1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include <sys/cdefs.h>
29 /*
30 * IEEE 802.11 support (FreeBSD-specific code)
31 */
32 #include "opt_wlan.h"
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/eventhandler.h>
37 #include <sys/kernel.h>
38 #include <sys/linker.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/module.h>
42 #include <sys/priv.h>
43 #include <sys/proc.h>
44 #include <sys/sysctl.h>
45
46 #include <sys/socket.h>
47
48 #include <net/bpf.h>
49 #include <net/debugnet.h>
50 #include <net/if.h>
51 #include <net/if_var.h>
52 #include <net/if_dl.h>
53 #include <net/if_clone.h>
54 #include <net/if_media.h>
55 #include <net/if_private.h>
56 #include <net/if_types.h>
57 #include <net/ethernet.h>
58 #include <net/route.h>
59 #include <net/vnet.h>
60
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_input.h>
63
64 DEBUGNET_DEFINE(ieee80211);
65 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
66 "IEEE 80211 parameters");
67
68 #ifdef IEEE80211_DEBUG
69 static int ieee80211_debug = 0;
70 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
71 0, "debugging printfs");
72 #endif
73
74 static const char wlanname[] = "wlan";
75 static struct if_clone *wlan_cloner;
76
77 /*
78 * priv(9) NET80211 checks.
79 * Return 0 if operation is allowed, E* (usually EPERM) otherwise.
80 */
81 int
ieee80211_priv_check_vap_getkey(u_long cmd __unused,struct ieee80211vap * vap __unused,struct ifnet * ifp __unused)82 ieee80211_priv_check_vap_getkey(u_long cmd __unused,
83 struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
84 {
85
86 return (priv_check(curthread, PRIV_NET80211_VAP_GETKEY));
87 }
88
89 int
ieee80211_priv_check_vap_manage(u_long cmd __unused,struct ieee80211vap * vap __unused,struct ifnet * ifp __unused)90 ieee80211_priv_check_vap_manage(u_long cmd __unused,
91 struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
92 {
93
94 return (priv_check(curthread, PRIV_NET80211_VAP_MANAGE));
95 }
96
97 int
ieee80211_priv_check_vap_setmac(u_long cmd __unused,struct ieee80211vap * vap __unused,struct ifnet * ifp __unused)98 ieee80211_priv_check_vap_setmac(u_long cmd __unused,
99 struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
100 {
101
102 return (priv_check(curthread, PRIV_NET80211_VAP_SETMAC));
103 }
104
105 int
ieee80211_priv_check_create_vap(u_long cmd __unused,struct ieee80211vap * vap __unused,struct ifnet * ifp __unused)106 ieee80211_priv_check_create_vap(u_long cmd __unused,
107 struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
108 {
109
110 return (priv_check(curthread, PRIV_NET80211_CREATE_VAP));
111 }
112
113 static int
wlan_clone_create(struct if_clone * ifc,char * name,size_t len,struct ifc_data * ifd,struct ifnet ** ifpp)114 wlan_clone_create(struct if_clone *ifc, char *name, size_t len,
115 struct ifc_data *ifd, struct ifnet **ifpp)
116 {
117 struct ieee80211_clone_params cp;
118 struct ieee80211vap *vap;
119 struct ieee80211com *ic;
120 int error;
121
122 error = ieee80211_priv_check_create_vap(0, NULL, NULL);
123 if (error)
124 return error;
125
126 error = ifc_copyin(ifd, &cp, sizeof(cp));
127 if (error)
128 return error;
129 ic = ieee80211_find_com(cp.icp_parent);
130 if (ic == NULL)
131 return ENXIO;
132 if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
133 ic_printf(ic, "%s: invalid opmode %d\n", __func__,
134 cp.icp_opmode);
135 return EINVAL;
136 }
137 if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
138 ic_printf(ic, "%s mode not supported\n",
139 ieee80211_opmode_name[cp.icp_opmode]);
140 return EOPNOTSUPP;
141 }
142 if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
143 #ifdef IEEE80211_SUPPORT_TDMA
144 (ic->ic_caps & IEEE80211_C_TDMA) == 0
145 #else
146 (1)
147 #endif
148 ) {
149 ic_printf(ic, "TDMA not supported\n");
150 return EOPNOTSUPP;
151 }
152 vap = ic->ic_vap_create(ic, wlanname, ifd->unit,
153 cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
154 cp.icp_flags & IEEE80211_CLONE_MACADDR ?
