */
786 static int
wpi_alloc_dma_mem(wpi_sc_t * sc,size_t memsize,ddi_dma_attr_t * dma_attr_p,ddi_device_acc_attr_t * acc_attr_p,uint_t dma_flags,wpi_dma_t * dma_p)787 wpi_alloc_dma_mem(wpi_sc_t *sc, size_t memsize, ddi_dma_attr_t *dma_attr_p,
788 	ddi_device_acc_attr_t *acc_attr_p, uint_t dma_flags, wpi_dma_t *dma_p)
789 {
790 	caddr_t vaddr;
791 	int err;
792 
793 	/*
794 	 * Allocate handle
795 	 */
796 	err = ddi_dma_alloc_handle(sc->sc_dip, dma_attr_p,
797 	    DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl);
798 	if (err != DDI_SUCCESS) {
799 		dma_p->dma_hdl = NULL;
800 		return (DDI_FAILURE);
801 	}
802 
803 	/*
804 	 * Allocate memory
805 	 */
806 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, acc_attr_p,
807 	    dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING),
808 	    DDI_DMA_SLEEP, NULL, &vaddr, &dma_p->alength, &dma_p->acc_hdl);
809 	if (err != DDI_SUCCESS) {
810 		ddi_dma_free_handle(&dma_p->dma_hdl);
811 		dma_p->dma_hdl = NULL;
812 		dma_p->acc_hdl = NULL;
813 		return (DDI_FAILURE);
814 	}
815 
816 	/*
817 	 * Bind the two together
818 	 */
819 	dma_p->mem_va = vaddr;
820 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
821 	    vaddr, dma_p->alength, dma_flags, DDI_DMA_SLEEP, NULL,
822 	    &dma_p->cookie, &dma_p->ncookies);
823 	if (err != DDI_DMA_MAPPED) {
824 		ddi_dma_mem_free(&dma_p->acc_hdl);
825 		ddi_dma_free_handle(&dma_p->dma_hdl);
826 		dma_p->acc_hdl = NULL;
827 		dma_p->dma_hdl = NULL;
828 		return (DDI_FAILURE);
829 	}
830 
831 	dma_p->nslots = ~0U;
832 	dma_p->size = ~0U;
833 	dma_p->token = ~0U;
834 	dma_p->offset = 0;
835 	return (DDI_SUCCESS);
836 }
837 
838 /*
839  * Free one allocated area of DMAable memory
840  */
841 static void
wpi_free_dma_mem(wpi_dma_t * dma_p)842 wpi_free_dma_mem(wpi_dma_t *dma_p)
843 {
844 	if (dma_p->dma_hdl != NULL) {
845 		if (dma_p->ncookies) {
846 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
847 			dma_p->ncookies = 0;
848 		}
849 		ddi_dma_free_handle(&dma_p->dma_hdl);
850 		dma_p->dma_hdl = NULL;
851 	}
852 
853 	if (dma_p->acc_hdl != NULL) {
854 		ddi_dma_mem_free(&dma_p->acc_hdl);
855 		dma_p->acc_hdl = NULL;
856 	}
857 }
858 
859 /*
860  * Allocate an area of dma memory for firmware load.
861  * Idealy, this allocation should be a one time action, that is,
862  * the memory will be freed after the firmware is uploaded to the
863  * card. but since a recovery mechanism for the fatal firmware need
864  * reload the firmware, and re-allocate dma at run time may be failed,
865  * so we allocate it at attach and keep it in the whole lifecycle of
866  * the driver.
867  */
868 static int
wpi_alloc_fw_dma(wpi_sc_t * sc)869 wpi_alloc_fw_dma(wpi_sc_t *sc)
870 {
871 	int i, err = DDI_SUCCESS;
872 	wpi_dma_t *dma_p;
873 
874 	err = wpi_alloc_dma_mem(sc, LE_32(sc->sc_hdr->textsz),
875 	    &fw_buffer_dma_attr, &wpi_dma_accattr,
876 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
877 	    &sc->sc_dma_fw_text);
878 	dma_p = &sc->sc_dma_fw_text;
879 	WPI_DBG((WPI_DEBUG_DMA, "ncookies:%d addr1:%x size1:%x\n",
880 	    dma_p->ncookies, dma_p->cookie.dmac_address,
881 	    dma_p->cookie.dmac_size));
882 	if (err != DDI_SUCCESS) {
883 		cmn_err(CE_WARN, "wpi_alloc_fw_dma(): failed to alloc"
884 		    "text dma memory");
885 		goto fail;
886 	}
887 	for (i = 0; i < dma_p->ncookies; i++) {
888 		sc->sc_fw_text_cookie[i] = dma_p->cookie;
889 		ddi_dma_nextcookie(dma_p->dma_hdl, &dma_p->cookie);
890 	}
891 	err = wpi_alloc_dma_mem(sc, LE_32(sc->sc_hdr->datasz),
892 	    &fw_buffer_dma_attr, &wpi_dma_accattr,
893 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
894 	    &sc->sc_dma_fw_data);
895 	dma_p = &sc->sc_dma_fw_data;
896 	WPI_DBG((WPI_DEBUG_DMA, "ncookies:%d addr1:%x size1:%x\n",
897 	    dma_p->ncookies, dma_p->cookie.dmac_address,
898 	    dma_p->cookie.dmac_size));
899 	if (err != DDI_SUCCESS) {
900 		cmn_err(CE_WARN, "wpi_alloc_fw_dma(): failed to alloc"
901 		    "data dma memory");
902 		goto fail;
903 	}
904 	for (i = 0; i < dma_p->ncookies; i++) {
905 		sc->sc_fw_data_cookie[i] = dma_p->cookie;
906 		ddi_dma_nextcookie(dma_p->dma_hdl, &dma_p->cookie);
907 	}
908 fail:
909 	return (err);
910 }
911 
912 static void
wpi_free_fw_dma(wpi_sc_t * sc)913 wpi_free_fw_dma(wpi_sc_t *sc)
914 {
915 	wpi_free_dma_mem(&sc->sc_dma_fw_text);
916 	wpi_free_dma_mem(&sc->sc_dma_fw_data);
917 }
918 
919 /*
920  * Allocate a shared page between host and NIC.
921  */
922 static int
wpi_alloc_shared(wpi_sc_t * sc)923 wpi_alloc_shared(wpi_sc_t *sc)
924 {
925 	int err = DDI_SUCCESS;
926 
927 	/* must be aligned on a 4K-page boundary */
928 	err = wpi_alloc_dma_mem(sc, sizeof (wpi_shared_t),
929 	    &sh_dma_attr, &wpi_dma_accattr,
930 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
931 	    &sc->sc_dma_sh);
932 	if (err != DDI_SUCCESS)
933 		goto fail;
934 	sc->sc_shared = (wpi_shared_t *)sc->sc_dma_sh.mem_va;
935 	return (err);
936 
937 fail:
938 	wpi_free_shared(sc);
939 	return (err);
940 }
941 
942 static void
wpi_free_shared(wpi_sc_t * sc)943 wpi_free_shared(wpi_sc_t *sc)
944 {
945 	wpi_free_dma_mem(&sc->sc_dma_sh);
946 }
947 
948 static int
wpi_alloc_rx_ring(wpi_sc_t * sc)949 wpi_alloc_rx_ring(wpi_sc_t *sc)
950 {
951 	wpi_rx_ring_t *ring;
952 	wpi_rx_data_t *data;
953 	int i, err = DDI_SUCCESS;
954 
955 	ring = &sc->sc_rxq;
956 	ring->cur = 0;
957 
958 	err = wpi_alloc_dma_mem(sc, WPI_RX_RING_COUNT * sizeof (uint32_t),
959 	    &ring_desc_dma_attr, &wpi_dma_accattr,
960 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
961 	    &ring->dma_desc);
962 	if (err != DDI_SUCCESS) {
963 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc rx ring desc failed\n"));
964 		goto fail;
965 	}
966 	ring->desc = (uint32_t *)ring->dma_desc.mem_va;
967 
968 	/*
969 	 * Allocate Rx buffers.
970 	 */
971 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
972 		data = &ring->data[i];
973 		err = wpi_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
974 		    &rx_buffer_dma_attr, &wpi_dma_accattr,
975 		    DDI_DMA_READ | DDI_DMA_STREAMING,
976 		    &data->dma_data);
977 		if (err != DDI_SUCCESS) {
978 			WPI_DBG((WPI_DEBUG_DMA, "dma alloc rx ring buf[%d] "
979 			    "failed\n", i));
980 			goto fail;
981 		}
982 
983 		ring->desc[i] = LE_32(data->dma_data.cookie.dmac_address);
984 	}
985 
986 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
987 
988 	return (err);
989 
990 fail:
991 	wpi_free_rx_ring(sc);
992 	return (err);
993 }
994 
995 static void
wpi_reset_rx_ring(wpi_sc_t * sc)996 wpi_reset_rx_ring(wpi_sc_t *sc)
997 {
998 	int ntries;
999 
1000 	wpi_mem_lock(sc);
1001 
1002 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1003 	for (ntries = 0; ntries < 2000; ntries++) {
1004 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1005 			break;
1006 		DELAY(1000);
1007 	}
1008 	if (ntries == 2000)
1009 		WPI_DBG((WPI_DEBUG_DMA, "timeout resetting Rx ring\n"));
1010 
1011 	wpi_mem_unlock(sc);
1012 
1013 	sc->sc_rxq.cur = 0;
1014 }
1015 
1016 static void
wpi_free_rx_ring(wpi_sc_t * sc)1017 wpi_free_rx_ring(wpi_sc_t *sc)
1018 {
1019 	int i;
1020 
1021 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1022 		if (sc->sc_rxq.data[i].dma_data.dma_hdl)
1023 			WPI_DMA_SYNC(sc->sc_rxq.data[i].dma_data,
1024 			    DDI_DMA_SYNC_FORCPU);
1025 		wpi_free_dma_mem(&sc->sc_rxq.data[i].dma_data);
1026 	}
1027 
1028 	if (sc->sc_rxq.dma_desc.dma_hdl)
1029 		WPI_DMA_SYNC(sc->sc_rxq.dma_desc, DDI_DMA_SYNC_FORDEV);
1030 	wpi_free_dma_mem(&sc->sc_rxq.dma_desc);
1031 }
1032 
1033 static int
wpi_alloc_tx_ring(wpi_sc_t * sc,wpi_tx_ring_t * ring,int count,int qid)1034 wpi_alloc_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring, int count, int qid)
1035 {
1036 	wpi_tx_data_t *data;
1037 	wpi_tx_desc_t *desc_h;
1038 	uint32_t paddr_desc_h;
1039 	wpi_tx_cmd_t *cmd_h;
1040 	uint32_t paddr_cmd_h;
1041 	int i, err = DDI_SUCCESS;
1042 
1043 	ring->qid = qid;
1044 	ring->count = count;
1045 	ring->queued = 0;
1046 	ring->cur = 0;
1047 
1048 	err = wpi_alloc_dma_mem(sc, count * sizeof (wpi_tx_desc_t),
1049 	    &ring_desc_dma_attr, &wpi_dma_accattr,
1050 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1051 	    &ring->dma_desc);
1052 	if (err != DDI_SUCCESS) {
1053 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring desc[%d] failed\n",
1054 		    qid));
1055 		goto fail;
1056 	}
1057 
1058 	/* update shared page with ring's base address */
1059 	sc->sc_shared->txbase[qid] = ring->dma_desc.cookie.dmac_address;
1060 
1061 	desc_h = (wpi_tx_desc_t *)ring->dma_desc.mem_va;
1062 	paddr_desc_h = ring->dma_desc.cookie.dmac_address;
1063 
1064 	err = wpi_alloc_dma_mem(sc, count * sizeof (wpi_tx_cmd_t),
1065 	    &tx_cmd_dma_attr, &wpi_dma_accattr,
1066 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1067 	    &ring->dma_cmd);
1068 	if (err != DDI_SUCCESS) {
1069 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring cmd[%d] failed\n",
1070 		    qid));
1071 		goto fail;
1072 	}
1073 
1074 	cmd_h = (wpi_tx_cmd_t *)ring->dma_cmd.mem_va;
1075 	paddr_cmd_h = ring->dma_cmd.cookie.dmac_address;
1076 
1077 	/*
1078 	 * Allocate Tx buffers.
