1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Generic pwmlib implementation
4 *
5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6 * Copyright (C) 2011-2012 Avionic Design GmbH
7 */
8
9 #define DEFAULT_SYMBOL_NAMESPACE "PWM"
10
11 #include <linux/acpi.h>
12 #include <linux/module.h>
13 #include <linux/idr.h>
14 #include <linux/of.h>
15 #include <linux/pwm.h>
16 #include <linux/list.h>
17 #include <linux/mutex.h>
18 #include <linux/err.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
23
24 #include <dt-bindings/pwm/pwm.h>
25
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/pwm.h>
28
29 /* protects access to pwm_chips */
30 static DEFINE_MUTEX(pwm_lock);
31
32 static DEFINE_IDR(pwm_chips);
33
pwmchip_lock(struct pwm_chip * chip)34 static void pwmchip_lock(struct pwm_chip *chip)
35 {
36 if (chip->atomic)
37 spin_lock(&chip->atomic_lock);
38 else
39 mutex_lock(&chip->nonatomic_lock);
40 }
41
pwmchip_unlock(struct pwm_chip * chip)42 static void pwmchip_unlock(struct pwm_chip *chip)
43 {
44 if (chip->atomic)
45 spin_unlock(&chip->atomic_lock);
46 else
47 mutex_unlock(&chip->nonatomic_lock);
48 }
49
DEFINE_GUARD(pwmchip,struct pwm_chip *,pwmchip_lock (_T),pwmchip_unlock (_T))50 DEFINE_GUARD(pwmchip, struct pwm_chip *, pwmchip_lock(_T), pwmchip_unlock(_T))
51
52 static bool pwm_wf_valid(const struct pwm_waveform *wf)
53 {
54 /*
55 * For now restrict waveforms to period_length_ns <= S64_MAX to provide
56 * some space for future extensions. One possibility is to simplify
57 * representing waveforms with inverted polarity using negative values
58 * somehow.
59 */
60 if (wf->period_length_ns > S64_MAX)
61 return false;
62
63 if (wf->duty_length_ns > wf->period_length_ns)
64 return false;
65
66 /*
67 * .duty_offset_ns is supposed to be smaller than .period_length_ns, apart
68 * from the corner case .duty_offset_ns == 0 && .period_length_ns == 0.
69 */
70 if (wf->duty_offset_ns && wf->duty_offset_ns >= wf->period_length_ns)
71 return false;
72
73 return true;
74 }
75
pwm_wf2state(const struct pwm_waveform * wf,struct pwm_state * state)76 static void pwm_wf2state(const struct pwm_waveform *wf, struct pwm_state *state)
77 {
78 if (wf->period_length_ns) {
79 if (wf->duty_length_ns + wf->duty_offset_ns < wf->period_length_ns)
80 *state = (struct pwm_state){
81 .enabled = true,
82 .polarity = PWM_POLARITY_NORMAL,
83 .period = wf->period_length_ns,
84 .duty_cycle = wf->duty_length_ns,
85 };
86 else
87 *state = (struct pwm_state){
88 .enabled = true,
89 .polarity = PWM_POLARITY_INVERSED,
90 .period = wf->period_length_ns,
91 .duty_cycle = wf->period_length_ns - wf->duty_length_ns,
92 };
93 } else {
94 *state = (struct pwm_state){
95 .enabled = false,
96 };
97 }
98 }
99
pwm_state2wf(const struct pwm_state * state,struct pwm_waveform * wf)100 static void pwm_state2wf(const struct pwm_state *state, struct pwm_waveform *wf)
101 {
102 if (state->enabled) {
103 if (state->polarity == PWM_POLARITY_NORMAL)
104 *wf = (struct pwm_waveform){
105 .period_length_ns = state->period,
106 .duty_length_ns = state->duty_cycle,
107 .duty_offset_ns = 0,
108 };
109 else
110 *wf = (struct pwm_waveform){
111 .period_length_ns = state->period,
112 .duty_length_ns = state->period - state->duty_cycle,
113 .duty_offset_ns = state->duty_cycle,
114 };
115 } else {
116 *wf = (struct pwm_waveform){
117 .period_length_ns = 0,
118 };
119 }
120 }
121
pwmwfcmp(const struct pwm_waveform * a,const struct pwm_waveform * b)122 static int pwmwfcmp(const struct pwm_waveform *a, const struct pwm_waveform *b)
123 {
124 if (a->period_length_ns > b->period_length_ns)
125 return 1;
126
127 if (a->period_length_ns < b->period_length_ns)
128 return -1;
129
130 if (a->duty_length_ns > b->duty_length_ns)
131 return 1;
132
133 if (a->duty_length_ns < b->duty_length_ns)
134 return -1;
135
136 if (a->duty_offset_ns > b->duty_offset_ns)
137 return 1;
138
139 if (a->duty_offset_ns < b->duty_offset_ns)
140 return -1;
141
142 return 0;
143 }
144
pwm_check_rounding(const struct pwm_waveform * wf,const struct pwm_waveform * wf_rounded)145 static bool pwm_check_rounding(const struct pwm_waveform *wf,
146 const struct pwm_waveform *wf_rounded)
147 {
148 if (!wf->period_length_ns)
149 return true;
150
151 if (wf->period_length_ns < wf_rounded->period_length_ns)
152 return false;
153
154 if (wf->duty_length_ns < wf_rounded->duty_length_ns)
155 return false;
156
157 if (wf->duty_offset_ns < wf_rounded->duty_offset_ns)
158 return false;
159
160 return true;
161 }
162
__pwm_round_waveform_tohw(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_waveform * wf,void * wfhw)163 static int __pwm_round_waveform_tohw(struct pwm_chip *chip, struct pwm_device *pwm,
164 const struct pwm_waveform *wf, void *wfhw)
165 {
166 const struct pwm_ops *ops = chip->ops;
167 int ret;
168
169 ret = ops->round_waveform_tohw(chip, pwm, wf, wfhw);
170 trace_pwm_round_waveform_tohw(pwm, wf, wfhw, ret);
171
172 return ret;
173 }
174
__pwm_round_waveform_fromhw(struct pwm_chip * chip,struct pwm_device * pwm,const void * wfhw,struct pwm_waveform * wf)175 static int __pwm_round_waveform_fromhw(struct pwm_chip *chip, struct pwm_device *pwm,
176 const void *wfhw, struct pwm_waveform *wf)
177 {
178 const struct pwm_ops *ops = chip->ops;
179 int ret;
180
181 ret = ops->round_waveform_fromhw(chip, pwm, wfhw, wf);
182 trace_pwm_round_waveform_fromhw(pwm, wfhw, wf, ret);
183
184 return ret;
185 }
186
__pwm_read_waveform(struct pwm_chip * chip,struct pwm_device * pwm,void * wfhw)187 static int __pwm_read_waveform(struct pwm_chip *chip, struct pwm_device *pwm, void *wfhw)
188 {
189 const struct pwm_ops *ops = chip->ops;
190 int ret;
191
192 ret = ops->read_waveform(chip, pwm, wfhw);
193 trace_pwm_read_waveform(pwm, wfhw, ret);
194
195 return ret;
196 }
197
__pwm_write_waveform(struct pwm_chip * chip,struct pwm_device * pwm,const void * wfhw)198 static int __pwm_write_waveform(struct pwm_chip *chip, struct pwm_device *pwm, const void *wfhw)
199 {
200 const struct pwm_ops *ops = chip->ops;
201 int ret;
202
203 ret = ops->write_waveform(chip, pwm, wfhw);
204 trace_pwm_write_waveform(pwm, wfhw, ret);
205
206 return ret;
207 }
208
209 #define WFHWSIZE 20
210
211 /**
212 * pwm_round_waveform_might_sleep - Query hardware capabilities
213 * Cannot be used in atomic context.
214 * @pwm: PWM device
215 * @wf: waveform to round and output parameter
216 *
217 * Typically a given waveform cannot be implemented exactly by hardware, e.g.
218 * because hardware only supports coarse period resolution or no duty_offset.
219 * This function returns the actually implemented waveform if you pass wf to
220 * pwm_set_waveform_might_sleep now.
221 *
222 * Note however that the world doesn't stop turning when you call it, so when
223 * doing
224 *
225 * pwm_round_waveform_might_sleep(mypwm, &wf);
226 * pwm_set_waveform_might_sleep(mypwm, &wf, true);
227 *
228 * the latter might fail, e.g. because an input clock changed its rate between
229 * these two calls and the waveform determined by
230 * pwm_round_waveform_might_sleep() cannot be implemented any more.
231 *
232 * Returns 0 on success, 1 if there is no valid hardware configuration matching
233 * the input waveform under the PWM rounding rules or a negative errno.
234 */
pwm_round_waveform_might_sleep(struct pwm_device * pwm,struct pwm_waveform * wf)235 int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
236 {
237 struct pwm_chip *chip = pwm->chip;
238 const struct pwm_ops *ops = chip->ops;
239 struct pwm_waveform wf_req = *wf;
240 char wfhw[WFHWSIZE];
241 int ret_tohw, ret_fromhw;
242
243 BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
244
245 if (!pwmchip_supports_waveform(chip))
246 return -EOPNOTSUPP;
247
248 if (!pwm_wf_valid(wf))
249 return -EINVAL;
250
251 guard(pwmchip)(chip);
252
253 if (!chip->operational)
254 return -ENODEV;
255
256 ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, wfhw);
257 if (ret_tohw < 0)
258 return ret_tohw;
259
260 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_tohw > 1)
261 dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_tohw: requested %llu/%llu [+%llu], return value %d\n",
262 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw);
263
264 ret_fromhw = __pwm_round_waveform_fromhw(chip, pwm, wfhw, wf);
265 if (ret_fromhw < 0)
266 return ret_fromhw;
267
268 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_fromhw > 0)
269 dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_fromhw: requested %llu/%llu [+%llu], return value %d\n",
270 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw);
271
272 if (IS_ENABLED(CONFIG_PWM_DEBUG) &&
273 ret_tohw == 0 && !pwm_check_rounding(&wf_req, wf))
274 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
275 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns,
276 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns);
277
278 return ret_tohw;
279 }
280 EXPORT_SYMBOL_GPL(pwm_round_waveform_might_sleep);
281
282 /**
283 * pwm_get_waveform_might_sleep - Query hardware about current configuration
284 * Cannot be used in atomic context.