155 cp.icp_macaddr : ic->ic_macaddr);
156
157 if (vap == NULL)
158 return (EIO);
159
160 #ifdef DEBUGNET
161 if (ic->ic_debugnet_meth != NULL)
162 DEBUGNET_SET(vap->iv_ifp, ieee80211);
163 #endif
164 *ifpp = vap->iv_ifp;
165
166 return (0);
167 }
168
169 static int
wlan_clone_destroy(struct if_clone * ifc,struct ifnet * ifp,uint32_t flags)170 wlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp, uint32_t flags)
171 {
172 struct ieee80211vap *vap = ifp->if_softc;
173 struct ieee80211com *ic = vap->iv_ic;
174
175 ic->ic_vap_delete(vap);
176
177 return (0);
178 }
179
180 void
ieee80211_vap_destroy(struct ieee80211vap * vap)181 ieee80211_vap_destroy(struct ieee80211vap *vap)
182 {
183 CURVNET_SET(vap->iv_ifp->if_vnet);
184 if_clone_destroyif(wlan_cloner, vap->iv_ifp);
185 CURVNET_RESTORE();
186 }
187
188 int
ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)189 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
190 {
191 int msecs = ticks_to_msecs(*(int *)arg1);
192 int error;
193
194 error = sysctl_handle_int(oidp, &msecs, 0, req);
195 if (error || !req->newptr)
196 return error;
197 *(int *)arg1 = msecs_to_ticks(msecs);
198 return 0;
199 }
200
201 static int
ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)202 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
203 {
204 int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
205 int error;
206
207 error = sysctl_handle_int(oidp, &inact, 0, req);
208 if (error || !req->newptr)
209 return error;
210 *(int *)arg1 = inact / IEEE80211_INACT_WAIT;
211 return 0;
212 }
213
214 static int
ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)215 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
216 {
217 struct ieee80211com *ic = arg1;
218
219 return SYSCTL_OUT_STR(req, ic->ic_name);
220 }
221
222 static int
ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)223 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
224 {
225 struct ieee80211com *ic = arg1;
226 int t = 0, error;
227
228 error = sysctl_handle_int(oidp, &t, 0, req);
229 if (error || !req->newptr)
230 return error;
231 IEEE80211_LOCK(ic);
232 ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
233 IEEE80211_UNLOCK(ic);
234 return 0;
235 }
236
237 /*
238 * For now, just restart everything.
239 *
240 * Later on, it'd be nice to have a separate VAP restart to
241 * full-device restart.
242 */
243 static int
ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS)244 ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS)
245 {
246 struct ieee80211vap *vap = arg1;
247 int t = 0, error;
248
249 error = sysctl_handle_int(oidp, &t, 0, req);
250 if (error || !req->newptr)
251 return error;
252
253 ieee80211_restart_all(vap->iv_ic);
254 return 0;
255 }
256
257 void
ieee80211_sysctl_attach(struct ieee80211com * ic)258 ieee80211_sysctl_attach(struct ieee80211com *ic)
259 {
260 }
261
262 void
ieee80211_sysctl_detach(struct ieee80211com * ic)263 ieee80211_sysctl_detach(struct ieee80211com *ic)
264 {
265 }
266
267 void
ieee80211_sysctl_vattach(struct ieee80211vap * vap)268 ieee80211_sysctl_vattach(struct ieee80211vap *vap)
269 {
270 struct ifnet *ifp = vap->iv_ifp;
271 struct sysctl_ctx_list *ctx;
272 struct sysctl_oid *oid;
273 char num[14]; /* sufficient for 32 bits */
274
275 ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list),
276 M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
277 if (ctx == NULL) {
278 if_printf(ifp, "%s: cannot allocate sysctl context!\n",
279 __func__);
280 return;
281 }
282 sysctl_ctx_init(ctx);
283 snprintf(num, sizeof(num), "%u", ifp->if_dunit);
284 oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
285 OID_AUTO, num, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
286 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
287 "%parent", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
288 vap->iv_ic, 0, ieee80211_sysctl_parent, "A", "parent device");
289 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
290 "driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
291 "driver capabilities");
292 #ifdef IEEE80211_DEBUG
293 vap->iv_debug = ieee80211_debug;
294 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
295 "debug", CTLFLAG_RW, &vap->iv_debug, 0,
296 "control debugging printfs");
297 #endif
298 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
299 "bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
300 "consecutive beacon misses before scanning");
301 /* XXX inherit from tunables */
302 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
303 "inact_run", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
304 &vap->iv_inact_run, 0, ieee80211_sysctl_inact, "I",
305 "station inactivity timeout (sec)");
306 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
307 "inact_probe", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
308 &vap->iv_inact_probe, 0, ieee80211_sysctl_inact, "I",
309 "station inactivity probe timeout (sec)");
310 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
311 "inact_auth", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
312 &vap->iv_inact_auth, 0, ieee80211_sysctl_inact, "I",
313 "station authentication timeout (sec)");
314 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
315 "inact_init", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
