1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net-sysfs.c - network device class and attributes 4 * 5 * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org> 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/kernel.h> 10 #include <linux/netdevice.h> 11 #include <linux/if_arp.h> 12 #include <linux/slab.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sched/isolation.h> 15 #include <linux/nsproxy.h> 16 #include <net/sock.h> 17 #include <net/net_namespace.h> 18 #include <linux/rtnetlink.h> 19 #include <linux/vmalloc.h> 20 #include <linux/export.h> 21 #include <linux/jiffies.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/of.h> 24 #include <linux/of_net.h> 25 #include <linux/cpu.h> 26 #include <net/netdev_lock.h> 27 #include <net/netdev_rx_queue.h> 28 #include <net/rps.h> 29 30 #include "dev.h" 31 #include "net-sysfs.h" 32 33 #ifdef CONFIG_SYSFS 34 static const char fmt_hex[] = "%#x\n"; 35 static const char fmt_dec[] = "%d\n"; 36 static const char fmt_uint[] = "%u\n"; 37 static const char fmt_ulong[] = "%lu\n"; 38 static const char fmt_u64[] = "%llu\n"; 39 40 /* Caller holds RTNL, netdev->lock or RCU */ 41 static inline int dev_isalive(const struct net_device *dev) 42 { 43 return READ_ONCE(dev->reg_state) <= NETREG_REGISTERED; 44 } 45 46 /* There is a possible ABBA deadlock between rtnl_lock and kernfs_node->active, 47 * when unregistering a net device and accessing associated sysfs files. The 48 * potential deadlock is as follow: 49 * 50 * CPU 0 CPU 1 51 * 52 * rtnl_lock vfs_read 53 * unregister_netdevice_many kernfs_seq_start 54 * device_del / kobject_put kernfs_get_active (kn->active++) 55 * kernfs_drain sysfs_kf_seq_show 56 * wait_event( rtnl_lock 57 * kn->active == KN_DEACTIVATED_BIAS) -> waits on CPU 0 to release 58 * -> waits on CPU 1 to decrease kn->active the rtnl lock. 59 * 60 * The historical fix was to use rtnl_trylock with restart_syscall to bail out 61 * of sysfs operations when the lock couldn't be taken. This fixed the above 62 * issue as it allowed CPU 1 to bail out of the ABBA situation. 63 * 64 * But it came with performances issues, as syscalls are being restarted in 65 * loops when there was contention on the rtnl lock, with huge slow downs in 66 * specific scenarios (e.g. lots of virtual interfaces created and userspace 67 * daemons querying their attributes). 68 * 69 * The idea below is to bail out of the active kernfs_node protection 70 * (kn->active) while trying to take the rtnl lock. 71 * 72 * This replaces rtnl_lock() and still has to be used with rtnl_unlock(). The 73 * net device is guaranteed to be alive if this returns successfully. 74 */ 75 static int sysfs_rtnl_lock(struct kobject *kobj, struct attribute *attr, 76 struct net_device *ndev) 77 { 78 struct kernfs_node *kn; 79 int ret = 0; 80 81 /* First, we hold a reference to the net device as the unregistration 82 * path might run in parallel. This will ensure the net device and the 83 * associated sysfs objects won't be freed while we try to take the rtnl 84 * lock. 85 */ 86 dev_hold(ndev); 87 /* sysfs_break_active_protection was introduced to allow self-removal of 88 * devices and their associated sysfs files by bailing out of the 89 * sysfs/kernfs protection. We do this here to allow the unregistration 90 * path to complete in parallel. The following takes a reference on the 91 * kobject and the kernfs_node being accessed. 92 * 93 * This works because we hold a reference onto the net device and the 94 * unregistration path will wait for us eventually in netdev_run_todo 95 * (outside an rtnl lock section). 96 */ 97 kn = sysfs_break_active_protection(kobj, attr); 98 /* We can now try to take the rtnl lock. This can't deadlock us as the 99 * unregistration path is able to drain sysfs files (kernfs_node) thanks 100 * to the above dance. 101 */ 102 if (rtnl_lock_interruptible()) { 103 ret = -ERESTARTSYS; 104 goto unbreak; 105 } 106 /* Check dismantle on the device hasn't started, otherwise deny the 107 * operation. 108 */ 109 if (!dev_isalive(ndev)) { 110 rtnl_unlock(); 111 ret = -ENODEV; 112 goto unbreak; 113 } 114 /* We are now sure the device dismantle hasn't started nor that it can 115 * start before we exit the locking section as we hold the rtnl lock. 116 * There's no need to keep unbreaking the sysfs protection nor to hold 117 * a net device reference from that point; that was only needed to take 118 * the rtnl lock. 119 */ 120 unbreak: 121 sysfs_unbreak_active_protection(kn); 122 dev_put(ndev); 123 124 return ret; 125 } 126 127 /* use same locking rules as GIF* ioctl's */ 128 static ssize_t netdev_show(const struct device *dev, 129 struct device_attribute *attr, char *buf, 130 ssize_t (*format)(const struct net_device *, char *)) 131 { 132 struct net_device *ndev = to_net_dev(dev); 133 ssize_t ret = -EINVAL; 134 135 rcu_read_lock(); 136 if (dev_isalive(ndev)) 137 ret = (*format)(ndev, buf); 138 rcu_read_unlock(); 139 140 return ret; 141 } 142 143 /* generate a show function for simple field */ 144 #define NETDEVICE_SHOW(field, format_string) \ 145 static ssize_t format_##field(const struct net_device *dev, char *buf) \ 146 { \ 147 return sysfs_emit(buf, format_string, READ_ONCE(dev->field)); \ 148 } \ 149 static ssize_t field##_show(struct device *dev, \ 150 struct device_attribute *attr, char *buf) \ 151 { \ 152 return netdev_show(dev, attr, buf, format_##field); \ 153 } \ 154 155 #define NETDEVICE_SHOW_RO(field, format_string) \ 156 NETDEVICE_SHOW(field, format_string); \ 157 static DEVICE_ATTR_RO(field) 158 159 #define NETDEVICE_SHOW_RW(field, format_string) \ 160 NETDEVICE_SHOW(field, format_string); \ 161 static DEVICE_ATTR_RW(field) 162 163 /* use same locking and permission rules as SIF* ioctl's */ 164 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr, 165 const char *buf, size_t len, 166 int (*set)(struct net_device *, unsigned long)) 167 { 168 struct net_device *netdev = to_net_dev(dev); 169 struct net *net = dev_net(netdev); 170 unsigned long new; 171 int ret; 172 173 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 174 return -EPERM; 175 176 ret = kstrtoul(buf, 0, &new); 177 if (ret) 178 goto err; 179 180 ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev); 181 if (ret) 182 goto err; 183 184 ret = (*set)(netdev, new); 185 if (ret == 0) 186 ret = len; 187 188 rtnl_unlock(); 189 err: 190 return ret; 191 } 192 193 /* Same as netdev_store() but takes netdev_lock() instead of rtnl_lock() */ 194 static ssize_t 195 netdev_lock_store(struct device *dev, struct device_attribute *attr, 196 const char *buf, size_t len, 197 int (*set)(struct net_device *, unsigned long)) 198 { 199 struct net_device *netdev = to_net_dev(dev); 200 struct net *net = dev_net(netdev); 201 unsigned long new; 202 int ret; 203 204 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 205 return -EPERM; 206 207 ret = kstrtoul(buf, 0, &new); 208 if (ret) 209 return ret; 210 211 netdev_lock(netdev); 212 213 if (dev_isalive(netdev)) { 214 ret = (*set)(netdev, new); 215 if (ret == 0) 216 ret = len; 217 } 218 netdev_unlock(netdev); 219 220 return ret; 221 } 222 223 NETDEVICE_SHOW_RO(dev_id, fmt_hex); 224 NETDEVICE_SHOW_RO(dev_port, fmt_dec); 225 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec); 226 NETDEVICE_SHOW_RO(addr_len, fmt_dec); 227 NETDEVICE_SHOW_RO(ifindex, fmt_dec); 228 NETDEVICE_SHOW_RO(type, fmt_dec); 229 NETDEVICE_SHOW_RO(link_mode, fmt_dec); 230 231 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr, 232 char *buf) 233 { 234 struct net_device *ndev = to_net_dev(dev); 235 236 return sysfs_emit(buf, fmt_dec, dev_get_iflink(ndev)); 237 } 238 static DEVICE_ATTR_RO(iflink); 239 240 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf) 241 { 242 return sysfs_emit(buf, fmt_dec, READ_ONCE(dev->name_assign_type)); 243 } 244 245 static ssize_t name_assign_type_show(struct device *dev, 246 struct device_attribute *attr, 247 char *buf) 248 { 249 struct net_device *ndev = to_net_dev(dev); 250 ssize_t ret = -EINVAL; 251 252 if (READ_ONCE(ndev->name_assign_type) != NET_NAME_UNKNOWN) 253 ret = netdev_show(dev, attr, buf, format_name_assign_type); 254 255 return ret; 256 } 257 static DEVICE_ATTR_RO(name_assign_type); 258 259 /* use same locking rules as GIFHWADDR ioctl's (netif_get_mac_address()) */ 260 static ssize_t address_show(struct device *dev, struct device_attribute *attr, 261 char *buf) 262 { 263 struct net_device *ndev = to_net_dev(dev); 264 ssize_t ret = -EINVAL; 265 266 down_read(&dev_addr_sem); 267 268 rcu_read_lock(); 269 if (dev_isalive(ndev)) 270 ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len); 271 rcu_read_unlock(); 272 273 up_read(&dev_addr_sem); 274 return ret; 275 } 276 static DEVICE_ATTR_RO(address); 277 278 static ssize_t broadcast_show(struct device *dev, 279 struct device_attribute *attr, char *buf) 280 { 281 struct net_device *ndev = to_net_dev(dev); 282 int ret = -EINVAL; 283 284 rcu_read_lock(); 285 if (dev_isalive(ndev)) 286 ret = sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len); 287 rcu_read_unlock(); 288 return ret; 289 } 290 static DEVICE_ATTR_RO(broadcast); 291 292 static int change_carrier(struct net_device *dev, unsigned long new_carrier) 293 { 294 if (!netif_running(dev)) 295 return -EINVAL; 296 return dev_change_carrier(dev, (bool)new_carrier); 297 } 298 299 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr, 300 const char *buf, size_t len) 301 { 302 struct net_device *netdev = to_net_dev(dev); 303 304 /* The check is also done in change_carrier; this helps returning early 305 * without hitting the locking section in netdev_store. 