285 * @pwm: PWM device
286 * @wf: output parameter
287 *
288 * Stores the current configuration of the PWM in @wf. Note this is the
289 * equivalent of pwm_get_state_hw() (and not pwm_get_state()) for pwm_waveform.
290 */
pwm_get_waveform_might_sleep(struct pwm_device * pwm,struct pwm_waveform * wf)291 int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
292 {
293 struct pwm_chip *chip = pwm->chip;
294 const struct pwm_ops *ops = chip->ops;
295 char wfhw[WFHWSIZE];
296 int err;
297
298 BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
299
300 if (!pwmchip_supports_waveform(chip) || !ops->read_waveform)
301 return -EOPNOTSUPP;
302
303 guard(pwmchip)(chip);
304
305 if (!chip->operational)
306 return -ENODEV;
307
308 err = __pwm_read_waveform(chip, pwm, &wfhw);
309 if (err)
310 return err;
311
312 return __pwm_round_waveform_fromhw(chip, pwm, &wfhw, wf);
313 }
314 EXPORT_SYMBOL_GPL(pwm_get_waveform_might_sleep);
315
316 /* Called with the pwmchip lock held */
__pwm_set_waveform(struct pwm_device * pwm,const struct pwm_waveform * wf,bool exact)317 static int __pwm_set_waveform(struct pwm_device *pwm,
318 const struct pwm_waveform *wf,
319 bool exact)
320 {
321 struct pwm_chip *chip = pwm->chip;
322 const struct pwm_ops *ops = chip->ops;
323 char wfhw[WFHWSIZE];
324 struct pwm_waveform wf_rounded;
325 int err;
326
327 BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
328
329 if (!pwmchip_supports_waveform(chip))
330 return -EOPNOTSUPP;
331
332 if (!pwm_wf_valid(wf))
333 return -EINVAL;
334
335 err = __pwm_round_waveform_tohw(chip, pwm, wf, &wfhw);
336 if (err)
337 return err;
338
339 if ((IS_ENABLED(CONFIG_PWM_DEBUG) || exact) && wf->period_length_ns) {
340 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
341 if (err)
342 return err;
343
344 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !pwm_check_rounding(wf, &wf_rounded))
345 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
346 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
347 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
348
349 if (exact && pwmwfcmp(wf, &wf_rounded)) {
350 dev_dbg(&chip->dev, "Requested no rounding, but %llu/%llu [+%llu] -> %llu/%llu [+%llu]\n",
351 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
352 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
353
354 return 1;
355 }
356 }
357
358 err = __pwm_write_waveform(chip, pwm, &wfhw);
359 if (err)
360 return err;
361
362 /* update .state */
363 pwm_wf2state(wf, &pwm->state);
364
365 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ops->read_waveform && wf->period_length_ns) {
366 struct pwm_waveform wf_set;
367
368 err = __pwm_read_waveform(chip, pwm, &wfhw);
369 if (err)
370 /* maybe ignore? */
371 return err;
372
373 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_set);
374 if (err)
375 /* maybe ignore? */
376 return err;
377
378 if (pwmwfcmp(&wf_set, &wf_rounded) != 0)
379 dev_err(&chip->dev,
380 "Unexpected setting: requested %llu/%llu [+%llu], expected %llu/%llu [+%llu], set %llu/%llu [+%llu]\n",
381 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
382 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns,
383 wf_set.duty_length_ns, wf_set.period_length_ns, wf_set.duty_offset_ns);
384 }
385 return 0;
386 }
387
388 /**
389 * pwm_set_waveform_might_sleep - Apply a new waveform
390 * Cannot be used in atomic context.
391 * @pwm: PWM device
392 * @wf: The waveform to apply
393 * @exact: If true no rounding is allowed
394 *
395 * Typically a requested waveform cannot be implemented exactly, e.g. because
396 * you requested .period_length_ns = 100 ns, but the hardware can only set
397 * periods that are a multiple of 8.5 ns. With that hardware passing exact =
398 * true results in pwm_set_waveform_might_sleep() failing and returning 1. If
399 * exact = false you get a period of 93.5 ns (i.e. the biggest period not bigger
400 * than the requested value).
401 * Note that even with exact = true, some rounding by less than 1 is
402 * possible/needed. In the above example requesting .period_length_ns = 94 and
403 * exact = true, you get the hardware configured with period = 93.5 ns.
404 */
pwm_set_waveform_might_sleep(struct pwm_device * pwm,const struct pwm_waveform * wf,bool exact)405 int pwm_set_waveform_might_sleep(struct pwm_device *pwm,
406 const struct pwm_waveform *wf, bool exact)
407 {
408 struct pwm_chip *chip = pwm->chip;
409 int err;
410
411 might_sleep();
412
413 guard(pwmchip)(chip);
414
415 if (!chip->operational)
416 return -ENODEV;
417
418 if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
419 /*
420 * Catch any drivers that have been marked as atomic but
421 * that will sleep anyway.
422 */
423 non_block_start();
424 err = __pwm_set_waveform(pwm, wf, exact);
425 non_block_end();
426 } else {
427 err = __pwm_set_waveform(pwm, wf, exact);
428 }
429
430 return err;
431 }
432 EXPORT_SYMBOL_GPL(pwm_set_waveform_might_sleep);
433
pwm_apply_debug(struct pwm_device * pwm,const struct pwm_state * state)434 static void pwm_apply_debug(struct pwm_device *pwm,
435 const struct pwm_state *state)
436 {
437 struct pwm_state *last = &pwm->last;
438 struct pwm_chip *chip = pwm->chip;
439 struct pwm_state s1 = { 0 }, s2 = { 0 };
440 int err;
441
442 if (!IS_ENABLED(CONFIG_PWM_DEBUG))
443 return;
444
445 /* No reasonable diagnosis possible without .get_state() */
446 if (!chip->ops->get_state)
447 return;
448
449 /*
450 * *state was just applied. Read out the hardware state and do some
451 * checks.
452 */
453
454 err = chip->ops->get_state(chip, pwm, &s1);
455 trace_pwm_get(pwm, &s1, err);
456 if (err)
457 /* If that failed there isn't much to debug */
458 return;
459
460 /*
461 * The lowlevel driver either ignored .polarity (which is a bug) or as
462 * best effort inverted .polarity and fixed .duty_cycle respectively.
463 * Undo this inversion and fixup for further tests.
464 */
465 if (s1.enabled && s1.polarity != state->polarity) {
466 s2.polarity = state->polarity;
467 s2.duty_cycle = s1.period - s1.duty_cycle;
468 s2.period = s1.period;
469 s2.enabled = s1.enabled;
470 } else {
471 s2 = s1;
472 }
473
474 if (s2.polarity != state->polarity &&
475 state->duty_cycle < state->period)
476 dev_warn(pwmchip_parent(chip), ".apply ignored .polarity\n");
477
478 if (state->enabled && s2.enabled &&
479 last->polarity == state->polarity &&
480 last->period > s2.period &&
481 last->period <= state->period)
482 dev_warn(pwmchip_parent(chip),
483 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
484 state->period, s2.period, last->period);
485
486 /*
487 * Rounding period up is fine only if duty_cycle is 0 then, because a
488 * flat line doesn't have a characteristic period.
489 */
490 if (state->enabled && s2.enabled && state->period < s2.period && s2.duty_cycle)
491 dev_warn(pwmchip_parent(chip),
492 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
493 state->period, s2.period);
494
495 if (state->enabled &&
496 last->polarity == state->polarity &&
497 last->period == s2.period &&
498 last->duty_cycle > s2.duty_cycle &&
499 last->duty_cycle <= state->duty_cycle)
500 dev_warn(pwmchip_parent(chip),
501 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
502 state->duty_cycle, state->period,
503 s2.duty_cycle, s2.period,
504 last->duty_cycle, last->period);
505
506 if (state->enabled && s2.enabled && state->duty_cycle < s2.duty_cycle)
507 dev_warn(pwmchip_parent(chip),
508 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
509 state->duty_cycle, state->period,
510 s2.duty_cycle, s2.period);
511
512 if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
513 dev_warn(pwmchip_parent(chip),
514 "requested disabled, but yielded enabled with duty > 0\n");
515
516 /* reapply the state that the driver reported being configured. */
517 err = chip->ops->apply(chip, pwm, &s1);
518 trace_pwm_apply(pwm, &s1, err);
519 if (err) {
520 *last = s1;
521 dev_err(pwmchip_parent(chip), "failed to reapply current setting\n");
522 return;
523 }
524
525 *last = (struct pwm_state){ 0 };
526 err = chip->ops->get_state(chip, pwm, last);
527 trace_pwm_get(pwm, last, err);
528 if (err)
529 return;
530
531 /* reapplication of the current state should give an exact match */
532 if (s1.enabled != last->enabled ||
533 s1.polarity != last->polarity ||
534 (s1.enabled && s1.period != last->period) ||
535 (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
536 dev_err(pwmchip_parent(chip),
537 ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
538 s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
539 last->enabled, last->polarity, last->duty_cycle,
540 last->period);
541 }
542 }
543
pwm_state_valid(const struct pwm_state * state)544 static bool pwm_state_valid(const struct pwm_state *state)
545 {
546 /*
547 * For a disabled state all other state description is irrelevant and
548 * and supposed to be ignored. So also ignore any strange values and
549 * consider the state ok.
