xref: /linux/drivers/gpu/drm/i915/gt/intel_workarounds.c (revision 3e93d5bbcbfc3808f83712c0701f9d4c148cc8ed)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2018 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "intel_context.h"
9 #include "intel_engine_pm.h"
10 #include "intel_engine_regs.h"
11 #include "intel_gpu_commands.h"
12 #include "intel_gt.h"
13 #include "intel_gt_ccs_mode.h"
14 #include "intel_gt_mcr.h"
15 #include "intel_gt_print.h"
16 #include "intel_gt_regs.h"
17 #include "intel_ring.h"
18 #include "intel_workarounds.h"
19 
20 #include "display/intel_fbc_regs.h"
21 
22 /**
23  * DOC: Hardware workarounds
24  *
25  * Hardware workarounds are register programming documented to be executed in
26  * the driver that fall outside of the normal programming sequences for a
27  * platform. There are some basic categories of workarounds, depending on
28  * how/when they are applied:
29  *
30  * - Context workarounds: workarounds that touch registers that are
31  *   saved/restored to/from the HW context image. The list is emitted (via Load
32  *   Register Immediate commands) once when initializing the device and saved in
33  *   the default context. That default context is then used on every context
34  *   creation to have a "primed golden context", i.e. a context image that
35  *   already contains the changes needed to all the registers.
36  *
37  *   Context workarounds should be implemented in the \*_ctx_workarounds_init()
38  *   variants respective to the targeted platforms.
39  *
40  * - Engine workarounds: the list of these WAs is applied whenever the specific
41  *   engine is reset. It's also possible that a set of engine classes share a
42  *   common power domain and they are reset together. This happens on some
43  *   platforms with render and compute engines. In this case (at least) one of
44  *   them need to keeep the workaround programming: the approach taken in the
45  *   driver is to tie those workarounds to the first compute/render engine that
46  *   is registered.  When executing with GuC submission, engine resets are
47  *   outside of kernel driver control, hence the list of registers involved in
48  *   written once, on engine initialization, and then passed to GuC, that
49  *   saves/restores their values before/after the reset takes place. See
50  *   ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference.
51  *
52  *   Workarounds for registers specific to RCS and CCS should be implemented in
53  *   rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for
54  *   registers belonging to BCS, VCS or VECS should be implemented in
55  *   xcs_engine_wa_init(). Workarounds for registers not belonging to a specific
56  *   engine's MMIO range but that are part of of the common RCS/CCS reset domain
57  *   should be implemented in general_render_compute_wa_init(). The settings
58  *   about the CCS load balancing should be added in ccs_engine_wa_mode().
59  *
60  * - GT workarounds: the list of these WAs is applied whenever these registers
61  *   revert to their default values: on GPU reset, suspend/resume [1]_, etc.
62  *
63  *   GT workarounds should be implemented in the \*_gt_workarounds_init()
64  *   variants respective to the targeted platforms.
65  *
66  * - Register whitelist: some workarounds need to be implemented in userspace,
67  *   but need to touch privileged registers. The whitelist in the kernel
68  *   instructs the hardware to allow the access to happen. From the kernel side,
69  *   this is just a special case of a MMIO workaround (as we write the list of
70  *   these to/be-whitelisted registers to some special HW registers).
71  *
72  *   Register whitelisting should be done in the \*_whitelist_build() variants
73  *   respective to the targeted platforms.
74  *
75  * - Workaround batchbuffers: buffers that get executed automatically by the
76  *   hardware on every HW context restore. These buffers are created and
77  *   programmed in the default context so the hardware always go through those
78  *   programming sequences when switching contexts. The support for workaround
79  *   batchbuffers is enabled these hardware mechanisms:
80  *
81  *   #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default
82  *      context, pointing the hardware to jump to that location when that offset
83  *      is reached in the context restore. Workaround batchbuffer in the driver
84  *      currently uses this mechanism for all platforms.
85  *
86  *   #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context,
87  *      pointing the hardware to a buffer to continue executing after the
88  *      engine registers are restored in a context restore sequence. This is
89  *      currently not used in the driver.
90  *
91  * - Other:  There are WAs that, due to their nature, cannot be applied from a
92  *   central place. Those are peppered around the rest of the code, as needed.
93  *   Workarounds related to the display IP are the main example.
94  *
95  * .. [1] Technically, some registers are powercontext saved & restored, so they
96  *    survive a suspend/resume. In practice, writing them again is not too
97  *    costly and simplifies things, so it's the approach taken in the driver.
98  */
99 
wa_init_start(struct i915_wa_list * wal,struct intel_gt * gt,const char * name,const char * engine_name)100 static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt,
101 			  const char *name, const char *engine_name)
102 {
103 	wal->gt = gt;
104 	wal->name = name;
105 	wal->engine_name = engine_name;
106 }
107 
108 #define WA_LIST_CHUNK (1 << 4)
109 
wa_init_finish(struct i915_wa_list * wal)110 static void wa_init_finish(struct i915_wa_list *wal)
111 {
112 	/* Trim unused entries. */
113 	if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) {
114 		struct i915_wa *list = kmemdup_array(wal->list, wal->count,
115 						     sizeof(*list), GFP_KERNEL);
116 
117 		if (list) {
118 			kfree(wal->list);
119 			wal->list = list;
120 		}
121 	}
122 
123 	if (!wal->count)
124 		return;
125 
126 	gt_dbg(wal->gt, "Initialized %u %s workarounds on %s\n",
127 	       wal->wa_count, wal->name, wal->engine_name);
128 }
129 
130 static enum forcewake_domains
wal_get_fw_for_rmw(struct intel_uncore * uncore,const struct i915_wa_list * wal)131 wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal)
132 {
133 	enum forcewake_domains fw = 0;
134 	struct i915_wa *wa;
135 	unsigned int i;
136 
137 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
138 		fw |= intel_uncore_forcewake_for_reg(uncore,
139 						     wa->reg,
140 						     FW_REG_READ |
141 						     FW_REG_WRITE);
142 
143 	return fw;
144 }
145 
_wa_add(struct i915_wa_list * wal,const struct i915_wa * wa)146 static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa)
147 {
148 	unsigned int addr = i915_mmio_reg_offset(wa->reg);
149 	struct drm_i915_private *i915 = wal->gt->i915;
150 	unsigned int start = 0, end = wal->count;
151 	const unsigned int grow = WA_LIST_CHUNK;
152 	struct i915_wa *wa_;
153 
154 	GEM_BUG_ON(!is_power_of_2(grow));
155 
156 	if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */
157 		struct i915_wa *list;
158 
159 		list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*list),
160 				     GFP_KERNEL);
161 		if (!list) {
162 			drm_err(&i915->drm, "No space for workaround init!\n");
163 			return;
164 		}
165 
166 		if (wal->list) {
167 			memcpy(list, wal->list, sizeof(*wa) * wal->count);
168 			kfree(wal->list);
169 		}
170 
171 		wal->list = list;
172 	}
173 
174 	while (start < end) {
175 		unsigned int mid = start + (end - start) / 2;
176 
177 		if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) {
178 			start = mid + 1;
179 		} else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) {
180 			end = mid;
181 		} else {
182 			wa_ = &wal->list[mid];
183 
184 			if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) {
185 				drm_err(&i915->drm,
186 					"Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n",
187 					i915_mmio_reg_offset(wa_->reg),
188 					wa_->clr, wa_->set);
189 
190 				wa_->set &= ~wa->clr;
191 			}
192 
193 			wal->wa_count++;
194 			wa_->set |= wa->set;
195 			wa_->clr |= wa->clr;
196 			wa_->read |= wa->read;
197 			return;
198 		}
199 	}
200 
201 	wal->wa_count++;
202 	wa_ = &wal->list[wal->count++];
203 	*wa_ = *wa;
204 
205 	while (wa_-- > wal->list) {
206 		GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) ==
207 			   i915_mmio_reg_offset(wa_[1].reg));
208 		if (i915_mmio_reg_offset(wa_[1].reg) >
209 		    i915_mmio_reg_offset(wa_[0].reg))
210 			break;
211 
212 		swap(wa_[1], wa_[0]);
213 	}
214 }
215 
wa_add(struct i915_wa_list * wal,i915_reg_t reg,u32 clear,u32 set,u32 read_mask,bool masked_reg)216 static void wa_add(struct i915_wa_list *wal, i915_reg_t reg,
217 		   u32 clear, u32 set, u32 read_mask, bool masked_reg)
218 {
219 	struct i915_wa wa = {
220 		.reg  = reg,
221 		.clr  = clear,
222 		.set  = set,
223 		.read = read_mask,
224 		.masked_reg = masked_reg,
225 	};
226 
227 	_wa_add(wal, &wa);
228 }
229 
wa_mcr_add(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 clear,u32 set,u32 read_mask,bool masked_reg)230 static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg,
231 		       u32 clear, u32 set, u32 read_mask, bool masked_reg)
232 {
233 	struct i915_wa wa = {
234 		.mcr_reg = reg,
235 		.clr  = clear,
236 		.set  = set,
237 		.read = read_mask,
238 		.masked_reg = masked_reg,
239 		.is_mcr = 1,
240 	};
241 
242 	_wa_add(wal, &wa);
243 }
244 
245 static void
wa_write_clr_set(struct i915_wa_list * wal,i915_reg_t reg,u32 clear,u32 set)246 wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set)
247 {
248 	wa_add(wal, reg, clear, set, clear | set, false);
249 }
250 
251 static void
wa_mcr_write_clr_set(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 clear,u32 set)252 wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set)
253 {
254 	wa_mcr_add(wal, reg, clear, set, clear | set, false);
255 }
256 
257 static void
wa_write(struct i915_wa_list * wal,i915_reg_t reg,u32 set)258 wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
259 {
260 	wa_write_clr_set(wal, reg, ~0, set);
261 }
262 
263 static void
wa_write_or(struct i915_wa_list * wal,i915_reg_t reg,u32 set)264 wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
265 {
266 	wa_write_clr_set(wal, reg, set, set);
267 }
268 
269 static void
wa_mcr_write_or(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 set)270 wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
271 {
272 	wa_mcr_write_clr_set(wal, reg, set, set);
273 }
274 
275 static void
wa_write_clr(struct i915_wa_list * wal,i915_reg_t reg,u32 clr)276 wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr)
277 {
278 	wa_write_clr_set(wal, reg, clr, 0);
279 }
280 
281 static void
wa_mcr_write_clr(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 clr)282 wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr)
283 {
284 	wa_mcr_write_clr_set(wal, reg, clr, 0);
285 }
286 
287 /*
288  * WA operations on "masked register". A masked register has the upper 16 bits
289  * documented as "masked" in b-spec. Its purpose is to allow writing to just a
290  * portion of the register without a rmw: you simply write in the upper 16 bits
291  * the mask of bits you are going to modify.
292  *
293  * The wa_masked_* family of functions already does the necessary operations to
294  * calculate the mask based on the parameters passed, so user only has to
295  * provide the lower 16 bits of that register.
296  */
297 
298 static void
wa_masked_en(struct i915_wa_list * wal,i915_reg_t reg,u32 val)299 wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
300 {
301 	wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
302 }
303 
304 static void
wa_mcr_masked_en(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 val)305 wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
306 {
307 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
308 }
309 
310 static void
wa_masked_dis(struct i915_wa_list * wal,i915_reg_t reg,u32 val)311 wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
312 {
313 	wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
314 }
315 
316 static void
wa_mcr_masked_dis(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 val)317 wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
318 {
319 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
320 }
321 
322 static void
wa_masked_field_set(struct i915_wa_list * wal,i915_reg_t reg,u32 mask,u32 val)323 wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg,
324 		    u32 mask, u32 val)
325 {
326 	wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
327 }
328 
329 static void
wa_mcr_masked_field_set(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 mask,u32 val)330 wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg,
331 			u32 mask, u32 val)
332 {
333 	wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
334 }
335 
gen6_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)336 static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine,
337 				      struct i915_wa_list *wal)
338 {
339 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
340 }
341 
gen7_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)342 static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine,
343 				      struct i915_wa_list *wal)
344 {
345 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
346 }
347 
gen8_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)348 static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine,
349 				      struct i915_wa_list *wal)
350 {
351 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
352 
353 	/* WaDisableAsyncFlipPerfMode:bdw,chv */
354 	wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE);
355 
356 	/* WaDisablePartialInstShootdown:bdw,chv */
357 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
358 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
359 
360 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
361 	 * workaround for a possible hang in the unlikely event a TLB
362 	 * invalidation occurs during a PSD flush.
363 	 */
364 	/* WaForceEnableNonCoherent:bdw,chv */
365 	/* WaHdcDisableFetchWhenMasked:bdw,chv */
366 	wa_masked_en(wal, HDC_CHICKEN0,
367 		     HDC_DONOT_FETCH_MEM_WHEN_MASKED |
368 		     HDC_FORCE_NON_COHERENT);
369 
370 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
371 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
372 	 *  polygons in the same 8x4 pixel/sample area to be processed without
373 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
374 	 *  buffer."
375 	 *
376 	 * This optimization is off by default for BDW and CHV; turn it on.
377 	 */
378 	wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
379 
380 	/* Wa4x4STCOptimizationDisable:bdw,chv */
381 	wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
382 
383 	/*
384 	 * BSpec recommends 8x4 when MSAA is used,
385 	 * however in practice 16x4 seems fastest.
386 	 *
387 	 * Note that PS/WM thread counts depend on the WIZ hashing
388 	 * disable bit, which we don't touch here, but it's good
389 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
390 	 */
391 	wa_masked_field_set(wal, GEN7_GT_MODE,
392 			    GEN6_WIZ_HASHING_MASK,
393 			    GEN6_WIZ_HASHING_16x4);
394 }
395 
bdw_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)396 static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine,
397 				     struct i915_wa_list *wal)
398 {
399 	struct drm_i915_private *i915 = engine->i915;
400 
401 	gen8_ctx_workarounds_init(engine, wal);
402 
403 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
404 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
405 
406 	/* WaDisableDopClockGating:bdw
407 	 *
408 	 * Also see the related UCGTCL1 write in bdw_init_clock_gating()
409 	 * to disable EUTC clock gating.