1079 	 */
1080 	ring->data = kmem_zalloc(sizeof (wpi_tx_data_t) * count, KM_NOSLEEP);
1081 	if (ring->data == NULL) {
1082 		WPI_DBG((WPI_DEBUG_DMA, "could not allocate tx data slots\n"));
1083 		goto fail;
1084 	}
1085 
1086 	for (i = 0; i < count; i++) {
1087 		data = &ring->data[i];
1088 		err = wpi_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
1089 		    &tx_buffer_dma_attr, &wpi_dma_accattr,
1090 		    DDI_DMA_WRITE | DDI_DMA_STREAMING,
1091 		    &data->dma_data);
1092 		if (err != DDI_SUCCESS) {
1093 			WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring buf[%d] "
1094 			    "failed\n", i));
1095 			goto fail;
1096 		}
1097 
1098 		data->desc = desc_h + i;
1099 		data->paddr_desc = paddr_desc_h +
1100 		    ((uintptr_t)data->desc - (uintptr_t)desc_h);
1101 		data->cmd = cmd_h + i;
1102 		data->paddr_cmd = paddr_cmd_h +
1103 		    ((uintptr_t)data->cmd - (uintptr_t)cmd_h);
1104 	}
1105 
1106 	return (err);
1107 
1108 fail:
1109 	wpi_free_tx_ring(sc, ring);
1110 	return (err);
1111 }
1112 
1113 static void
wpi_reset_tx_ring(wpi_sc_t * sc,wpi_tx_ring_t * ring)1114 wpi_reset_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring)
1115 {
1116 	wpi_tx_data_t *data;
1117 	int i, ntries;
1118 
1119 	wpi_mem_lock(sc);
1120 
1121 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1122 	for (ntries = 0; ntries < 100; ntries++) {
1123 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1124 			break;
1125 		DELAY(10);
1126 	}
1127 #ifdef DEBUG
1128 	if (ntries == 100 && wpi_dbg_flags > 0) {
1129 		WPI_DBG((WPI_DEBUG_DMA, "timeout resetting Tx ring %d\n",
1130 		    ring->qid));
1131 	}
1132 #endif
1133 	wpi_mem_unlock(sc);
1134 
1135 	if (!(sc->sc_flags & WPI_F_QUIESCED)) {
1136 		for (i = 0; i < ring->count; i++) {
1137 			data = &ring->data[i];
1138 			WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
1139 		}
1140 	}
1141 
1142 	ring->queued = 0;
1143 	ring->cur = 0;
1144 }
1145 
1146 /*ARGSUSED*/
1147 static void
wpi_free_tx_ring(wpi_sc_t * sc,wpi_tx_ring_t * ring)1148 wpi_free_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring)
1149 {
1150 	int i;
1151 
1152 	if (ring->dma_desc.dma_hdl != NULL)
1153 		WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
1154 	wpi_free_dma_mem(&ring->dma_desc);
1155 
1156 	if (ring->dma_cmd.dma_hdl != NULL)
1157 		WPI_DMA_SYNC(ring->dma_cmd, DDI_DMA_SYNC_FORDEV);
1158 	wpi_free_dma_mem(&ring->dma_cmd);
1159 
1160 	if (ring->data != NULL) {
1161 		for (i = 0; i < ring->count; i++) {
1162 			if (ring->data[i].dma_data.dma_hdl)
1163 				WPI_DMA_SYNC(ring->data[i].dma_data,
1164 				    DDI_DMA_SYNC_FORDEV);
1165 			wpi_free_dma_mem(&ring->data[i].dma_data);
1166 		}
1167 		kmem_free(ring->data, ring->count * sizeof (wpi_tx_data_t));
1168 		ring->data = NULL;
1169 	}
1170 }
1171 
1172 static int
wpi_ring_init(wpi_sc_t * sc)1173 wpi_ring_init(wpi_sc_t *sc)
1174 {
1175 	int i, err = DDI_SUCCESS;
1176 
1177 	for (i = 0; i < 4; i++) {
1178 		err = wpi_alloc_tx_ring(sc, &sc->sc_txq[i], WPI_TX_RING_COUNT,
1179 		    i);
1180 		if (err != DDI_SUCCESS)
1181 			goto fail;
1182 	}
1183 	err = wpi_alloc_tx_ring(sc, &sc->sc_cmdq, WPI_CMD_RING_COUNT, 4);
1184 	if (err != DDI_SUCCESS)
1185 		goto fail;
1186 	err = wpi_alloc_tx_ring(sc, &sc->sc_svcq, WPI_SVC_RING_COUNT, 5);
1187 	if (err != DDI_SUCCESS)
1188 		goto fail;
1189 	err = wpi_alloc_rx_ring(sc);
1190 	if (err != DDI_SUCCESS)
1191 		goto fail;
1192 	return (err);
1193 
1194 fail:
1195 	return (err);
1196 }
1197 
1198 static void
wpi_ring_free(wpi_sc_t * sc)1199 wpi_ring_free(wpi_sc_t *sc)
1200 {
1201 	int i = 4;
1202 
1203 	wpi_free_rx_ring(sc);
1204 	wpi_free_tx_ring(sc, &sc->sc_svcq);
1205 	wpi_free_tx_ring(sc, &sc->sc_cmdq);
1206 	while (--i >= 0) {
1207 		wpi_free_tx_ring(sc, &sc->sc_txq[i]);
1208 	}
1209 }
1210 
1211 /* ARGSUSED */
1212 static ieee80211_node_t *
wpi_node_alloc(ieee80211com_t * ic)1213 wpi_node_alloc(ieee80211com_t *ic)
1214 {
1215 	wpi_amrr_t *amrr;
1216 
1217 	amrr = kmem_zalloc(sizeof (wpi_amrr_t), KM_SLEEP);
1218 	if (amrr != NULL)
1219 		wpi_amrr_init(amrr);
1220 	return (&amrr->in);
1221 }
1222 
1223 static void
wpi_node_free(ieee80211_node_t * in)1224 wpi_node_free(ieee80211_node_t *in)
1225 {
1226 	ieee80211com_t *ic = in->in_ic;
1227 
1228 	ic->ic_node_cleanup(in);
1229 	if (in->in_wpa_ie != NULL)
1230 		ieee80211_free(in->in_wpa_ie);
1231 	kmem_free(in, sizeof (wpi_amrr_t));
1232 }
1233 
1234 /*ARGSUSED*/
1235 static int
wpi_newstate(ieee80211com_t * ic,enum ieee80211_state nstate,int arg)1236 wpi_newstate(ieee80211com_t *ic, enum ieee80211_state nstate, int arg)
1237 {
1238 	wpi_sc_t *sc = (wpi_sc_t *)ic;
1239 	ieee80211_node_t *in = ic->ic_bss;
1240 	enum ieee80211_state ostate;
1241 	int i, err = WPI_SUCCESS;
1242 
1243 	mutex_enter(&sc->sc_glock);
1244 	ostate = ic->ic_state;
1245 	switch (nstate) {
1246 	case IEEE80211_S_SCAN:
1247 		switch (ostate) {
1248 		case IEEE80211_S_INIT:
1249 		{
1250 			wpi_node_t node;
1251 
1252 			sc->sc_flags |= WPI_F_SCANNING;
1253 			sc->sc_scan_next = 0;
1254 
1255 			/* make the link LED blink while we're scanning */
1256 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
1257 
1258 			/*
1259 			 * clear association to receive beacons from all
1260 			 * BSS'es
1261 			 */
1262 			sc->sc_config.state = 0;
1263 			sc->sc_config.filter &= ~LE_32(WPI_FILTER_BSS);
1264 
1265 			WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x "
1266 			    "filter %x\n",
1267 			    sc->sc_config.chan, sc->sc_config.flags,
1268 			    sc->sc_config.filter));
1269 
1270 			err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
1271 			    sizeof (wpi_config_t), 1);
1272 			if (err != WPI_SUCCESS) {
1273 				cmn_err(CE_WARN,
1274 				    "could not clear association\n");
1275 				sc->sc_flags &= ~WPI_F_SCANNING;
1276 				mutex_exit(&sc->sc_glock);
1277 				return (err);
1278 			}
1279 
1280 			/* add broadcast node to send probe request */
1281 			(void) memset(&node, 0, sizeof (node));
1282 			(void) memset(&node.bssid, 0xff, IEEE80211_ADDR_LEN);
1283 			node.id = WPI_ID_BROADCAST;
1284 
1285 			err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node,
1286 			    sizeof (node), 1);
1287 			if (err != WPI_SUCCESS) {
1288 				cmn_err(CE_WARN,
1289 				    "could not add broadcast node\n");
1290 				sc->sc_flags &= ~WPI_F_SCANNING;
1291 				mutex_exit(&sc->sc_glock);
1292 				return (err);
1293 			}
1294 			break;
1295 		}
1296 		case IEEE80211_S_SCAN:
1297 			mutex_exit(&sc->sc_glock);
1298 			/* step to next channel before actual FW scan */
1299 			err = sc->sc_newstate(ic, nstate, arg);
1300 			mutex_enter(&sc->sc_glock);
1301 			if ((err != 0) || ((err = wpi_scan(sc)) != 0)) {
1302 				cmn_err(CE_WARN,
1303 				    "could not initiate scan\n");
1304 				sc->sc_flags &= ~WPI_F_SCANNING;
1305 				ieee80211_cancel_scan(ic);
1306 			}
1307 			mutex_exit(&sc->sc_glock);
1308 			return (err);
1309 		default:
1310 			break;
1311 		}
1312 		sc->sc_clk = 0;
1313 		break;
1314 
1315 	case IEEE80211_S_AUTH:
1316 		if (ostate == IEEE80211_S_SCAN) {
1317 			sc->sc_flags &= ~WPI_F_SCANNING;
1318 		}
1319 
1320 		/* reset state to handle reassociations correctly */
1321 		sc->sc_config.state = 0;
1322 		sc->sc_config.filter &= ~LE_32(WPI_FILTER_BSS);
1323 
1324 		if ((err = wpi_auth(sc)) != 0) {
1325 			WPI_DBG((WPI_DEBUG_80211,
1326 			    "could not send authentication request\n"));
1327 			mutex_exit(&sc->sc_glock);
1328 			return (err);
1329 		}
1330 		break;
1331 
1332 	case IEEE80211_S_RUN:
1333 		if (ostate == IEEE80211_S_SCAN) {
1334 			sc->sc_flags &= ~WPI_F_SCANNING;
1335 		}
1336 
1337 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1338 			/* link LED blinks while monitoring */
1339 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
1340 			break;
1341 		}
1342 
1343 		if (ic->ic_opmode != IEEE80211_M_STA) {
1344 			(void) wpi_auth(sc);
1345 			/* need setup beacon here */
1346 		}
1347 		WPI_DBG((WPI_DEBUG_80211, "wpi: associated."));
1348 
1349 		/* update adapter's configuration */
1350 		sc->sc_config.state = LE_16(WPI_CONFIG_ASSOCIATED);
1351 		/* short preamble/slot time are negotiated when associating */
1352 		sc->sc_config.flags &= ~LE_32(WPI_CONFIG_SHPREAMBLE |
1353 		    WPI_CONFIG_SHSLOT);
1354 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
1355 			sc->sc_config.flags |= LE_32(WPI_CONFIG_SHSLOT);
1356 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1357 			sc->sc_config.flags |= LE_32(WPI_CONFIG_SHPREAMBLE);
1358 		sc->sc_config.filter |= LE_32(WPI_FILTER_BSS);
1359 		if (ic->ic_opmode != IEEE80211_M_STA)
1360 			sc->sc_config.filter |= LE_32(WPI_FILTER_BEACON);
1361 
1362 		WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x\n",
1363 		    sc->sc_config.chan, sc->sc_config.flags));
1364 		err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
1365 		    sizeof (wpi_config_t), 1);
1366 		if (err != WPI_SUCCESS) {
1367 			WPI_DBG((WPI_DEBUG_80211,
1368 			    "could not update configuration\n"));
1369 			mutex_exit(&sc->sc_glock);
1370 			return (err);
1371 		}
1372 
1373 		/* start automatic rate control */
1374 		mutex_enter(&sc->sc_mt_lock);
1375 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1376 			sc->sc_flags |= WPI_F_RATE_AUTO_CTL;
1377 			/* set rate to some reasonable initial value */
1378 			i = in->in_rates.ir_nrates - 1;
1379 			while (i > 0 && IEEE80211_RATE(i) > 72)
1380 				i--;
1381 			in->in_txrate = i;
1382 		} else {
1383 			sc->sc_flags &= ~WPI_F_RATE_AUTO_CTL;
1384 		}
1385 		mutex_exit(&sc->sc_mt_lock);
1386 
1387 		/* link LED always on while associated */
1388 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1389 		break;
1390 
1391 	case IEEE80211_S_INIT:
1392 		sc->sc_flags &= ~WPI_F_SCANNING;
1393 		break;
1394 
1395 	case IEEE80211_S_ASSOC:
1396 		sc->sc_flags &= ~WPI_F_SCANNING;
1397 		break;
1398 	}
1399 
1400 	mutex_exit(&sc->sc_glock);
1401 	return (sc->sc_newstate(ic, nstate, arg));
1402 }
1403 
1404 /*ARGSUSED*/
wpi_key_set(ieee80211com_t * ic,const struct ieee80211_key * k,const uint8_t mac[IEEE80211_ADDR_LEN])1405 static int wpi_key_set(ieee80211com_t *ic, const struct ieee80211_key *k,
1406     const uint8_t mac[IEEE80211_ADDR_LEN])
1407 {
1408 	wpi_sc_t *sc = (wpi_sc_t *)ic;
1409 	wpi_node_t node;
1410 	int err;
1411 
1412 	switch (k->wk_cipher->ic_cipher) {
1413 	case IEEE80211_CIPHER_WEP:
1414 	case IEEE80211_CIPHER_TKIP:
1415 		return (1); /* sofeware do it. */
1416 	case IEEE80211_CIPHER_AES_CCM:
1417 		break;
1418 	default:
1419 		return (0);
1420 	}
1421 	sc->sc_config.filter &= ~(WPI_FILTER_NODECRYPTUNI |
1422 	    WPI_FILTER_NODECRYPTMUL);
1423 
1424 	mutex_enter(&sc->sc_glock);
1425 
1426 	/* update ap/multicast node */
1427 	(void) memset(&node, 0, sizeof (node));
1428 	if (IEEE80211_IS_MULTICAST(mac)) {
1429 		(void) memset(node.bssid, 0xff, 6);
1430 		node.id = WPI_ID_BROADCAST;
1431 	} else {
1432 		IEEE80211_ADDR_COPY(node.bssid, ic->ic_bss->in_bssid);
1433 		node.id = WPI_ID_BSS;
1434 	}
1435 	if (k->wk_flags & IEEE80211_KEY_XMIT) {
1436 		node.key_flags = 0;
1437 		node.keyp = k->wk_keyix;
1438 	} else {
1439 		node.key_flags = (1 << 14);
1440 		node.keyp = k->wk_keyix + 4;
1441 	}
1442 	(void) memcpy(node.key, k->wk_key, k->wk_keylen);
1443 	node.key_flags |= (2 | (1 << 3) | (k->wk_keyix << 8));
1444 	node.sta_mask = 1;
1445 	node.control = 1;
1446 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 1);
1447 	if (err != WPI_SUCCESS) {
1448 		cmn_err(CE_WARN, "wpi_key_set():"
1449 		    "failed to update ap node\n");
1450 		mutex_exit(&sc->sc_glock);
1451 		return (0);
1452 	}
1453 	mutex_exit(&sc->sc_glock);
1454 	return (1);
1455 }
1456 
1457 /*
1458  * Grab exclusive access to NIC memory.
1459  */
1460 static void
wpi_mem_lock(wpi_sc_t * sc)1461 wpi_mem_lock(wpi_sc_t *sc)
1462 {
1463 	uint32_t tmp;
1464 	int ntries;
1465 
1466 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1467 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1468 
1469 	/* spin until we actually get the lock */
1470 	for (ntries = 0; ntries < 1000; ntries++) {
1471 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1472 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1473 			break;
1474 		DELAY(10);
1475 	}
1476 	if (ntries == 1000)
1477 		WPI_DBG((WPI_DEBUG_PIO, "could not lock memory\n"));
1478 }
1479 
1480 /*
1481  * Release lock on NIC memory.