550 */
551 if (state->enabled)
552 return true;
553
554 if (!state->period)
555 return false;
556
557 if (state->duty_cycle > state->period)
558 return false;
559
560 return true;
561 }
562
563 /**
564 * __pwm_apply() - atomically apply a new state to a PWM device
565 * @pwm: PWM device
566 * @state: new state to apply
567 */
__pwm_apply(struct pwm_device * pwm,const struct pwm_state * state)568 static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state)
569 {
570 struct pwm_chip *chip;
571 const struct pwm_ops *ops;
572 int err;
573
574 if (!pwm || !state)
575 return -EINVAL;
576
577 if (!pwm_state_valid(state)) {
578 /*
579 * Allow to transition from one invalid state to another.
580 * This ensures that you can e.g. change the polarity while
581 * the period is zero. (This happens on stm32 when the hardware
582 * is in its poweron default state.) This greatly simplifies
583 * working with the sysfs API where you can only change one
584 * parameter at a time.
585 */
586 if (!pwm_state_valid(&pwm->state)) {
587 pwm->state = *state;
588 return 0;
589 }
590
591 return -EINVAL;
592 }
593
594 chip = pwm->chip;
595 ops = chip->ops;
596
597 if (state->period == pwm->state.period &&
598 state->duty_cycle == pwm->state.duty_cycle &&
599 state->polarity == pwm->state.polarity &&
600 state->enabled == pwm->state.enabled &&
601 state->usage_power == pwm->state.usage_power)
602 return 0;
603
604 if (pwmchip_supports_waveform(chip)) {
605 struct pwm_waveform wf;
606 char wfhw[WFHWSIZE];
607
608 BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
609
610 pwm_state2wf(state, &wf);
611
612 /*
613 * The rounding is wrong here for states with inverted polarity.
614 * While .apply() rounds down duty_cycle (which represents the
615 * time from the start of the period to the inner edge),
616 * .round_waveform_tohw() rounds down the time the PWM is high.
617 * Can be fixed if the need arises, until reported otherwise
618 * let's assume that consumers don't care.
619 */
620
621 err = __pwm_round_waveform_tohw(chip, pwm, &wf, &wfhw);
622 if (err) {
623 if (err > 0)
624 /*
625 * This signals an invalid request, typically
626 * the requested period (or duty_offset) is
627 * smaller than possible with the hardware.
628 */
629 return -EINVAL;
630
631 return err;
632 }
633
634 if (IS_ENABLED(CONFIG_PWM_DEBUG)) {
635 struct pwm_waveform wf_rounded;
636
637 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
638 if (err)
639 return err;
640
641 if (!pwm_check_rounding(&wf, &wf_rounded))
642 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
643 wf.duty_length_ns, wf.period_length_ns, wf.duty_offset_ns,
644 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
645 }
646
647 err = __pwm_write_waveform(chip, pwm, &wfhw);
648 if (err)
649 return err;
650
651 pwm->state = *state;
652
653 } else {
654 err = ops->apply(chip, pwm, state);
655 trace_pwm_apply(pwm, state, err);
656 if (err)
657 return err;
658
659 pwm->state = *state;
660
661 /*
662 * only do this after pwm->state was applied as some
663 * implementations of .get_state() depend on this
664 */
665 pwm_apply_debug(pwm, state);
666 }
667
668 return 0;
669 }
670
671 /**
672 * pwm_apply_might_sleep() - atomically apply a new state to a PWM device
673 * Cannot be used in atomic context.
674 * @pwm: PWM device
675 * @state: new state to apply
676 */
pwm_apply_might_sleep(struct pwm_device * pwm,const struct pwm_state * state)677 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state)
678 {
679 int err;
680 struct pwm_chip *chip = pwm->chip;
681
682 /*
683 * Some lowlevel driver's implementations of .apply() make use of
684 * mutexes, also with some drivers only returning when the new
685 * configuration is active calling pwm_apply_might_sleep() from atomic context
686 * is a bad idea. So make it explicit that calling this function might
687 * sleep.
688 */
689 might_sleep();
690
691 guard(pwmchip)(chip);
692
693 if (!chip->operational)
694 return -ENODEV;
695
696 if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
697 /*
698 * Catch any drivers that have been marked as atomic but
699 * that will sleep anyway.
700 */
701 non_block_start();
702 err = __pwm_apply(pwm, state);
703 non_block_end();
704 } else {
705 err = __pwm_apply(pwm, state);
706 }
707
708 return err;
709 }
710 EXPORT_SYMBOL_GPL(pwm_apply_might_sleep);
711
712 /**
713 * pwm_apply_atomic() - apply a new state to a PWM device from atomic context
714 * Not all PWM devices support this function, check with pwm_might_sleep().
715 * @pwm: PWM device
716 * @state: new state to apply
717 */
pwm_apply_atomic(struct pwm_device * pwm,const struct pwm_state * state)718 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state)
719 {
720 struct pwm_chip *chip = pwm->chip;
721
722 WARN_ONCE(!chip->atomic,
723 "sleeping PWM driver used in atomic context\n");
724
725 guard(pwmchip)(chip);
726
727 if (!chip->operational)
728 return -ENODEV;
729
730 return __pwm_apply(pwm, state);
731 }
732 EXPORT_SYMBOL_GPL(pwm_apply_atomic);
733
734 /**
735 * pwm_get_state_hw() - get the current PWM state from hardware
736 * @pwm: PWM device
737 * @state: state to fill with the current PWM state
738 *
739 * Similar to pwm_get_state() but reads the current PWM state from hardware
740 * instead of the requested state.
741 *
742 * Returns: 0 on success or a negative error code on failure.
743 * Context: May sleep.
744 */
pwm_get_state_hw(struct pwm_device * pwm,struct pwm_state * state)745 int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state)
746 {
747 struct pwm_chip *chip = pwm->chip;
748 const struct pwm_ops *ops = chip->ops;
749 int ret = -EOPNOTSUPP;
750
751 might_sleep();
752
753 guard(pwmchip)(chip);
754
755 if (!chip->operational)
756 return -ENODEV;
757
758 if (pwmchip_supports_waveform(chip) && ops->read_waveform) {
759 char wfhw[WFHWSIZE];
760 struct pwm_waveform wf;
761
762 BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
763
764 ret = __pwm_read_waveform(chip, pwm, &wfhw);
765 if (ret)
766 return ret;
767
768 ret = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf);
769 if (ret)
770 return ret;
771
772 pwm_wf2state(&wf, state);
773
774 } else if (ops->get_state) {
775 ret = ops->get_state(chip, pwm, state);
776 trace_pwm_get(pwm, state, ret);
777 }
778
779 return ret;
780 }
781 EXPORT_SYMBOL_GPL(pwm_get_state_hw);
782
783 /**
784 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
785 * @pwm: PWM device
786 *
787 * This function will adjust the PWM config to the PWM arguments provided
788 * by the DT or PWM lookup table. This is particularly useful to adapt
789 * the bootloader config to the Linux one.
790 */
pwm_adjust_config(struct pwm_device * pwm)791 int pwm_adjust_config(struct pwm_device *pwm)
792 {
793 struct pwm_state state;
794 struct pwm_args pargs;
795
796 pwm_get_args(pwm, &pargs);
797 pwm_get_state(pwm, &state);
798
799 /*
800 * If the current period is zero it means that either the PWM driver
801 * does not support initial state retrieval or the PWM has not yet
802 * been configured.
803 *
804 * In either case, we setup the new period and polarity, and assign a
805 * duty cycle of 0.
806 */
807 if (!state.period) {
808 state.duty_cycle = 0;
809 state.period = pargs.period;
810 state.polarity = pargs.polarity;
811
812 return pwm_apply_might_sleep(pwm, &state);
813 }
814
815 /*
816 * Adjust the PWM duty cycle/period based on the period value provided
817 * in PWM args.
818 */
819 if (pargs.period != state.period) {
820 u64 dutycycle = (u64)state.duty_cycle * pargs.period;
821
822 do_div(dutycycle, state.period);
823 state.duty_cycle = dutycycle;
824 state.period = pargs.period;
825 }
826
827 /*
828 * If the polarity changed, we should also change the duty cycle.
829 */
830 if (pargs.polarity != state.polarity) {
831 state.polarity = pargs.polarity;
832 state.duty_cycle = state.period - state.duty_cycle;
833 }
834
835 return pwm_apply_might_sleep(pwm, &state);
836 }
837 EXPORT_SYMBOL_GPL(pwm_adjust_config);
838
839 /**
840 * pwm_capture() - capture and report a PWM signal
841 * @pwm: PWM device
842 * @result: structure to fill with capture result
843 * @timeout: time to wait, in milliseconds, before giving up on capture
844 *
845 * Returns: 0 on success or a negative error code on failure.
846 */
pwm_capture(struct pwm_device * pwm,struct pwm_capture * result,unsigned long timeout)847 static int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
848 unsigned long timeout)
849 {
850 struct pwm_chip *chip = pwm->chip;
851 const struct pwm_ops *ops = chip->ops;
852
853 if (!ops->capture)
854 return -ENOSYS;
855
856 /*
857 * Holding the pwm_lock is probably not needed. If you use pwm_capture()
858 * and you're interested to speed it up, please convince yourself it's
859 * really not needed, test and then suggest a patch on the mailing list.