306 */ 307 if (!netdev->netdev_ops->ndo_change_carrier) 308 return -EOPNOTSUPP; 309 310 return netdev_store(dev, attr, buf, len, change_carrier); 311 } 312 313 static ssize_t carrier_show(struct device *dev, 314 struct device_attribute *attr, char *buf) 315 { 316 struct net_device *netdev = to_net_dev(dev); 317 int ret; 318 319 ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev); 320 if (ret) 321 return ret; 322 323 ret = -EINVAL; 324 if (netif_running(netdev)) { 325 /* Synchronize carrier state with link watch, 326 * see also rtnl_getlink(). 327 */ 328 linkwatch_sync_dev(netdev); 329 330 ret = sysfs_emit(buf, fmt_dec, !!netif_carrier_ok(netdev)); 331 } 332 333 rtnl_unlock(); 334 return ret; 335 } 336 static DEVICE_ATTR_RW(carrier); 337 338 static ssize_t speed_show(struct device *dev, 339 struct device_attribute *attr, char *buf) 340 { 341 struct net_device *netdev = to_net_dev(dev); 342 int ret = -EINVAL; 343 344 /* The check is also done in __ethtool_get_link_ksettings; this helps 345 * returning early without hitting the locking section below. 346 */ 347 if (!netdev->ethtool_ops->get_link_ksettings) 348 return ret; 349 350 ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev); 351 if (ret) 352 return ret; 353 354 ret = -EINVAL; 355 if (netif_running(netdev)) { 356 struct ethtool_link_ksettings cmd; 357 358 if (!__ethtool_get_link_ksettings(netdev, &cmd)) 359 ret = sysfs_emit(buf, fmt_dec, cmd.base.speed); 360 } 361 rtnl_unlock(); 362 return ret; 363 } 364 static DEVICE_ATTR_RO(speed); 365 366 static ssize_t duplex_show(struct device *dev, 367 struct device_attribute *attr, char *buf) 368 { 369 struct net_device *netdev = to_net_dev(dev); 370 int ret = -EINVAL; 371 372 /* The check is also done in __ethtool_get_link_ksettings; this helps 373 * returning early without hitting the locking section below. 374 */ 375 if (!netdev->ethtool_ops->get_link_ksettings) 376 return ret; 377 378 ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev); 379 if (ret) 380 return ret; 381 382 ret = -EINVAL; 383 if (netif_running(netdev)) { 384 struct ethtool_link_ksettings cmd; 385 386 if (!__ethtool_get_link_ksettings(netdev, &cmd)) { 387 const char *duplex; 388 389 switch (cmd.base.duplex) { 390 case DUPLEX_HALF: 391 duplex = "half"; 392 break; 393 case DUPLEX_FULL: 394 duplex = "full"; 395 break; 396 default: 397 duplex = "unknown"; 398 break; 399 } 400 ret = sysfs_emit(buf, "%s\n", duplex); 401 } 402 } 403 rtnl_unlock(); 404 return ret; 405 } 406 static DEVICE_ATTR_RO(duplex); 407 408 static ssize_t testing_show(struct device *dev, 409 struct device_attribute *attr, char *buf) 410 { 411 struct net_device *netdev = to_net_dev(dev); 412 413 if (netif_running(netdev)) 414 return sysfs_emit(buf, fmt_dec, !!netif_testing(netdev)); 415 416 return -EINVAL; 417 } 418 static DEVICE_ATTR_RO(testing); 419 420 static ssize_t dormant_show(struct device *dev, 421 struct device_attribute *attr, char *buf) 422 { 423 struct net_device *netdev = to_net_dev(dev); 424 425 if (netif_running(netdev)) 426 return sysfs_emit(buf, fmt_dec, !!netif_dormant(netdev)); 427 428 return -EINVAL; 429 } 430 static DEVICE_ATTR_RO(dormant); 431 432 static const char *const operstates[] = { 433 "unknown", 434 "notpresent", /* currently unused */ 435 "down", 436 "lowerlayerdown", 437 "testing", 438 "dormant", 439 "up" 440 }; 441 442 static ssize_t operstate_show(struct device *dev, 443 struct device_attribute *attr, char *buf) 444 { 445 const struct net_device *netdev = to_net_dev(dev); 446 unsigned char operstate; 447 448 operstate = READ_ONCE(netdev->operstate); 449 if (!netif_running(netdev)) 450 operstate = IF_OPER_DOWN; 451 452 if (operstate >= ARRAY_SIZE(operstates)) 453 return -EINVAL; /* should not happen */ 454 455 return sysfs_emit(buf, "%s\n", operstates[operstate]); 456 } 457 static DEVICE_ATTR_RO(operstate); 458 459 static ssize_t carrier_changes_show(struct device *dev, 460 struct device_attribute *attr, 461 char *buf) 462 { 463 struct net_device *netdev = to_net_dev(dev); 464 465 return sysfs_emit(buf, fmt_dec, 466 atomic_read(&netdev->carrier_up_count) + 467 atomic_read(&netdev->carrier_down_count)); 468 } 469 static DEVICE_ATTR_RO(carrier_changes); 470 471 static ssize_t carrier_up_count_show(struct device *dev, 472 struct device_attribute *attr, 473 char *buf) 474 { 475 struct net_device *netdev = to_net_dev(dev); 476 477 return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_up_count)); 478 } 479 static DEVICE_ATTR_RO(carrier_up_count); 480 481 static ssize_t carrier_down_count_show(struct device *dev, 482 struct device_attribute *attr, 483 char *buf) 484 { 485 struct net_device *netdev = to_net_dev(dev); 486 487 return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_down_count)); 488 } 489 static DEVICE_ATTR_RO(carrier_down_count); 490 491 /* read-write attributes */ 492 493 static int change_mtu(struct net_device *dev, unsigned long new_mtu) 494 { 495 return dev_set_mtu(dev, (int)new_mtu); 496 } 497 498 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr, 499 const char *buf, size_t len) 500 { 501 return netdev_store(dev, attr, buf, len, change_mtu); 502 } 503 NETDEVICE_SHOW_RW(mtu, fmt_dec); 504 505 static int change_flags(struct net_device *dev, unsigned long new_flags) 506 { 507 return dev_change_flags(dev, (unsigned int)new_flags, NULL); 508 } 509 510 static ssize_t flags_store(struct device *dev, struct device_attribute *attr, 511 const char *buf, size_t len) 512 { 513 return netdev_store(dev, attr, buf, len, change_flags); 514 } 515 NETDEVICE_SHOW_RW(flags, fmt_hex); 516 517 static ssize_t tx_queue_len_store(struct device *dev, 518 struct device_attribute *attr, 519 const char *buf, size_t len) 520 { 521 if (!capable(CAP_NET_ADMIN)) 522 return -EPERM; 523 524 return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len); 525 } 526 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec); 527 528 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val) 529 { 530 netdev_set_gro_flush_timeout(dev, val); 531 return 0; 532 } 533 534 static ssize_t gro_flush_timeout_store(struct device *dev, 535 struct device_attribute *attr, 536 const char *buf, size_t len) 537 { 538 if (!capable(CAP_NET_ADMIN)) 539 return -EPERM; 540 541 return netdev_lock_store(dev, attr, buf, len, change_gro_flush_timeout); 542 } 543 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong); 544 545 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val) 546 { 547 if (val > S32_MAX) 548 return -ERANGE; 549 550 netdev_set_defer_hard_irqs(dev, (u32)val); 551 return 0; 552 } 553 554 static ssize_t napi_defer_hard_irqs_store(struct device *dev, 555 struct device_attribute *attr, 556 const char *buf, size_t len) 557 { 558 if (!capable(CAP_NET_ADMIN)) 559 return -EPERM; 560 561 return netdev_lock_store(dev, attr, buf, len, 562 change_napi_defer_hard_irqs); 563 } 564 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_uint); 565 566 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr, 567 const char *buf, size_t len) 568 { 569 struct net_device *netdev = to_net_dev(dev); 570 struct net *net = dev_net(netdev); 571 size_t count = len; 572 ssize_t ret; 573 574 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 575 return -EPERM; 576 577 /* ignore trailing newline */ 578 if (len > 0 && buf[len - 