410 	 */
411 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
412 			 DOP_CLOCK_GATING_DISABLE);
413 
414 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
415 			 GEN8_SAMPLER_POWER_BYPASS_DIS);
416 
417 	wa_masked_en(wal, HDC_CHICKEN0,
418 		     /* WaForceContextSaveRestoreNonCoherent:bdw */
419 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
420 		     /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
421 		     (INTEL_INFO(i915)->gt == 3 ? HDC_FENCE_DEST_SLM_DISABLE : 0));
422 }
423 
chv_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)424 static void chv_ctx_workarounds_init(struct intel_engine_cs *engine,
425 				     struct i915_wa_list *wal)
426 {
427 	gen8_ctx_workarounds_init(engine, wal);
428 
429 	/* WaDisableThreadStallDopClockGating:chv */
430 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
431 
432 	/* Improve HiZ throughput on CHV. */
433 	wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
434 }
435 
gen9_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)436 static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine,
437 				      struct i915_wa_list *wal)
438 {
439 	struct drm_i915_private *i915 = engine->i915;
440 
441 	if (HAS_LLC(i915)) {
442 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
443 		 *
444 		 * Must match Display Engine. See
445 		 * WaCompressedResourceDisplayNewHashMode.
446 		 */
447 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
448 			     GEN9_PBE_COMPRESSED_HASH_SELECTION);
449 		wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
450 				 GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR);
451 	}
452 
453 	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */
454 	/* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */
455 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
456 			 FLOW_CONTROL_ENABLE |
457 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
458 
459 	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */
460 	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */
461 	wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
462 			 GEN9_ENABLE_YV12_BUGFIX |
463 			 GEN9_ENABLE_GPGPU_PREEMPTION);
464 
465 	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */
466 	/* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */
467 	wa_masked_en(wal, CACHE_MODE_1,
468 		     GEN8_4x4_STC_OPTIMIZATION_DISABLE |
469 		     GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
470 
471 	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */
472 	wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5,
473 			  GEN9_CCS_TLB_PREFETCH_ENABLE);
474 
475 	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */
476 	wa_masked_en(wal, HDC_CHICKEN0,
477 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
478 		     HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
479 
480 	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
481 	 * both tied to WaForceContextSaveRestoreNonCoherent
482 	 * in some hsds for skl. We keep the tie for all gen9. The
483 	 * documentation is a bit hazy and so we want to get common behaviour,
484 	 * even though there is no clear evidence we would need both on kbl/bxt.
485 	 * This area has been source of system hangs so we play it safe
486 	 * and mimic the skl regardless of what bspec says.
487 	 *
488 	 * Use Force Non-Coherent whenever executing a 3D context. This
489 	 * is a workaround for a possible hang in the unlikely event
490 	 * a TLB invalidation occurs during a PSD flush.
491 	 */
492 
493 	/* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */
494 	wa_masked_en(wal, HDC_CHICKEN0,
495 		     HDC_FORCE_NON_COHERENT);
496 
497 	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */
498 	if (IS_SKYLAKE(i915) ||
499 	    IS_KABYLAKE(i915) ||
500 	    IS_COFFEELAKE(i915) ||
501 	    IS_COMETLAKE(i915))
502 		wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
503 				 GEN8_SAMPLER_POWER_BYPASS_DIS);
504 
505 	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */
506 	wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
507 
508 	/*
509 	 * Supporting preemption with fine-granularity requires changes in the
510 	 * batch buffer programming. Since we can't break old userspace, we
511 	 * need to set our default preemption level to safe value. Userspace is
512 	 * still able to use more fine-grained preemption levels, since in
513 	 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the
514 	 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are
515 	 * not real HW workarounds, but merely a way to start using preemption
516 	 * while maintaining old contract with userspace.
517 	 */
518 
519 	/* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */
520 	wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);
521 
522 	/* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */
523 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
524 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
525 			    GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);
526 
527 	/* WaClearHIZ_WM_CHICKEN3:bxt,glk */
528 	if (IS_GEN9_LP(i915))
529 		wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ);
530 }
531 
skl_tune_iz_hashing(struct intel_engine_cs * engine,struct i915_wa_list * wal)532 static void skl_tune_iz_hashing(struct intel_engine_cs *engine,
533 				struct i915_wa_list *wal)
534 {
535 	struct intel_gt *gt = engine->gt;
536 	u8 vals[3] = { 0, 0, 0 };
537 	unsigned int i;
538 
539 	for (i = 0; i < 3; i++) {
540 		u8 ss;
541 
542 		/*
543 		 * Only consider slices where one, and only one, subslice has 7
544 		 * EUs
545 		 */
546 		if (!is_power_of_2(gt->info.sseu.subslice_7eu[i]))
547 			continue;
548 
549 		/*
550 		 * subslice_7eu[i] != 0 (because of the check above) and
551 		 * ss_max == 4 (maximum number of subslices possible per slice)
552 		 *
553 		 * ->    0 <= ss <= 3;
554 		 */
555 		ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1;
556 		vals[i] = 3 - ss;
557 	}
558 
559 	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
560 		return;
561 
562 	/* Tune IZ hashing. See intel_device_info_runtime_init() */
563 	wa_masked_field_set(wal, GEN7_GT_MODE,
564 			    GEN9_IZ_HASHING_MASK(2) |
565 			    GEN9_IZ_HASHING_MASK(1) |
566 			    GEN9_IZ_HASHING_MASK(0),
567 			    GEN9_IZ_HASHING(2, vals[2]) |
568 			    GEN9_IZ_HASHING(1, vals[1]) |
569 			    GEN9_IZ_HASHING(0, vals[0]));
570 }
571 
skl_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)572 static void skl_ctx_workarounds_init(struct intel_engine_cs *engine,
573 				     struct i915_wa_list *wal)
574 {
575 	gen9_ctx_workarounds_init(engine, wal);
576 	skl_tune_iz_hashing(engine, wal);
577 }
578 
bxt_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)579 static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine,
580 				     struct i915_wa_list *wal)
581 {
582 	gen9_ctx_workarounds_init(engine, wal);
583 
584 	/* WaDisableThreadStallDopClockGating:bxt */
585 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
586 			 STALL_DOP_GATING_DISABLE);
587 
588 	/* WaToEnableHwFixForPushConstHWBug:bxt */
589 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
590 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
591 }
592 
kbl_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)593 static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine,
594 				     struct i915_wa_list *wal)
595 {
596 	struct drm_i915_private *i915 = engine->i915;
597 
598 	gen9_ctx_workarounds_init(engine, wal);
599 
600 	/* WaToEnableHwFixForPushConstHWBug:kbl */
601 	if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER))
602 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
603 			     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
604 
605 	/* WaDisableSbeCacheDispatchPortSharing:kbl */
606 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
607 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
608 }
609 
glk_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)610 static void glk_ctx_workarounds_init(struct intel_engine_cs *engine,
611 				     struct i915_wa_list *wal)
612 {
613 	gen9_ctx_workarounds_init(engine, wal);
614 
615 	/* WaToEnableHwFixForPushConstHWBug:glk */
616 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
617 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
618 }
619 
cfl_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)620 static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine,
621 				     struct i915_wa_list *wal)
622 {
623 	gen9_ctx_workarounds_init(engine, wal);
624 
625 	/* WaToEnableHwFixForPushConstHWBug:cfl */
626 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
627 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
628 
629 	/* WaDisableSbeCacheDispatchPortSharing:cfl */
630 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
631 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
632 }
633 
icl_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)634 static void icl_ctx_workarounds_init(struct intel_engine_cs *engine,
635 				     struct i915_wa_list *wal)
636 {
637 	struct drm_i915_private *i915 = engine->i915;
638 
639 	/* Wa_1406697149 (WaDisableBankHangMode:icl) */
640 	wa_write(wal, GEN8_L3CNTLREG, GEN8_ERRDETBCTRL);
641 
642 	/* WaForceEnableNonCoherent:icl
643 	 * This is not the same workaround as in early Gen9 platforms, where
644 	 * lacking this could cause system hangs, but coherency performance
645 	 * overhead is high and only a few compute workloads really need it
646 	 * (the register is whitelisted in hardware now, so UMDs can opt in
647 	 * for coherency if they have a good reason).
648 	 */
649 	wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT);
650 
651 	/* WaEnableFloatBlendOptimization:icl */
652 	wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
653 		   _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE),
654 		   0 /* write-only, so skip validation */,
655 		   true);
656 
657 	/* WaDisableGPGPUMidThreadPreemption:icl */
658 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
659 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
660 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
661 
662 	/* allow headerless messages for preemptible GPGPU context */
663 	wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
664 			 GEN11_SAMPLER_ENABLE_HEADLESS_MSG);
665 
666 	/* Wa_1604278689:icl,ehl */
667 	wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID);
668 	wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER,
669 			 0,
670 			 0xFFFFFFFF);
671 
672 	/* Wa_1406306137:icl,ehl */
673 	wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU);
674 
675 	if (IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) {
676 		/*
677 		 * Disable Repacking for Compression (masked R/W access)
678 		 * before rendering compressed surfaces for display.
679 		 */
680 		wa_masked_en(wal, CACHE_MODE_0_GEN7,
681 			     DISABLE_REPACKING_FOR_COMPRESSION);
682 	}
683 }
684 
685 /*
686  * These settings aren't actually workarounds, but general tuning settings that
687  * need to be programmed on dg2 platform.
688  */
dg2_ctx_gt_tuning_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)689 static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine,
690 				   struct i915_wa_list *wal)
691 {
692 	wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP);
693 	wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK,
694 			     REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f));
695 	wa_mcr_write_clr_set(wal, XEHP_FF_MODE2, FF_MODE2_TDS_TIMER_MASK,
696 			     FF_MODE2_TDS_TIMER_128);
697 }
698 
gen12_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)699 static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine,
700 				       struct i915_wa_list *wal)
701 {
702 	struct drm_i915_private *i915 = engine->i915;
703 
704 	/*
705 	 * Wa_1409142259:tgl,dg1,adl-p,adl-n
706 	 * Wa_1409347922:tgl,dg1,adl-p
707 	 * Wa_1409252684:tgl,dg1,adl-p
708 	 * Wa_1409217633:tgl,dg1,adl-p
709 	 * Wa_1409207793:tgl,dg1,adl-p
710 	 * Wa_1409178076:tgl,dg1,adl-p,adl-n
711 	 * Wa_1408979724:tgl,dg1,adl-p,adl-n
712 	 * Wa_14010443199:tgl,rkl,dg1,adl-p,adl-n
713 	 * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p,adl-n
714 	 * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p,adl-n
715 	 * Wa_22010465259:tgl,rkl,dg1,adl-s,adl-p,adl-n
716 	 */
717 	wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3,
718 		     GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
719 
720 	/* WaDisableGPGPUMidThreadPreemption:gen12 */
721 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
722 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
723 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
724 
725 	/*
726 	 * Wa_16011163337 - GS_TIMER
727 	 *
728 	 * TDS_TIMER: Although some platforms refer to it as Wa_1604555607, we
729 	 * need to program it even on those that don't explicitly list that
730 	 * workaround.
731 	 *
732 	 * Note that the programming of GEN12_FF_MODE2 is further modified
733 	 * according to the FF_MODE2 guidance given by Wa_1608008084.
734 	 * Wa_1608008084 tells us the FF_MODE2 register will return the wrong
735 	 * value when read from the CPU.
736 	 *
737 	 * The default value for this register is zero for all fields.
738 	 * So instead of doing a RMW we should just write the desired values
739 	 * for TDS and GS timers. Note that since the readback can't be trusted,
740 	 * the clear mask is just set to ~0 to make sure other bits are not
741 	 * inadvertently set. For the same reason read verification is ignored.
742 	 */
743 	wa_add(wal,
744 	       GEN12_FF_MODE2,
745 	       ~0,
746 	       FF_MODE2_TDS_TIMER_128 | FF_MODE2_GS_TIMER_224,
747 	       0, false);
748 
749 	if (!IS_DG1(i915)) {
750 		/* Wa_1806527549 */
751 		wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE);
752 
753 		/* Wa_1606376872 */
754 		wa_masked_en(wal, COMMON_SLICE_CHICKEN4, DISABLE_TDC_LOAD_BALANCING_CALC);
755 	}
756 
757 	/*
758 	 * This bit must be set to enable performance optimization for fast
759 	 * clears.
760 	 */
761 	wa_mcr_write_or(wal, GEN8_WM_CHICKEN2, WAIT_ON_DEPTH_STALL_DONE_DISABLE);
762 }
763 
dg1_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)764 static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine,
765 				     struct i915_wa_list *wal)
766 {
767 	gen12_ctx_workarounds_init(engine, wal);
768 
769 	/* Wa_1409044764 */
770 	wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3,
771 		      DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN);
772 
773 	/* Wa_22010493298 */
774 	wa_masked_en(wal, HIZ_CHICKEN,
775 		     DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE);
776 }
777 
dg2_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)778 static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine,
779 				     struct i915_wa_list *wal)
780 {
781 	dg2_ctx_gt_tuning_init(engine, wal);
782 
783 	/* Wa_16013271637:dg2 */
784 	wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
785 			 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
786 
787 	/* Wa_14014947963:dg2 */
788 	wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000);
789 
790 	/* Wa_18018764978:dg2 */
791 	wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
792 
793 	/* Wa_18019271663:dg2 */
794 	wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
795 
796 	/* Wa_14019877138:dg2 */
797 	wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT);
798 }
799 
xelpg_ctx_gt_tuning_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)800 static void xelpg_ctx_gt_tuning_init(struct intel_engine_cs *engine,
801 				     struct i915_wa_list *wal)
802 {
803 	struct intel_gt *gt = engine->gt;
804 
805 	dg2_ctx_gt_tuning_init(engine, wal);
806 
807 	/*
808 	 * Due to Wa_16014892111, the DRAW_WATERMARK tuning must be done in
809 	 * gen12_emit_indirect_ctx_rcs() rather than here on some early
810 	 * steppings.
811 	 */
812 	if (!(IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
813 	      IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)))
814 		wa_add(wal, DRAW_WATERMARK, VERT_WM_VAL, 0x3FF, 0, false);
815 }
816 
xelpg_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)817 static void xelpg_ctx_workarounds_init(struct intel_engine_cs *engine,
818 				       struct i915_wa_list *wal)
819 {
820 	struct intel_gt *gt = engine->gt;
821 
822 	xelpg_ctx_gt_tuning_init(engine, wal);
823 
824 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
825 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
826 		/* Wa_14014947963 */
827 		wa_masked_field_set(wal, VF_PREEMPTION,
828 				    PREEMPTION_VERTEX_COUNT, 0x4000);
829 
830 		/* Wa_16013271637 */
831 		wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
832 				 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
833 
834 		/* Wa_18019627453 */
835 		wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS);
836 
837 		/* Wa_18018764978 */
838 		wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
839 	}
840 
841 	/* Wa_18019271663 */
842 	wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
843 
844 	/* Wa_14019877138 */
845 	wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT);
846 }
847 
fakewa_disable_nestedbb_mode(struct intel_engine_cs * engine,struct i915_wa_list * wal)848 static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine,
849 					 struct i915_wa_list *wal)
850 {
851 	/*
852 	 * This is a "fake" workaround defined by software to ensure we
853 	 * maintain reliable, backward-compatible behavior for userspace with
854 	 * regards to how nested MI_BATCH_BUFFER_START commands are handled.