860 */
861 guard(mutex)(&pwm_lock);
862
863 guard(pwmchip)(chip);
864
865 if (!chip->operational)
866 return -ENODEV;
867
868 return ops->capture(chip, pwm, result, timeout);
869 }
870
pwmchip_find_by_name(const char * name)871 static struct pwm_chip *pwmchip_find_by_name(const char *name)
872 {
873 struct pwm_chip *chip;
874 unsigned long id, tmp;
875
876 if (!name)
877 return NULL;
878
879 guard(mutex)(&pwm_lock);
880
881 idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) {
882 if (device_match_name(pwmchip_parent(chip), name))
883 return chip;
884 }
885
886 return NULL;
887 }
888
pwm_device_request(struct pwm_device * pwm,const char * label)889 static int pwm_device_request(struct pwm_device *pwm, const char *label)
890 {
891 int err;
892 struct pwm_chip *chip = pwm->chip;
893 const struct pwm_ops *ops = chip->ops;
894
895 if (test_bit(PWMF_REQUESTED, &pwm->flags))
896 return -EBUSY;
897
898 /*
899 * This function is called while holding pwm_lock. As .operational only
900 * changes while holding this lock, checking it here without holding the
901 * chip lock is fine.
902 */
903 if (!chip->operational)
904 return -ENODEV;
905
906 if (!try_module_get(chip->owner))
907 return -ENODEV;
908
909 if (!get_device(&chip->dev)) {
910 err = -ENODEV;
911 goto err_get_device;
912 }
913
914 if (ops->request) {
915 err = ops->request(chip, pwm);
916 if (err) {
917 put_device(&chip->dev);
918 err_get_device:
919 module_put(chip->owner);
920 return err;
921 }
922 }
923
924 if (ops->read_waveform || ops->get_state) {
925 /*
926 * Zero-initialize state because most drivers are unaware of
927 * .usage_power. The other members of state are supposed to be
928 * set by lowlevel drivers. We still initialize the whole
929 * structure for simplicity even though this might paper over
930 * faulty implementations of .get_state().
931 */
932 struct pwm_state state = { 0, };
933
934 err = pwm_get_state_hw(pwm, &state);
935 if (!err)
936 pwm->state = state;
937
938 if (IS_ENABLED(CONFIG_PWM_DEBUG))
939 pwm->last = pwm->state;
940 }
941
942 set_bit(PWMF_REQUESTED, &pwm->flags);
943 pwm->label = label;
944
945 return 0;
946 }
947
948 /**
949 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
950 * @chip: PWM chip
951 * @index: per-chip index of the PWM to request
952 * @label: a literal description string of this PWM
953 *
954 * Returns: A pointer to the PWM device at the given index of the given PWM
955 * chip. A negative error code is returned if the index is not valid for the
956 * specified PWM chip or if the PWM device cannot be requested.
957 */
pwm_request_from_chip(struct pwm_chip * chip,unsigned int index,const char * label)958 static struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
959 unsigned int index,
960 const char *label)
961 {
962 struct pwm_device *pwm;
963 int err;
964
965 if (!chip || index >= chip->npwm)
966 return ERR_PTR(-EINVAL);
967
968 guard(mutex)(&pwm_lock);
969
970 pwm = &chip->pwms[index];
971
972 err = pwm_device_request(pwm, label);
973 if (err < 0)
974 return ERR_PTR(err);
975
976 return pwm;
977 }
978
979 struct pwm_device *
of_pwm_xlate_with_flags(struct pwm_chip * chip,const struct of_phandle_args * args)980 of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args)
981 {
982 struct pwm_device *pwm;
983
984 /* period in the second cell and flags in the third cell are optional */
985 if (args->args_count < 1)
986 return ERR_PTR(-EINVAL);
987
988 pwm = pwm_request_from_chip(chip, args->args[0], NULL);
989 if (IS_ERR(pwm))
990 return pwm;
991
992 if (args->args_count > 1)
993 pwm->args.period = args->args[1];
994
995 pwm->args.polarity = PWM_POLARITY_NORMAL;
996 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
997 pwm->args.polarity = PWM_POLARITY_INVERSED;
998
999 return pwm;
1000 }
1001 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
1002
1003 struct pwm_device *
of_pwm_single_xlate(struct pwm_chip * chip,const struct of_phandle_args * args)1004 of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args)
1005 {
1006 struct pwm_device *pwm;
1007
1008 pwm = pwm_request_from_chip(chip, 0, NULL);
1009 if (IS_ERR(pwm))
1010 return pwm;
1011
1012 if (args->args_count > 0)
1013 pwm->args.period = args->args[0];
1014
1015 pwm->args.polarity = PWM_POLARITY_NORMAL;
1016 if (args->args_count > 1 && args->args[1] & PWM_POLARITY_INVERTED)
1017 pwm->args.polarity = PWM_POLARITY_INVERSED;
1018
1019 return pwm;
1020 }
1021 EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
1022
1023 struct pwm_export {
1024 struct device pwm_dev;
1025 struct pwm_device *pwm;
1026 struct mutex lock;
1027 struct pwm_state suspend;
1028 };
1029
pwmchip_from_dev(struct device * pwmchip_dev)1030 static inline struct pwm_chip *pwmchip_from_dev(struct device *pwmchip_dev)
1031 {
1032 return container_of(pwmchip_dev, struct pwm_chip, dev);
1033 }
1034
pwmexport_from_dev(struct device * pwm_dev)1035 static inline struct pwm_export *pwmexport_from_dev(struct device *pwm_dev)
1036 {
1037 return container_of(pwm_dev, struct pwm_export, pwm_dev);
1038 }
1039
pwm_from_dev(struct device * pwm_dev)1040 static inline struct pwm_device *pwm_from_dev(struct device *pwm_dev)
1041 {
1042 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1043
1044 return export->pwm;
1045 }
1046
period_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)1047 static ssize_t period_show(struct device *pwm_dev,
1048 struct device_attribute *attr,
1049 char *buf)
1050 {
1051 const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1052 struct pwm_state state;
1053
1054 pwm_get_state(pwm, &state);
1055
1056 return sysfs_emit(buf, "%llu\n", state.period);
1057 }
1058
period_store(struct device * pwm_dev,struct device_attribute * attr,const char * buf,size_t size)1059 static ssize_t period_store(struct device *pwm_dev,
1060 struct device_attribute *attr,
1061 const char *buf, size_t size)
1062 {
1063 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1064 struct pwm_device *pwm = export->pwm;
1065 struct pwm_state state;
1066 u64 val;
1067 int ret;
1068
1069 ret = kstrtou64(buf, 0, &val);
1070 if (ret)
1071 return ret;
1072
1073 guard(mutex)(&export->lock);
1074
1075 pwm_get_state(pwm, &state);
1076 state.period = val;
1077 ret = pwm_apply_might_sleep(pwm, &state);
1078
1079 return ret ? : size;
1080 }
1081
duty_cycle_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)1082 static ssize_t duty_cycle_show(struct device *pwm_dev,
1083 struct device_attribute *attr,
1084 char *buf)
1085 {
1086 const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1087 struct pwm_state state;
1088
1089 pwm_get_state(pwm, &state);
1090
1091 return sysfs_emit(buf, "%llu\n", state.duty_cycle);
1092 }
1093
duty_cycle_store(struct device * pwm_dev,struct device_attribute * attr,const char * buf,size_t size)1094 static ssize_t duty_cycle_store(struct device *pwm_dev,
1095 struct device_attribute *attr,
1096 const char *buf, size_t size)
1097 {
1098 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1099 struct pwm_device *pwm = export->pwm;
1100 struct pwm_state state;
1101 u64 val;
1102 int ret;
1103
1104 ret = kstrtou64(buf, 0, &val);
1105 if (ret)
1106 return ret;
1107
1108 guard(mutex)(&export->lock);
1109
1110 pwm_get_state(pwm, &state);
1111 state.duty_cycle = val;
1112 ret = pwm_apply_might_sleep(pwm, &state);
1113
1114 return ret ? : size;
1115 }
1116
enable_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)1117 static ssize_t enable_show(struct device *pwm_dev,
1118 struct device_attribute *attr,
1119 char *buf)
1120 {
1121 const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1122 struct pwm_state state;
1123
1124 pwm_get_state(pwm, &state);
1125
1126 return sysfs_emit(buf, "%d\n", state.enabled);
1127 }
1128
enable_store(struct device * pwm_dev,struct device_attribute * attr,const char * buf,size_t size)1129 static ssize_t enable_store(struct device *pwm_dev,
1130 struct device_attribute *attr,
1131 const char *buf, size_t size)
1132 {
1133 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1134 struct pwm_device *pwm = export->pwm;
1135 struct pwm_state state;
1136 int val, ret;
1137
1138 ret = kstrtoint(buf, 0, &val);
1139 if (ret)
1140 return ret;
1141
1142 guard(mutex)(&export->lock);
1143
1144 pwm_get_state(pwm, &state);
1145
1146 switch (val) {
1147 case 0:
1148 state.enabled = false;
1149 break;
1150 case 1:
1151 state.enabled = true;
1152 break;
1153 default:
1154 return -EINVAL;
1155 }
1156
1157 ret = pwm_apply_might_sleep(pwm, &state);
1158
1159 return ret ? : size;
1160 }
1161
polarity_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)1162 static ssize_t polarity_show(struct device *pwm_dev,
1163 struct device_attribute *attr,
1164 char *buf)
1165 {
1166 const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1167 const char *polarity = "unknown";
1168 struct pwm_state state;
1169
