1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25 */
26
27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */
29
30 /*
31 * University Copyright- Copyright (c) 1982, 1986, 1988
32 * The Regents of the University of California
33 * All Rights Reserved
34 *
35 * University Acknowledgment- Portions of this document are derived from
36 * software developed by the University of California, Berkeley, and its
37 * contributors.
38 */
39
40 #include <sys/types.h>
41 #include <sys/param.h>
42 #include <sys/t_lock.h>
43 #include <sys/errno.h>
44 #include <sys/cred.h>
45 #include <sys/user.h>
46 #include <sys/uio.h>
47 #include <sys/file.h>
48 #include <sys/pathname.h>
49 #include <sys/vfs.h>
50 #include <sys/vfs_opreg.h>
51 #include <sys/vnode.h>
52 #include <sys/rwstlock.h>
53 #include <sys/fem.h>
54 #include <sys/stat.h>
55 #include <sys/mode.h>
56 #include <sys/conf.h>
57 #include <sys/sysmacros.h>
58 #include <sys/cmn_err.h>
59 #include <sys/systm.h>
60 #include <sys/kmem.h>
61 #include <sys/debug.h>
62 #include <c2/audit.h>
63 #include <sys/acl.h>
64 #include <sys/nbmlock.h>
65 #include <sys/fcntl.h>
66 #include <fs/fs_subr.h>
67 #include <sys/taskq.h>
68 #include <fs/fs_reparse.h>
69
70 /* Determine if this vnode is a file that is read-only */
71 #define ISROFILE(vp) \
72 ((vp)->v_type != VCHR && (vp)->v_type != VBLK && \
73 (vp)->v_type != VFIFO && vn_is_readonly(vp))
74
75 /* Tunable via /etc/system; used only by admin/install */
76 int nfs_global_client_only;
77
78 /*
79 * Array of vopstats_t for per-FS-type vopstats. This array has the same
80 * number of entries as and parallel to the vfssw table. (Arguably, it could
81 * be part of the vfssw table.) Once it's initialized, it's accessed using
82 * the same fstype index that is used to index into the vfssw table.
83 */
84 vopstats_t **vopstats_fstype;
85
86 /* vopstats initialization template used for fast initialization via bcopy() */
87 static vopstats_t *vs_templatep;
88
89 /* Kmem cache handle for vsk_anchor_t allocations */
90 kmem_cache_t *vsk_anchor_cache;
91
92 /* file events cleanup routine */
93 extern void free_fopdata(vnode_t *);
94
95 /*
96 * Root of AVL tree for the kstats associated with vopstats. Lock protects
97 * updates to vsktat_tree.
98 */
99 avl_tree_t vskstat_tree;
100 kmutex_t vskstat_tree_lock;
101
102 /* Global variable which enables/disables the vopstats collection */
103 int vopstats_enabled = 1;
104
105 /*
106 * forward declarations for internal vnode specific data (vsd)
107 */
108 static void *vsd_realloc(void *, size_t, size_t);
109
110 /*
111 * forward declarations for reparse point functions
112 */
113 static int fs_reparse_mark(char *target, vattr_t *vap, xvattr_t *xvattr);
114
115 /*
116 * VSD -- VNODE SPECIFIC DATA
117 * The v_data pointer is typically used by a file system to store a
118 * pointer to the file system's private node (e.g. ufs inode, nfs rnode).
119 * However, there are times when additional project private data needs
120 * to be stored separately from the data (node) pointed to by v_data.
121 * This additional data could be stored by the file system itself or
122 * by a completely different kernel entity. VSD provides a way for
123 * callers to obtain a key and store a pointer to private data associated
124 * with a vnode.
125 *
126 * Callers are responsible for protecting the vsd by holding v_vsd_lock
127 * for calls to vsd_set() and vsd_get().
128 */
129
130 /*
131 * vsd_lock protects:
132 * vsd_nkeys - creation and deletion of vsd keys
133 * vsd_list - insertion and deletion of vsd_node in the vsd_list
134 * vsd_destructor - adding and removing destructors to the list
135 */
136 static kmutex_t vsd_lock;
137 static uint_t vsd_nkeys; /* size of destructor array */
138 /* list of vsd_node's */
139 static list_t *vsd_list = NULL;
140 /* per-key destructor funcs */
141 static void (**vsd_destructor)(void *);
142
143 /*
144 * The following is the common set of actions needed to update the
145 * vopstats structure from a vnode op. Both VOPSTATS_UPDATE() and
146 * VOPSTATS_UPDATE_IO() do almost the same thing, except for the
147 * recording of the bytes transferred. Since the code is similar
148 * but small, it is nearly a duplicate. Consequently any changes
149 * to one may need to be reflected in the other.
150 * Rundown of the variables:
151 * vp - Pointer to the vnode
152 * counter - Partial name structure member to update in vopstats for counts
153 * bytecounter - Partial name structure member to update in vopstats for bytes
154 * bytesval - Value to update in vopstats for bytes
155 * fstype - Index into vsanchor_fstype[], same as index into vfssw[]
156 * vsp - Pointer to vopstats structure (either in vfs or vsanchor_fstype[i])
157 */
158
159 #define VOPSTATS_UPDATE(vp, counter) { \
160 vfs_t *vfsp = (vp)->v_vfsp; \
161 if (vfsp && vfsp->vfs_implp && \
162 (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \
163 vopstats_t *vsp = &vfsp->vfs_vopstats; \
164 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \
165 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \
166 size_t, uint64_t *); \
167 __dtrace_probe___fsinfo_##counter(vp, 0, stataddr); \
168 (*stataddr)++; \
169 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \
170 vsp->n##counter.value.ui64++; \
171 } \
172 } \
173 }
174
175 #define VOPSTATS_UPDATE_IO(vp, counter, bytecounter, bytesval) { \
176 vfs_t *vfsp = (vp)->v_vfsp; \
177 if (vfsp && vfsp->vfs_implp && \
178 (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \
179 vopstats_t *vsp = &vfsp->vfs_vopstats; \
180 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \
181 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \
182 size_t, uint64_t *); \
183 __dtrace_probe___fsinfo_##counter(vp, bytesval, stataddr); \
184 (*stataddr)++; \
185 vsp->bytecounter.value.ui64 += bytesval; \
186 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \
187 vsp->n##counter.value.ui64++; \
188 vsp->bytecounter.value.ui64 += bytesval; \
189 } \
190 } \
191 }
192
193 /*
194 * If the filesystem does not support XIDs map credential
195 * If the vfsp is NULL, perhaps we should also map?
196 */
197 #define VOPXID_MAP_CR(vp, cr) { \
198 vfs_t *vfsp = (vp)->v_vfsp; \
199 if (vfsp != NULL && (vfsp->vfs_flag & VFS_XID) == 0) \
200 cr = crgetmapped(cr); \
201 }
202
203 /*
204 * Convert stat(2) formats to vnode types and vice versa. (Knows about
205 * numerical order of S_IFMT and vnode types.)
206 */
207 enum vtype iftovt_tab[] = {
208 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
209 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
210 };
211
212 ushort_t vttoif_tab[] = {
213 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFIFO,
214 S_IFDOOR, 0, S_IFSOCK, S_IFPORT, 0
215 };
216
217 /*
218 * The system vnode cache.
219 */
220
221 kmem_cache_t *vn_cache;
222
223
224 /*
225 * Vnode operations vector.
226 */
227
228 static const fs_operation_trans_def_t vn_ops_table[] = {
229 VOPNAME_OPEN, offsetof(struct vnodeops, vop_open),
230 fs_nosys, fs_nosys,
231
232 VOPNAME_CLOSE, offsetof(struct vnodeops, vop_close),
233 fs_nosys, fs_nosys,
234
235 VOPNAME_READ, offsetof(struct vnodeops, vop_read),
236 fs_nosys, fs_nosys,
237
238 VOPNAME_WRITE, offsetof(struct vnodeops, vop_write),
239 fs_nosys, fs_nosys,
240
241 VOPNAME_IOCTL, offsetof(struct vnodeops, vop_ioctl),
242 fs_nosys, fs_nosys,
243
244 VOPNAME_SETFL, offsetof(struct vnodeops, vop_setfl),
245 fs_setfl, fs_nosys,
246
247 VOPNAME_GETATTR, offsetof(struct vnodeops, vop_getattr),
248 fs_nosys, fs_nosys,
249
250 VOPNAME_SETATTR, offsetof(struct vnodeops, vop_setattr),
251 fs_nosys, fs_nosys,
252
253 VOPNAME_ACCESS, offsetof(struct vnodeops, vop_access),
254 fs_nosys, fs_nosys,
255
256 VOPNAME_LOOKUP, offsetof(struct vnodeops, vop_lookup),
257 fs_nosys, fs_nosys,
258
259 VOPNAME_CREATE, offsetof(struct vnodeops, vop_create),
260 fs_nosys, fs_nosys,
261
262 VOPNAME_REMOVE, offsetof(struct vnodeops, vop_remove),
263 fs_nosys, fs_nosys,
264
265 VOPNAME_LINK, offsetof(struct vnodeops, vop_link),
266 fs_nosys, fs_nosys,
267
268 VOPNAME_RENAME, offsetof(struct vnodeops, vop_rename),
269 fs_nosys, fs_nosys,
270
271 VOPNAME_MKDIR, offsetof(struct vnodeops, vop_mkdir),
272 fs_nosys, fs_nosys,
273
274 VOPNAME_RMDIR, offsetof(struct vnodeops, vop_rmdir),
275 fs_nosys, fs_nosys,
276
277 VOPNAME_READDIR, offsetof(struct vnodeops, vop_readdir),
278 fs_nosys, fs_nosys,
279
280 VOPNAME_SYMLINK, offsetof(struct vnodeops, vop_symlink),
281 fs_nosys, fs_nosys,
282
283 VOPNAME_READLINK, offsetof(struct vnodeops, vop_readlink),
284 fs_nosys, fs_nosys,
285
286 VOPNAME_FSYNC, offsetof(struct vnodeops, vop_fsync),
287 fs_nosys, fs_nosys,
288
289 VOPNAME_INACTIVE, offsetof(struct vnodeops, vop_inactive),
290 fs_nosys, fs_nosys,
291
292 VOPNAME_FID, offsetof(struct vnodeops, vop_fid),
293 fs_nosys, fs_nosys,
294
295 VOPNAME_RWLOCK, offsetof(struct vnodeops, vop_rwlock),
296 fs_rwlock, fs_rwlock,
297
298 VOPNAME_RWUNLOCK, offsetof(struct vnodeops, vop_rwunlock),
299 (fs_generic_func_p) fs_rwunlock,
300 (fs_generic_func_p) fs_rwunlock, /* no errors allowed */
301
302 VOPNAME_SEEK, offsetof(struct vnodeops, vop_seek),
303 fs_nosys, fs_nosys,
304
305 VOPNAME_CMP, offsetof(struct vnodeops, vop_cmp),
306 fs_cmp, fs_cmp, /* no errors allowed */
307
308 VOPNAME_FRLOCK, offsetof(struct vnodeops, vop_frlock),
309 fs_frlock, fs_nosys,
310
311 VOPNAME_SPACE, offsetof(struct vnodeops, vop_space),
312 fs_nosys, fs_nosys,
313
314 VOPNAME_REALVP, offsetof(struct vnodeops, vop_realvp),
315 fs_nosys, fs_nosys,
316
317 VOPNAME_GETPAGE, offsetof(struct vnodeops, vop_getpage),
318 fs_nosys, fs_nosys,
319
320 VOPNAME_PUTPAGE, offsetof(struct vnodeops, vop_putpage),
321 fs_nosys, fs_nosys,
322
323 VOPNAME_MAP, offsetof(struct vnodeops, vop_map),
324 (fs_generic_func_p) fs_nosys_map,
325 (fs_generic_func_p) fs_nosys_map,
326
327 VOPNAME_ADDMAP, offsetof(struct vnodeops, vop_addmap),
328 (fs_generic_func_p) fs_nosys_addmap,
329 (fs_generic_func_p) fs_nosys_addmap,
330
331 VOPNAME_DELMAP, offsetof(struct vnodeops, vop_delmap),
332 fs_nosys, fs_nosys,
333
334 VOPNAME_POLL, offsetof(struct vnodeops, vop_poll),
335 (fs_generic_func_p) fs_poll, (fs_generic_func_p) fs_nosys_poll,
336
337 VOPNAME_DUMP, offsetof(struct vnodeops, vop_dump),
338 fs_nosys, fs_nosys,
339
340 VOPNAME_PATHCONF, offsetof(struct vnodeops, vop_pathconf),
341 fs_pathconf, fs_nosys,
342
343 VOPNAME_PAGEIO, offsetof(struct vnodeops, vop_pageio),
344 fs_nosys, fs_nosys,
345
346 VOPNAME_DUMPCTL, offsetof(struct vnodeops, vop_dumpctl),
347 fs_nosys, fs_nosys,
348
349 VOPNAME_DISPOSE, offsetof(struct vnodeops, vop_dispose),
350 (fs_generic_func_p) fs_dispose,
351 (fs_generic_func_p) fs_nodispose,
352
353 VOPNAME_SETSECATTR, offsetof(struct vnodeops, vop_setsecattr),
354 fs_nosys, fs_nosys,
355
356 VOPNAME_GETSECATTR, offsetof(struct vnodeops, vop_getsecattr),
357 fs_fab_acl, fs_nosys,
358
359 VOPNAME_SHRLOCK, offsetof(struct vnodeops, vop_shrlock),
360 fs_shrlock, fs_nosys,
361
362 VOPNAME_VNEVENT, offsetof(struct vnodeops, vop_vnevent),
363 (fs_generic_func_p) fs_vnevent_nosupport,
364 (fs_generic_func_p) fs_vnevent_nosupport,
365
366 VOPNAME_REQZCBUF, offsetof(struct vnodeops, vop_reqzcbuf),
367 fs_nosys, fs_nosys,
368
369 VOPNAME_RETZCBUF, offsetof(struct vnodeops, vop_retzcbuf),
370 fs_nosys, fs_nosys,
371
372 NULL, 0, NULL, NULL
373 };
374
375 /* Extensible attribute (xva) routines. */
376
377 /*
378 * Zero out the structure, set the size of the requested/returned bitmaps,
379 * set AT_XVATTR in the embedded vattr_t's va_mask, and set up the pointer
380 * to the returned attributes array.
