1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2003 Jana Saout <jana@saout.de> 4 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org> 5 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved. 6 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com> 7 * 8 * This file is released under the GPL. 9 */ 10 11 #include <linux/completion.h> 12 #include <linux/err.h> 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/key.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-integrity.h> 20 #include <linux/mempool.h> 21 #include <linux/slab.h> 22 #include <linux/crypto.h> 23 #include <linux/workqueue.h> 24 #include <linux/kthread.h> 25 #include <linux/backing-dev.h> 26 #include <linux/atomic.h> 27 #include <linux/scatterlist.h> 28 #include <linux/rbtree.h> 29 #include <linux/ctype.h> 30 #include <asm/page.h> 31 #include <linux/unaligned.h> 32 #include <crypto/hash.h> 33 #include <crypto/md5.h> 34 #include <crypto/skcipher.h> 35 #include <crypto/aead.h> 36 #include <crypto/authenc.h> 37 #include <crypto/utils.h> 38 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */ 39 #include <linux/key-type.h> 40 #include <keys/user-type.h> 41 #include <keys/encrypted-type.h> 42 #include <keys/trusted-type.h> 43 44 #include <linux/device-mapper.h> 45 46 #include "dm-audit.h" 47 48 #define DM_MSG_PREFIX "crypt" 49 50 static DEFINE_IDA(workqueue_ida); 51 52 /* 53 * context holding the current state of a multi-part conversion 54 */ 55 struct convert_context { 56 struct completion restart; 57 struct bio *bio_in; 58 struct bvec_iter iter_in; 59 struct bio *bio_out; 60 struct bvec_iter iter_out; 61 atomic_t cc_pending; 62 unsigned int tag_offset; 63 u64 cc_sector; 64 union { 65 struct skcipher_request *req; 66 struct aead_request *req_aead; 67 } r; 68 bool aead_recheck; 69 bool aead_failed; 70 71 }; 72 73 /* 74 * per bio private data 75 */ 76 struct dm_crypt_io { 77 struct crypt_config *cc; 78 struct bio *base_bio; 79 u8 *integrity_metadata; 80 bool integrity_metadata_from_pool:1; 81 82 struct work_struct work; 83 84 struct convert_context ctx; 85 86 atomic_t io_pending; 87 blk_status_t error; 88 sector_t sector; 89 90 struct bvec_iter saved_bi_iter; 91 92 struct rb_node rb_node; 93 } CRYPTO_MINALIGN_ATTR; 94 95 struct dm_crypt_request { 96 struct convert_context *ctx; 97 struct scatterlist sg_in[4]; 98 struct scatterlist sg_out[4]; 99 u64 iv_sector; 100 }; 101 102 struct crypt_config; 103 104 struct crypt_iv_operations { 105 int (*ctr)(struct crypt_config *cc, struct dm_target *ti, 106 const char *opts); 107 void (*dtr)(struct crypt_config *cc); 108 int (*init)(struct crypt_config *cc); 109 int (*wipe)(struct crypt_config *cc); 110 int (*generator)(struct crypt_config *cc, u8 *iv, 111 struct dm_crypt_request *dmreq); 112 int (*post)(struct crypt_config *cc, u8 *iv, 113 struct dm_crypt_request *dmreq); 114 }; 115 116 struct iv_benbi_private { 117 int shift; 118 }; 119 120 #define LMK_SEED_SIZE 64 /* hash + 0 */ 121 struct iv_lmk_private { 122 struct crypto_shash *hash_tfm; 123 u8 *seed; 124 }; 125 126 #define TCW_WHITENING_SIZE 16 127 struct iv_tcw_private { 128 struct crypto_shash *crc32_tfm; 129 u8 *iv_seed; 130 u8 *whitening; 131 }; 132 133 #define ELEPHANT_MAX_KEY_SIZE 32 134 struct iv_elephant_private { 135 struct crypto_skcipher *tfm; 136 }; 137 138 /* 139 * Crypt: maps a linear range of a block device 140 * and encrypts / decrypts at the same time. 141 */ 142 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID, 143 DM_CRYPT_SAME_CPU, DM_CRYPT_HIGH_PRIORITY, 144 DM_CRYPT_NO_OFFLOAD, DM_CRYPT_NO_READ_WORKQUEUE, 145 DM_CRYPT_NO_WRITE_WORKQUEUE, DM_CRYPT_WRITE_INLINE }; 146 147 enum cipher_flags { 148 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cipher */ 149 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */ 150 CRYPT_ENCRYPT_PREPROCESS, /* Must preprocess data for encryption (elephant) */ 151 CRYPT_KEY_MAC_SIZE_SET, /* The integrity_key_size option was used */ 152 }; 153 154 /* 155 * The fields in here must be read only after initialization. 156 */ 157 struct crypt_config { 158 struct dm_dev *dev; 159 sector_t start; 160 161 struct percpu_counter n_allocated_pages; 162 163 struct workqueue_struct *io_queue; 164 struct workqueue_struct *crypt_queue; 165 166 spinlock_t write_thread_lock; 167 struct task_struct *write_thread; 168 struct rb_root write_tree; 169 170 char *cipher_string; 171 char *cipher_auth; 172 char *key_string; 173 174 const struct crypt_iv_operations *iv_gen_ops; 175 union { 176 struct iv_benbi_private benbi; 177 struct iv_lmk_private lmk; 178 struct iv_tcw_private tcw; 179 struct iv_elephant_private elephant; 180 } iv_gen_private; 181 u64 iv_offset; 182 unsigned int iv_size; 183 unsigned short sector_size; 184 unsigned char sector_shift; 185 186 union { 187 struct crypto_skcipher **tfms; 188 struct crypto_aead **tfms_aead; 189 } cipher_tfm; 190 unsigned int tfms_count; 191 int workqueue_id; 192 unsigned long cipher_flags; 193 194 /* 195 * Layout of each crypto request: 196 * 197 * struct skcipher_request 198 * context 199 * padding 200 * struct dm_crypt_request 201 * padding 202 * IV 203 * 204 * The padding is added so that dm_crypt_request and the IV are 205 * correctly aligned. 206 */ 207 unsigned int dmreq_start; 208 209 unsigned int per_bio_data_size; 210 211 unsigned long flags; 212 unsigned int key_size; 213 unsigned int key_parts; /* independent parts in key buffer */ 214 unsigned int key_extra_size; /* additional keys length */ 215 unsigned int key_mac_size; /* MAC key size for authenc(...) */ 216 217 unsigned int integrity_tag_size; 218 unsigned int integrity_iv_size; 219 unsigned int used_tag_size; 220 unsigned int tuple_size; 221 222 /* 223 * pool for per bio private data, crypto requests, 224 * encryption requeusts/buffer pages and integrity tags 225 */ 226 unsigned int tag_pool_max_sectors; 227 mempool_t tag_pool; 228 mempool_t req_pool; 229 mempool_t page_pool; 230 231 struct bio_set bs; 232 struct mutex bio_alloc_lock; 233 234 u8 *authenc_key; /* space for keys in authenc() format (if used) */ 235 u8 key[] __counted_by(key_size); 236 }; 237 238 #define MIN_IOS 64 239 #define MAX_TAG_SIZE 480 240 #define POOL_ENTRY_SIZE 512 241 242 static DEFINE_SPINLOCK(dm_crypt_clients_lock); 243 static unsigned int dm_crypt_clients_n; 244 static volatile unsigned long dm_crypt_pages_per_client; 245 #define DM_CRYPT_MEMORY_PERCENT 2 246 #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_VECS * 16) 247 #define DM_CRYPT_DEFAULT_MAX_READ_SIZE 131072 248 #define DM_CRYPT_DEFAULT_MAX_WRITE_SIZE 131072 249 250 static unsigned int max_read_size = 0; 251 module_param(max_read_size, uint, 0644); 252 MODULE_PARM_DESC(max_read_size, "Maximum size of a read request"); 253 static unsigned int max_write_size = 0; 254 module_param(max_write_size, uint, 0644); 255 MODULE_PARM_DESC(max_write_size, "Maximum size of a write request"); 256 static unsigned get_max_request_size(struct crypt_config *cc, bool wrt) 257 { 258 unsigned val, sector_align; 259 val = !wrt ? READ_ONCE(max_read_size) : READ_ONCE(max_write_size); 260 if (likely(!val)) 261 val = !wrt ? DM_CRYPT_DEFAULT_MAX_READ_SIZE : DM_CRYPT_DEFAULT_MAX_WRITE_SIZE; 262 if (wrt || cc->used_tag_size) { 263 if (unlikely(val > BIO_MAX_VECS << PAGE_SHIFT)) 264 val = BIO_MAX_VECS << PAGE_SHIFT; 265 } 266 sector_align = max(bdev_logical_block_size(cc->dev->bdev), (unsigned)cc->sector_size); 267 val = round_down(val, sector_align); 268 if (unlikely(!val)) 269 val = sector_align; 270 return val >> SECTOR_SHIFT; 271 } 272 273 static void crypt_endio(struct bio *clone); 274 static void kcryptd_queue_crypt(struct dm_crypt_io *io); 275 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, 276 struct scatterlist *sg); 277 278 static bool crypt_integrity_aead(struct crypt_config *cc); 279 280 /* 281 * Use this to access cipher attributes that are independent of the key. 282 */ 283 static struct crypto_skcipher *any_tfm(struct crypt_config *cc) 284 { 285 return cc->cipher_tfm.tfms[0]; 286 } 287 288 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc) 289 { 290 return cc->cipher_tfm.tfms_aead[0]; 291 } 292 293 /* 294 * Different IV generation algorithms: 295 * 296 * plain: the initial vector is the 32-bit little-endian version of the sector 297 * number, padded with zeros if necessary. 298 * 299 * plain64: the initial vector is the 64-bit little-endian version of the sector 300 * number, padded with zeros if necessary. 301 * 302 * plain64be: the initial vector is the 64-bit big-endian version of the sector 303 * number, padded with zeros if necessary. 304 * 305 * essiv: "encrypted sector|salt initial vector", the sector number is 306 * encrypted with the bulk cipher using a salt as key. The salt 307 * should be derived from the bulk cipher's key via hashing. 308 * 309 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1 310 * (needed for LRW-32-AES and possible other narrow block modes) 311 * 312 * null: the initial vector is always zero. Provides compatibility with 313 * obsolete loop_fish2 devices. Do not use for new devices. 314 * 315 * lmk: Compatible implementation of the block chaining mode used 316 * by the Loop-AES block device encryption system 317 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/ 318 * It operates on full 512 byte sectors and uses CBC 319 * with an IV derived from the sector number, the data and 320 * optionally extra IV seed. 321 * This means that after decryption the first block 322 * of sector must be tweaked according to decrypted data. 323 * Loop-AES can use three encryption schemes: 324 * version 1: is plain aes-cbc mode 325 * version 2: uses 64 multikey scheme with lmk IV generator 326 * version 3: the same as version 2 with additional IV seed 327 * (it uses 65 keys, last key is used as IV seed) 328 * 329 * tcw: Compatible implementation of the block chaining mode used 330 * by the TrueCrypt device encryption system (prior to version 4.1). 331 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat 332 * It operates on full 512 byte sectors and uses CBC 333 * with an IV derived from initial key and the sector number. 334 * In addition, whitening value is applied on every sector, whitening 335 * is calculated from initial key, sector number and mixed using CRC32. 336 * Note that this encryption scheme is vulnerable to watermarking attacks 337 * and should be used for old compatible containers access only. 338 * 339 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode) 340 * The IV is encrypted little-endian byte-offset (with the same key 341 * and cipher as the volume). 342 * 343 * elephant: The extended version of eboiv with additional Elephant diffuser 344 * used with Bitlocker CBC mode. 345 * This mode was used in older Windows systems 346 * https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf 347 */ 348 349 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, 350 struct dm_crypt_request *dmreq) 351 { 352 memset(iv, 0, cc->iv_size); 353 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff); 354 355 return 0; 356 } 357 358 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv, 359 struct dm_crypt_request *dmreq) 360 { 361 memset(iv, 0, cc->iv_size); 362 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 363 364 return 0; 365 } 366 367 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv, 368 struct dm_crypt_request *dmreq) 369 { 370 memset(iv, 0, cc->iv_size); 371 /* iv_size is at least of size u64; usually it is 16 bytes */ 372 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector); 373 374 return 0; 375 } 376 377 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, 378 struct dm_crypt_request *dmreq) 379 { 380 /* 381 * ESSIV encryption of the IV is now handled by the crypto API, 382 * so just pass the plain sector number here. 383 */ 384 memset(iv, 0, cc->iv_size); 385 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 386 387 return 0; 388 } 389 390 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti, 391 const char *opts) 392 { 393 unsigned int bs; 394 int log; 395 396 if (crypt_integrity_aead(cc)) 397 bs = crypto_aead_blocksize(any_tfm_aead(cc)); 398 else 399 bs = crypto_skcipher_blocksize(any_tfm(cc)); 400 log = ilog2(bs); 401 402 /* 403 * We need to calculate how far we must shift the sector count 404 * to get the cipher block count, we use this shift in _gen. 405 */ 406 if (1 << log != bs) { 407 ti->error = "cypher blocksize is not a power of 2"; 408 return -EINVAL; 409 } 410 411 if (log > 9) { 412 ti->error = "cypher blocksize is > 512"; 413 return -EINVAL; 414 } 415 416 cc->iv_gen_private.benbi.shift = 9 - log; 417 418 return 0; 419 } 420 421 static void crypt_iv_benbi_dtr(struct crypt_config *cc) 422 { 423 } 424 425 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, 426 struct dm_crypt_request *dmreq) 427 { 428 __be64 val; 429 430 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */ 431 432 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1); 433 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64))); 434 435 return 0; 436 } 437 438 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, 439 struct dm_crypt_request *dmreq) 440 { 441 memset(iv, 0, cc->iv_size); 442 443 return 0; 444 } 445 446 static void crypt_iv_lmk_dtr(struct crypt_config *cc) 447 { 448 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 449 450 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm)) 451 crypto_free_shash(lmk->hash_tfm); 452 lmk->hash_tfm = NULL; 453 454 kfree_sensitive(lmk->seed); 455 lmk->seed = NULL; 456 } 457 458 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti, 459 const char *opts) 460 { 461 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 462 463 if (cc->sector_size != (1 << SECTOR_SHIFT)) { 464 ti->error = "Unsupported sector size for LMK"; 465 return -EINVAL; 466 } 467 468 