316 &vap->iv_inact_init, 0, ieee80211_sysctl_inact, "I",
317 "station initial state timeout (sec)");
318 if (vap->iv_htcaps & IEEE80211_HTC_HT) {
319 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
320 "ampdu_mintraffic_bk", CTLFLAG_RW,
321 &vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
322 "BK traffic tx aggr threshold (pps)");
323 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
324 "ampdu_mintraffic_be", CTLFLAG_RW,
325 &vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
326 "BE traffic tx aggr threshold (pps)");
327 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
328 "ampdu_mintraffic_vo", CTLFLAG_RW,
329 &vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
330 "VO traffic tx aggr threshold (pps)");
331 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
332 "ampdu_mintraffic_vi", CTLFLAG_RW,
333 &vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
334 "VI traffic tx aggr threshold (pps)");
335 }
336
337 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
338 "force_restart", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
339 vap, 0, ieee80211_sysctl_vap_restart, "I", "force a VAP restart");
340
341 if (vap->iv_caps & IEEE80211_C_DFS) {
342 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
343 "radar", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
344 vap->iv_ic, 0, ieee80211_sysctl_radar, "I",
345 "simulate radar event");
346 }
347 vap->iv_sysctl = ctx;
348 vap->iv_oid = oid;
349 }
350
351 void
ieee80211_sysctl_vdetach(struct ieee80211vap * vap)352 ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
353 {
354
355 if (vap->iv_sysctl != NULL) {
356 sysctl_ctx_free(vap->iv_sysctl);
357 IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF);
358 vap->iv_sysctl = NULL;
359 }
360 }
361
362 int
ieee80211_com_vincref(struct ieee80211vap * vap)363 ieee80211_com_vincref(struct ieee80211vap *vap)
364 {
365 uint32_t ostate;
366
367 ostate = atomic_fetchadd_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
368
369 if (ostate & IEEE80211_COM_DETACHED) {
370 atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
371 return (ENETDOWN);
372 }
373
374 if (_IEEE80211_MASKSHIFT(ostate, IEEE80211_COM_REF) ==
375 IEEE80211_COM_REF_MAX) {
376 atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
377 return (EOVERFLOW);
378 }
379
380 return (0);
381 }
382
383 void
ieee80211_com_vdecref(struct ieee80211vap * vap)384 ieee80211_com_vdecref(struct ieee80211vap *vap)
385 {
386 uint32_t ostate;
387
388 ostate = atomic_fetchadd_32(&vap->iv_com_state, -IEEE80211_COM_REF_ADD);
389
390 KASSERT(_IEEE80211_MASKSHIFT(ostate, IEEE80211_COM_REF) != 0,
391 ("com reference counter underflow"));
392
393 (void) ostate;
394 }
395
396 void
ieee80211_com_vdetach(struct ieee80211vap * vap)397 ieee80211_com_vdetach(struct ieee80211vap *vap)
398 {
399 int sleep_time;
400
401 sleep_time = msecs_to_ticks(250);
402 atomic_set_32(&vap->iv_com_state, IEEE80211_COM_DETACHED);
403 while (_IEEE80211_MASKSHIFT(atomic_load_32(&vap->iv_com_state),
404 IEEE80211_COM_REF) != 0)
405 pause("comref", sleep_time);
406 }
407
408 int
ieee80211_node_dectestref(struct ieee80211_node * ni)409 ieee80211_node_dectestref(struct ieee80211_node *ni)
410 {
411 /* XXX need equivalent of atomic_dec_and_test */
412 atomic_subtract_int(&ni->ni_refcnt, 1);
413 return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
414 }
415
416 void
ieee80211_drain_ifq(struct ifqueue * ifq)417 ieee80211_drain_ifq(struct ifqueue *ifq)
418 {
419 struct ieee80211_node *ni;
420 struct mbuf *m;
421
422 for (;;) {
423 IF_DEQUEUE(ifq, m);
424 if (m == NULL)
425 break;
426
427 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
428 KASSERT(ni != NULL, ("frame w/o node"));
429 ieee80211_free_node(ni);
430 m->m_pkthdr.rcvif = NULL;
431
432 m_freem(m);
433 }
434 }
435
436 void
ieee80211_flush_ifq(struct ifqueue * ifq,struct ieee80211vap * vap)437 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap)
438 {
439 struct ieee80211_node *ni;
440 struct mbuf *m, **mprev;
441
442 IF_LOCK(ifq);
443 mprev = &ifq->ifq_head;
444 while ((m = *mprev) != NULL) {
445 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
446 if (ni != NULL && ni->ni_vap == vap) {
447 *mprev = m->m_nextpkt; /* remove from list */
448 ifq->ifq_len--;
449
450 m_freem(m);
451 ieee80211_free_node(ni); /* reclaim ref */
452 } else
453 mprev = &m->m_nextpkt;
454 }
455 /* recalculate tail ptr */
456 m = ifq->ifq_head;
457 for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
458 ;
459 ifq->ifq_tail = m;
460 IF_UNLOCK(ifq);
461 }
462
463 /*
464 * As above, for mbufs allocated with m_gethdr/MGETHDR
465 * or initialized by M_COPY_PKTHDR.
466 */
467 #define MC_ALIGN(m, len) \
468 do { \
469 (m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long)); \
470 } while (/* CONSTCOND */ 0)
471
472 /*
473 * Allocate and setup a management frame of the specified
474 * size. We return the mbuf and a pointer to the start
475 * of the contiguous data area that's been reserved based
476 * on the packet length. The data area is forced to 32-bit
477 * alignment and the buffer length to a multiple of 4 bytes.
478 * This is done mainly so beacon frames (that require this)
479 * can use this interface too.