855 	 *
856 	 * The per-context setting of MI_MODE[12] determines whether the bits
857 	 * of a nested MI_BATCH_BUFFER_START instruction should be interpreted
858 	 * in the traditional manner or whether they should instead use a new
859 	 * tgl+ meaning that breaks backward compatibility, but allows nesting
860 	 * into 3rd-level batchbuffers.  When this new capability was first
861 	 * added in TGL, it remained off by default unless a context
862 	 * intentionally opted in to the new behavior.  However Xe_HPG now
863 	 * flips this on by default and requires that we explicitly opt out if
864 	 * we don't want the new behavior.
865 	 *
866 	 * From a SW perspective, we want to maintain the backward-compatible
867 	 * behavior for userspace, so we'll apply a fake workaround to set it
868 	 * back to the legacy behavior on platforms where the hardware default
869 	 * is to break compatibility.  At the moment there is no Linux
870 	 * userspace that utilizes third-level batchbuffers, so this will avoid
871 	 * userspace from needing to make any changes.  using the legacy
872 	 * meaning is the correct thing to do.  If/when we have userspace
873 	 * consumers that want to utilize third-level batch nesting, we can
874 	 * provide a context parameter to allow them to opt-in.
875 	 */
876 	wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN);
877 }
878 
gen12_ctx_gt_mocs_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)879 static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine,
880 				   struct i915_wa_list *wal)
881 {
882 	u8 mocs;
883 
884 	/*
885 	 * Some blitter commands do not have a field for MOCS, those
886 	 * commands will use MOCS index pointed by BLIT_CCTL.
887 	 * BLIT_CCTL registers are needed to be programmed to un-cached.
888 	 */
889 	if (engine->class == COPY_ENGINE_CLASS) {
890 		mocs = engine->gt->mocs.uc_index;
891 		wa_write_clr_set(wal,
892 				 BLIT_CCTL(engine->mmio_base),
893 				 BLIT_CCTL_MASK,
894 				 BLIT_CCTL_MOCS(mocs, mocs));
895 	}
896 }
897 
898 /*
899  * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround
900  * defined by the hardware team, but it programming general context registers.
901  * Adding those context register programming in context workaround
902  * allow us to use the wa framework for proper application and validation.
903  */
904 static void
gen12_ctx_gt_fake_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)905 gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine,
906 			  struct i915_wa_list *wal)
907 {
908 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
909 		fakewa_disable_nestedbb_mode(engine, wal);
910 
911 	gen12_ctx_gt_mocs_init(engine, wal);
912 }
913 
914 static void
__intel_engine_init_ctx_wa(struct intel_engine_cs * engine,struct i915_wa_list * wal,const char * name)915 __intel_engine_init_ctx_wa(struct intel_engine_cs *engine,
916 			   struct i915_wa_list *wal,
917 			   const char *name)
918 {
919 	struct drm_i915_private *i915 = engine->i915;
920 
921 	wa_init_start(wal, engine->gt, name, engine->name);
922 
923 	/* Applies to all engines */
924 	/*
925 	 * Fake workarounds are not the actual workaround but
926 	 * programming of context registers using workaround framework.
927 	 */
928 	if (GRAPHICS_VER(i915) >= 12)
929 		gen12_ctx_gt_fake_wa_init(engine, wal);
930 
931 	if (engine->class != RENDER_CLASS)
932 		goto done;
933 
934 	if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
935 		xelpg_ctx_workarounds_init(engine, wal);
936 	else if (IS_DG2(i915))
937 		dg2_ctx_workarounds_init(engine, wal);
938 	else if (IS_DG1(i915))
939 		dg1_ctx_workarounds_init(engine, wal);
940 	else if (GRAPHICS_VER(i915) == 12)
941 		gen12_ctx_workarounds_init(engine, wal);
942 	else if (GRAPHICS_VER(i915) == 11)
943 		icl_ctx_workarounds_init(engine, wal);
944 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
945 		cfl_ctx_workarounds_init(engine, wal);
946 	else if (IS_GEMINILAKE(i915))
947 		glk_ctx_workarounds_init(engine, wal);
948 	else if (IS_KABYLAKE(i915))
949 		kbl_ctx_workarounds_init(engine, wal);
950 	else if (IS_BROXTON(i915))
951 		bxt_ctx_workarounds_init(engine, wal);
952 	else if (IS_SKYLAKE(i915))
953 		skl_ctx_workarounds_init(engine, wal);
954 	else if (IS_CHERRYVIEW(i915))
955 		chv_ctx_workarounds_init(engine, wal);
956 	else if (IS_BROADWELL(i915))
957 		bdw_ctx_workarounds_init(engine, wal);
958 	else if (GRAPHICS_VER(i915) == 7)
959 		gen7_ctx_workarounds_init(engine, wal);
960 	else if (GRAPHICS_VER(i915) == 6)
961 		gen6_ctx_workarounds_init(engine, wal);
962 	else if (GRAPHICS_VER(i915) < 8)
963 		;
964 	else
965 		MISSING_CASE(GRAPHICS_VER(i915));
966 
967 done:
968 	wa_init_finish(wal);
969 }
970 
intel_engine_init_ctx_wa(struct intel_engine_cs * engine)971 void intel_engine_init_ctx_wa(struct intel_engine_cs *engine)
972 {
973 	__intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context");
974 }
975 
intel_engine_emit_ctx_wa(struct i915_request * rq)976 int intel_engine_emit_ctx_wa(struct i915_request *rq)
977 {
978 	struct i915_wa_list *wal = &rq->engine->ctx_wa_list;
979 	struct intel_uncore *uncore = rq->engine->uncore;
980 	enum forcewake_domains fw;
981 	unsigned long flags;
982 	struct i915_wa *wa;
983 	unsigned int i;
984 	u32 *cs;
985 	int ret;
986 
987 	if (wal->count == 0)
988 		return 0;
989 
990 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
991 	if (ret)
992 		return ret;
993 
994 	if ((IS_GFX_GT_IP_RANGE(rq->engine->gt, IP_VER(12, 70), IP_VER(12, 74)) ||
995 	     IS_DG2(rq->i915)) && rq->engine->class == RENDER_CLASS)
996 		cs = intel_ring_begin(rq, (wal->count * 2 + 6));
997 	else
998 		cs = intel_ring_begin(rq, (wal->count * 2 + 2));
999 
1000 	if (IS_ERR(cs))
1001 		return PTR_ERR(cs);
1002 
1003 	fw = wal_get_fw_for_rmw(uncore, wal);
1004 
1005 	intel_gt_mcr_lock(wal->gt, &flags);
1006 	spin_lock(&uncore->lock);
1007 	intel_uncore_forcewake_get__locked(uncore, fw);
1008 
1009 	*cs++ = MI_LOAD_REGISTER_IMM(wal->count);
1010 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
1011 		u32 val;
1012 
1013 		/* Skip reading the register if it's not really needed */
1014 		if (wa->masked_reg || (wa->clr | wa->set) == U32_MAX) {
1015 			val = wa->set;
1016 		} else {
1017 			val = wa->is_mcr ?
1018 				intel_gt_mcr_read_any_fw(wal->gt, wa->mcr_reg) :
1019 				intel_uncore_read_fw(uncore, wa->reg);
1020 			val &= ~wa->clr;
1021 			val |= wa->set;
1022 		}
1023 
1024 		*cs++ = i915_mmio_reg_offset(wa->reg);
1025 		*cs++ = val;
1026 	}
1027 	*cs++ = MI_NOOP;
1028 
1029 	/* Wa_14019789679 */
1030 	if ((IS_GFX_GT_IP_RANGE(rq->engine->gt, IP_VER(12, 70), IP_VER(12, 74)) ||
1031 	     IS_DG2(rq->i915)) && rq->engine->class == RENDER_CLASS) {
1032 		*cs++ = CMD_3DSTATE_MESH_CONTROL;
1033 		*cs++ = 0;
1034 		*cs++ = 0;
1035 		*cs++ = MI_NOOP;
1036 	}
1037 
1038 	intel_uncore_forcewake_put__locked(uncore, fw);
1039 	spin_unlock(&uncore->lock);
1040 	intel_gt_mcr_unlock(wal->gt, flags);
1041 
1042 	intel_ring_advance(rq, cs);
1043 
1044 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
1045 	if (ret)
1046 		return ret;
1047 
1048 	return 0;
1049 }
1050 
1051 static void
gen4_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1052 gen4_gt_workarounds_init(struct intel_gt *gt,
1053 			 struct i915_wa_list *wal)
1054 {
1055 	/* WaDisable_RenderCache_OperationalFlush:gen4,ilk */
1056 	wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
1057 }
1058 
1059 static void
g4x_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1060 g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1061 {
1062 	gen4_gt_workarounds_init(gt, wal);
1063 
1064 	/* WaDisableRenderCachePipelinedFlush:g4x,ilk */
1065 	wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE);
1066 }
1067 
1068 static void
ilk_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1069 ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1070 {
1071 	g4x_gt_workarounds_init(gt, wal);
1072 
1073 	wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED);
1074 }
1075 
1076 static void
snb_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1077 snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1078 {
1079 }
1080 
1081 static void
ivb_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1082 ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1083 {
1084 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
1085 	wa_masked_dis(wal,
1086 		      GEN7_COMMON_SLICE_CHICKEN1,
1087 		      GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
1088 
1089 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
1090 	wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
1091 	wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
1092 
1093 	/* WaForceL3Serialization:ivb */
1094 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1095 }
1096 
1097 static void
vlv_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1098 vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1099 {
1100 	/* WaForceL3Serialization:vlv */
1101 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1102 
1103 	/*
1104 	 * WaIncreaseL3CreditsForVLVB0:vlv
1105 	 * This is the hardware default actually.
1106 	 */
1107 	wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
1108 }
1109 
1110 static void
hsw_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1111 hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1112 {
1113 	/* L3 caching of data atomics doesn't work -- disable it. */
1114 	wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
1115 
1116 	wa_add(wal,
1117 	       HSW_ROW_CHICKEN3, 0,
1118 	       _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
1119 	       0 /* XXX does this reg exist? */, true);
1120 
1121 	/* WaVSRefCountFullforceMissDisable:hsw */
1122 	wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME);
1123 }
1124 
1125 static void
gen9_wa_init_mcr(struct drm_i915_private * i915,struct i915_wa_list * wal)1126 gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal)
1127 {
1128 	const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu;
1129 	unsigned int slice, subslice;
1130 	u32 mcr, mcr_mask;
1131 
1132 	GEM_BUG_ON(GRAPHICS_VER(i915) != 9);
1133 
1134 	/*
1135 	 * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml
1136 	 * Before any MMIO read into slice/subslice specific registers, MCR
1137 	 * packet control register needs to be programmed to point to any
1138 	 * enabled s/ss pair. Otherwise, incorrect values will be returned.
1139 	 * This means each subsequent MMIO read will be forwarded to an
1140 	 * specific s/ss combination, but this is OK since these registers
1141 	 * are consistent across s/ss in almost all cases. In the rare
1142 	 * occasions, such as INSTDONE, where this value is dependent
1143 	 * on s/ss combo, the read should be done with read_subslice_reg.
1144 	 */
1145 	slice = ffs(sseu->slice_mask) - 1;
1146 	GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw));
1147 	subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice));
1148 	GEM_BUG_ON(!subslice);
1149 	subslice--;
1150 
1151 	/*
1152 	 * We use GEN8_MCR..() macros to calculate the |mcr| value for
1153 	 * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads
1154 	 */
1155 	mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1156 	mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1157 
1158 	drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr);
1159 
1160 	wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr);
1161 }
1162 
1163 static void
gen9_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1164 gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1165 {
1166 	struct drm_i915_private *i915 = gt->i915;
1167 
1168 	/* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */
1169 	gen9_wa_init_mcr(i915, wal);
1170 
1171 	/* WaDisableKillLogic:bxt,skl,kbl */
1172 	if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915))
1173 		wa_write_or(wal,
1174 			    GAM_ECOCHK,
1175 			    ECOCHK_DIS_TLB);
1176 
1177 	if (HAS_LLC(i915)) {
1178 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
1179 		 *
1180 		 * Must match Display Engine. See
1181 		 * WaCompressedResourceDisplayNewHashMode.