1] == '\n') 579 --count; 580 581 ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev); 582 if (ret) 583 return ret; 584 585 ret = dev_set_alias(netdev, buf, count); 586 if (ret < 0) 587 goto err; 588 ret = len; 589 netdev_state_change(netdev); 590 err: 591 rtnl_unlock(); 592 593 return ret; 594 } 595 596 static ssize_t ifalias_show(struct device *dev, 597 struct device_attribute *attr, char *buf) 598 { 599 const struct net_device *netdev = to_net_dev(dev); 600 char tmp[IFALIASZ]; 601 ssize_t ret; 602 603 ret = dev_get_alias(netdev, tmp, sizeof(tmp)); 604 if (ret > 0) 605 ret = sysfs_emit(buf, "%s\n", tmp); 606 return ret; 607 } 608 static DEVICE_ATTR_RW(ifalias); 609 610 static int change_group(struct net_device *dev, unsigned long new_group) 611 { 612 dev_set_group(dev, (int)new_group); 613 return 0; 614 } 615 616 static ssize_t group_store(struct device *dev, struct device_attribute *attr, 617 const char *buf, size_t len) 618 { 619 return netdev_store(dev, attr, buf, len, change_group); 620 } 621 NETDEVICE_SHOW(group, fmt_dec); 622 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store); 623 624 static int change_proto_down(struct net_device *dev, unsigned long proto_down) 625 { 626 return dev_change_proto_down(dev, (bool)proto_down); 627 } 628 629 static ssize_t proto_down_store(struct device *dev, 630 struct device_attribute *attr, 631 const char *buf, size_t len) 632 { 633 return netdev_store(dev, attr, buf, len, change_proto_down); 634 } 635 NETDEVICE_SHOW_RW(proto_down, fmt_dec); 636 637 static ssize_t phys_port_id_show(struct device *dev, 638 struct device_attribute *attr, char *buf) 639 { 640 struct net_device *netdev = to_net_dev(dev); 641 struct netdev_phys_item_id ppid; 642 ssize_t ret; 643 644 ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev); 645 if (ret) 646 return ret; 647 648 ret = dev_get_phys_port_id(netdev, &ppid); 649 if (!ret) 650 ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id); 651 652 rtnl_unlock(); 653 654 return ret; 655 } 656 static DEVICE_ATTR_RO(phys_port_id); 657 658 static ssize_t phys_port_name_show(struct device *dev, 659 struct device_attribute *attr, char *buf) 660 { 661 struct net_device *netdev = to_net_dev(dev); 662 char name[IFNAMSIZ]; 663 ssize_t ret; 664 665 ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev); 666 if (ret) 667 return ret; 668 669 ret = dev_get_phys_port_name(netdev, name, sizeof(name)); 670 if (!ret) 671 ret = sysfs_emit(buf, "%s\n", name); 672 673 rtnl_unlock(); 674 675 return ret; 676 } 677 static DEVICE_ATTR_RO(phys_port_name); 678 679 static ssize_t phys_switch_id_show(struct device *dev, 680 struct device_attribute *attr, char *buf) 681 { 682 struct net_device *netdev = to_net_dev(dev); 683 struct netdev_phys_item_id ppid = { }; 684 ssize_t ret; 685 686 ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev); 687 if (ret) 688 return ret; 689 690 ret = netif_get_port_parent_id(netdev, &ppid, false); 691 if (!ret) 692 ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id); 693 694 rtnl_unlock(); 695 696 return ret; 697 } 698 static DEVICE_ATTR_RO(phys_switch_id); 699 700 static struct attribute *netdev_phys_attrs[] __ro_after_init = { 701 &dev_attr_phys_port_id.attr, 702 &dev_attr_phys_port_name.attr, 703 &dev_attr_phys_switch_id.attr, 704 NULL, 705 }; 706 707 static umode_t netdev_phys_is_visible(struct kobject *kobj, 708 struct attribute *attr, int index) 709 { 710 struct device *dev = kobj_to_dev(kobj); 711 struct net_device *netdev = to_net_dev(dev); 712 713 if (attr == &dev_attr_phys_port_id.attr) { 714 if (!netdev->netdev_ops->ndo_get_phys_port_id) 715 return 0; 716 } else if (attr == &dev_attr_phys_port_name.attr) { 717 if (!netdev->netdev_ops->ndo_get_phys_port_name && 718 !netdev->devlink_port) 719 return 0; 720 } else if (attr == &dev_attr_phys_switch_id.attr) { 721 if (!netdev->netdev_ops->ndo_get_port_parent_id && 722 !netdev->devlink_port) 723 return 0; 724 } 725 726 return attr->mode; 727 } 728 729 static const struct attribute_group netdev_phys_group = { 730 .attrs = netdev_phys_attrs, 731 .is_visible = netdev_phys_is_visible, 732 }; 733 734 static ssize_t threaded_show(struct device *dev, 735 struct device_attribute *attr, char *buf) 736 { 737 struct net_device *netdev = to_net_dev(dev); 738 ssize_t ret = -EINVAL; 739 740 rcu_read_lock(); 741 742 if (dev_isalive(netdev)) 743 ret = sysfs_emit(buf, fmt_dec, READ_ONCE(netdev->threaded)); 744 745 rcu_read_unlock(); 746 747 return ret; 748 } 749 750 static int modify_napi_threaded(struct net_device *dev, unsigned long val) 751 { 752 int ret; 753 754 if (list_empty(&dev->napi_list)) 755 return -EOPNOTSUPP; 756 757 if (val != 0 && val != 1) 758 return -EOPNOTSUPP; 759 760 ret = netif_set_threaded(dev, val); 761 762 return ret; 763 } 764 765 static ssize_t threaded_store(struct device *dev, 766 struct device_attribute *attr, 767 const char *buf, size_t len) 768 { 769 return netdev_lock_store(dev, attr, buf, len, modify_napi_threaded); 770 } 771 static DEVICE_ATTR_RW(threaded); 772 773 static struct attribute *net_class_attrs[] __ro_after_init = { 774 &dev_attr_netdev_group.attr, 775 &dev_attr_type.attr, 776 &dev_attr_dev_id.attr, 777 &dev_attr_dev_port.attr, 778 &dev_attr_iflink.attr, 779 &dev_attr_ifindex.attr, 780 &dev_attr_name_assign_type.attr, 781 &dev_attr_addr_assign_type.attr, 782 &dev_attr_addr_len.attr, 783 &dev_attr_link_mode.attr, 784 &dev_attr_address.attr, 785 &dev_attr_broadcast.attr, 786 &dev_attr_speed.attr, 787 &dev_attr_duplex.attr, 788 &dev_attr_dormant.attr, 789 &dev_attr_testing.attr, 790 &dev_attr_operstate.attr, 791 &dev_attr_carrier_changes.attr, 792 &dev_attr_ifalias.attr, 793 &dev_attr_carrier.attr, 794 &dev_attr_mtu.attr, 795 &dev_attr_flags.attr, 796 &dev_attr_tx_queue_len.attr, 797 &dev_attr_gro_flush_timeout.attr, 798 &dev_attr_napi_defer_hard_irqs.attr, 799 &dev_attr_proto_down.attr, 800 &dev_attr_carrier_up_count.attr, 801 &dev_attr_carrier_down_count.attr, 802 &dev_attr_threaded.attr, 803 NULL, 804 }; 805 ATTRIBUTE_GROUPS(net_class); 806 807 /* Show a given an attribute in the statistics group */ 808 static ssize_t netstat_show(const struct device *d, 809 struct device_attribute *attr, char *buf, 810 unsigned long offset) 811 { 812 struct net_device *dev = to_net_dev(d); 813 ssize_t ret = -EINVAL; 814 815 WARN_ON(offset > sizeof(struct rtnl_link_stats64) || 816 offset % sizeof(u64) != 0); 817 818 rcu_read_lock(); 819 if (dev_isalive(dev)) { 820 struct rtnl_link_stats64 temp; 821 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 822 823 ret = sysfs_emit(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset)); 824 } 825 rcu_read_unlock(); 826 return ret; 827 } 828 829 /* generate a read-only statistics attribute */ 830 #define NETSTAT_ENTRY(name) \ 831 static ssize_t name##_show(struct device *d, \ 832 struct device_attribute *attr, char *buf) \ 833 { \ 834 return netstat_show(d, attr, buf, \ 835 offsetof(struct rtnl_link_stats64, name)); \ 836 } \ 837 static DEVICE_ATTR_RO(name) 838 839 NETSTAT_ENTRY(rx_packets); 840 NETSTAT_ENTRY(tx_packets); 841 NETSTAT_ENTRY(rx_bytes); 842 NETSTAT_ENTRY(tx_bytes); 843 NETSTAT_ENTRY(rx_errors); 844 NETSTAT_ENTRY(tx_errors); 845 NETSTAT_ENTRY(rx_dropped); 846 NETSTAT_ENTRY(tx_dropped); 847 NETSTAT_ENTRY(multicast); 848 NETSTAT_ENTRY(collisions); 849 NETSTAT_ENTRY(rx_length_errors); 850 NETSTAT_ENTRY(rx_over_errors); 851 NETSTAT_ENTRY(rx_crc_errors); 852 NETSTAT_ENTRY(rx_frame_errors); 853 NETSTAT_ENTRY(rx_fifo_errors); 854 NETSTAT_ENTRY(rx_missed_errors); 855 NETSTAT_ENTRY(tx_aborted_errors); 856 NETSTAT_ENTRY(tx_carrier_errors); 857 NETSTAT_ENTRY(tx_fifo_errors); 858 NETSTAT_ENTRY(tx_heartbeat_errors); 859 NETSTAT_ENTRY(tx_window_errors); 860 NETSTAT_ENTRY(rx_compressed); 861 NETSTAT_ENTRY(tx_compressed); 862 NETSTAT_ENTRY(rx_nohandler); 863 864 static struct attribute *netstat_attrs[] __ro_after_init = { 865 &dev_attr_rx_packets.attr, 866 &dev_attr_tx_packets.attr, 867 &dev_attr_rx_bytes.attr, 868 &dev_attr_tx_bytes.attr, 869 &dev_attr_rx_errors.attr, 870 &dev_attr_tx_errors.attr, 871 &dev_attr_rx_dropped.attr, 872 &dev_attr_tx_dropped.attr, 873 &dev_attr_multicast.attr, 874 &dev_attr_collisions.attr, 875 &dev_attr_rx_length_errors.attr, 876 &dev_attr_rx_over_errors.attr, 877 &dev_attr_rx_crc_errors.attr, 878 &dev_attr_rx_frame_errors.attr, 879 &dev_attr_rx_fifo_errors.attr, 880 &dev_attr_rx_missed_errors.attr, 881 &dev_attr_tx_aborted_errors.attr, 882 &dev_attr_tx_carrier_errors.attr, 883 &dev_attr_tx_fifo_errors.attr, 884 &dev_attr_tx_heartbeat_errors.attr, 885 &dev_attr_tx_window_errors.attr, 886 &dev_attr_rx_compressed.attr, 887 &dev_attr_tx_compressed.attr, 888 &dev_attr_rx_nohandler.attr, 889 NULL 890 }; 891 892 static const struct attribute_group netstat_group = { 893 .name = "statistics", 894 .attrs = netstat_attrs, 895 }; 896 897 static struct attribute *wireless_attrs[] = { 898 NULL 899 }; 900 901 static const struct attribute_group wireless_group = { 902 .name = "wireless", 903 .attrs = wireless_attrs, 904 }; 905 906 static bool wireless_group_needed(struct net_device *ndev) 907 { 908 #if IS_ENABLED(CONFIG_CFG80211) 909 if (ndev->ieee80211_ptr) 910 return true; 911 #endif 912 #if IS_ENABLED(CONFIG_WIRELESS_EXT) 913 if (ndev->wireless_handlers) 914 return true; 915 #endif 916 return false; 917 } 918 919 #else /* CONFIG_SYSFS */ 920 #define net_class_groups NULL 921 #endif /* CONFIG_SYSFS */ 922 923 #ifdef CONFIG_SYSFS 924 #define to_rx_queue_attr(_attr) \ 925 container_of(_attr, struct rx_queue_attribute, attr) 926 927 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj) 928 929 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr, 930 char *buf) 931 { 932 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 933 struct netdev_rx_queue *queue = to_rx_queue(kobj); 934 935 if (!attribute->show) 936 return -EIO; 937 938 return attribute->show(queue, buf); 939 } 940 941 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr, 942 const char *buf, size_t count) 943 { 944 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 945 struct netdev_rx_queue *queue = to_rx_queue(kobj); 946 947 if (!attribute->store) 948 return -EIO; 949 950 return attribute->store(queue, buf, count); 951 } 952 953 static const struct sysfs_ops rx_queue_sysfs_ops = { 954 .show = rx_queue_attr_show, 955 .store = rx_queue_attr_store, 956 }; 957 958 #ifdef CONFIG_RPS 959 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf) 960 { 961 struct rps_map *map; 962 cpumask_var_t mask; 963 int i, len; 964 965 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 966 return -ENOMEM; 967 968 rcu_read_lock(); 969 map = rcu_dereference(queue->rps_map); 970 if (map) 971 for (i = 0; i < map->len; i++) 972 cpumask_set_cpu(map->cpus[i], mask); 973 974 len = sysfs_emit(buf, "%*pb\n", cpumask_pr_args(mask)); 975 rcu_read_unlock(); 976 free_cpumask_var(mask); 977 978 return len < PAGE_SIZE ? len : -EINVAL; 979 } 980 981 static int netdev_rx_queue_set_rps_mask(struct netdev_rx_queue *queue, 982 cpumask_var_t mask) 983 { 984 static DEFINE_MUTEX(rps_map_mutex); 985 struct rps_map *old_map, *map; 986 int cpu, i; 987 988 map = kzalloc(max_t(unsigned int, 989 RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES), 990 GFP_KERNEL); 991 if (!map) 992 return -ENOMEM; 993 994 i = 0; 995 for_each_cpu_and(cpu, mask, cpu_online_mask) 996 map->cpus[i++] = cpu; 997 998 if (i) { 999 map->len = i; 1000 } else { 1001 kfree(map); 1002 map = NULL; 1003 } 1004 1005 mutex_lock(&rps_map_mutex); 1006 old_map = rcu_dereference_protected(queue->rps_map, 1007 mutex_is_locked(&rps_map_mutex)); 1008 rcu_assign_pointer(queue->rps_map, map); 1009 1010 if (map) 1011 static_branch_inc(&rps_needed); 1012 if (old_map) 1013 static_branch_dec(&rps_needed); 1014 1015 mutex_unlock(&rps_map_mutex); 1016 1017 if (old_map) 1018 kfree_rcu(old_map, rcu); 1019 return 0; 1020 } 1021 1022 int rps_cpumask_housekeeping(struct cpumask *mask) 1023 { 1024 if (!cpumask_empty(mask)) { 1025 cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_DOMAIN)); 1026 cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_WQ)); 1027 if (cpumask_empty(mask)) 1028 return -EINVAL; 1029 } 1030 return 0; 1031 } 1032 1033 static ssize_t store_rps_map(struct netdev_rx_queue *queue, 1034 const char *buf, size_t len) 1035 { 1036 cpumask_var_t mask; 1037 int err; 1038 1039 if (!capable(CAP_NET_ADMIN)) 1040 return -EPERM; 1041 1042 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 1043 return -ENOMEM; 1044 1045 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 1046 if (err) 1047 goto out; 1048 1049 err = rps_cpumask_housekeeping(mask); 1050 if (err) 1051 goto out; 1052 1053 err = netdev_rx_queue_set_rps_mask(queue, mask); 1054 1055 out: 1056 free_cpumask_var(mask); 1057 return err ? : len; 1058 } 1059 1060 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 1061 char *buf) 1062 { 1063 struct rps_dev_flow_table *flow_table; 1064 unsigned long val = 0; 1065 1066 rcu_read_lock(); 1067 flow_table = rcu_dereference(queue->rps_flow_table); 1068 if (flow_table) 1069 val = 1UL << flow_table->log; 1070 rcu_read_unlock(); 1071 1072 return sysfs_emit(buf, "%lu\n", val); 1073 } 1074 1075 static void rps_dev_flow_table_release(struct rcu_head *rcu) 1076 { 1077 struct rps_dev_flow_table *table = container_of(rcu, 1078 struct rps_dev_flow_table, rcu); 1079 vfree(table); 1080 } 1081 1082 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 1083 const char *buf, size_t len) 1084 { 1085 unsigned long mask, count; 1086 struct rps_dev_flow_table *table, *old_table; 1087 static DEFINE_SPINLOCK(rps_dev_flow_lock); 1088 int rc; 1089 1090 if (!capable(CAP_NET_ADMIN)) 1091 return -EPERM; 1092 1093 rc = kstrtoul(buf, 0, &count); 1094 if (rc < 0) 1095 return rc; 1096 1097 if (count) { 1098 mask = count - 1; 1099 /* mask = roundup_pow_of_two(count) - 1; 1100 * without overflows... 1101 */ 1102 while ((mask | (mask >> 1)) != mask) 1103 mask |= (mask >> 1); 1104 /* On 64 bit arches, must check mask fits in table->mask (u32), 1105 * and on 32bit arches, must check 1106 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow. 1107 */ 1108 #if BITS_PER_LONG > 32 1109 if (mask > (unsigned long)(u32)mask) 1110 return -EINVAL; 1111 #else 1112 if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1)) 1113 / sizeof(struct rps_dev_flow)) { 1114 /* Enforce a limit to prevent overflow */ 1115 return -EINVAL; 1116 } 1117 #endif 1118 table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1)); 1119 if (!table) 1120 return -ENOMEM; 1121 1122 table->log = ilog2(mask) + 1; 1123 for (count = 0; count <= mask; count++) { 1124 table->flows[count].cpu = RPS_NO_CPU; 1125 table->flows[count].filter = RPS_NO_FILTER; 1126 } 1127 } else { 1128 table = NULL; 1129 } 1130 1131 spin_lock(&rps_dev_flow_lock); 1132 old_table = rcu_dereference_protected(queue->rps_flow_table, 1133 lockdep_is_held(&rps_dev_flow_lock)); 1134 rcu_assign_pointer(queue->rps_flow_table, table); 1135 spin_unlock(&rps_dev_flow_lock); 1136 1137 if (old_table) 1138 call_rcu(&old_table->rcu, rps_dev_flow_table_release); 1139 1140 return len; 1141 } 1142 1143 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init 1144 = __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map); 1145 1146 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init 1147 = __ATTR(rps_flow_cnt, 0644, 1148 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt); 1149 #endif /* CONFIG_RPS */ 1150 1151 static struct attribute *rx_queue_default_attrs[] __ro_after_init = { 1152 #ifdef CONFIG_RPS 1153 &rps_cpus_attribute.attr, 1154 &rps_dev_flow_table_cnt_attribute.attr, 1155 #endif 1156 NULL 1157 }; 1158 ATTRIBUTE_GROUPS(rx_queue_default); 1159 1160 static void rx_queue_release(struct kobject *kobj) 1161 { 1162 struct netdev_rx_queue *queue = to_rx_queue(kobj); 1163 #ifdef CONFIG_RPS 1164 struct rps_map *map; 1165 struct rps_dev_flow_table *flow_table; 1166 1167 map = rcu_dereference_protected(queue->rps_map, 1); 1168 if (map) { 1169 RCU_INIT_POINTER(queue->rps_map, NULL); 1170 kfree_rcu(map, rcu); 1171 } 1172 1173 flow_table = rcu_dereference_protected(queue->rps_flow_table, 1); 1174 if (flow_table) { 1175 RCU_INIT_POINTER(queue->rps_flow_table, NULL); 1176 call_rcu(&flow_table->rcu, rps_dev_flow_table_release); 1177 } 1178 #endif 1179 1180 memset(kobj, 0, sizeof(*kobj)); 1181 netdev_put(queue->dev, &queue->dev_tracker); 1182 } 1183 1184 static const void *rx_queue_namespace(const struct kobject *kobj) 1185 { 1186 struct netdev_rx_queue *queue = to_rx_queue(kobj); 1187 struct device *dev = &queue->dev->dev; 1188 const void *ns = NULL; 1189 1190 if (dev->class && dev->class->namespace) 1191 ns = dev->class->namespace(dev); 1192 1193 return ns; 1194 } 1195 1196 static void rx_queue_get_ownership(const struct kobject *kobj, 1197 kuid_t *uid, kgid_t *gid) 1198 { 1199 const struct net *net = rx_queue_namespace(kobj); 1200 1201 net_ns_get_ownership(net, uid, gid); 1202 } 1203 1204 static const struct kobj_type rx_queue_ktype = { 1205 .sysfs_ops = &rx_queue_sysfs_ops, 1206 .release = rx_queue_release, 1207 .namespace = rx_queue_namespace, 1208 .get_ownership = rx_queue_get_ownership, 1209 }; 1210 1211 static int rx_queue_default_mask(struct net_device *dev, 1212 struct netdev_rx_queue *queue) 1213 { 1214 #if IS_ENABLED(CONFIG_RPS) && IS_ENABLED(CONFIG_SYSCTL) 1215 struct cpumask *rps_default_mask; 1216 int res = 0; 1217 1218 mutex_lock(&rps_default_mask_mutex); 1219 1220 rps_default_mask = dev_net(dev)->core.rps_default_mask; 1221 if (rps_default_mask && !cpumask_empty(rps_default_mask)) 1222 res = netdev_rx_queue_set_rps_mask(queue, rps_default_mask); 1223 1224 mutex_unlock(&rps_default_mask_mutex); 1225 1226 return res; 1227 #else 1228 return 0; 1229 #endif 1230 } 1231 1232 static int rx_queue_add_kobject(struct net_device *dev, int index) 1233 { 1234 struct netdev_rx_queue *queue = dev->_rx + index; 1235 struct kobject *kobj = &queue->kobj; 1236 int error = 0; 1237 1238 /* Rx queues are cleared in rx_queue_release to allow later 1239 * re-registration. This is triggered when their kobj refcount is 1240 * dropped. 