1482  */
1483 static void
wpi_mem_unlock(wpi_sc_t * sc)1484 wpi_mem_unlock(wpi_sc_t *sc)
1485 {
1486 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1487 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1488 }
1489 
1490 static uint32_t
wpi_mem_read(wpi_sc_t * sc,uint16_t addr)1491 wpi_mem_read(wpi_sc_t *sc, uint16_t addr)
1492 {
1493 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1494 	return (WPI_READ(sc, WPI_READ_MEM_DATA));
1495 }
1496 
1497 static void
wpi_mem_write(wpi_sc_t * sc,uint16_t addr,uint32_t data)1498 wpi_mem_write(wpi_sc_t *sc, uint16_t addr, uint32_t data)
1499 {
1500 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1501 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1502 }
1503 
1504 static void
wpi_mem_write_region_4(wpi_sc_t * sc,uint16_t addr,const uint32_t * data,int wlen)1505 wpi_mem_write_region_4(wpi_sc_t *sc, uint16_t addr,
1506     const uint32_t *data, int wlen)
1507 {
1508 	for (; wlen > 0; wlen--, data++, addr += 4)
1509 		wpi_mem_write(sc, addr, *data);
1510 }
1511 
1512 /*
1513  * Read 16 bits from the EEPROM.  We access EEPROM through the MAC instead of
1514  * using the traditional bit-bang method.
1515  */
1516 static uint16_t
wpi_read_prom_word(wpi_sc_t * sc,uint32_t addr)1517 wpi_read_prom_word(wpi_sc_t *sc, uint32_t addr)
1518 {
1519 	uint32_t val;
1520 	int ntries;
1521 
1522 	WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1523 
1524 	wpi_mem_lock(sc);
1525 	for (ntries = 0; ntries < 10; ntries++) {
1526 		if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1527 			break;
1528 		DELAY(10);
1529 	}
1530 	wpi_mem_unlock(sc);
1531 
1532 	if (ntries == 10) {
1533 		WPI_DBG((WPI_DEBUG_PIO, "could not read EEPROM\n"));
1534 		return (0xdead);
1535 	}
1536 	return (val >> 16);
1537 }
1538 
1539 /*
1540  * The firmware boot code is small and is intended to be copied directly into
1541  * the NIC internal memory.
1542  */
1543 static int
wpi_load_microcode(wpi_sc_t * sc)1544 wpi_load_microcode(wpi_sc_t *sc)
1545 {
1546 	const char *ucode;
1547 	int size;
1548 
1549 	ucode = sc->sc_boot;
1550 	size = LE_32(sc->sc_hdr->bootsz);
1551 	/* check that microcode size is a multiple of 4 */
1552 	if (size & 3)
1553 		return (EINVAL);
1554 
1555 	size /= sizeof (uint32_t);
1556 
1557 	wpi_mem_lock(sc);
1558 
1559 	/* copy microcode image into NIC memory */
1560 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, (const uint32_t *)ucode,
1561 	    size);
1562 
1563 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1564 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1565 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1566 
1567 	/* run microcode */
1568 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1569 
1570 	wpi_mem_unlock(sc);
1571 
1572 	return (WPI_SUCCESS);
1573 }
1574 
1575 /*
1576  * The firmware text and data segments are transferred to the NIC using DMA.
1577  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1578  * where to find it.  Once the NIC has copied the firmware into its internal
1579  * memory, we can free our local copy in the driver.
1580  */
1581 static int
wpi_load_firmware(wpi_sc_t * sc,uint32_t target)1582 wpi_load_firmware(wpi_sc_t *sc, uint32_t target)
1583 {
1584 	const char *fw;
1585 	int size;
1586 	wpi_dma_t *dma_p;
1587 	ddi_dma_cookie_t *cookie;
1588 	wpi_tx_desc_t desc;
1589 	int i, ntries, err = WPI_SUCCESS;
1590 
1591 	/* only text and data here */
1592 	if (target == WPI_FW_TEXT) {
1593 		fw = sc->sc_text;
1594 		size = LE_32(sc->sc_hdr->textsz);
1595 		dma_p = &sc->sc_dma_fw_text;
1596 		cookie = sc->sc_fw_text_cookie;
1597 	} else {
1598 		fw = sc->sc_data;
1599 		size = LE_32(sc->sc_hdr->datasz);
1600 		dma_p = &sc->sc_dma_fw_data;
1601 		cookie = sc->sc_fw_data_cookie;
1602 	}
1603 
1604 	/* copy firmware image to DMA-safe memory */
1605 	(void) memcpy(dma_p->mem_va, fw, size);
1606 
1607 	/* make sure the adapter will get up-to-date values */
1608 	(void) ddi_dma_sync(dma_p->dma_hdl, 0, size, DDI_DMA_SYNC_FORDEV);
1609 
1610 	(void) memset(&desc, 0, sizeof (desc));
1611 	desc.flags = LE_32(WPI_PAD32(size) << 28 | dma_p->ncookies << 24);
1612 	for (i = 0; i < dma_p->ncookies; i++) {
1613 		WPI_DBG((WPI_DEBUG_DMA, "cookie%d addr:%x size:%x\n",
1614 		    i, cookie[i].dmac_address, cookie[i].dmac_size));
1615 		desc.segs[i].addr = cookie[i].dmac_address;
1616 		desc.segs[i].len = (uint32_t)cookie[i].dmac_size;
1617 	}
1618 
1619 	wpi_mem_lock(sc);
1620 
1621 	/* tell adapter where to copy image in its internal memory */
1622 	WPI_WRITE(sc, WPI_FW_TARGET, target);
1623 
1624 	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0);
1625 
1626 	/* copy firmware descriptor into NIC memory */
1627 	WPI_WRITE_REGION_4(sc, WPI_TX_DESC(6), (uint32_t *)&desc,
1628 	    sizeof desc / sizeof (uint32_t));
1629 
1630 	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0xfffff);
1631 	WPI_WRITE(sc, WPI_TX_STATE(6), 0x4001);
1632 	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0x80000001);
1633 
1634 	/* wait while the adapter is busy copying the firmware */
1635 	for (ntries = 0; ntries < 100; ntries++) {
1636 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(6))
1637 			break;
1638 		DELAY(1000);
1639 	}
1640 	if (ntries == 100) {
1641 		WPI_DBG((WPI_DEBUG_FW, "timeout transferring firmware\n"));
1642 		err = ETIMEDOUT;
1643 	}
1644 
1645 	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0);
1646 
1647 	wpi_mem_unlock(sc);
1648 
1649 	return (err);
1650 }
1651 
1652 /*ARGSUSED*/
1653 static void
wpi_rx_intr(wpi_sc_t * sc,wpi_rx_desc_t * desc,wpi_rx_data_t * data)1654 wpi_rx_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc, wpi_rx_data_t *data)
1655 {
1656 	ieee80211com_t *ic = &sc->sc_ic;
1657 	wpi_rx_ring_t *ring = &sc->sc_rxq;
1658 	wpi_rx_stat_t *stat;
1659 	wpi_rx_head_t *head;
1660 	wpi_rx_tail_t *tail;
1661 	ieee80211_node_t *in;
1662 	struct ieee80211_frame *wh;
1663 	mblk_t *mp;
1664 	uint16_t len;
1665 
1666 	stat = (wpi_rx_stat_t *)(desc + 1);
1667 
1668 	if (stat->len > WPI_STAT_MAXLEN) {
1669 		WPI_DBG((WPI_DEBUG_RX, "invalid rx statistic header\n"));
1670 		return;
1671 	}
1672 
1673 	head = (wpi_rx_head_t *)((caddr_t)(stat + 1) + stat->len);
1674 	tail = (wpi_rx_tail_t *)((caddr_t)(head + 1) + LE_16(head->len));
1675 
1676 	len = LE_16(head->len);
1677 
1678 	WPI_DBG((WPI_DEBUG_RX, "rx intr: idx=%d len=%d stat len=%d rssi=%d "
1679 	    "rate=%x chan=%d tstamp=%llu", ring->cur, LE_32(desc->len),
1680 	    len, (int8_t)stat->rssi, head->rate, head->chan,
1681 	    LE_64(tail->tstamp)));
1682 
1683 	if ((len < 20) || (len > sc->sc_dmabuf_sz)) {
1684 		sc->sc_rx_err++;
1685 		return;
1686 	}
1687 
1688 	/*
1689 	 * Discard Rx frames with bad CRC early
1690 	 */
1691 	if ((LE_32(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1692 		WPI_DBG((WPI_DEBUG_RX, "rx tail flags error %x\n",
1693 		    LE_32(tail->flags)));
1694 		sc->sc_rx_err++;
1695 		return;
1696 	}
1697 
1698 	/* update Rx descriptor */
1699 	/* ring->desc[ring->cur] = LE_32(data->dma_data.cookie.dmac_address); */
1700 
1701 #ifdef WPI_BPF
1702 #ifndef WPI_CURRENT
1703 	if (sc->sc_drvbpf != NULL) {
1704 #else
1705 	if (bpf_peers_present(sc->sc_drvbpf)) {
1706 #endif
1707 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1708 
1709 		tap->wr_flags = 0;
1710 		tap->wr_rate = head->rate;
1711 		tap->wr_chan_freq =
1712 		    LE_16(ic->ic_channels[head->chan].ic_freq);
1713 		tap->wr_chan_flags =
1714 		    LE_16(ic->ic_channels[head->chan].ic_flags);
1715 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1716 		tap->wr_dbm_antnoise = (int8_t)LE_16(stat->noise);
1717 		tap->wr_tsft = tail->tstamp;
1718 		tap->wr_antenna = (LE_16(head->flags) >> 4) & 0xf;
1719 		switch (head->rate) {
1720 		/* CCK rates */
1721 		case  10: tap->wr_rate =   2; break;
1722 		case  20: tap->wr_rate =   4; break;
1723 		case  55: tap->wr_rate =  11; break;
1724 		case 110: tap->wr_rate =  22; break;
1725 		/* OFDM rates */
1726 		case 0xd: tap->wr_rate =  12; break;
1727 		case 0xf: tap->wr_rate =  18; break;
1728 		case 0x5: tap->wr_rate =  24; break;
1729 		case 0x7: tap->wr_rate =  36; break;
1730 		case 0x9: tap->wr_rate =  48; break;
1731 		case 0xb: tap->wr_rate =  72; break;
1732 		case 0x1: tap->wr_rate =  96; break;
1733 		case 0x3: tap->wr_rate = 108; break;
1734 		/* unknown rate: should not happen */
1735 		default:  tap->wr_rate =   0;
1736 		}
1737 		if (LE_16(head->flags) & 0x4)
1738 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1739 
1740 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1741 	}
1742 #endif
1743 	/* grab a reference to the source node */
1744 	wh = (struct ieee80211_frame *)(head + 1);
1745 
1746 #ifdef DEBUG
1747 	if (wpi_dbg_flags & WPI_DEBUG_RX)
1748 		ieee80211_dump_pkt((uint8_t *)wh, len, 0, 0);
1749 #endif
1750 
1751 	in = ieee80211_find_rxnode(ic, wh);
1752 	mp = allocb(len, BPRI_MED);
1753 	if (mp) {
1754 		(void) memcpy(mp->b_wptr, wh, len);
1755 		mp->b_wptr += len;
1756 
1757 		/* send the frame to the 802.11 layer */
1758 		(void) ieee80211_input(ic, mp, in, stat->rssi, 0);
1759 	} else {
1760 		sc->sc_rx_nobuf++;
1761 		WPI_DBG((WPI_DEBUG_RX,
1762 		    "wpi_rx_intr(): alloc rx buf failed\n"));
1763 	}
