xref: /freebsd/sys/net/vnet.c (revision 23f453ae34c29b99f892da18db44ce4292ccb7c3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2004-2009 University of Zagreb
5  * Copyright (c) 2006-2009 FreeBSD Foundation
6  * All rights reserved.
7  *
8  * This software was developed by the University of Zagreb and the
9  * FreeBSD Foundation under sponsorship by the Stichting NLnet and the
10  * FreeBSD Foundation.
11  *
12  * Copyright (c) 2009 Jeffrey Roberson <jeff@freebsd.org>
13  * Copyright (c) 2009 Robert N. M. Watson
14  * All rights reserved.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 #include <sys/cdefs.h>
39 #include "opt_ddb.h"
40 #include "opt_kdb.h"
41 
42 #include <sys/param.h>
43 #include <sys/kdb.h>
44 #include <sys/kernel.h>
45 #include <sys/jail.h>
46 #include <sys/sdt.h>
47 #include <sys/systm.h>
48 #include <sys/sysctl.h>
49 #include <sys/eventhandler.h>
50 #include <sys/lock.h>
51 #include <sys/malloc.h>
52 #include <sys/proc.h>
53 #include <sys/socket.h>
54 #include <sys/sx.h>
55 #include <sys/sysctl.h>
56 
57 #include <machine/stdarg.h>
58 
59 #ifdef DDB
60 #include <ddb/ddb.h>
61 #include <ddb/db_sym.h>
62 #endif
63 
64 #include <net/if.h>
65 #include <net/if_var.h>
66 #include <net/vnet.h>
67 
68 /*-
69  * This file implements core functions for virtual network stacks:
70  *
71  * - Virtual network stack management functions.
72  *
73  * - Virtual network stack memory allocator, which virtualizes global
74  *   variables in the network stack
75  *
76  * - Virtualized SYSINIT's/SYSUNINIT's, which allow network stack subsystems
77  *   to register startup/shutdown events to be run for each virtual network
78  *   stack instance.
79  */
80 
81 FEATURE(vimage, "VIMAGE kernel virtualization");
82 
83 static MALLOC_DEFINE(M_VNET, "vnet", "network stack control block");
84 
85 /*
86  * The virtual network stack list has two read-write locks, one sleepable and
87  * the other not, so that the list can be stablized and walked in a variety
88  * of network stack contexts.  Both must be acquired exclusively to modify
89  * the list, but a read lock of either lock is sufficient to walk the list.
90  */
91 struct rwlock		vnet_rwlock;
92 struct sx		vnet_sxlock;
93 
94 #define	VNET_LIST_WLOCK() do {						\
95 	sx_xlock(&vnet_sxlock);						\
96 	rw_wlock(&vnet_rwlock);						\
97 } while (0)
98 
99 #define	VNET_LIST_WUNLOCK() do {					\
100 	rw_wunlock(&vnet_rwlock);					\
101 	sx_xunlock(&vnet_sxlock);					\
102 } while (0)
103 
104 struct vnet_list_head vnet_head = LIST_HEAD_INITIALIZER(vnet_head);
105 struct vnet *vnet0;
106 
107 /*
108  * The virtual network stack allocator provides storage for virtualized
109  * global variables.  These variables are defined/declared using the
110  * VNET_DEFINE()/VNET_DECLARE() macros, which place them in the 'set_vnet'
111  * linker set.  The details of the implementation are somewhat subtle, but
112  * allow the majority of most network subsystems to maintain
113  * virtualization-agnostic.
114  *
115  * The virtual network stack allocator handles variables in the base kernel
116  * vs. modules in similar but different ways.  In both cases, virtualized
117  * global variables are marked as such by being declared to be part of the
118  * vnet linker set.  These "master" copies of global variables serve two
119  * functions:
120  *
121  * (1) They contain static initialization or "default" values for global
122  *     variables which will be propagated to each virtual network stack
123  *     instance when created.  As with normal global variables, they default
124  *     to zero-filled.
125  *
126  * (2) They act as unique global names by which the variable can be referred
127  *     to, regardless of network stack instance.  The single global symbol
128  *     will be used to calculate the location of a per-virtual instance
129  *     variable at run-time.