381 */
382 void
xva_init(xvattr_t * xvap)383 xva_init(xvattr_t *xvap)
384 {
385 bzero(xvap, sizeof (xvattr_t));
386 xvap->xva_mapsize = XVA_MAPSIZE;
387 xvap->xva_magic = XVA_MAGIC;
388 xvap->xva_vattr.va_mask = AT_XVATTR;
389 xvap->xva_rtnattrmapp = &(xvap->xva_rtnattrmap)[0];
390 }
391
392 /*
393 * If AT_XVATTR is set, returns a pointer to the embedded xoptattr_t
394 * structure. Otherwise, returns NULL.
395 */
396 xoptattr_t *
xva_getxoptattr(xvattr_t * xvap)397 xva_getxoptattr(xvattr_t *xvap)
398 {
399 xoptattr_t *xoap = NULL;
400 if (xvap->xva_vattr.va_mask & AT_XVATTR)
401 xoap = &xvap->xva_xoptattrs;
402 return (xoap);
403 }
404
405 /*
406 * Used by the AVL routines to compare two vsk_anchor_t structures in the tree.
407 * We use the f_fsid reported by VFS_STATVFS() since we use that for the
408 * kstat name.
409 */
410 static int
vska_compar(const void * n1,const void * n2)411 vska_compar(const void *n1, const void *n2)
412 {
413 int ret;
414 ulong_t p1 = ((vsk_anchor_t *)n1)->vsk_fsid;
415 ulong_t p2 = ((vsk_anchor_t *)n2)->vsk_fsid;
416
417 if (p1 < p2) {
418 ret = -1;
419 } else if (p1 > p2) {
420 ret = 1;
421 } else {
422 ret = 0;
423 }
424
425 return (ret);
426 }
427
428 /*
429 * Used to create a single template which will be bcopy()ed to a newly
430 * allocated vsanchor_combo_t structure in new_vsanchor(), below.
431 */
432 static vopstats_t *
create_vopstats_template()433 create_vopstats_template()
434 {
435 vopstats_t *vsp;
436
437 vsp = kmem_alloc(sizeof (vopstats_t), KM_SLEEP);
438 bzero(vsp, sizeof (*vsp)); /* Start fresh */
439
440 /* VOP_OPEN */
441 kstat_named_init(&vsp->nopen, "nopen", KSTAT_DATA_UINT64);
442 /* VOP_CLOSE */
443 kstat_named_init(&vsp->nclose, "nclose", KSTAT_DATA_UINT64);
444 /* VOP_READ I/O */
445 kstat_named_init(&vsp->nread, "nread", KSTAT_DATA_UINT64);
446 kstat_named_init(&vsp->read_bytes, "read_bytes", KSTAT_DATA_UINT64);
447 /* VOP_WRITE I/O */
448 kstat_named_init(&vsp->nwrite, "nwrite", KSTAT_DATA_UINT64);
449 kstat_named_init(&vsp->write_bytes, "write_bytes", KSTAT_DATA_UINT64);
450 /* VOP_IOCTL */
451 kstat_named_init(&vsp->nioctl, "nioctl", KSTAT_DATA_UINT64);
452 /* VOP_SETFL */
453 kstat_named_init(&vsp->nsetfl, "nsetfl", KSTAT_DATA_UINT64);
454 /* VOP_GETATTR */
455 kstat_named_init(&vsp->ngetattr, "ngetattr", KSTAT_DATA_UINT64);
456 /* VOP_SETATTR */
457 kstat_named_init(&vsp->nsetattr, "nsetattr", KSTAT_DATA_UINT64);
458 /* VOP_ACCESS */
459 kstat_named_init(&vsp->naccess, "naccess", KSTAT_DATA_UINT64);
460 /* VOP_LOOKUP */
461 kstat_named_init(&vsp->nlookup, "nlookup", KSTAT_DATA_UINT64);
462 /* VOP_CREATE */
463 kstat_named_init(&vsp->ncreate, "ncreate", KSTAT_DATA_UINT64);
464 /* VOP_REMOVE */
465 kstat_named_init(&vsp->nremove, "nremove", KSTAT_DATA_UINT64);
466 /* VOP_LINK */
467 kstat_named_init(&vsp->nlink, "nlink", KSTAT_DATA_UINT64);
468 /* VOP_RENAME */
469 kstat_named_init(&vsp->nrename, "nrename", KSTAT_DATA_UINT64);
470 /* VOP_MKDIR */
471 kstat_named_init(&vsp->nmkdir, "nmkdir", KSTAT_DATA_UINT64);
472 /* VOP_RMDIR */
473 kstat_named_init(&vsp->nrmdir, "nrmdir", KSTAT_DATA_UINT64);
474 /* VOP_READDIR I/O */
475 kstat_named_init(&vsp->nreaddir, "nreaddir", KSTAT_DATA_UINT64);
476 kstat_named_init(&vsp->readdir_bytes, "readdir_bytes",
477 KSTAT_DATA_UINT64);
478 /* VOP_SYMLINK */
479 kstat_named_init(&vsp->nsymlink, "nsymlink", KSTAT_DATA_UINT64);
480 /* VOP_READLINK */
481 kstat_named_init(&vsp->nreadlink, "nreadlink", KSTAT_DATA_UINT64);
482 /* VOP_FSYNC */
483 kstat_named_init(&vsp->nfsync, "nfsync", KSTAT_DATA_UINT64);
484 /* VOP_INACTIVE */
485 kstat_named_init(&vsp->ninactive, "ninactive", KSTAT_DATA_UINT64);
486 /* VOP_FID */
487 kstat_named_init(&vsp->nfid, "nfid", KSTAT_DATA_UINT64);
488 /* VOP_RWLOCK */
489 kstat_named_init(&vsp->nrwlock, "nrwlock", KSTAT_DATA_UINT64);
490 /* VOP_RWUNLOCK */
491 kstat_named_init(&vsp->nrwunlock, "nrwunlock", KSTAT_DATA_UINT64);
492 /* VOP_SEEK */
493 kstat_named_init(&vsp->nseek, "nseek", KSTAT_DATA_UINT64);
494 /* VOP_CMP */
495 kstat_named_init(&vsp->ncmp, "ncmp", KSTAT_DATA_UINT64);
496 /* VOP_FRLOCK */
497 kstat_named_init(&vsp->nfrlock, "nfrlock", KSTAT_DATA_UINT64);
498 /* VOP_SPACE */
499 kstat_named_init(&vsp->nspace, "nspace", KSTAT_DATA_UINT64);
500 /* VOP_REALVP */
501 kstat_named_init(&vsp->nrealvp, "nrealvp", KSTAT_DATA_UINT64);
502 /* VOP_GETPAGE */
503 kstat_named_init(&vsp->ngetpage, "ngetpage", KSTAT_DATA_UINT64);
504 /* VOP_PUTPAGE */
505 kstat_named_init(&vsp->nputpage, "nputpage", KSTAT_DATA_UINT64);
506 /* VOP_MAP */
507 kstat_named_init(&vsp->nmap, "nmap", KSTAT_DATA_UINT64);
508 /* VOP_ADDMAP */
509 kstat_named_init(&vsp->naddmap, "naddmap", KSTAT_DATA_UINT64);
510 /* VOP_DELMAP */
511 kstat_named_init(&vsp->ndelmap, "ndelmap", KSTAT_DATA_UINT64);
512 /* VOP_POLL */
513 kstat_named_init(&vsp->npoll, "npoll", KSTAT_DATA_UINT64);
514 /* VOP_DUMP */
515 kstat_named_init(&vsp->ndump, "ndump", KSTAT_DATA_UINT64);
516 /* VOP_PATHCONF */
517 kstat_named_init(&vsp->npathconf, "npathconf", KSTAT_DATA_UINT64);
518 /* VOP_PAGEIO */
519 kstat_named_init(&vsp->npageio, "npageio", KSTAT_DATA_UINT64);
520 /* VOP_DUMPCTL */
521 kstat_named_init(&vsp->ndumpctl, "ndumpctl", KSTAT_DATA_UINT64);
522 /* VOP_DISPOSE */
523 kstat_named_init(&vsp->ndispose, "ndispose", KSTAT_DATA_UINT64);
524 /* VOP_SETSECATTR */
525 kstat_named_init(&vsp->nsetsecattr, "nsetsecattr", KSTAT_DATA_UINT64);
526 /* VOP_GETSECATTR */
527 kstat_named_init(&vsp->ngetsecattr, "ngetsecattr", KSTAT_DATA_UINT64);
528 /* VOP_SHRLOCK */
529 kstat_named_init(&vsp->nshrlock, "nshrlock", KSTAT_DATA_UINT64);
530 /* VOP_VNEVENT */
531 kstat_named_init(&vsp->nvnevent, "nvnevent", KSTAT_DATA_UINT64);
532 /* VOP_REQZCBUF */
533 kstat_named_init(&vsp->nreqzcbuf, "nreqzcbuf", KSTAT_DATA_UINT64);
534 /* VOP_RETZCBUF */
535 kstat_named_init(&vsp->nretzcbuf, "nretzcbuf", KSTAT_DATA_UINT64);
536
537 return (vsp);
538 }
539
540 /*
541 * Creates a kstat structure associated with a vopstats structure.
542 */
543 kstat_t *
new_vskstat(char * ksname,vopstats_t * vsp)544 new_vskstat(char *ksname, vopstats_t *vsp)
545 {
546 kstat_t *ksp;
547
548 if (!vopstats_enabled) {
549 return (NULL);
550 }
551
552 ksp = kstat_create("unix", 0, ksname, "misc", KSTAT_TYPE_NAMED,
553 sizeof (vopstats_t)/sizeof (kstat_named_t),
554 KSTAT_FLAG_VIRTUAL|KSTAT_FLAG_WRITABLE);
555 if (ksp) {
556 ksp->ks_data = vsp;
557 kstat_install(ksp);
558 }
559
560 return (ksp);
561 }
562
563 /*
564 * Called from vfsinit() to initialize the support mechanisms for vopstats
565 */
566 void
vopstats_startup()567 vopstats_startup()
568 {
569 if (!vopstats_enabled)
570 return;
571
572 /*
573 * Creates the AVL tree which holds per-vfs vopstat anchors. This
574 * is necessary since we need to check if a kstat exists before we
575 * attempt to create it. Also, initialize its lock.