1764 	/* release node reference */
1765 	ieee80211_free_node(in);
1766 }
1767 
1768 /*ARGSUSED*/
1769 static void
1770 wpi_tx_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc, wpi_rx_data_t *data)
1771 {
1772 	ieee80211com_t *ic = &sc->sc_ic;
1773 	wpi_tx_ring_t *ring = &sc->sc_txq[desc->qid & 0x3];
1774 	/* wpi_tx_data_t *txdata = &ring->data[desc->idx]; */
1775 	wpi_tx_stat_t *stat = (wpi_tx_stat_t *)(desc + 1);
1776 	wpi_amrr_t *amrr = (wpi_amrr_t *)ic->ic_bss;
1777 
1778 	WPI_DBG((WPI_DEBUG_TX, "tx done: qid=%d idx=%d retries=%d nkill=%d "
1779 	    "rate=%x duration=%d status=%x\n",
1780 	    desc->qid, desc->idx, stat->ntries, stat->nkill, stat->rate,
1781 	    LE_32(stat->duration), LE_32(stat->status)));
1782 
1783 	amrr->txcnt++;
1784 	WPI_DBG((WPI_DEBUG_RATECTL, "tx: %d cnt\n", amrr->txcnt));
1785 	if (stat->ntries > 0) {
1786 		amrr->retrycnt++;
1787 		sc->sc_tx_retries++;
1788 		WPI_DBG((WPI_DEBUG_RATECTL, "tx: %d retries\n",
1789 		    amrr->retrycnt));
1790 	}
1791 
1792 	sc->sc_tx_timer = 0;
1793 
1794 	mutex_enter(&sc->sc_tx_lock);
1795 	ring->queued--;
1796 	if (ring->queued < 0)
1797 		ring->queued = 0;
1798 	if ((sc->sc_need_reschedule) && (ring->queued <= (ring->count << 3))) {
1799 		sc->sc_need_reschedule = 0;
1800 		mutex_exit(&sc->sc_tx_lock);
1801 		mac_tx_update(ic->ic_mach);
1802 		mutex_enter(&sc->sc_tx_lock);
1803 	}
1804 	mutex_exit(&sc->sc_tx_lock);
1805 }
1806 
1807 static void
1808 wpi_cmd_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc)
1809 {
1810 	if ((desc->qid & 7) != 4) {
1811 		return;	/* not a command ack */
1812 	}
1813 	mutex_enter(&sc->sc_glock);
1814 	sc->sc_flags |= WPI_F_CMD_DONE;
1815 	cv_signal(&sc->sc_cmd_cv);
1816 	mutex_exit(&sc->sc_glock);
1817 }
1818 
1819 static uint_t
1820 wpi_notif_softintr(caddr_t arg)
1821 {
1822 	wpi_sc_t *sc = (wpi_sc_t *)arg;
1823 	wpi_rx_desc_t *desc;
1824 	wpi_rx_data_t *data;
1825 	uint32_t hw;
1826 
1827 	mutex_enter(&sc->sc_glock);
1828 	if (sc->sc_notif_softint_pending != 1) {
1829 		mutex_exit(&sc->sc_glock);
1830 		return (DDI_INTR_UNCLAIMED);
1831 	}
1832 	mutex_exit(&sc->sc_glock);
1833 
1834 	hw = LE_32(sc->sc_shared->next);
1835 
1836 	while (sc->sc_rxq.cur != hw) {
1837 		data = &sc->sc_rxq.data[sc->sc_rxq.cur];
1838 		desc = (wpi_rx_desc_t *)data->dma_data.mem_va;
1839 
1840 		WPI_DBG((WPI_DEBUG_INTR, "rx notification hw = %d cur = %d "
1841 		    "qid=%x idx=%d flags=%x type=%d len=%d\n",
1842 		    hw, sc->sc_rxq.cur, desc->qid, desc->idx, desc->flags,
1843 		    desc->type, LE_32(desc->len)));
1844 
1845 		if (!(desc->qid & 0x80))	/* reply to a command */
1846 			wpi_cmd_intr(sc, desc);
1847 
1848 		switch (desc->type) {
1849 		case WPI_RX_DONE:
1850 			/* a 802.11 frame was received */
1851 			wpi_rx_intr(sc, desc, data);
1852 			break;
1853 
1854 		case WPI_TX_DONE:
1855 			/* a 802.11 frame has been transmitted */
1856 			wpi_tx_intr(sc, desc, data);
1857 			break;
1858 
1859 		case WPI_UC_READY:
1860 		{
1861 			wpi_ucode_info_t *uc =
1862 			    (wpi_ucode_info_t *)(desc + 1);
1863 
1864 			/* the microcontroller is ready */
1865 			WPI_DBG((WPI_DEBUG_FW,
1866 			    "microcode alive notification version %x "
1867 			    "alive %x\n", LE_32(uc->version),
1868 			    LE_32(uc->valid)));
1869 
1870 			if (LE_32(uc->valid) != 1) {
1871 				WPI_DBG((WPI_DEBUG_FW,
1872 				    "microcontroller initialization failed\n"));
1873 			}
1874 			break;
1875 		}
1876 		case WPI_STATE_CHANGED:
1877 		{
1878 			uint32_t *status = (uint32_t *)(desc + 1);
1879 
1880 			/* enabled/disabled notification */
1881 			WPI_DBG((WPI_DEBUG_RADIO, "state changed to %x\n",
1882 			    LE_32(*status)));
1883 
1884 			if (LE_32(*status) & 1) {
1885 				/*
1886 				 * the radio button has to be pushed(OFF). It
1887 				 * is considered as a hw error, the
1888 				 * wpi_thread() tries to recover it after the
1889 				 * button is pushed again(ON)
1890 				 */
1891 				cmn_err(CE_NOTE,
1892 				    "wpi: Radio transmitter is off\n");
1893 				sc->sc_ostate = sc->sc_ic.ic_state;
1894 				ieee80211_new_state(&sc->sc_ic,
1895 				    IEEE80211_S_INIT, -1);
1896 				sc->sc_flags |=
1897 				    (WPI_F_HW_ERR_RECOVER | WPI_F_RADIO_OFF);
1898 			}
1899 			break;
1900 		}
1901 		case WPI_START_SCAN:
1902 		{
1903 			wpi_start_scan_t *scan =
1904 			    (wpi_start_scan_t *)(desc + 1);
1905 
1906 			WPI_DBG((WPI_DEBUG_SCAN,
1907 			    "scanning channel %d status %x\n",
1908 			    scan->chan, LE_32(scan->status)));
1909 
1910 			break;
1911 		}
1912 		case WPI_STOP_SCAN:
1913 		{
1914 			wpi_stop_scan_t *scan =
1915 			    (wpi_stop_scan_t *)(desc + 1);
1916 
1917 			WPI_DBG((WPI_DEBUG_SCAN,
1918 			    "completed channel %d (burst of %d) status %02x\n",
1919 			    scan->chan, scan->nchan, scan->status));
1920 
1921 			sc->sc_scan_pending = 0;
1922 			sc->sc_scan_next++;
1923 			break;
1924 		}
1925 		default:
1926 			break;
1927 		}
1928 
1929 		sc->sc_rxq.cur = (sc->sc_rxq.cur + 1) % WPI_RX_RING_COUNT;
1930 	}
1931 
1932 	/* tell the firmware what we have processed */
1933 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1934 	WPI_WRITE(sc, WPI_RX_WIDX, hw & (~7));
1935 	mutex_enter(&sc->sc_glock);
1936 	sc->sc_notif_softint_pending = 0;
1937 	mutex_exit(&sc->sc_glock);
1938 
1939 	return (DDI_INTR_CLAIMED);
1940 }
1941 
1942 static uint_t
1943 wpi_intr(caddr_t arg)
1944 {
1945 	wpi_sc_t *sc = (wpi_sc_t *)arg;
1946 	uint32_t r, rfh;
1947 
1948 	mutex_enter(&sc->sc_glock);
1949 	if (sc->sc_flags & WPI_F_SUSPEND) {
1950 		mutex_exit(&sc->sc_glock);
1951 		return (DDI_INTR_UNCLAIMED);
1952 	}
1953 
1954 	r = WPI_READ(sc, WPI_INTR);
1955 	if (r == 0 || r == 0xffffffff) {
1956 		mutex_exit(&sc->sc_glock);
1957 		return (DDI_INTR_UNCLAIMED);
1958 	}
1959 
1960 	WPI_DBG((WPI_DEBUG_INTR, "interrupt reg %x\n", r));
1961 
1962 	rfh = WPI_READ(sc, WPI_INTR_STATUS);
1963 	/* disable interrupts */
1964 	WPI_WRITE(sc, WPI_MASK, 0);
1965 	/* ack interrupts */
1966 	WPI_WRITE(sc, WPI_INTR, r);
1967 	WPI_WRITE(sc, WPI_INTR_STATUS, rfh);
1968 
1969 	if (sc->sc_notif_softint_id == NULL) {
1970 		mutex_exit(&sc->sc_glock);
1971 		return (DDI_INTR_CLAIMED);
1972 	}
1973 
1974 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1975 		WPI_DBG((WPI_DEBUG_FW, "fatal firmware error\n"));
1976 		mutex_exit(&sc->sc_glock);
1977 		wpi_stop(sc);
1978 		if (!(sc->sc_flags & WPI_F_HW_ERR_RECOVER)) {
1979 			sc->sc_ostate = sc->sc_ic.ic_state;
1980 		}
1981 
1982 		/* not capable of fast recovery */
1983 		if (!WPI_CHK_FAST_RECOVER(sc))
1984 			ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
1985 
1986 		sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
1987 		return (DDI_INTR_CLAIMED);
1988 	}
1989 
1990 	if ((r & (WPI_RX_INTR | WPI_RX_SWINT)) ||
1991 	    (rfh & 0x40070000)) {
1992 		sc->sc_notif_softint_pending = 1;
1993 		ddi_trigger_softintr(sc->sc_notif_softint_id);
1994 	}
1995 
1996 	if (r & WPI_ALIVE_INTR)	{ /* firmware initialized */
1997 		sc->sc_flags |= WPI_F_FW_INIT;
1998 		cv_signal(&sc->sc_fw_cv);
1999 	}
2000 
2001 	/* re-enable interrupts */
2002 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
2003 	mutex_exit(&sc->sc_glock);
2004 
2005 	return (DDI_INTR_CLAIMED);
2006 }
2007 
2008 static uint8_t
2009 wpi_plcp_signal(int rate)
2010 {
2011 	switch (rate) {
2012 	/* CCK rates (returned values are device-dependent) */
2013 	case 2:		return (10);
2014 	case 4:		return (20);
2015 	case 11:	return (55);
2016 	case 22:	return (110);
2017 
2018 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
2019 	/* R1-R4 (ral/ural is R4-R1) */
2020 	case 12:	return (0xd);
2021 	case 18:	return (0xf);
2022 	case 24:	return (0x5);
2023 	case 36:	return (0x7);
2024 	case 48:	return (0x9);
2025 	case 72:	return (0xb);
2026 	case 96:	return (0x1);
2027 	case 108:	return (0x3);
2028 
2029 	/* unsupported rates (should not get there) */
2030 	default:	return (0);
2031 	}
2032 }
2033 
2034 static mblk_t *
2035 wpi_m_tx(void *arg, mblk_t *mp)
2036 {
2037 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
2038 	ieee80211com_t	*ic = &sc->sc_ic;
2039 	mblk_t			*next;
2040 
2041 	if (sc->sc_flags & WPI_F_SUSPEND) {
2042 		freemsgchain(mp);
2043 		return (NULL);
2044 	}
2045 
2046 	if (ic->ic_state != IEEE80211_S_RUN) {
2047 		freemsgchain(mp);
2048 		return (NULL);
2049 	}
2050 
2051 	if ((sc->sc_flags & WPI_F_HW_ERR_RECOVER) &&
2052 	    WPI_CHK_FAST_RECOVER(sc)) {
2053 		WPI_DBG((WPI_DEBUG_FW, "wpi_m_tx(): hold queue\n"));
2054 		return (mp);
2055 	}
2056 
2057 	while (mp != NULL) {
2058 		next = mp->b_next;
2059 		mp->b_next = NULL;
2060 		if (wpi_send(ic, mp, IEEE80211_FC0_TYPE_DATA) != 0) {
2061 			mp->b_next = next;
2062 			break;
2063 		}
2064 		mp = next;
2065 	}
2066 	return (mp);
2067 }
2068 
2069 /* ARGSUSED */
2070 static int
2071 wpi_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
2072 {
2073 	wpi_sc_t *sc = (wpi_sc_t *)ic;
2074 	wpi_tx_ring_t *ring;
2075 	wpi_tx_desc_t *desc;
2076 	wpi_tx_data_t *data;
2077 	wpi_tx_cmd_t *cmd;
2078 	wpi_cmd_data_t *tx;
2079 	ieee80211_node_t *in;
2080 	struct ieee80211_frame *wh;
2081 	struct ieee80211_key *k;
2082 	mblk_t *m, *m0;
2083 	int rate, hdrlen, len, mblen, off, err = WPI_SUCCESS;
2084 
2085 	ring = ((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA) ?