130  *
131  * Each virtual network stack instance has a complete copy of each
132  * virtualized global variable, stored in a malloc'd block of memory
133  * referred to by vnet->vnet_data_mem.  Critical to the design is that each
134  * per-instance memory block is laid out identically to the master block so
135  * that the offset of each global variable is the same across all blocks.  To
136  * optimize run-time access, a precalculated 'base' address,
137  * vnet->vnet_data_base, is stored in each vnet, and is the amount that can
138  * be added to the address of a 'master' instance of a variable to get to the
139  * per-vnet instance.
140  *
141  * Virtualized global variables are handled in a similar manner, but as each
142  * module has its own 'set_vnet' linker set, and we want to keep all
143  * virtualized globals togther, we reserve space in the kernel's linker set
144  * for potential module variables using a per-vnet character array,
145  * 'modspace'.  The virtual network stack allocator maintains a free list to
146  * track what space in the array is free (all, initially) and as modules are
147  * linked, allocates portions of the space to specific globals.  The kernel
148  * module linker queries the virtual network stack allocator and will
149  * bind references of the global to the location during linking.  It also
150  * calls into the virtual network stack allocator, once the memory is
151  * initialized, in order to propagate the new static initializations to all
152  * existing virtual network stack instances so that the soon-to-be executing
153  * module will find every network stack instance with proper default values.
154  */
155 
156 /*
157  * Number of bytes of data in the 'set_vnet' linker set, and hence the total
158  * size of all kernel virtualized global variables, and the malloc(9) type
159  * that will be used to allocate it.
160  */
161 #define	VNET_BYTES	(VNET_STOP - VNET_START)
162 
163 static MALLOC_DEFINE(M_VNET_DATA, "vnet_data", "VNET data");
164 
165 /*
166  * VNET_MODMIN is the minimum number of bytes we will reserve for the sum of
167  * global variables across all loaded modules.  As this actually sizes an
168  * array declared as a virtualized global variable in the kernel itself, and
169  * we want the virtualized global variable space to be page-sized, we may
170  * have more space than that in practice.
171  */
172 #define	VNET_MODMIN	(8 * PAGE_SIZE)
173 #define	VNET_SIZE	roundup2(VNET_BYTES, PAGE_SIZE)
174 
175 /*
176  * Space to store virtualized global variables from loadable kernel modules,
177  * and the free list to manage it.
178  */
179 VNET_DEFINE_STATIC(char, modspace[VNET_MODMIN] __aligned(__alignof(void *)));
180 
181 /*
182  * A copy of the initial values of all virtualized global variables.
183  */
184 static uintptr_t vnet_init_var;
185 
186 /*
187  * Global lists of subsystem constructor and destructors for vnets.  They are
188  * registered via VNET_SYSINIT() and VNET_SYSUNINIT().  Both lists are
189  * protected by the vnet_sysinit_sxlock global lock.
190  */
191 static TAILQ_HEAD(vnet_sysinit_head, vnet_sysinit) vnet_constructors =
192 	TAILQ_HEAD_INITIALIZER(vnet_constructors);
193 static TAILQ_HEAD(vnet_sysuninit_head, vnet_sysinit) vnet_destructors =
194 	TAILQ_HEAD_INITIALIZER(vnet_destructors);
195 
196 struct sx		vnet_sysinit_sxlock;
197 
198 #define	VNET_SYSINIT_WLOCK()	sx_xlock(&vnet_sysinit_sxlock);
199 #define	VNET_SYSINIT_WUNLOCK()	sx_xunlock(&vnet_sysinit_sxlock);
200 #define	VNET_SYSINIT_RLOCK()	sx_slock(&vnet_sysinit_sxlock);
201 #define	VNET_SYSINIT_RUNLOCK()	sx_sunlock(&vnet_sysinit_sxlock);
202 
203 struct vnet_data_free {
204 	uintptr_t	vnd_start;
205 	int		vnd_len;
206 	TAILQ_ENTRY(vnet_data_free) vnd_link;
207 };
208 
209 static MALLOC_DEFINE(M_VNET_DATA_FREE, "vnet_data_free",
210     "VNET resource accounting");
211 static TAILQ_HEAD(, vnet_data_free) vnet_data_free_head =
212     TAILQ_HEAD_INITIALIZER(vnet_data_free_head);
213 static struct sx vnet_data_free_lock;
214 
215 SDT_PROVIDER_DEFINE(vnet);
216 SDT_PROBE_DEFINE1(vnet, functions, vnet_alloc, entry, "int");
217 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, alloc, "int",
218     "struct vnet *");
219 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, return,
220     "int", "struct vnet *");
221 SDT_PROBE_DEFINE2(vnet, functions, vnet_destroy, entry,
222     "int", "struct vnet *");
223 SDT_PROBE_DEFINE1(vnet, functions, vnet_destroy, return,
224     "int");
225 
226 /*
227  * Run per-vnet sysinits or sysuninits during vnet creation/destruction.