1170 pwm_get_state(pwm, &state);
1171
1172 switch (state.polarity) {
1173 case PWM_POLARITY_NORMAL:
1174 polarity = "normal";
1175 break;
1176
1177 case PWM_POLARITY_INVERSED:
1178 polarity = "inversed";
1179 break;
1180 }
1181
1182 return sysfs_emit(buf, "%s\n", polarity);
1183 }
1184
polarity_store(struct device * pwm_dev,struct device_attribute * attr,const char * buf,size_t size)1185 static ssize_t polarity_store(struct device *pwm_dev,
1186 struct device_attribute *attr,
1187 const char *buf, size_t size)
1188 {
1189 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1190 struct pwm_device *pwm = export->pwm;
1191 enum pwm_polarity polarity;
1192 struct pwm_state state;
1193 int ret;
1194
1195 if (sysfs_streq(buf, "normal"))
1196 polarity = PWM_POLARITY_NORMAL;
1197 else if (sysfs_streq(buf, "inversed"))
1198 polarity = PWM_POLARITY_INVERSED;
1199 else
1200 return -EINVAL;
1201
1202 guard(mutex)(&export->lock);
1203
1204 pwm_get_state(pwm, &state);
1205 state.polarity = polarity;
1206 ret = pwm_apply_might_sleep(pwm, &state);
1207
1208 return ret ? : size;
1209 }
1210
capture_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)1211 static ssize_t capture_show(struct device *pwm_dev,
1212 struct device_attribute *attr,
1213 char *buf)
1214 {
1215 struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1216 struct pwm_capture result;
1217 int ret;
1218
1219 ret = pwm_capture(pwm, &result, jiffies_to_msecs(HZ));
1220 if (ret)
1221 return ret;
1222
1223 return sysfs_emit(buf, "%u %u\n", result.period, result.duty_cycle);
1224 }
1225
1226 static DEVICE_ATTR_RW(period);
1227 static DEVICE_ATTR_RW(duty_cycle);
1228 static DEVICE_ATTR_RW(enable);
1229 static DEVICE_ATTR_RW(polarity);
1230 static DEVICE_ATTR_RO(capture);
1231
1232 static struct attribute *pwm_attrs[] = {
1233 &dev_attr_period.attr,
1234 &dev_attr_duty_cycle.attr,
1235 &dev_attr_enable.attr,
1236 &dev_attr_polarity.attr,
1237 &dev_attr_capture.attr,
1238 NULL
1239 };
1240 ATTRIBUTE_GROUPS(pwm);
1241
pwm_export_release(struct device * pwm_dev)1242 static void pwm_export_release(struct device *pwm_dev)
1243 {
1244 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1245
1246 kfree(export);
1247 }
1248
pwm_export_child(struct device * pwmchip_dev,struct pwm_device * pwm)1249 static int pwm_export_child(struct device *pwmchip_dev, struct pwm_device *pwm)
1250 {
1251 struct pwm_export *export;
1252 char *pwm_prop[2];
1253 int ret;
1254
1255 if (test_and_set_bit(PWMF_EXPORTED, &pwm->flags))
1256 return -EBUSY;
1257
1258 export = kzalloc(sizeof(*export), GFP_KERNEL);
1259 if (!export) {
1260 clear_bit(PWMF_EXPORTED, &pwm->flags);
1261 return -ENOMEM;
1262 }
1263
1264 export->pwm = pwm;
1265 mutex_init(&export->lock);
1266
1267 export->pwm_dev.release = pwm_export_release;
1268 export->pwm_dev.parent = pwmchip_dev;
1269 export->pwm_dev.devt = MKDEV(0, 0);
1270 export->pwm_dev.groups = pwm_groups;
1271 dev_set_name(&export->pwm_dev, "pwm%u", pwm->hwpwm);
1272
1273 ret = device_register(&export->pwm_dev);
1274 if (ret) {
1275 clear_bit(PWMF_EXPORTED, &pwm->flags);
1276 put_device(&export->pwm_dev);
1277 export = NULL;
1278 return ret;
1279 }
1280 pwm_prop[0] = kasprintf(GFP_KERNEL, "EXPORT=pwm%u", pwm->hwpwm);
1281 pwm_prop[1] = NULL;
1282 kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
1283 kfree(pwm_prop[0]);
1284
1285 return 0;
1286 }
1287
pwm_unexport_match(struct device * pwm_dev,const void * data)1288 static int pwm_unexport_match(struct device *pwm_dev, const void *data)
1289 {
1290 return pwm_from_dev(pwm_dev) == data;
1291 }
1292
pwm_unexport_child(struct device * pwmchip_dev,struct pwm_device * pwm)1293 static int pwm_unexport_child(struct device *pwmchip_dev, struct pwm_device *pwm)
1294 {
1295 struct device *pwm_dev;
1296 char *pwm_prop[2];
1297
1298 if (!test_and_clear_bit(PWMF_EXPORTED, &pwm->flags))
1299 return -ENODEV;
1300
1301 pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
1302 if (!pwm_dev)
1303 return -ENODEV;
1304
1305 pwm_prop[0] = kasprintf(GFP_KERNEL, "UNEXPORT=pwm%u", pwm->hwpwm);
1306 pwm_prop[1] = NULL;
1307 kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
1308 kfree(pwm_prop[0]);
1309
1310 /* for device_find_child() */
1311 put_device(pwm_dev);
1312 device_unregister(pwm_dev);
1313 pwm_put(pwm);
1314
1315 return 0;
1316 }
1317
export_store(struct device * pwmchip_dev,struct device_attribute * attr,const char * buf,size_t len)1318 static ssize_t export_store(struct device *pwmchip_dev,
1319 struct device_attribute *attr,
1320 const char *buf, size_t len)
1321 {
1322 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1323 struct pwm_device *pwm;
1324 unsigned int hwpwm;
1325 int ret;
1326
1327 ret = kstrtouint(buf, 0, &hwpwm);
1328 if (ret < 0)
1329 return ret;
1330
1331 if (hwpwm >= chip->npwm)
1332 return -ENODEV;
1333
1334 pwm = pwm_request_from_chip(chip, hwpwm, "sysfs");
1335 if (IS_ERR(pwm))
1336 return PTR_ERR(pwm);
1337
1338 ret = pwm_export_child(pwmchip_dev, pwm);
1339 if (ret < 0)
1340 pwm_put(pwm);
1341
1342 return ret ? : len;
1343 }
1344 static DEVICE_ATTR_WO(export);
1345
unexport_store(struct device * pwmchip_dev,struct device_attribute * attr,const char * buf,size_t len)1346 static ssize_t unexport_store(struct device *pwmchip_dev,
1347 struct device_attribute *attr,
1348 const char *buf, size_t len)
1349 {
1350 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1351 unsigned int hwpwm;
1352 int ret;
1353
1354 ret = kstrtouint(buf, 0, &hwpwm);
1355 if (ret < 0)
1356 return ret;
1357
1358 if (hwpwm >= chip->npwm)
1359 return -ENODEV;
1360
1361 ret = pwm_unexport_child(pwmchip_dev, &chip->pwms[hwpwm]);
1362
1363 return ret ? : len;
1364 }
1365 static DEVICE_ATTR_WO(unexport);
1366
npwm_show(struct device * pwmchip_dev,struct device_attribute * attr,char * buf)1367 static ssize_t npwm_show(struct device *pwmchip_dev, struct device_attribute *attr,
1368 char *buf)
1369 {
1370 const struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1371
1372 return sysfs_emit(buf, "%u\n", chip->npwm);
1373 }
1374 static DEVICE_ATTR_RO(npwm);
1375
1376 static struct attribute *pwm_chip_attrs[] = {
1377 &dev_attr_export.attr,
1378 &dev_attr_unexport.attr,
1379 &dev_attr_npwm.attr,
1380 NULL,
1381 };
1382 ATTRIBUTE_GROUPS(pwm_chip);
1383
1384 /* takes export->lock on success */
pwm_class_get_state(struct device * pwmchip_dev,struct pwm_device * pwm,struct pwm_state * state)1385 static struct pwm_export *pwm_class_get_state(struct device *pwmchip_dev,
1386 struct pwm_device *pwm,
1387 struct pwm_state *state)
1388 {
1389 struct device *pwm_dev;
1390 struct pwm_export *export;
1391
1392 if (!test_bit(PWMF_EXPORTED, &pwm->flags))
1393 return NULL;
1394
1395 pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
1396 if (!pwm_dev)
1397 return NULL;
1398
1399 export = pwmexport_from_dev(pwm_dev);
1400 put_device(pwm_dev); /* for device_find_child() */
1401
1402 mutex_lock(&export->lock);
1403 pwm_get_state(pwm, state);
1404
1405 return export;
1406 }
1407
pwm_class_apply_state(struct pwm_export * export,struct pwm_device * pwm,struct pwm_state * state)1408 static int pwm_class_apply_state(struct pwm_export *export,
1409 struct pwm_device *pwm,
1410 struct pwm_state *state)
1411 {
1412 int ret = pwm_apply_might_sleep(pwm, state);
1413
1414 /* release lock taken in pwm_class_get_state */
1415 mutex_unlock(&export->lock);
1416
1417 return ret;
1418 }
1419
pwm_class_resume_npwm(struct device * pwmchip_dev,unsigned int npwm)1420 static int pwm_class_resume_npwm(struct device *pwmchip_dev, unsigned int npwm)
1421 {
1422 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1423 unsigned int i;
1424 int ret = 0;
1425
1426 for (i = 0; i < npwm; i++) {
1427 struct pwm_device *pwm = &chip->pwms[i];
1428 struct pwm_state state;
1429 struct pwm_export *export;
1430
1431 export = pwm_class_get_state(pwmchip_dev, pwm, &state);
1432 if (!export)
1433 continue;
1434
1435 /* If pwmchip was not enabled before suspend, do nothing. */
1436 if (!export->suspend.enabled) {
1437 /* release lock taken in pwm_class_get_state */
1438 mutex_unlock(&export->lock);
1439 continue;
1440 }
1441
1442 state.enabled = export->suspend.enabled;
1443 ret = pwm_class_apply_state(export, pwm, &state);
1444 if (ret < 0)
1445 break;
1446 }
1447
1448 return ret;
1449 }
1450
pwm_class_suspend(struct device * pwmchip_dev)1451 static int pwm_class_suspend(struct device *pwmchip_dev)
1452 {
1453 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1454 unsigned int i;
1455 int ret = 0;
1456
1457 for (i = 0; i < chip->npwm; i++) {
1458 struct pwm_device *pwm = &chip->pwms[i];
1459 struct pwm_state state;
1460 struct pwm_export *export;
1461
1462 export = pwm_class_get_state(pwmchip_dev, pwm, &state);
1463 if (!export)
1464 continue;
1465
1466 /*
1467 * If pwmchip was not enabled before suspend, save
1468 * state for resume time and do nothing else.