2086 	    (&sc->sc_txq[0]) : (&sc->sc_txq[1]);
2087 	data = &ring->data[ring->cur];
2088 	desc = data->desc;
2089 	cmd = data->cmd;
2090 	bzero(desc, sizeof (*desc));
2091 	bzero(cmd, sizeof (*cmd));
2092 
2093 	mutex_enter(&sc->sc_tx_lock);
2094 	if (sc->sc_flags & WPI_F_SUSPEND) {
2095 		mutex_exit(&sc->sc_tx_lock);
2096 		if ((type & IEEE80211_FC0_TYPE_MASK) !=
2097 		    IEEE80211_FC0_TYPE_DATA) {
2098 			freemsg(mp);
2099 		}
2100 		err = ENXIO;
2101 		goto exit;
2102 	}
2103 
2104 	if (ring->queued > ring->count - 64) {
2105 		WPI_DBG((WPI_DEBUG_TX, "wpi_send(): no txbuf\n"));
2106 		sc->sc_need_reschedule = 1;
2107 		mutex_exit(&sc->sc_tx_lock);
2108 		if ((type & IEEE80211_FC0_TYPE_MASK) !=
2109 		    IEEE80211_FC0_TYPE_DATA) {
2110 			freemsg(mp);
2111 		}
2112 		sc->sc_tx_nobuf++;
2113 		err = ENOMEM;
2114 		goto exit;
2115 	}
2116 	mutex_exit(&sc->sc_tx_lock);
2117 
2118 	hdrlen = sizeof (struct ieee80211_frame);
2119 
2120 	m = allocb(msgdsize(mp) + 32, BPRI_MED);
2121 	if (m == NULL) { /* can not alloc buf, drop this package */
2122 		cmn_err(CE_WARN,
2123 		    "wpi_send(): failed to allocate msgbuf\n");
2124 		freemsg(mp);
2125 		err = WPI_SUCCESS;
2126 		goto exit;
2127 	}
2128 	for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
2129 		mblen = MBLKL(m0);
2130 		(void) memcpy(m->b_rptr + off, m0->b_rptr, mblen);
2131 		off += mblen;
2132 	}
2133 	m->b_wptr += off;
2134 	freemsg(mp);
2135 
2136 	wh = (struct ieee80211_frame *)m->b_rptr;
2137 
2138 	in = ieee80211_find_txnode(ic, wh->i_addr1);
2139 	if (in == NULL) {
2140 		cmn_err(CE_WARN, "wpi_send(): failed to find tx node\n");
2141 		freemsg(m);
2142 		sc->sc_tx_err++;
2143 		err = WPI_SUCCESS;
2144 		goto exit;
2145 	}
2146 
2147 	(void) ieee80211_encap(ic, m, in);
2148 
2149 	cmd->code = WPI_CMD_TX_DATA;
2150 	cmd->flags = 0;
2151 	cmd->qid = ring->qid;
2152 	cmd->idx = ring->cur;
2153 
2154 	tx = (wpi_cmd_data_t *)cmd->data;
2155 	tx->flags = 0;
2156 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2157 		tx->flags |= LE_32(WPI_TX_NEED_ACK);
2158 	} else {
2159 		tx->flags &= ~(LE_32(WPI_TX_NEED_ACK));
2160 	}
2161 
2162 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2163 		k = ieee80211_crypto_encap(ic, m);
2164 		if (k == NULL) {
2165 			freemsg(m);
2166 			sc->sc_tx_err++;
2167 			err = WPI_SUCCESS;
2168 			goto exit;
2169 		}
2170 
2171 		if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
2172 			tx->security = 2; /* for CCMP */
2173 			tx->flags |= LE_32(WPI_TX_NEED_ACK);
2174 			(void) memcpy(&tx->key, k->wk_key, k->wk_keylen);
2175 		}
2176 
2177 		/* packet header may have moved, reset our local pointer */
2178 		wh = (struct ieee80211_frame *)m->b_rptr;
2179 	}
2180 
2181 	len = msgdsize(m);
2182 
2183 #ifdef DEBUG
2184 	if (wpi_dbg_flags & WPI_DEBUG_TX)
2185 		ieee80211_dump_pkt((uint8_t *)wh, hdrlen, 0, 0);
2186 #endif
2187 
2188 	/* pickup a rate */
2189 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2190 	    IEEE80211_FC0_TYPE_MGT) {
2191 		/* mgmt frames are sent at the lowest available bit-rate */
2192 		rate = 2;
2193 	} else {
2194 		if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
2195 			rate = ic->ic_fixed_rate;
2196 		} else
2197 			rate = in->in_rates.ir_rates[in->in_txrate];
2198 	}
2199 	rate &= IEEE80211_RATE_VAL;
2200 	WPI_DBG((WPI_DEBUG_RATECTL, "tx rate[%d of %d] = %x",
2201 	    in->in_txrate, in->in_rates.ir_nrates, rate));
2202 #ifdef WPI_BPF
2203 #ifndef WPI_CURRENT
2204 	if (sc->sc_drvbpf != NULL) {
2205 #else
2206 	if (bpf_peers_present(sc->sc_drvbpf)) {
2207 #endif
2208 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2209 
2210 		tap->wt_flags = 0;
2211 		tap->wt_chan_freq = LE_16(ic->ic_curchan->ic_freq);
2212 		tap->wt_chan_flags = LE_16(ic->ic_curchan->ic_flags);
2213 		tap->wt_rate = rate;
2214 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2215 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2216 
2217 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2218 	}
2219 #endif
2220 
2221 	tx->flags |= (LE_32(WPI_TX_AUTO_SEQ));
2222 	tx->flags |= LE_32(WPI_TX_BT_DISABLE | WPI_TX_CALIBRATION);
2223 
2224 	/* retrieve destination node's id */
2225 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
2226 	    WPI_ID_BSS;
2227 
2228 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2229 	    IEEE80211_FC0_TYPE_MGT) {
2230 		/* tell h/w to set timestamp in probe responses */
2231 		if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2232 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2233 			tx->flags |= LE_32(WPI_TX_INSERT_TSTAMP);
2234 
2235 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2236 		    IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
2237 		    ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2238 		    IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
2239 			tx->timeout = 3;
2240 		else
2241 			tx->timeout = 2;
2242 	} else
2243 		tx->timeout = 0;
2244 
2245 	tx->rate = wpi_plcp_signal(rate);
2246 
2247 	/* be very persistant at sending frames out */
2248 	tx->rts_ntries = 7;
2249 	tx->data_ntries = 15;
2250 
2251 	tx->cck_mask  = 0x0f;
2252 	tx->ofdm_mask = 0xff;
2253 	tx->lifetime  = LE_32(0xffffffff);
2254 
2255 	tx->len = LE_16(len);
2256 
2257 	/* save and trim IEEE802.11 header */
2258 	(void) memcpy(tx + 1, m->b_rptr, hdrlen);
2259 	m->b_rptr += hdrlen;
2260 	(void) memcpy(data->dma_data.mem_va, m->b_rptr, len - hdrlen);
2261 
2262 	WPI_DBG((WPI_DEBUG_TX, "sending data: qid=%d idx=%d len=%d", ring->qid,
2263 	    ring->cur, len));
2264 
2265 	/* first scatter/gather segment is used by the tx data command */
2266 	desc->flags = LE_32(WPI_PAD32(len) << 28 | (2) << 24);
2267 	desc->segs[0].addr = LE_32(data->paddr_cmd);
2268 	desc->segs[0].len  = LE_32(
2269 	    roundup(4 + sizeof (wpi_cmd_data_t) + hdrlen, 4));
2270 	desc->segs[1].addr = LE_32(data->dma_data.cookie.dmac_address);
2271 	desc->segs[1].len  = LE_32(len - hdrlen);
2272 
2273 	WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
2274 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
2275 
2276 	mutex_enter(&sc->sc_tx_lock);
2277 	ring->queued++;
2278 	mutex_exit(&sc->sc_tx_lock);
2279 
2280 	/* kick ring */
2281 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2282 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2283 	freemsg(m);
2284 	/* release node reference */
2285 	ieee80211_free_node(in);
2286 
2287 	ic->ic_stats.is_tx_bytes += len;
2288 	ic->ic_stats.is_tx_frags++;
2289 
2290 	if (sc->sc_tx_timer == 0)
2291 		sc->sc_tx_timer = 5;
2292 exit:
2293 	return (err);
2294 }
2295 
2296 static void
2297 wpi_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
2298 {
2299 	wpi_sc_t	*sc  = (wpi_sc_t *)arg;
2300 	ieee80211com_t	*ic = &sc->sc_ic;
2301 	int		err;
2302 
2303 	err = ieee80211_ioctl(ic, wq, mp);
2304 	if (err == ENETRESET) {
2305 		/*
2306 		 * This is special for the hidden AP connection.
2307 		 * In any case, we should make sure only one 'scan'
2308 		 * in the driver for a 'connect' CLI command. So
2309 		 * when connecting to a hidden AP, the scan is just
2310 		 * sent out to the air when we know the desired
2311 		 * essid of the AP we want to connect.
2312 		 */
2313 		if (ic->ic_des_esslen) {
2314 			if (sc->sc_flags & WPI_F_RUNNING) {
2315 				wpi_m_stop(sc);
2316 				(void) wpi_m_start(sc);
2317 				(void) ieee80211_new_state(ic,
2318 				    IEEE80211_S_SCAN, -1);
2319 			}
2320 		}
2321 	}
2322 }
2323 
2324 /*
2325  * Callback functions for get/set properties
2326  */
2327 /* ARGSUSED */
2328 static int
2329 wpi_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_name,
2330     uint_t wldp_length, void *wldp_buf)
2331 {
2332 	int		err = 0;
2333 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
2334 
2335 	err = ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_name,
2336 	    wldp_length, wldp_buf);
2337 
2338 	return (err);
2339 }
2340 
2341 static void
2342 wpi_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
2343     mac_prop_info_handle_t mph)
2344 {
2345 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
2346 
2347 	ieee80211_propinfo(&sc->sc_ic, pr_name, wldp_pr_num, mph);
2348 }
2349 
2350 static int
2351 wpi_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_name,
2352     uint_t wldp_length, const void *wldp_buf)
2353 {
2354 	int		err;
2355 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
2356 	ieee80211com_t  *ic = &sc->sc_ic;
2357 
2358 	err = ieee80211_setprop(ic, pr_name, wldp_pr_name,
2359 	    wldp_length, wldp_buf);
2360 
2361 	if (err == ENETRESET) {
2362 		if (ic->ic_des_esslen) {
2363 			if (sc->sc_flags & WPI_F_RUNNING) {
2364 				wpi_m_stop(sc);
2365 				(void) wpi_m_start(sc);
2366 				(void) ieee80211_new_state(ic,
2367 				    IEEE80211_S_SCAN, -1);
2368 			}
2369 		}
2370 
2371 		err = 0;
2372 	}
2373 
2374 	return (err);
2375 }
2376 
2377 /*ARGSUSED*/
2378 static int
2379 wpi_m_stat(void *arg, uint_t stat, uint64_t *val)
2380 {
2381 	wpi_sc_t	*sc  = (wpi_sc_t *)arg;
2382 	ieee80211com_t	*ic = &sc->sc_ic;
2383 	ieee80211_node_t *in;
2384 
2385 	mutex_enter(&sc->sc_glock);
2386 	switch (stat) {
2387 	case MAC_STAT_IFSPEED:
2388 		in = ic->ic_bss;
2389 		*val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ?
2390 		    IEEE80211_RATE(in->in_txrate) :
2391 		    ic->ic_fixed_rate) / 2 * 1000000;
2392 		break;
2393 	case MAC_STAT_NOXMTBUF:
2394 		*val = sc->sc_tx_nobuf;
2395 		break;
2396 	case MAC_STAT_NORCVBUF:
2397 		*val = sc->sc_rx_nobuf;
2398 		break;
2399 	case MAC_STAT_IERRORS:
2400 		*val = sc->sc_rx_err;
2401 		break;
2402 	case MAC_STAT_RBYTES:
2403 		*val = ic->ic_stats.is_rx_bytes;
2404 		break;
2405 	case MAC_STAT_IPACKETS:
2406 		*val = ic->ic_stats.is_rx_frags;
2407 		break;
2408 	case MAC_STAT_OBYTES:
2409 		*val = ic->ic_stats.is_tx_bytes;
2410 		break;
2411 	case MAC_STAT_OPACKETS:
2412 		*val = ic->ic_stats.is_tx_frags;
2413 		break;
2414 	case MAC_STAT_OERRORS:
2415 	case WIFI_STAT_TX_FAILED:
2416 		*val = sc->sc_tx_err;
2417 		break;
2418 	case WIFI_STAT_TX_RETRANS:
2419 		*val = sc->sc_tx_retries;
2420 		break;
2421 	case WIFI_STAT_FCS_ERRORS:
2422 	case WIFI_STAT_WEP_ERRORS:
2423 	case WIFI_STAT_TX_FRAGS:
2424 	case WIFI_STAT_MCAST_TX:
2425 	case WIFI_STAT_RTS_SUCCESS:
2426 	case WIFI_STAT_RTS_FAILURE:
2427 	case WIFI_STAT_ACK_FAILURE:
2428 	case WIFI_STAT_RX_FRAGS:
2429 	case WIFI_STAT_MCAST_RX:
2430 	case WIFI_STAT_RX_DUPS:
2431 		mutex_exit(&sc->sc_glock);
2432 		return (ieee80211_stat(ic, stat, val));
2433 	default:
2434 		mutex_exit(&sc->sc_glock);
2435 		return (ENOTSUP);
2436 	}
2437 	mutex_exit(&sc->sc_glock);
2438 
2439 	return (WPI_SUCCESS);
2440 
2441 }
2442 
2443 static int
2444 wpi_m_start(void *arg)
2445 {
2446 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2447 	ieee80211com_t	*ic = &sc->sc_ic;
2448 	int err;
2449 
2450 	err = wpi_init(sc);
2451 	if (err != WPI_SUCCESS) {
2452 		wpi_stop(sc);
2453 		DELAY(1000000);
2454 		err = wpi_init(sc);
2455 	}
2456 
2457 	if (err) {
2458 		/*
2459 		 * The hw init err(eg. RF is OFF). Return Success to make
2460 		 * the 'plumb' succeed. The wpi_thread() tries to re-init
2461 		 * background.
2462 		 */
2463 		mutex_enter(&sc->sc_glock);
2464 		sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
2465 		mutex_exit(&sc->sc_glock);
2466 		return (WPI_SUCCESS);
2467 	}
2468 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2469 	mutex_enter(&sc->sc_glock);
2470 	sc->sc_flags |= WPI_F_RUNNING;
2471 	mutex_exit(&sc->sc_glock);
2472 
2473 	return (WPI_SUCCESS);
2474 }
2475 
2476 static void
2477 wpi_m_stop(void *arg)
2478 {
2479 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2480 	ieee80211com_t	*ic = &sc->sc_ic;
2481 
2482 	wpi_stop(sc);
2483 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2484 	mutex_enter(&sc->sc_mt_lock);
2485 	sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER;
2486 	sc->sc_flags &= ~WPI_F_RATE_AUTO_CTL;
2487 	mutex_exit(&sc->sc_mt_lock);
2488 	mutex_enter(&sc->sc_glock);
2489 	sc->sc_flags &= ~WPI_F_RUNNING;
2490 	mutex_exit(&sc->sc_glock);
2491 }
2492 
2493 /*ARGSUSED*/
2494 static int
2495 wpi_m_unicst(void *arg, const uint8_t *macaddr)
2496 {
2497 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2498 	ieee80211com_t	*ic = &sc->sc_ic;
2499 	int err;
2500 
2501 	if (!IEEE80211_ADDR_EQ(ic->ic_macaddr, macaddr)) {
2502 		IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr);
2503 		mutex_enter(&sc->sc_glock);
2504 		err = wpi_config(sc);
2505 		mutex_exit(&sc->sc_glock);
2506 		if (err != WPI_SUCCESS) {
2507 			cmn_err(CE_WARN,
2508 			    "wpi_m_unicst(): "
2509 			    "failed to configure device\n");
2510 			goto fail;
2511 		}
2512 	}
2513 	return (WPI_SUCCESS);
2514 fail:
2515 	return (err);
2516 }
2517 
2518 /*ARGSUSED*/
2519 static int
2520 wpi_m_multicst(void *arg, boolean_t add, const uint8_t *m)
2521 {
2522 	return (WPI_SUCCESS);
2523 }
2524 
2525 /*ARGSUSED*/
2526 static int
2527 wpi_m_promisc(void *arg, boolean_t on)
2528 {
2529 	return (WPI_SUCCESS);
2530 }
2531 
2532 static void
2533 wpi_thread(wpi_sc_t *sc)
2534 {
2535 	ieee80211com_t	*ic = &sc->sc_ic;
2536 	clock_t clk;
2537 	int times = 0, err, n = 0, timeout = 0;
2538 	uint32_t tmp;
2539 
2540 	mutex_enter(&sc->sc_mt_lock);
2541 	while (sc->sc_mf_thread_switch) {
2542 		tmp = WPI_READ(sc, WPI_GPIO_CTL);
2543 		if (tmp & WPI_GPIO_HW_RF_KILL) {
2544 			sc->sc_flags &= ~WPI_F_RADIO_OFF;
2545 		} else {
2546 			sc->sc_flags |= WPI_F_RADIO_OFF;
2547 		}
2548 		/*
2549 		 * If in SUSPEND or the RF is OFF, do nothing
2550 		 */
2551 		if ((sc->sc_flags & WPI_F_SUSPEND) ||
2552 		    (sc->sc_flags & WPI_F_RADIO_OFF)) {
2553 			mutex_exit(&sc->sc_mt_lock);
2554 			delay(drv_usectohz(100000));
2555 			mutex_enter(&sc->sc_mt_lock);
2556 			continue;
2557 		}
2558 
2559 		/*
2560 		 * recovery fatal error
2561 		 */
2562 		if (ic->ic_mach &&
2563 		    (sc->sc_flags & WPI_F_HW_ERR_RECOVER)) {
2564 
2565 			WPI_DBG((WPI_DEBUG_FW,
2566 			    "wpi_thread(): "
2567 			    "try to recover fatal hw error: %d\n", times++));
2568 
2569 			wpi_stop(sc);
2570 
2571 			if (WPI_CHK_FAST_RECOVER(sc)) {
2572 				/* save runtime configuration */
2573 				bcopy(&sc->sc_config, &sc->sc_config_save,
2574 				    sizeof (sc->sc_config));
2575 			} else {
2576 				mutex_exit(&sc->sc_mt_lock);
2577 				ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2578 				delay(drv_usectohz(2000000));
2579 				mutex_enter(&sc->sc_mt_lock);
2580 			}
2581 
2582 			err = wpi_init(sc);
2583 			if (err != WPI_SUCCESS) {
2584 				n++;
2585 				if (n < 3)
2586 					continue;
2587 			}
2588 			n = 0;
2589 			if (!err)
2590 				sc->sc_flags |= WPI_F_RUNNING;
2591 
2592 			if (!WPI_CHK_FAST_RECOVER(sc) ||
2593 			    wpi_fast_recover(sc) != WPI_SUCCESS) {
2594 				sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER;
2595 
2596 				mutex_exit(&sc->sc_mt_lock);
2597 				delay(drv_usectohz(2000000));
2598 				if (sc->sc_ostate != IEEE80211_S_INIT)
2599 					ieee80211_new_state(ic,
2600 					    IEEE80211_S_SCAN, 0);
2601 				mutex_enter(&sc->sc_mt_lock);
2602 			}
2603 		}
2604 
2605 		if (ic->ic_mach && (sc->sc_flags & WPI_F_LAZY_RESUME)) {
2606 			WPI_DBG((WPI_DEBUG_RESUME,
2607 			    "wpi_thread(): "
2608 			    "lazy resume\n"));
2609 			sc->sc_flags &= ~WPI_F_LAZY_RESUME;
2610 			mutex_exit(&sc->sc_mt_lock);
2611 			/*
2612 			 * NB: under WPA mode, this call hangs (door problem?)