228  */
229 static void vnet_sysinit(void);
230 static void vnet_sysuninit(void);
231 
232 #ifdef DDB
233 static void db_show_vnet_print_vs(struct vnet_sysinit *, int);
234 #endif
235 
236 /*
237  * Allocate a virtual network stack.
238  */
239 struct vnet *
vnet_alloc(void)240 vnet_alloc(void)
241 {
242 	struct vnet *vnet;
243 
244 	SDT_PROBE1(vnet, functions, vnet_alloc, entry, __LINE__);
245 	vnet = malloc(sizeof(struct vnet), M_VNET, M_WAITOK | M_ZERO);
246 	vnet->vnet_magic_n = VNET_MAGIC_N;
247 	SDT_PROBE2(vnet, functions, vnet_alloc, alloc, __LINE__, vnet);
248 
249 	/*
250 	 * Allocate storage for virtualized global variables and copy in
251 	 * initial values from our 'master' copy.
252 	 */
253 	vnet->vnet_data_mem = malloc(VNET_SIZE, M_VNET_DATA, M_WAITOK);
254 	memcpy(vnet->vnet_data_mem, (void *)VNET_START, VNET_BYTES);
255 
256 	/*
257 	 * All use of vnet-specific data will immediately subtract VNET_START
258 	 * from the base memory pointer, so pre-calculate that now to avoid
259 	 * it on each use.
260 	 */
261 	vnet->vnet_data_base = (uintptr_t)vnet->vnet_data_mem - VNET_START;
262 
263 	/* Initialize / attach vnet module instances. */
264 	CURVNET_SET_QUIET(vnet);
265 	vnet_sysinit();
266 	CURVNET_RESTORE();
267 
268 	VNET_LIST_WLOCK();
269 	LIST_INSERT_HEAD(&vnet_head, vnet, vnet_le);
270 	VNET_LIST_WUNLOCK();
271 
272 	SDT_PROBE2(vnet, functions, vnet_alloc, return, __LINE__, vnet);
273 	return (vnet);
274 }
275 
276 /*
277  * Destroy a virtual network stack.
278  */
279 void
vnet_destroy(struct vnet * vnet)280 vnet_destroy(struct vnet *vnet)
281 {
282 
283 	SDT_PROBE2(vnet, functions, vnet_destroy, entry, __LINE__, vnet);
284 	KASSERT(vnet->vnet_sockcnt == 0,
285 	    ("%s: vnet still has sockets", __func__));
286 
287 	VNET_LIST_WLOCK();
288 	LIST_REMOVE(vnet, vnet_le);
289 	VNET_LIST_WUNLOCK();
290 
291 	/* Signal that VNET is being shutdown. */
292 	vnet->vnet_shutdown = true;
293 
294 	CURVNET_SET_QUIET(vnet);
295 	sx_xlock(&ifnet_detach_sxlock);
296 	vnet_sysuninit();
297 	sx_xunlock(&ifnet_detach_sxlock);
298 	CURVNET_RESTORE();
299 
300 	/*
301 	 * Release storage for the virtual network stack instance.
302 	 */
303 	free(vnet->vnet_data_mem, M_VNET_DATA);
304 	vnet->vnet_data_mem = NULL;
305 	vnet->vnet_data_base = 0;
306 	vnet->vnet_magic_n = 0xdeadbeef;
307 	free(vnet, M_VNET);
308 	SDT_PROBE1(vnet, functions, vnet_destroy, return, __LINE__);
309 }
310 
311 /*
312  * Boot time initialization and allocation of virtual network stacks.