1182 		 */
1183 		wa_write_or(wal,
1184 			    MMCD_MISC_CTRL,
1185 			    MMCD_PCLA | MMCD_HOTSPOT_EN);
1186 	}
1187 
1188 	/* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */
1189 	wa_write_or(wal,
1190 		    GAM_ECOCHK,
1191 		    BDW_DISABLE_HDC_INVALIDATION);
1192 }
1193 
1194 static void
skl_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1195 skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1196 {
1197 	gen9_gt_workarounds_init(gt, wal);
1198 
1199 	/* WaDisableGafsUnitClkGating:skl */
1200 	wa_write_or(wal,
1201 		    GEN7_UCGCTL4,
1202 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1203 
1204 	/* WaInPlaceDecompressionHang:skl */
1205 	if (IS_SKYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0))
1206 		wa_write_or(wal,
1207 			    GEN9_GAMT_ECO_REG_RW_IA,
1208 			    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1209 }
1210 
1211 static void
kbl_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1212 kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1213 {
1214 	gen9_gt_workarounds_init(gt, wal);
1215 
1216 	/* WaDisableDynamicCreditSharing:kbl */
1217 	if (IS_KABYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, 0, STEP_C0))
1218 		wa_write_or(wal,
1219 			    GAMT_CHKN_BIT_REG,
1220 			    GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1221 
1222 	/* WaDisableGafsUnitClkGating:kbl */
1223 	wa_write_or(wal,
1224 		    GEN7_UCGCTL4,
1225 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1226 
1227 	/* WaInPlaceDecompressionHang:kbl */
1228 	wa_write_or(wal,
1229 		    GEN9_GAMT_ECO_REG_RW_IA,
1230 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1231 }
1232 
1233 static void
glk_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1234 glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1235 {
1236 	gen9_gt_workarounds_init(gt, wal);
1237 }
1238 
1239 static void
cfl_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1240 cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1241 {
1242 	gen9_gt_workarounds_init(gt, wal);
1243 
1244 	/* WaDisableGafsUnitClkGating:cfl */
1245 	wa_write_or(wal,
1246 		    GEN7_UCGCTL4,
1247 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1248 
1249 	/* WaInPlaceDecompressionHang:cfl */
1250 	wa_write_or(wal,
1251 		    GEN9_GAMT_ECO_REG_RW_IA,
1252 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1253 }
1254 
__set_mcr_steering(struct i915_wa_list * wal,i915_reg_t steering_reg,unsigned int slice,unsigned int subslice)1255 static void __set_mcr_steering(struct i915_wa_list *wal,
1256 			       i915_reg_t steering_reg,
1257 			       unsigned int slice, unsigned int subslice)
1258 {
1259 	u32 mcr, mcr_mask;
1260 
1261 	mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1262 	mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1263 
1264 	wa_write_clr_set(wal, steering_reg, mcr_mask, mcr);
1265 }
1266 
debug_dump_steering(struct intel_gt * gt)1267 static void debug_dump_steering(struct intel_gt *gt)
1268 {
1269 	struct drm_printer p = drm_dbg_printer(&gt->i915->drm, DRM_UT_DRIVER,
1270 					       "MCR Steering:");
1271 
1272 	if (drm_debug_enabled(DRM_UT_DRIVER))
1273 		intel_gt_mcr_report_steering(&p, gt, false);
1274 }
1275 
__add_mcr_wa(struct intel_gt * gt,struct i915_wa_list * wal,unsigned int slice,unsigned int subslice)1276 static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal,
1277 			 unsigned int slice, unsigned int subslice)
1278 {
1279 	__set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice);
1280 
1281 	gt->default_steering.groupid = slice;
1282 	gt->default_steering.instanceid = subslice;
1283 
1284 	debug_dump_steering(gt);
1285 }
1286 
1287 static void
icl_wa_init_mcr(struct intel_gt * gt,struct i915_wa_list * wal)1288 icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1289 {
1290 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1291 	unsigned int subslice;
1292 
1293 	GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11);
1294 	GEM_BUG_ON(hweight8(sseu->slice_mask) > 1);
1295 
1296 	/*
1297 	 * Although a platform may have subslices, we need to always steer
1298 	 * reads to the lowest instance that isn't fused off.  When Render
1299 	 * Power Gating is enabled, grabbing forcewake will only power up a
1300 	 * single subslice (the "minconfig") if there isn't a real workload
1301 	 * that needs to be run; this means that if we steer register reads to
1302 	 * one of the higher subslices, we run the risk of reading back 0's or
1303 	 * random garbage.
1304 	 */
1305 	subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0));
1306 
1307 	/*
1308 	 * If the subslice we picked above also steers us to a valid L3 bank,
1309 	 * then we can just rely on the default steering and won't need to
1310 	 * worry about explicitly re-steering L3BANK reads later.
1311 	 */
1312 	if (gt->info.l3bank_mask & BIT(subslice))
1313 		gt->steering_table[L3BANK] = NULL;
1314 
1315 	__add_mcr_wa(gt, wal, 0, subslice);
1316 }
1317 
1318 static void
xehp_init_mcr(struct intel_gt * gt,struct i915_wa_list * wal)1319 xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1320 {
1321 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1322 	unsigned long slice, subslice = 0, slice_mask = 0;
1323 	u32 lncf_mask = 0;
1324 	int i;
1325 
1326 	/*
1327 	 * On Xe_HP the steering increases in complexity. There are now several
1328 	 * more units that require steering and we're not guaranteed to be able
1329 	 * to find a common setting for all of them. These are:
1330 	 * - GSLICE (fusable)
1331 	 * - DSS (sub-unit within gslice; fusable)
1332 	 * - L3 Bank (fusable)
1333 	 * - MSLICE (fusable)
1334 	 * - LNCF (sub-unit within mslice; always present if mslice is present)
1335 	 *
1336 	 * We'll do our default/implicit steering based on GSLICE (in the
1337 	 * sliceid field) and DSS (in the subsliceid field).  If we can
1338 	 * find overlap between the valid MSLICE and/or LNCF values with
1339 	 * a suitable GSLICE, then we can just reuse the default value and
1340 	 * skip and explicit steering at runtime.
1341 	 *
1342 	 * We only need to look for overlap between GSLICE/MSLICE/LNCF to find
1343 	 * a valid sliceid value.  DSS steering is the only type of steering
1344 	 * that utilizes the 'subsliceid' bits.
1345 	 *
1346 	 * Also note that, even though the steering domain is called "GSlice"
1347 	 * and it is encoded in the register using the gslice format, the spec
1348 	 * says that the combined (geometry | compute) fuse should be used to
1349 	 * select the steering.
1350 	 */
1351 
1352 	/* Find the potential gslice candidates */
1353 	slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask,
1354 						       GEN_DSS_PER_GSLICE);
1355 
1356 	/*
1357 	 * Find the potential LNCF candidates.  Either LNCF within a valid
1358 	 * mslice is fine.
1359 	 */
1360 	for_each_set_bit(i, &gt->info.mslice_mask, GEN12_MAX_MSLICES)
1361 		lncf_mask |= (0x3 << (i * 2));
1362 
1363 	/*
1364 	 * Are there any sliceid values that work for both GSLICE and LNCF
1365 	 * steering?
1366 	 */
1367 	if (slice_mask & lncf_mask) {
1368 		slice_mask &= lncf_mask;
1369 		gt->steering_table[LNCF] = NULL;
1370 	}
1371 
1372 	/* How about sliceid values that also work for MSLICE steering? */
1373 	if (slice_mask & gt->info.mslice_mask) {
1374 		slice_mask &= gt->info.mslice_mask;
1375 		gt->steering_table[MSLICE] = NULL;
1376 	}
1377 
1378 	slice = __ffs(slice_mask);
1379 	subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) %
1380 		GEN_DSS_PER_GSLICE;
1381 
1382 	__add_mcr_wa(gt, wal, slice, subslice);
1383 
1384 	/*
1385 	 * SQIDI ranges are special because they use different steering
1386 	 * registers than everything else we work with.  On XeHP SDV and
1387 	 * DG2-G10, any value in the steering registers will work fine since
1388 	 * all instances are present, but DG2-G11 only has SQIDI instances at
1389 	 * ID's 2 and 3, so we need to steer to one of those.  For simplicity
1390 	 * we'll just steer to a hardcoded "2" since that value will work
1391 	 * everywhere.
1392 	 */
1393 	__set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2);
1394 	__set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2);
1395 
1396 	/*
1397 	 * On DG2, GAM registers have a dedicated steering control register
1398 	 * and must always be programmed to a hardcoded groupid of "1."
1399 	 */
1400 	if (IS_DG2(gt->i915))
1401 		__set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0);
1402 }
1403 
1404 static void
icl_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1405 icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1406 {
1407 	struct drm_i915_private *i915 = gt->i915;
1408 
1409 	icl_wa_init_mcr(gt, wal);
1410 
1411 	/* WaModifyGamTlbPartitioning:icl */
1412 	wa_write_clr_set(wal,
1413 			 GEN11_GACB_PERF_CTRL,
1414 			 GEN11_HASH_CTRL_MASK,
1415 			 GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4);
1416 
1417 	/* Wa_1405766107:icl
1418 	 * Formerly known as WaCL2SFHalfMaxAlloc
1419 	 */
1420 	wa_write_or(wal,
1421 		    GEN11_LSN_UNSLCVC,
1422 		    GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC |
1423 		    GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC);
1424 
1425 	/* Wa_220166154:icl
1426 	 * Formerly known as WaDisCtxReload
1427 	 */
1428 	wa_write_or(wal,
1429 		    GEN8_GAMW_ECO_DEV_RW_IA,
1430 		    GAMW_ECO_DEV_CTX_RELOAD_DISABLE);
1431 
1432 	/* Wa_1406463099:icl
1433 	 * Formerly known as WaGamTlbPendError
1434 	 */
1435 	wa_write_or(wal,
1436 		    GAMT_CHKN_BIT_REG,
1437 		    GAMT_CHKN_DISABLE_L3_COH_PIPE);
1438 
1439 	/*
1440 	 * Wa_1408615072:icl,ehl  (vsunit)
1441 	 * Wa_1407596294:icl,ehl  (hsunit)
1442 	 */
1443 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1444 		    VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);
1445 
1446 	/* Wa_1407352427:icl,ehl */
1447 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1448 		    PSDUNIT_CLKGATE_DIS);
1449 
1450 	/* Wa_1406680159:icl,ehl */
1451 	wa_mcr_write_or(wal,
1452 			GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1453 			GWUNIT_CLKGATE_DIS);
1454 
1455 	/* Wa_1607087056:icl,ehl,jsl */
1456 	if (IS_ICELAKE(i915) ||
1457 		((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) &&
1458 		IS_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)))
1459 		wa_write_or(wal,
1460 			    GEN11_SLICE_UNIT_LEVEL_CLKGATE,
1461 			    L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1462 
1463 	/*
1464 	 * This is not a documented workaround, but rather an optimization
1465 	 * to reduce sampler power.
1466 	 */
1467 	wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1468 }
1469 
1470 /*
1471  * Though there are per-engine instances of these registers,
1472  * they retain their value through engine resets and should
1473  * only be provided on the GT workaround list rather than
1474  * the engine-specific workaround list.
1475  */
1476 static void
wa_14011060649(struct intel_gt * gt,struct i915_wa_list * wal)1477 wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal)
1478 {
1479 	struct intel_engine_cs *engine;
1480 	int id;
1481 
1482 	for_each_engine(engine, gt, id) {
1483 		if (engine->class != VIDEO_DECODE_CLASS ||
1484 		    (engine->instance % 2))
1485 			continue;
1486 
1487 		wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base),
1488 			    IECPUNIT_CLKGATE_DIS);
1489 	}
1490 }
1491 
1492 static void
gen12_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1493 gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1494 {
1495 	icl_wa_init_mcr(gt, wal);
1496 
1497 	/* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */
1498 	wa_14011060649(gt, wal);
1499 
1500 	/* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */
1501 	wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1502 
1503 	/*
1504 	 * Wa_14015795083
1505 	 *
1506 	 * Firmware on some gen12 platforms locks the MISCCPCTL register,
1507 	 * preventing i915 from modifying it for this workaround.  Skip the
1508 	 * readback verification for this workaround on debug builds; if the
1509 	 * workaround doesn't stick due to firmware behavior, it's not an error
1510 	 * that we want CI to flag.
1511 	 */
1512 	wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1513 	       0, 0, false);
1514 }
1515 
1516 static void
dg1_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1517 dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1518 {
1519 	gen12_gt_workarounds_init(gt, wal);
1520 
1521 	/* Wa_1409420604:dg1 */
1522 	wa_mcr_write_or(wal, SUBSLICE_UNIT_LEVEL_CLKGATE2,
1523 			CPSSUNIT_CLKGATE_DIS);
1524 
1525 	/* Wa_1408615072:dg1 */
1526 	/* Empirical testing shows this register is unaffected by engine reset. */
1527 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, VSUNIT_CLKGATE_DIS_TGL);
1528 }
1529 
1530 static void
dg2_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1531 dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1532 {
1533 	xehp_init_mcr(gt, wal);
1534 
1535 	/* Wa_14011060649:dg2 */
1536 	wa_14011060649(gt, wal);
1537 
1538 	if (IS_DG2_G10(gt->i915)) {
1539 		/* Wa_22010523718:dg2 */
1540 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1541 			    CG3DDISCFEG_CLKGATE_DIS);
1542 
1543 		/* Wa_14011006942:dg2 */
1544 		wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1545 				DSS_ROUTER_CLKGATE_DIS);
1546 	}
1547 
1548 	/* Wa_14014830051:dg2 */
1549 	wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1550 
1551 	/*
1552 	 * Wa_14015795083
1553 	 * Skip verification for possibly locked register.
1554 	 */
1555 	wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1556 	       0, 0, false);
1557 
1558 	/* Wa_18018781329 */
1559 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1560 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1561 	wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1562 	wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1563 
1564 	/* Wa_1509235366:dg2 */
1565 	wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1566 			INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1567 
1568 	/* Wa_14010648519:dg2 */
1569 	wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1570 }
1571 
1572 static void
xelpg_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1573 xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1574 {
1575 	/* Wa_14018575942 / Wa_18018781329 */
1576 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1577 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1578 
1579 	/* Wa_22016670082 */
1580 	wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
1581 
1582 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
1583 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
1584 		/* Wa_14014830051 */
1585 		wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1586 
1587 		/* Wa_14015795083 */
1588 		wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1589 	}
1590 
1591 	/*
1592 	 * Unlike older platforms, we no longer setup implicit steering here;
1593 	 * all MCR accesses are explicitly steered.
1594 	 */
1595 	debug_dump_steering(gt);
1596 }
1597 
1598 static void
wa_16021867713(struct intel_gt * gt,struct i915_wa_list * wal)1599 wa_16021867713(struct intel_gt *gt, struct i915_wa_list *wal)
1600 {
1601 	struct intel_engine_cs *engine;
1602 	int id;
1603 
1604 	for_each_engine(engine, gt, id)
1605 		if (engine->class == VIDEO_DECODE_CLASS)
1606 			wa_write_or(wal, VDBOX_CGCTL3F1C(engine->mmio_base),
1607 				    MFXPIPE_CLKGATE_DIS);
1608 }
1609 
1610 static void
xelpmp_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1611 xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1612 {
1613 	wa_16021867713(gt, wal);
1614 
1615 	/*
1616 	 * Wa_14018778641
1617 	 * Wa_18018781329
1618 	 *
1619 	 * Note that although these registers are MCR on the primary
1620 	 * GT, the media GT's versions are regular singleton registers.
1621 	 */
1622 	wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB);
1623 
1624 	/*
1625 	 * Wa_14018575942
1626 	 *
1627 	 * Issue is seen on media KPI test running on VDBOX engine
1628 	 * especially VP9 encoding WLs
1629 	 */
1630 	wa_write_or(wal, XELPMP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1631 
1632 	/* Wa_22016670082 */
1633 	wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
1634 
1635 	debug_dump_steering(gt);
1636 }
1637 
1638 /*
1639  * The bspec performance guide has recommended MMIO tuning settings.  These
1640  * aren't truly "workarounds" but we want to program them through the
1641  * workaround infrastructure to make sure they're (re)applied at the proper
1642  * times.