2613 			 * when called in wpi_attach() and wpi_detach() while
2614 			 * system is in the procedure of CPR. To be safe, let
2615 			 * the thread do this.
2616 			 */
2617 			ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
2618 			mutex_enter(&sc->sc_mt_lock);
2619 		}
2620 
2621 		/*
2622 		 * scan next channel
2623 		 */
2624 		if (ic->ic_mach &&
2625 		    (sc->sc_flags & WPI_F_SCANNING) && sc->sc_scan_next) {
2626 
2627 			WPI_DBG((WPI_DEBUG_SCAN,
2628 			    "wpi_thread(): "
2629 			    "wait for probe response\n"));
2630 
2631 			sc->sc_scan_next--;
2632 			mutex_exit(&sc->sc_mt_lock);
2633 			delay(drv_usectohz(200000));
2634 			if (sc->sc_flags & WPI_F_SCANNING)
2635 				ieee80211_next_scan(ic);
2636 			mutex_enter(&sc->sc_mt_lock);
2637 		}
2638 
2639 		/*
2640 		 * rate ctl
2641 		 */
2642 		if (ic->ic_mach &&
2643 		    (sc->sc_flags & WPI_F_RATE_AUTO_CTL)) {
2644 			clk = ddi_get_lbolt();
2645 			if (clk > sc->sc_clk + drv_usectohz(500000)) {
2646 				wpi_amrr_timeout(sc);
2647 			}
2648 		}
2649 		mutex_exit(&sc->sc_mt_lock);
2650 		delay(drv_usectohz(100000));
2651 		mutex_enter(&sc->sc_mt_lock);
2652 		if (sc->sc_tx_timer) {
2653 			timeout++;
2654 			if (timeout == 10) {
2655 				sc->sc_tx_timer--;
2656 				if (sc->sc_tx_timer == 0) {
2657 					sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
2658 					sc->sc_ostate = IEEE80211_S_RUN;
2659 					WPI_DBG((WPI_DEBUG_FW,
2660 					    "wpi_thread(): send fail\n"));
2661 				}
2662 				timeout = 0;
2663 			}
2664 		}
2665 	}
2666 	sc->sc_mf_thread = NULL;
2667 	cv_signal(&sc->sc_mt_cv);
2668 	mutex_exit(&sc->sc_mt_lock);
2669 }
2670 
2671 /*
2672  * Extract various information from EEPROM.
2673  */
2674 static void
2675 wpi_read_eeprom(wpi_sc_t *sc)
2676 {
2677 	ieee80211com_t *ic = &sc->sc_ic;
2678 	uint16_t val;
2679 	int i;
2680 
2681 	/* read MAC address */
2682 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 0);
2683 	ic->ic_macaddr[0] = val & 0xff;
2684 	ic->ic_macaddr[1] = val >> 8;
2685 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 1);
2686 	ic->ic_macaddr[2] = val & 0xff;
2687 	ic->ic_macaddr[3] = val >> 8;
2688 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 2);
2689 	ic->ic_macaddr[4] = val & 0xff;
2690 	ic->ic_macaddr[5] = val >> 8;
2691 
2692 	WPI_DBG((WPI_DEBUG_EEPROM,
2693 	    "mac:%2x:%2x:%2x:%2x:%2x:%2x\n",
2694 	    ic->ic_macaddr[0], ic->ic_macaddr[1],
2695 	    ic->ic_macaddr[2], ic->ic_macaddr[3],
2696 	    ic->ic_macaddr[4], ic->ic_macaddr[5]));
2697 	/* read power settings for 2.4GHz channels */
2698 	for (i = 0; i < 14; i++) {
2699 		sc->sc_pwr1[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR1 + i);
2700 		sc->sc_pwr2[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR2 + i);
2701 		WPI_DBG((WPI_DEBUG_EEPROM,
2702 		    "channel %d pwr1 0x%04x pwr2 0x%04x\n", i + 1,
2703 		    sc->sc_pwr1[i], sc->sc_pwr2[i]));
2704 	}
2705 }
2706 
2707 /*
2708  * Send a command to the firmware.
2709  */
2710 static int
2711 wpi_cmd(wpi_sc_t *sc, int code, const void *buf, int size, int async)
2712 {
2713 	wpi_tx_ring_t *ring = &sc->sc_cmdq;
2714 	wpi_tx_desc_t *desc;
2715 	wpi_tx_cmd_t *cmd;
2716 
2717 	ASSERT(size <= sizeof (cmd->data));
2718 	ASSERT(mutex_owned(&sc->sc_glock));
2719 
2720 	WPI_DBG((WPI_DEBUG_CMD, "wpi_cmd() # code[%d]", code));
2721 	desc = ring->data[ring->cur].desc;
2722 	cmd = ring->data[ring->cur].cmd;
2723 
2724 	cmd->code = (uint8_t)code;
2725 	cmd->flags = 0;
2726 	cmd->qid = ring->qid;
2727 	cmd->idx = ring->cur;
2728 	(void) memcpy(cmd->data, buf, size);
2729 
2730 	desc->flags = LE_32(WPI_PAD32(size) << 28 | 1 << 24);
2731 	desc->segs[0].addr = ring->data[ring->cur].paddr_cmd;
2732 	desc->segs[0].len  = 4 + size;
2733 
2734 	/* kick cmd ring */
2735 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2736 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2737 
2738 	if (async)
2739 		return (WPI_SUCCESS);
2740 	else {
2741 		clock_t clk;
2742 		sc->sc_flags &= ~WPI_F_CMD_DONE;
2743 		clk = ddi_get_lbolt() + drv_usectohz(2000000);
2744 		while (!(sc->sc_flags & WPI_F_CMD_DONE)) {
2745 			if (cv_timedwait(&sc->sc_cmd_cv, &sc->sc_glock, clk)
2746 			    < 0)
2747 				break;
2748 		}
2749 		if (sc->sc_flags & WPI_F_CMD_DONE)
2750 			return (WPI_SUCCESS);
2751 		else
2752 			return (WPI_FAIL);
2753 	}
2754 }
2755 
2756 /*
2757  * Configure h/w multi-rate retries.
2758  */
2759 static int
2760 wpi_mrr_setup(wpi_sc_t *sc)
2761 {
2762 	wpi_mrr_setup_t mrr;
2763 	int i, err;
2764 
2765 	/* CCK rates (not used with 802.11a) */
2766 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2767 		mrr.rates[i].flags = 0;
2768 		mrr.rates[i].signal = wpi_ridx_to_signal[i];
2769 		/* fallback to the immediate lower CCK rate (if any) */
2770 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2771 		/* try one time at this rate before falling back to "next" */
2772 		mrr.rates[i].ntries = 1;
2773 	}
2774 
2775 	/* OFDM rates (not used with 802.11b) */
2776 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2777 		mrr.rates[i].flags = 0;
2778 		mrr.rates[i].signal = wpi_ridx_to_signal[i];
2779 		/* fallback to the immediate lower OFDM rate (if any) */
2780 		mrr.rates[i].next = (i == WPI_OFDM6) ? WPI_OFDM6 : i - 1;
2781 		/* try one time at this rate before falling back to "next" */
2782 		mrr.rates[i].ntries = 1;
2783 	}
2784 
2785 	/* setup MRR for control frames */
2786 	mrr.which = LE_32(WPI_MRR_CTL);
2787 	err = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof (mrr), 1);
2788 	if (err != WPI_SUCCESS) {
2789 		WPI_DBG((WPI_DEBUG_MRR,
2790 		    "could not setup MRR for control frames\n"));
2791 		return (err);
2792 	}
2793 
2794 	/* setup MRR for data frames */
2795 	mrr.which = LE_32(WPI_MRR_DATA);
2796 	err = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof (mrr), 1);
2797 	if (err != WPI_SUCCESS) {
2798 		WPI_DBG((WPI_DEBUG_MRR,
2799 		    "could not setup MRR for data frames\n"));
2800 		return (err);
2801 	}
2802 
2803 	return (WPI_SUCCESS);
2804 }
2805 
2806 static void
2807 wpi_set_led(wpi_sc_t *sc, uint8_t which, uint8_t off, uint8_t on)
2808 {
2809 	wpi_cmd_led_t led;
2810 
2811 	led.which = which;
2812 	led.unit = LE_32(100000);	/* on/off in unit of 100ms */
2813 	led.off = off;
2814 	led.on = on;
2815 
2816 	(void) wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof (led), 1);
2817 }
2818 
2819 static int
2820 wpi_auth(wpi_sc_t *sc)
2821 {
2822 	ieee80211com_t *ic = &sc->sc_ic;
2823 	ieee80211_node_t *in = ic->ic_bss;
2824 	wpi_node_t node;
2825 	int err;
2826 
2827 	/* update adapter's configuration */
2828 	IEEE80211_ADDR_COPY(sc->sc_config.bssid, in->in_bssid);
2829 	sc->sc_config.chan = ieee80211_chan2ieee(ic, in->in_chan);
2830 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2831 		sc->sc_config.cck_mask  = 0x03;
2832 		sc->sc_config.ofdm_mask = 0;
2833 	} else if ((in->in_chan != IEEE80211_CHAN_ANYC) &&
2834 	    (IEEE80211_IS_CHAN_5GHZ(in->in_chan))) {
2835 		sc->sc_config.cck_mask  = 0;
2836 		sc->sc_config.ofdm_mask = 0x15;
2837 	} else {	/* assume 802.11b/g */
2838 		sc->sc_config.cck_mask  = 0x0f;
2839 		sc->sc_config.ofdm_mask = 0xff;
2840 	}
2841 
2842 	WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x cck %x ofdm %x"
2843 	    " bssid:%02x:%02x:%02x:%02x:%02x:%2x\n",
2844 	    sc->sc_config.chan, sc->sc_config.flags,
2845 	    sc->sc_config.cck_mask, sc->sc_config.ofdm_mask,
2846 	    sc->sc_config.bssid[0], sc->sc_config.bssid[1],
2847 	    sc->sc_config.bssid[2], sc->sc_config.bssid[3],
2848 	    sc->sc_config.bssid[4], sc->sc_config.bssid[5]));
2849 	err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
2850 	    sizeof (wpi_config_t), 1);
2851 	if (err != WPI_SUCCESS) {
2852 		cmn_err(CE_WARN, "wpi_auth(): failed to configurate chan%d\n",
2853 		    sc->sc_config.chan);
2854 		return (err);
2855 	}
2856 
2857 	/* add default node */
2858 	(void) memset(&node, 0, sizeof (node));
2859 	IEEE80211_ADDR_COPY(node.bssid, in->in_bssid);
2860 	node.id = WPI_ID_BSS;
2861 	node.rate = wpi_plcp_signal(2);
2862 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 1);
2863 	if (err != WPI_SUCCESS) {
2864 		cmn_err(CE_WARN, "wpi_auth(): failed to add BSS node\n");
2865 		return (err);
2866 	}
2867 
2868 	err = wpi_mrr_setup(sc);
2869 	if (err != WPI_SUCCESS) {
2870 		cmn_err(CE_WARN, "wpi_auth(): failed to setup MRR\n");
2871 		return (err);
2872 	}
2873 
2874 	return (WPI_SUCCESS);
2875 }
2876 
2877 /*
2878  * Send a scan request to the firmware.
2879  */
2880 static int
2881 wpi_scan(wpi_sc_t *sc)
2882 {
2883 	ieee80211com_t *ic = &sc->sc_ic;
2884 	wpi_tx_ring_t *ring = &sc->sc_cmdq;
2885 	wpi_tx_desc_t *desc;
2886 	wpi_tx_data_t *data;
2887 	wpi_tx_cmd_t *cmd;
2888 	wpi_scan_hdr_t *hdr;
2889 	wpi_scan_chan_t *chan;
2890 	struct ieee80211_frame *wh;
2891 	ieee80211_node_t *in = ic->ic_bss;
2892 	uint8_t essid[IEEE80211_NWID_LEN+1];
2893 	struct ieee80211_rateset *rs;
2894 	enum ieee80211_phymode mode;
2895 	uint8_t *frm;
2896 	int i, pktlen, nrates;
2897 
2898 	/* previous scan not completed */
2899 	if (sc->sc_scan_pending) {
2900 		WPI_DBG((WPI_DEBUG_SCAN, "previous scan not completed\n"));
2901 		return (WPI_SUCCESS);
2902 	}
2903 
2904 	data = &ring->data[ring->cur];
2905 	desc = data->desc;
2906 	cmd = (wpi_tx_cmd_t *)data->dma_data.mem_va;
2907 
2908 	cmd->code = WPI_CMD_SCAN;
2909 	cmd->flags = 0;
2910 	cmd->qid = ring->qid;
2911 	cmd->idx = ring->cur;
2912 
2913 	hdr = (wpi_scan_hdr_t *)cmd->data;
2914 	(void) memset(hdr, 0, sizeof (wpi_scan_hdr_t));
2915 	hdr->first = 1;
2916 	hdr->nchan = 1;
2917 	hdr->len = hdr->nchan * sizeof (wpi_scan_chan_t);
2918 	hdr->quiet = LE_16(50);
2919 	hdr->threshold = LE_16(1);
2920 	hdr->filter = LE_32(5);
2921 	hdr->rate = wpi_plcp_signal(2);
2922 	hdr->id = WPI_ID_BROADCAST;
2923 	hdr->mask = LE_32(0xffffffff);
2924 	hdr->esslen = ic->ic_des_esslen;
2925 
2926 	if (ic->ic_des_esslen) {
2927 		bcopy(ic->ic_des_essid, essid, ic->ic_des_esslen);
2928 		essid[ic->ic_des_esslen] = '\0';
2929 		WPI_DBG((WPI_DEBUG_SCAN, "directed scan %s\n", essid));
2930 
2931 		bcopy(ic->ic_des_essid, hdr->essid, ic->ic_des_esslen);
2932 	} else {
2933 		bzero(hdr->essid, sizeof (hdr->essid));
2934 	}
2935 
2936 	/*
2937 	 * Build a probe request frame.  Most of the following code is a
2938 	 * copy & paste of what is done in net80211.  Unfortunately, the
2939 	 * functions to add IEs are static and thus can't be reused here.