480 */
481 struct mbuf *
ieee80211_getmgtframe(uint8_t ** frm,int headroom,int pktlen)482 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
483 {
484 struct mbuf *m;
485 u_int len;
486
487 /*
488 * NB: we know the mbuf routines will align the data area
489 * so we don't need to do anything special.
490 */
491 len = roundup2(headroom + pktlen, 4);
492 KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
493 if (len < MINCLSIZE) {
494 m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
495 /*
496 * Align the data in case additional headers are added.
497 * This should only happen when a WEP header is added
498 * which only happens for shared key authentication mgt
499 * frames which all fit in MHLEN.
500 */
501 if (m != NULL)
502 M_ALIGN(m, len);
503 } else {
504 m = m_getcl(IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR);
505 if (m != NULL)
506 MC_ALIGN(m, len);
507 }
508 if (m != NULL) {
509 m->m_data += headroom;
510 *frm = m->m_data;
511 }
512 return m;
513 }
514
515 #ifndef __NO_STRICT_ALIGNMENT
516 /*
517 * Re-align the payload in the mbuf. This is mainly used (right now)
518 * to handle IP header alignment requirements on certain architectures.
519 */
520 struct mbuf *
ieee80211_realign(struct ieee80211vap * vap,struct mbuf * m,size_t align)521 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
522 {
523 int pktlen, space;
524 struct mbuf *n;
525
526 pktlen = m->m_pkthdr.len;
527 space = pktlen + align;
528 if (space < MINCLSIZE)
529 n = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
530 else {
531 n = m_getjcl(IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR,
532 space <= MCLBYTES ? MCLBYTES :
533 #if MJUMPAGESIZE != MCLBYTES
534 space <= MJUMPAGESIZE ? MJUMPAGESIZE :
535 #endif
536 space <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES);
537 }
538 if (__predict_true(n != NULL)) {
539 m_move_pkthdr(n, m);
540 n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
541 m_copydata(m, 0, pktlen, mtod(n, caddr_t));
542 n->m_len = pktlen;
543 } else {
544 IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
545 mtod(m, const struct ieee80211_frame *), NULL,
546 "%s", "no mbuf to realign");
547 vap->iv_stats.is_rx_badalign++;
548 }
549 m_freem(m);
550 return n;
551 }
552 #endif /* !__NO_STRICT_ALIGNMENT */
553
554 int
ieee80211_add_callback(struct mbuf * m,void (* func)(struct ieee80211_node *,void *,int),void * arg)555 ieee80211_add_callback(struct mbuf *m,
556 void (*func)(struct ieee80211_node *, void *, int), void *arg)
557 {
558 struct m_tag *mtag;
559 struct ieee80211_cb *cb;
560
561 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
562 sizeof(struct ieee80211_cb), IEEE80211_M_NOWAIT);
563 if (mtag == NULL)
564 return 0;
565
566 cb = (struct ieee80211_cb *)(mtag+1);
567 cb->func = func;
568 cb->arg = arg;
569 m_tag_prepend(m, mtag);
570 m->m_flags |= M_TXCB;
571 return 1;
572 }
573
574 int
ieee80211_add_xmit_params(struct mbuf * m,const struct ieee80211_bpf_params * params)575 ieee80211_add_xmit_params(struct mbuf *m,
576 const struct ieee80211_bpf_params *params)
577 {
578 struct m_tag *mtag;
579 struct ieee80211_tx_params *tx;
580
581 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
582 sizeof(struct ieee80211_tx_params), IEEE80211_M_NOWAIT);
583 if (mtag == NULL)
584 return (0);
585
586 tx = (struct ieee80211_tx_params *)(mtag+1);
587 memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params));
588 m_tag_prepend(m, mtag);
589 return (1);
590 }
591
592 int
ieee80211_get_xmit_params(struct mbuf * m,struct ieee80211_bpf_params * params)593 ieee80211_get_xmit_params(struct mbuf *m,
594 struct ieee80211_bpf_params *params)
595 {
596 struct m_tag *mtag;
597 struct ieee80211_tx_params *tx;
598
599 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
600 NULL);
601 if (mtag == NULL)
602 return (-1);
603 tx = (struct ieee80211_tx_params *)(mtag + 1);
604 memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params));
605 return (0);
606 }
607
608 void
ieee80211_process_callback(struct ieee80211_node * ni,struct mbuf * m,int status)609 ieee80211_process_callback(struct ieee80211_node *ni,
610 struct mbuf *m, int status)
611 {
612 struct m_tag *mtag;
613
614 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
615 if (mtag != NULL) {
616 struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
617 cb->func(ni, cb->arg, status);
618 }
619 }
620
621 /*
622 * Add RX parameters to the given mbuf.
623 *
624 * Returns 1 if OK, 0 on error.