1241 * 1242 * If a queue is removed while both a read (or write) operation and a 1243 * the re-addition of the same queue are pending (waiting on rntl_lock) 1244 * it might happen that the re-addition will execute before the read, 1245 * making the initial removal to never happen (queue's kobj refcount 1246 * won't drop enough because of the pending read). In such rare case, 1247 * return to allow the removal operation to complete. 1248 */ 1249 if (unlikely(kobj->state_initialized)) { 1250 netdev_warn_once(dev, "Cannot re-add rx queues before their removal completed"); 1251 return -EAGAIN; 1252 } 1253 1254 /* Kobject_put later will trigger rx_queue_release call which 1255 * decreases dev refcount: Take that reference here 1256 */ 1257 netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL); 1258 1259 kobj->kset = dev->queues_kset; 1260 error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL, 1261 "rx-%u", index); 1262 if (error) 1263 goto err; 1264 1265 queue->groups = rx_queue_default_groups; 1266 error = sysfs_create_groups(kobj, queue->groups); 1267 if (error) 1268 goto err; 1269 1270 if (dev->sysfs_rx_queue_group) { 1271 error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group); 1272 if (error) 1273 goto err_default_groups; 1274 } 1275 1276 error = rx_queue_default_mask(dev, queue); 1277 if (error) 1278 goto err_default_groups; 1279 1280 kobject_uevent(kobj, KOBJ_ADD); 1281 1282 return error; 1283 1284 err_default_groups: 1285 sysfs_remove_groups(kobj, queue->groups); 1286 err: 1287 kobject_put(kobj); 1288 return error; 1289 } 1290 1291 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid, 1292 kgid_t kgid) 1293 { 1294 struct netdev_rx_queue *queue = dev->_rx + index; 1295 struct kobject *kobj = &queue->kobj; 1296 int error; 1297 1298 error = sysfs_change_owner(kobj, kuid, kgid); 1299 if (error) 1300 return error; 1301 1302 if (dev->sysfs_rx_queue_group) 1303 error = sysfs_group_change_owner( 1304 kobj, dev->sysfs_rx_queue_group, kuid, kgid); 1305 1306 return error; 1307 } 1308 #endif /* CONFIG_SYSFS */ 1309 1310 int 1311 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1312 { 1313 #ifdef CONFIG_SYSFS 1314 int i; 1315 int error = 0; 1316 1317 #ifndef CONFIG_RPS 1318 if (!dev->sysfs_rx_queue_group) 1319 return 0; 1320 #endif 1321 for (i = old_num; i < new_num; i++) { 1322 error = rx_queue_add_kobject(dev, i); 1323 if (error) { 1324 new_num = old_num; 1325 break; 1326 } 1327 } 1328 1329 while (--i >= new_num) { 1330 struct netdev_rx_queue *queue = &dev->_rx[i]; 1331 struct kobject *kobj = &queue->kobj; 1332 1333 if (!check_net(dev_net(dev))) 1334 kobj->uevent_suppress = 1; 1335 if (dev->sysfs_rx_queue_group) 1336 sysfs_remove_group(kobj, dev->sysfs_rx_queue_group); 1337 sysfs_remove_groups(kobj, queue->groups); 1338 kobject_put(kobj); 1339 } 1340 1341 return error; 1342 #else 1343 return 0; 1344 #endif 1345 } 1346 1347 static int net_rx_queue_change_owner(struct net_device *dev, int num, 1348 kuid_t kuid, kgid_t kgid) 1349 { 1350 #ifdef CONFIG_SYSFS 1351 int error = 0; 1352 int i; 1353 1354 #ifndef CONFIG_RPS 1355 if (!dev->sysfs_rx_queue_group) 1356 return 0; 1357 #endif 1358 for (i = 0; i < num; i++) { 1359 error = rx_queue_change_owner(dev, i, kuid, kgid); 1360 if (error) 1361 break; 1362 } 1363 1364 return error; 1365 #else 1366 return 0; 1367 #endif 1368 } 1369 1370 #ifdef CONFIG_SYSFS 1371 /* 1372 * netdev_queue sysfs structures and functions. 1373 */ 1374 struct netdev_queue_attribute { 1375 struct attribute attr; 1376 ssize_t (*show)(struct kobject *kobj, struct attribute *attr, 1377 struct netdev_queue *queue, char *buf); 1378 ssize_t (*store)(struct kobject *kobj, struct attribute *attr, 1379 struct netdev_queue *queue, const char *buf, 1380 size_t len); 1381 }; 1382 #define to_netdev_queue_attr(_attr) \ 1383 container_of(_attr, struct netdev_queue_attribute, attr) 1384 1385 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj) 1386 1387 static ssize_t netdev_queue_attr_show(struct kobject *kobj, 1388 struct attribute *attr, char *buf) 1389 { 1390 const struct netdev_queue_attribute *attribute 1391 = to_netdev_queue_attr(attr); 1392 struct netdev_queue *queue = to_netdev_queue(kobj); 1393 1394 if (!attribute->show) 1395 return -EIO; 1396 1397 return attribute->show(kobj, attr, queue, buf); 1398 } 1399 1400 static ssize_t netdev_queue_attr_store(struct kobject *kobj, 1401 struct attribute *attr, 1402 const char *buf, size_t count) 1403 { 1404 const struct netdev_queue_attribute *attribute 1405 = to_netdev_queue_attr(attr); 1406 struct netdev_queue *queue = to_netdev_queue(kobj); 1407 1408 if (!attribute->store) 1409 return -EIO; 1410 1411 return attribute->store(kobj, attr, queue, buf, count); 1412 } 1413 1414 static const struct sysfs_ops netdev_queue_sysfs_ops = { 1415 .show = netdev_queue_attr_show, 1416 .store = netdev_queue_attr_store, 1417 }; 1418 1419 static ssize_t tx_timeout_show(struct kobject *kobj, struct attribute *attr, 1420 struct netdev_queue *queue, char *buf) 1421 { 1422 unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout); 1423 1424 return sysfs_emit(buf, fmt_ulong, trans_timeout); 1425 } 1426 1427 static unsigned int get_netdev_queue_index(struct netdev_queue *queue) 1428 { 1429 struct net_device *dev = queue->dev; 1430 unsigned int i; 1431 1432 i = queue - dev->_tx; 1433 BUG_ON(i >= dev->num_tx_queues); 1434 1435 return i; 1436 } 1437 1438 static ssize_t traffic_class_show(struct kobject *kobj, struct attribute *attr, 1439 struct netdev_queue *queue, char *buf) 1440 { 1441 struct net_device *dev = queue->dev; 1442 int num_tc, tc, index, ret; 1443 1444 if (!netif_is_multiqueue(dev)) 1445 return -ENOENT; 1446 1447 ret = sysfs_rtnl_lock(kobj, attr, queue->dev); 1448 if (ret) 1449 return ret; 1450 1451 index = get_netdev_queue_index(queue); 1452 1453 /* If queue belongs to subordinate dev use its TC mapping */ 1454 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1455 1456 num_tc = dev->num_tc; 1457 tc = netdev_txq_to_tc(dev, index); 1458 1459 rtnl_unlock(); 1460 1461 if (tc < 0) 1462 return -EINVAL; 1463 1464 /* We can report the traffic class one of two ways: 1465 * Subordinate device traffic classes are reported with the traffic 1466 * class first, and then the subordinate class so for example TC0 on 1467 * subordinate device 2 will be reported as "0-2". If the queue 1468 * belongs to the root device it will be reported with just the 1469 * traffic class, so just "0" for TC 0 for example. 1470 */ 1471 return num_tc < 0 ? sysfs_emit(buf, "%d%d\n", tc, num_tc) : 1472 sysfs_emit(buf, "%d\n", tc); 1473 } 1474 1475 #ifdef CONFIG_XPS 1476 static ssize_t tx_maxrate_show(struct kobject *kobj, struct attribute *attr, 1477 struct netdev_queue *queue, char *buf) 1478 { 1479 return sysfs_emit(buf, "%lu\n", queue->tx_maxrate); 1480 } 1481 1482 static ssize_t tx_maxrate_store(struct kobject *kobj, struct attribute *attr, 1483 struct netdev_queue *queue, const char *buf, 1484 size_t len) 1485 { 1486 int err, index = get_netdev_queue_index(queue); 1487 struct net_device *dev = queue->dev; 1488 u32 rate = 0; 1489 1490 if (!capable(CAP_NET_ADMIN)) 1491 return -EPERM; 1492 1493 /* The check is also done later; this helps returning early without 1494 * hitting the locking section below. 