576 */
577 avl_create(&vskstat_tree, vska_compar, sizeof (vsk_anchor_t),
578 offsetof(vsk_anchor_t, vsk_node));
579 mutex_init(&vskstat_tree_lock, NULL, MUTEX_DEFAULT, NULL);
580
581 vsk_anchor_cache = kmem_cache_create("vsk_anchor_cache",
582 sizeof (vsk_anchor_t), sizeof (uintptr_t), NULL, NULL, NULL,
583 NULL, NULL, 0);
584
585 /*
586 * Set up the array of pointers for the vopstats-by-FS-type.
587 * The entries will be allocated/initialized as each file system
588 * goes through modload/mod_installfs.
589 */
590 vopstats_fstype = (vopstats_t **)kmem_zalloc(
591 (sizeof (vopstats_t *) * nfstype), KM_SLEEP);
592
593 /* Set up the global vopstats initialization template */
594 vs_templatep = create_vopstats_template();
595 }
596
597 /*
598 * We need to have the all of the counters zeroed.
599 * The initialization of the vopstats_t includes on the order of
600 * 50 calls to kstat_named_init(). Rather that do that on every call,
601 * we do it once in a template (vs_templatep) then bcopy it over.
602 */
603 void
initialize_vopstats(vopstats_t * vsp)604 initialize_vopstats(vopstats_t *vsp)
605 {
606 if (vsp == NULL)
607 return;
608
609 bcopy(vs_templatep, vsp, sizeof (vopstats_t));
610 }
611
612 /*
613 * If possible, determine which vopstats by fstype to use and
614 * return a pointer to the caller.
615 */
616 vopstats_t *
get_fstype_vopstats(vfs_t * vfsp,struct vfssw * vswp)617 get_fstype_vopstats(vfs_t *vfsp, struct vfssw *vswp)
618 {
619 int fstype = 0; /* Index into vfssw[] */
620 vopstats_t *vsp = NULL;
621
622 if (vfsp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 ||
623 !vopstats_enabled)
624 return (NULL);
625 /*
626 * Set up the fstype. We go to so much trouble because all versions
627 * of NFS use the same fstype in their vfs even though they have
628 * distinct entries in the vfssw[] table.
629 * NOTE: A special vfs (e.g., EIO_vfs) may not have an entry.
630 */
631 if (vswp) {
632 fstype = vswp - vfssw; /* Gets us the index */
633 } else {
634 fstype = vfsp->vfs_fstype;
635 }
636
637 /*
638 * Point to the per-fstype vopstats. The only valid values are
639 * non-zero positive values less than the number of vfssw[] table
640 * entries.
641 */
642 if (fstype > 0 && fstype < nfstype) {
643 vsp = vopstats_fstype[fstype];
644 }
645
646 return (vsp);
647 }
648
649 /*
650 * Generate a kstat name, create the kstat structure, and allocate a
651 * vsk_anchor_t to hold it together. Return the pointer to the vsk_anchor_t
652 * to the caller. This must only be called from a mount.
653 */
654 vsk_anchor_t *
get_vskstat_anchor(vfs_t * vfsp)655 get_vskstat_anchor(vfs_t *vfsp)
656 {
657 char kstatstr[KSTAT_STRLEN]; /* kstat name for vopstats */
658 statvfs64_t statvfsbuf; /* Needed to find f_fsid */
659 vsk_anchor_t *vskp = NULL; /* vfs <--> kstat anchor */
660 kstat_t *ksp; /* Ptr to new kstat */
661 avl_index_t where; /* Location in the AVL tree */
662
663 if (vfsp == NULL || vfsp->vfs_implp == NULL ||
664 (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled)
665 return (NULL);
666
667 /* Need to get the fsid to build a kstat name */
668 if (VFS_STATVFS(vfsp, &statvfsbuf) == 0) {
669 /* Create a name for our kstats based on fsid */
670 (void) snprintf(kstatstr, KSTAT_STRLEN, "%s%lx",
671 VOPSTATS_STR, statvfsbuf.f_fsid);
672
673 /* Allocate and initialize the vsk_anchor_t */
674 vskp = kmem_cache_alloc(vsk_anchor_cache, KM_SLEEP);
675 bzero(vskp, sizeof (*vskp));
676 vskp->vsk_fsid = statvfsbuf.f_fsid;
677
678 mutex_enter(&vskstat_tree_lock);
679 if (avl_find(&vskstat_tree, vskp, &where) == NULL) {
680 avl_insert(&vskstat_tree, vskp, where);
681 mutex_exit(&vskstat_tree_lock);
682
683 /*
684 * Now that we've got the anchor in the AVL
685 * tree, we can create the kstat.
686 */
687 ksp = new_vskstat(kstatstr, &vfsp->vfs_vopstats);
688 if (ksp) {
689 vskp->vsk_ksp = ksp;
690 }
691 } else {
692 /* Oops, found one! Release memory and lock. */
693 mutex_exit(&vskstat_tree_lock);
694 kmem_cache_free(vsk_anchor_cache, vskp);
695 vskp = NULL;
696 }
697 }
698 return (vskp);
699 }
700
701 /*
702 * We're in the process of tearing down the vfs and need to cleanup
703 * the data structures associated with the vopstats. Must only be called
704 * from dounmount().
705 */
706 void
teardown_vopstats(vfs_t * vfsp)707 teardown_vopstats(vfs_t *vfsp)
708 {
709 vsk_anchor_t *vskap;
710 avl_index_t where;
711
712 if (vfsp == NULL || vfsp->vfs_implp == NULL ||
713 (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled)
714 return;
715
716 /* This is a safe check since VFS_STATS must be set (see above) */
717 if ((vskap = vfsp->vfs_vskap) == NULL)
718 return;
719
720 /* Whack the pointer right away */
721 vfsp->vfs_vskap = NULL;
722
723 /* Lock the tree, remove the node, and delete the kstat */
724 mutex_enter(&vskstat_tree_lock);
725 if (avl_find(&vskstat_tree, vskap, &where)) {
726 avl_remove(&vskstat_tree, vskap);
727 }
728
729 if (vskap->vsk_ksp) {
730 kstat_delete(vskap->vsk_ksp);
731 }
732 mutex_exit(&vskstat_tree_lock);
733
734 kmem_cache_free(vsk_anchor_cache, vskap);
735 }
736
737 /*
738 * Read or write a vnode. Called from kernel code.
739 */
740 int
vn_rdwr(enum uio_rw rw,struct vnode * vp,caddr_t base,ssize_t len,offset_t offset,enum uio_seg seg,int ioflag,rlim64_t ulimit,cred_t * cr,ssize_t * residp)741 vn_rdwr(
742 enum uio_rw rw,
743 struct vnode *vp,
744 caddr_t base,
745 ssize_t len,
746 offset_t offset,
747 enum uio_seg seg,
748 int ioflag,
749 rlim64_t ulimit, /* meaningful only if rw is UIO_WRITE */
750 cred_t *cr,
751 ssize_t *residp)
752 {
753 struct uio uio;
754 struct iovec iov;
755 int error;
756 int in_crit = 0;
757
758 if (rw == UIO_WRITE && ISROFILE(vp))
759 return (EROFS);
760
761 if (len < 0)
762 return (EIO);
763
764 VOPXID_MAP_CR(vp, cr);
765
766 iov.iov_base = base;
767 iov.iov_len = len;
768 uio.uio_iov = &iov;
769 uio.uio_iovcnt = 1;
770 uio.uio_loffset = offset;
771 uio.uio_segflg = (short)seg;
772 uio.uio_resid = len;
773 uio.uio_llimit = ulimit;
774
775 /*
776 * We have to enter the critical region before calling VOP_RWLOCK
777 * to avoid a deadlock with ufs.
778 */
779 if (nbl_need_check(vp)) {
780 int svmand;
781
782 nbl_start_crit(vp, RW_READER);
783 in_crit = 1;
784 error = nbl_svmand(vp, cr, &svmand);
785 if (error != 0)
786 goto done;
787 if (nbl_conflict(vp, rw == UIO_WRITE ? NBL_WRITE : NBL_READ,
788 uio.uio_offset, uio.uio_resid, svmand, NULL)) {
789 error = EACCES;
790 goto done;
791 }
792 }
793
794 (void) VOP_RWLOCK(vp,
795 rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL);
796 if (rw == UIO_WRITE) {
797 uio.uio_fmode = FWRITE;
798 uio.uio_extflg = UIO_COPY_DEFAULT;
799 error = VOP_WRITE(vp, &uio, ioflag, cr, NULL);
800 } else {
801 uio.uio_fmode = FREAD;
802 uio.uio_extflg = UIO_COPY_CACHED;
803 error = VOP_READ(vp, &uio, ioflag, cr, NULL);
804 }
805 VOP_RWUNLOCK(vp,
806 rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL);
807 if (residp)
808 *residp = uio.uio_resid;
809 else if (uio.uio_resid)
810 error = EIO;
811
812 done:
813 if (in_crit)
814 nbl_end_crit(vp);
815 return (error);
816 }
817
818 /*
819 * Release a vnode. Call VOP_INACTIVE on last reference or
820 * decrement reference count.
821 *
822 * To avoid race conditions, the v_count is left at 1 for
823 * the call to VOP_INACTIVE. This prevents another thread
824 * from reclaiming and releasing the vnode *before* the
825 * VOP_INACTIVE routine has a chance to destroy the vnode.
826 * We can't have more than 1 thread calling VOP_INACTIVE
827 * on a vnode.
828 */
829 void
vn_rele(vnode_t * vp)830 vn_rele(vnode_t *vp)
831 {
832 VERIFY(vp->v_count > 0);
833 mutex_enter(&vp->v_lock);
834 if (vp->v_count == 1) {
835 mutex_exit(&vp->v_lock);
836 VOP_INACTIVE(vp, CRED(), NULL);
837 return;
838 }
839 vp->v_count--;
840 mutex_exit(&vp->v_lock);
841 }
842
843 /*
844 * Release a vnode referenced by the DNLC. Multiple DNLC references are treated
845 * as a single reference, so v_count is not decremented until the last DNLC hold
846 * is released. This makes it possible to distinguish vnodes that are referenced
847 * only by the DNLC.
848 */
849 void
vn_rele_dnlc(vnode_t * vp)850 vn_rele_dnlc(vnode_t *vp)
851 {
852 VERIFY((vp->v_count > 0) && (vp->v_count_dnlc > 0));
853 mutex_enter(&vp->v_lock);
854 if (--vp->v_count_dnlc == 0) {
855 if (vp->v_count == 1) {
856 mutex_exit(&vp->v_lock);
857 VOP_INACTIVE(vp, CRED(), NULL);
858 return;
859 }
860 vp->v_count--;
861 }
862 mutex_exit(&vp->v_lock);
863 }
864
865 /*
866 * Like vn_rele() except that it clears v_stream under v_lock.
867 * This is used by sockfs when it dismantels the association between
868 * the sockfs node and the vnode in the underlaying file system.
869 * v_lock has to be held to prevent a thread coming through the lookupname
870 * path from accessing a stream head that is going away.
871 */
872 void
vn_rele_stream(vnode_t * vp)873 vn_rele_stream(vnode_t *vp)
874 {
875 VERIFY(vp->v_count > 0);
876 mutex_enter(&vp->v_lock);
877 vp->v_stream = NULL;
878 if (vp->v_count == 1) {
879 mutex_exit(&vp->v_lock);
880 VOP_INACTIVE(vp, CRED(), NULL);
881 return;
882 }
883 vp->v_count--;
884 mutex_exit(&vp->v_lock);
885 }
886
887 static void
vn_rele_inactive(vnode_t * vp)888 vn_rele_inactive(vnode_t *vp)
889 {
890 VOP_INACTIVE(vp, CRED(), NULL);
891 }
892
893 /*
894 * Like vn_rele() except if we are going to call VOP_INACTIVE() then do it
895 * asynchronously using a taskq. This can avoid deadlocks caused by re-entering
896 * the file system as a result of releasing the vnode. Note, file systems
897 * already have to handle the race where the vnode is incremented before the
898 * inactive routine is called and does its locking.