625 */
626 int
ieee80211_add_rx_params(struct mbuf * m,const struct ieee80211_rx_stats * rxs)627 ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs)
628 {
629 struct m_tag *mtag;
630 struct ieee80211_rx_params *rx;
631
632 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
633 sizeof(struct ieee80211_rx_stats), IEEE80211_M_NOWAIT);
634 if (mtag == NULL)
635 return (0);
636
637 rx = (struct ieee80211_rx_params *)(mtag + 1);
638 memcpy(&rx->params, rxs, sizeof(*rxs));
639 m_tag_prepend(m, mtag);
640 return (1);
641 }
642
643 int
ieee80211_get_rx_params(struct mbuf * m,struct ieee80211_rx_stats * rxs)644 ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs)
645 {
646 struct m_tag *mtag;
647 struct ieee80211_rx_params *rx;
648
649 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
650 NULL);
651 if (mtag == NULL)
652 return (-1);
653 rx = (struct ieee80211_rx_params *)(mtag + 1);
654 memcpy(rxs, &rx->params, sizeof(*rxs));
655 return (0);
656 }
657
658 const struct ieee80211_rx_stats *
ieee80211_get_rx_params_ptr(struct mbuf * m)659 ieee80211_get_rx_params_ptr(struct mbuf *m)
660 {
661 struct m_tag *mtag;
662 struct ieee80211_rx_params *rx;
663
664 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
665 NULL);
666 if (mtag == NULL)
667 return (NULL);
668 rx = (struct ieee80211_rx_params *)(mtag + 1);
669 return (&rx->params);
670 }
671
672 /*
673 * Add TOA parameters to the given mbuf.
674 */
675 int
ieee80211_add_toa_params(struct mbuf * m,const struct ieee80211_toa_params * p)676 ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p)
677 {
678 struct m_tag *mtag;
679 struct ieee80211_toa_params *rp;
680
681 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
682 sizeof(struct ieee80211_toa_params), IEEE80211_M_NOWAIT);
683 if (mtag == NULL)
684 return (0);
685
686 rp = (struct ieee80211_toa_params *)(mtag + 1);
687 memcpy(rp, p, sizeof(*rp));
688 m_tag_prepend(m, mtag);
689 return (1);
690 }
691
692 int
ieee80211_get_toa_params(struct mbuf * m,struct ieee80211_toa_params * p)693 ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p)
694 {
695 struct m_tag *mtag;
696 struct ieee80211_toa_params *rp;
697
698 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
699 NULL);
700 if (mtag == NULL)
701 return (0);
702 rp = (struct ieee80211_toa_params *)(mtag + 1);
703 if (p != NULL)
704 memcpy(p, rp, sizeof(*p));
705 return (1);
706 }
707
708 /*
709 * Transmit a frame to the parent interface.
710 */
711 int
ieee80211_parent_xmitpkt(struct ieee80211com * ic,struct mbuf * m)712 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m)
713 {
714 int error;
715
716 /*
717 * Assert the IC TX lock is held - this enforces the
718 * processing -> queuing order is maintained
719 */
720 IEEE80211_TX_LOCK_ASSERT(ic);
721 error = ic->ic_transmit(ic, m);
722 if (error) {
723 struct ieee80211_node *ni;
724
725 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
726
727 /* XXX number of fragments */
728 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
729 ieee80211_free_node(ni);
730 ieee80211_free_mbuf(m);
731 }
732 return (error);
733 }
734
735 /*
736 * Transmit a frame to the VAP interface.
737 */
738 int
ieee80211_vap_xmitpkt(struct ieee80211vap * vap,struct mbuf * m)739 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m)
740 {
741 struct ifnet *ifp = vap->iv_ifp;
742
743 /*
744 * When transmitting via the VAP, we shouldn't hold
745 * any IC TX lock as the VAP TX path will acquire it.
746 */
747 IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
748
749 return (ifp->if_transmit(ifp, m));
750
751 }
752
753 #include <sys/libkern.h>
754
755 void
net80211_get_random_bytes(void * p,size_t n)756 net80211_get_random_bytes(void *p, size_t n)
757 {
758 uint8_t *dp = p;
759
760 while (n > 0) {
761 uint32_t v = arc4random();
762 size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
763 bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
764 dp += sizeof(uint32_t), n -= nb;
765 }
766 }
767
768 /*
769 * Helper function for events that pass just a single mac address.
770 */
771 static void
notify_macaddr(struct ifnet * ifp,int op,const uint8_t mac[IEEE80211_ADDR_LEN])772 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
773 {
774 struct ieee80211_join_event iev;
775
776 CURVNET_SET(ifp->if_vnet);
777 memset(&iev, 0, sizeof(iev));
778 IEEE80211_ADDR_COPY(iev.iev_addr, mac);
779 rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
780 CURVNET_RESTORE();
781 }
782
783 void
ieee80211_notify_node_join(struct ieee80211_node * ni,int newassoc)784 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
785 {
786 struct ieee80211vap *vap = ni->ni_vap;
787 struct ifnet *ifp = vap->iv_ifp;
788
789 CURVNET_SET_QUIET(ifp->if_vnet);
790 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
791 (ni == vap->iv_bss) ? "bss " : "");
792
793 if (ni == vap->iv_bss) {
794 notify_macaddr(ifp, newassoc ?