1495 */ 1496 if (!dev->netdev_ops->ndo_set_tx_maxrate) 1497 return -EOPNOTSUPP; 1498 1499 err = kstrtou32(buf, 10, &rate); 1500 if (err < 0) 1501 return err; 1502 1503 err = sysfs_rtnl_lock(kobj, attr, dev); 1504 if (err) 1505 return err; 1506 1507 err = -EOPNOTSUPP; 1508 netdev_lock_ops(dev); 1509 if (dev->netdev_ops->ndo_set_tx_maxrate) 1510 err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate); 1511 netdev_unlock_ops(dev); 1512 1513 if (!err) { 1514 queue->tx_maxrate = rate; 1515 rtnl_unlock(); 1516 return len; 1517 } 1518 1519 rtnl_unlock(); 1520 return err; 1521 } 1522 1523 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init 1524 = __ATTR_RW(tx_maxrate); 1525 #endif 1526 1527 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init 1528 = __ATTR_RO(tx_timeout); 1529 1530 static struct netdev_queue_attribute queue_traffic_class __ro_after_init 1531 = __ATTR_RO(traffic_class); 1532 1533 #ifdef CONFIG_BQL 1534 /* 1535 * Byte queue limits sysfs structures and functions. 1536 */ 1537 static ssize_t bql_show(char *buf, unsigned int value) 1538 { 1539 return sysfs_emit(buf, "%u\n", value); 1540 } 1541 1542 static ssize_t bql_set(const char *buf, const size_t count, 1543 unsigned int *pvalue) 1544 { 1545 unsigned int value; 1546 int err; 1547 1548 if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) { 1549 value = DQL_MAX_LIMIT; 1550 } else { 1551 err = kstrtouint(buf, 10, &value); 1552 if (err < 0) 1553 return err; 1554 if (value > DQL_MAX_LIMIT) 1555 return -EINVAL; 1556 } 1557 1558 *pvalue = value; 1559 1560 return count; 1561 } 1562 1563 static ssize_t bql_show_hold_time(struct kobject *kobj, struct attribute *attr, 1564 struct netdev_queue *queue, char *buf) 1565 { 1566 struct dql *dql = &queue->dql; 1567 1568 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time)); 1569 } 1570 1571 static ssize_t bql_set_hold_time(struct kobject *kobj, struct attribute *attr, 1572 struct netdev_queue *queue, const char *buf, 1573 size_t len) 1574 { 1575 struct dql *dql = &queue->dql; 1576 unsigned int value; 1577 int err; 1578 1579 err = kstrtouint(buf, 10, &value); 1580 if (err < 0) 1581 return err; 1582 1583 dql->slack_hold_time = msecs_to_jiffies(value); 1584 1585 return len; 1586 } 1587 1588 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init 1589 = __ATTR(hold_time, 0644, 1590 bql_show_hold_time, bql_set_hold_time); 1591 1592 static ssize_t bql_show_stall_thrs(struct kobject *kobj, struct attribute *attr, 1593 struct netdev_queue *queue, char *buf) 1594 { 1595 struct dql *dql = &queue->dql; 1596 1597 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->stall_thrs)); 1598 } 1599 1600 static ssize_t bql_set_stall_thrs(struct kobject *kobj, struct attribute *attr, 1601 struct netdev_queue *queue, const char *buf, 1602 size_t len) 1603 { 1604 struct dql *dql = &queue->dql; 1605 unsigned int value; 1606 int err; 1607 1608 err = kstrtouint(buf, 10, &value); 1609 if (err < 0) 1610 return err; 1611 1612 value = msecs_to_jiffies(value); 1613 if (value && (value < 4 || value > 4 / 2 * BITS_PER_LONG)) 1614 return -ERANGE; 1615 1616 if (!dql->stall_thrs && value) 1617 dql->last_reap = jiffies; 1618 /* Force last_reap to be live */ 1619 smp_wmb(); 1620 dql->stall_thrs = value; 1621 1622 return len; 1623 } 1624 1625 static struct netdev_queue_attribute bql_stall_thrs_attribute __ro_after_init = 1626 __ATTR(stall_thrs, 0644, bql_show_stall_thrs, bql_set_stall_thrs); 1627 1628 static ssize_t bql_show_stall_max(struct kobject *kobj, struct attribute *attr, 1629 struct netdev_queue *queue, char *buf) 1630 { 1631 return sysfs_emit(buf, "%u\n", READ_ONCE(queue->dql.stall_max)); 1632 } 1633 1634 static ssize_t bql_set_stall_max(struct kobject *kobj, struct attribute *attr, 1635 struct netdev_queue *queue, const char *buf, 1636 size_t len) 1637 { 1638 WRITE_ONCE(queue->dql.stall_max, 0); 1639 return len; 1640 } 1641 1642 static struct netdev_queue_attribute bql_stall_max_attribute __ro_after_init = 1643 __ATTR(stall_max, 0644, bql_show_stall_max, bql_set_stall_max); 1644 1645 static ssize_t bql_show_stall_cnt(struct kobject *kobj, struct attribute *attr, 1646 struct netdev_queue *queue, char *buf) 1647 { 1648 struct dql *dql = &queue->dql; 1649 1650 return sysfs_emit(buf, "%lu\n", dql->stall_cnt); 1651 } 1652 1653 static struct netdev_queue_attribute bql_stall_cnt_attribute __ro_after_init = 1654 __ATTR(stall_cnt, 0444, bql_show_stall_cnt, NULL); 1655 1656 static ssize_t bql_show_inflight(struct kobject *kobj, struct attribute *attr, 1657 struct netdev_queue *queue, char *buf) 1658 { 1659 struct dql *dql = &queue->dql; 1660 1661 return sysfs_emit(buf, "%u\n", dql->num_queued - dql->num_completed); 1662 } 1663 1664 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init = 1665 __ATTR(inflight, 0444, bql_show_inflight, NULL); 1666 1667 #define BQL_ATTR(NAME, FIELD) \ 1668 static ssize_t bql_show_ ## NAME(struct kobject *kobj, \ 1669 struct attribute *attr, \ 1670 struct netdev_queue *queue, char *buf) \ 1671 { \ 1672 return bql_show(buf, queue->dql.FIELD); \ 1673 } \ 1674 \ 1675 static ssize_t bql_set_ ## NAME(struct kobject *kobj, \ 1676 struct attribute *attr, \ 1677 struct netdev_queue *queue, \ 1678 const char *buf, size_t len) \ 1679 { \ 1680 return bql_set(buf, len, &queue->dql.FIELD); \ 1681 } \ 1682 \ 1683 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \ 1684 = __ATTR(NAME, 0644, \ 1685 bql_show_ ## NAME, bql_set_ ## NAME) 1686 1687 BQL_ATTR(limit, limit); 1688 BQL_ATTR(limit_max, max_limit); 1689 BQL_ATTR(limit_min, min_limit); 1690 1691 static struct attribute *dql_attrs[] __ro_after_init = { 1692 &bql_limit_attribute.attr, 1693 &bql_limit_max_attribute.attr, 1694 &bql_limit_min_attribute.attr, 1695 &bql_hold_time_attribute.attr, 1696 &bql_inflight_attribute.attr, 1697 &bql_stall_thrs_attribute.attr, 1698 &bql_stall_cnt_attribute.attr, 1699 &bql_stall_max_attribute.attr, 1700 NULL 1701 }; 1702 1703 static const struct attribute_group dql_group = { 1704 .name = "byte_queue_limits", 1705 .attrs = dql_attrs, 1706 }; 1707 #else 1708 /* Fake declaration, all the code using it should be dead */ 1709 static const struct attribute_group dql_group = {}; 1710 #endif /* CONFIG_BQL */ 1711 1712 #ifdef CONFIG_XPS 1713 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index, 1714 int tc, char *buf, enum xps_map_type type) 1715 { 1716 struct xps_dev_maps *dev_maps; 1717 unsigned long *mask; 1718 unsigned int nr_ids; 1719 int j, len; 1720 1721 rcu_read_lock(); 1722 dev_maps = rcu_dereference(dev->xps_maps[type]); 1723 1724 /* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0 1725 * when dev_maps hasn't been allocated yet, to be backward compatible. 1726 */ 1727 nr_ids = dev_maps ? dev_maps->nr_ids : 1728 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues); 1729 1730 mask = bitmap_zalloc(nr_ids, GFP_NOWAIT); 1731 if (!mask) { 1732 rcu_read_unlock(); 1733 return -ENOMEM; 1734 } 1735 1736 if (!dev_maps || tc >= dev_maps->num_tc) 1737 goto out_no_maps; 1738 1739 for (j = 0; j < nr_ids; j++) { 1740 int i, tci = j * dev_maps->num_tc + tc; 1741 struct xps_map *map; 1742 1743 map = rcu_dereference(dev_maps->attr_map[tci]); 1744 if (!map) 1745 continue; 1746 1747 for (i = map->len; i--;) { 1748 if (map->queues[i] == index) { 1749 __set_bit(j, mask); 1750 break; 1751 } 1752 } 1753 } 1754 out_no_maps: 1755 rcu_read_unlock(); 1756 1757 len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids); 1758 bitmap_free(mask); 1759 1760 return len < PAGE_SIZE ? len : -EINVAL; 1761 } 1762 1763 static ssize_t xps_cpus_show(struct kobject *kobj, struct attribute *attr, 1764 struct netdev_queue *queue, char *buf) 1765 { 1766 struct net_device *dev = queue->dev; 1767 unsigned int index; 1768 int len, tc, ret; 1769 1770 if (!netif_is_multiqueue(dev)) 1771 return -ENOENT; 1772 1773 index = get_netdev_queue_index(queue); 1774 1775 ret = sysfs_rtnl_lock(kobj, attr, queue->dev); 1776 if (ret) 1777 return ret; 1778 1779 /* If queue belongs to subordinate dev use its map */ 1780 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1781 1782 tc = netdev_txq_to_tc(dev, index); 1783 if (tc < 0) { 1784 rtnl_unlock(); 1785 return -EINVAL; 1786 } 1787 1788 /* Increase the net device refcnt to make sure it won't be freed while 1789 * xps_queue_show is running. 