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 469 CRYPTO_ALG_ALLOCATES_MEMORY); 470 if (IS_ERR(lmk->hash_tfm)) { 471 ti->error = "Error initializing LMK hash"; 472 return PTR_ERR(lmk->hash_tfm); 473 } 474 475 /* No seed in LMK version 2 */ 476 if (cc->key_parts == cc->tfms_count) { 477 lmk->seed = NULL; 478 return 0; 479 } 480 481 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL); 482 if (!lmk->seed) { 483 crypt_iv_lmk_dtr(cc); 484 ti->error = "Error kmallocing seed storage in LMK"; 485 return -ENOMEM; 486 } 487 488 return 0; 489 } 490 491 static int crypt_iv_lmk_init(struct crypt_config *cc) 492 { 493 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 494 int subkey_size = cc->key_size / cc->key_parts; 495 496 /* LMK seed is on the position of LMK_KEYS + 1 key */ 497 if (lmk->seed) 498 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size), 499 crypto_shash_digestsize(lmk->hash_tfm)); 500 501 return 0; 502 } 503 504 static int crypt_iv_lmk_wipe(struct crypt_config *cc) 505 { 506 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 507 508 if (lmk->seed) 509 memset(lmk->seed, 0, LMK_SEED_SIZE); 510 511 return 0; 512 } 513 514 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv, 515 struct dm_crypt_request *dmreq, 516 u8 *data) 517 { 518 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 519 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm); 520 struct md5_state md5state; 521 __le32 buf[4]; 522 int i, r; 523 524 desc->tfm = lmk->hash_tfm; 525 526 r = crypto_shash_init(desc); 527 if (r) 528 return r; 529 530 if (lmk->seed) { 531 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE); 532 if (r) 533 return r; 534 } 535 536 /* Sector is always 512B, block size 16, add data of blocks 1-31 */ 537 r = crypto_shash_update(desc, data + 16, 16 * 31); 538 if (r) 539 return r; 540 541 /* Sector is cropped to 56 bits here */ 542 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF); 543 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000); 544 buf[2] = cpu_to_le32(4024); 545 buf[3] = 0; 546 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf)); 547 if (r) 548 return r; 549 550 /* No MD5 padding here */ 551 r = crypto_shash_export(desc, &md5state); 552 if (r) 553 return r; 554 555 for (i = 0; i < MD5_HASH_WORDS; i++) 556 __cpu_to_le32s(&md5state.hash[i]); 557 memcpy(iv, &md5state.hash, cc->iv_size); 558 559 return 0; 560 } 561 562 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv, 563 struct dm_crypt_request *dmreq) 564 { 565 struct scatterlist *sg; 566 u8 *src; 567 int r = 0; 568 569 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 570 sg = crypt_get_sg_data(cc, dmreq->sg_in); 571 src = kmap_local_page(sg_page(sg)); 572 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset); 573 kunmap_local(src); 574 } else 575 memset(iv, 0, cc->iv_size); 576 577 return r; 578 } 579 580 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv, 581 struct dm_crypt_request *dmreq) 582 { 583 struct scatterlist *sg; 584 u8 *dst; 585 int r; 586 587 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) 588 return 0; 589 590 sg = crypt_get_sg_data(cc, dmreq->sg_out); 591 dst = kmap_local_page(sg_page(sg)); 592 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset); 593 594 /* Tweak the first block of plaintext sector */ 595 if (!r) 596 crypto_xor(dst + sg->offset, iv, cc->iv_size); 597 598 kunmap_local(dst); 599 return r; 600 } 601 602 static void crypt_iv_tcw_dtr(struct crypt_config *cc) 603 { 604 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 605 606 kfree_sensitive(tcw->iv_seed); 607 tcw->iv_seed = NULL; 608 kfree_sensitive(tcw->whitening); 609 tcw->whitening = NULL; 610 611 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm)) 612 crypto_free_shash(tcw->crc32_tfm); 613 tcw->crc32_tfm = NULL; 614 } 615 616 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti, 617 const char *opts) 618 { 619 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 620 621 if (cc->sector_size != (1 << SECTOR_SHIFT)) { 622 ti->error = "Unsupported sector size for TCW"; 623 return -EINVAL; 624 } 625 626 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) { 627 ti->error = "Wrong key size for TCW"; 628 return -EINVAL; 629 } 630 631 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 632 CRYPTO_ALG_ALLOCATES_MEMORY); 633 if (IS_ERR(tcw->crc32_tfm)) { 634 ti->error = "Error initializing CRC32 in TCW"; 635 return PTR_ERR(tcw->crc32_tfm); 636 } 637 638 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL); 639 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL); 640 if (!tcw->iv_seed || !tcw->whitening) { 641 crypt_iv_tcw_dtr(cc); 642 ti->error = "Error allocating seed storage in TCW"; 643 return -ENOMEM; 644 } 645 646 return 0; 647 } 648 649 static int crypt_iv_tcw_init(struct crypt_config *cc) 650 { 651 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 652 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE; 653 654 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size); 655 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size], 656 TCW_WHITENING_SIZE); 657 658 return 0; 659 } 660 661 static int crypt_iv_tcw_wipe(struct crypt_config *cc) 662 { 663 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 664 665 memset(tcw->iv_seed, 0, cc->iv_size); 666 memset(tcw->whitening, 0, TCW_WHITENING_SIZE); 667 668 return 0; 669 } 670 671 static int crypt_iv_tcw_whitening(struct crypt_config *cc, 672 struct dm_crypt_request *dmreq, 673 u8 *data) 674 { 675 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 676 __le64 sector = cpu_to_le64(dmreq->iv_sector); 677 u8 buf[TCW_WHITENING_SIZE]; 678 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm); 679 int i, r; 680 681 /* xor whitening with sector number */ 682 crypto_xor_cpy(buf, tcw->whitening, (u8 *)§or, 8); 683 crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)§or, 8); 684 685 /* calculate crc32 for every 32bit part and xor it */ 686 desc->tfm = tcw->crc32_tfm; 687 for (i = 0; i < 4; i++) { 688 r = crypto_shash_digest(desc, &buf[i * 4], 4, &buf[i * 4]); 689 if (r) 690 goto out; 691 } 692 crypto_xor(&buf[0], &buf[12], 4); 693 crypto_xor(&buf[4], &buf[8], 4); 694 695 /* apply whitening (8 bytes) to whole sector */ 696 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++) 697 crypto_xor(data + i * 8, buf, 8); 698 out: 699 memzero_explicit(buf, sizeof(buf)); 700 return r; 701 } 702 703 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv, 704 struct dm_crypt_request *dmreq) 705 { 706 struct scatterlist *sg; 707 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 708 __le64 sector = cpu_to_le64(dmreq->iv_sector); 709 u8 *src; 710 int r = 0; 711 712 /* Remove whitening from ciphertext */ 713 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { 714 sg = crypt_get_sg_data(cc, dmreq->sg_in); 715 src = kmap_local_page(sg_page(sg)); 716 r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset); 717 kunmap_local(src); 718 } 719 720 /* Calculate IV */ 721 crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)§or, 8); 722 if (cc->iv_size > 8) 723 crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)§or, 724 cc->iv_size - 8); 725 726 return r; 727 } 728 729 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv, 730 struct dm_crypt_request *dmreq) 731 { 732 struct scatterlist *sg; 733 u8 *dst; 734 int r; 735 736 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) 737 return 0; 738 739 /* Apply whitening on ciphertext */ 740 sg = crypt_get_sg_data(cc, dmreq->sg_out); 741 dst = kmap_local_page(sg_page(sg)); 742 r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset); 743 kunmap_local(dst); 744 745 return r; 746 } 747 748 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv, 749 struct dm_crypt_request *dmreq) 750 { 751 /* Used only for writes, there must be an additional space to store IV */ 752 get_random_bytes(iv, cc->iv_size); 753 return 0; 754 } 755 756 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti, 757 const char *opts) 758 { 759 if (crypt_integrity_aead(cc)) { 760 ti->error = "AEAD transforms not supported for EBOIV"; 761 return -EINVAL; 762 } 763 764 if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) { 765 ti->error = "Block size of EBOIV cipher does not match IV size of block cipher"; 766 return -EINVAL; 767 } 768 769 return 0; 770 } 771 772 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv, 773 struct dm_crypt_request *dmreq) 774 { 775 struct crypto_skcipher *tfm = any_tfm(cc); 776 struct skcipher_request *req; 777 struct scatterlist src, dst; 778 DECLARE_CRYPTO_WAIT(wait); 779 unsigned int reqsize; 780 int err; 781 u8 *buf; 782 783 reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm); 784 reqsize = ALIGN(reqsize, __alignof__(__le64)); 785 786 req = kmalloc(reqsize + cc->iv_size, GFP_NOIO); 787 if (!req) 788 return -ENOMEM; 789 790 skcipher_request_set_tfm(req, tfm); 791 792 buf = (u8 *)req + reqsize; 793 memset(buf, 0, cc->iv_size); 794 *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size); 795 796 sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size); 797 sg_init_one(&dst, iv, cc->iv_size); 798 skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf); 799 skcipher_request_set_callback(req, 0, crypto_req_done, &wait); 800 err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 801 kfree_sensitive(req); 802 803 return err; 804 } 805 806 static void crypt_iv_elephant_dtr(struct crypt_config *cc) 807 { 808 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 809 810 crypto_free_skcipher(elephant->tfm); 811 elephant->tfm = NULL; 812 } 813 814 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti, 815 const char *opts) 816 { 817 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 818 int r; 819 820 elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0, 821 CRYPTO_ALG_ALLOCATES_MEMORY); 822 if (IS_ERR(elephant->tfm)) { 823 r = PTR_ERR(elephant->tfm); 824 elephant->tfm = NULL; 825 return r; 826 } 827 828 r = crypt_iv_eboiv_ctr(cc, ti, NULL); 829 if (r) 830 crypt_iv_elephant_dtr(cc); 831 return r; 832 } 833 834 static void diffuser_disk_to_cpu(u32 *d, size_t n) 835 { 836 #ifndef __LITTLE_ENDIAN 837 int i; 838 839 for (i = 0; i < n; i++) 840 d[i] = le32_to_cpu((__le32)d[i]); 841 #endif 842 } 843 844 static void diffuser_cpu_to_disk(__le32 *d, size_t n) 845 { 846 #ifndef __LITTLE_ENDIAN 847 int i; 848 849 for (i = 0; i < n; i++) 850 d[i] = cpu_to_le32((u32)d[i]); 851 #endif 852 } 853 854 static void diffuser_a_decrypt(u32 *d, size_t n) 855 { 856 int i, i1, i2, i3; 857 858 for (i = 0; i < 5; i++) { 859 i1 = 0; 860 i2 = n - 2; 861 i3 = n - 5; 862 863 while (i1 < (n - 1)) { 864 d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23); 865 i1++; i2++; i3++; 866 867 if (i3 >= n) 868 i3 -= n; 869 870 d[i1] += d[i2] ^ d[i3]; 871 i1++; i2++; i3++; 872 873 if (i2 >= n) 874 i2 -= n; 875 876 d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19); 877 i1++; i2++; i3++; 878 879 d[i1] += d[i2] ^ d[i3]; 880 i1++; i2++; i3++; 881 } 882 } 883 } 884 885 static void diffuser_a_encrypt(u32 *d, size_t n) 886 { 887 int i, i1, i2, i3; 888 889 for (i = 0; i < 5; i++) { 890 i1 = n - 1; 891 i2 = n - 2 - 1; 892 i3 = n - 5 - 1; 893 894 while (i1 > 0) { 895 d[i1] -= d[i2] ^ d[i3]; 896 i1--; i2--; i3--; 897 898 d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19); 899 i1--; i2--; i3--; 900 901 if (i2 < 0) 902 i2 += n; 903 904 d[i1] -= d[i2] ^ d[i3]; 905 i1--; i2--; i3--; 906 907 if (i3 < 0) 908 i3 += n; 909 910 d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23); 911 i1--; i2--; i3--; 912 } 913 } 914 } 915 916 static void diffuser_b_decrypt(u32 *d, size_t n) 917 { 918 int i, i1, i2, i3; 919 920 for (i = 0; i < 3; i++) { 921 i1 = 0; 922 i2 = 2; 923 i3 = 5; 924 925 while (i1 < (n - 1)) { 926 d[i1] += d[i2] ^ d[i3]; 927 i1++; i2++; i3++; 928 929 d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22); 930 i1++; i2++; i3++; 931 932 if (i2 >= n) 933 i2 -= n; 934 935 d[i1] += d[i2] ^ d[i3]; 936 i1++; i2++; i3++; 937 938 if (i3 >= n) 939 i3 -= n; 940 941 d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7); 942 i1++; i2++; i3++; 943 } 944 } 945 } 946 947 static void diffuser_b_encrypt(u32 *d, size_t n) 948 { 949 int i, i1, i2, i3; 950 951 for (i = 0; i < 3; i++) { 952 i1 = n - 1; 953 i2 = 2 - 1; 954 i3 = 5 - 1; 955 956 while (i1 > 0) { 957 d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7); 958 i1--; i2--; i3--; 959 960 if (i3 < 0) 961 i3 += n; 962 963 d[i1] -= d[i2] ^ d[i3]; 964 i1--; i2--; i3--; 965 966 if (i2 < 0) 967 i2 += n; 968 969 d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22); 970 i1--; i2--; i3--; 971 972 d[i1] -= d[i2] ^ d[i3]; 973 i1--; i2--; i3--; 974 } 975 } 976 } 977 978 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq) 979 { 980 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 981 u8 *es, *ks, *data, *data2, *data_offset; 982 struct skcipher_request *req; 983 struct scatterlist *sg, *sg2, src, dst; 984 DECLARE_CRYPTO_WAIT(wait); 985 int i, r; 986 987 req = skcipher_request_alloc(elephant->tfm, GFP_NOIO); 988 es = kzalloc(16, GFP_NOIO); /* Key for AES */ 989 ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */ 990 991 if (!req || !es || !ks) { 992 r = -ENOMEM; 993 goto out; 994 } 995 996 *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size); 997 998 /* E(Ks, e(s)) */ 999 sg_init_one(&src, es, 16); 1000 sg_init_one(&dst, ks, 16); 1001 skcipher_request_set_crypt(req, &src, &dst, 16, NULL); 1002 skcipher_request_set_callback(req, 0, crypto_req_done, &wait); 1003 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 1004 if (r) 1005 goto out; 1006 1007 /* E(Ks, e'(s)) */ 1008 es[15] = 0x80; 1009 sg_init_one(&dst, &ks[16], 16); 1010 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 1011 if (r) 1012 goto out; 1013 1014 sg = crypt_get_sg_data(cc, dmreq->sg_out); 1015 data = kmap_local_page(sg_page(sg)); 1016 