313  */
314 static void
vnet_init_prelink(void * arg __unused)315 vnet_init_prelink(void *arg __unused)
316 {
317 
318 	rw_init(&vnet_rwlock, "vnet_rwlock");
319 	sx_init(&vnet_sxlock, "vnet_sxlock");
320 	sx_init(&vnet_sysinit_sxlock, "vnet_sysinit_sxlock");
321 }
322 SYSINIT(vnet_init_prelink, SI_SUB_VNET_PRELINK, SI_ORDER_FIRST,
323     vnet_init_prelink, NULL);
324 
325 static void
vnet0_init(void * arg __unused)326 vnet0_init(void *arg __unused)
327 {
328 
329 	if (bootverbose)
330 		printf("VIMAGE (virtualized network stack) enabled\n");
331 
332 	/*
333 	 * We MUST clear curvnet in vi_init_done() before going SMP,
334 	 * otherwise CURVNET_SET() macros would scream about unnecessary
335 	 * curvnet recursions.
336 	 */
337 	curvnet = prison0.pr_vnet = vnet0 = vnet_alloc();
338 }
339 SYSINIT(vnet0_init, SI_SUB_VNET, SI_ORDER_FIRST, vnet0_init, NULL);
340 
341 static void
vnet_init_done(void * unused __unused)342 vnet_init_done(void *unused __unused)
343 {
344 
345 	curvnet = NULL;
346 }
347 SYSINIT(vnet_init_done, SI_SUB_VNET_DONE, SI_ORDER_ANY, vnet_init_done,
348     NULL);
349 
350 /*
351  * Once on boot, initialize the modspace freelist to entirely cover modspace.
352  */
353 static void
vnet_data_startup(void * dummy __unused)354 vnet_data_startup(void *dummy __unused)
355 {
356 	struct vnet_data_free *df;
357 
358 	df = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO);
359 	df->vnd_start = (uintptr_t)&VNET_NAME(modspace);
360 	df->vnd_len = VNET_MODMIN;
361 	TAILQ_INSERT_HEAD(&vnet_data_free_head, df, vnd_link);
362 	sx_init(&vnet_data_free_lock, "vnet_data alloc lock");
363 	vnet_init_var = (uintptr_t)malloc(VNET_BYTES, M_VNET_DATA, M_WAITOK);
364 }
365 SYSINIT(vnet_data, SI_SUB_KLD, SI_ORDER_FIRST, vnet_data_startup, NULL);
366 
367 /* Dummy VNET_SYSINIT to make sure we always reach the final end state. */
368 static void
vnet_sysinit_done(void * unused __unused)369 vnet_sysinit_done(void *unused __unused)
370 {
371 
372 	return;
373 }
374 VNET_SYSINIT(vnet_sysinit_done, SI_SUB_VNET_DONE, SI_ORDER_ANY,
375     vnet_sysinit_done, NULL);
376 
377 /*
378  * When a module is loaded and requires storage for a virtualized global
379  * variable, allocate space from the modspace free list.  This interface
380  * should be used only by the kernel linker.
381  */
382 void *
vnet_data_alloc(int size)383 vnet_data_alloc(int size)
384 {
385 	struct vnet_data_free *df;
386 	void *s;
387 
388 	s = NULL;
389 	size = roundup2(size, sizeof(void *));
390 	sx_xlock(&vnet_data_free_lock);
391 	TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) {
392 		if (df->vnd_len < size)
393 			continue;
394 		if (df->vnd_len == size) {
395 			s = (void *)df->vnd_start;
396 			TAILQ_REMOVE(&vnet_data_free_head, df, vnd_link);
397 			free(df, M_VNET_DATA_FREE);
398 			break;
399 		}
400 		s = (void *)df->vnd_start;
401 		df->vnd_len -= size;
402 		df->vnd_start = df->vnd_start + size;
403 		break;
404 	}
405 	sx_xunlock(&vnet_data_free_lock);
406 
407 	return (s);
408 }
409 
410 /*
411  * Free space for a virtualized global variable on module unload.
412  */
413 void
vnet_data_free(void * start_arg,int size)414 vnet_data_free(void *start_arg, int size)
415 {
416 	struct vnet_data_free *df;
417 	struct vnet_data_free *dn;
418 	uintptr_t start;
419 	uintptr_t end;
420 
421 	size = roundup2(size, sizeof(void *));
422 	start = (uintptr_t)start_arg;
423 	end = start + size;
424 	/*
425 	 * Free a region of space and merge it with as many neighbors as
426 	 * possible.  Keeping the list sorted simplifies this operation.
427 	 */
428 	sx_xlock(&vnet_data_free_lock);
429 	TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) {
430 		if (df->vnd_start > end)
431 			break;
432 		/*
433 		 * If we expand at the end of an entry we may have to merge
434 		 * it with the one following it as well.