1790 */ 1791 dev_hold(dev); 1792 rtnl_unlock(); 1793 1794 len = xps_queue_show(dev, index, tc, buf, XPS_CPUS); 1795 1796 dev_put(dev); 1797 return len; 1798 } 1799 1800 static ssize_t xps_cpus_store(struct kobject *kobj, struct attribute *attr, 1801 struct netdev_queue *queue, const char *buf, 1802 size_t len) 1803 { 1804 struct net_device *dev = queue->dev; 1805 unsigned int index; 1806 cpumask_var_t mask; 1807 int err; 1808 1809 if (!netif_is_multiqueue(dev)) 1810 return -ENOENT; 1811 1812 if (!capable(CAP_NET_ADMIN)) 1813 return -EPERM; 1814 1815 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 1816 return -ENOMEM; 1817 1818 index = get_netdev_queue_index(queue); 1819 1820 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 1821 if (err) { 1822 free_cpumask_var(mask); 1823 return err; 1824 } 1825 1826 err = sysfs_rtnl_lock(kobj, attr, dev); 1827 if (err) { 1828 free_cpumask_var(mask); 1829 return err; 1830 } 1831 1832 err = netif_set_xps_queue(dev, mask, index); 1833 rtnl_unlock(); 1834 1835 free_cpumask_var(mask); 1836 1837 return err ? : len; 1838 } 1839 1840 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init 1841 = __ATTR_RW(xps_cpus); 1842 1843 static ssize_t xps_rxqs_show(struct kobject *kobj, struct attribute *attr, 1844 struct netdev_queue *queue, char *buf) 1845 { 1846 struct net_device *dev = queue->dev; 1847 unsigned int index; 1848 int tc, ret; 1849 1850 index = get_netdev_queue_index(queue); 1851 1852 ret = sysfs_rtnl_lock(kobj, attr, dev); 1853 if (ret) 1854 return ret; 1855 1856 tc = netdev_txq_to_tc(dev, index); 1857 1858 /* Increase the net device refcnt to make sure it won't be freed while 1859 * xps_queue_show is running. 1860 */ 1861 dev_hold(dev); 1862 rtnl_unlock(); 1863 1864 ret = tc >= 0 ? xps_queue_show(dev, index, tc, buf, XPS_RXQS) : -EINVAL; 1865 dev_put(dev); 1866 return ret; 1867 } 1868 1869 static ssize_t xps_rxqs_store(struct kobject *kobj, struct attribute *attr, 1870 struct netdev_queue *queue, const char *buf, 1871 size_t len) 1872 { 1873 struct net_device *dev = queue->dev; 1874 struct net *net = dev_net(dev); 1875 unsigned long *mask; 1876 unsigned int index; 1877 int err; 1878 1879 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1880 return -EPERM; 1881 1882 mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL); 1883 if (!mask) 1884 return -ENOMEM; 1885 1886 index = get_netdev_queue_index(queue); 1887 1888 err = bitmap_parse(buf, len, mask, dev->num_rx_queues); 1889 if (err) { 1890 bitmap_free(mask); 1891 return err; 1892 } 1893 1894 err = sysfs_rtnl_lock(kobj, attr, dev); 1895 if (err) { 1896 bitmap_free(mask); 1897 return err; 1898 } 1899 1900 cpus_read_lock(); 1901 err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS); 1902 cpus_read_unlock(); 1903 1904 rtnl_unlock(); 1905 1906 bitmap_free(mask); 1907 return err ? : len; 1908 } 1909 1910 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init 1911 = __ATTR_RW(xps_rxqs); 1912 #endif /* CONFIG_XPS */ 1913 1914 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = { 1915 &queue_trans_timeout.attr, 1916 &queue_traffic_class.attr, 1917 #ifdef CONFIG_XPS 1918 &xps_cpus_attribute.attr, 1919 &xps_rxqs_attribute.attr, 1920 &queue_tx_maxrate.attr, 1921 #endif 1922 NULL 1923 }; 1924 ATTRIBUTE_GROUPS(netdev_queue_default); 1925 1926 static void netdev_queue_release(struct kobject *kobj) 1927 { 1928 struct netdev_queue *queue = to_netdev_queue(kobj); 1929 1930 memset(kobj, 0, sizeof(*kobj)); 1931 netdev_put(queue->dev, &queue->dev_tracker); 1932 } 1933 1934 static const void *netdev_queue_namespace(const struct kobject *kobj) 1935 { 1936 struct netdev_queue *queue = to_netdev_queue(kobj); 1937 struct device *dev = &queue->dev->dev; 1938 const void *ns = NULL; 1939 1940 if (dev->class && dev->class->namespace) 1941 ns = dev->class->namespace(dev); 1942 1943 return ns; 1944 } 1945 1946 static void netdev_queue_get_ownership(const struct kobject *kobj, 1947 kuid_t *uid, kgid_t *gid) 1948 { 1949 const struct net *net = netdev_queue_namespace(kobj); 1950 1951 net_ns_get_ownership(net, uid, gid); 1952 } 1953 1954 static const struct kobj_type netdev_queue_ktype = { 1955 .sysfs_ops = &netdev_queue_sysfs_ops, 1956 .release = netdev_queue_release, 1957 .namespace = netdev_queue_namespace, 1958 .get_ownership = netdev_queue_get_ownership, 1959 }; 1960 1961 static bool netdev_uses_bql(const struct net_device *dev) 1962 { 1963 if (dev->lltx || (dev->priv_flags & IFF_NO_QUEUE)) 1964 return false; 1965 1966 return IS_ENABLED(CONFIG_BQL); 1967 } 1968 1969 static int netdev_queue_add_kobject(struct net_device *dev, int index) 1970 { 1971 struct netdev_queue *queue = dev->_tx + index; 1972 struct kobject *kobj = &queue->kobj; 1973 int error = 0; 1974 1975 /* Tx queues are cleared in netdev_queue_release to allow later 1976 * re-registration. This is triggered when their kobj refcount is 1977 * dropped. 1978 * 1979 * If a queue is removed while both a read (or write) operation and a 1980 * the re-addition of the same queue are pending (waiting on rntl_lock) 1981 * it might happen that the re-addition will execute before the read, 1982 * making the initial removal to never happen (queue's kobj refcount 1983 * won't drop enough because of the pending read). In such rare case, 1984 * return to allow the removal operation to complete. 1985 */ 1986 if (unlikely(kobj->state_initialized)) { 1987 netdev_warn_once(dev, "Cannot re-add tx queues before their removal completed"); 1988 return -EAGAIN; 1989 } 1990 1991 /* Kobject_put later will trigger netdev_queue_release call 1992 * which decreases dev refcount: Take that reference here 1993 */ 1994 netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL); 1995 1996 kobj->kset = dev->queues_kset; 1997 error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL, 1998 "tx-%u", index); 1999 if (error) 2000 goto err; 2001 2002 queue->groups = netdev_queue_default_groups; 2003 error = sysfs_create_groups(kobj, queue->groups); 2004 if (error) 2005 goto err; 2006 2007 if (netdev_uses_bql(dev)) { 2008 error = sysfs_create_group(kobj, &dql_group); 2009 if (error) 2010 goto err_default_groups; 2011 } 2012 2013 kobject_uevent(kobj, KOBJ_ADD); 2014 return 0; 2015 2016 err_default_groups: 2017 sysfs_remove_groups(kobj, queue->groups); 2018 err: 2019 kobject_put(kobj); 2020 return error; 2021 } 2022 2023 static int tx_queue_change_owner(struct net_device *ndev, int index, 2024 kuid_t kuid, kgid_t kgid) 2025 { 2026 struct netdev_queue *queue = ndev->_tx + index; 2027 struct kobject *kobj = &queue->kobj; 2028 int error; 2029 2030 error = sysfs_change_owner(kobj, kuid, kgid); 2031 if (error) 2032 return error; 2033 2034 if (netdev_uses_bql(ndev)) 2035 error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid); 2036 2037 return error; 2038 } 2039 #endif /* CONFIG_SYSFS */ 2040 2041 int 2042 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 2043 { 2044 #ifdef CONFIG_SYSFS 2045 int i; 2046 int error = 0; 2047 2048 /* Tx queue kobjects are allowed to be updated when a device is being 2049 * unregistered, but solely to remove queues from qdiscs. Any path 2050 * adding queues should be fixed. 2051 */ 2052 WARN(dev->reg_state == NETREG_UNREGISTERING && new_num > old_num, 2053 "New queues can't be registered after device unregistration."); 2054 2055 for (i = old_num; i < new_num; i++) { 2056 error = netdev_queue_add_kobject(dev, i); 2057 if (error) { 2058 new_num = old_num; 2059 break; 2060 } 2061 } 2062 2063 while (--i >= new_num) { 2064 struct netdev_queue *queue = dev->_tx + i; 2065 2066 if (!check_net(dev_net(dev))) 2067 queue->kobj.uevent_suppress = 1; 2068 2069 if (netdev_uses_bql(dev)) 2070 sysfs_remove_group(&queue->kobj, &dql_group); 2071 2072 sysfs_remove_groups(&queue->kobj, queue->groups); 2073 kobject_put(&queue->kobj); 2074 } 2075 2076 return error; 2077 #else 2078 return 0; 2079 #endif /* CONFIG_SYSFS */ 2080 } 2081 2082 static int net_tx_queue_change_owner(struct net_device *dev, int num, 2083 kuid_t kuid, kgid_t kgid) 2084 { 2085 #ifdef CONFIG_SYSFS 2086 int error = 0; 2087 int i; 2088 2089 for (i = 0; i < num; i++) { 2090 error = tx_queue_change_owner(dev, i, kuid, kgid); 2091 if (error) 2092 break; 2093 } 2094 2095 return error; 2096 #else 2097 return 0; 2098 #endif /* CONFIG_SYSFS */ 2099 } 2100 2101 static int register_queue_kobjects(struct net_device *dev) 2102 { 2103 int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0; 2104 2105 #ifdef CONFIG_SYSFS 2106 dev->queues_kset = kset_create_and_add("queues", 2107 NULL, &dev->dev.kobj); 2108 if (!dev->queues_kset) 