data_offset = data + sg->offset; 1017 1018 /* Cannot modify original bio, copy to sg_out and apply Elephant to it */ 1019 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 1020 sg2 = crypt_get_sg_data(cc, dmreq->sg_in); 1021 data2 = kmap_local_page(sg_page(sg2)); 1022 memcpy(data_offset, data2 + sg2->offset, cc->sector_size); 1023 kunmap_local(data2); 1024 } 1025 1026 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { 1027 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1028 diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1029 diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1030 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32)); 1031 } 1032 1033 for (i = 0; i < (cc->sector_size / 32); i++) 1034 crypto_xor(data_offset + i * 32, ks, 32); 1035 1036 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 1037 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1038 diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1039 diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1040 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32)); 1041 } 1042 1043 kunmap_local(data); 1044 out: 1045 kfree_sensitive(ks); 1046 kfree_sensitive(es); 1047 skcipher_request_free(req); 1048 return r; 1049 } 1050 1051 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv, 1052 struct dm_crypt_request *dmreq) 1053 { 1054 int r; 1055 1056 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 1057 r = crypt_iv_elephant(cc, dmreq); 1058 if (r) 1059 return r; 1060 } 1061 1062 return crypt_iv_eboiv_gen(cc, iv, dmreq); 1063 } 1064 1065 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv, 1066 struct dm_crypt_request *dmreq) 1067 { 1068 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) 1069 return crypt_iv_elephant(cc, dmreq); 1070 1071 return 0; 1072 } 1073 1074 static int crypt_iv_elephant_init(struct crypt_config *cc) 1075 { 1076 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 1077 int key_offset = cc->key_size - cc->key_extra_size; 1078 1079 return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size); 1080 } 1081 1082 static int crypt_iv_elephant_wipe(struct crypt_config *cc) 1083 { 1084 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 1085 u8 key[ELEPHANT_MAX_KEY_SIZE]; 1086 1087 memset(key, 0, cc->key_extra_size); 1088 return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size); 1089 } 1090 1091 static const struct crypt_iv_operations crypt_iv_plain_ops = { 1092 .generator = crypt_iv_plain_gen 1093 }; 1094 1095 static const struct crypt_iv_operations crypt_iv_plain64_ops = { 1096 .generator = crypt_iv_plain64_gen 1097 }; 1098 1099 static const struct crypt_iv_operations crypt_iv_plain64be_ops = { 1100 .generator = crypt_iv_plain64be_gen 1101 }; 1102 1103 static const struct crypt_iv_operations crypt_iv_essiv_ops = { 1104 .generator = crypt_iv_essiv_gen 1105 }; 1106 1107 static const struct crypt_iv_operations crypt_iv_benbi_ops = { 1108 .ctr = crypt_iv_benbi_ctr, 1109 .dtr = crypt_iv_benbi_dtr, 1110 .generator = crypt_iv_benbi_gen 1111 }; 1112 1113 static const struct crypt_iv_operations crypt_iv_null_ops = { 1114 .generator = crypt_iv_null_gen 1115 }; 1116 1117 static const struct crypt_iv_operations crypt_iv_lmk_ops = { 1118 .ctr = crypt_iv_lmk_ctr, 1119 .dtr = crypt_iv_lmk_dtr, 1120 .init = crypt_iv_lmk_init, 1121 .wipe = crypt_iv_lmk_wipe, 1122 .generator = crypt_iv_lmk_gen, 1123 .post = crypt_iv_lmk_post 1124 }; 1125 1126 static const struct crypt_iv_operations crypt_iv_tcw_ops = { 1127 .ctr = crypt_iv_tcw_ctr, 1128 .dtr = crypt_iv_tcw_dtr, 1129 .init = crypt_iv_tcw_init, 1130 .wipe = crypt_iv_tcw_wipe, 1131 .generator = crypt_iv_tcw_gen, 1132 .post = crypt_iv_tcw_post 1133 }; 1134 1135 static const struct crypt_iv_operations crypt_iv_random_ops = { 1136 .generator = crypt_iv_random_gen 1137 }; 1138 1139 static const struct crypt_iv_operations crypt_iv_eboiv_ops = { 1140 .ctr = crypt_iv_eboiv_ctr, 1141 .generator = crypt_iv_eboiv_gen 1142 }; 1143 1144 static const struct crypt_iv_operations crypt_iv_elephant_ops = { 1145 .ctr = crypt_iv_elephant_ctr, 1146 .dtr = crypt_iv_elephant_dtr, 1147 .init = crypt_iv_elephant_init, 1148 .wipe = crypt_iv_elephant_wipe, 1149 .generator = crypt_iv_elephant_gen, 1150 .post = crypt_iv_elephant_post 1151 }; 1152 1153 /* 1154 * Integrity extensions 1155 */ 1156 static bool crypt_integrity_aead(struct crypt_config *cc) 1157 { 1158 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags); 1159 } 1160 1161 static bool crypt_integrity_hmac(struct crypt_config *cc) 1162 { 1163 return crypt_integrity_aead(cc) && cc->key_mac_size; 1164 } 1165 1166 /* Get sg containing data */ 1167 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, 1168 struct scatterlist *sg) 1169 { 1170 if (unlikely(crypt_integrity_aead(cc))) 1171 return &sg[2]; 1172 1173 return sg; 1174 } 1175 1176 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio) 1177 { 1178 struct bio_integrity_payload *bip; 1179 unsigned int tag_len; 1180 int ret; 1181 1182 if (!bio_sectors(bio) || !io->cc->tuple_size) 1183 return 0; 1184 1185 bip = bio_integrity_alloc(bio, GFP_NOIO, 1); 1186 if (IS_ERR(bip)) 1187 return PTR_ERR(bip); 1188 1189 tag_len = io->cc->tuple_size * (bio_sectors(bio) >> io->cc->sector_shift); 1190 1191 bip->bip_iter.bi_sector = bio->bi_iter.bi_sector; 1192 1193 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata), 1194 tag_len, offset_in_page(io->integrity_metadata)); 1195 if (unlikely(ret != tag_len)) 1196 return -ENOMEM; 1197 1198 return 0; 1199 } 1200 1201 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti) 1202 { 1203 #ifdef CONFIG_BLK_DEV_INTEGRITY 1204 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk); 1205 struct mapped_device *md = dm_table_get_md(ti->table); 1206 1207 /* We require an underlying device with non-PI metadata */ 1208 if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) { 1209 ti->error = "Integrity profile not supported."; 1210 return -EINVAL; 1211 } 1212 1213 if (bi->tuple_size < cc->used_tag_size) { 1214 ti->error = "Integrity profile tag size mismatch."; 1215 return -EINVAL; 1216 } 1217 cc->tuple_size = bi->tuple_size; 1218 if (1 << bi->interval_exp != cc->sector_size) { 1219 ti->error = "Integrity profile sector size mismatch."; 1220 return -EINVAL; 1221 } 1222 1223 if (crypt_integrity_aead(cc)) { 1224 cc->integrity_tag_size = cc->used_tag_size - cc->integrity_iv_size; 1225 DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md), 1226 cc->integrity_tag_size, cc->integrity_iv_size); 1227 1228 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) { 1229 ti->error = "Integrity AEAD auth tag size is not supported."; 1230 return -EINVAL; 1231 } 1232 } else if (cc->integrity_iv_size) 1233 DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md), 1234 cc->integrity_iv_size); 1235 1236 if ((cc->integrity_tag_size + cc->integrity_iv_size) > cc->tuple_size) { 1237 ti->error = "Not enough space for integrity tag in the profile."; 1238 return -EINVAL; 1239 } 1240 1241 return 0; 1242 #else 1243 ti->error = "Integrity profile not supported."; 1244 return -EINVAL; 1245 #endif 1246 } 1247 1248 static void crypt_convert_init(struct crypt_config *cc, 1249 struct convert_context *ctx, 1250 struct bio *bio_out, struct bio *bio_in, 1251 sector_t sector) 1252 { 1253 ctx->bio_in = bio_in; 1254 ctx->bio_out = bio_out; 1255 if (bio_in) 1256 ctx->iter_in = bio_in->bi_iter; 1257 if (bio_out) 1258 ctx->iter_out = bio_out->bi_iter; 1259 ctx->cc_sector = sector + cc->iv_offset; 1260 ctx->tag_offset = 0; 1261 init_completion(&ctx->restart); 1262 } 1263 1264 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc, 1265 void *req) 1266 { 1267 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start); 1268 } 1269 1270 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq) 1271 { 1272 return (void *)((char *)dmreq - cc->dmreq_start); 1273 } 1274 1275 static u8 *iv_of_dmreq(struct crypt_config *cc, 1276 struct dm_crypt_request *dmreq) 1277 { 1278 if (crypt_integrity_aead(cc)) 1279 return (u8 *)ALIGN((unsigned long)(dmreq + 1), 1280 crypto_aead_alignmask(any_tfm_aead(cc)) + 1); 1281 else 1282 return (u8 *)ALIGN((unsigned long)(dmreq + 1), 1283 crypto_skcipher_alignmask(any_tfm(cc)) + 1); 1284 } 1285 1286 static u8 *org_iv_of_dmreq(struct crypt_config *cc, 1287 struct dm_crypt_request *dmreq) 1288 { 1289 return iv_of_dmreq(cc, dmreq) + cc->iv_size; 1290 } 1291 1292 static __le64 *org_sector_of_dmreq(struct crypt_config *cc, 1293 struct dm_crypt_request *dmreq) 1294 { 1295 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size; 1296 1297 return (__le64 *) ptr; 1298 } 1299 1300 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc, 1301 struct dm_crypt_request *dmreq) 1302 { 1303 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + 1304 cc->iv_size + sizeof(uint64_t); 1305 1306 return (unsigned int *)ptr; 1307 } 1308 1309 static void *tag_from_dmreq(struct crypt_config *cc, 1310 struct dm_crypt_request *dmreq) 1311 { 1312 struct convert_context *ctx = dmreq->ctx; 1313 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); 1314 1315 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) * 1316 cc->tuple_size]; 1317 } 1318 1319 static void *iv_tag_from_dmreq(struct crypt_config *cc, 1320 struct dm_crypt_request *dmreq) 1321 { 1322 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size; 1323 } 1324 1325 static int crypt_convert_block_aead(struct crypt_config *cc, 1326 struct convert_context *ctx, 1327 struct aead_request *req, 1328 unsigned int tag_offset) 1329 { 1330 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); 1331 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); 1332 struct dm_crypt_request *dmreq; 1333 u8 *iv, *org_iv, *tag_iv, *tag; 1334 __le64 *sector; 1335 int r = 0; 1336 1337 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size); 1338 1339 /* Reject unexpected unaligned bio. */ 1340 if (unlikely(bv_in.bv_len & (cc->sector_size - 1))) 1341 return -EIO; 1342 1343 dmreq = dmreq_of_req(cc, req); 1344 dmreq->iv_sector = ctx->cc_sector; 1345 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) 1346 dmreq->iv_sector >>= cc->sector_shift; 1347 dmreq->ctx = ctx; 1348 1349 *org_tag_of_dmreq(cc, dmreq) = tag_offset; 1350 1351 sector = org_sector_of_dmreq(cc, dmreq); 1352 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); 1353 1354 iv = iv_of_dmreq(cc, dmreq); 1355 org_iv = org_iv_of_dmreq(cc, dmreq); 1356 tag = tag_from_dmreq(cc, dmreq); 1357 tag_iv = iv_tag_from_dmreq(cc, dmreq); 1358 1359 /* AEAD request: 1360 * |----- AAD -------|------ DATA -------|-- AUTH TAG --| 1361 * | (authenticated) | (auth+encryption) | | 1362 * | sector_LE | IV | sector in/out | tag in/out | 1363 */ 1364 sg_init_table(dmreq->sg_in, 4); 1365 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t)); 1366 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size); 1367 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset); 1368 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size); 1369 1370 sg_init_table(dmreq->sg_out, 4); 1371 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t)); 1372 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size); 1373 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset); 1374 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size); 1375 1376 if (cc->iv_gen_ops) { 1377 /* For READs use IV stored in integrity metadata */ 1378 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { 1379 memcpy(org_iv, tag_iv, cc->iv_size); 1380 } else { 1381 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); 1382 if (r < 0) 1383 return r; 1384 /* Store generated IV in integrity metadata */ 1385 if (cc->integrity_iv_size) 1386 memcpy(tag_iv, org_iv, cc->iv_size); 1387 } 1388 /* Working copy of IV, to be modified in crypto API */ 1389 memcpy(iv, org_iv, cc->iv_size); 1390 } 1391 1392 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size); 1393 if (bio_data_dir(ctx->bio_in) == WRITE) { 1394 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out, 1395 cc->sector_size, iv); 1396 r = crypto_aead_encrypt(req); 1397 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->tuple_size) 1398 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0, 1399 cc->tuple_size - (cc->integrity_tag_size + cc->integrity_iv_size)); 1400 } else { 1401 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out, 1402 cc->sector_size + cc->integrity_tag_size, iv); 1403 r = crypto_aead_decrypt(req); 1404 } 1405 1406 if (r == -EBADMSG) { 1407 sector_t s = le64_to_cpu(*sector); 1408 1409 ctx->aead_failed = true; 1410 if (ctx->aead_recheck) { 1411 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu", 1412 ctx->bio_in->bi_bdev, s); 1413 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead", 1414 ctx->bio_in, s, 0); 1415 } 1416 } 1417 1418 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) 1419 r = cc->iv_gen_ops->post(cc, org_iv, dmreq); 1420 1421 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size); 1422 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size); 1423 1424 return r; 1425 } 1426 1427 static int crypt_convert_block_skcipher(struct crypt_config *cc, 1428 struct convert_context *ctx, 1429 struct skcipher_request *req, 1430 unsigned int tag_offset) 1431 { 1432 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); 1433 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); 1434 struct scatterlist *sg_in, *sg_out; 1435 struct dm_crypt_request *dmreq; 1436 u8 *iv, *org_iv, *tag_iv; 1437 __le64 *sector; 1438 int r = 0; 1439 1440 /* Reject unexpected unaligned bio. */ 1441 if (unlikely(bv_in.bv_len & (cc->sector_size - 1))) 1442 return -EIO; 1443 1444 dmreq = dmreq_of_req(cc, req); 1445 dmreq->iv_sector = ctx->cc_sector; 1446 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) 1447 dmreq->iv_sector >>= cc->sector_shift; 1448 dmreq->ctx = ctx; 1449 1450 *org_tag_of_dmreq(cc, dmreq) = tag_offset; 1451 1452 iv = iv_of_dmreq(cc, dmreq); 1453 org_iv = org_iv_of_dmreq(cc, dmreq); 1454 tag_iv = iv_tag_from_dmreq(cc, dmreq); 1455 1456 sector = org_sector_of_dmreq(cc, dmreq); 1457 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); 1458 1459 /* For skcipher we use only the first sg item */ 1460 sg_in = &dmreq->sg_in[0]; 1461 sg_out = &dmreq->sg_out[0]; 1462 1463 sg_init_table(sg_in, 1); 1464 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset); 1465 1466 sg_init_table(sg_out, 1); 1467 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset); 1468 1469 if (cc->iv_gen_ops) { 1470 /* For READs use IV stored in integrity metadata */ 1471 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { 1472 memcpy(org_iv, tag_iv, cc->integrity_iv_size); 1473 } else { 1474 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); 1475 if (r < 0) 1476 return r; 1477 /* Data can be already preprocessed in generator */ 1478 if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags)) 1479 sg_in = sg_out; 1480 /* Store generated IV in integrity metadata */ 1481 if (cc->integrity_iv_size) 1482 memcpy(tag_iv, org_iv, cc->integrity_iv_size); 1483 } 1484 /* Working copy of IV, to be modified in crypto API */ 1485 memcpy(iv, org_iv, cc->iv_size); 1486 } 1487 1488 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv); 1489 1490 if (bio_data_dir(ctx->bio_in) == WRITE) 1491 r = crypto_skcipher_encrypt(req); 1492 else 1493 r = crypto_skcipher_decrypt(req); 1494 1495 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) 1496 r = cc->iv_gen_ops->post(cc, org_iv, dmreq); 1497 1498 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size); 1499 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size); 1500 1501 return r; 1502 } 1503 1504 static void kcryptd_async_done(void *async_req, int error); 1505 1506 static int crypt_alloc_req_skcipher(struct crypt_config *cc, 1507 struct convert_context *ctx) 1508 { 1509 unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1); 1510 1511 if (!ctx->r.req) { 1512 ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO); 1513 if (!ctx->r.req) 1514 return -ENOMEM; 1515 } 1516 1517 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]); 1518 1519 /* 1520 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs 1521 * requests if driver request queue is full. 1522 */ 1523 skcipher_request_set_callback(ctx->r.req, 1524 CRYPTO_TFM_REQ_MAY_BACKLOG, 1525 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req)); 1526 1527 return 0; 1528 } 1529 1530 static int crypt_alloc_req_aead(struct crypt_config *cc, 1531 struct convert_context *ctx) 1532 { 1533 if (!ctx->r.req_aead) { 1534 ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO); 1535 if (!ctx->r.req_aead) 1536 return -ENOMEM; 1537 } 1538 1539 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]); 1540 1541 /* 1542 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs 1543 * requests if driver request queue is full. 1544 */ 1545 aead_request_set_callback(ctx->r.req_aead, 1546 CRYPTO_TFM_REQ_MAY_BACKLOG, 1547 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead)); 1548 1549 return 0; 1550 } 1551 1552 static int crypt_alloc_req(struct crypt_config *cc, 1553 struct convert_context *ctx) 1554 { 1555 if (crypt_integrity_aead(cc)) 1556 return crypt_alloc_req_aead(cc, ctx); 1557 else 1558 return crypt_alloc_req_skcipher(cc, ctx); 1559 } 1560 1561 static void crypt_free_req_skcipher(struct crypt_config *cc, 1562 struct skcipher_request *req, struct bio *base_bio) 1563 { 1564 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); 1565 1566 if ((struct skcipher_request *)(io + 1) != req) 1567 mempool_free(req, &cc->req_pool); 1568 } 1569 1570 static void crypt_free_req_aead(struct crypt_config *cc, 1571 struct aead_request *req, struct bio *base_bio) 1572 { 1573 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); 1574 1575 if ((struct aead_request *)(io + 1) != req) 1576 mempool_free(req, &cc->req_pool); 1577 } 1578 1579 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio) 1580 { 1581 if (crypt_integrity_aead(cc)) 1582 crypt_free_req_aead(cc, req, base_bio); 1583 else 1584 crypt_free_req_skcipher(cc, req, base_bio); 1585 } 1586 1587 /* 1588 * Encrypt / decrypt data from one bio to another one (can be the same one) 1589 */ 1590 static blk_status_t crypt_convert(struct crypt_config *cc, 1591 struct convert_context *ctx, bool atomic, bool reset_pending) 1592 { 1593 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT; 1594 int r; 1595 1596 /* 1597 * if reset_pending is set we are dealing with the bio for the first time, 1598 * else we're continuing to work on the previous bio, so don't mess with 1599 * the cc_pending counter 1600 */ 1601 if (reset_pending) 1602 atomic_set(&ctx->cc_pending, 1); 1603 1604 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) { 1605 1606 r = crypt_alloc_req(cc, ctx); 1607 if (r) { 1608 complete(&ctx->restart); 1609 return BLK_STS_DEV_RESOURCE; 1610 } 1611 1612 atomic_inc(&ctx->cc_pending); 1613 1614 if (crypt_integrity_aead(cc)) 1615 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, ctx->tag_offset); 1616 else 1617 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, ctx->tag_offset); 1618 1619 switch (r) { 1620 /* 1621 * The request was queued by a crypto driver 1622 * but the driver request queue is full, let's wait. 1623 */ 1624 case -EBUSY: 1625 if (in_interrupt()) { 1626 if (try_wait_for_completion(&ctx->restart)) { 1627 /* 1628 * we don't have to block to wait for completion, 1629 * so proceed 1630 */ 1631 } else { 1632 /* 1633 * we can't wait for completion without blocking 1634 * exit and continue processing in a workqueue 1635 */ 1636 ctx->r.req = NULL; 1637 ctx->tag_offset++; 1638 ctx->cc_sector += sector_step; 1639 return BLK_STS_DEV_RESOURCE; 1640 } 1641 } else { 1642 wait_for_completion(&ctx->restart); 1643 } 1644 reinit_completion(&ctx->restart); 1645 fallthrough; 1646 /* 1647 * The request is queued and processed asynchronously, 1648 * completion function kcryptd_async_done() will be called. 1649 */ 1650 case -EINPROGRESS: 1651 ctx->r.req = NULL; 1652 ctx->tag_offset++; 1653 ctx->cc_sector += sector_step; 1654 continue; 1655 /* 1656 * The request was already processed (synchronously). 1657 */ 1658 case 0: 1659 atomic_dec(&ctx->cc_pending); 1660 ctx->cc_sector += sector_step; 1661 ctx->tag_offset++; 1662 if (!atomic) 1663 cond_resched(); 1664 continue; 1665 /* 1666 * There was a data integrity error. 1667 */ 1668 case -EBADMSG: 1669 atomic_dec(&ctx->cc_pending); 1670 return BLK_STS_PROTECTION; 1671 /* 1672 * There was an error while processing the request. 1673 */ 1674 default: 1675 atomic_dec(&ctx->cc_pending); 1676 return BLK_STS_IOERR; 1677 } 1678 } 1679 1680 return 0; 1681 } 1682 1683 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone); 1684 1685 /* 1686 * Generate a new unfragmented bio with the given size 1687 * This should never violate the device limitations (but if it did then block 1688 * core should split the bio as needed). 1689 * 1690 * This function may be called concurrently. If we allocate from the mempool 1691 * concurrently, there is a possibility of deadlock. For example, if we have 1692 * mempool of 256 pages, two processes, each wanting 256, pages allocate from 1693 * the mempool concurrently, it may deadlock in a situation where both processes 1694 * have allocated 128 pages and the mempool is exhausted. 1695 * 1696 * In order to avoid this scenario we allocate the pages under a mutex. 1697 * 1698 * In order to not degrade performance with excessive locking, we try 1699 * non-blocking allocations without a mutex first but on failure we fallback 1700 * to blocking allocations with a mutex. 1701 * 1702 * In order to reduce allocation overhead, we try to allocate compound pages in 1703 * the first pass. If they are not available, we fall back to the mempool. 1704 */ 1705 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size) 1706 { 1707 struct crypt_config *cc = io->cc; 1708 struct bio *clone; 1709 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1710 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM; 1711 unsigned int remaining_size; 1712 unsigned int order = MAX_PAGE_ORDER; 1713 1714 retry: 1715 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) 1716 mutex_lock(&cc->bio_alloc_lock); 1717 1718 clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf, 1719 GFP_NOIO, &cc->bs); 1720 clone->bi_private = io; 1721 clone->bi_end_io = crypt_endio; 1722 clone->bi_ioprio = io->base_bio->bi_ioprio; 1723 clone->bi_iter.bi_sector = cc->start + io->sector; 1724 1725 remaining_size = size; 1726 1727 while (remaining_size) { 1728 struct page *pages; 1729 unsigned size_to_add; 1730 unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT); 1731 order = min(order, remaining_order); 1732 1733 while (order > 0) { 1734 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) + 1735 (1 << order) > dm_crypt_pages_per_client)) 1736 goto decrease_order; 1737 pages = alloc_pages(gfp_mask 1738 | __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP, 1739 order); 1740 if (likely(pages != NULL)) { 1741 percpu_counter_add(&cc->n_allocated_pages, 1 << order); 1742 goto have_pages; 1743 } 1744 decrease_order: 1745 order--; 1746 } 1747 1748 pages = mempool_alloc(&cc->page_pool, gfp_mask); 1749 if (!pages) { 1750 crypt_free_buffer_pages(cc, clone); 1751 bio_put(clone); 1752 gfp_mask |= __GFP_DIRECT_RECLAIM; 1753 order = 0; 1754 goto retry; 1755 } 1756 1757 have_pages: 1758 size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size); 1759 __bio_add_page(clone, pages, size_to_add, 0); 1760 remaining_size -= size_to_add; 1761 } 1762 1763 /* Allocate space for integrity tags */ 1764 if (dm_crypt_integrity_io_alloc(io, clone)) { 1765 crypt_free_buffer_pages(cc, clone); 1766 bio_put(clone); 1767 clone = NULL; 1768 } 1769 1770 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) 1771 mutex_unlock(&cc->bio_alloc_lock); 1772 1773 return clone; 1774 } 1775 1776 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone) 1777 { 1778 struct folio_iter fi; 1779 1780 if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */ 1781 bio_for_each_folio_all(fi, clone) { 1782 if (folio_test_large(fi.folio)) { 1783 percpu_counter_sub(&cc->n_allocated_pages, 1784 1 << folio_order(fi.folio)); 1785 folio_put(fi.folio); 1786 } else { 1787 mempool_free(&fi.folio->page, &cc->page_pool); 1788 } 1789 } 1790 } 1791 } 1792 1793 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc, 1794 struct bio *bio, sector_t sector) 1795 { 1796 io->cc = cc; 1797 io->base_bio = bio; 1798 io->sector = sector; 1799 io->error = 0; 1800 io->ctx.aead_recheck = false; 1801 io->ctx.aead_failed = false; 1802 io->ctx.r.req = NULL; 1803 io->integrity_metadata = NULL; 1804 io->integrity_metadata_from_pool = false; 1805 atomic_set(&io->io_pending, 0); 1806 } 1807 1808 static void crypt_inc_pending(struct dm_crypt_io *io) 1809 { 1810 atomic_inc(&io->io_pending); 1811 } 1812 1813 static void kcryptd_queue_read(struct dm_crypt_io *io); 1814 1815 /* 1816 * One of the bios was finished. Check for completion of 1817 * the whole request and correctly clean up the buffer. 1818 */ 1819 static void crypt_dec_pending(struct dm_crypt_io *io) 1820 { 1821 struct crypt_config *cc = io->cc; 1822 struct bio *base_bio = io->base_bio; 1823 blk_status_t error = io->error; 1824 1825 if (!atomic_dec_and_test(&io->io_pending)) 1826 return; 1827 1828 if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) && 1829 cc->used_tag_size && bio_data_dir(base_bio) == READ) { 1830 io->ctx.aead_recheck = true; 1831 io->ctx.aead_failed = false; 1832 io->error = 0; 1833 kcryptd_queue_read(io); 1834 return; 1835 } 1836 1837 if (io->ctx.r.req) 1838 crypt_free_req(cc, io->ctx.r.req, base_bio); 1839 1840 if (unlikely(io->integrity_metadata_from_pool)) 1841 mempool_free(io->integrity_metadata, &io->cc->tag_pool); 1842 else 1843 kfree(io->integrity_metadata); 1844 1845 base_bio->bi_status = error; 1846 1847 bio_endio(base_bio); 1848 } 1849 1850 /* 1851 * kcryptd/kcryptd_io: 1852 * 1853 * Needed because it would be very unwise to do decryption in an 1854 * interrupt context. 1855 * 1856 * kcryptd performs the actual encryption or decryption. 1857 * 1858 * kcryptd_io performs the IO submission. 1859 * 1860 * They must be separated as otherwise the final stages could be 1861 * starved by new requests which can block in the first stages due 1862 * to memory allocation. 1863 * 1864 * The work is done per CPU global for all dm-crypt instances. 1865 * They should not depend on each other and do not block. 1866 */ 1867 static void crypt_endio(struct bio *clone) 1868 { 1869 struct dm_crypt_io *io = clone->bi_private; 1870 struct crypt_config *cc = io->cc; 1871 unsigned int rw = bio_data_dir(clone); 1872 blk_status_t error = clone->bi_status; 1873 1874 if (io->ctx.aead_recheck && !error) { 1875 kcryptd_queue_crypt(io); 1876 return; 1877 } 1878 1879 /* 1880 * free the processed pages 1881 */ 1882 if (rw == WRITE || io->ctx.aead_recheck) 1883 crypt_free_buffer_pages(cc, clone); 1884 1885 bio_put(clone); 1886 1887 if (rw == READ && !error) { 1888 kcryptd_queue_crypt(io); 1889 return; 1890 } 1891 1892 if (unlikely(error)) 1893 io->error = error; 1894 1895 crypt_dec_pending(io); 1896 } 1897 1898 #define CRYPT_MAP_READ_GFP GFP_NOWAIT 1899 1900 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp) 1901 { 1902 struct crypt_config *cc = io->cc; 1903 struct bio *clone; 1904 1905 if (io->ctx.aead_recheck) { 1906 if (!