795 RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
796 if_link_state_change(ifp, LINK_STATE_UP);
797 } else {
798 notify_macaddr(ifp, newassoc ?
799 RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
800 }
801 CURVNET_RESTORE();
802 }
803
804 void
ieee80211_notify_node_leave(struct ieee80211_node * ni)805 ieee80211_notify_node_leave(struct ieee80211_node *ni)
806 {
807 struct ieee80211vap *vap = ni->ni_vap;
808 struct ifnet *ifp = vap->iv_ifp;
809
810 CURVNET_SET_QUIET(ifp->if_vnet);
811 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
812 (ni == vap->iv_bss) ? "bss " : "");
813
814 if (ni == vap->iv_bss) {
815 rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
816 if_link_state_change(ifp, LINK_STATE_DOWN);
817 } else {
818 /* fire off wireless event station leaving */
819 notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
820 }
821 CURVNET_RESTORE();
822 }
823
824 void
ieee80211_notify_scan_done(struct ieee80211vap * vap)825 ieee80211_notify_scan_done(struct ieee80211vap *vap)
826 {
827 struct ifnet *ifp = vap->iv_ifp;
828
829 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
830
831 /* dispatch wireless event indicating scan completed */
832 CURVNET_SET(ifp->if_vnet);
833 rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
834 CURVNET_RESTORE();
835 }
836
837 void
ieee80211_notify_replay_failure(struct ieee80211vap * vap,const struct ieee80211_frame * wh,const struct ieee80211_key * k,u_int64_t rsc,int tid)838 ieee80211_notify_replay_failure(struct ieee80211vap *vap,
839 const struct ieee80211_frame *wh, const struct ieee80211_key *k,
840 u_int64_t rsc, int tid)
841 {
842 struct ifnet *ifp = vap->iv_ifp;
843
844 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
845 "%s replay detected tid %d <rsc %ju (%jx), csc %ju (%jx), keyix %u rxkeyix %u>",
846 k->wk_cipher->ic_name, tid,
847 (intmax_t) rsc,
848 (intmax_t) rsc,
849 (intmax_t) k->wk_keyrsc[tid],
850 (intmax_t) k->wk_keyrsc[tid],
851 k->wk_keyix, k->wk_rxkeyix);
852
853 if (ifp != NULL) { /* NB: for cipher test modules */
854 struct ieee80211_replay_event iev;
855
856 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
857 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
858 iev.iev_cipher = k->wk_cipher->ic_cipher;
859 if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
860 iev.iev_keyix = k->wk_rxkeyix;
861 else
862 iev.iev_keyix = k->wk_keyix;
863 iev.iev_keyrsc = k->wk_keyrsc[tid];
864 iev.iev_rsc = rsc;
865 CURVNET_SET(ifp->if_vnet);
866 rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
867 CURVNET_RESTORE();
868 }
869 }
870
871 void
ieee80211_notify_michael_failure(struct ieee80211vap * vap,const struct ieee80211_frame * wh,u_int keyix)872 ieee80211_notify_michael_failure(struct ieee80211vap *vap,
873 const struct ieee80211_frame *wh, u_int keyix)
874 {
875 struct ifnet *ifp = vap->iv_ifp;
876
877 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
878 "michael MIC verification failed <keyix %u>", keyix);
879 vap->iv_stats.is_rx_tkipmic++;
880
881 if (ifp != NULL) { /* NB: for cipher test modules */
882 struct ieee80211_michael_event iev;
883
884 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
885 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
886 iev.iev_cipher = IEEE80211_CIPHER_TKIP;
887 iev.iev_keyix = keyix;
888 CURVNET_SET(ifp->if_vnet);
889 rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
890 CURVNET_RESTORE();
891 }
892 }
893
894 void
ieee80211_notify_wds_discover(struct ieee80211_node * ni)895 ieee80211_notify_wds_discover(struct ieee80211_node *ni)
896 {
897 struct ieee80211vap *vap = ni->ni_vap;
898 struct ifnet *ifp = vap->iv_ifp;
899
900 notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
901 }
902
903 void
ieee80211_notify_csa(struct ieee80211com * ic,const struct ieee80211_channel * c,int mode,int count)904 ieee80211_notify_csa(struct ieee80211com *ic,
905 const struct ieee80211_channel *c, int mode, int count)
906 {
907 struct ieee80211_csa_event iev;
908 struct ieee80211vap *vap;
909 struct ifnet *ifp;
910
911 memset(&iev, 0, sizeof(iev));
912 iev.iev_flags = c->ic_flags;
913 iev.iev_freq = c->ic_freq;
914 iev.iev_ieee = c->ic_ieee;
915 iev.iev_mode = mode;
916 iev.iev_count = count;
917 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
918 ifp = vap->iv_ifp;
919 CURVNET_SET(ifp->if_vnet);
920 rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
921 CURVNET_RESTORE();
922 }
923 }
924
925 void