2109 return -ENOMEM; 2110 real_rx = dev->real_num_rx_queues; 2111 #endif 2112 real_tx = dev->real_num_tx_queues; 2113 2114 error = net_rx_queue_update_kobjects(dev, 0, real_rx); 2115 if (error) 2116 goto error; 2117 rxq = real_rx; 2118 2119 error = netdev_queue_update_kobjects(dev, 0, real_tx); 2120 if (error) 2121 goto error; 2122 txq = real_tx; 2123 2124 return 0; 2125 2126 error: 2127 netdev_queue_update_kobjects(dev, txq, 0); 2128 net_rx_queue_update_kobjects(dev, rxq, 0); 2129 #ifdef CONFIG_SYSFS 2130 kset_unregister(dev->queues_kset); 2131 #endif 2132 return error; 2133 } 2134 2135 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid) 2136 { 2137 int error = 0, real_rx = 0, real_tx = 0; 2138 2139 #ifdef CONFIG_SYSFS 2140 if (ndev->queues_kset) { 2141 error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid); 2142 if (error) 2143 return error; 2144 } 2145 real_rx = ndev->real_num_rx_queues; 2146 #endif 2147 real_tx = ndev->real_num_tx_queues; 2148 2149 error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid); 2150 if (error) 2151 return error; 2152 2153 error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid); 2154 if (error) 2155 return error; 2156 2157 return 0; 2158 } 2159 2160 static void remove_queue_kobjects(struct net_device *dev) 2161 { 2162 int real_rx = 0, real_tx = 0; 2163 2164 #ifdef CONFIG_SYSFS 2165 real_rx = dev->real_num_rx_queues; 2166 #endif 2167 real_tx = dev->real_num_tx_queues; 2168 2169 net_rx_queue_update_kobjects(dev, real_rx, 0); 2170 netdev_queue_update_kobjects(dev, real_tx, 0); 2171 2172 netdev_lock_ops(dev); 2173 dev->real_num_rx_queues = 0; 2174 dev->real_num_tx_queues = 0; 2175 netdev_unlock_ops(dev); 2176 #ifdef CONFIG_SYSFS 2177 kset_unregister(dev->queues_kset); 2178 #endif 2179 } 2180 2181 static bool net_current_may_mount(void) 2182 { 2183 struct net *net = current->nsproxy->net_ns; 2184 2185 return ns_capable(net->user_ns, CAP_SYS_ADMIN); 2186 } 2187 2188 static void *net_grab_current_ns(void) 2189 { 2190 struct net *ns = current->nsproxy->net_ns; 2191 #ifdef CONFIG_NET_NS 2192 if (ns) 2193 refcount_inc(&ns->passive); 2194 #endif 2195 return ns; 2196 } 2197 2198 static const void *net_initial_ns(void) 2199 { 2200 return &init_net; 2201 } 2202 2203 static const void *net_netlink_ns(struct sock *sk) 2204 { 2205 return sock_net(sk); 2206 } 2207 2208 const struct kobj_ns_type_operations net_ns_type_operations = { 2209 .type = KOBJ_NS_TYPE_NET, 2210 .current_may_mount = net_current_may_mount, 2211 .grab_current_ns = net_grab_current_ns, 2212 .netlink_ns = net_netlink_ns, 2213 .initial_ns = net_initial_ns, 2214 .drop_ns = net_drop_ns, 2215 }; 2216 EXPORT_SYMBOL_GPL(net_ns_type_operations); 2217 2218 static int netdev_uevent(const struct device *d, struct kobj_uevent_env *env) 2219 { 2220 const struct net_device *dev = to_net_dev(d); 2221 int retval; 2222 2223 /* pass interface to uevent. */ 2224 retval = add_uevent_var(env, "INTERFACE=%s", dev->name); 2225 if (retval) 2226 goto exit; 2227 2228 /* pass ifindex to uevent. 2229 * ifindex is useful as it won't change (interface name may change) 2230 * and is what RtNetlink uses natively. 2231 */ 2232 retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex); 2233 2234 exit: 2235 return retval; 2236 } 2237 2238 /* 2239 * netdev_release -- destroy and free a dead device. 2240 * Called when last reference to device kobject is gone. 2241 */ 2242 static void netdev_release(struct device *d) 2243 { 2244 struct net_device *dev = to_net_dev(d); 2245 2246 BUG_ON(dev->reg_state != NETREG_RELEASED); 2247 2248 /* no need to wait for rcu grace period: 2249 * device is dead and about to be freed. 2250 */ 2251 kfree(rcu_access_pointer(dev->ifalias)); 2252 kvfree(dev); 2253 } 2254 2255 static const void *net_namespace(const struct device *d) 2256 { 2257 const struct net_device *dev = to_net_dev(d); 2258 2259 return dev_net(dev); 2260 } 2261 2262 static void net_get_ownership(const struct device *d, kuid_t *uid, kgid_t *gid) 2263 { 2264 const struct net_device *dev = to_net_dev(d); 2265 const struct net *net = dev_net(dev); 2266 2267 net_ns_get_ownership(net, uid, gid); 2268 } 2269 2270 static const struct class net_class = { 2271 .name = "net", 2272 .dev_release = netdev_release, 2273 .dev_groups = net_class_groups, 2274 .dev_uevent = netdev_uevent, 2275 .ns_type = &net_ns_type_operations, 2276 .namespace = net_namespace, 2277 .get_ownership = net_get_ownership, 2278 }; 2279 2280 #ifdef CONFIG_OF 2281 static int of_dev_node_match(struct device *dev, const void *data) 2282 { 2283 for (; dev; dev = dev->parent) { 2284 if (dev->of_node == data) 2285 return 1; 2286 } 2287 2288 return 0; 2289 } 2290 2291 /* 2292 * of_find_net_device_by_node - lookup the net device for the device node 2293 * @np: OF device node 2294 * 2295 * Looks up the net_device structure corresponding with the device node. 2296 * If successful, returns a pointer to the net_device with the embedded 2297 * struct device refcount incremented by one, or NULL on failure. The 2298 * refcount must be dropped when done with the net_device. 2299 */ 2300 struct net_device *of_find_net_device_by_node(struct device_node *np) 2301 { 2302 struct device *dev; 2303 2304 dev = class_find_device(&net_class, NULL, np, of_dev_node_match); 2305 if (!dev) 2306 return NULL; 2307 2308 return to_net_dev(dev); 2309 } 2310 EXPORT_SYMBOL(of_find_net_device_by_node); 2311 #endif 2312 2313 /* Delete sysfs entries but hold kobject reference until after all 2314 * netdev references are gone. 2315 */ 2316 void netdev_unregister_kobject(struct net_device *ndev) 2317 { 2318 struct device *dev = &ndev->dev; 2319 2320 if (!check_net(dev_net(ndev))) 2321 dev_set_uevent_suppress(dev, 1); 2322 2323 kobject_get(&dev->kobj); 2324 2325 remove_queue_kobjects(ndev); 2326 2327 pm_runtime_set_memalloc_noio(dev, false); 2328 2329 device_del(dev); 2330 } 2331 2332 /* Create sysfs entries for network device. */ 2333 int netdev_register_kobject(struct net_device *ndev) 2334 { 2335 struct device *dev = &ndev->dev; 2336 const struct attribute_group **groups = ndev->sysfs_groups; 2337 int error = 0; 2338 2339 device_initialize(dev); 2340 dev->class = &net_class; 2341 dev->platform_data = ndev; 2342 dev->groups = groups; 2343 2344 dev_set_name(dev, "%s", ndev->name); 2345 2346 #ifdef CONFIG_SYSFS 2347 /* Allow for a device specific group */ 2348 if (*groups) 2349 groups++; 2350 2351 *groups++ = &netstat_group; 2352 *groups++ = &netdev_phys_group; 2353 2354 if (wireless_group_needed(ndev)) 2355 *groups++ = &wireless_group; 2356 #endif /* CONFIG_SYSFS */ 2357 2358 error = device_add(dev); 2359 if (error) 2360 return error; 2361 2362 error = register_queue_kobjects(ndev); 2363 if (error) { 2364 device_del(dev); 2365 return error; 2366 } 2367 2368 pm_runtime_set_memalloc_noio(dev, true); 2369 2370 return error; 2371 } 2372 2373 /* Change owner for sysfs entries when moving network devices across network 2374 * namespaces owned by different user namespaces. 2375 */ 2376 int netdev_change_owner(struct net_device *ndev, const struct net *net_old, 2377 const struct net *net_new) 2378 { 2379 kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID; 2380 kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID; 2381 struct device *dev = &ndev->dev; 2382 int error; 2383 2384 net_ns_get_ownership(net_old, &old_uid, &old_gid); 2385 net_ns_get_ownership(net_new, &new_uid, &new_gid); 2386 2387 /* The network namespace was changed but the owning user namespace is 2388 * identical so there's no need to change the owner of sysfs entries. 2389 */ 2390 if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid)) 2391 return 0; 2392 2393 error = device_change_owner(dev, new_uid, new_gid); 2394 if (error) 2395 return error; 2396 2397 error = queue_change_owner(ndev, new_uid, new_gid); 2398 if (error) 2399 return error; 2400 2401 return 0; 2402 } 2403 2404 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 2405 const void *ns) 2406 { 2407 return class_create_file_ns(&net_class, class_attr, ns); 2408 } 2409 EXPORT_SYMBOL(netdev_class_create_file_ns); 2410 2411 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 2412 const void *ns) 2413 { 2414 class_remove_file_ns(&net_class, class_attr, ns); 2415 } 2416 EXPORT_SYMBOL(netdev_class_remove_file_ns); 2417 2418 int __init netdev_kobject_init(void) 2419 { 2420 kobj_ns_type_register(&net_ns_type_operations); 2421 return class_register(&net_class); 2422 } 2423