1469 */
1470 export->suspend = state;
1471 if (!state.enabled) {
1472 /* release lock taken in pwm_class_get_state */
1473 mutex_unlock(&export->lock);
1474 continue;
1475 }
1476
1477 state.enabled = false;
1478 ret = pwm_class_apply_state(export, pwm, &state);
1479 if (ret < 0) {
1480 /*
1481 * roll back the PWM devices that were disabled by
1482 * this suspend function.
1483 */
1484 pwm_class_resume_npwm(pwmchip_dev, i);
1485 break;
1486 }
1487 }
1488
1489 return ret;
1490 }
1491
pwm_class_resume(struct device * pwmchip_dev)1492 static int pwm_class_resume(struct device *pwmchip_dev)
1493 {
1494 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1495
1496 return pwm_class_resume_npwm(pwmchip_dev, chip->npwm);
1497 }
1498
1499 static DEFINE_SIMPLE_DEV_PM_OPS(pwm_class_pm_ops, pwm_class_suspend, pwm_class_resume);
1500
1501 static struct class pwm_class = {
1502 .name = "pwm",
1503 .dev_groups = pwm_chip_groups,
1504 .pm = pm_sleep_ptr(&pwm_class_pm_ops),
1505 };
1506
pwmchip_sysfs_unexport(struct pwm_chip * chip)1507 static void pwmchip_sysfs_unexport(struct pwm_chip *chip)
1508 {
1509 unsigned int i;
1510
1511 for (i = 0; i < chip->npwm; i++) {
1512 struct pwm_device *pwm = &chip->pwms[i];
1513
1514 if (test_bit(PWMF_EXPORTED, &pwm->flags))
1515 pwm_unexport_child(&chip->dev, pwm);
1516 }
1517 }
1518
1519 #define PWMCHIP_ALIGN ARCH_DMA_MINALIGN
1520
pwmchip_priv(struct pwm_chip * chip)1521 static void *pwmchip_priv(struct pwm_chip *chip)
1522 {
1523 return (void *)chip + ALIGN(struct_size(chip, pwms, chip->npwm), PWMCHIP_ALIGN);
1524 }
1525
1526 /* This is the counterpart to pwmchip_alloc() */
pwmchip_put(struct pwm_chip * chip)1527 void pwmchip_put(struct pwm_chip *chip)
1528 {
1529 put_device(&chip->dev);
1530 }
1531 EXPORT_SYMBOL_GPL(pwmchip_put);
1532
pwmchip_release(struct device * pwmchip_dev)1533 static void pwmchip_release(struct device *pwmchip_dev)
1534 {
1535 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1536
1537 kfree(chip);
1538 }
1539
pwmchip_alloc(struct device * parent,unsigned int npwm,size_t sizeof_priv)1540 struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1541 {
1542 struct pwm_chip *chip;
1543 struct device *pwmchip_dev;
1544 size_t alloc_size;
1545 unsigned int i;
1546
1547 alloc_size = size_add(ALIGN(struct_size(chip, pwms, npwm), PWMCHIP_ALIGN),
1548 sizeof_priv);
1549
1550 chip = kzalloc(alloc_size, GFP_KERNEL);
1551 if (!chip)
1552 return ERR_PTR(-ENOMEM);
1553
1554 chip->npwm = npwm;
1555 chip->uses_pwmchip_alloc = true;
1556 chip->operational = false;
1557
1558 pwmchip_dev = &chip->dev;
1559 device_initialize(pwmchip_dev);
1560 pwmchip_dev->class = &pwm_class;
1561 pwmchip_dev->parent = parent;
1562 pwmchip_dev->release = pwmchip_release;
1563
1564 pwmchip_set_drvdata(chip, pwmchip_priv(chip));
1565
1566 for (i = 0; i < chip->npwm; i++) {
1567 struct pwm_device *pwm = &chip->pwms[i];
1568 pwm->chip = chip;
1569 pwm->hwpwm = i;
1570 }
1571
1572 return chip;
1573 }
1574 EXPORT_SYMBOL_GPL(pwmchip_alloc);
1575
devm_pwmchip_put(void * data)1576 static void devm_pwmchip_put(void *data)
1577 {
1578 struct pwm_chip *chip = data;
1579
1580 pwmchip_put(chip);
1581 }
1582
devm_pwmchip_alloc(struct device * parent,unsigned int npwm,size_t sizeof_priv)1583 struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1584 {
1585 struct pwm_chip *chip;
1586 int ret;
1587
1588 chip = pwmchip_alloc(parent, npwm, sizeof_priv);
1589 if (IS_ERR(chip))
1590 return chip;
1591
1592 ret = devm_add_action_or_reset(parent, devm_pwmchip_put, chip);
1593 if (ret)
1594 return ERR_PTR(ret);
1595
1596 return chip;
1597 }
1598 EXPORT_SYMBOL_GPL(devm_pwmchip_alloc);
1599
of_pwmchip_add(struct pwm_chip * chip)1600 static void of_pwmchip_add(struct pwm_chip *chip)
1601 {
1602 if (!pwmchip_parent(chip) || !pwmchip_parent(chip)->of_node)
1603 return;
1604
1605 if (!chip->of_xlate)
1606 chip->of_xlate = of_pwm_xlate_with_flags;
1607
1608 of_node_get(pwmchip_parent(chip)->of_node);
1609 }
1610
of_pwmchip_remove(struct pwm_chip * chip)1611 static void of_pwmchip_remove(struct pwm_chip *chip)
1612 {
1613 if (pwmchip_parent(chip))
1614 of_node_put(pwmchip_parent(chip)->of_node);
1615 }
1616
pwm_ops_check(const struct pwm_chip * chip)1617 static bool pwm_ops_check(const struct pwm_chip *chip)
1618 {
1619 const struct pwm_ops *ops = chip->ops;
1620
1621 if (ops->write_waveform) {
1622 if (!ops->round_waveform_tohw ||
1623 !ops->round_waveform_fromhw ||
1624 !ops->write_waveform)
1625 return false;
1626
1627 if (WFHWSIZE < ops->sizeof_wfhw) {
1628 dev_warn(pwmchip_parent(chip), "WFHWSIZE < %zu\n", ops->sizeof_wfhw);
1629 return false;
1630 }
1631 } else {
1632 if (!ops->apply)
1633 return false;
1634
1635 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
1636 dev_warn(pwmchip_parent(chip),
1637 "Please implement the .get_state() callback\n");
1638 }
1639
1640 return true;
1641 }
1642
pwm_device_link_add(struct device * dev,struct pwm_device * pwm)1643 static struct device_link *pwm_device_link_add(struct device *dev,
1644 struct pwm_device *pwm)
1645 {
1646 struct device_link *dl;
1647
1648 if (!dev) {
1649 /*
1650 * No device for the PWM consumer has been provided. It may
1651 * impact the PM sequence ordering: the PWM supplier may get
1652 * suspended before the consumer.
1653 */
1654 dev_warn(pwmchip_parent(pwm->chip),
1655 "No consumer device specified to create a link to\n");
1656 return NULL;
1657 }
1658
1659 dl = device_link_add(dev, pwmchip_parent(pwm->chip), DL_FLAG_AUTOREMOVE_CONSUMER);
1660 if (!dl) {
1661 dev_err(dev, "failed to create device link to %s\n",
1662 dev_name(pwmchip_parent(pwm->chip)));
1663 return ERR_PTR(-EINVAL);
1664 }
1665
1666 return dl;
1667 }
1668
fwnode_to_pwmchip(struct fwnode_handle * fwnode)1669 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
1670 {
1671 struct pwm_chip *chip;
1672 unsigned long id, tmp;
1673
1674 guard(mutex)(&pwm_lock);
1675
1676 idr_for_each_entry_ul(&pwm_chips, chip, tmp, id)
1677 if (pwmchip_parent(chip) && device_match_fwnode(pwmchip_parent(chip), fwnode))
1678 return chip;
1679
1680 return ERR_PTR(-EPROBE_DEFER);
1681 }
1682
1683 /**
1684 * of_pwm_get() - request a PWM via the PWM framework
1685 * @dev: device for PWM consumer
1686 * @np: device node to get the PWM from
1687 * @con_id: consumer name
1688 *
1689 * Returns the PWM device parsed from the phandle and index specified in the
1690 * "pwms" property of a device tree node or a negative error-code on failure.
1691 * Values parsed from the device tree are stored in the returned PWM device
1692 * object.