1643  *
1644  * The programming in this function is for settings that persist through
1645  * engine resets and also are not part of any engine's register state context.
1646  * I.e., settings that only need to be re-applied in the event of a full GT
1647  * reset.
1648  */
gt_tuning_settings(struct intel_gt * gt,struct i915_wa_list * wal)1649 static void gt_tuning_settings(struct intel_gt *gt, struct i915_wa_list *wal)
1650 {
1651 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) {
1652 		wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1653 		wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1654 	}
1655 
1656 	if (IS_DG2(gt->i915)) {
1657 		wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1658 		wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1659 	}
1660 }
1661 
1662 static void
gt_init_workarounds(struct intel_gt * gt,struct i915_wa_list * wal)1663 gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal)
1664 {
1665 	struct drm_i915_private *i915 = gt->i915;
1666 
1667 	gt_tuning_settings(gt, wal);
1668 
1669 	if (gt->type == GT_MEDIA) {
1670 		if (MEDIA_VER_FULL(i915) == IP_VER(13, 0))
1671 			xelpmp_gt_workarounds_init(gt, wal);
1672 		else
1673 			MISSING_CASE(MEDIA_VER_FULL(i915));
1674 
1675 		return;
1676 	}
1677 
1678 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)))
1679 		xelpg_gt_workarounds_init(gt, wal);
1680 	else if (IS_DG2(i915))
1681 		dg2_gt_workarounds_init(gt, wal);
1682 	else if (IS_DG1(i915))
1683 		dg1_gt_workarounds_init(gt, wal);
1684 	else if (GRAPHICS_VER(i915) == 12)
1685 		gen12_gt_workarounds_init(gt, wal);
1686 	else if (GRAPHICS_VER(i915) == 11)
1687 		icl_gt_workarounds_init(gt, wal);
1688 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
1689 		cfl_gt_workarounds_init(gt, wal);
1690 	else if (IS_GEMINILAKE(i915))
1691 		glk_gt_workarounds_init(gt, wal);
1692 	else if (IS_KABYLAKE(i915))
1693 		kbl_gt_workarounds_init(gt, wal);
1694 	else if (IS_BROXTON(i915))
1695 		gen9_gt_workarounds_init(gt, wal);
1696 	else if (IS_SKYLAKE(i915))
1697 		skl_gt_workarounds_init(gt, wal);
1698 	else if (IS_HASWELL(i915))
1699 		hsw_gt_workarounds_init(gt, wal);
1700 	else if (IS_VALLEYVIEW(i915))
1701 		vlv_gt_workarounds_init(gt, wal);
1702 	else if (IS_IVYBRIDGE(i915))
1703 		ivb_gt_workarounds_init(gt, wal);
1704 	else if (GRAPHICS_VER(i915) == 6)
1705 		snb_gt_workarounds_init(gt, wal);
1706 	else if (GRAPHICS_VER(i915) == 5)
1707 		ilk_gt_workarounds_init(gt, wal);
1708 	else if (IS_G4X(i915))
1709 		g4x_gt_workarounds_init(gt, wal);
1710 	else if (GRAPHICS_VER(i915) == 4)
1711 		gen4_gt_workarounds_init(gt, wal);
1712 	else if (GRAPHICS_VER(i915) <= 8)
1713 		;
1714 	else
1715 		MISSING_CASE(GRAPHICS_VER(i915));
1716 }
1717 
intel_gt_init_workarounds(struct intel_gt * gt)1718 void intel_gt_init_workarounds(struct intel_gt *gt)
1719 {
1720 	struct i915_wa_list *wal = &gt->wa_list;
1721 
1722 	wa_init_start(wal, gt, "GT", "global");
1723 	gt_init_workarounds(gt, wal);
1724 	wa_init_finish(wal);
1725 }
1726 
1727 static bool
wa_verify(struct intel_gt * gt,const struct i915_wa * wa,u32 cur,const char * name,const char * from)1728 wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur,
1729 	  const char *name, const char *from)
1730 {
1731 	if ((cur ^ wa->set) & wa->read) {
1732 		gt_err(gt,
1733 		       "%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n",
1734 		       name, from, i915_mmio_reg_offset(wa->reg),
1735 		       cur, cur & wa->read, wa->set & wa->read);
1736 
1737 		return false;
1738 	}
1739 
1740 	return true;
1741 }
1742 
wa_list_apply(const struct i915_wa_list * wal)1743 static void wa_list_apply(const struct i915_wa_list *wal)
1744 {
1745 	struct intel_gt *gt = wal->gt;
1746 	struct intel_uncore *uncore = gt->uncore;
1747 	enum forcewake_domains fw;
1748 	unsigned long flags;
1749 	struct i915_wa *wa;
1750 	unsigned int i;
1751 
1752 	if (!wal->count)
1753 		return;
1754 
1755 	fw = wal_get_fw_for_rmw(uncore, wal);
1756 
1757 	intel_gt_mcr_lock(gt, &flags);
1758 	spin_lock(&uncore->lock);
1759 	intel_uncore_forcewake_get__locked(uncore, fw);
1760 
1761 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
1762 		u32 val, old = 0;
1763 
1764 		/* open-coded rmw due to steering */
1765 		if (wa->clr)
1766 			old = wa->is_mcr ?
1767 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1768 				intel_uncore_read_fw(uncore, wa->reg);
1769 		val = (old & ~wa->clr) | wa->set;
1770 		if (val != old || !wa->clr) {
1771 			if (wa->is_mcr)
1772 				intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val);
1773 			else
1774 				intel_uncore_write_fw(uncore, wa->reg, val);
1775 		}
1776 
1777 		if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
1778 			u32 val = wa->is_mcr ?
1779 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1780 				intel_uncore_read_fw(uncore, wa->reg);
1781 
1782 			wa_verify(gt, wa, val, wal->name, "application");
1783 		}
1784 	}
1785 
1786 	intel_uncore_forcewake_put__locked(uncore, fw);
1787 	spin_unlock(&uncore->lock);
1788 	intel_gt_mcr_unlock(gt, flags);
1789 }
1790 
intel_gt_apply_workarounds(struct intel_gt * gt)1791 void intel_gt_apply_workarounds(struct intel_gt *gt)
1792 {
1793 	wa_list_apply(&gt->wa_list);
1794 }
1795 
wa_list_verify(struct intel_gt * gt,const struct i915_wa_list * wal,const char * from)1796 static bool wa_list_verify(struct intel_gt *gt,
1797 			   const struct i915_wa_list *wal,
1798 			   const char *from)
1799 {
1800 	struct intel_uncore *uncore = gt->uncore;
1801 	struct i915_wa *wa;
1802 	enum forcewake_domains fw;
1803 	unsigned long flags;
1804 	unsigned int i;
1805 	bool ok = true;
1806 
1807 	fw = wal_get_fw_for_rmw(uncore, wal);
1808 
1809 	intel_gt_mcr_lock(gt, &flags);
1810 	spin_lock(&uncore->lock);
1811 	intel_uncore_forcewake_get__locked(uncore, fw);
1812 
1813 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1814 		ok &= wa_verify(wal->gt, wa, wa->is_mcr ?
1815 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1816 				intel_uncore_read_fw(uncore, wa->reg),
1817 				wal->name, from);
1818 
1819 	intel_uncore_forcewake_put__locked(uncore, fw);
1820 	spin_unlock(&uncore->lock);
1821 	intel_gt_mcr_unlock(gt, flags);
1822 
1823 	return ok;
1824 }
1825 
intel_gt_verify_workarounds(struct intel_gt * gt,const char * from)1826 bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from)
1827 {
1828 	return wa_list_verify(gt, &gt->wa_list, from);
1829 }
1830 
1831 __maybe_unused
is_nonpriv_flags_valid(u32 flags)1832 static bool is_nonpriv_flags_valid(u32 flags)
1833 {
1834 	/* Check only valid flag bits are set */
1835 	if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID)
1836 		return false;
1837 
1838 	/* NB: Only 3 out of 4 enum values are valid for access field */
1839 	if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) ==
1840 	    RING_FORCE_TO_NONPRIV_ACCESS_INVALID)
1841 		return false;
1842 
1843 	return true;
1844 }
1845 
1846 static void
whitelist_reg_ext(struct i915_wa_list * wal,i915_reg_t reg,u32 flags)1847 whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags)
1848 {
1849 	struct i915_wa wa = {
1850 		.reg = reg
1851 	};
1852 
1853 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1854 		return;
1855 
1856 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1857 		return;
1858 
1859 	wa.reg.reg |= flags;
1860 	_wa_add(wal, &wa);
1861 }
1862 
1863 static void
whitelist_mcr_reg_ext(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 flags)1864 whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags)
1865 {
1866 	struct i915_wa wa = {
1867 		.mcr_reg = reg,
1868 		.is_mcr = 1,
1869 	};
1870 
1871 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1872 		return;
1873 
1874 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1875 		return;
1876 
1877 	wa.mcr_reg.reg |= flags;
1878 	_wa_add(wal, &wa);
1879 }
1880 
1881 static void
whitelist_reg(struct i915_wa_list * wal,i915_reg_t reg)1882 whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg)
1883 {
1884 	whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1885 }
1886 
1887 static void
whitelist_mcr_reg(struct i915_wa_list * wal,i915_mcr_reg_t reg)1888 whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg)
1889 {
1890 	whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1891 }
1892 
gen9_whitelist_build(struct i915_wa_list * w)1893 static void gen9_whitelist_build(struct i915_wa_list *w)
1894 {
1895 	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */
1896 	whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
1897 
1898 	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */
1899 	whitelist_reg(w, GEN8_CS_CHICKEN1);
1900 
1901 	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */
1902 	whitelist_reg(w, GEN8_HDC_CHICKEN1);
1903 
1904 	/* WaSendPushConstantsFromMMIO:skl,bxt */
1905 	whitelist_reg(w, COMMON_SLICE_CHICKEN2);
1906 }
1907 
skl_whitelist_build(struct intel_engine_cs * engine)1908 static void skl_whitelist_build(struct intel_engine_cs *engine)
1909 {
1910 	struct i915_wa_list *w = &engine->whitelist;
1911 
1912 	if (engine->class != RENDER_CLASS)
1913 		return;
1914 
1915 	gen9_whitelist_build(w);
1916 
1917 	/* WaDisableLSQCROPERFforOCL:skl */
1918 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
1919 }
1920 
bxt_whitelist_build(struct intel_engine_cs * engine)1921 static void bxt_whitelist_build(struct intel_engine_cs *engine)
1922 {
1923 	if (engine->class != RENDER_CLASS)
1924 		return;
1925 
1926 	gen9_whitelist_build(&engine->whitelist);
1927 }
1928 
kbl_whitelist_build(struct intel_engine_cs * engine)1929 static void kbl_whitelist_build(struct intel_engine_cs *engine)
1930 {
1931 	struct i915_wa_list *w = &engine->whitelist;
1932 
1933 	if (engine->class != RENDER_CLASS)
1934 		return;
1935 
1936 	gen9_whitelist_build(w);
1937 
1938 	/* WaDisableLSQCROPERFforOCL:kbl */
1939 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
1940 }
1941 
glk_whitelist_build(struct intel_engine_cs * engine)1942 static void glk_whitelist_build(struct intel_engine_cs *engine)
1943 {
1944 	struct i915_wa_list *w = &engine->whitelist;
1945 
1946 	if (engine->class != RENDER_CLASS)
1947 		return;
1948 
1949 	gen9_whitelist_build(w);
1950 
1951 	/* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */
1952 	whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
1953 }
1954 
cfl_whitelist_build(struct intel_engine_cs * engine)1955 static void cfl_whitelist_build(struct intel_engine_cs *engine)
1956 {
1957 	struct i915_wa_list *w = &engine->whitelist;
1958 
1959 	if (engine->class != RENDER_CLASS)
1960 		return;
1961 
1962 	gen9_whitelist_build(w);
1963 
1964 	/*
1965 	 * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml
1966 	 *
1967 	 * This covers 4 register which are next to one another :
1968 	 *   - PS_INVOCATION_COUNT
1969 	 *   - PS_INVOCATION_COUNT_UDW
1970 	 *   - PS_DEPTH_COUNT
1971 	 *   - PS_DEPTH_COUNT_UDW
1972 	 */
1973 	whitelist_reg_ext(w, PS_INVOCATION_COUNT,
1974 			  RING_FORCE_TO_NONPRIV_ACCESS_RD |
1975 			  RING_FORCE_TO_NONPRIV_RANGE_4);
1976 }
1977 
allow_read_ctx_timestamp(struct intel_engine_cs * engine)1978 static void allow_read_ctx_timestamp(struct intel_engine_cs *engine)
1979 {
1980 	struct i915_wa_list *w = &engine->whitelist;
1981 
1982 	if (engine->class != RENDER_CLASS)
1983 		whitelist_reg_ext(w,
1984 				  RING_CTX_TIMESTAMP(engine->mmio_base),
1985 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
1986 }
1987 
cml_whitelist_build(struct intel_engine_cs * engine)1988 static void cml_whitelist_build(struct intel_engine_cs *engine)
1989 {
1990 	allow_read_ctx_timestamp(engine);
1991 
1992 	cfl_whitelist_build(engine);
1993 }
1994 
icl_whitelist_build(struct intel_engine_cs * engine)1995 static void icl_whitelist_build(struct intel_engine_cs *engine)
1996 {
1997 	struct i915_wa_list *w = &engine->whitelist;
1998 
1999 	allow_read_ctx_timestamp(engine);
2000 
2001 	switch (engine->class) {
2002 	case RENDER_CLASS:
2003 		/* WaAllowUMDToModifyHalfSliceChicken7:icl */
2004 		whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7);
2005 
2006 		/* WaAllowUMDToModifySamplerMode:icl */
2007 		whitelist_mcr_reg(w, GEN10_SAMPLER_MODE);
2008 
2009 		/* WaEnableStateCacheRedirectToCS:icl */
2010 		whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2011 
2012 		/*
2013 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl
2014 		 *
2015 		 * This covers 4 register which are next to one another :
2016 		 *   - PS_INVOCATION_COUNT
2017 		 *   - PS_INVOCATION_COUNT_UDW
2018 		 *   - PS_DEPTH_COUNT
2019 		 *   - PS_DEPTH_COUNT_UDW
2020 		 */
2021 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2022 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2023 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2024 		break;
2025 
2026 	case VIDEO_DECODE_CLASS:
2027 		/* hucStatusRegOffset */
2028 		whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base),
2029 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2030 		/* hucUKernelHdrInfoRegOffset */
2031 		whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base),