435 		 */
436 		if (df->vnd_start + df->vnd_len == start) {
437 			df->vnd_len += size;
438 			dn = TAILQ_NEXT(df, vnd_link);
439 			if (df->vnd_start + df->vnd_len == dn->vnd_start) {
440 				df->vnd_len += dn->vnd_len;
441 				TAILQ_REMOVE(&vnet_data_free_head, dn,
442 				    vnd_link);
443 				free(dn, M_VNET_DATA_FREE);
444 			}
445 			sx_xunlock(&vnet_data_free_lock);
446 			return;
447 		}
448 		if (df->vnd_start == end) {
449 			df->vnd_start = start;
450 			df->vnd_len += size;
451 			sx_xunlock(&vnet_data_free_lock);
452 			return;
453 		}
454 	}
455 	dn = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO);
456 	dn->vnd_start = start;
457 	dn->vnd_len = size;
458 	if (df)
459 		TAILQ_INSERT_BEFORE(df, dn, vnd_link);
460 	else
461 		TAILQ_INSERT_TAIL(&vnet_data_free_head, dn, vnd_link);
462 	sx_xunlock(&vnet_data_free_lock);
463 }
464 
465 /*
466  * When a new virtualized global variable has been allocated, propagate its
467  * initial value to each already-allocated virtual network stack instance.
468  */
469 void
vnet_data_copy(void * start,int size)470 vnet_data_copy(void *start, int size)
471 {
472 	struct vnet *vnet;
473 
474 	VNET_LIST_RLOCK();
475 	LIST_FOREACH(vnet, &vnet_head, vnet_le)
476 		memcpy((void *)((uintptr_t)vnet->vnet_data_base +
477 		    (uintptr_t)start), start, size);
478 	VNET_LIST_RUNLOCK();
479 }
480 
481 /*
482  * Save a copy of the initial values of virtualized global variables.
483  */
484 void
vnet_save_init(void * start,size_t size)485 vnet_save_init(void *start, size_t size)
486 {
487 	MPASS(vnet_init_var != 0);
488 	MPASS(VNET_START <= (uintptr_t)start &&
489 	    (uintptr_t)start + size <= VNET_STOP);
490 	memcpy((void *)(vnet_init_var + ((uintptr_t)start - VNET_START)),
491 	    start, size);
492 }
493 
494 /*
495  * Restore the 'master' copies of virtualized global variables to theirs
496  * initial values.
497  */
498 void
vnet_restore_init(void * start,size_t size)499 vnet_restore_init(void *start, size_t size)
500 {
501 	MPASS(vnet_init_var != 0);
502 	MPASS(VNET_START <= (uintptr_t)start &&
503 	    (uintptr_t)start + size <= VNET_STOP);
504 	memcpy(start,
505 	    (void *)(vnet_init_var + ((uintptr_t)start - VNET_START)), size);
506 }
507 
508 /*
509  * Support for special SYSINIT handlers registered via VNET_SYSINIT()
510  * and VNET_SYSUNINIT().
511  */
512 void
vnet_register_sysinit(void * arg)513 vnet_register_sysinit(void *arg)
514 {
515 	struct vnet_sysinit *vs, *vs2;
516 	struct vnet *vnet;
517 
518 	vs = arg;
519 	KASSERT(vs->subsystem > SI_SUB_VNET, ("vnet sysinit too early"));
520 
521 	/* Add the constructor to the global list of vnet constructors. */
522 	VNET_SYSINIT_WLOCK();
523 	TAILQ_FOREACH(vs2, &vnet_constructors, link) {
524 		if (vs2->subsystem > vs->subsystem)
525 			break;
526 		if (vs2->subsystem == vs->subsystem && vs2->order > vs->order)
527 			break;
528 	}
529 	if (vs2 != NULL)
530 		TAILQ_INSERT_BEFORE(vs2, vs, link);
531 	else
532 		TAILQ_INSERT_TAIL(&vnet_constructors, vs, link);
533 
534 	/*
535 	 * Invoke the constructor on all the existing vnets when it is
536 	 * registered.