899 *
900 * Warning: Excessive use of this routine can lead to performance problems.
901 * This is because taskqs throttle back allocation if too many are created.
902 */
903 void
vn_rele_async(vnode_t * vp,taskq_t * taskq)904 vn_rele_async(vnode_t *vp, taskq_t *taskq)
905 {
906 VERIFY(vp->v_count > 0);
907 mutex_enter(&vp->v_lock);
908 if (vp->v_count == 1) {
909 mutex_exit(&vp->v_lock);
910 VERIFY(taskq_dispatch(taskq, (task_func_t *)vn_rele_inactive,
911 vp, TQ_SLEEP) != NULL);
912 return;
913 }
914 vp->v_count--;
915 mutex_exit(&vp->v_lock);
916 }
917
918 int
vn_open(char * pnamep,enum uio_seg seg,int filemode,int createmode,struct vnode ** vpp,enum create crwhy,mode_t umask)919 vn_open(
920 char *pnamep,
921 enum uio_seg seg,
922 int filemode,
923 int createmode,
924 struct vnode **vpp,
925 enum create crwhy,
926 mode_t umask)
927 {
928 return (vn_openat(pnamep, seg, filemode, createmode, vpp, crwhy,
929 umask, NULL, -1));
930 }
931
932
933 /*
934 * Open/create a vnode.
935 * This may be callable by the kernel, the only known use
936 * of user context being that the current user credentials
937 * are used for permissions. crwhy is defined iff filemode & FCREAT.
938 */
939 int
vn_openat(char * pnamep,enum uio_seg seg,int filemode,int createmode,struct vnode ** vpp,enum create crwhy,mode_t umask,struct vnode * startvp,int fd)940 vn_openat(
941 char *pnamep,
942 enum uio_seg seg,
943 int filemode,
944 int createmode,
945 struct vnode **vpp,
946 enum create crwhy,
947 mode_t umask,
948 struct vnode *startvp,
949 int fd)
950 {
951 struct vnode *vp;
952 int mode;
953 int accessflags;
954 int error;
955 int in_crit = 0;
956 int open_done = 0;
957 int shrlock_done = 0;
958 struct vattr vattr;
959 enum symfollow follow;
960 int estale_retry = 0;
961 struct shrlock shr;
962 struct shr_locowner shr_own;
963 boolean_t create;
964
965 mode = 0;
966 accessflags = 0;
967 if (filemode & FREAD)
968 mode |= VREAD;
969 if (filemode & (FWRITE|FTRUNC))
970 mode |= VWRITE;
971 if (filemode & (FSEARCH|FEXEC|FXATTRDIROPEN))
972 mode |= VEXEC;
973
974 /* symlink interpretation */
975 if (filemode & FNOFOLLOW)
976 follow = NO_FOLLOW;
977 else
978 follow = FOLLOW;
979
980 if (filemode & FAPPEND)
981 accessflags |= V_APPEND;
982
983 /*
984 * We need to handle the case of FCREAT | FDIRECTORY and the case of
985 * FEXCL. If all three are specified, then we always fail because we
986 * cannot create a directory through this interface and FEXCL says we
987 * need to fail the request if we can't create it. If, however, only
988 * FCREAT | FDIRECTORY are specified, then we can treat this as the case
989 * of opening a file that already exists. If it exists, we can do
990 * something and if not, we fail. Effectively FCREAT | FDIRECTORY is
991 * treated as FDIRECTORY.
992 */
993 if ((filemode & (FCREAT | FDIRECTORY | FEXCL)) ==
994 (FCREAT | FDIRECTORY | FEXCL)) {
995 return (EINVAL);
996 }
997
998 if ((filemode & (FCREAT | FDIRECTORY)) == (FCREAT | FDIRECTORY)) {
999 create = B_FALSE;
1000 } else if ((filemode & FCREAT) != 0) {
1001 create = B_TRUE;
1002 } else {
1003 create = B_FALSE;
1004 }
1005
1006 top:
1007 if (create) {
1008 enum vcexcl excl;
1009
1010 /*
1011 * Wish to create a file.
1012 */
1013 vattr.va_type = VREG;
1014 vattr.va_mode = createmode;
1015 vattr.va_mask = AT_TYPE|AT_MODE;
1016 if (filemode & FTRUNC) {
1017 vattr.va_size = 0;
1018 vattr.va_mask |= AT_SIZE;
1019 }
1020 if (filemode & FEXCL)
1021 excl = EXCL;
1022 else
1023 excl = NONEXCL;
1024
1025 if (error =
1026 vn_createat(pnamep, seg, &vattr, excl, mode, &vp, crwhy,
1027 (filemode & ~(FTRUNC|FEXCL)), umask, startvp))
1028 return (error);
1029 } else {
1030 /*
1031 * Wish to open a file. Just look it up.
1032 */
1033 if (error = lookupnameat(pnamep, seg, follow,
1034 NULLVPP, &vp, startvp)) {
1035 if ((error == ESTALE) &&
1036 fs_need_estale_retry(estale_retry++))
1037 goto top;
1038 return (error);
1039 }
1040
1041 /*
1042 * Get the attributes to check whether file is large.
1043 * We do this only if the FOFFMAX flag is not set and
1044 * only for regular files.
1045 */
1046
1047 if (!(filemode & FOFFMAX) && (vp->v_type == VREG)) {
1048 vattr.va_mask = AT_SIZE;
1049 if ((error = VOP_GETATTR(vp, &vattr, 0,
1050 CRED(), NULL))) {
1051 goto out;
1052 }
1053 if (vattr.va_size > (u_offset_t)MAXOFF32_T) {
1054 /*
1055 * Large File API - regular open fails
1056 * if FOFFMAX flag is set in file mode
1057 */
1058 error = EOVERFLOW;
1059 goto out;
1060 }
1061 }
1062 /*
1063 * Can't write directories, active texts, or
1064 * read-only filesystems. Can't truncate files
1065 * on which mandatory locking is in effect.
1066 */
1067 if (filemode & (FWRITE|FTRUNC)) {
1068 /*
1069 * Allow writable directory if VDIROPEN flag is set.
1070 */
1071 if (vp->v_type == VDIR && !(vp->v_flag & VDIROPEN)) {
1072 error = EISDIR;
1073 goto out;
1074 }
1075 if (ISROFILE(vp)) {
1076 error = EROFS;
1077 goto out;
1078 }
1079 /*
1080 * Can't truncate files on which
1081 * sysv mandatory locking is in effect.
1082 */
1083 if (filemode & FTRUNC) {
1084 vnode_t *rvp;
1085
1086 if (VOP_REALVP(vp, &rvp, NULL) != 0)
1087 rvp = vp;
1088 if (rvp->v_filocks != NULL) {
1089 vattr.va_mask = AT_MODE;
1090 if ((error = VOP_GETATTR(vp,
1091 &vattr, 0, CRED(), NULL)) == 0 &&
1092 MANDLOCK(vp, vattr.va_mode))
1093 error = EAGAIN;
1094 }
1095 }
1096 if (error)
1097 goto out;
1098 }
1099 /*
1100 * Check permissions.
1101 */
1102 if (error = VOP_ACCESS(vp, mode, accessflags, CRED(), NULL))
1103 goto out;
1104
1105 /*
1106 * Require FSEARCH and FDIRECTORY to return a directory. Require
1107 * FEXEC to return a regular file.
1108 */
1109 if ((filemode & (FSEARCH|FDIRECTORY)) != 0 &&
1110 vp->v_type != VDIR) {
1111 error = ENOTDIR;
1112 goto out;
1113 }
1114 if ((filemode & FEXEC) && vp->v_type != VREG) {
1115 error = ENOEXEC; /* XXX: error code? */
1116 goto out;
1117 }
1118 }
1119
1120 /*
1121 * Do remaining checks for FNOFOLLOW and FNOLINKS.
1122 */
1123 if ((filemode & FNOFOLLOW) && vp->v_type == VLNK) {
1124 error = ELOOP;
1125 goto out;
1126 }
1127 if (filemode & FNOLINKS) {
1128 vattr.va_mask = AT_NLINK;
1129 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))) {
1130 goto out;
1131 }
1132 if (vattr.va_nlink != 1) {
1133 error = EMLINK;
1134 goto out;
1135 }
1136 }
1137
1138 /*
1139 * Opening a socket corresponding to the AF_UNIX pathname
1140 * in the filesystem name space is not supported.
1141 * However, VSOCK nodes in namefs are supported in order
1142 * to make fattach work for sockets.
1143 *
1144 * XXX This uses VOP_REALVP to distinguish between
1145 * an unopened namefs node (where VOP_REALVP returns a
1146 * different VSOCK vnode) and a VSOCK created by vn_create
1147 * in some file system (where VOP_REALVP would never return
1148 * a different vnode).
1149 */
1150 if (vp->v_type == VSOCK) {
1151 struct vnode *nvp;
1152
1153 error = VOP_REALVP(vp, &nvp, NULL);
1154 if (error != 0 || nvp == NULL || nvp == vp ||
1155 nvp->v_type != VSOCK) {
1156 error = EOPNOTSUPP;
1157 goto out;
1158 }
1159 }
1160
1161 if ((vp->v_type == VREG) && nbl_need_check(vp)) {
1162 /* get share reservation */
1163 shr.s_access = 0;
1164 if (filemode & FWRITE)
1165 shr.s_access |= F_WRACC;
1166 if (filemode & FREAD)
1167 shr.s_access |= F_RDACC;
1168 shr.s_deny = 0;
1169 shr.s_sysid = 0;
1170 shr.s_pid = ttoproc(curthread)->p_pid;
1171 shr_own.sl_pid = shr.s_pid;
1172 shr_own.sl_id = fd;
1173 shr.s_own_len = sizeof (shr_own);
1174 shr.s_owner = (caddr_t)&shr_own;
1175 error = VOP_SHRLOCK(vp, F_SHARE_NBMAND, &shr, filemode, CRED(),
1176 NULL);
1177 if (error)
1178 goto out;
1179 shrlock_done = 1;
1180
1181 /* nbmand conflict check if truncating file */
1182 if ((filemode & FTRUNC) && !(filemode & FCREAT)) {
1183 nbl_start_crit(vp, RW_READER);
1184 in_crit = 1;
1185
1186 vattr.va_mask = AT_SIZE;
1187 if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))
1188 goto out;
1189 if (nbl_conflict(vp, NBL_WRITE, 0, vattr.va_size, 0,
1190 NULL)) {
1191 error = EACCES;
1192 goto out;
1193 }
1194 }
1195 }
1196
1197 /*
1198 * Do opening protocol.
1199 */
1200 error = VOP_OPEN(&vp, filemode, CRED(), NULL);
1201 if (error)
1202 goto out;
1203 open_done = 1;
1204
1205 /*
1206 * Truncate if required.
1207 */
1208 if ((filemode & FTRUNC) && !(filemode & FCREAT)) {
1209 vattr.va_size = 0;
1210 vattr.va_mask = AT_SIZE;
1211 if ((error = VOP_SETATTR(vp, &vattr, 0, CRED(), NULL)) != 0)
1212 goto out;
1213 }
1214 out:
1215 ASSERT(vp->v_count > 0);
1216
1217 if (in_crit) {
1218 nbl_end_crit(vp);
1219 in_crit = 0;
1220 }
1221 if (error) {
1222 if (open_done) {
1223 (void) VOP_CLOSE(vp, filemode, 1, (offset_t)0, CRED(),
1224 NULL);
1225 open_done = 0;
1226 shrlock_done = 0;
1227 }
1228 if (shrlock_done) {
1229 (void) VOP_SHRLOCK(vp, F_UNSHARE, &shr, 0, CRED(),
1230 NULL);
1231 shrlock_done = 0;
1232 }
1233
1234 /*
1235 * The following clause was added to handle a problem
1236 * with NFS consistency. It is possible that a lookup
1237 * of the file to be opened succeeded, but the file
1238 * itself doesn't actually exist on the server. This
1239 * is chiefly due to the DNLC containing an entry for
1240 * the file which has been removed on the server. In
1241 * this case, we just start over. If there was some
1242 * other cause for the ESTALE error, then the lookup
1243 * of the file will fail and the error will be returned
1244 * above instead of looping around from here.