ieee80211_notify_radar(struct ieee80211com * ic,const struct ieee80211_channel * c)926 ieee80211_notify_radar(struct ieee80211com *ic,
927 const struct ieee80211_channel *c)
928 {
929 struct ieee80211_radar_event iev;
930 struct ieee80211vap *vap;
931 struct ifnet *ifp;
932
933 memset(&iev, 0, sizeof(iev));
934 iev.iev_flags = c->ic_flags;
935 iev.iev_freq = c->ic_freq;
936 iev.iev_ieee = c->ic_ieee;
937 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
938 ifp = vap->iv_ifp;
939 CURVNET_SET(ifp->if_vnet);
940 rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
941 CURVNET_RESTORE();
942 }
943 }
944
945 void
ieee80211_notify_cac(struct ieee80211com * ic,const struct ieee80211_channel * c,enum ieee80211_notify_cac_event type)946 ieee80211_notify_cac(struct ieee80211com *ic,
947 const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
948 {
949 struct ieee80211_cac_event iev;
950 struct ieee80211vap *vap;
951 struct ifnet *ifp;
952
953 memset(&iev, 0, sizeof(iev));
954 iev.iev_flags = c->ic_flags;
955 iev.iev_freq = c->ic_freq;
956 iev.iev_ieee = c->ic_ieee;
957 iev.iev_type = type;
958 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
959 ifp = vap->iv_ifp;
960 CURVNET_SET(ifp->if_vnet);
961 rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
962 CURVNET_RESTORE();
963 }
964 }
965
966 void
ieee80211_notify_node_deauth(struct ieee80211_node * ni)967 ieee80211_notify_node_deauth(struct ieee80211_node *ni)
968 {
969 struct ieee80211vap *vap = ni->ni_vap;
970 struct ifnet *ifp = vap->iv_ifp;
971
972 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
973
974 notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
975 }
976
977 void
ieee80211_notify_node_auth(struct ieee80211_node * ni)978 ieee80211_notify_node_auth(struct ieee80211_node *ni)
979 {
980 struct ieee80211vap *vap = ni->ni_vap;
981 struct ifnet *ifp = vap->iv_ifp;
982
983 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
984
985 notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
986 }
987
988 void
ieee80211_notify_country(struct ieee80211vap * vap,const uint8_t bssid[IEEE80211_ADDR_LEN],const uint8_t cc[2])989 ieee80211_notify_country(struct ieee80211vap *vap,
990 const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
991 {
992 struct ifnet *ifp = vap->iv_ifp;
993 struct ieee80211_country_event iev;
994
995 memset(&iev, 0, sizeof(iev));
996 IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
997 iev.iev_cc[0] = cc[0];
998 iev.iev_cc[1] = cc[1];
999 CURVNET_SET(ifp->if_vnet);
1000 rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
1001 CURVNET_RESTORE();
1002 }
1003
1004 void
ieee80211_notify_radio(struct ieee80211com * ic,int state)1005 ieee80211_notify_radio(struct ieee80211com *ic, int state)
1006 {
1007 struct ieee80211_radio_event iev;
1008 struct ieee80211vap *vap;
1009 struct ifnet *ifp;
1010
1011 memset(&iev, 0, sizeof(iev));
1012 iev.iev_state = state;
1013 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1014 ifp = vap->iv_ifp;
1015 CURVNET_SET(ifp->if_vnet);
1016 rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
1017 CURVNET_RESTORE();
1018 }
1019 }
1020
1021 void
ieee80211_notify_ifnet_change(struct ieee80211vap * vap,int if_flags_mask)1022 ieee80211_notify_ifnet_change(struct ieee80211vap *vap, int if_flags_mask)
1023 {
1024 struct ifnet *ifp = vap->iv_ifp;
1025
1026 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, "%s\n",
1027 "interface state change");
1028
1029 CURVNET_SET(ifp->if_vnet);
1030 rt_ifmsg(ifp, if_flags_mask);
1031 CURVNET_RESTORE();
1032 }
1033
1034 void
ieee80211_load_module(const char * modname)1035 ieee80211_load_module(const char *modname)
1036 {
1037
1038 #ifdef notyet
1039 (void)kern_kldload(curthread, modname, NULL);
1040 #else
1041 printf("%s: load the %s module by hand for now.\n", __func__, modname);
1042 #endif
1043 }
1044
1045 static eventhandler_tag wlan_bpfevent;
1046 static eventhandler_tag wlan_ifllevent;
1047
1048 static void
bpf_track(void * arg,struct ifnet * ifp,int dlt,int attach)1049 bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach)
1050 {
1051 /* NB: identify vap's by if_init */
1052 if (dlt == DLT_IEEE802_11_RADIO &&
1053 ifp->if_init == ieee80211_init) {
1054 struct ieee80211vap *vap = ifp->if_softc;
1055 /*
1056 * Track bpf radiotap listener state. We mark the vap
1057 * to indicate if any listener is present and the com
1058 * to indicate if any listener exists on any associated
1059 * vap. This flag is used by drivers to prepare radiotap
1060 * state only when needed.