537 	 */
538 	VNET_LIST_RLOCK();
539 	VNET_FOREACH(vnet) {
540 		CURVNET_SET_QUIET(vnet);
541 		vs->func(vs->arg);
542 		CURVNET_RESTORE();
543 	}
544 	VNET_LIST_RUNLOCK();
545 	VNET_SYSINIT_WUNLOCK();
546 }
547 
548 void
vnet_deregister_sysinit(void * arg)549 vnet_deregister_sysinit(void *arg)
550 {
551 	struct vnet_sysinit *vs;
552 
553 	vs = arg;
554 
555 	/* Remove the constructor from the global list of vnet constructors. */
556 	VNET_SYSINIT_WLOCK();
557 	TAILQ_REMOVE(&vnet_constructors, vs, link);
558 	VNET_SYSINIT_WUNLOCK();
559 }
560 
561 void
vnet_register_sysuninit(void * arg)562 vnet_register_sysuninit(void *arg)
563 {
564 	struct vnet_sysinit *vs, *vs2;
565 
566 	vs = arg;
567 
568 	/* Add the destructor to the global list of vnet destructors. */
569 	VNET_SYSINIT_WLOCK();
570 	TAILQ_FOREACH(vs2, &vnet_destructors, link) {
571 		if (vs2->subsystem > vs->subsystem)
572 			break;
573 		if (vs2->subsystem == vs->subsystem && vs2->order > vs->order)
574 			break;
575 	}
576 	if (vs2 != NULL)
577 		TAILQ_INSERT_BEFORE(vs2, vs, link);
578 	else
579 		TAILQ_INSERT_TAIL(&vnet_destructors, vs, link);
580 	VNET_SYSINIT_WUNLOCK();
581 }
582 
583 void
vnet_deregister_sysuninit(void * arg)584 vnet_deregister_sysuninit(void *arg)
585 {
586 	struct vnet_sysinit *vs;
587 	struct vnet *vnet;
588 
589 	vs = arg;
590 
591 	/*
592 	 * Invoke the destructor on all the existing vnets when it is
593 	 * deregistered.
594 	 */
595 	VNET_SYSINIT_WLOCK();
596 	VNET_LIST_RLOCK();
597 	VNET_FOREACH(vnet) {
598 		CURVNET_SET_QUIET(vnet);
599 		vs->func(vs->arg);
600 		CURVNET_RESTORE();
601 	}
602 
603 	/* Remove the destructor from the global list of vnet destructors. */
604 	TAILQ_REMOVE(&vnet_destructors, vs, link);
605 	VNET_SYSINIT_WUNLOCK();
606 	VNET_LIST_RUNLOCK();
607 }
608 
609 /*
610  * Invoke all registered vnet constructors on the current vnet.  Used during
611  * vnet construction.  The caller is responsible for ensuring the new vnet is
612  * the current vnet and that the vnet_sysinit_sxlock lock is locked.
613  */
614 static void
vnet_sysinit(void)615 vnet_sysinit(void)
616 {
617 	struct vnet_sysinit *vs;
618 
619 	VNET_SYSINIT_RLOCK();
620 	TAILQ_FOREACH(vs, &vnet_constructors, link) {
621 		curvnet->vnet_state = vs->subsystem;
622 		vs->func(vs->arg);
623 	}
624 	VNET_SYSINIT_RUNLOCK();
625 }
626 
627 /*
628  * Invoke all registered vnet destructors on the current vnet.  Used during
629  * vnet destruction.  The caller is responsible for ensuring the dying vnet
630  * the current vnet and that the vnet_sysinit_sxlock lock is locked.
631  */
632 static void
vnet_sysuninit(void)633 vnet_sysuninit(void)
634 {
635 	struct vnet_sysinit *vs;
636 
637 	VNET_SYSINIT_RLOCK();
638 	TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head,
639 	    link) {
640 		curvnet->vnet_state = vs->subsystem;
641 		vs->func(vs->arg);
642 	}
643 	VNET_SYSINIT_RUNLOCK();
644 }
645 
646 /*
647  * EVENTHANDLER(9) extensions.
648  */
649 /*
650  * Invoke the eventhandler function originally registered with the possibly
651  * registered argument for all virtual network stack instances.
652  *
653  * This iterator can only be used for eventhandlers that do not take any
654  * additional arguments, as we do ignore the variadic arguments from the
655  * EVENTHANDLER_INVOKE() call.
656  */
657 void
vnet_global_eventhandler_iterator_func(void * arg,...)658 vnet_global_eventhandler_iterator_func(void *arg, ...)