1245 */
1246 VN_RELE(vp);
1247 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1248 goto top;
1249 } else
1250 *vpp = vp;
1251 return (error);
1252 }
1253
1254 /*
1255 * The following two accessor functions are for the NFSv4 server. Since there
1256 * is no VOP_OPEN_UP/DOWNGRADE we need a way for the NFS server to keep the
1257 * vnode open counts correct when a client "upgrades" an open or does an
1258 * open_downgrade. In NFS, an upgrade or downgrade can not only change the
1259 * open mode (add or subtract read or write), but also change the share/deny
1260 * modes. However, share reservations are not integrated with OPEN, yet, so
1261 * we need to handle each separately. These functions are cleaner than having
1262 * the NFS server manipulate the counts directly, however, nobody else should
1263 * use these functions.
1264 */
1265 void
vn_open_upgrade(vnode_t * vp,int filemode)1266 vn_open_upgrade(
1267 vnode_t *vp,
1268 int filemode)
1269 {
1270 ASSERT(vp->v_type == VREG);
1271
1272 if (filemode & FREAD)
1273 atomic_inc_32(&vp->v_rdcnt);
1274 if (filemode & FWRITE)
1275 atomic_inc_32(&vp->v_wrcnt);
1276
1277 }
1278
1279 void
vn_open_downgrade(vnode_t * vp,int filemode)1280 vn_open_downgrade(
1281 vnode_t *vp,
1282 int filemode)
1283 {
1284 ASSERT(vp->v_type == VREG);
1285
1286 if (filemode & FREAD) {
1287 ASSERT(vp->v_rdcnt > 0);
1288 atomic_dec_32(&vp->v_rdcnt);
1289 }
1290 if (filemode & FWRITE) {
1291 ASSERT(vp->v_wrcnt > 0);
1292 atomic_dec_32(&vp->v_wrcnt);
1293 }
1294
1295 }
1296
1297 int
vn_create(char * pnamep,enum uio_seg seg,struct vattr * vap,enum vcexcl excl,int mode,struct vnode ** vpp,enum create why,int flag,mode_t umask)1298 vn_create(
1299 char *pnamep,
1300 enum uio_seg seg,
1301 struct vattr *vap,
1302 enum vcexcl excl,
1303 int mode,
1304 struct vnode **vpp,
1305 enum create why,
1306 int flag,
1307 mode_t umask)
1308 {
1309 return (vn_createat(pnamep, seg, vap, excl, mode, vpp, why, flag,
1310 umask, NULL));
1311 }
1312
1313 /*
1314 * Create a vnode (makenode).
1315 */
1316 int
vn_createat(char * pnamep,enum uio_seg seg,struct vattr * vap,enum vcexcl excl,int mode,struct vnode ** vpp,enum create why,int flag,mode_t umask,struct vnode * startvp)1317 vn_createat(
1318 char *pnamep,
1319 enum uio_seg seg,
1320 struct vattr *vap,
1321 enum vcexcl excl,
1322 int mode,
1323 struct vnode **vpp,
1324 enum create why,
1325 int flag,
1326 mode_t umask,
1327 struct vnode *startvp)
1328 {
1329 struct vnode *dvp; /* ptr to parent dir vnode */
1330 struct vnode *vp = NULL;
1331 struct pathname pn;
1332 int error;
1333 int in_crit = 0;
1334 struct vattr vattr;
1335 enum symfollow follow;
1336 int estale_retry = 0;
1337 uint32_t auditing = AU_AUDITING();
1338
1339 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
1340
1341 /* symlink interpretation */
1342 if ((flag & FNOFOLLOW) || excl == EXCL)
1343 follow = NO_FOLLOW;
1344 else
1345 follow = FOLLOW;
1346 flag &= ~(FNOFOLLOW|FNOLINKS);
1347
1348 top:
1349 /*
1350 * Lookup directory.
1351 * If new object is a file, call lower level to create it.
1352 * Note that it is up to the lower level to enforce exclusive
1353 * creation, if the file is already there.
1354 * This allows the lower level to do whatever
1355 * locking or protocol that is needed to prevent races.
1356 * If the new object is directory call lower level to make
1357 * the new directory, with "." and "..".
1358 */
1359 if (error = pn_get(pnamep, seg, &pn))
1360 return (error);
1361 if (auditing)
1362 audit_vncreate_start();
1363 dvp = NULL;
1364 *vpp = NULL;
1365 /*
1366 * lookup will find the parent directory for the vnode.
1367 * When it is done the pn holds the name of the entry
1368 * in the directory.
1369 * If this is a non-exclusive create we also find the node itself.
1370 */
1371 error = lookuppnat(&pn, NULL, follow, &dvp,
1372 (excl == EXCL) ? NULLVPP : vpp, startvp);
1373 if (error) {
1374 pn_free(&pn);
1375 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1376 goto top;
1377 if (why == CRMKDIR && error == EINVAL)
1378 error = EEXIST; /* SVID */
1379 return (error);
1380 }
1381
1382 if (why != CRMKNOD)
1383 vap->va_mode &= ~VSVTX;
1384
1385 /*
1386 * If default ACLs are defined for the directory don't apply the
1387 * umask if umask is passed.
1388 */
1389
1390 if (umask) {
1391
1392 vsecattr_t vsec;
1393
1394 vsec.vsa_aclcnt = 0;
1395 vsec.vsa_aclentp = NULL;
1396 vsec.vsa_dfaclcnt = 0;
1397 vsec.vsa_dfaclentp = NULL;
1398 vsec.vsa_mask = VSA_DFACLCNT;
1399 error = VOP_GETSECATTR(dvp, &vsec, 0, CRED(), NULL);
1400 /*
1401 * If error is ENOSYS then treat it as no error
1402 * Don't want to force all file systems to support
1403 * aclent_t style of ACL's.
1404 */
1405 if (error == ENOSYS)
1406 error = 0;
1407 if (error) {
1408 if (*vpp != NULL)
1409 VN_RELE(*vpp);
1410 goto out;
1411 } else {
1412 /*
1413 * Apply the umask if no default ACLs.
1414 */
1415 if (vsec.vsa_dfaclcnt == 0)
1416 vap->va_mode &= ~umask;
1417
1418 /*
1419 * VOP_GETSECATTR() may have allocated memory for
1420 * ACLs we didn't request, so double-check and
1421 * free it if necessary.
1422 */
1423 if (vsec.vsa_aclcnt && vsec.vsa_aclentp != NULL)
1424 kmem_free((caddr_t)vsec.vsa_aclentp,
1425 vsec.vsa_aclcnt * sizeof (aclent_t));
1426 if (vsec.vsa_dfaclcnt && vsec.vsa_dfaclentp != NULL)
1427 kmem_free((caddr_t)vsec.vsa_dfaclentp,
1428 vsec.vsa_dfaclcnt * sizeof (aclent_t));
1429 }
1430 }
1431
1432 /*
1433 * In general we want to generate EROFS if the file system is
1434 * readonly. However, POSIX (IEEE Std. 1003.1) section 5.3.1
1435 * documents the open system call, and it says that O_CREAT has no
1436 * effect if the file already exists. Bug 1119649 states
1437 * that open(path, O_CREAT, ...) fails when attempting to open an
1438 * existing file on a read only file system. Thus, the first part
1439 * of the following if statement has 3 checks:
1440 * if the file exists &&
1441 * it is being open with write access &&
1442 * the file system is read only
1443 * then generate EROFS
1444 */
1445 if ((*vpp != NULL && (mode & VWRITE) && ISROFILE(*vpp)) ||
1446 (*vpp == NULL && dvp->v_vfsp->vfs_flag & VFS_RDONLY)) {
1447 if (*vpp)
1448 VN_RELE(*vpp);
1449 error = EROFS;
1450 } else if (excl == NONEXCL && *vpp != NULL) {
1451 vnode_t *rvp;
1452
1453 /*
1454 * File already exists. If a mandatory lock has been
1455 * applied, return error.
1456 */
1457 vp = *vpp;
1458 if (VOP_REALVP(vp, &rvp, NULL) != 0)
1459 rvp = vp;
1460 if ((vap->va_mask & AT_SIZE) && nbl_need_check(vp)) {
1461 nbl_start_crit(vp, RW_READER);
1462 in_crit = 1;
1463 }
1464 if (rvp->v_filocks != NULL || rvp->v_shrlocks != NULL) {
1465 vattr.va_mask = AT_MODE|AT_SIZE;
1466 if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL)) {
1467 goto out;
1468 }
1469 if (MANDLOCK(vp, vattr.va_mode)) {
1470 error = EAGAIN;
1471 goto out;
1472 }
1473 /*
1474 * File cannot be truncated if non-blocking mandatory
1475 * locks are currently on the file.
1476 */
1477 if ((vap->va_mask & AT_SIZE) && in_crit) {
1478 u_offset_t offset;
1479 ssize_t length;
1480
1481 offset = vap->va_size > vattr.va_size ?
1482 vattr.va_size : vap->va_size;
1483 length = vap->va_size > vattr.va_size ?
1484 vap->va_size - vattr.va_size :
1485 vattr.va_size - vap->va_size;
1486 if (nbl_conflict(vp, NBL_WRITE, offset,
1487 length, 0, NULL)) {
1488 error = EACCES;
1489 goto out;
1490 }
1491 }
1492 }
1493
1494 /*
1495 * If the file is the root of a VFS, we've crossed a
1496 * mount point and the "containing" directory that we
1497 * acquired above (dvp) is irrelevant because it's in
1498 * a different file system. We apply VOP_CREATE to the
1499 * target itself instead of to the containing directory
1500 * and supply a null path name to indicate (conventionally)
1501 * the node itself as the "component" of interest.
1502 *
1503 * The intercession of the file system is necessary to
1504 * ensure that the appropriate permission checks are
1505 * done.
1506 */
1507 if (vp->v_flag & VROOT) {
1508 ASSERT(why != CRMKDIR);
1509 error = VOP_CREATE(vp, "", vap, excl, mode, vpp,
1510 CRED(), flag, NULL, NULL);
1511 /*
1512 * If the create succeeded, it will have created
1513 * a new reference to the vnode. Give up the
1514 * original reference. The assertion should not
1515 * get triggered because NBMAND locks only apply to
1516 * VREG files. And if in_crit is non-zero for some
1517 * reason, detect that here, rather than when we
1518 * deference a null vp.
1519 */
1520 ASSERT(in_crit == 0);
1521 VN_RELE(vp);
1522 vp = NULL;
1523 goto out;
1524 }
1525
1526 /*
1527 * Large File API - non-large open (FOFFMAX flag not set)
1528 * of regular file fails if the file size exceeds MAXOFF32_T.
1529 */
1530 if (why != CRMKDIR &&
1531 !(flag & FOFFMAX) &&
1532 (vp->v_type == VREG)) {
1533 vattr.va_mask = AT_SIZE;
1534 if ((error = VOP_GETATTR(vp, &vattr, 0,
1535 CRED(), NULL))) {
1536 goto out;
1537 }
1538 if ((vattr.va_size > (u_offset_t)MAXOFF32_T)) {
1539 error = EOVERFLOW;
1540 goto out;
1541 }
1542 }
1543 }
1544
1545 if (error == 0) {
1546 /*
1547 * Call mkdir() if specified, otherwise create().