1693 *
1694 * If con_id is NULL, the first PWM device listed in the "pwms" property will
1695 * be requested. Otherwise the "pwm-names" property is used to do a reverse
1696 * lookup of the PWM index. This also means that the "pwm-names" property
1697 * becomes mandatory for devices that look up the PWM device via the con_id
1698 * parameter.
1699 *
1700 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1701 * error code on failure.
1702 */
of_pwm_get(struct device * dev,struct device_node * np,const char * con_id)1703 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
1704 const char *con_id)
1705 {
1706 struct pwm_device *pwm = NULL;
1707 struct of_phandle_args args;
1708 struct device_link *dl;
1709 struct pwm_chip *chip;
1710 int index = 0;
1711 int err;
1712
1713 if (con_id) {
1714 index = of_property_match_string(np, "pwm-names", con_id);
1715 if (index < 0)
1716 return ERR_PTR(index);
1717 }
1718
1719 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
1720 &args);
1721 if (err) {
1722 pr_err("%s(): can't parse \"pwms\" property\n", __func__);
1723 return ERR_PTR(err);
1724 }
1725
1726 chip = fwnode_to_pwmchip(of_fwnode_handle(args.np));
1727 if (IS_ERR(chip)) {
1728 if (PTR_ERR(chip) != -EPROBE_DEFER)
1729 pr_err("%s(): PWM chip not found\n", __func__);
1730
1731 pwm = ERR_CAST(chip);
1732 goto put;
1733 }
1734
1735 pwm = chip->of_xlate(chip, &args);
1736 if (IS_ERR(pwm))
1737 goto put;
1738
1739 dl = pwm_device_link_add(dev, pwm);
1740 if (IS_ERR(dl)) {
1741 /* of_xlate ended up calling pwm_request_from_chip() */
1742 pwm_put(pwm);
1743 pwm = ERR_CAST(dl);
1744 goto put;
1745 }
1746
1747 /*
1748 * If a consumer name was not given, try to look it up from the
1749 * "pwm-names" property if it exists. Otherwise use the name of
1750 * the user device node.
1751 */
1752 if (!con_id) {
1753 err = of_property_read_string_index(np, "pwm-names", index,
1754 &con_id);
1755 if (err < 0)
1756 con_id = np->name;
1757 }
1758
1759 pwm->label = con_id;
1760
1761 put:
1762 of_node_put(args.np);
1763
1764 return pwm;
1765 }
1766
1767 /**
1768 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
1769 * @fwnode: firmware node to get the "pwms" property from
1770 *
1771 * Returns the PWM device parsed from the fwnode and index specified in the
1772 * "pwms" property or a negative error-code on failure.
1773 * Values parsed from the device tree are stored in the returned PWM device
1774 * object.
1775 *
1776 * This is analogous to of_pwm_get() except con_id is not yet supported.
1777 * ACPI entries must look like
1778 * Package () {"pwms", Package ()
1779 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
1780 *
1781 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1782 * error code on failure.
1783 */
acpi_pwm_get(const struct fwnode_handle * fwnode)1784 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
1785 {
1786 struct pwm_device *pwm;
1787 struct fwnode_reference_args args;
1788 struct pwm_chip *chip;
1789 int ret;
1790
1791 memset(&args, 0, sizeof(args));
1792
1793 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
1794 if (ret < 0)
1795 return ERR_PTR(ret);
1796
1797 if (args.nargs < 2)
1798 return ERR_PTR(-EPROTO);
1799
1800 chip = fwnode_to_pwmchip(args.fwnode);
1801 if (IS_ERR(chip))
1802 return ERR_CAST(chip);
1803
1804 pwm = pwm_request_from_chip(chip, args.args[0], NULL);
1805 if (IS_ERR(pwm))
1806 return pwm;
1807
1808 pwm->args.period = args.args[1];
1809 pwm->args.polarity = PWM_POLARITY_NORMAL;
1810
1811 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
1812 pwm->args.polarity = PWM_POLARITY_INVERSED;
1813
1814 return pwm;
1815 }
1816
1817 static DEFINE_MUTEX(pwm_lookup_lock);
1818 static LIST_HEAD(pwm_lookup_list);
1819
1820 /**
1821 * pwm_get() - look up and request a PWM device
1822 * @dev: device for PWM consumer
1823 * @con_id: consumer name
1824 *
1825 * Lookup is first attempted using DT. If the device was not instantiated from
1826 * a device tree, a PWM chip and a relative index is looked up via a table
1827 * supplied by board setup code (see pwm_add_table()).
1828 *
1829 * Once a PWM chip has been found the specified PWM device will be requested
1830 * and is ready to be used.
1831 *
1832 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1833 * error code on failure.
1834 */
pwm_get(struct device * dev,const char * con_id)1835 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
1836 {
1837 const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
1838 const char *dev_id = dev ? dev_name(dev) : NULL;
1839 struct pwm_device *pwm;
1840 struct pwm_chip *chip;
1841 struct device_link *dl;
1842 unsigned int best = 0;
1843 struct pwm_lookup *p, *chosen = NULL;
1844 unsigned int match;
1845 int err;
1846
1847 /* look up via DT first */
1848 if (is_of_node(fwnode))
1849 return of_pwm_get(dev, to_of_node(fwnode), con_id);
1850
1851 /* then lookup via ACPI */
1852 if (is_acpi_node(fwnode)) {
1853 pwm = acpi_pwm_get(fwnode);
1854 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
1855 return pwm;
1856 }
1857
1858 /*
1859 * We look up the provider in the static table typically provided by
1860 * board setup code. We first try to lookup the consumer device by
1861 * name. If the consumer device was passed in as NULL or if no match
1862 * was found, we try to find the consumer by directly looking it up
1863 * by name.
1864 *
1865 * If a match is found, the provider PWM chip is looked up by name
1866 * and a PWM device is requested using the PWM device per-chip index.
1867 *
1868 * The lookup algorithm was shamelessly taken from the clock
1869 * framework:
1870 *
1871 * We do slightly fuzzy matching here:
1872 * An entry with a NULL ID is assumed to be a wildcard.
1873 * If an entry has a device ID, it must match
1874 * If an entry has a connection ID, it must match
1875 * Then we take the most specific entry - with the following order
1876 * of precedence: dev+con > dev only > con only.
1877 */
1878 scoped_guard(mutex, &pwm_lookup_lock)
1879 list_for_each_entry(p, &pwm_lookup_list, list) {
1880 match = 0;
1881
1882 if (p->dev_id) {
1883 if (!dev_id || strcmp(p->dev_id, dev_id))
1884 continue;
1885
1886 match += 2;
1887 }
1888
1889 if (p->con_id) {
1890 if (!con_id || strcmp(p->con_id, con_id))
1891 continue;
1892
1893 match += 1;
1894 }
1895
1896 if (match > best) {
1897 chosen = p;
1898
1899 if (match != 3)
1900 best = match;
1901 else
1902 break;
1903 }
1904 }
1905
1906 if (!chosen)
1907 return ERR_PTR(-ENODEV);
1908
1909 chip = pwmchip_find_by_name(chosen->provider);
1910
1911 /*
1912 * If the lookup entry specifies a module, load the module and retry
1913 * the PWM chip lookup. This can be used to work around driver load
1914 * ordering issues if driver's can't be made to properly support the
1915 * deferred probe mechanism.
1916 */
1917 if (!chip && chosen->module) {
1918 err = request_module(chosen->module);
1919 if (err == 0)
1920 chip = pwmchip_find_by_name(chosen->provider);
1921 }
1922
1923 if (!chip)
1924 return ERR_PTR(-EPROBE_DEFER);
1925
1926 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1927 if (IS_ERR(pwm))
1928 return pwm;
1929
1930 dl = pwm_device_link_add(dev, pwm);
1931 if (IS_ERR(dl)) {
1932 pwm_put(pwm);
1933 return ERR_CAST(dl);
1934 }
1935
1936 pwm->args.period = chosen->period;
1937 pwm->args.polarity = chosen->polarity;
1938
1939 return pwm;
1940 }
1941 EXPORT_SYMBOL_GPL(pwm_get);
1942
1943 /**
1944 * pwm_put() - release a PWM device
1945 * @pwm: PWM device
1946 */
pwm_put(struct pwm_device * pwm)1947 void pwm_put(struct pwm_device *pwm)
1948 {
1949 struct pwm_chip *chip;
1950
1951 if (!pwm)
1952 return;
1953
1954 chip = pwm->chip;
1955
1956 guard(mutex)(&pwm_lock);
1957
1958 /*
1959 * Trigger a warning if a consumer called pwm_put() twice.
1960 * If the chip isn't operational, PWMF_REQUESTED was already cleared in
1961 * pwmchip_remove(). So don't warn in this case.
1962 */
1963 if (chip->operational && !test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1964 pr_warn("PWM device already freed\n");
1965 return;
1966 }
1967
1968 if (chip->operational && chip->ops->free)
1969 pwm->chip->ops->free(pwm->chip, pwm);
1970
1971 pwm->label = NULL;
1972
1973 put_device(&chip->dev);
1974
1975 module_put(chip->owner);
1976 }
1977 EXPORT_SYMBOL_GPL(pwm_put);
1978
devm_pwm_release(void * pwm)1979 static void devm_pwm_release(void *pwm)
1980 {
1981 pwm_put(pwm);
1982 }
1983
1984 /**
1985 * devm_pwm_get() - resource managed pwm_get()
1986 * @dev: device for PWM consumer
1987 * @con_id: consumer name
1988 *
1989 * This function performs like pwm_get() but the acquired PWM device will
1990 * automatically be released on driver detach.
1991 *
1992 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1993 * error code on failure.