2032 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2033 		/* hucStatus2RegOffset */
2034 		whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base),
2035 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2036 		break;
2037 
2038 	default:
2039 		break;
2040 	}
2041 }
2042 
tgl_whitelist_build(struct intel_engine_cs * engine)2043 static void tgl_whitelist_build(struct intel_engine_cs *engine)
2044 {
2045 	struct i915_wa_list *w = &engine->whitelist;
2046 
2047 	allow_read_ctx_timestamp(engine);
2048 
2049 	switch (engine->class) {
2050 	case RENDER_CLASS:
2051 		/*
2052 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl
2053 		 * Wa_1408556865:tgl
2054 		 *
2055 		 * This covers 4 registers which are next to one another :
2056 		 *   - PS_INVOCATION_COUNT
2057 		 *   - PS_INVOCATION_COUNT_UDW
2058 		 *   - PS_DEPTH_COUNT
2059 		 *   - PS_DEPTH_COUNT_UDW
2060 		 */
2061 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2062 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2063 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2064 
2065 		/*
2066 		 * Wa_1808121037:tgl
2067 		 * Wa_14012131227:dg1
2068 		 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p
2069 		 */
2070 		whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2071 
2072 		/* Wa_1806527549:tgl */
2073 		whitelist_reg(w, HIZ_CHICKEN);
2074 
2075 		/* Required by recommended tuning setting (not a workaround) */
2076 		whitelist_reg(w, GEN11_COMMON_SLICE_CHICKEN3);
2077 
2078 		break;
2079 	default:
2080 		break;
2081 	}
2082 }
2083 
dg2_whitelist_build(struct intel_engine_cs * engine)2084 static void dg2_whitelist_build(struct intel_engine_cs *engine)
2085 {
2086 	struct i915_wa_list *w = &engine->whitelist;
2087 
2088 	switch (engine->class) {
2089 	case RENDER_CLASS:
2090 		/* Required by recommended tuning setting (not a workaround) */
2091 		whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2092 		whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2093 		break;
2094 	default:
2095 		break;
2096 	}
2097 }
2098 
xelpg_whitelist_build(struct intel_engine_cs * engine)2099 static void xelpg_whitelist_build(struct intel_engine_cs *engine)
2100 {
2101 	struct i915_wa_list *w = &engine->whitelist;
2102 
2103 	switch (engine->class) {
2104 	case RENDER_CLASS:
2105 		/* Required by recommended tuning setting (not a workaround) */
2106 		whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2107 		whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2108 		break;
2109 	default:
2110 		break;
2111 	}
2112 }
2113 
intel_engine_init_whitelist(struct intel_engine_cs * engine)2114 void intel_engine_init_whitelist(struct intel_engine_cs *engine)
2115 {
2116 	struct drm_i915_private *i915 = engine->i915;
2117 	struct i915_wa_list *w = &engine->whitelist;
2118 
2119 	wa_init_start(w, engine->gt, "whitelist", engine->name);
2120 
2121 	if (engine->gt->type == GT_MEDIA)
2122 		; /* none yet */
2123 	else if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
2124 		xelpg_whitelist_build(engine);
2125 	else if (IS_DG2(i915))
2126 		dg2_whitelist_build(engine);
2127 	else if (GRAPHICS_VER(i915) == 12)
2128 		tgl_whitelist_build(engine);
2129 	else if (GRAPHICS_VER(i915) == 11)
2130 		icl_whitelist_build(engine);
2131 	else if (IS_COMETLAKE(i915))
2132 		cml_whitelist_build(engine);
2133 	else if (IS_COFFEELAKE(i915))
2134 		cfl_whitelist_build(engine);
2135 	else if (IS_GEMINILAKE(i915))
2136 		glk_whitelist_build(engine);
2137 	else if (IS_KABYLAKE(i915))
2138 		kbl_whitelist_build(engine);
2139 	else if (IS_BROXTON(i915))
2140 		bxt_whitelist_build(engine);
2141 	else if (IS_SKYLAKE(i915))
2142 		skl_whitelist_build(engine);
2143 	else if (GRAPHICS_VER(i915) <= 8)
2144 		;
2145 	else
2146 		MISSING_CASE(GRAPHICS_VER(i915));
2147 
2148 	wa_init_finish(w);
2149 }
2150 
intel_engine_apply_whitelist(struct intel_engine_cs * engine)2151 void intel_engine_apply_whitelist(struct intel_engine_cs *engine)
2152 {
2153 	const struct i915_wa_list *wal = &engine->whitelist;
2154 	struct intel_uncore *uncore = engine->uncore;
2155 	const u32 base = engine->mmio_base;
2156 	struct i915_wa *wa;
2157 	unsigned int i;
2158 
2159 	if (!wal->count)
2160 		return;
2161 
2162 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
2163 		intel_uncore_write(uncore,
2164 				   RING_FORCE_TO_NONPRIV(base, i),
2165 				   i915_mmio_reg_offset(wa->reg));
2166 
2167 	/* And clear the rest just in case of garbage */
2168 	for (; i < RING_MAX_NONPRIV_SLOTS; i++)
2169 		intel_uncore_write(uncore,
2170 				   RING_FORCE_TO_NONPRIV(base, i),
2171 				   i915_mmio_reg_offset(RING_NOPID(base)));
2172 }
2173 
2174 /*
2175  * engine_fake_wa_init(), a place holder to program the registers
2176  * which are not part of an official workaround defined by the
2177  * hardware team.
2178  * Adding programming of those register inside workaround will
2179  * allow utilizing wa framework to proper application and verification.
2180  */
2181 static void
engine_fake_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)2182 engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2183 {
2184 	u8 mocs_w, mocs_r;
2185 
2186 	/*
2187 	 * RING_CMD_CCTL specifies the default MOCS entry that will be used
2188 	 * by the command streamer when executing commands that don't have
2189 	 * a way to explicitly specify a MOCS setting.  The default should
2190 	 * usually reference whichever MOCS entry corresponds to uncached
2191 	 * behavior, although use of a WB cached entry is recommended by the
2192 	 * spec in certain circumstances on specific platforms.
2193 	 */
2194 	if (GRAPHICS_VER(engine->i915) >= 12) {
2195 		mocs_r = engine->gt->mocs.uc_index;
2196 		mocs_w = engine->gt->mocs.uc_index;
2197 
2198 		if (HAS_L3_CCS_READ(engine->i915) &&
2199 		    engine->class == COMPUTE_CLASS) {
2200 			mocs_r = engine->gt->mocs.wb_index;
2201 
2202 			/*
2203 			 * Even on the few platforms where MOCS 0 is a
2204 			 * legitimate table entry, it's never the correct
2205 			 * setting to use here; we can assume the MOCS init
2206 			 * just forgot to initialize wb_index.
2207 			 */
2208 			drm_WARN_ON(&engine->i915->drm, mocs_r == 0);
2209 		}
2210 
2211 		wa_masked_field_set(wal,
2212 				    RING_CMD_CCTL(engine->mmio_base),
2213 				    CMD_CCTL_MOCS_MASK,
2214 				    CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r));
2215 	}
2216 }
2217 
2218 static void
rcs_engine_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)2219 rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2220 {
2221 	struct drm_i915_private *i915 = engine->i915;
2222 	struct intel_gt *gt = engine->gt;
2223 
2224 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2225 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
2226 		/* Wa_22014600077 */
2227 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2228 				 ENABLE_EU_COUNT_FOR_TDL_FLUSH);
2229 	}
2230 
2231 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2232 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2233 	    IS_DG2(i915)) {
2234 		/* Wa_1509727124 */
2235 		wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2236 				 SC_DISABLE_POWER_OPTIMIZATION_EBB);
2237 	}
2238 
2239 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2240 	    IS_DG2(i915)) {
2241 		/* Wa_22012856258 */
2242 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2243 				 GEN12_DISABLE_READ_SUPPRESSION);
2244 	}
2245 
2246 	if (IS_DG2(i915)) {
2247 		/*
2248 		 * Wa_22010960976:dg2
2249 		 * Wa_14013347512:dg2
2250 		 */
2251 		wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0,
2252 				  LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK);
2253 	}
2254 
2255 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71)) ||
2256 	    IS_DG2(i915)) {
2257 		/* Wa_14015150844 */
2258 		wa_mcr_add(wal, XEHP_HDC_CHICKEN0, 0,
2259 			   _MASKED_BIT_ENABLE(DIS_ATOMIC_CHAINING_TYPED_WRITES),
2260 			   0, true);
2261 	}
2262 
2263 	if (IS_DG2(i915) || IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2264 	    IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2265 		/*
2266 		 * Wa_1606700617:tgl,dg1,adl-p
2267 		 * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p
2268 		 * Wa_14010826681:tgl,dg1,rkl,adl-p
2269 		 * Wa_18019627453:dg2
2270 		 */
2271 		wa_masked_en(wal,
2272 			     GEN9_CS_DEBUG_MODE1,
2273 			     FF_DOP_CLOCK_GATE_DISABLE);
2274 	}
2275 
2276 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) ||
2277 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2278 		/* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */
2279 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ);
2280 
2281 		/*
2282 		 * Wa_1407928979:tgl A*
2283 		 * Wa_18011464164:tgl[B0+],dg1[B0+]
2284 		 * Wa_22010931296:tgl[B0+],dg1[B0+]
2285 		 * Wa_14010919138:rkl,dg1,adl-s,adl-p
2286 		 */
2287 		wa_write_or(wal, GEN7_FF_THREAD_MODE,
2288 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2289 
2290 		/* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */
2291 		wa_mcr_masked_en(wal,
2292 				 GEN10_SAMPLER_MODE,
2293 				 ENABLE_SMALLPL);
2294 	}
2295 
2296 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2297 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2298 		/* Wa_1409804808 */
2299 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2300 				 GEN12_PUSH_CONST_DEREF_HOLD_DIS);
2301 
2302 		/* Wa_14010229206 */
2303 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH);
2304 	}
2305 
2306 	if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) {
2307 		/*
2308 		 * Wa_1607297627
2309 		 *
2310 		 * On TGL and RKL there are multiple entries for this WA in the
2311 		 * BSpec; some indicate this is an A0-only WA, others indicate
2312 		 * it applies to all steppings so we trust the "all steppings."
2313 		 */
2314 		wa_masked_en(wal,
2315 			     RING_PSMI_CTL(RENDER_RING_BASE),
2316 			     GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE |
2317 			     GEN8_RC_SEMA_IDLE_MSG_DISABLE);
2318 	}
2319 
2320 	if (GRAPHICS_VER(i915) == 11) {
2321 		/* This is not an Wa. Enable for better image quality */
2322 		wa_masked_en(wal,
2323 			     _3D_CHICKEN3,
2324 			     _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE);
2325 
2326 		/*
2327 		 * Wa_1405543622:icl
2328 		 * Formerly known as WaGAPZPriorityScheme
2329 		 */
2330 		wa_write_or(wal,
2331 			    GEN8_GARBCNTL,
2332 			    GEN11_ARBITRATION_PRIO_ORDER_MASK);
2333 
2334 		/*
2335 		 * Wa_1604223664:icl
2336 		 * Formerly known as WaL3BankAddressHashing
2337 		 */
2338 		wa_write_clr_set(wal,
2339 				 GEN8_GARBCNTL,
2340 				 GEN11_HASH_CTRL_EXCL_MASK,
2341 				 GEN11_HASH_CTRL_EXCL_BIT0);
2342 		wa_write_clr_set(wal,
2343 				 GEN11_GLBLINVL,
2344 				 GEN11_BANK_HASH_ADDR_EXCL_MASK,
2345 				 GEN11_BANK_HASH_ADDR_EXCL_BIT0);
2346 
2347 		/*
2348 		 * Wa_1405733216:icl
2349 		 * Formerly known as WaDisableCleanEvicts
2350 		 */
2351 		wa_mcr_write_or(wal,
2352 				GEN8_L3SQCREG4,
2353 				GEN11_LQSC_CLEAN_EVICT_DISABLE);
2354 
2355 		/* Wa_1606682166:icl */
2356 		wa_write_or(wal,
2357 			    GEN7_SARCHKMD,
2358 			    GEN7_DISABLE_SAMPLER_PREFETCH);
2359 
2360 		/* Wa_1409178092:icl */
2361 		wa_mcr_write_clr_set(wal,
2362 				     GEN11_SCRATCH2,
2363 				     GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE,
2364 				     0);
2365 
2366 		/* WaEnable32PlaneMode:icl */
2367 		wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS,
2368 			     GEN11_ENABLE_32_PLANE_MODE);
2369 
2370 		/*
2371 		 * Wa_1408767742:icl[a2..forever],ehl[all]
2372 		 * Wa_1605460711:icl[a0..c0]
2373 		 */
2374 		wa_write_or(wal,
2375 			    GEN7_FF_THREAD_MODE,
2376 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2377 
2378 		/* Wa_22010271021 */
2379 		wa_masked_en(wal,
2380 			     GEN9_CS_DEBUG_MODE1,
2381 			     FF_DOP_CLOCK_GATE_DISABLE);
2382 	}
2383 
2384 	/*
2385 	 * Intel platforms that support fine-grained preemption (i.e., gen9 and
2386 	 * beyond) allow the kernel-mode driver to choose between two different
2387 	 * options for controlling preemption granularity and behavior.
2388 	 *
2389 	 * Option 1 (hardware default):
2390 	 *   Preemption settings are controlled in a global manner via
2391 	 *   kernel-only register CS_DEBUG_MODE1 (0x20EC).  Any granularity
2392 	 *   and settings chosen by the kernel-mode driver will apply to all
2393 	 *   userspace clients.
2394 	 *
2395 	 * Option 2:
2396 	 *   Preemption settings are controlled on a per-context basis via
2397 	 *   register CS_CHICKEN1 (0x2580).  CS_CHICKEN1 is saved/restored on
2398 	 *   context switch and is writable by userspace (e.g., via
2399 	 *   MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer)
2400 	 *   which allows different userspace drivers/clients to select
2401 	 *   different settings, or to change those settings on the fly in
2402 	 *   response to runtime needs.  This option was known by name
2403 	 *   "FtrPerCtxtPreemptionGranularityControl" at one time, although
2404 	 *   that name is somewhat misleading as other non-granularity
2405 	 *   preemption settings are also impacted by this decision.