1548 */
1549 int must_be_dir = pn_fixslash(&pn); /* trailing '/'? */
1550
1551 if (why == CRMKDIR)
1552 /*
1553 * N.B., if vn_createat() ever requests
1554 * case-insensitive behavior then it will need
1555 * to be passed to VOP_MKDIR(). VOP_CREATE()
1556 * will already get it via "flag"
1557 */
1558 error = VOP_MKDIR(dvp, pn.pn_path, vap, vpp, CRED(),
1559 NULL, 0, NULL);
1560 else if (!must_be_dir)
1561 error = VOP_CREATE(dvp, pn.pn_path, vap,
1562 excl, mode, vpp, CRED(), flag, NULL, NULL);
1563 else
1564 error = ENOTDIR;
1565 }
1566
1567 out:
1568
1569 if (auditing)
1570 audit_vncreate_finish(*vpp, error);
1571 if (in_crit) {
1572 nbl_end_crit(vp);
1573 in_crit = 0;
1574 }
1575 if (vp != NULL) {
1576 VN_RELE(vp);
1577 vp = NULL;
1578 }
1579 pn_free(&pn);
1580 VN_RELE(dvp);
1581 /*
1582 * The following clause was added to handle a problem
1583 * with NFS consistency. It is possible that a lookup
1584 * of the file to be created succeeded, but the file
1585 * itself doesn't actually exist on the server. This
1586 * is chiefly due to the DNLC containing an entry for
1587 * the file which has been removed on the server. In
1588 * this case, we just start over. If there was some
1589 * other cause for the ESTALE error, then the lookup
1590 * of the file will fail and the error will be returned
1591 * above instead of looping around from here.
1592 */
1593 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1594 goto top;
1595 return (error);
1596 }
1597
1598 int
vn_link(char * from,char * to,enum uio_seg seg)1599 vn_link(char *from, char *to, enum uio_seg seg)
1600 {
1601 return (vn_linkat(NULL, from, NO_FOLLOW, NULL, to, seg));
1602 }
1603
1604 int
vn_linkat(vnode_t * fstartvp,char * from,enum symfollow follow,vnode_t * tstartvp,char * to,enum uio_seg seg)1605 vn_linkat(vnode_t *fstartvp, char *from, enum symfollow follow,
1606 vnode_t *tstartvp, char *to, enum uio_seg seg)
1607 {
1608 struct vnode *fvp; /* from vnode ptr */
1609 struct vnode *tdvp; /* to directory vnode ptr */
1610 struct pathname pn;
1611 int error;
1612 struct vattr vattr;
1613 dev_t fsid;
1614 int estale_retry = 0;
1615 uint32_t auditing = AU_AUDITING();
1616
1617 top:
1618 fvp = tdvp = NULL;
1619 if (error = pn_get(to, seg, &pn))
1620 return (error);
1621 if (auditing && fstartvp != NULL)
1622 audit_setfsat_path(1);
1623 if (error = lookupnameat(from, seg, follow, NULLVPP, &fvp, fstartvp))
1624 goto out;
1625 if (auditing && tstartvp != NULL)
1626 audit_setfsat_path(3);
1627 if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &tdvp, NULLVPP, tstartvp))
1628 goto out;
1629 /*
1630 * Make sure both source vnode and target directory vnode are
1631 * in the same vfs and that it is writeable.
1632 */
1633 vattr.va_mask = AT_FSID;
1634 if (error = VOP_GETATTR(fvp, &vattr, 0, CRED(), NULL))
1635 goto out;
1636 fsid = vattr.va_fsid;
1637 vattr.va_mask = AT_FSID;
1638 if (error = VOP_GETATTR(tdvp, &vattr, 0, CRED(), NULL))
1639 goto out;
1640 if (fsid != vattr.va_fsid) {
1641 error = EXDEV;
1642 goto out;
1643 }
1644 if (tdvp->v_vfsp->vfs_flag & VFS_RDONLY) {
1645 error = EROFS;
1646 goto out;
1647 }
1648 /*
1649 * Do the link.
1650 */
1651 (void) pn_fixslash(&pn);
1652 error = VOP_LINK(tdvp, fvp, pn.pn_path, CRED(), NULL, 0);
1653 out:
1654 pn_free(&pn);
1655 if (fvp)
1656 VN_RELE(fvp);
1657 if (tdvp)
1658 VN_RELE(tdvp);
1659 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1660 goto top;
1661 return (error);
1662 }
1663
1664 int
vn_rename(char * from,char * to,enum uio_seg seg)1665 vn_rename(char *from, char *to, enum uio_seg seg)
1666 {
1667 return (vn_renameat(NULL, from, NULL, to, seg));
1668 }
1669
1670 int
vn_renameat(vnode_t * fdvp,char * fname,vnode_t * tdvp,char * tname,enum uio_seg seg)1671 vn_renameat(vnode_t *fdvp, char *fname, vnode_t *tdvp,
1672 char *tname, enum uio_seg seg)
1673 {
1674 int error;
1675 struct vattr vattr;
1676 struct pathname fpn; /* from pathname */
1677 struct pathname tpn; /* to pathname */
1678 dev_t fsid;
1679 int in_crit_src, in_crit_targ;
1680 vnode_t *fromvp, *fvp;
1681 vnode_t *tovp, *targvp;
1682 int estale_retry = 0;
1683 uint32_t auditing = AU_AUDITING();
1684
1685 top:
1686 fvp = fromvp = tovp = targvp = NULL;
1687 in_crit_src = in_crit_targ = 0;
1688 /*
1689 * Get to and from pathnames.
1690 */
1691 if (error = pn_get(fname, seg, &fpn))
1692 return (error);
1693 if (error = pn_get(tname, seg, &tpn)) {
1694 pn_free(&fpn);
1695 return (error);
1696 }
1697
1698 /*
1699 * First we need to resolve the correct directories
1700 * The passed in directories may only be a starting point,
1701 * but we need the real directories the file(s) live in.
1702 * For example the fname may be something like usr/lib/sparc
1703 * and we were passed in the / directory, but we need to
1704 * use the lib directory for the rename.
1705 */
1706
1707 if (auditing && fdvp != NULL)
1708 audit_setfsat_path(1);
1709 /*
1710 * Lookup to and from directories.
1711 */
1712 if (error = lookuppnat(&fpn, NULL, NO_FOLLOW, &fromvp, &fvp, fdvp)) {
1713 goto out;
1714 }
1715
1716 /*
1717 * Make sure there is an entry.
1718 */
1719 if (fvp == NULL) {
1720 error = ENOENT;
1721 goto out;
1722 }
1723
1724 if (auditing && tdvp != NULL)
1725 audit_setfsat_path(3);
1726 if (error = lookuppnat(&tpn, NULL, NO_FOLLOW, &tovp, &targvp, tdvp)) {
1727 goto out;
1728 }
1729
1730 /*
1731 * Make sure both the from vnode directory and the to directory
1732 * are in the same vfs and the to directory is writable.
1733 * We check fsid's, not vfs pointers, so loopback fs works.
1734 */
1735 if (fromvp != tovp) {
1736 vattr.va_mask = AT_FSID;
1737 if (error = VOP_GETATTR(fromvp, &vattr, 0, CRED(), NULL))
1738 goto out;
1739 fsid = vattr.va_fsid;
1740 vattr.va_mask = AT_FSID;
1741 if (error = VOP_GETATTR(tovp, &vattr, 0, CRED(), NULL))
1742 goto out;
1743 if (fsid != vattr.va_fsid) {
1744 error = EXDEV;
1745 goto out;
1746 }
1747 }
1748
1749 if (tovp->v_vfsp->vfs_flag & VFS_RDONLY) {
1750 error = EROFS;
1751 goto out;
1752 }
1753
1754 if (targvp && (fvp != targvp)) {
1755 nbl_start_crit(targvp, RW_READER);
1756 in_crit_targ = 1;
1757 if (nbl_conflict(targvp, NBL_REMOVE, 0, 0, 0, NULL)) {
1758 error = EACCES;
1759 goto out;
1760 }
1761 }
1762
1763 if (nbl_need_check(fvp)) {
1764 nbl_start_crit(fvp, RW_READER);
1765 in_crit_src = 1;
1766 if (nbl_conflict(fvp, NBL_RENAME, 0, 0, 0, NULL)) {
1767 error = EACCES;
1768 goto out;
1769 }
1770 }
1771
1772 /*
1773 * Do the rename.
1774 */
1775 (void) pn_fixslash(&tpn);
1776 error = VOP_RENAME(fromvp, fpn.pn_path, tovp, tpn.pn_path, CRED(),
1777 NULL, 0);
1778
1779 out:
1780 pn_free(&fpn);
1781 pn_free(&tpn);
1782 if (in_crit_src)
1783 nbl_end_crit(fvp);
1784 if (in_crit_targ)
1785 nbl_end_crit(targvp);
1786 if (fromvp)
1787 VN_RELE(fromvp);
1788 if (tovp)
1789 VN_RELE(tovp);
1790 if (targvp)
1791 VN_RELE(targvp);
1792 if (fvp)
1793 VN_RELE(fvp);
1794 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1795 goto top;
1796 return (error);
1797 }
1798
1799 /*
1800 * Remove a file or directory.
1801 */
1802 int
vn_remove(char * fnamep,enum uio_seg seg,enum rm dirflag)1803 vn_remove(char *fnamep, enum uio_seg seg, enum rm dirflag)
1804 {
1805 return (vn_removeat(NULL, fnamep, seg, dirflag));
1806 }
1807
1808 int
vn_removeat(vnode_t * startvp,char * fnamep,enum uio_seg seg,enum rm dirflag)1809 vn_removeat(vnode_t *startvp, char *fnamep, enum uio_seg seg, enum rm dirflag)
1810 {
1811 struct vnode *vp; /* entry vnode */
1812 struct vnode *dvp; /* ptr to parent dir vnode */
1813 struct vnode *coveredvp;
1814 struct pathname pn; /* name of entry */
1815 enum vtype vtype;
1816 int error;
1817 struct vfs *vfsp;
1818 struct vfs *dvfsp; /* ptr to parent dir vfs */
1819 int in_crit = 0;
1820 int estale_retry = 0;
1821
1822 top:
1823 if (error = pn_get(fnamep, seg, &pn))
1824 return (error);
1825 dvp = vp = NULL;
1826 if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &dvp, &vp, startvp)) {
1827 pn_free(&pn);
1828 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1829 goto top;
1830 return (error);
1831 }
1832
1833 /*
1834 * Make sure there is an entry.
1835 */
1836 if (vp == NULL) {
1837 error = ENOENT;
1838 goto out;
1839 }
1840
1841 vfsp = vp->v_vfsp;
1842 dvfsp = dvp->v_vfsp;
1843
1844 /*
1845 * If the named file is the root of a mounted filesystem, fail,
1846 * unless it's marked unlinkable. In that case, unmount the
1847 * filesystem and proceed to unlink the covered vnode. (If the
1848 * covered vnode is a directory, use rmdir instead of unlink,
1849 * to avoid file system corruption.)
1850 */
1851 if (vp->v_flag & VROOT) {
1852 if ((vfsp->vfs_flag & VFS_UNLINKABLE) == 0) {
1853 error = EBUSY;
1854 goto out;
1855 }
1856
1857 /*
1858 * Namefs specific code starts here.
1859 */
1860
1861 if (dirflag == RMDIRECTORY) {
1862 /*
1863 * User called rmdir(2) on a file that has
1864 * been namefs mounted on top of. Since
1865 * namefs doesn't allow directories to
1866 * be mounted on other files we know
1867 * vp is not of type VDIR so fail to operation.
1868 */
1869 error = ENOTDIR;
1870 goto out;
1871 }
1872
1873 /*
1874 * If VROOT is still set after grabbing vp->v_lock,
1875 * noone has finished nm_unmount so far and coveredvp
1876 * is valid.
1877 * If we manage to grab vn_vfswlock(coveredvp) before releasing
1878 * vp->v_lock, any race window is eliminated.
1879 */
1880
1881 mutex_enter(&vp->v_lock);
1882 if ((vp->v_flag & VROOT) == 0) {
1883 /* Someone beat us to the unmount */
1884 mutex_exit(&vp->v_lock);
1885 error = EBUSY;
1886 goto out;
1887 }
1888 vfsp = vp->v_vfsp;
1889 coveredvp = vfsp->vfs_vnodecovered;
1890 ASSERT(coveredvp);
1891 /*
1892 * Note: Implementation of vn_vfswlock shows that ordering of
1893 * v_lock / vn_vfswlock is not an issue here.
1894 */
1895 error = vn_vfswlock(coveredvp);
1896 mutex_exit(&vp->v_lock);
1897
1898 if (error)
1899 goto out;
1900
1901 VN_HOLD(coveredvp);
1902 VN_RELE(vp);
1903 error = dounmount(vfsp, 0, CRED());
1904
1905 /*
1906 * Unmounted the namefs file system; now get
1907 * the object it was mounted over.