2940 	 */
2941 	wh = (struct ieee80211_frame *)(hdr + 1);
2942 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2943 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2944 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2945 	(void) memset(wh->i_addr1, 0xff, 6);
2946 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_macaddr);
2947 	(void) memset(wh->i_addr3, 0xff, 6);
2948 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2949 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2950 
2951 	frm = (uint8_t *)(wh + 1);
2952 
2953 	/* add essid IE */
2954 	if (in->in_esslen) {
2955 		bcopy(in->in_essid, essid, in->in_esslen);
2956 		essid[in->in_esslen] = '\0';
2957 		WPI_DBG((WPI_DEBUG_SCAN, "probe with ESSID %s\n",
2958 		    essid));
2959 	}
2960 	*frm++ = IEEE80211_ELEMID_SSID;
2961 	*frm++ = in->in_esslen;
2962 	(void) memcpy(frm, in->in_essid, in->in_esslen);
2963 	frm += in->in_esslen;
2964 
2965 	mode = ieee80211_chan2mode(ic, ic->ic_curchan);
2966 	rs = &ic->ic_sup_rates[mode];
2967 
2968 	/* add supported rates IE */
2969 	*frm++ = IEEE80211_ELEMID_RATES;
2970 	nrates = rs->ir_nrates;
2971 	if (nrates > IEEE80211_RATE_SIZE)
2972 		nrates = IEEE80211_RATE_SIZE;
2973 	*frm++ = (uint8_t)nrates;
2974 	(void) memcpy(frm, rs->ir_rates, nrates);
2975 	frm += nrates;
2976 
2977 	/* add supported xrates IE */
2978 	if (rs->ir_nrates > IEEE80211_RATE_SIZE) {
2979 		nrates = rs->ir_nrates - IEEE80211_RATE_SIZE;
2980 		*frm++ = IEEE80211_ELEMID_XRATES;
2981 		*frm++ = (uint8_t)nrates;
2982 		(void) memcpy(frm, rs->ir_rates + IEEE80211_RATE_SIZE, nrates);
2983 		frm += nrates;
2984 	}
2985 
2986 	/* add optionnal IE (usually an RSN IE) */
2987 	if (ic->ic_opt_ie != NULL) {
2988 		(void) memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
2989 		frm += ic->ic_opt_ie_len;
2990 	}
2991 
2992 	/* setup length of probe request */
2993 	hdr->pbrlen = LE_16((uintptr_t)frm - (uintptr_t)wh);
2994 
2995 	/* align on a 4-byte boundary */
2996 	chan = (wpi_scan_chan_t *)frm;
2997 	for (i = 1; i <= hdr->nchan; i++, chan++) {
2998 		if (ic->ic_des_esslen) {
2999 			chan->flags = 0x3;
3000 		} else {
3001 			chan->flags = 0x1;
3002 		}
3003 		chan->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3004 		chan->magic = LE_16(0x62ab);
3005 		chan->active = LE_16(50);
3006 		chan->passive = LE_16(120);
3007 
3008 		frm += sizeof (wpi_scan_chan_t);
3009 	}
3010 
3011 	pktlen = (uintptr_t)frm - (uintptr_t)cmd;
3012 
3013 	desc->flags = LE_32(WPI_PAD32(pktlen) << 28 | 1 << 24);
3014 	desc->segs[0].addr = LE_32(data->dma_data.cookie.dmac_address);
3015 	desc->segs[0].len  = LE_32(pktlen);
3016 
3017 	WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
3018 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
3019 
3020 	/* kick cmd ring */
3021 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
3022 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
3023 
3024 	sc->sc_scan_pending = 1;
3025 
3026 	return (WPI_SUCCESS);	/* will be notified async. of failure/success */
3027 }
3028 
3029 static int
3030 wpi_config(wpi_sc_t *sc)
3031 {
3032 	ieee80211com_t *ic = &sc->sc_ic;
3033 	wpi_txpower_t txpower;
3034 	wpi_power_t power;
3035 #ifdef WPI_BLUE_COEXISTENCE
3036 	wpi_bluetooth_t bluetooth;
3037 #endif
3038 	wpi_node_t node;
3039 	int err;
3040 
3041 	/* Intel's binary only daemon is a joke.. */
3042 
3043 	/* set Tx power for 2.4GHz channels (values read from EEPROM) */
3044 	(void) memset(&txpower, 0, sizeof (txpower));
3045 	(void) memcpy(txpower.pwr1, sc->sc_pwr1, 14 * sizeof (uint16_t));
3046 	(void) memcpy(txpower.pwr2, sc->sc_pwr2, 14 * sizeof (uint16_t));
3047 	err = wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof (txpower), 0);
3048 	if (err != WPI_SUCCESS) {
3049 		cmn_err(CE_WARN, "wpi_config(): failed to set txpower\n");
3050 		return (err);
3051 	}
3052 
3053 	/* set power mode */
3054 	(void) memset(&power, 0, sizeof (power));
3055 	power.flags = LE_32(0x8);
3056 	err = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof (power), 0);
3057 	if (err != WPI_SUCCESS) {
3058 		cmn_err(CE_WARN, "wpi_config(): failed to set power mode\n");
3059 		return (err);
3060 	}
3061 #ifdef WPI_BLUE_COEXISTENCE
3062 	/* configure bluetooth coexistence */
3063 	(void) memset(&bluetooth, 0, sizeof (bluetooth));
3064 	bluetooth.flags = 3;
3065 	bluetooth.lead = 0xaa;
3066 	bluetooth.kill = 1;
3067 	err = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth,
3068 	    sizeof (bluetooth), 0);
3069 	if (err != WPI_SUCCESS) {
3070 		cmn_err(CE_WARN,
3071 		    "wpi_config(): "
3072 		    "failed to configurate bluetooth coexistence\n");
3073 		return (err);
3074 	}
3075 #endif
3076 	/* configure adapter */
3077 	(void) memset(&sc->sc_config, 0, sizeof (wpi_config_t));
3078 	IEEE80211_ADDR_COPY(sc->sc_config.myaddr, ic->ic_macaddr);
3079 	sc->sc_config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3080 	sc->sc_config.flags = LE_32(WPI_CONFIG_TSF | WPI_CONFIG_AUTO |
3081 	    WPI_CONFIG_24GHZ);
3082 	sc->sc_config.filter = 0;
3083 	switch (ic->ic_opmode) {
3084 	case IEEE80211_M_STA:
3085 		sc->sc_config.mode = WPI_MODE_STA;
3086 		sc->sc_config.filter |= LE_32(WPI_FILTER_MULTICAST);
3087 		break;
3088 	case IEEE80211_M_IBSS:
3089 	case IEEE80211_M_AHDEMO:
3090 		sc->sc_config.mode = WPI_MODE_IBSS;
3091 		break;
3092 	case IEEE80211_M_HOSTAP:
3093 		sc->sc_config.mode = WPI_MODE_HOSTAP;
3094 		break;
3095 	case IEEE80211_M_MONITOR:
3096 		sc->sc_config.mode = WPI_MODE_MONITOR;
3097 		sc->sc_config.filter |= LE_32(WPI_FILTER_MULTICAST |
3098 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
3099 		break;
3100 	}
3101 	sc->sc_config.cck_mask  = 0x0f;	/* not yet negotiated */
3102 	sc->sc_config.ofdm_mask = 0xff;	/* not yet negotiated */
3103 	err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
3104 	    sizeof (wpi_config_t), 0);
3105 	if (err != WPI_SUCCESS) {
3106 		cmn_err(CE_WARN, "wpi_config(): "
3107 		    "failed to set configure command\n");
3108 		return (err);
3109 	}
3110 
3111 	/* add broadcast node */
3112 	(void) memset(&node, 0, sizeof (node));
3113 	(void) memset(node.bssid, 0xff, 6);
3114 	node.id = WPI_ID_BROADCAST;
3115 	node.rate = wpi_plcp_signal(2);
3116 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 0);
3117 	if (err != WPI_SUCCESS) {
3118 		cmn_err(CE_WARN, "wpi_config(): "
3119 		    "failed to add broadcast node\n");
3120 		return (err);
3121 	}
3122 
3123 	return (WPI_SUCCESS);
3124 }
3125 
3126 static void
3127 wpi_stop_master(wpi_sc_t *sc)
3128 {
3129 	uint32_t tmp;
3130 	int ntries;
3131 
3132 	tmp = WPI_READ(sc, WPI_RESET);
3133 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
3134 
3135 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3136 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3137 		return;	/* already asleep */
3138 
3139 	for (ntries = 0; ntries < 2000; ntries++) {
3140 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3141 			break;
3142 		DELAY(1000);
3143 	}
3144 	if (ntries == 2000)
3145 		WPI_DBG((WPI_DEBUG_HW, "timeout waiting for master\n"));
3146 }
3147 
3148 static int
3149 wpi_power_up(wpi_sc_t *sc)
3150 {
3151 	uint32_t tmp;
3152 	int ntries;
3153 
3154 	wpi_mem_lock(sc);
3155 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3156 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3157 	wpi_mem_unlock(sc);
3158 
3159 	for (ntries = 0; ntries < 5000; ntries++) {
3160 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3161 			break;
3162 		DELAY(10);
3163 	}
3164 	if (ntries == 5000) {
3165 		cmn_err(CE_WARN,
3166 		    "wpi_power_up(): timeout waiting for NIC to power up\n");
3167 		return (ETIMEDOUT);
3168 	}
3169 	return (WPI_SUCCESS);
3170 }
3171 
3172 static int
3173 wpi_reset(wpi_sc_t *sc)
3174 {
3175 	uint32_t tmp;
3176 	int ntries;
3177 
3178 	/* clear any pending interrupts */
3179 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3180 
3181 	tmp = WPI_READ(sc, WPI_PLL_CTL);
3182 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3183 
3184 	tmp = WPI_READ(sc, WPI_CHICKEN);
3185 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3186 
3187 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3188 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3189 
3190 	/* wait for clock stabilization */
3191 	for (ntries = 0; ntries < 1000; ntries++) {
3192 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3193 			break;
3194 		DELAY(10);
3195 	}
3196 	if (ntries == 1000) {
3197 		cmn_err(CE_WARN,
3198 		    "wpi_reset(): timeout waiting for clock stabilization\n");
3199 		return (ETIMEDOUT);
3200 	}
3201 
3202 	/* initialize EEPROM */
3203 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3204 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3205 		cmn_err(CE_WARN, "wpi_reset(): EEPROM not found\n");
3206 		return (EIO);
3207 	}
3208 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3209 
3210 	return (WPI_SUCCESS);
3211 }
3212 
3213 static void
3214 wpi_hw_config(wpi_sc_t *sc)
3215 {
3216 	uint16_t val;
3217 	uint32_t hw;
3218 
3219 	/* voodoo from the Linux "driver".. */
3220 	hw = WPI_READ(sc, WPI_HWCONFIG);
3221 
3222 	if ((sc->sc_rev & 0xc0) == 0x40)
3223 		hw |= WPI_HW_ALM_MB;
3224 	else if (!(sc->sc_rev & 0x80))
3225 		hw |= WPI_HW_ALM_MM;
3226 
3227 	val = wpi_read_prom_word(sc, WPI_EEPROM_CAPABILITIES);
3228 	if ((val & 0xff) == 0x80)
3229 		hw |= WPI_HW_SKU_MRC;
3230 
3231 	val = wpi_read_prom_word(sc, WPI_EEPROM_REVISION);
3232 	hw &= ~WPI_HW_REV_D;
3233 	if ((val & 0xf0) == 0xd0)
3234 		hw |= WPI_HW_REV_D;
3235 
3236 	val = wpi_read_prom_word(sc, WPI_EEPROM_TYPE);
3237 	if ((val & 0xff) > 1)
3238 		hw |= WPI_HW_TYPE_B;
3239 
3240 	WPI_DBG((WPI_DEBUG_HW, "setting h/w config %x\n", hw));
3241 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3242 }
3243 
3244 static int
3245 wpi_init(wpi_sc_t *sc)
3246 {
3247 	uint32_t tmp;
3248 	int qid, ntries, err;
3249 	clock_t clk;
3250 
3251 	mutex_enter(&sc->sc_glock);
3252 	sc->sc_flags &= ~WPI_F_FW_INIT;
3253 
3254 	(void) wpi_reset(sc);
3255 
3256 	wpi_mem_lock(sc);
3257 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3258 	DELAY(20);
3259 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3260 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3261 	wpi_mem_unlock(sc);
3262 
3263 	(void) wpi_power_up(sc);
3264 	wpi_hw_config(sc);
3265 
3266 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3267 	if (!(tmp & WPI_GPIO_HW_RF_KILL)) {
3268 		cmn_err(CE_WARN, "wpi_init(): Radio transmitter is off\n");
3269 		goto fail1;
3270 	}
3271 
3272 	/* init Rx ring */
3273 	wpi_mem_lock(sc);
3274 	WPI_WRITE(sc, WPI_RX_BASE, sc->sc_rxq.dma_desc.cookie.dmac_address);
3275 	WPI_WRITE(sc, WPI_RX_RIDX_PTR,
3276 	    (uint32_t)(sc->sc_dma_sh.cookie.dmac_address +
3277 	    offsetof(wpi_shared_t, next)));
3278 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & (~7));
3279 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3280 	wpi_mem_unlock(sc);
3281 
3282 	/* init Tx rings */
3283 	wpi_mem_lock(sc);
3284 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