2406 	 *
2407 	 * On Linux, our policy has always been to let userspace drivers
2408 	 * control preemption granularity/settings (Option 2).  This was
2409 	 * originally mandatory on gen9 to prevent ABI breakage (old gen9
2410 	 * userspace developed before object-level preemption was enabled would
2411 	 * not behave well if i915 were to go with Option 1 and enable that
2412 	 * preemption in a global manner).  On gen9 each context would have
2413 	 * object-level preemption disabled by default (see
2414 	 * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but
2415 	 * userspace drivers could opt-in to object-level preemption as they
2416 	 * saw fit.  For post-gen9 platforms, we continue to utilize Option 2;
2417 	 * even though it is no longer necessary for ABI compatibility when
2418 	 * enabling a new platform, it does ensure that userspace will be able
2419 	 * to implement any workarounds that show up requiring temporary
2420 	 * adjustments to preemption behavior at runtime.
2421 	 *
2422 	 * Notes/Workarounds:
2423 	 *  - Wa_14015141709:  On DG2 and early steppings of MTL,
2424 	 *      CS_CHICKEN1[0] does not disable object-level preemption as
2425 	 *      it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been
2426 	 *      using Option 1).  Effectively this means userspace is unable
2427 	 *      to disable object-level preemption on these platforms/steppings
2428 	 *      despite the setting here.
2429 	 *
2430 	 *  - Wa_16013994831:  May require that userspace program
2431 	 *      CS_CHICKEN1[10] when certain runtime conditions are true.
2432 	 *      Userspace requires Option 2 to be in effect for their update of
2433 	 *      CS_CHICKEN1[10] to be effective.
2434 	 *
2435 	 * Other workarounds may appear in the future that will also require
2436 	 * Option 2 behavior to allow proper userspace implementation.
2437 	 */
2438 	if (GRAPHICS_VER(i915) >= 9)
2439 		wa_masked_en(wal,
2440 			     GEN7_FF_SLICE_CS_CHICKEN1,
2441 			     GEN9_FFSC_PERCTX_PREEMPT_CTRL);
2442 
2443 	if (IS_SKYLAKE(i915) ||
2444 	    IS_KABYLAKE(i915) ||
2445 	    IS_COFFEELAKE(i915) ||
2446 	    IS_COMETLAKE(i915)) {
2447 		/* WaEnableGapsTsvCreditFix:skl,kbl,cfl */
2448 		wa_write_or(wal,
2449 			    GEN8_GARBCNTL,
2450 			    GEN9_GAPS_TSV_CREDIT_DISABLE);
2451 	}
2452 
2453 	if (IS_BROXTON(i915)) {
2454 		/* WaDisablePooledEuLoadBalancingFix:bxt */
2455 		wa_masked_en(wal,
2456 			     FF_SLICE_CS_CHICKEN2,
2457 			     GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
2458 	}
2459 
2460 	if (GRAPHICS_VER(i915) == 9) {
2461 		/* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */
2462 		wa_masked_en(wal,
2463 			     GEN9_CSFE_CHICKEN1_RCS,
2464 			     GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE);
2465 
2466 		/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */
2467 		wa_mcr_write_or(wal,
2468 				BDW_SCRATCH1,
2469 				GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
2470 
2471 		/* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */
2472 		if (IS_GEN9_LP(i915))
2473 			wa_mcr_write_clr_set(wal,
2474 					     GEN8_L3SQCREG1,
2475 					     L3_PRIO_CREDITS_MASK,
2476 					     L3_GENERAL_PRIO_CREDITS(62) |
2477 					     L3_HIGH_PRIO_CREDITS(2));
2478 
2479 		/* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */
2480 		wa_mcr_write_or(wal,
2481 				GEN8_L3SQCREG4,
2482 				GEN8_LQSC_FLUSH_COHERENT_LINES);
2483 
2484 		/* Disable atomics in L3 to prevent unrecoverable hangs */
2485 		wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1,
2486 				 GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2487 		wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4,
2488 				     GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2489 		wa_mcr_write_clr_set(wal, GEN9_SCRATCH1,
2490 				     EVICTION_PERF_FIX_ENABLE, 0);
2491 	}
2492 
2493 	if (IS_HASWELL(i915)) {
2494 		/* WaSampleCChickenBitEnable:hsw */
2495 		wa_masked_en(wal,
2496 			     HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE);
2497 
2498 		wa_masked_dis(wal,
2499 			      CACHE_MODE_0_GEN7,
2500 			      /* enable HiZ Raw Stall Optimization */
2501 			      HIZ_RAW_STALL_OPT_DISABLE);
2502 	}
2503 
2504 	if (IS_VALLEYVIEW(i915)) {
2505 		/* WaDisableEarlyCull:vlv */
2506 		wa_masked_en(wal,
2507 			     _3D_CHICKEN3,
2508 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2509 
2510 		/*
2511 		 * WaVSThreadDispatchOverride:ivb,vlv
2512 		 *
2513 		 * This actually overrides the dispatch
2514 		 * mode for all thread types.
2515 		 */
2516 		wa_write_clr_set(wal,
2517 				 GEN7_FF_THREAD_MODE,
2518 				 GEN7_FF_SCHED_MASK,
2519 				 GEN7_FF_TS_SCHED_HW |
2520 				 GEN7_FF_VS_SCHED_HW |
2521 				 GEN7_FF_DS_SCHED_HW);
2522 
2523 		/* WaPsdDispatchEnable:vlv */
2524 		/* WaDisablePSDDualDispatchEnable:vlv */
2525 		wa_masked_en(wal,
2526 			     GEN7_HALF_SLICE_CHICKEN1,
2527 			     GEN7_MAX_PS_THREAD_DEP |
2528 			     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2529 	}
2530 
2531 	if (IS_IVYBRIDGE(i915)) {
2532 		/* WaDisableEarlyCull:ivb */
2533 		wa_masked_en(wal,
2534 			     _3D_CHICKEN3,
2535 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2536 
2537 		if (0) { /* causes HiZ corruption on ivb:gt1 */
2538 			/* enable HiZ Raw Stall Optimization */
2539 			wa_masked_dis(wal,
2540 				      CACHE_MODE_0_GEN7,
2541 				      HIZ_RAW_STALL_OPT_DISABLE);
2542 		}
2543 
2544 		/*
2545 		 * WaVSThreadDispatchOverride:ivb,vlv
2546 		 *
2547 		 * This actually overrides the dispatch
2548 		 * mode for all thread types.
2549 		 */
2550 		wa_write_clr_set(wal,
2551 				 GEN7_FF_THREAD_MODE,
2552 				 GEN7_FF_SCHED_MASK,
2553 				 GEN7_FF_TS_SCHED_HW |
2554 				 GEN7_FF_VS_SCHED_HW |
2555 				 GEN7_FF_DS_SCHED_HW);
2556 
2557 		/* WaDisablePSDDualDispatchEnable:ivb */
2558 		if (INTEL_INFO(i915)->gt == 1)
2559 			wa_masked_en(wal,
2560 				     GEN7_HALF_SLICE_CHICKEN1,
2561 				     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2562 	}
2563 
2564 	if (GRAPHICS_VER(i915) == 7) {
2565 		/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
2566 		wa_masked_en(wal,
2567 			     RING_MODE_GEN7(RENDER_RING_BASE),
2568 			     GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE);
2569 
2570 		/* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */
2571 		wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE);
2572 
2573 		/*
2574 		 * BSpec says this must be set, even though
2575 		 * WaDisable4x2SubspanOptimization:ivb,hsw
2576 		 * WaDisable4x2SubspanOptimization isn't listed for VLV.
2577 		 */
2578 		wa_masked_en(wal,
2579 			     CACHE_MODE_1,
2580 			     PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
2581 
2582 		/*
2583 		 * BSpec recommends 8x4 when MSAA is used,
2584 		 * however in practice 16x4 seems fastest.
2585 		 *
2586 		 * Note that PS/WM thread counts depend on the WIZ hashing
2587 		 * disable bit, which we don't touch here, but it's good
2588 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2589 		 */
2590 		wa_masked_field_set(wal,
2591 				    GEN7_GT_MODE,
2592 				    GEN6_WIZ_HASHING_MASK,
2593 				    GEN6_WIZ_HASHING_16x4);
2594 	}
2595 
2596 	if (IS_GRAPHICS_VER(i915, 6, 7))
2597 		/*
2598 		 * We need to disable the AsyncFlip performance optimisations in
2599 		 * order to use MI_WAIT_FOR_EVENT within the CS. It should
2600 		 * already be programmed to '1' on all products.
2601 		 *
2602 		 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
2603 		 */
2604 		wa_masked_en(wal,
2605 			     RING_MI_MODE(RENDER_RING_BASE),
2606 			     ASYNC_FLIP_PERF_DISABLE);
2607 
2608 	if (GRAPHICS_VER(i915) == 6) {
2609 		/*
2610 		 * Required for the hardware to program scanline values for
2611 		 * waiting
2612 		 * WaEnableFlushTlbInvalidationMode:snb
2613 		 */
2614 		wa_masked_en(wal,
2615 			     GFX_MODE,
2616 			     GFX_TLB_INVALIDATE_EXPLICIT);
2617 
2618 		/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
2619 		wa_masked_en(wal,
2620 			     _3D_CHICKEN,
2621 			     _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB);
2622 
2623 		wa_masked_en(wal,
2624 			     _3D_CHICKEN3,
2625 			     /* WaStripsFansDisableFastClipPerformanceFix:snb */
2626 			     _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL |
2627 			     /*
2628 			      * Bspec says:
2629 			      * "This bit must be set if 3DSTATE_CLIP clip mode is set
2630 			      * to normal and 3DSTATE_SF number of SF output attributes
2631 			      * is more than 16."
2632 			      */
2633 			     _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH);
2634 
2635 		/*
2636 		 * BSpec recommends 8x4 when MSAA is used,
2637 		 * however in practice 16x4 seems fastest.
2638 		 *
2639 		 * Note that PS/WM thread counts depend on the WIZ hashing
2640 		 * disable bit, which we don't touch here, but it's good
2641 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2642 		 */
2643 		wa_masked_field_set(wal,
2644 				    GEN6_GT_MODE,
2645 				    GEN6_WIZ_HASHING_MASK,
2646 				    GEN6_WIZ_HASHING_16x4);
2647 
2648 		/* WaDisable_RenderCache_OperationalFlush:snb */
2649 		wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
2650 
2651 		/*
2652 		 * From the Sandybridge PRM, volume 1 part 3, page 24:
2653 		 * "If this bit is set, STCunit will have LRA as replacement
2654 		 *  policy. [...] This bit must be reset. LRA replacement
2655 		 *  policy is not supported."
2656 		 */
2657 		wa_masked_dis(wal,
2658 			      CACHE_MODE_0,
2659 			      CM0_STC_EVICT_DISABLE_LRA_SNB);
2660 	}
2661 
2662 	if (IS_GRAPHICS_VER(i915, 4, 6))
2663 		/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
2664 		wa_add(wal, RING_MI_MODE(RENDER_RING_BASE),
2665 		       0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH),
2666 		       /* XXX bit doesn't stick on Broadwater */
2667 		       IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true);
2668 
2669 	if (GRAPHICS_VER(i915) == 4)
2670 		/*
2671 		 * Disable CONSTANT_BUFFER before it is loaded from the context
2672 		 * image. For as it is loaded, it is executed and the stored
2673 		 * address may no longer be valid, leading to a GPU hang.
2674 		 *
2675 		 * This imposes the requirement that userspace reload their
2676 		 * CONSTANT_BUFFER on every batch, fortunately a requirement
2677 		 * they are already accustomed to from before contexts were
2678 		 * enabled.
2679 		 */
2680 		wa_add(wal, ECOSKPD(RENDER_RING_BASE),
2681 		       0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE),
2682 		       0 /* XXX bit doesn't stick on Broadwater */,
2683 		       true);
2684 }
2685 
2686 static void
xcs_engine_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)2687 xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2688 {
2689 	struct drm_i915_private *i915 = engine->i915;
2690 
2691 	/* WaKBLVECSSemaphoreWaitPoll:kbl */
2692 	if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) {
2693 		wa_write(wal,
2694 			 RING_SEMA_WAIT_POLL(engine->mmio_base),
2695 			 1);
2696 	}
2697 	/* Wa_16018031267, Wa_16018063123 */
2698 	if (NEEDS_FASTCOLOR_BLT_WABB(engine))
2699 		wa_masked_field_set(wal, ECOSKPD(engine->mmio_base),
2700 				    XEHP_BLITTER_SCHEDULING_MODE_MASK,
2701 				    XEHP_BLITTER_ROUND_ROBIN_MODE);
2702 }
2703 
2704 static void
ccs_engine_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)2705 ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2706 {
2707 	/* boilerplate for any CCS engine workaround */
2708 }
2709 
2710 /*
2711  * The bspec performance guide has recommended MMIO tuning settings.  These
2712  * aren't truly "workarounds" but we want to program them with the same
2713  * workaround infrastructure to ensure that they're automatically added to
2714  * the GuC save/restore lists, re-applied at the right times, and checked for
2715  * any conflicting programming requested by real workarounds.
2716  *
2717  * Programming settings should be added here only if their registers are not
2718  * part of an engine's register state context.  If a register is part of a
2719  * context, then any tuning settings should be programmed in an appropriate
2720  * function invoked by __intel_engine_init_ctx_wa().
2721  */
2722 static void
add_render_compute_tuning_settings(struct intel_gt * gt,struct i915_wa_list * wal)2723 add_render_compute_tuning_settings(struct intel_gt *gt,
2724 				   struct i915_wa_list *wal)
2725 {
2726 	struct drm_i915_private *i915 = gt->i915;
2727 
2728 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)) || IS_DG2(i915))
2729 		wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512);
2730 
2731 	/*
2732 	 * This tuning setting proves beneficial only on ATS-M designs; the
2733 	 * default "age based" setting is optimal on regular DG2 and other
2734 	 * platforms.