(gfp & __GFP_DIRECT_RECLAIM)) 1907 return 1; 1908 crypt_inc_pending(io); 1909 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size); 1910 if (unlikely(!clone)) { 1911 crypt_dec_pending(io); 1912 return 1; 1913 } 1914 crypt_convert_init(cc, &io->ctx, clone, clone, io->sector); 1915 io->saved_bi_iter = clone->bi_iter; 1916 dm_submit_bio_remap(io->base_bio, clone); 1917 return 0; 1918 } 1919 1920 /* 1921 * We need the original biovec array in order to decrypt the whole bio 1922 * data *afterwards* -- thanks to immutable biovecs we don't need to 1923 * worry about the block layer modifying the biovec array; so leverage 1924 * bio_alloc_clone(). 1925 */ 1926 clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs); 1927 if (!clone) 1928 return 1; 1929 1930 clone->bi_iter.bi_sector = cc->start + io->sector; 1931 clone->bi_private = io; 1932 clone->bi_end_io = crypt_endio; 1933 1934 crypt_inc_pending(io); 1935 1936 if (dm_crypt_integrity_io_alloc(io, clone)) { 1937 crypt_dec_pending(io); 1938 bio_put(clone); 1939 return 1; 1940 } 1941 1942 dm_submit_bio_remap(io->base_bio, clone); 1943 return 0; 1944 } 1945 1946 static void kcryptd_io_read_work(struct work_struct *work) 1947 { 1948 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 1949 1950 crypt_inc_pending(io); 1951 if (kcryptd_io_read(io, GFP_NOIO)) 1952 io->error = BLK_STS_RESOURCE; 1953 crypt_dec_pending(io); 1954 } 1955 1956 static void kcryptd_queue_read(struct dm_crypt_io *io) 1957 { 1958 struct crypt_config *cc = io->cc; 1959 1960 INIT_WORK(&io->work, kcryptd_io_read_work); 1961 queue_work(cc->io_queue, &io->work); 1962 } 1963 1964 static void kcryptd_io_write(struct dm_crypt_io *io) 1965 { 1966 struct bio *clone = io->ctx.bio_out; 1967 1968 dm_submit_bio_remap(io->base_bio, clone); 1969 } 1970 1971 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node) 1972 1973 static int dmcrypt_write(void *data) 1974 { 1975 struct crypt_config *cc = data; 1976 struct dm_crypt_io *io; 1977 1978 while (1) { 1979 struct rb_root write_tree; 1980 struct blk_plug plug; 1981 1982 spin_lock_irq(&cc->write_thread_lock); 1983 continue_locked: 1984 1985 if (!RB_EMPTY_ROOT(&cc->write_tree)) 1986 goto pop_from_list; 1987 1988 set_current_state(TASK_INTERRUPTIBLE); 1989 1990 spin_unlock_irq(&cc->write_thread_lock); 1991 1992 if (unlikely(kthread_should_stop())) { 1993 set_current_state(TASK_RUNNING); 1994 break; 1995 } 1996 1997 schedule(); 1998 1999 spin_lock_irq(&cc->write_thread_lock); 2000 goto continue_locked; 2001 2002 pop_from_list: 2003 write_tree = cc->write_tree; 2004 cc->write_tree = RB_ROOT; 2005 spin_unlock_irq(&cc->write_thread_lock); 2006 2007 BUG_ON(rb_parent(write_tree.rb_node)); 2008 2009 /* 2010 * Note: we cannot walk the tree here with rb_next because 2011 * the structures may be freed when kcryptd_io_write is called. 2012 */ 2013 blk_start_plug(&plug); 2014 do { 2015 io = crypt_io_from_node(rb_first(&write_tree)); 2016 rb_erase(&io->rb_node, &write_tree); 2017 kcryptd_io_write(io); 2018 cond_resched(); 2019 } while (!RB_EMPTY_ROOT(&write_tree)); 2020 blk_finish_plug(&plug); 2021 } 2022 return 0; 2023 } 2024 2025 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async) 2026 { 2027 struct bio *clone = io->ctx.bio_out; 2028 struct crypt_config *cc = io->cc; 2029 unsigned long flags; 2030 sector_t sector; 2031 struct rb_node **rbp, *parent; 2032 2033 if (unlikely(io->error)) { 2034 crypt_free_buffer_pages(cc, clone); 2035 bio_put(clone); 2036 crypt_dec_pending(io); 2037 return; 2038 } 2039 2040 /* crypt_convert should have filled the clone bio */ 2041 BUG_ON(io->ctx.iter_out.bi_size); 2042 2043 if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) || 2044 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) { 2045 dm_submit_bio_remap(io->base_bio, clone); 2046 return; 2047 } 2048 2049 spin_lock_irqsave(&cc->write_thread_lock, flags); 2050 if (RB_EMPTY_ROOT(&cc->write_tree)) 2051 wake_up_process(cc->write_thread); 2052 rbp = &cc->write_tree.rb_node; 2053 parent = NULL; 2054 sector = io->sector; 2055 while (*rbp) { 2056 parent = *rbp; 2057 if (sector < crypt_io_from_node(parent)->sector) 2058 rbp = &(*rbp)->rb_left; 2059 else 2060 rbp = &(*rbp)->rb_right; 2061 } 2062 rb_link_node(&io->rb_node, parent, rbp); 2063 rb_insert_color(&io->rb_node, &cc->write_tree); 2064 spin_unlock_irqrestore(&cc->write_thread_lock, flags); 2065 } 2066 2067 static bool kcryptd_crypt_write_inline(struct crypt_config *cc, 2068 struct convert_context *ctx) 2069 2070 { 2071 if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags)) 2072 return false; 2073 2074 /* 2075 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering 2076 * constraints so they do not need to be issued inline by 2077 * kcryptd_crypt_write_convert(). 2078 */ 2079 switch (bio_op(ctx->bio_in)) { 2080 case REQ_OP_WRITE: 2081 case REQ_OP_WRITE_ZEROES: 2082 return true; 2083 default: 2084 return false; 2085 } 2086 } 2087 2088 static void kcryptd_crypt_write_continue(struct work_struct *work) 2089 { 2090 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 2091 struct crypt_config *cc = io->cc; 2092 struct convert_context *ctx = &io->ctx; 2093 int crypt_finished; 2094 blk_status_t r; 2095 2096 wait_for_completion(&ctx->restart); 2097 reinit_completion(&ctx->restart); 2098 2099 r = crypt_convert(cc, &io->ctx, false, false); 2100 if (r) 2101 io->error = r; 2102 crypt_finished = atomic_dec_and_test(&ctx->cc_pending); 2103 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) { 2104 /* Wait for completion signaled by kcryptd_async_done() */ 2105 wait_for_completion(&ctx->restart); 2106 crypt_finished = 1; 2107 } 2108 2109 /* Encryption was already finished, submit io now */ 2110 if (crypt_finished) 2111 kcryptd_crypt_write_io_submit(io, 0); 2112 2113 crypt_dec_pending(io); 2114 } 2115 2116 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io) 2117 { 2118 struct crypt_config *cc = io->cc; 2119 struct convert_context *ctx = &io->ctx; 2120 struct bio *clone; 2121 int crypt_finished; 2122 blk_status_t r; 2123 2124 /* 2125 * Prevent io from disappearing until this function completes. 2126 */ 2127 crypt_inc_pending(io); 2128 crypt_convert_init(cc, ctx, NULL, io->base_bio, io->sector); 2129 2130 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size); 2131 if (unlikely(!clone)) { 2132 io->error = BLK_STS_IOERR; 2133 goto dec; 2134 } 2135 2136 io->ctx.bio_out = clone; 2137 io->ctx.iter_out = clone->bi_iter; 2138 2139 if (crypt_integrity_aead(cc)) { 2140 bio_copy_data(clone, io->base_bio); 2141 io->ctx.bio_in = clone; 2142 io->ctx.iter_in = clone->bi_iter; 2143 } 2144 2145 crypt_inc_pending(io); 2146 r = crypt_convert(cc, ctx, 2147 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true); 2148 /* 2149 * Crypto API backlogged the request, because its queue was full 2150 * and we're in softirq context, so continue from a workqueue 2151 * (TODO: is it actually possible to be in softirq in the write path?) 2152 */ 2153 if (r == BLK_STS_DEV_RESOURCE) { 2154 INIT_WORK(&io->work, kcryptd_crypt_write_continue); 2155 queue_work(cc->crypt_queue, &io->work); 2156 return; 2157 } 2158 if (r) 2159 io->error = r; 2160 crypt_finished = atomic_dec_and_test(&ctx->cc_pending); 2161 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) { 2162 /* Wait for completion signaled by kcryptd_async_done() */ 2163 wait_for_completion(&ctx->restart); 2164 crypt_finished = 1; 2165 } 2166 2167 /* Encryption was already finished, submit io now */ 2168 if (crypt_finished) 2169 kcryptd_crypt_write_io_submit(io, 0); 2170 2171 dec: 2172 crypt_dec_pending(io); 2173 } 2174 2175 static void kcryptd_crypt_read_done(struct dm_crypt_io *io) 2176 { 2177 if (io->ctx.aead_recheck) { 2178 if (!io->error) { 2179 io->ctx.bio_in->bi_iter = io->saved_bi_iter; 2180 bio_copy_data(io->base_bio, io->ctx.bio_in); 2181 } 2182 crypt_free_buffer_pages(io->cc, io->ctx.bio_in); 2183 bio_put(io->ctx.bio_in); 2184 } 2185 crypt_dec_pending(io); 2186 } 2187 2188 static void kcryptd_crypt_read_continue(struct work_struct *work) 2189 { 2190 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 2191 struct crypt_config *cc = io->cc; 2192 blk_status_t r; 2193 2194 wait_for_completion(&io->ctx.restart); 2195 reinit_completion(&io->ctx.restart); 2196 2197 r = crypt_convert(cc, &io->ctx, false, false); 2198 if (r) 2199 io->error = r; 2200 2201 if (atomic_dec_and_test(&io->ctx.cc_pending)) 2202 kcryptd_crypt_read_done(io); 2203 2204 crypt_dec_pending(io); 2205 } 2206 2207 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io) 2208 { 2209 struct crypt_config *cc = io->cc; 2210 blk_status_t r; 2211 2212 crypt_inc_pending(io); 2213 2214 if (io->ctx.aead_recheck) { 2215 r = crypt_convert(cc, &io->ctx, 2216 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true); 2217 } else { 2218 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio, 2219 io->sector); 2220 2221 r = crypt_convert(cc, &io->ctx, 2222 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true); 2223 } 2224 /* 2225 * Crypto API backlogged the request, because its queue was full 2226 * and we're in softirq context, so continue from a workqueue 2227 */ 2228 if (r == BLK_STS_DEV_RESOURCE) { 2229 INIT_WORK(&io->work, kcryptd_crypt_read_continue); 2230 queue_work(cc->crypt_queue, &io->work); 2231 return; 2232 } 2233 if (r) 2234 io->error = r; 2235 2236 if (atomic_dec_and_test(&io->ctx.cc_pending)) 2237 kcryptd_crypt_read_done(io); 2238 2239 crypt_dec_pending(io); 2240 } 2241 2242 static void kcryptd_async_done(void *data, int error) 2243 { 2244 struct dm_crypt_request *dmreq = data; 2245 struct convert_context *ctx = dmreq->ctx; 2246 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); 2247 struct crypt_config *cc = io->cc; 2248 2249 /* 2250 * A request from crypto driver backlog is going to be processed now, 2251 * finish the completion and continue in crypt_convert(). 2252 * (Callback will be called for the second time for this request.) 2253 */ 2254 if (error == -EINPROGRESS) { 2255 complete(&ctx->restart); 2256 return; 2257 } 2258 2259 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post) 2260 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq); 2261 2262 if (error == -EBADMSG) { 2263 sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)); 2264 2265 ctx->aead_failed = true; 2266 if (ctx->aead_recheck) { 2267 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu", 2268 ctx->bio_in->bi_bdev, s); 2269 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead", 2270 ctx->bio_in, s, 0); 2271 } 2272 io->error = BLK_STS_PROTECTION; 2273 } else if (error < 0) 2274 io->error = BLK_STS_IOERR; 2275 2276 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio); 2277 2278 if (!atomic_dec_and_test(&ctx->cc_pending)) 2279 return; 2280 2281 /* 2282 * The request is fully completed: for inline writes, let 2283 * kcryptd_crypt_write_convert() do the IO submission. 2284 */ 2285 if (bio_data_dir(io->base_bio) == READ) { 2286 kcryptd_crypt_read_done(io); 2287 return; 2288 } 2289 2290 if (kcryptd_crypt_write_inline(cc, ctx)) { 2291 complete(&ctx->restart); 2292 return; 2293 } 2294 2295 kcryptd_crypt_write_io_submit(io, 1); 2296 } 2297 2298 static void kcryptd_crypt(struct work_struct *work) 2299 { 2300 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 2301 2302 if (bio_data_dir(io->base_bio) == READ) 2303 kcryptd_crypt_read_convert(io); 2304 else 2305 kcryptd_crypt_write_convert(io); 2306 } 2307 2308 static void kcryptd_queue_crypt(struct dm_crypt_io *io) 2309 { 2310 struct crypt_config *cc = io->cc; 2311 2312 if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) || 2313 (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) { 2314 /* 2315 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context. 2316 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but 2317 * it is being executed with irqs disabled. 2318 */ 2319 if (in_hardirq() || irqs_disabled()) { 2320 INIT_WORK(&io->work, kcryptd_crypt); 2321 queue_work(system_bh_wq, &io->work); 2322 return; 2323 } else { 2324 kcryptd_crypt(&io->work); 2325 return; 2326 } 2327 } 2328 2329 INIT_WORK(&io->work, kcryptd_crypt); 2330 queue_work(cc->crypt_queue, &io->work); 2331 } 2332 2333 static void crypt_free_tfms_aead(struct crypt_config *cc) 2334 { 2335 if (!cc->cipher_tfm.tfms_aead) 2336 return; 2337 2338 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) { 2339 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]); 2340 cc->cipher_tfm.tfms_aead[0] = NULL; 2341 } 2342 2343 kfree(cc->cipher_tfm.tfms_aead); 2344 cc->cipher_tfm.tfms_aead = NULL; 2345 } 2346 2347 static void crypt_free_tfms_skcipher(struct crypt_config *cc) 2348 { 2349 unsigned int i; 2350 2351 if (!cc->cipher_tfm.tfms) 2352 return; 2353 2354 for (i = 0; i < cc->tfms_count; i++) 2355 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) { 2356 crypto_free_skcipher(cc->cipher_tfm.tfms[i]); 2357 cc->cipher_tfm.tfms[i] = NULL; 2358 } 2359 2360 kfree(cc->cipher_tfm.tfms); 2361 cc->cipher_tfm.tfms = NULL; 2362 } 2363 2364 static void crypt_free_tfms(struct crypt_config *cc) 2365 { 2366 if (crypt_integrity_aead(cc)) 2367 crypt_free_tfms_aead(cc); 2368 else 2369 crypt_free_tfms_skcipher(cc); 2370 } 2371 2372 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode) 2373 { 2374 unsigned int i; 2375 int err; 2376 2377 cc->cipher_tfm.tfms = kcalloc(cc->tfms_count, 2378 sizeof(struct crypto_skcipher *), 2379 GFP_KERNEL); 2380 if (!cc->cipher_tfm.tfms) 2381 return -ENOMEM; 2382 2383 for (i = 0; i < cc->tfms_count; i++) { 2384 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 2385 CRYPTO_ALG_ALLOCATES_MEMORY); 2386 if (IS_ERR(cc->cipher_tfm.tfms[i])) { 2387 err = PTR_ERR(cc->cipher_tfm.tfms[i]); 2388 crypt_free_tfms(cc); 2389 return err; 2390 } 2391 } 2392 2393 /* 2394 * dm-crypt performance can vary greatly depending on which crypto 2395 * algorithm implementation is used. Help people debug performance 2396 * problems by logging the ->cra_driver_name. 2397 */ 2398 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode, 2399 crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name); 2400 return 0; 2401 } 2402 2403 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode) 2404 { 2405 int err; 2406 2407 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL); 2408 if (!cc->cipher_tfm.tfms) 2409 return -ENOMEM; 2410 2411 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 2412 CRYPTO_ALG_ALLOCATES_MEMORY); 2413 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) { 2414 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]); 2415 crypt_free_tfms(cc); 2416 return err; 2417 } 2418 2419 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode, 2420 crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name); 2421 return 0; 2422 } 2423 2424 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode) 2425 { 2426 if (crypt_integrity_aead(cc)) 2427 return crypt_alloc_tfms_aead(cc, ciphermode); 2428 else 2429 return crypt_alloc_tfms_skcipher(cc, ciphermode); 2430 } 2431 2432 static unsigned int crypt_subkey_size(struct crypt_config *cc) 2433 { 2434 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count); 2435 } 2436 2437 static unsigned int crypt_authenckey_size(struct crypt_config *cc) 2438 { 2439 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param)); 2440 } 2441 2442 /* 2443 * If AEAD is composed like authenc(hmac(sha256),xts(aes)), 2444 * the key must be for some reason in special format. 