659 {
660 	VNET_ITERATOR_DECL(vnet_iter);
661 	struct eventhandler_entry_vimage *v_ee;
662 
663 	/*
664 	 * There is a bug here in that we should actually cast things to
665 	 * (struct eventhandler_entry_ ## name *)  but that's not easily
666 	 * possible in here so just re-using the variadic version we
667 	 * defined for the generic vimage case.
668 	 */
669 	v_ee = arg;
670 	VNET_LIST_RLOCK();
671 	VNET_FOREACH(vnet_iter) {
672 		CURVNET_SET(vnet_iter);
673 		((vimage_iterator_func_t)v_ee->func)(v_ee->ee_arg);
674 		CURVNET_RESTORE();
675 	}
676 	VNET_LIST_RUNLOCK();
677 }
678 
679 #ifdef VNET_DEBUG
680 struct vnet_recursion {
681 	SLIST_ENTRY(vnet_recursion)	 vnr_le;
682 	const char			*prev_fn;
683 	const char			*where_fn;
684 	int				 where_line;
685 	struct vnet			*old_vnet;
686 	struct vnet			*new_vnet;
687 };
688 
689 static SLIST_HEAD(, vnet_recursion) vnet_recursions =
690     SLIST_HEAD_INITIALIZER(vnet_recursions);
691 
692 static void
vnet_print_recursion(struct vnet_recursion * vnr,int brief)693 vnet_print_recursion(struct vnet_recursion *vnr, int brief)
694 {
695 
696 	if (!brief)
697 		printf("CURVNET_SET() recursion in ");
698 	printf("%s() line %d, prev in %s()", vnr->where_fn, vnr->where_line,
699 	    vnr->prev_fn);
700 	if (brief)
701 		printf(", ");
702 	else
703 		printf("\n    ");
704 	printf("%p -> %p\n", vnr->old_vnet, vnr->new_vnet);
705 }
706 
707 void
vnet_log_recursion(struct vnet * old_vnet,const char * old_fn,int line)708 vnet_log_recursion(struct vnet *old_vnet, const char *old_fn, int line)
709 {
710 	struct vnet_recursion *vnr;
711 
712 	/* Skip already logged recursion events. */
713 	SLIST_FOREACH(vnr, &vnet_recursions, vnr_le)
714 		if (vnr->prev_fn == old_fn &&
715 		    vnr->where_fn == curthread->td_vnet_lpush &&
716 		    vnr->where_line == line &&
717 		    (vnr->old_vnet == vnr->new_vnet) == (curvnet == old_vnet))
718 			return;
719 
720 	vnr = malloc(sizeof(*vnr), M_VNET, M_NOWAIT | M_ZERO);
721 	if (vnr == NULL)
722 		panic("%s: malloc failed", __func__);
723 	vnr->prev_fn = old_fn;
724 	vnr->where_fn = curthread->td_vnet_lpush;
725 	vnr->where_line = line;
726 	vnr->old_vnet = old_vnet;
727 	vnr->new_vnet = curvnet;
728 
729 	SLIST_INSERT_HEAD(&vnet_recursions, vnr, vnr_le);
730 
731 	vnet_print_recursion(vnr, 0);
732 #ifdef KDB
733 	kdb_backtrace();
734 #endif
735 }
736 #endif /* VNET_DEBUG */
737 
738 /*
739  * DDB(4).
740  */
741 #ifdef DDB
742 static void
db_vnet_print(struct vnet * vnet)743 db_vnet_print(struct vnet *vnet)
744 {
745 
746 	db_printf("vnet            = %p\n", vnet);
747 	db_printf(" vnet_magic_n   = %#08x (%s, orig %#08x)\n",
748 	    vnet->vnet_magic_n,
749 	    (vnet->vnet_magic_n == VNET_MAGIC_N) ?