2735 	 */
2736 	if (INTEL_INFO(i915)->tuning_thread_rr_after_dep)
2737 		wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE,
2738 					THREAD_EX_ARB_MODE_RR_AFTER_DEP);
2739 
2740 	if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 55))
2741 		wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC);
2742 }
2743 
ccs_engine_wa_mode(struct intel_engine_cs * engine,struct i915_wa_list * wal)2744 static void ccs_engine_wa_mode(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2745 {
2746 	struct intel_gt *gt = engine->gt;
2747 	u32 mode;
2748 
2749 	if (!IS_DG2(gt->i915))
2750 		return;
2751 
2752 	/*
2753 	 * Wa_14019159160: This workaround, along with others, leads to
2754 	 * significant challenges in utilizing load balancing among the
2755 	 * CCS slices. Consequently, an architectural decision has been
2756 	 * made to completely disable automatic CCS load balancing.
2757 	 */
2758 	wa_masked_en(wal, GEN12_RCU_MODE, XEHP_RCU_MODE_FIXED_SLICE_CCS_MODE);
2759 
2760 	/*
2761 	 * After having disabled automatic load balancing we need to
2762 	 * assign all slices to a single CCS. We will call it CCS mode 1
2763 	 */
2764 	mode = intel_gt_apply_ccs_mode(gt);
2765 	wa_masked_en(wal, XEHP_CCS_MODE, mode);
2766 }
2767 
2768 /*
2769  * The workarounds in this function apply to shared registers in
2770  * the general render reset domain that aren't tied to a
2771  * specific engine.  Since all render+compute engines get reset
2772  * together, and the contents of these registers are lost during
2773  * the shared render domain reset, we'll define such workarounds
2774  * here and then add them to just a single RCS or CCS engine's
2775  * workaround list (whichever engine has the XXXX flag).
2776  */
2777 static void
general_render_compute_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)2778 general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2779 {
2780 	struct drm_i915_private *i915 = engine->i915;
2781 	struct intel_gt *gt = engine->gt;
2782 
2783 	add_render_compute_tuning_settings(gt, wal);
2784 
2785 	if (GRAPHICS_VER(i915) >= 11) {
2786 		/* This is not a Wa (although referred to as
2787 		 * WaSetInidrectStateOverride in places), this allows
2788 		 * applications that reference sampler states through
2789 		 * the BindlessSamplerStateBaseAddress to have their
2790 		 * border color relative to DynamicStateBaseAddress
2791 		 * rather than BindlessSamplerStateBaseAddress.
2792 		 *
2793 		 * Otherwise SAMPLER_STATE border colors have to be
2794 		 * copied in multiple heaps (DynamicStateBaseAddress &
2795 		 * BindlessSamplerStateBaseAddress)
2796 		 *
2797 		 * BSpec: 46052
2798 		 */
2799 		wa_mcr_masked_en(wal,
2800 				 GEN10_SAMPLER_MODE,
2801 				 GEN11_INDIRECT_STATE_BASE_ADDR_OVERRIDE);
2802 	}
2803 
2804 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_B0, STEP_FOREVER) ||
2805 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_B0, STEP_FOREVER) ||
2806 	    IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 74), IP_VER(12, 74))) {
2807 		/* Wa_14017856879 */
2808 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN3, MTL_DISABLE_FIX_FOR_EOT_FLUSH);
2809 
2810 		/* Wa_14020495402 */
2811 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, XELPG_DISABLE_TDL_SVHS_GATING);
2812 	}
2813 
2814 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2815 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2816 		/*
2817 		 * Wa_14017066071
2818 		 * Wa_14017654203
2819 		 */
2820 		wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2821 				 MTL_DISABLE_SAMPLER_SC_OOO);
2822 
2823 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2824 		/* Wa_22015279794 */
2825 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2826 				 DISABLE_PREFETCH_INTO_IC);
2827 
2828 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2829 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2830 	    IS_DG2(i915)) {
2831 		/* Wa_22013037850 */
2832 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW,
2833 				DISABLE_128B_EVICTION_COMMAND_UDW);
2834 
2835 		/* Wa_18017747507 */
2836 		wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE);
2837 	}
2838 
2839 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2840 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2841 	    IS_DG2(i915)) {
2842 		/* Wa_22014226127 */
2843 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE);
2844 	}
2845 
2846 	if (IS_DG2(i915)) {
2847 		/* Wa_14015227452:dg2,pvc */
2848 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE);
2849 
2850 		/*
2851 		 * Wa_16011620976:dg2_g11
2852 		 * Wa_22015475538:dg2
2853 		 */
2854 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8);
2855 
2856 		/* Wa_18028616096 */
2857 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, UGM_FRAGMENT_THRESHOLD_TO_3);
2858 	}
2859 
2860 	if (IS_DG2_G11(i915)) {
2861 		/*
2862 		 * Wa_22012826095:dg2
2863 		 * Wa_22013059131:dg2
2864 		 */
2865 		wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW,
2866 				     MAXREQS_PER_BANK,
2867 				     REG_FIELD_PREP(MAXREQS_PER_BANK, 2));
2868 
2869 		/* Wa_22013059131:dg2 */
2870 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0,
2871 				FORCE_1_SUB_MESSAGE_PER_FRAGMENT);
2872 
2873 		/*
2874 		 * Wa_22012654132
2875 		 *
2876 		 * Note that register 0xE420 is write-only and cannot be read
2877 		 * back for verification on DG2 (due to Wa_14012342262), so
2878 		 * we need to explicitly skip the readback.
2879 		 */
2880 		wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
2881 			   _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC),
2882 			   0 /* write-only, so skip validation */,
2883 			   true);
2884 	}
2885 }
2886 
2887 static void
engine_init_workarounds(struct intel_engine_cs * engine,struct i915_wa_list * wal)2888 engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2889 {
2890 	if (GRAPHICS_VER(engine->i915) < 4)
2891 		return;
2892 
2893 	engine_fake_wa_init(engine, wal);
2894 
2895 	/*
2896 	 * These are common workarounds that just need to applied
2897 	 * to a single RCS/CCS engine's workaround list since
2898 	 * they're reset as part of the general render domain reset.
2899 	 */
2900 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) {
2901 		general_render_compute_wa_init(engine, wal);
2902 		ccs_engine_wa_mode(engine, wal);
2903 	}
2904 
2905 	if (engine->class == COMPUTE_CLASS)
2906 		ccs_engine_wa_init(engine, wal);
2907 	else if (engine->class == RENDER_CLASS)
2908 		rcs_engine_wa_init(engine, wal);
2909 	else
2910 		xcs_engine_wa_init(engine, wal);
2911 }
2912 
intel_engine_init_workarounds(struct intel_engine_cs * engine)2913 void intel_engine_init_workarounds(struct intel_engine_cs *engine)
2914 {
2915 	struct i915_wa_list *wal = &engine->wa_list;
2916 
2917 	wa_init_start(wal, engine->gt, "engine", engine->name);
2918 	engine_init_workarounds(engine, wal);
2919 	wa_init_finish(wal);
2920 }
2921 
intel_engine_apply_workarounds(struct intel_engine_cs * engine)2922 void intel_engine_apply_workarounds(struct intel_engine_cs *engine)
2923 {
2924 	wa_list_apply(&engine->wa_list);
2925 }
2926 
2927 static const struct i915_range mcr_ranges_gen8[] = {
2928 	{ .start = 0x5500, .end = 0x55ff },
2929 	{ .start = 0x7000, .end = 0x7fff },
2930 	{ .start = 0x9400, .end = 0x97ff },
2931 	{ .start = 0xb000, .end = 0xb3ff },
2932 	{ .start = 0xe000, .end = 0xe7ff },
2933 	{},
2934 };
2935 
2936 static const struct i915_range mcr_ranges_gen12[] = {
2937 	{ .start =  0x8150, .end =  0x815f },
2938 	{ .start =  0x9520, .end =  0x955f },
2939 	{ .start =  0xb100, .end =  0xb3ff },
2940 	{ .start =  0xde80, .end =  0xe8ff },
2941 	{ .start = 0x24a00, .end = 0x24a7f },
2942 	{},
2943 };
2944 
2945 static const struct i915_range mcr_ranges_xehp[] = {
2946 	{ .start =  0x4000, .end =  0x4aff },
2947 	{ .start =  0x5200, .end =  0x52ff },
2948 	{ .start =  0x5400, .end =  0x7fff },
2949 	{ .start =  0x8140, .end =  0x815f },
2950 	{ .start =  0x8c80, .end =  0x8dff },
2951 	{ .start =  0x94d0, .end =  0x955f },
2952 	{ .start =  0x9680, .end =  0x96ff },
2953 	{ .start =  0xb000, .end =  0xb3ff },
2954 	{ .start =  0xc800, .end =  0xcfff },
2955 	{ .start =  0xd800, .end =  0xd8ff },
2956 	{ .start =  0xdc00, .end =  0xffff },
2957 	{ .start = 0x17000, .end = 0x17fff },
2958 	{ .start = 0x24a00, .end = 0x24a7f },
2959 	{},
2960 };
2961 
mcr_range(struct drm_i915_private * i915,u32 offset)2962 static bool mcr_range(struct drm_i915_private *i915, u32 offset)
2963 {
2964 	const struct i915_range *mcr_ranges;
2965 	int i;
2966 
2967 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55))
2968 		mcr_ranges = mcr_ranges_xehp;
2969 	else if (GRAPHICS_VER(i915) >= 12)
2970 		mcr_ranges = mcr_ranges_gen12;
2971 	else if (GRAPHICS_VER(i915) >= 8)
2972 		mcr_ranges = mcr_ranges_gen8;
2973 	else
2974 		return false;
2975 
2976 	/*
2977 	 * Registers in these ranges are affected by the MCR selector
2978 	 * which only controls CPU initiated MMIO. Routing does not
2979 	 * work for CS access so we cannot verify them on this path.
2980 	 */
2981 	for (i = 0; mcr_ranges[i].start; i++)
2982 		if (offset >= mcr_ranges[i].start &&
2983 		    offset <= mcr_ranges[i].end)
2984 			return true;
2985 
2986 	return false;
2987 }
2988 
2989 static int
wa_list_srm(struct i915_request * rq,const struct i915_wa_list * wal,struct i915_vma * vma)2990 wa_list_srm(struct i915_request *rq,
2991 	    const struct i915_wa_list *wal,
2992 	    struct i915_vma *vma)
2993 {
2994 	struct drm_i915_private *i915 = rq->i915;
2995 	unsigned int i, count = 0;
2996 	const struct i915_wa *wa;
2997 	u32 srm, *cs;
2998 
2999 	srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
3000 	if (GRAPHICS_VER(i915) >= 8)
3001 		srm++;
3002 
3003 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3004 		if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg)))
3005 			count++;
3006 	}
3007 
3008 	cs = intel_ring_begin(rq, 4 * count);
3009 	if (IS_ERR(cs))
3010 		return PTR_ERR(cs);
3011 
3012 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3013 		u32 offset = i915_mmio_reg_offset(wa->reg);
3014 
3015 		if (mcr_range(i915, offset))
3016 			continue;
3017 
3018 		*cs++ = srm;
3019 		*cs++ = offset;
3020 		*cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i;
3021 		*cs++ = 0;
3022 	}
3023 	intel_ring_advance(rq, cs);
3024 
3025 	return 0;
3026 }
3027 
engine_wa_list_verify(struct intel_context * ce,const struct i915_wa_list * const wal,const char * from)3028 static int engine_wa_list_verify(struct intel_context *ce,
3029 				 const struct i915_wa_list * const wal,
3030 				 const char *from)
3031 {
3032 	const struct i915_wa *wa;
3033 	struct i915_request *rq;
3034 	struct i915_vma *vma;
3035 	struct i915_gem_ww_ctx ww;
3036 	unsigned int i;
3037 	u32 *results;
3038 	int err;
3039 
3040 	if (!wal->count)
3041 		return 0;
3042 
3043 	vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm,
3044 					   wal->count * sizeof(u32));
3045 	if (IS_ERR(vma))
3046 		return PTR_ERR(vma);
3047 
3048 	intel_engine_pm_get(ce->engine);
3049 	i915_gem_ww_ctx_init(&ww, false);
3050 retry:
3051 	err = i915_gem_object_lock(vma->obj, &ww);
3052 	if (err == 0)
3053 		err = intel_context_pin_ww(ce, &ww);
3054 	if (err)
3055 		goto err_pm;
3056 
3057 	err = i915_vma_pin_ww(vma, &ww, 0, 0,
3058 			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
3059 	if (err)
3060 		goto err_unpin;
3061 
3062 	rq = i915_request_create(ce);
3063 	if (IS_ERR(rq)) {
3064 		err = PTR_ERR(rq);
3065 		goto err_vma;
3066 	}
3067 
3068 	err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
3069 	if (err == 0)
3070 		err = wa_list_srm(rq, wal, vma);
3071 
3072 	i915_request_get(rq);
3073 	if (err)
3074 		i915_request_set_error_once(rq, err);
3075 	i915_request_add(rq);
3076 
3077 	if (err)
3078 		goto err_rq;
3079 
3080 	if (i915_request_wait(rq, 0, HZ / 5) < 0) {
3081 		err = -ETIME;
3082 		goto err_rq;
3083 	}
3084 
3085 	results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
3086 	if (IS_ERR(results)) {
3087 		err = PTR_ERR(results);
3088 		goto err_rq;
3089 	}
3090 
3091 	err = 0;
3092 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3093 		if (mcr_range(rq->i915, i915_mmio_reg_offset(wa->reg)))
3094 			continue;
3095 
3096 		if (!wa_verify(wal->gt, wa, results[i], wal->name, from))
3097 			err = -ENXIO;
3098 	}
3099 
3100 	i915_gem_object_unpin_map(vma->obj);
3101 
3102 err_rq:
3103 	i915_request_put(rq);
3104 err_vma:
3105 	i915_vma_unpin(vma);
3106 err_unpin:
3107 	intel_context_unpin(ce);
3108 err_pm:
3109 	if (err == -EDEADLK) {
3110 		err = i915_gem_ww_ctx_backoff(&ww);
3111 		if (!err)
3112 			goto retry;
3113 	}
3114 	i915_gem_ww_ctx_fini(&ww);
3115 	intel_engine_pm_put(ce->engine);
3116 	i915_vma_put(vma);
3117 	return err;
3118 }
3119 
intel_engine_verify_workarounds(struct intel_engine_cs * engine,const char * from)3120 int intel_engine_verify_workarounds(struct intel_engine_cs *engine,
3121 				    const char *from)
3122 {
3123 	return engine_wa_list_verify(engine->kernel_context,
3124 				     &engine->wa_list,
3125 				     from);
3126 }
3127 
3128 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3129 #include "selftest_workarounds.c"
3130 #endif
3131