2445 * This funcion converts cc->key to this special format. 2446 */ 2447 static void crypt_copy_authenckey(char *p, const void *key, 2448 unsigned int enckeylen, unsigned int authkeylen) 2449 { 2450 struct crypto_authenc_key_param *param; 2451 struct rtattr *rta; 2452 2453 rta = (struct rtattr *)p; 2454 param = RTA_DATA(rta); 2455 param->enckeylen = cpu_to_be32(enckeylen); 2456 rta->rta_len = RTA_LENGTH(sizeof(*param)); 2457 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM; 2458 p += RTA_SPACE(sizeof(*param)); 2459 memcpy(p, key + enckeylen, authkeylen); 2460 p += authkeylen; 2461 memcpy(p, key, enckeylen); 2462 } 2463 2464 static int crypt_setkey(struct crypt_config *cc) 2465 { 2466 unsigned int subkey_size; 2467 int err = 0, i, r; 2468 2469 /* Ignore extra keys (which are used for IV etc) */ 2470 subkey_size = crypt_subkey_size(cc); 2471 2472 if (crypt_integrity_hmac(cc)) { 2473 if (subkey_size < cc->key_mac_size) 2474 return -EINVAL; 2475 2476 crypt_copy_authenckey(cc->authenc_key, cc->key, 2477 subkey_size - cc->key_mac_size, 2478 cc->key_mac_size); 2479 } 2480 2481 for (i = 0; i < cc->tfms_count; i++) { 2482 if (crypt_integrity_hmac(cc)) 2483 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i], 2484 cc->authenc_key, crypt_authenckey_size(cc)); 2485 else if (crypt_integrity_aead(cc)) 2486 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i], 2487 cc->key + (i * subkey_size), 2488 subkey_size); 2489 else 2490 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i], 2491 cc->key + (i * subkey_size), 2492 subkey_size); 2493 if (r) 2494 err = r; 2495 } 2496 2497 if (crypt_integrity_hmac(cc)) 2498 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc)); 2499 2500 return err; 2501 } 2502 2503 #ifdef CONFIG_KEYS 2504 2505 static bool contains_whitespace(const char *str) 2506 { 2507 while (*str) 2508 if (isspace(*str++)) 2509 return true; 2510 return false; 2511 } 2512 2513 static int set_key_user(struct crypt_config *cc, struct key *key) 2514 { 2515 const struct user_key_payload *ukp; 2516 2517 ukp = user_key_payload_locked(key); 2518 if (!ukp) 2519 return -EKEYREVOKED; 2520 2521 if (cc->key_size != ukp->datalen) 2522 return -EINVAL; 2523 2524 memcpy(cc->key, ukp->data, cc->key_size); 2525 2526 return 0; 2527 } 2528 2529 static int set_key_encrypted(struct crypt_config *cc, struct key *key) 2530 { 2531 const struct encrypted_key_payload *ekp; 2532 2533 ekp = key->payload.data[0]; 2534 if (!ekp) 2535 return -EKEYREVOKED; 2536 2537 if (cc->key_size != ekp->decrypted_datalen) 2538 return -EINVAL; 2539 2540 memcpy(cc->key, ekp->decrypted_data, cc->key_size); 2541 2542 return 0; 2543 } 2544 2545 static int set_key_trusted(struct crypt_config *cc, struct key *key) 2546 { 2547 const struct trusted_key_payload *tkp; 2548 2549 tkp = key->payload.data[0]; 2550 if (!tkp) 2551 return -EKEYREVOKED; 2552 2553 if (cc->key_size != tkp->key_len) 2554 return -EINVAL; 2555 2556 memcpy(cc->key, tkp->key, cc->key_size); 2557 2558 return 0; 2559 } 2560 2561 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) 2562 { 2563 char *new_key_string, *key_desc; 2564 int ret; 2565 struct key_type *type; 2566 struct key *key; 2567 int (*set_key)(struct crypt_config *cc, struct key *key); 2568 2569 /* 2570 * Reject key_string with whitespace. dm core currently lacks code for 2571 * proper whitespace escaping in arguments on DM_TABLE_STATUS path. 2572 */ 2573 if (contains_whitespace(key_string)) { 2574 DMERR("whitespace chars not allowed in key string"); 2575 return -EINVAL; 2576 } 2577 2578 /* look for next ':' separating key_type from key_description */ 2579 key_desc = strchr(key_string, ':'); 2580 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1)) 2581 return -EINVAL; 2582 2583 if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) { 2584 type = &key_type_logon; 2585 set_key = set_key_user; 2586 } else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) { 2587 type = &key_type_user; 2588 set_key = set_key_user; 2589 } else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) && 2590 !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) { 2591 type = &key_type_encrypted; 2592 set_key = set_key_encrypted; 2593 } else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) && 2594 !strncmp(key_string, "trusted:", key_desc - key_string + 1)) { 2595 type = &key_type_trusted; 2596 set_key = set_key_trusted; 2597 } else { 2598 return -EINVAL; 2599 } 2600 2601 new_key_string = kstrdup(key_string, GFP_KERNEL); 2602 if (!new_key_string) 2603 return -ENOMEM; 2604 2605 key = request_key(type, key_desc + 1, NULL); 2606 if (IS_ERR(key)) { 2607 ret = PTR_ERR(key); 2608 goto free_new_key_string; 2609 } 2610 2611 down_read(&key->sem); 2612 ret = set_key(cc, key); 2613 up_read(&key->sem); 2614 key_put(key); 2615 if (ret < 0) 2616 goto free_new_key_string; 2617 2618 /* clear the flag since following operations may invalidate previously valid key */ 2619 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2620 2621 ret = crypt_setkey(cc); 2622 if (ret) 2623 goto free_new_key_string; 2624 2625 set_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2626 kfree_sensitive(cc->key_string); 2627 cc->key_string = new_key_string; 2628 return 0; 2629 2630 free_new_key_string: 2631 kfree_sensitive(new_key_string); 2632 return ret; 2633 } 2634 2635 static int get_key_size(char **key_string) 2636 { 2637 char *colon, dummy; 2638 int ret; 2639 2640 if (*key_string[0] != ':') 2641 return strlen(*key_string) >> 1; 2642 2643 /* look for next ':' in key string */ 2644 colon = strpbrk(*key_string + 1, ":"); 2645 if (!colon) 2646 return -EINVAL; 2647 2648 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':') 2649 return -EINVAL; 2650 2651 *key_string = colon; 2652 2653 /* remaining key string should be :<logon|user>:<key_desc> */ 2654 2655 return ret; 2656 } 2657 2658 #else 2659 2660 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) 2661 { 2662 return -EINVAL; 2663 } 2664 2665 static int get_key_size(char **key_string) 2666 { 2667 return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1); 2668 } 2669 2670 #endif /* CONFIG_KEYS */ 2671 2672 static int crypt_set_key(struct crypt_config *cc, char *key) 2673 { 2674 int r = -EINVAL; 2675 int key_string_len = strlen(key); 2676 2677 /* Hyphen (which gives a key_size of zero) means there is no key. */ 2678 if (!cc->key_size && strcmp(key, "-")) 2679 goto out; 2680 2681 /* ':' means the key is in kernel keyring, short-circuit normal key processing */ 2682 if (key[0] == ':') { 2683 r = crypt_set_keyring_key(cc, key + 1); 2684 goto out; 2685 } 2686 2687 /* clear the flag since following operations may invalidate previously valid key */ 2688 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2689 2690 /* wipe references to any kernel keyring key */ 2691 kfree_sensitive(cc->key_string); 2692 cc->key_string = NULL; 2693 2694 /* Decode key from its hex representation. */ 2695 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0) 2696 goto out; 2697 2698 r = crypt_setkey(cc); 2699 if (!r) 2700 set_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2701 2702 out: 2703 /* Hex key string not needed after here, so wipe it. */ 2704 memset(key, '0', key_string_len); 2705 2706 return r; 2707 } 2708 2709 static int crypt_wipe_key(struct crypt_config *cc) 2710 { 2711 int r; 2712 2713 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2714 get_random_bytes(&cc->key, cc->key_size); 2715 2716 /* Wipe IV private keys */ 2717 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) { 2718 r = cc->iv_gen_ops->wipe(cc); 2719 if (r) 2720 return r; 2721 } 2722 2723 kfree_sensitive(cc->key_string); 2724 cc->key_string = NULL; 2725 r = crypt_setkey(cc); 2726 memset(&cc->key, 0, cc->key_size * sizeof(u8)); 2727 2728 return r; 2729 } 2730 2731 static void crypt_calculate_pages_per_client(void) 2732 { 2733 unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100; 2734 2735 if (!dm_crypt_clients_n) 2736 return; 2737 2738 pages /= dm_crypt_clients_n; 2739 if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT) 2740 pages = DM_CRYPT_MIN_PAGES_PER_CLIENT; 2741 dm_crypt_pages_per_client = pages; 2742 } 2743 2744 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data) 2745 { 2746 struct crypt_config *cc = pool_data; 2747 struct page *page; 2748 2749 /* 2750 * Note, percpu_counter_read_positive() may over (and under) estimate 2751 * the current usage by at most (batch - 1) * num_online_cpus() pages, 2752 * but avoids potential spinlock contention of an exact result. 2753 */ 2754 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) && 2755 likely(gfp_mask & __GFP_NORETRY)) 2756 return NULL; 2757 2758 page = alloc_page(gfp_mask); 2759 if (likely(page != NULL)) 2760 percpu_counter_add(&cc->n_allocated_pages, 1); 2761 2762 return page; 2763 } 2764 2765 static void crypt_page_free(void *page, void *pool_data) 2766 { 2767 struct crypt_config *cc = pool_data; 2768 2769 __free_page(page); 2770 percpu_counter_sub(&cc->n_allocated_pages, 1); 2771 } 2772 2773 static void crypt_dtr(struct dm_target *ti) 2774 { 2775 struct crypt_config *cc = ti->private; 2776 2777 ti->private = NULL; 2778 2779 if (!cc) 2780 return; 2781 2782 if (cc->write_thread) 2783 kthread_stop(cc->write_thread); 2784 2785 if (cc->io_queue) 2786 destroy_workqueue(cc->io_queue); 2787 if (cc->crypt_queue) 2788 destroy_workqueue(cc->crypt_queue); 2789 2790 if (cc->workqueue_id) 2791 ida_free(&workqueue_ida, cc->workqueue_id); 2792 2793 crypt_free_tfms(cc); 2794 2795 bioset_exit(&cc->bs); 2796 2797 mempool_exit(&cc->page_pool); 2798 mempool_exit(&cc->req_pool); 2799 mempool_exit(&cc->tag_pool); 2800 2801 WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0); 2802 percpu_counter_destroy(&cc->n_allocated_pages); 2803 2804 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) 2805 cc->iv_gen_ops->dtr(cc); 2806 2807 if (cc->dev) 2808 dm_put_device(ti, cc->dev); 2809 2810 kfree_sensitive(cc->cipher_string); 2811 kfree_sensitive(cc->key_string); 2812 kfree_sensitive(cc->cipher_auth); 2813 kfree_sensitive(cc->authenc_key); 2814 2815 mutex_destroy(&cc->bio_alloc_lock); 2816 2817 /* Must zero key material before freeing */ 2818 kfree_sensitive(cc); 2819 2820 spin_lock(&dm_crypt_clients_lock); 2821 WARN_ON(!dm_crypt_clients_n); 2822 dm_crypt_clients_n--; 2823 crypt_calculate_pages_per_client(); 2824 spin_unlock(&dm_crypt_clients_lock); 2825 2826 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1); 2827 } 2828 2829 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode) 2830 { 2831 struct crypt_config *cc = ti->private; 2832 2833 if (crypt_integrity_aead(cc)) 2834 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc)); 2835 else 2836 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc)); 2837 2838 if (cc->iv_size) 2839 /* at least a 64 bit sector number should fit in our buffer */ 2840 cc->iv_size = max(cc->iv_size, 2841 (unsigned int)(sizeof(u64) / sizeof(u8))); 2842 else if (ivmode) { 2843 DMWARN("Selected cipher does not support IVs"); 2844 ivmode = NULL; 2845 } 2846 2847 /* Choose ivmode, see comments at iv code. */ 2848 if (ivmode == NULL) 2849 cc->iv_gen_ops = NULL; 2850 else if (strcmp(ivmode, "plain") == 0) 2851 cc->iv_gen_ops = &crypt_iv_plain_ops; 2852 else if (strcmp(ivmode, "plain64") == 0) 2853 cc->iv_gen_ops = &crypt_iv_plain64_ops; 2854 else if (strcmp(ivmode, "plain64be") == 0) 2855 cc->iv_gen_ops = &crypt_iv_plain64be_ops; 2856 else if (strcmp(ivmode, "essiv") == 0) 2857 cc->iv_gen_ops = &crypt_iv_essiv_ops; 2858 else if (strcmp(ivmode, "benbi") == 0) 2859 cc->iv_gen_ops = &crypt_iv_benbi_ops; 2860 else if (strcmp(ivmode, "null") == 0) 2861 cc->iv_gen_ops = &crypt_iv_null_ops; 2862 else if (strcmp(ivmode, "eboiv") == 0) 2863 cc->iv_gen_ops = &crypt_iv_eboiv_ops; 2864 else if (strcmp(ivmode, "elephant") == 0) { 2865 cc->iv_gen_ops = &crypt_iv_elephant_ops; 2866 cc->key_parts = 2; 2867 cc->key_extra_size = cc->key_size / 2; 2868 if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE) 2869 return -EINVAL; 2870 set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags); 2871 } else if (strcmp(ivmode, "lmk") == 0) { 2872 cc->iv_gen_ops = &crypt_iv_lmk_ops; 2873 /* 2874 * Version 2 and 3 is recognised according 2875 * to length of provided multi-key string. 