1908 */
1909 vp = coveredvp;
1910 /*
1911 * If namefs was mounted over a directory, then
1912 * we want to use rmdir() instead of unlink().
1913 */
1914 if (vp->v_type == VDIR)
1915 dirflag = RMDIRECTORY;
1916
1917 if (error)
1918 goto out;
1919 }
1920
1921 /*
1922 * Make sure filesystem is writeable.
1923 * We check the parent directory's vfs in case this is an lofs vnode.
1924 */
1925 if (dvfsp && dvfsp->vfs_flag & VFS_RDONLY) {
1926 error = EROFS;
1927 goto out;
1928 }
1929
1930 vtype = vp->v_type;
1931
1932 /*
1933 * If there is the possibility of an nbmand share reservation, make
1934 * sure it's okay to remove the file. Keep a reference to the
1935 * vnode, so that we can exit the nbl critical region after
1936 * calling VOP_REMOVE.
1937 * If there is no possibility of an nbmand share reservation,
1938 * release the vnode reference now. Filesystems like NFS may
1939 * behave differently if there is an extra reference, so get rid of
1940 * this one. Fortunately, we can't have nbmand mounts on NFS
1941 * filesystems.
1942 */
1943 if (nbl_need_check(vp)) {
1944 nbl_start_crit(vp, RW_READER);
1945 in_crit = 1;
1946 if (nbl_conflict(vp, NBL_REMOVE, 0, 0, 0, NULL)) {
1947 error = EACCES;
1948 goto out;
1949 }
1950 } else {
1951 VN_RELE(vp);
1952 vp = NULL;
1953 }
1954
1955 if (dirflag == RMDIRECTORY) {
1956 /*
1957 * Caller is using rmdir(2), which can only be applied to
1958 * directories.
1959 */
1960 if (vtype != VDIR) {
1961 error = ENOTDIR;
1962 } else {
1963 vnode_t *cwd;
1964 proc_t *pp = curproc;
1965
1966 mutex_enter(&pp->p_lock);
1967 cwd = PTOU(pp)->u_cdir;
1968 VN_HOLD(cwd);
1969 mutex_exit(&pp->p_lock);
1970 error = VOP_RMDIR(dvp, pn.pn_path, cwd, CRED(),
1971 NULL, 0);
1972 VN_RELE(cwd);
1973 }
1974 } else {
1975 /*
1976 * Unlink(2) can be applied to anything.
1977 */
1978 error = VOP_REMOVE(dvp, pn.pn_path, CRED(), NULL, 0);
1979 }
1980
1981 out:
1982 pn_free(&pn);
1983 if (in_crit) {
1984 nbl_end_crit(vp);
1985 in_crit = 0;
1986 }
1987 if (vp != NULL)
1988 VN_RELE(vp);
1989 if (dvp != NULL)
1990 VN_RELE(dvp);
1991 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1992 goto top;
1993 return (error);
1994 }
1995
1996 /*
1997 * Utility function to compare equality of vnodes.
1998 * Compare the underlying real vnodes, if there are underlying vnodes.
1999 * This is a more thorough comparison than the VN_CMP() macro provides.
2000 */
2001 int
vn_compare(vnode_t * vp1,vnode_t * vp2)2002 vn_compare(vnode_t *vp1, vnode_t *vp2)
2003 {
2004 vnode_t *realvp;
2005
2006 if (vp1 != NULL && VOP_REALVP(vp1, &realvp, NULL) == 0)
2007 vp1 = realvp;
2008 if (vp2 != NULL && VOP_REALVP(vp2, &realvp, NULL) == 0)
2009 vp2 = realvp;
2010 return (VN_CMP(vp1, vp2));
2011 }
2012
2013 /*
2014 * The number of locks to hash into. This value must be a power
2015 * of 2 minus 1 and should probably also be prime.
2016 */
2017 #define NUM_BUCKETS 1023
2018
2019 struct vn_vfslocks_bucket {
2020 kmutex_t vb_lock;
2021 vn_vfslocks_entry_t *vb_list;
2022 char pad[64 - sizeof (kmutex_t) - sizeof (void *)];
2023 };
2024
2025 /*
2026 * Total number of buckets will be NUM_BUCKETS + 1 .
2027 */
2028
2029 #pragma align 64(vn_vfslocks_buckets)
2030 static struct vn_vfslocks_bucket vn_vfslocks_buckets[NUM_BUCKETS + 1];
2031
2032 #define VN_VFSLOCKS_SHIFT 9
2033
2034 #define VN_VFSLOCKS_HASH(vfsvpptr) \
2035 ((((intptr_t)(vfsvpptr)) >> VN_VFSLOCKS_SHIFT) & NUM_BUCKETS)
2036
2037 /*
2038 * vn_vfslocks_getlock() uses an HASH scheme to generate
2039 * rwstlock using vfs/vnode pointer passed to it.
2040 *
2041 * vn_vfslocks_rele() releases a reference in the
2042 * HASH table which allows the entry allocated by
2043 * vn_vfslocks_getlock() to be freed at a later
2044 * stage when the refcount drops to zero.
2045 */
2046
2047 vn_vfslocks_entry_t *
vn_vfslocks_getlock(void * vfsvpptr)2048 vn_vfslocks_getlock(void *vfsvpptr)
2049 {
2050 struct vn_vfslocks_bucket *bp;
2051 vn_vfslocks_entry_t *vep;
2052 vn_vfslocks_entry_t *tvep;
2053
2054 ASSERT(vfsvpptr != NULL);
2055 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vfsvpptr)];
2056
2057 mutex_enter(&bp->vb_lock);
2058 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) {
2059 if (vep->ve_vpvfs == vfsvpptr) {
2060 vep->ve_refcnt++;
2061 mutex_exit(&bp->vb_lock);
2062 return (vep);
2063 }
2064 }
2065 mutex_exit(&bp->vb_lock);
2066 vep = kmem_alloc(sizeof (*vep), KM_SLEEP);
2067 rwst_init(&vep->ve_lock, NULL, RW_DEFAULT, NULL);
2068 vep->ve_vpvfs = (char *)vfsvpptr;
2069 vep->ve_refcnt = 1;
2070 mutex_enter(&bp->vb_lock);
2071 for (tvep = bp->vb_list; tvep != NULL; tvep = tvep->ve_next) {
2072 if (tvep->ve_vpvfs == vfsvpptr) {
2073 tvep->ve_refcnt++;
2074 mutex_exit(&bp->vb_lock);
2075
2076 /*
2077 * There is already an entry in the hash
2078 * destroy what we just allocated.
2079 */
2080 rwst_destroy(&vep->ve_lock);
2081 kmem_free(vep, sizeof (*vep));
2082 return (tvep);
2083 }
2084 }
2085 vep->ve_next = bp->vb_list;
2086 bp->vb_list = vep;
2087 mutex_exit(&bp->vb_lock);
2088 return (vep);
2089 }
2090
2091 void
vn_vfslocks_rele(vn_vfslocks_entry_t * vepent)2092 vn_vfslocks_rele(vn_vfslocks_entry_t *vepent)
2093 {
2094 struct vn_vfslocks_bucket *bp;
2095 vn_vfslocks_entry_t *vep;
2096 vn_vfslocks_entry_t *pvep;
2097
2098 ASSERT(vepent != NULL);
2099 ASSERT(vepent->ve_vpvfs != NULL);
2100
2101 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vepent->ve_vpvfs)];
2102
2103 mutex_enter(&bp->vb_lock);
2104 vepent->ve_refcnt--;
2105
2106 if ((int32_t)vepent->ve_refcnt < 0)
2107 cmn_err(CE_PANIC, "vn_vfslocks_rele: refcount negative");
2108
2109 if (vepent->ve_refcnt == 0) {
2110 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) {
2111 if (vep->ve_vpvfs == vepent->ve_vpvfs) {
2112 if (bp->vb_list == vep)
2113 bp->vb_list = vep->ve_next;
2114 else {
2115 /* LINTED */
2116 pvep->ve_next = vep->ve_next;
2117 }
2118 mutex_exit(&bp->vb_lock);
2119 rwst_destroy(&vep->ve_lock);
2120 kmem_free(vep, sizeof (*vep));
2121 return;
2122 }
2123 pvep = vep;
2124 }
2125 cmn_err(CE_PANIC, "vn_vfslocks_rele: vp/vfs not found");
2126 }
2127 mutex_exit(&bp->vb_lock);
2128 }
2129
2130 /*
2131 * vn_vfswlock_wait is used to implement a lock which is logically a writers
2132 * lock protecting the v_vfsmountedhere field.
2133 * vn_vfswlock_wait has been modified to be similar to vn_vfswlock,
2134 * except that it blocks to acquire the lock VVFSLOCK.
2135 *
2136 * traverse() and routines re-implementing part of traverse (e.g. autofs)
2137 * need to hold this lock. mount(), vn_rename(), vn_remove() and so on
2138 * need the non-blocking version of the writers lock i.e. vn_vfswlock
2139 */
2140 int
vn_vfswlock_wait(vnode_t * vp)2141 vn_vfswlock_wait(vnode_t *vp)
2142 {
2143 int retval;
2144 vn_vfslocks_entry_t *vpvfsentry;
2145 ASSERT(vp != NULL);
2146
2147 vpvfsentry = vn_vfslocks_getlock(vp);
2148 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_WRITER);
2149
2150 if (retval == EINTR) {
2151 vn_vfslocks_rele(vpvfsentry);
2152 return (EINTR);
2153 }
2154 return (retval);
2155 }
2156
2157 int
vn_vfsrlock_wait(vnode_t * vp)2158 vn_vfsrlock_wait(vnode_t *vp)
2159 {
2160 int retval;
2161 vn_vfslocks_entry_t *vpvfsentry;
2162 ASSERT(vp != NULL);
2163
2164 vpvfsentry = vn_vfslocks_getlock(vp);
2165 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_READER);
2166
2167 if (retval == EINTR) {
2168 vn_vfslocks_rele(vpvfsentry);
2169 return (EINTR);
2170 }
2171
2172 return (retval);
2173 }
2174
2175
2176 /*
2177 * vn_vfswlock is used to implement a lock which is logically a writers lock
2178 * protecting the v_vfsmountedhere field.
2179 */
2180 int
vn_vfswlock(vnode_t * vp)2181 vn_vfswlock(vnode_t *vp)
2182 {
2183 vn_vfslocks_entry_t *vpvfsentry;
2184
2185 /*
2186 * If vp is NULL then somebody is trying to lock the covered vnode
2187 * of /. (vfs_vnodecovered is NULL for /). This situation will
2188 * only happen when unmounting /. Since that operation will fail
2189 * anyway, return EBUSY here instead of in VFS_UNMOUNT.
2190 */
2191 if (vp == NULL)
2192 return (EBUSY);
2193
2194 vpvfsentry = vn_vfslocks_getlock(vp);
2195
2196 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
2197 return (0);
2198
2199 vn_vfslocks_rele(vpvfsentry);
2200 return (EBUSY);
2201 }
2202
2203 int
vn_vfsrlock(vnode_t * vp)2204 vn_vfsrlock(vnode_t *vp)
2205 {
2206 vn_vfslocks_entry_t *vpvfsentry;
2207
2208 /*
2209 * If vp is NULL then somebody is trying to lock the covered vnode
2210 * of /. (vfs_vnodecovered is NULL for /). This situation will
2211 * only happen when unmounting /. Since that operation will fail
2212 * anyway, return EBUSY here instead of in VFS_UNMOUNT.
2213 */
2214 if (vp == NULL)
2215 return (EBUSY);
2216
2217 vpvfsentry = vn_vfslocks_getlock(vp);
2218
2219 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
2220 return (0);
2221
2222 vn_vfslocks_rele(vpvfsentry);
2223 return (EBUSY);
2224 }
2225
2226 void
vn_vfsunlock(vnode_t * vp)2227 vn_vfsunlock(vnode_t *vp)
2228 {
2229 vn_vfslocks_entry_t *vpvfsentry;
2230
2231 /*
2232 * ve_refcnt needs to be decremented twice.
2233 * 1. To release refernce after a call to vn_vfslocks_getlock()
2234 * 2. To release the reference from the locking routines like
2235 * vn_vfsrlock/vn_vfswlock etc,.