1994 */
devm_pwm_get(struct device * dev,const char * con_id)1995 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1996 {
1997 struct pwm_device *pwm;
1998 int ret;
1999
2000 pwm = pwm_get(dev, con_id);
2001 if (IS_ERR(pwm))
2002 return pwm;
2003
2004 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
2005 if (ret)
2006 return ERR_PTR(ret);
2007
2008 return pwm;
2009 }
2010 EXPORT_SYMBOL_GPL(devm_pwm_get);
2011
2012 /**
2013 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
2014 * @dev: device for PWM consumer
2015 * @fwnode: firmware node to get the PWM from
2016 * @con_id: consumer name
2017 *
2018 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
2019 * acpi_pwm_get() for a detailed description.
2020 *
2021 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
2022 * error code on failure.
2023 */
devm_fwnode_pwm_get(struct device * dev,struct fwnode_handle * fwnode,const char * con_id)2024 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
2025 struct fwnode_handle *fwnode,
2026 const char *con_id)
2027 {
2028 struct pwm_device *pwm = ERR_PTR(-ENODEV);
2029 int ret;
2030
2031 if (is_of_node(fwnode))
2032 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
2033 else if (is_acpi_node(fwnode))
2034 pwm = acpi_pwm_get(fwnode);
2035 if (IS_ERR(pwm))
2036 return pwm;
2037
2038 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
2039 if (ret)
2040 return ERR_PTR(ret);
2041
2042 return pwm;
2043 }
2044 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
2045
2046 /**
2047 * __pwmchip_add() - register a new PWM chip
2048 * @chip: the PWM chip to add
2049 * @owner: reference to the module providing the chip.
2050 *
2051 * Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the
2052 * pwmchip_add wrapper to do this right.
2053 *
2054 * Returns: 0 on success or a negative error code on failure.
2055 */
__pwmchip_add(struct pwm_chip * chip,struct module * owner)2056 int __pwmchip_add(struct pwm_chip *chip, struct module *owner)
2057 {
2058 int ret;
2059
2060 if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm)
2061 return -EINVAL;
2062
2063 /*
2064 * a struct pwm_chip must be allocated using (devm_)pwmchip_alloc,
2065 * otherwise the embedded struct device might disappear too early
2066 * resulting in memory corruption.
2067 * Catch drivers that were not converted appropriately.
2068 */
2069 if (!chip->uses_pwmchip_alloc)
2070 return -EINVAL;
2071
2072 if (!pwm_ops_check(chip))
2073 return -EINVAL;
2074
2075 chip->owner = owner;
2076
2077 if (chip->atomic)
2078 spin_lock_init(&chip->atomic_lock);
2079 else
2080 mutex_init(&chip->nonatomic_lock);
2081
2082 guard(mutex)(&pwm_lock);
2083
2084 ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL);
2085 if (ret < 0)
2086 return ret;
2087
2088 chip->id = ret;
2089
2090 dev_set_name(&chip->dev, "pwmchip%u", chip->id);
2091
2092 if (IS_ENABLED(CONFIG_OF))
2093 of_pwmchip_add(chip);
2094
2095 scoped_guard(pwmchip, chip)
2096 chip->operational = true;
2097
2098 ret = device_add(&chip->dev);
2099 if (ret)
2100 goto err_device_add;
2101
2102 return 0;
2103
2104 err_device_add:
2105 scoped_guard(pwmchip, chip)
2106 chip->operational = false;
2107
2108 if (IS_ENABLED(CONFIG_OF))
2109 of_pwmchip_remove(chip);
2110
2111 idr_remove(&pwm_chips, chip->id);
2112
2113 return ret;
2114 }
2115 EXPORT_SYMBOL_GPL(__pwmchip_add);
2116
2117 /**
2118 * pwmchip_remove() - remove a PWM chip
2119 * @chip: the PWM chip to remove
2120 *
2121 * Removes a PWM chip.
2122 */
pwmchip_remove(struct pwm_chip * chip)2123 void pwmchip_remove(struct pwm_chip *chip)
2124 {
2125 pwmchip_sysfs_unexport(chip);
2126
2127 scoped_guard(mutex, &pwm_lock) {
2128 unsigned int i;
2129
2130 scoped_guard(pwmchip, chip)
2131 chip->operational = false;
2132
2133 for (i = 0; i < chip->npwm; ++i) {
2134 struct pwm_device *pwm = &chip->pwms[i];
2135
2136 if (test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
2137 dev_warn(&chip->dev, "Freeing requested PWM #%u\n", i);
2138 if (pwm->chip->ops->free)
2139 pwm->chip->ops->free(pwm->chip, pwm);
2140 }
2141 }
2142
2143 if (IS_ENABLED(CONFIG_OF))
2144 of_pwmchip_remove(chip);
2145
2146 idr_remove(&pwm_chips, chip->id);
2147 }
2148
2149 device_del(&chip->dev);
2150 }
2151 EXPORT_SYMBOL_GPL(pwmchip_remove);
2152
devm_pwmchip_remove(void * data)2153 static void devm_pwmchip_remove(void *data)
2154 {
2155 struct pwm_chip *chip = data;
2156
2157 pwmchip_remove(chip);
2158 }
2159
__devm_pwmchip_add(struct device * dev,struct pwm_chip * chip,struct module * owner)2160 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner)
2161 {
2162 int ret;
2163
2164 ret = __pwmchip_add(chip, owner);
2165 if (ret)
2166 return ret;
2167
2168 return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
2169 }
2170 EXPORT_SYMBOL_GPL(__devm_pwmchip_add);
2171
2172 /**
2173 * pwm_add_table() - register PWM device consumers
2174 * @table: array of consumers to register
2175 * @num: number of consumers in table
2176 */
pwm_add_table(struct pwm_lookup * table,size_t num)2177 void pwm_add_table(struct pwm_lookup *table, size_t num)
2178 {
2179 guard(mutex)(&pwm_lookup_lock);
2180
2181 while (num--) {
2182 list_add_tail(&table->list, &pwm_lookup_list);
2183 table++;
2184 }
2185 }
2186
2187 /**
2188 * pwm_remove_table() - unregister PWM device consumers
2189 * @table: array of consumers to unregister
2190 * @num: number of consumers in table
2191 */
pwm_remove_table(struct pwm_lookup * table,size_t num)2192 void pwm_remove_table(struct pwm_lookup *table, size_t num)
2193 {
2194 guard(mutex)(&pwm_lookup_lock);
2195
2196 while (num--) {
2197 list_del(&table->list);
2198 table++;
2199 }
2200 }
2201
pwm_dbg_show(struct pwm_chip * chip,struct seq_file * s)2202 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
2203 {
2204 unsigned int i;
2205
2206 for (i = 0; i < chip->npwm; i++) {
2207 struct pwm_device *pwm = &chip->pwms[i];
2208 struct pwm_state state;
2209
2210 pwm_get_state(pwm, &state);
2211
2212 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
2213
2214 if (test_bit(PWMF_REQUESTED, &pwm->flags))
2215 seq_puts(s, " requested");
2216
2217 if (state.enabled)
2218 seq_puts(s, " enabled");
2219
2220 seq_printf(s, " period: %llu ns", state.period);
2221 seq_printf(s, " duty: %llu ns", state.duty_cycle);
2222 seq_printf(s, " polarity: %s",
2223 state.polarity ? "inverse" : "normal");
2224
2225 if (state.usage_power)
2226 seq_puts(s, " usage_power");
2227
2228 seq_puts(s, "\n");
2229 }
2230 }
2231
pwm_seq_start(struct seq_file * s,loff_t * pos)2232 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
2233 {
2234 unsigned long id = *pos;
2235 void *ret;
2236
2237 mutex_lock(&pwm_lock);
2238 s->private = "";
2239
2240 ret = idr_get_next_ul(&pwm_chips, &id);
2241 *pos = id;
2242 return ret;
2243 }
2244
pwm_seq_next(struct seq_file * s,void * v,loff_t * pos)2245 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
2246 {
2247 unsigned long id = *pos + 1;
2248 void *ret;
2249
2250 s->private = "\n";
2251
2252 ret = idr_get_next_ul(&pwm_chips, &id);
2253 *pos = id;
2254 return ret;
2255 }
2256
pwm_seq_stop(struct seq_file * s,void * v)2257 static void pwm_seq_stop(struct seq_file *s, void *v)
2258 {
2259 mutex_unlock(&pwm_lock);
2260 }
2261
pwm_seq_show(struct seq_file * s,void * v)2262 static int pwm_seq_show(struct seq_file *s, void *v)
2263 {
2264 struct pwm_chip *chip = v;
2265
2266 seq_printf(s, "%s%d: %s/%s, %d PWM device%s\n",
2267 (char *)s->private, chip->id,
2268 pwmchip_parent(chip)->bus ? pwmchip_parent(chip)->bus->name : "no-bus",
2269 dev_name(pwmchip_parent(chip)), chip->npwm,
2270 (chip->npwm != 1) ? "s" : "");
2271
2272 pwm_dbg_show(chip, s);
2273
2274 return 0;
2275 }
2276
2277 static const struct seq_operations pwm_debugfs_sops = {
2278 .start = pwm_seq_start,
2279 .next = pwm_seq_next,
2280 .stop = pwm_seq_stop,
2281 .show = pwm_seq_show,
2282 };
2283
2284 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
2285
pwm_init(void)2286 static int __init pwm_init(void)
2287 {
2288 int ret;
2289
2290 ret = class_register(&pwm_class);
2291 if (ret) {
2292 pr_err("Failed to initialize PWM class (%pe)\n", ERR_PTR(ret));
2293 return ret;
2294 }
2295
2296 if (IS_ENABLED(CONFIG_DEBUG_FS))
2297 debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
2298
2299 return 0;
2300 }
2301 subsys_initcall(pwm_init);
2302