2876 * If present (version 3), last key is used as IV seed. 2877 * All keys (including IV seed) are always the same size. 2878 */ 2879 if (cc->key_size % cc->key_parts) { 2880 cc->key_parts++; 2881 cc->key_extra_size = cc->key_size / cc->key_parts; 2882 } 2883 } else if (strcmp(ivmode, "tcw") == 0) { 2884 cc->iv_gen_ops = &crypt_iv_tcw_ops; 2885 cc->key_parts += 2; /* IV + whitening */ 2886 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE; 2887 } else if (strcmp(ivmode, "random") == 0) { 2888 cc->iv_gen_ops = &crypt_iv_random_ops; 2889 /* Need storage space in integrity fields. */ 2890 cc->integrity_iv_size = cc->iv_size; 2891 } else { 2892 ti->error = "Invalid IV mode"; 2893 return -EINVAL; 2894 } 2895 2896 return 0; 2897 } 2898 2899 /* 2900 * Workaround to parse HMAC algorithm from AEAD crypto API spec. 2901 * The HMAC is needed to calculate tag size (HMAC digest size). 2902 * This should be probably done by crypto-api calls (once available...) 2903 */ 2904 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api) 2905 { 2906 char *start, *end, *mac_alg = NULL; 2907 struct crypto_ahash *mac; 2908 2909 if (!strstarts(cipher_api, "authenc(")) 2910 return 0; 2911 2912 start = strchr(cipher_api, '('); 2913 end = strchr(cipher_api, ','); 2914 if (!start || !end || ++start > end) 2915 return -EINVAL; 2916 2917 mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL); 2918 if (!mac_alg) 2919 return -ENOMEM; 2920 2921 mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 2922 kfree(mac_alg); 2923 2924 if (IS_ERR(mac)) 2925 return PTR_ERR(mac); 2926 2927 if (!test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags)) 2928 cc->key_mac_size = crypto_ahash_digestsize(mac); 2929 crypto_free_ahash(mac); 2930 2931 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL); 2932 if (!cc->authenc_key) 2933 return -ENOMEM; 2934 2935 return 0; 2936 } 2937 2938 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key, 2939 char **ivmode, char **ivopts) 2940 { 2941 struct crypt_config *cc = ti->private; 2942 char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME]; 2943 int ret = -EINVAL; 2944 2945 cc->tfms_count = 1; 2946 2947 /* 2948 * New format (capi: prefix) 2949 * capi:cipher_api_spec-iv:ivopts 2950 */ 2951 tmp = &cipher_in[strlen("capi:")]; 2952 2953 /* Separate IV options if present, it can contain another '-' in hash name */ 2954 *ivopts = strrchr(tmp, ':'); 2955 if (*ivopts) { 2956 **ivopts = '\0'; 2957 (*ivopts)++; 2958 } 2959 /* Parse IV mode */ 2960 *ivmode = strrchr(tmp, '-'); 2961 if (*ivmode) { 2962 **ivmode = '\0'; 2963 (*ivmode)++; 2964 } 2965 /* The rest is crypto API spec */ 2966 cipher_api = tmp; 2967 2968 /* Alloc AEAD, can be used only in new format. */ 2969 if (crypt_integrity_aead(cc)) { 2970 ret = crypt_ctr_auth_cipher(cc, cipher_api); 2971 if (ret < 0) { 2972 ti->error = "Invalid AEAD cipher spec"; 2973 return ret; 2974 } 2975 } 2976 2977 if (*ivmode && !strcmp(*ivmode, "lmk")) 2978 cc->tfms_count = 64; 2979 2980 if (*ivmode && !strcmp(*ivmode, "essiv")) { 2981 if (!*ivopts) { 2982 ti->error = "Digest algorithm missing for ESSIV mode"; 2983 return -EINVAL; 2984 } 2985 ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)", 2986 cipher_api, *ivopts); 2987 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) { 2988 ti->error = "Cannot allocate cipher string"; 2989 return -ENOMEM; 2990 } 2991 cipher_api = buf; 2992 } 2993 2994 cc->key_parts = cc->tfms_count; 2995 2996 /* Allocate cipher */ 2997 ret = crypt_alloc_tfms(cc, cipher_api); 2998 if (ret < 0) { 2999 ti->error = "Error allocating crypto tfm"; 3000 return ret; 3001 } 3002 3003 if (crypt_integrity_aead(cc)) 3004 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc)); 3005 else 3006 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc)); 3007 3008 return 0; 3009 } 3010 3011 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key, 3012 char **ivmode, char **ivopts) 3013 { 3014 struct crypt_config *cc = ti->private; 3015 char *tmp, *cipher, *chainmode, *keycount; 3016 char *cipher_api = NULL; 3017 int ret = -EINVAL; 3018 char dummy; 3019 3020 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) { 3021 ti->error = "Bad cipher specification"; 3022 return -EINVAL; 3023 } 3024 3025 /* 3026 * Legacy dm-crypt cipher specification 3027 * cipher[:keycount]-mode-iv:ivopts 3028 */ 3029 tmp = cipher_in; 3030 keycount = strsep(&tmp, "-"); 3031 cipher = strsep(&keycount, ":"); 3032 3033 if (!keycount) 3034 cc->tfms_count = 1; 3035 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 || 3036 !is_power_of_2(cc->tfms_count)) { 3037 ti->error = "Bad cipher key count specification"; 3038 return -EINVAL; 3039 } 3040 cc->key_parts = cc->tfms_count; 3041 3042 chainmode = strsep(&tmp, "-"); 3043 *ivmode = strsep(&tmp, ":"); 3044 *ivopts = tmp; 3045 3046 /* 3047 * For compatibility with the original dm-crypt mapping format, if 3048 * only the cipher name is supplied, use cbc-plain. 3049 */ 3050 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) { 3051 chainmode = "cbc"; 3052 *ivmode = "plain"; 3053 } 3054 3055 if (strcmp(chainmode, "ecb") && !*ivmode) { 3056 ti->error = "IV mechanism required"; 3057 return -EINVAL; 3058 } 3059 3060 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL); 3061 if (!cipher_api) 3062 goto bad_mem; 3063 3064 if (*ivmode && !strcmp(*ivmode, "essiv")) { 3065 if (!*ivopts) { 3066 ti->error = "Digest algorithm missing for ESSIV mode"; 3067 kfree(cipher_api); 3068 return -EINVAL; 3069 } 3070 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, 3071 "essiv(%s(%s),%s)", chainmode, cipher, *ivopts); 3072 } else { 3073 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, 3074 "%s(%s)", chainmode, cipher); 3075 } 3076 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) { 3077 kfree(cipher_api); 3078 goto bad_mem; 3079 } 3080 3081 /* Allocate cipher */ 3082 ret = crypt_alloc_tfms(cc, cipher_api); 3083 if (ret < 0) { 3084 ti->error = "Error allocating crypto tfm"; 3085 kfree(cipher_api); 3086 return ret; 3087 } 3088 kfree(cipher_api); 3089 3090 return 0; 3091 bad_mem: 3092 ti->error = "Cannot allocate cipher strings"; 3093 return -ENOMEM; 3094 } 3095 3096 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key) 3097 { 3098 struct crypt_config *cc = ti->private; 3099 char *ivmode = NULL, *ivopts = NULL; 3100 int ret; 3101 3102 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL); 3103 if (!cc->cipher_string) { 3104 ti->error = "Cannot allocate cipher strings"; 3105 return -ENOMEM; 3106 } 3107 3108 if (strstarts(cipher_in, "capi:")) 3109 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts); 3110 else 3111 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts); 3112 if (ret) 3113 return ret; 3114 3115 /* Initialize IV */ 3116 ret = crypt_ctr_ivmode(ti, ivmode); 3117 if (ret < 0) 3118 return ret; 3119 3120 /* Initialize and set key */ 3121 ret = crypt_set_key(cc, key); 3122 if (ret < 0) { 3123 ti->error = "Error decoding and setting key"; 3124 return ret; 3125 } 3126 3127 /* Allocate IV */ 3128 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) { 3129 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts); 3130 if (ret < 0) { 3131 ti->error = "Error creating IV"; 3132 return ret; 3133 } 3134 } 3135 3136 /* Initialize IV (set keys for ESSIV etc) */ 3137 if (cc->iv_gen_ops && cc->iv_gen_ops->init) { 3138 ret = cc->iv_gen_ops->init(cc); 3139 if (ret < 0) { 3140 ti->error = "Error initialising IV"; 3141 return ret; 3142 } 3143 } 3144 3145 /* wipe the kernel key payload copy */ 3146 if (cc->key_string) 3147 memset(cc->key, 0, cc->key_size * sizeof(u8)); 3148 3149 return ret; 3150 } 3151 3152 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv) 3153 { 3154 struct crypt_config *cc = ti->private; 3155 struct dm_arg_set as; 3156 static const struct dm_arg _args[] = { 3157 {0, 9, "Invalid number of feature args"}, 3158 }; 3159 unsigned int opt_params, val; 3160 const char *opt_string, *sval; 3161 char dummy; 3162 int ret; 3163 3164 /* Optional parameters */ 3165 as.argc = argc; 3166 as.argv = argv; 3167 3168 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 3169 if (ret) 3170 return ret; 3171 3172 while (opt_params--) { 3173 opt_string = dm_shift_arg(&as); 3174 if (!opt_string) { 3175 ti->error = "Not enough feature arguments"; 3176 return -EINVAL; 3177 } 3178 3179 if (!strcasecmp(opt_string, "allow_discards")) 3180 ti->num_discard_bios = 1; 3181 3182 else if (!strcasecmp(opt_string, "same_cpu_crypt")) 3183 set_bit(DM_CRYPT_SAME_CPU, &cc->flags); 3184 else if (!strcasecmp(opt_string, "high_priority")) 3185 set_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags); 3186 3187 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus")) 3188 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); 3189 else if (!strcasecmp(opt_string, "no_read_workqueue")) 3190 set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags); 3191 else if (!strcasecmp(opt_string, "no_write_workqueue")) 3192 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); 3193 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) { 3194 if (val == 0 || val > MAX_TAG_SIZE) { 3195 ti->error = "Invalid integrity arguments"; 3196 return -EINVAL; 3197 } 3198 cc->used_tag_size = val; 3199 sval = strchr(opt_string + strlen("integrity:"), ':') + 1; 3200 if (!strcasecmp(sval, "aead")) { 3201 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags); 3202 } else if (strcasecmp(sval, "none")) { 3203 ti->error = "Unknown integrity profile"; 3204 return -EINVAL; 3205 } 3206 3207 cc->cipher_auth = kstrdup(sval, GFP_KERNEL); 3208 if (!cc->cipher_auth) 3209 return -ENOMEM; 3210 } else if (sscanf(opt_string, "integrity_key_size:%u%c", &val, &dummy) == 1) { 3211 if (!val) { 3212 ti->error = "Invalid integrity_key_size argument"; 3213 return -EINVAL; 3214 } 3215 cc->key_mac_size = val; 3216 set_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags); 3217 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) { 3218 if (cc->sector_size < (1 << SECTOR_SHIFT) || 3219 cc->sector_size > 4096 || 3220 (cc->sector_size & (cc->sector_size - 1))) { 3221 ti->error = "Invalid feature value for sector_size"; 3222 return -EINVAL; 3223 } 3224 if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) { 3225 ti->error = "Device size is not multiple of sector_size feature"; 3226 return -EINVAL; 3227 } 3228 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT; 3229 } else if (!strcasecmp(opt_string, "iv_large_sectors")) 3230 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags); 3231 else { 3232 ti->error = "Invalid feature arguments"; 3233 return -EINVAL; 3234 } 3235 } 3236 3237 return 0; 3238 } 3239 3240 #ifdef CONFIG_BLK_DEV_ZONED 3241 static int crypt_report_zones(struct dm_target *ti, 3242 struct dm_report_zones_args *args, unsigned int nr_zones) 3243 { 3244 struct crypt_config *cc = ti->private; 3245 3246 return dm_report_zones(cc->dev->bdev, cc->start, 3247 cc->start + dm_target_offset(ti, args->next_sector), 3248 args, nr_zones); 3249 } 3250 #else 3251 #define crypt_report_zones NULL 3252 #endif 3253 3254 /* 3255 * Construct an encryption mapping: 3256 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start> 3257 */ 3258 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) 3259 { 3260 struct crypt_config *cc; 3261 const char *devname = dm_table_device_name(ti->table); 3262 int key_size, wq_id; 3263 unsigned int align_mask; 3264 unsigned int common_wq_flags; 3265 unsigned long long tmpll; 3266 int ret; 3267 size_t iv_size_padding, additional_req_size; 3268 char dummy; 3269 3270 if (argc < 5) { 3271 ti->error = "Not enough arguments"; 3272 return -EINVAL; 3273 } 3274 3275 key_size = get_key_size(&argv[1]); 3276 if (key_size < 0) { 3277 ti->error = "Cannot parse key size"; 3278 return -EINVAL; 3279 } 3280 3281 cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL); 3282 if (!cc) { 3283 ti->error = "Cannot allocate encryption context"; 3284 return -ENOMEM; 3285 } 3286 cc->key_size = key_size; 3287 cc->sector_size = (1 << SECTOR_SHIFT); 3288 cc->sector_shift = 0; 3289 3290 ti->private = cc; 3291 3292 spin_lock(&dm_crypt_clients_lock); 3293 dm_crypt_clients_n++; 3294 crypt_calculate_pages_per_client(); 3295 spin_unlock(&dm_crypt_clients_lock); 3296 3297 ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL); 3298 if (ret < 0) 3299 goto bad; 3300 3301 /* Optional parameters need to be read before cipher constructor */ 3302 if (argc > 5) { 3303 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]); 3304 if (ret) 3305 goto bad; 3306 } 3307 3308 ret = crypt_ctr_cipher(ti, argv[0], argv[1]); 3309 if (ret < 0) 3310 goto bad; 3311 3312 if (crypt_integrity_aead(cc)) { 3313 cc->dmreq_start = sizeof(struct aead_request); 3314 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc)); 3315 align_mask = crypto_aead_alignmask(any_tfm_aead(cc)); 3316 } else { 3317 cc->dmreq_start = sizeof(struct skcipher_request); 3318 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc)); 3319 align_mask = crypto_skcipher_alignmask(any_tfm(cc)); 3320 } 3321 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request)); 3322 3323 if (align_mask < CRYPTO_MINALIGN) { 3324 /* Allocate the padding exactly */ 3325 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request)) 3326 & align_mask; 3327 } else { 3328 /* 3329 * If the cipher requires greater alignment than kmalloc 3330 * alignment, we don't know the exact position of the 3331 * initialization vector. We must assume worst case. 3332 */ 3333 iv_size_padding = align_mask; 3334 } 3335 3336 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */ 3337 additional_req_size = sizeof(struct dm_crypt_request) + 3338 iv_size_padding + cc->iv_size + 3339 cc->iv_size + 3340 sizeof(uint64_t) + 3341 sizeof(unsigned int); 3342 3343 ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size); 3344 if (ret) { 3345 ti->error = "Cannot allocate crypt request mempool"; 3346 goto bad; 3347 } 3348 3349 cc->per_bio_data_size = ti->per_io_data_size = 3350 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size, 3351 ARCH_DMA_MINALIGN); 3352 3353 ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc); 3354 if (ret) { 3355 ti->error = "Cannot allocate page mempool"; 3356 goto bad; 3357 } 3358 3359 ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS); 3360 if (ret) { 3361 ti->error = "Cannot allocate crypt bioset"; 3362 goto bad; 3363 } 3364 3365 mutex_init(&cc->bio_alloc_lock); 3366 3367 ret = -EINVAL; 3368 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) || 3369 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) { 3370 ti->error = "Invalid iv_offset sector"; 3371 goto bad; 3372 } 3373 cc->iv_offset = tmpll; 3374 3375 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev); 3376 if (ret) { 3377 ti->error = "Device lookup failed"; 3378 goto bad; 3379 } 3380 3381 ret = -EINVAL; 3382 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) { 3383 ti->error = "Invalid device sector"; 3384 goto bad; 3385 } 3386 cc->start = tmpll; 3387 3388 if (bdev_is_zoned(cc->dev->bdev)) { 3389 /* 3390 * For zoned block devices, we need to preserve the issuer write 3391 * ordering. To do so, disable write workqueues and force inline 3392 * encryption completion. 