750 		"ok" : "mismatch", VNET_MAGIC_N);
751 	db_printf(" vnet_ifcnt     = %u\n", vnet->vnet_ifcnt);
752 	db_printf(" vnet_sockcnt   = %u\n", vnet->vnet_sockcnt);
753 	db_printf(" vnet_data_mem  = %p\n", vnet->vnet_data_mem);
754 	db_printf(" vnet_data_base = %#jx\n",
755 	    (uintmax_t)vnet->vnet_data_base);
756 	db_printf(" vnet_state     = %#08x\n", vnet->vnet_state);
757 	db_printf(" vnet_shutdown  = %#03x\n", vnet->vnet_shutdown);
758 	db_printf("\n");
759 }
760 
DB_SHOW_ALL_COMMAND(vnets,db_show_all_vnets)761 DB_SHOW_ALL_COMMAND(vnets, db_show_all_vnets)
762 {
763 	VNET_ITERATOR_DECL(vnet_iter);
764 
765 	VNET_FOREACH(vnet_iter) {
766 		db_vnet_print(vnet_iter);
767 		if (db_pager_quit)
768 			break;
769 	}
770 }
771 
DB_SHOW_COMMAND(vnet,db_show_vnet)772 DB_SHOW_COMMAND(vnet, db_show_vnet)
773 {
774 
775 	if (!have_addr) {
776 		db_printf("usage: show vnet <struct vnet *>\n");
777 		return;
778 	}
779 
780 	db_vnet_print((struct vnet *)addr);
781 }
782 
783 static void
db_show_vnet_print_vs(struct vnet_sysinit * vs,int ddb)784 db_show_vnet_print_vs(struct vnet_sysinit *vs, int ddb)
785 {
786 	const char *vsname, *funcname;
787 	c_db_sym_t sym;
788 	db_expr_t  offset;
789 
790 #define xprint(...) do {						\
791 	if (ddb)							\
792 		db_printf(__VA_ARGS__);					\
793 	else								\
794 		printf(__VA_ARGS__);					\
795 } while (0)
796 
797 	if (vs == NULL) {
798 		xprint("%s: no vnet_sysinit * given\n", __func__);
799 		return;
800 	}
801 
802 	sym = db_search_symbol((vm_offset_t)vs, DB_STGY_ANY, &offset);
803 	db_symbol_values(sym, &vsname, NULL);
804 	sym = db_search_symbol((vm_offset_t)vs->func, DB_STGY_PROC, &offset);
805 	db_symbol_values(sym, &funcname, NULL);
806 	xprint("%s(%p)\n", (vsname != NULL) ? vsname : "", vs);
807 	xprint("  %#08x %#08x\n", vs->subsystem, vs->order);
808 	xprint("  %p(%s)(%p)\n",
809 	    vs->func, (funcname != NULL) ? funcname : "", vs->arg);
810 #undef xprint
811 }
812 
DB_SHOW_COMMAND_FLAGS(vnet_sysinit,db_show_vnet_sysinit,DB_CMD_MEMSAFE)813 DB_SHOW_COMMAND_FLAGS(vnet_sysinit, db_show_vnet_sysinit, DB_CMD_MEMSAFE)
814 {
815 	struct vnet_sysinit *vs;
816 
817 	db_printf("VNET_SYSINIT vs Name(Ptr)\n");
818 	db_printf("  Subsystem  Order\n");
819 	db_printf("  Function(Name)(Arg)\n");
820 	TAILQ_FOREACH(vs, &vnet_constructors, link) {
821 		db_show_vnet_print_vs(vs, 1);
822 		if (db_pager_quit)
823 			break;
824 	}
825 }
826 
DB_SHOW_COMMAND_FLAGS(vnet_sysuninit,db_show_vnet_sysuninit,DB_CMD_MEMSAFE)827 DB_SHOW_COMMAND_FLAGS(vnet_sysuninit, db_show_vnet_sysuninit, DB_CMD_MEMSAFE)
828 {
829 	struct vnet_sysinit *vs;
830 
831 	db_printf("VNET_SYSUNINIT vs Name(Ptr)\n");
832 	db_printf("  Subsystem  Order\n");
833 	db_printf("  Function(Name)(Arg)\n");
834 	TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head,
835 	    link) {
836 		db_show_vnet_print_vs(vs, 1);
837 		if (db_pager_quit)
838 			break;
839 	}
840 }
841 
842 #ifdef VNET_DEBUG
DB_SHOW_COMMAND_FLAGS(vnetrcrs,db_show_vnetrcrs,DB_CMD_MEMSAFE)843 DB_SHOW_COMMAND_FLAGS(vnetrcrs, db_show_vnetrcrs, DB_CMD_MEMSAFE)
844 {
845 	struct vnet_recursion *vnr;
846 
847 	SLIST_FOREACH(vnr, &vnet_recursions, vnr_le)
848 		vnet_print_recursion(vnr, 1);
849 }
850 #endif
851 #endif /* DDB */
852