1061 */
1062 if (attach) {
1063 ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
1064 if (vap->iv_opmode == IEEE80211_M_MONITOR)
1065 atomic_add_int(&vap->iv_ic->ic_montaps, 1);
1066 } else if (!bpf_peers_present(vap->iv_rawbpf)) {
1067 ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
1068 if (vap->iv_opmode == IEEE80211_M_MONITOR)
1069 atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
1070 }
1071 }
1072 }
1073
1074 /*
1075 * Change MAC address on the vap (if was not started).
1076 */
1077 static void
wlan_iflladdr(void * arg __unused,struct ifnet * ifp)1078 wlan_iflladdr(void *arg __unused, struct ifnet *ifp)
1079 {
1080 /* NB: identify vap's by if_init */
1081 if (ifp->if_init == ieee80211_init &&
1082 (ifp->if_flags & IFF_UP) == 0) {
1083 struct ieee80211vap *vap = ifp->if_softc;
1084
1085 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
1086 }
1087 }
1088
1089 /*
1090 * Fetch the VAP name.
1091 *
1092 * This returns a const char pointer suitable for debugging,
1093 * but don't expect it to stick around for much longer.
1094 */
1095 const char *
ieee80211_get_vap_ifname(struct ieee80211vap * vap)1096 ieee80211_get_vap_ifname(struct ieee80211vap *vap)
1097 {
1098 if (vap->iv_ifp == NULL)
1099 return "(none)";
1100 return vap->iv_ifp->if_xname;
1101 }
1102
1103 #ifdef DEBUGNET
1104 static void
ieee80211_debugnet_init(struct ifnet * ifp,int * nrxr,int * ncl,int * clsize)1105 ieee80211_debugnet_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize)
1106 {
1107 struct ieee80211vap *vap;
1108 struct ieee80211com *ic;
1109
1110 vap = if_getsoftc(ifp);
1111 ic = vap->iv_ic;
1112
1113 IEEE80211_LOCK(ic);
1114 ic->ic_debugnet_meth->dn8_init(ic, nrxr, ncl, clsize);
1115 IEEE80211_UNLOCK(ic);
1116 }
1117
1118 static void
ieee80211_debugnet_event(struct ifnet * ifp,enum debugnet_ev ev)1119 ieee80211_debugnet_event(struct ifnet *ifp, enum debugnet_ev ev)
1120 {
1121 struct ieee80211vap *vap;
1122 struct ieee80211com *ic;
1123
1124 vap = if_getsoftc(ifp);
1125 ic = vap->iv_ic;
1126
1127 IEEE80211_LOCK(ic);
1128 ic->ic_debugnet_meth->dn8_event(ic, ev);
1129 IEEE80211_UNLOCK(ic);
1130 }
1131
1132 static int
ieee80211_debugnet_transmit(struct ifnet * ifp,struct mbuf * m)1133 ieee80211_debugnet_transmit(struct ifnet *ifp, struct mbuf *m)
1134 {
1135 return (ieee80211_vap_transmit(ifp, m));
1136 }
1137
1138 static int
ieee80211_debugnet_poll(struct ifnet * ifp,int count)1139 ieee80211_debugnet_poll(struct ifnet *ifp, int count)
1140 {
1141 struct ieee80211vap *vap;
1142 struct ieee80211com *ic;
1143
1144 vap = if_getsoftc(ifp);
1145 ic = vap->iv_ic;
1146
1147 return (ic->ic_debugnet_meth->dn8_poll(ic, count));
1148 }
1149 #endif
1150
1151 /*
1152 * Module glue.
1153 *
1154 * NB: the module name is "wlan" for compatibility with NetBSD.
1155 */
1156 static int
wlan_modevent(module_t mod,int type,void * unused)1157 wlan_modevent(module_t mod, int type, void *unused)
1158 {
1159 switch (type) {
1160 case MOD_LOAD:
1161 if (bootverbose)
1162 printf("wlan: <802.11 Link Layer>\n");
1163 wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
1164 bpf_track, 0, EVENTHANDLER_PRI_ANY);
1165 wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
1166 wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
1167 struct if_clone_addreq req = {
1168 .create_f = wlan_clone_create,
1169 .destroy_f = wlan_clone_destroy,
1170 .flags = IFC_F_AUTOUNIT,
1171 };
1172 wlan_cloner = ifc_attach_cloner(wlanname, &req);
1173 return 0;
1174 case MOD_UNLOAD:
1175 ifc_detach_cloner(wlan_cloner);
1176 EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
1177 EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
1178 return 0;
1179 }
1180 return EINVAL;
1181 }
1182
1183 static moduledata_t wlan_mod = {
1184 wlanname,
1185 wlan_modevent,
1186 0
1187 };
1188 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
1189 MODULE_VERSION(wlan, 1);
1190 MODULE_DEPEND(wlan, ether, 1, 1, 1);
1191 #ifdef IEEE80211_ALQ
1192 MODULE_DEPEND(wlan, alq, 1, 1, 1);
1193 #endif /* IEEE80211_ALQ */
1194