3393 */ 3394 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); 3395 set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags); 3396 3397 /* 3398 * All zone append writes to a zone of a zoned block device will 3399 * have the same BIO sector, the start of the zone. When the 3400 * cypher IV mode uses sector values, all data targeting a 3401 * zone will be encrypted using the first sector numbers of the 3402 * zone. This will not result in write errors but will 3403 * cause most reads to fail as reads will use the sector values 3404 * for the actual data locations, resulting in IV mismatch. 3405 * To avoid this problem, ask DM core to emulate zone append 3406 * operations with regular writes. 3407 */ 3408 DMDEBUG("Zone append operations will be emulated"); 3409 ti->emulate_zone_append = true; 3410 } 3411 3412 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) { 3413 ret = crypt_integrity_ctr(cc, ti); 3414 if (ret) 3415 goto bad; 3416 3417 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->tuple_size; 3418 if (!cc->tag_pool_max_sectors) 3419 cc->tag_pool_max_sectors = 1; 3420 3421 ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS, 3422 cc->tag_pool_max_sectors * cc->tuple_size); 3423 if (ret) { 3424 ti->error = "Cannot allocate integrity tags mempool"; 3425 goto bad; 3426 } 3427 3428 cc->tag_pool_max_sectors <<= cc->sector_shift; 3429 } 3430 3431 wq_id = ida_alloc_min(&workqueue_ida, 1, GFP_KERNEL); 3432 if (wq_id < 0) { 3433 ti->error = "Couldn't get workqueue id"; 3434 ret = wq_id; 3435 goto bad; 3436 } 3437 cc->workqueue_id = wq_id; 3438 3439 ret = -ENOMEM; 3440 common_wq_flags = WQ_MEM_RECLAIM | WQ_SYSFS; 3441 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) 3442 common_wq_flags |= WQ_HIGHPRI; 3443 3444 cc->io_queue = alloc_workqueue("kcryptd_io-%s-%d", common_wq_flags, 1, devname, wq_id); 3445 if (!cc->io_queue) { 3446 ti->error = "Couldn't create kcryptd io queue"; 3447 goto bad; 3448 } 3449 3450 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) { 3451 cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d", 3452 common_wq_flags | WQ_CPU_INTENSIVE, 3453 1, devname, wq_id); 3454 } else { 3455 /* 3456 * While crypt_queue is certainly CPU intensive, the use of 3457 * WQ_CPU_INTENSIVE is meaningless with WQ_UNBOUND. 3458 */ 3459 cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d", 3460 common_wq_flags | WQ_UNBOUND, 3461 num_online_cpus(), devname, wq_id); 3462 } 3463 if (!cc->crypt_queue) { 3464 ti->error = "Couldn't create kcryptd queue"; 3465 goto bad; 3466 } 3467 3468 spin_lock_init(&cc->write_thread_lock); 3469 cc->write_tree = RB_ROOT; 3470 3471 cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname); 3472 if (IS_ERR(cc->write_thread)) { 3473 ret = PTR_ERR(cc->write_thread); 3474 cc->write_thread = NULL; 3475 ti->error = "Couldn't spawn write thread"; 3476 goto bad; 3477 } 3478 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) 3479 set_user_nice(cc->write_thread, MIN_NICE); 3480 3481 ti->num_flush_bios = 1; 3482 ti->limit_swap_bios = true; 3483 ti->accounts_remapped_io = true; 3484 3485 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1); 3486 return 0; 3487 3488 bad: 3489 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0); 3490 crypt_dtr(ti); 3491 return ret; 3492 } 3493 3494 static int crypt_map(struct dm_target *ti, struct bio *bio) 3495 { 3496 struct dm_crypt_io *io; 3497 struct crypt_config *cc = ti->private; 3498 unsigned max_sectors; 3499 3500 /* 3501 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues. 3502 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight 3503 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters 3504 */ 3505 if (unlikely(bio->bi_opf & REQ_PREFLUSH || 3506 bio_op(bio) == REQ_OP_DISCARD)) { 3507 bio_set_dev(bio, cc->dev->bdev); 3508 if (bio_sectors(bio)) 3509 bio->bi_iter.bi_sector = cc->start + 3510 dm_target_offset(ti, bio->bi_iter.bi_sector); 3511 return DM_MAPIO_REMAPPED; 3512 } 3513 3514 /* 3515 * Check if bio is too large, split as needed. 3516 */ 3517 max_sectors = get_max_request_size(cc, bio_data_dir(bio) == WRITE); 3518 if (unlikely(bio_sectors(bio) > max_sectors)) 3519 dm_accept_partial_bio(bio, max_sectors); 3520 3521 /* 3522 * Ensure that bio is a multiple of internal sector encryption size 3523 * and is aligned to this size as defined in IO hints. 3524 */ 3525 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0)) 3526 return DM_MAPIO_KILL; 3527 3528 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1))) 3529 return DM_MAPIO_KILL; 3530 3531 io = dm_per_bio_data(bio, cc->per_bio_data_size); 3532 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector)); 3533 3534 if (cc->tuple_size) { 3535 unsigned int tag_len = cc->tuple_size * (bio_sectors(bio) >> cc->sector_shift); 3536 3537 if (unlikely(tag_len > KMALLOC_MAX_SIZE)) 3538 io->integrity_metadata = NULL; 3539 else 3540 io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3541 3542 if (unlikely(!io->integrity_metadata)) { 3543 if (bio_sectors(bio) > cc->tag_pool_max_sectors) 3544 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors); 3545 io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO); 3546 io->integrity_metadata_from_pool = true; 3547 } 3548 } 3549 3550 if (crypt_integrity_aead(cc)) 3551 io->ctx.r.req_aead = (struct aead_request *)(io + 1); 3552 else 3553 io->ctx.r.req = (struct skcipher_request *)(io + 1); 3554 3555 if (bio_data_dir(io->base_bio) == READ) { 3556 if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP)) 3557 kcryptd_queue_read(io); 3558 } else 3559 kcryptd_queue_crypt(io); 3560 3561 return DM_MAPIO_SUBMITTED; 3562 } 3563 3564 static char hex2asc(unsigned char c) 3565 { 3566 return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27); 3567 } 3568 3569 static void crypt_status(struct dm_target *ti, status_type_t type, 3570 unsigned int status_flags, char *result, unsigned int maxlen) 3571 { 3572 struct crypt_config *cc = ti->private; 3573 unsigned int i, sz = 0; 3574 int num_feature_args = 0; 3575 3576 switch (type) { 3577 case STATUSTYPE_INFO: 3578 result[0] = '\0'; 3579 break; 3580 3581 case STATUSTYPE_TABLE: 3582 DMEMIT("%s ", cc->cipher_string); 3583 3584 if (cc->key_size > 0) { 3585 if (cc->key_string) 3586 DMEMIT(":%u:%s", cc->key_size, cc->key_string); 3587 else { 3588 for (i = 0; i < cc->key_size; i++) { 3589 DMEMIT("%c%c", hex2asc(cc->key[i] >> 4), 3590 hex2asc(cc->key[i] & 0xf)); 3591 } 3592 } 3593 } else 3594 DMEMIT("-"); 3595 3596 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset, 3597 cc->dev->name, (unsigned long long)cc->start); 3598 3599 num_feature_args += !!ti->num_discard_bios; 3600 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags); 3601 num_feature_args += test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags); 3602 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); 3603 num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags); 3604 num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); 3605 num_feature_args += !!cc->used_tag_size; 3606 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT); 3607 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags); 3608 num_feature_args += test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags); 3609 if (num_feature_args) { 3610 DMEMIT(" %d", num_feature_args); 3611 if (ti->num_discard_bios) 3612 DMEMIT(" allow_discards"); 3613 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) 3614 DMEMIT(" same_cpu_crypt"); 3615 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) 3616 DMEMIT(" high_priority"); 3617 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) 3618 DMEMIT(" submit_from_crypt_cpus"); 3619 if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) 3620 DMEMIT(" no_read_workqueue"); 3621 if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) 3622 DMEMIT(" no_write_workqueue"); 3623 if (cc->used_tag_size) 3624 DMEMIT(" integrity:%u:%s", cc->used_tag_size, cc->cipher_auth); 3625 if (cc->sector_size != (1 << SECTOR_SHIFT)) 3626 DMEMIT(" sector_size:%d", cc->sector_size); 3627 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) 3628 DMEMIT(" iv_large_sectors"); 3629 if (test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags)) 3630 DMEMIT(" integrity_key_size:%u", cc->key_mac_size); 3631 } 3632 break; 3633 3634 case STATUSTYPE_IMA: 3635 DMEMIT_TARGET_NAME_VERSION(ti->type); 3636 DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n'); 3637 DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n'); 3638 DMEMIT(",high_priority=%c", test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags) ? 'y' : 'n'); 3639 DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ? 3640 'y' : 'n'); 3641 DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ? 3642 'y' : 'n'); 3643 DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ? 3644 'y' : 'n'); 3645 DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ? 3646 'y' : 'n'); 3647 3648 if (cc->used_tag_size) 3649 DMEMIT(",integrity_tag_size=%u,cipher_auth=%s", 3650 cc->used_tag_size, cc->cipher_auth); 3651 if (cc->sector_size != (1 << SECTOR_SHIFT)) 3652 DMEMIT(",sector_size=%d", cc->sector_size); 3653 if (cc->cipher_string) 3654 DMEMIT(",cipher_string=%s", cc->cipher_string); 3655 3656 DMEMIT(",key_size=%u", cc->key_size); 3657 DMEMIT(",key_parts=%u", cc->key_parts); 3658 DMEMIT(",key_extra_size=%u", cc->key_extra_size); 3659 DMEMIT(",key_mac_size=%u", cc->key_mac_size); 3660 DMEMIT(";"); 3661 break; 3662 } 3663 } 3664 3665 static void crypt_postsuspend(struct dm_target *ti) 3666 { 3667 struct crypt_config *cc = ti->private; 3668 3669 set_bit(DM_CRYPT_SUSPENDED, &cc->flags); 3670 } 3671 3672 static int crypt_preresume(struct dm_target *ti) 3673 { 3674 struct crypt_config *cc = ti->private; 3675 3676 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) { 3677 DMERR("aborting resume - crypt key is not set."); 3678 return -EAGAIN; 3679 } 3680 3681 return 0; 3682 } 3683 3684 static void crypt_resume(struct dm_target *ti) 3685 { 3686 struct crypt_config *cc = ti->private; 3687 3688 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags); 3689 } 3690 3691 /* Message interface 3692 * key set <key> 3693 * key wipe 3694 */ 3695 static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv, 3696 char *result, unsigned int maxlen) 3697 { 3698 struct crypt_config *cc = ti->private; 3699 int key_size, ret = -EINVAL; 3700 3701 if (argc < 2) 3702 goto error; 3703 3704 if (!strcasecmp(argv[0], "key")) { 3705 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) { 3706 DMWARN("not suspended during key manipulation."); 3707 return -EINVAL; 3708 } 3709 if (argc == 3 && !strcasecmp(argv[1], "set")) { 3710 /* The key size may not be changed. */ 3711 key_size = get_key_size(&argv[2]); 3712 if (key_size < 0 || cc->key_size != key_size) { 3713 memset(argv[2], '0', strlen(argv[2])); 3714 return -EINVAL; 3715 } 3716 3717 ret = crypt_set_key(cc, argv[2]); 3718 if (ret) 3719 return ret; 3720 if (cc->iv_gen_ops && cc->iv_gen_ops->init) 3721 ret = cc->iv_gen_ops->init(cc); 3722 /* wipe the kernel key payload copy */ 3723 if (cc->key_string) 3724 memset(cc->key, 0, cc->key_size * sizeof(u8)); 3725 return ret; 3726 } 3727 if (argc == 2 && !strcasecmp(argv[1], "wipe")) 3728 return crypt_wipe_key(cc); 3729 } 3730 3731 error: 3732 DMWARN("unrecognised message received."); 3733 return -EINVAL; 3734 } 3735 3736 static int crypt_iterate_devices(struct dm_target *ti, 3737 iterate_devices_callout_fn fn, void *data) 3738 { 3739 struct crypt_config *cc = ti->private; 3740 3741 return fn(ti, cc->dev, cc->start, ti->len, data); 3742 } 3743 3744 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits) 3745 { 3746 struct crypt_config *cc = ti->private; 3747 3748 limits->logical_block_size = 3749 max_t(unsigned int, limits->logical_block_size, cc->sector_size); 3750 limits->physical_block_size = 3751 max_t(unsigned int, limits->physical_block_size, cc->sector_size); 3752 limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size); 3753 limits->dma_alignment = limits->logical_block_size - 1; 3754 } 3755 3756 static struct target_type crypt_target = { 3757 .name = "crypt", 3758 .version = {1, 28, 0}, 3759 .module = THIS_MODULE, 3760 .ctr = crypt_ctr, 3761 .dtr = crypt_dtr, 3762 .features = DM_TARGET_ZONED_HM, 3763 .report_zones = crypt_report_zones, 3764 .map = crypt_map, 3765 .status = crypt_status, 3766 .postsuspend = crypt_postsuspend, 3767 .preresume = crypt_preresume, 3768 .resume = crypt_resume, 3769 .message = crypt_message, 3770 .iterate_devices = crypt_iterate_devices, 3771 .io_hints = crypt_io_hints, 3772 }; 3773 module_dm(crypt); 3774 3775 MODULE_AUTHOR("Jana Saout <jana@saout.de>"); 3776 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption"); 3777 MODULE_LICENSE("GPL"); 3778