3285 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
3286 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
3287 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3288 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3289 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3290 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3291 
3292 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->sc_dma_sh.cookie.dmac_address);
3293 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3294 
3295 	for (qid = 0; qid < 6; qid++) {
3296 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3297 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3298 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3299 	}
3300 	wpi_mem_unlock(sc);
3301 
3302 	/* clear "radio off" and "disable command" bits (reversed logic) */
3303 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3304 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3305 
3306 	/* clear any pending interrupts */
3307 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3308 
3309 	/* enable interrupts */
3310 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3311 
3312 	/* load firmware boot code into NIC */
3313 	err = wpi_load_microcode(sc);
3314 	if (err != WPI_SUCCESS) {
3315 		cmn_err(CE_WARN, "wpi_init(): failed to load microcode\n");
3316 		goto fail1;
3317 	}
3318 
3319 	/* load firmware .text segment into NIC */
3320 	err = wpi_load_firmware(sc, WPI_FW_TEXT);
3321 	if (err != WPI_SUCCESS) {
3322 		cmn_err(CE_WARN, "wpi_init(): "
3323 		    "failed to load firmware(text)\n");
3324 		goto fail1;
3325 	}
3326 
3327 	/* load firmware .data segment into NIC */
3328 	err = wpi_load_firmware(sc, WPI_FW_DATA);
3329 	if (err != WPI_SUCCESS) {
3330 		cmn_err(CE_WARN, "wpi_init(): "
3331 		    "failed to load firmware(data)\n");
3332 		goto fail1;
3333 	}
3334 
3335 	/* now press "execute" ;-) */
3336 	tmp = WPI_READ(sc, WPI_RESET);
3337 	tmp &= ~(WPI_MASTER_DISABLED | WPI_STOP_MASTER | WPI_NEVO_RESET);
3338 	WPI_WRITE(sc, WPI_RESET, tmp);
3339 
3340 	/* ..and wait at most one second for adapter to initialize */
3341 	clk = ddi_get_lbolt() + drv_usectohz(2000000);
3342 	while (!(sc->sc_flags & WPI_F_FW_INIT)) {
3343 		if (cv_timedwait(&sc->sc_fw_cv, &sc->sc_glock, clk) < 0)
3344 			break;
3345 	}
3346 	if (!(sc->sc_flags & WPI_F_FW_INIT)) {
3347 		cmn_err(CE_WARN,
3348 		    "wpi_init(): timeout waiting for firmware init\n");
3349 		goto fail1;
3350 	}
3351 
3352 	/* wait for thermal sensors to calibrate */
3353 	for (ntries = 0; ntries < 1000; ntries++) {
3354 		if (WPI_READ(sc, WPI_TEMPERATURE) != 0)
3355 			break;
3356 		DELAY(10);
3357 	}
3358 
3359 	if (ntries == 1000) {
3360 		WPI_DBG((WPI_DEBUG_HW,
3361 		    "wpi_init(): timeout waiting for thermal sensors "
3362 		    "calibration\n"));
3363 	}
3364 
3365 	WPI_DBG((WPI_DEBUG_HW, "temperature %d\n",
3366 	    (int)WPI_READ(sc, WPI_TEMPERATURE)));
3367 
3368 	err = wpi_config(sc);
3369 	if (err) {
3370 		cmn_err(CE_WARN, "wpi_init(): failed to configure device\n");
3371 		goto fail1;
3372 	}
3373 
3374 	mutex_exit(&sc->sc_glock);
3375 	return (WPI_SUCCESS);
3376 
3377 fail1:
3378 	err = WPI_FAIL;
3379 	mutex_exit(&sc->sc_glock);
3380 	return (err);
3381 }
3382 
3383 static int
3384 wpi_fast_recover(wpi_sc_t *sc)
3385 {
3386 	ieee80211com_t *ic = &sc->sc_ic;
3387 	int err;
3388 
3389 	mutex_enter(&sc->sc_glock);
3390 
3391 	/* restore runtime configuration */
3392 	bcopy(&sc->sc_config_save, &sc->sc_config,
3393 	    sizeof (sc->sc_config));
3394 
3395 	sc->sc_config.state = 0;
3396 	sc->sc_config.filter &= ~LE_32(WPI_FILTER_BSS);
3397 
3398 	if ((err = wpi_auth(sc)) != 0) {
3399 		cmn_err(CE_WARN, "wpi_fast_recover(): "
3400 		    "failed to setup authentication\n");
3401 		mutex_exit(&sc->sc_glock);
3402 		return (err);
3403 	}
3404 
3405 	sc->sc_config.state = LE_16(WPI_CONFIG_ASSOCIATED);
3406 	sc->sc_config.flags &= ~LE_32(WPI_CONFIG_SHPREAMBLE |
3407 	    WPI_CONFIG_SHSLOT);
3408 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3409 		sc->sc_config.flags |= LE_32(WPI_CONFIG_SHSLOT);
3410 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3411 		sc->sc_config.flags |= LE_32(WPI_CONFIG_SHPREAMBLE);
3412 	sc->sc_config.filter |= LE_32(WPI_FILTER_BSS);
3413 	if (ic->ic_opmode != IEEE80211_M_STA)
3414 		sc->sc_config.filter |= LE_32(WPI_FILTER_BEACON);
3415 
3416 	WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x\n",
3417 	    sc->sc_config.chan, sc->sc_config.flags));
3418 	err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
3419 	    sizeof (wpi_config_t), 1);
3420 	if (err != WPI_SUCCESS) {
3421 		cmn_err(CE_WARN, "failed to setup association\n");
3422 		mutex_exit(&sc->sc_glock);
3423 		return (err);
3424 	}
3425 	/* link LED on */
3426 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3427 
3428 	mutex_exit(&sc->sc_glock);
3429 
3430 	/* update keys */
3431 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
3432 		for (int i = 0; i < IEEE80211_KEY_MAX; i++) {
3433 			if (ic->ic_nw_keys[i].wk_keyix == IEEE80211_KEYIX_NONE)
3434 				continue;
3435 			err = wpi_key_set(ic, &ic->ic_nw_keys[i],
3436 			    ic->ic_bss->in_macaddr);
3437 			/* failure */
3438 			if (err == 0) {
3439 				cmn_err(CE_WARN, "wpi_fast_recover(): "
3440 				    "failed to setup hardware keys\n");
3441 				return (WPI_FAIL);
3442 			}
3443 		}
3444 	}
3445 
3446 	sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER;
3447 
3448 	/* start queue */
3449 	WPI_DBG((WPI_DEBUG_FW, "wpi_fast_recover(): resume xmit\n"));
3450 	mac_tx_update(ic->ic_mach);
3451 
3452 	return (WPI_SUCCESS);
3453 }
3454 
3455 /*
3456  * quiesce(9E) entry point.
3457  * This function is called when the system is single-threaded at high
3458  * PIL with preemption disabled. Therefore, this function must not be
3459  * blocked.
3460  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
3461  * DDI_FAILURE indicates an error condition and should almost never happen.
3462  */
3463 static int
3464 wpi_quiesce(dev_info_t *dip)
3465 {
3466 	wpi_sc_t *sc;
3467 
3468 	sc = ddi_get_soft_state(wpi_soft_state_p, ddi_get_instance(dip));
3469 	if (sc == NULL)
3470 		return (DDI_FAILURE);
3471 
3472 #ifdef DEBUG
3473 	/* by pass any messages, if it's quiesce */
3474 	wpi_dbg_flags = 0;
3475 #endif
3476 
3477 	/*
3478 	 * No more blocking is allowed while we are in the
3479 	 * quiesce(9E) entry point.
3480 	 */
3481 	sc->sc_flags |= WPI_F_QUIESCED;
3482 
3483 	/*
3484 	 * Disable and mask all interrupts.
3485 	 */
3486 	wpi_stop(sc);
3487 	return (DDI_SUCCESS);
3488 }
3489 
3490 static void
3491 wpi_stop(wpi_sc_t *sc)
3492 {
3493 	uint32_t tmp;
3494 	int ac;
3495 
3496 	/* no mutex operation, if it's quiesced */
3497 	if (!(sc->sc_flags & WPI_F_QUIESCED))
3498 		mutex_enter(&sc->sc_glock);
3499 
3500 	/* disable interrupts */
3501 	WPI_WRITE(sc, WPI_MASK, 0);
3502 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3503 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3504 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3505 
3506 	wpi_mem_lock(sc);
3507 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3508 	wpi_mem_unlock(sc);
3509 
3510 	/* reset all Tx rings */
3511 	for (ac = 0; ac < 4; ac++)
3512 		wpi_reset_tx_ring(sc, &sc->sc_txq[ac]);
3513 	wpi_reset_tx_ring(sc, &sc->sc_cmdq);
3514 	wpi_reset_tx_ring(sc, &sc->sc_svcq);
3515 
3516 	/* reset Rx ring */
3517 	wpi_reset_rx_ring(sc);
3518 
3519 	wpi_mem_lock(sc);
3520 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3521 	wpi_mem_unlock(sc);
3522 
3523 	DELAY(5);
3524 
3525 	wpi_stop_master(sc);
3526 
3527 	sc->sc_tx_timer = 0;
3528 	sc->sc_flags &= ~WPI_F_SCANNING;
3529 	sc->sc_scan_pending = 0;
3530 	sc->sc_scan_next = 0;
3531 
3532 	tmp = WPI_READ(sc, WPI_RESET);
3533 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3534 
3535 	/* no mutex operation, if it's quiesced */
3536 	if (!(sc->sc_flags & WPI_F_QUIESCED))
3537 		mutex_exit(&sc->sc_glock);
3538 }
3539 
3540 /*
3541  * Naive implementation of the Adaptive Multi Rate Retry algorithm:
3542  * "IEEE 802.11 Rate Adaptation: A Practical Approach"
3543  * Mathieu Lacage, Hossein Manshaei, Thierry Turletti
3544  * INRIA Sophia - Projet Planete
3545  * http://www-sop.inria.fr/rapports/sophia/RR-5208.html
3546  */
3547 #define	is_success(amrr)	\
3548 	((amrr)->retrycnt < (amrr)->txcnt / 10)
3549 #define	is_failure(amrr)	\
3550 	((amrr)->retrycnt > (amrr)->txcnt / 3)
3551 #define	is_enough(amrr)		\
3552 	((amrr)->txcnt > 100)
3553 #define	is_min_rate(in)		\
3554 	((in)->in_txrate == 0)
3555 #define	is_max_rate(in)		\
3556 	((in)->in_txrate == (in)->in_rates.ir_nrates - 1)
3557 #define	increase_rate(in)	\
3558 	((in)->in_txrate++)
3559 #define	decrease_rate(in)	\
3560 	((in)->in_txrate--)
3561 #define	reset_cnt(amrr)		\
3562 	{ (amrr)->txcnt = (amrr)->retrycnt = 0; }
3563 
3564 #define	WPI_AMRR_MIN_SUCCESS_THRESHOLD	 1
3565 #define	WPI_AMRR_MAX_SUCCESS_THRESHOLD	15
3566 
3567 static void
3568 wpi_amrr_init(wpi_amrr_t *amrr)
3569 {
3570 	amrr->success = 0;
3571 	amrr->recovery = 0;
3572 	amrr->txcnt = amrr->retrycnt = 0;
3573 	amrr->success_threshold = WPI_AMRR_MIN_SUCCESS_THRESHOLD;
3574 }
3575 
3576 static void
3577 wpi_amrr_timeout(wpi_sc_t *sc)
3578 {
3579 	ieee80211com_t *ic = &sc->sc_ic;
3580 
3581 	WPI_DBG((WPI_DEBUG_RATECTL, "wpi_amrr_timeout() enter\n"));
3582 	if (ic->ic_opmode == IEEE80211_M_STA)
3583 		wpi_amrr_ratectl(NULL, ic->ic_bss);
3584 	else
3585 		ieee80211_iterate_nodes(&ic->ic_sta, wpi_amrr_ratectl, NULL);
3586 	sc->sc_clk = ddi_get_lbolt();
3587 }
3588 
3589 /* ARGSUSED */
3590 static void
3591 wpi_amrr_ratectl(void *arg, ieee80211_node_t *in)
3592 {
3593 	wpi_amrr_t *amrr = (wpi_amrr_t *)in;
3594 	int need_change = 0;
3595 
3596 	if (is_success(amrr) && is_enough(amrr)) {
3597 		amrr->success++;
3598 		if (amrr->success >= amrr->success_threshold &&
3599 		    !is_max_rate(in)) {
3600 			amrr->recovery = 1;
3601 			amrr->success = 0;
3602 			increase_rate(in);
3603 			WPI_DBG((WPI_DEBUG_RATECTL,
3604 			    "AMRR increasing rate %d (txcnt=%d retrycnt=%d)\n",
3605 			    in->in_txrate, amrr->txcnt, amrr->retrycnt));
3606 			need_change = 1;
3607 		} else {
3608 			amrr->recovery = 0;
3609 		}
3610 	} else if (is_failure(amrr)) {
3611 		amrr->success = 0;
3612 		if (!is_min_rate(in)) {
3613 			if (amrr->recovery) {
3614 				amrr->success_threshold++;
3615 				if (amrr->success_threshold >
3616 				    WPI_AMRR_MAX_SUCCESS_THRESHOLD)
3617 					amrr->success_threshold =
3618 					    WPI_AMRR_MAX_SUCCESS_THRESHOLD;
3619 			} else {
3620 				amrr->success_threshold =
3621 				    WPI_AMRR_MIN_SUCCESS_THRESHOLD;
3622 			}
3623 			decrease_rate(in);
3624 			WPI_DBG((WPI_DEBUG_RATECTL,
3625 			    "AMRR decreasing rate %d (txcnt=%d retrycnt=%d)\n",
3626 			    in->in_txrate, amrr->txcnt, amrr->retrycnt));
3627 			need_change = 1;
3628 		}
3629 		amrr->recovery = 0;	/* paper is incorrect */
3630 	}
3631 
3632 	if (is_enough(amrr) || need_change)
3633 		reset_cnt(amrr);
3634 }
3635