2236 */
2237 vpvfsentry = vn_vfslocks_getlock(vp);
2238 vn_vfslocks_rele(vpvfsentry);
2239
2240 rwst_exit(&vpvfsentry->ve_lock);
2241 vn_vfslocks_rele(vpvfsentry);
2242 }
2243
2244 int
vn_vfswlock_held(vnode_t * vp)2245 vn_vfswlock_held(vnode_t *vp)
2246 {
2247 int held;
2248 vn_vfslocks_entry_t *vpvfsentry;
2249
2250 ASSERT(vp != NULL);
2251
2252 vpvfsentry = vn_vfslocks_getlock(vp);
2253 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
2254
2255 vn_vfslocks_rele(vpvfsentry);
2256 return (held);
2257 }
2258
2259
2260 int
vn_make_ops(const char * name,const fs_operation_def_t * templ,vnodeops_t ** actual)2261 vn_make_ops(
2262 const char *name, /* Name of file system */
2263 const fs_operation_def_t *templ, /* Operation specification */
2264 vnodeops_t **actual) /* Return the vnodeops */
2265 {
2266 int unused_ops;
2267 int error;
2268
2269 *actual = (vnodeops_t *)kmem_alloc(sizeof (vnodeops_t), KM_SLEEP);
2270
2271 (*actual)->vnop_name = name;
2272
2273 error = fs_build_vector(*actual, &unused_ops, vn_ops_table, templ);
2274 if (error) {
2275 kmem_free(*actual, sizeof (vnodeops_t));
2276 }
2277
2278 #if DEBUG
2279 if (unused_ops != 0)
2280 cmn_err(CE_WARN, "vn_make_ops: %s: %d operations supplied "
2281 "but not used", name, unused_ops);
2282 #endif
2283
2284 return (error);
2285 }
2286
2287 /*
2288 * Free the vnodeops created as a result of vn_make_ops()
2289 */
2290 void
vn_freevnodeops(vnodeops_t * vnops)2291 vn_freevnodeops(vnodeops_t *vnops)
2292 {
2293 kmem_free(vnops, sizeof (vnodeops_t));
2294 }
2295
2296 /*
2297 * Vnode cache.
2298 */
2299
2300 /* ARGSUSED */
2301 static int
vn_cache_constructor(void * buf,void * cdrarg,int kmflags)2302 vn_cache_constructor(void *buf, void *cdrarg, int kmflags)
2303 {
2304 struct vnode *vp;
2305
2306 vp = buf;
2307
2308 mutex_init(&vp->v_lock, NULL, MUTEX_DEFAULT, NULL);
2309 mutex_init(&vp->v_vsd_lock, NULL, MUTEX_DEFAULT, NULL);
2310 cv_init(&vp->v_cv, NULL, CV_DEFAULT, NULL);
2311 rw_init(&vp->v_nbllock, NULL, RW_DEFAULT, NULL);
2312 vp->v_femhead = NULL; /* Must be done before vn_reinit() */
2313 vp->v_path = NULL;
2314 vp->v_mpssdata = NULL;
2315 vp->v_vsd = NULL;
2316 vp->v_fopdata = NULL;
2317
2318 return (0);
2319 }
2320
2321 /* ARGSUSED */
2322 static void
vn_cache_destructor(void * buf,void * cdrarg)2323 vn_cache_destructor(void *buf, void *cdrarg)
2324 {
2325 struct vnode *vp;
2326
2327 vp = buf;
2328
2329 rw_destroy(&vp->v_nbllock);
2330 cv_destroy(&vp->v_cv);
2331 mutex_destroy(&vp->v_vsd_lock);
2332 mutex_destroy(&vp->v_lock);
2333 }
2334
2335 void
vn_create_cache(void)2336 vn_create_cache(void)
2337 {
2338 /* LINTED */
2339 ASSERT((1 << VNODE_ALIGN_LOG2) ==
2340 P2ROUNDUP(sizeof (struct vnode), VNODE_ALIGN));
2341 vn_cache = kmem_cache_create("vn_cache", sizeof (struct vnode),
2342 VNODE_ALIGN, vn_cache_constructor, vn_cache_destructor, NULL, NULL,
2343 NULL, 0);
2344 }
2345
2346 void
vn_destroy_cache(void)2347 vn_destroy_cache(void)
2348 {
2349 kmem_cache_destroy(vn_cache);
2350 }
2351
2352 /*
2353 * Used by file systems when fs-specific nodes (e.g., ufs inodes) are
2354 * cached by the file system and vnodes remain associated.
2355 */
2356 void
vn_recycle(vnode_t * vp)2357 vn_recycle(vnode_t *vp)
2358 {
2359 ASSERT(vp->v_pages == NULL);
2360
2361 /*
2362 * XXX - This really belongs in vn_reinit(), but we have some issues
2363 * with the counts. Best to have it here for clean initialization.
2364 */
2365 vp->v_rdcnt = 0;
2366 vp->v_wrcnt = 0;
2367 vp->v_mmap_read = 0;
2368 vp->v_mmap_write = 0;
2369
2370 /*
2371 * If FEM was in use, make sure everything gets cleaned up
2372 * NOTE: vp->v_femhead is initialized to NULL in the vnode
2373 * constructor.
2374 */
2375 if (vp->v_femhead) {
2376 /* XXX - There should be a free_femhead() that does all this */
2377 ASSERT(vp->v_femhead->femh_list == NULL);
2378 mutex_destroy(&vp->v_femhead->femh_lock);
2379 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead)));
2380 vp->v_femhead = NULL;
2381 }
2382 if (vp->v_path) {
2383 kmem_free(vp->v_path, strlen(vp->v_path) + 1);
2384 vp->v_path = NULL;
2385 }
2386
2387 if (vp->v_fopdata != NULL) {
2388 free_fopdata(vp);
2389 }
2390 vp->v_mpssdata = NULL;
2391 vsd_free(vp);
2392 }
2393
2394 /*
2395 * Used to reset the vnode fields including those that are directly accessible
2396 * as well as those which require an accessor function.
2397 *
2398 * Does not initialize:
2399 * synchronization objects: v_lock, v_vsd_lock, v_nbllock, v_cv
2400 * v_data (since FS-nodes and vnodes point to each other and should
2401 * be updated simultaneously)
2402 * v_op (in case someone needs to make a VOP call on this object)
2403 */
2404 void
vn_reinit(vnode_t * vp)2405 vn_reinit(vnode_t *vp)
2406 {
2407 vp->v_count = 1;
2408 vp->v_count_dnlc = 0;
2409 vp->v_vfsp = NULL;
2410 vp->v_stream = NULL;
2411 vp->v_vfsmountedhere = NULL;
2412 vp->v_flag = 0;
2413 vp->v_type = VNON;
2414 vp->v_rdev = NODEV;
2415
2416 vp->v_filocks = NULL;
2417 vp->v_shrlocks = NULL;
2418 vp->v_pages = NULL;
2419
2420 vp->v_locality = NULL;
2421 vp->v_xattrdir = NULL;
2422
2423 /* Handles v_femhead, v_path, and the r/w/map counts */
2424 vn_recycle(vp);
2425 }
2426
2427 vnode_t *
vn_alloc(int kmflag)2428 vn_alloc(int kmflag)
2429 {
2430 vnode_t *vp;
2431
2432 vp = kmem_cache_alloc(vn_cache, kmflag);
2433
2434 if (vp != NULL) {
2435 vp->v_femhead = NULL; /* Must be done before vn_reinit() */
2436 vp->v_fopdata = NULL;
2437 vn_reinit(vp);
2438 }
2439
2440 return (vp);
2441 }
2442
2443 void
vn_free(vnode_t * vp)2444 vn_free(vnode_t *vp)
2445 {
2446 ASSERT(vp->v_shrlocks == NULL);
2447 ASSERT(vp->v_filocks == NULL);
2448
2449 /*
2450 * Some file systems call vn_free() with v_count of zero,
2451 * some with v_count of 1. In any case, the value should
2452 * never be anything else.
2453 */
2454 ASSERT((vp->v_count == 0) || (vp->v_count == 1));
2455 ASSERT(vp->v_count_dnlc == 0);
2456 if (vp->v_path != NULL) {
2457 kmem_free(vp->v_path, strlen(vp->v_path) + 1);
2458 vp->v_path = NULL;
2459 }
2460
2461 /* If FEM was in use, make sure everything gets cleaned up */
2462 if (vp->v_femhead) {
2463 /* XXX - There should be a free_femhead() that does all this */
2464 ASSERT(vp->v_femhead->femh_list == NULL);
2465 mutex_destroy(&vp->v_femhead->femh_lock);
2466 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead)));
2467 vp->v_femhead = NULL;
2468 }
2469
2470 if (vp->v_fopdata != NULL) {
2471 free_fopdata(vp);
2472 }
2473 vp->v_mpssdata = NULL;
2474 vsd_free(vp);
2475 kmem_cache_free(vn_cache, vp);
2476 }
2477
2478 /*
2479 * vnode status changes, should define better states than 1, 0.
2480 */
2481 void
vn_reclaim(vnode_t * vp)2482 vn_reclaim(vnode_t *vp)
2483 {
2484 vfs_t *vfsp = vp->v_vfsp;
2485
2486 if (vfsp == NULL ||
2487 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
2488 return;
2489 }
2490 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_RECLAIMED);
2491 }
2492
2493 void
vn_idle(vnode_t * vp)2494 vn_idle(vnode_t *vp)
2495 {
2496 vfs_t *vfsp = vp->v_vfsp;
2497
2498 if (vfsp == NULL ||
2499 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
2500 return;
2501 }
2502 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_IDLED);
2503 }
2504 void
vn_exists(vnode_t * vp)2505 vn_exists(vnode_t *vp)
2506 {
2507 vfs_t *vfsp = vp->v_vfsp;
2508
2509 if (vfsp == NULL ||
2510 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
2511 return;
2512 }
2513 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_EXISTS);
2514 }
2515
2516 void
vn_invalid(vnode_t * vp)2517 vn_invalid(vnode_t *vp)
2518 {
2519 vfs_t *vfsp = vp->v_vfsp;
2520
2521 if (vfsp == NULL ||
2522 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
2523 return;
2524 }
2525 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_DESTROYED);
2526 }
2527
2528 /* Vnode event notification */
2529
2530 int
vnevent_support(vnode_t * vp,caller_context_t * ct)2531 vnevent_support(vnode_t *vp, caller_context_t *ct)
2532 {
2533 if (vp == NULL)
2534 return (EINVAL);
2535
2536 return (VOP_VNEVENT(vp, VE_SUPPORT, NULL, NULL, ct));
2537 }
2538
2539 void
vnevent_rename_src(vnode_t * vp,vnode_t * dvp,char * name,caller_context_t * ct)2540 vnevent_rename_src(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct)
2541 {
2542 if (vp == NULL || vp->v_femhead == NULL) {
2543 return;
2544 }
2545 (void) VOP_VNEVENT(vp, VE_RENAME_SRC, dvp, name, ct);
2546 }
2547
2548 void
vnevent_rename_dest(vnode_t * vp,vnode_t * dvp,char * name,caller_context_t * ct)2549 vnevent_rename_dest(vnode_t *vp, vnode_t *dvp, char *name,
2550 caller_context_t *ct)
2551 {
2552 if (vp == NULL || vp->v_femhead == NULL) {
2553 return;
2554 }
2555 (void) VOP_VNEVENT(vp, VE_RENAME_DEST, dvp, name, ct);
2556 }
2557
2558 void
vnevent_rename_dest_dir(vnode_t * vp,caller_context_t * ct)2559 vnevent_rename_dest_dir(vnode_t *vp, caller_context_t *ct)
2560 {
2561 if (vp == NULL || vp->v_femhead == NULL) {
2562 return;
2563 }
2564 (void) VOP_VNEVENT(vp, VE_RENAME_DEST_DIR, NULL, NULL, ct);
2565 }
2566
2567 void
vnevent_remove(vnode_t * vp,vnode_t * dvp,char * name,caller_context_t * ct)2568 vnevent_remove(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct)
2569 {
2570 if (vp == NULL || vp->v_femhead == NULL) {
2571 return;
2572 }
2573 (void) VOP_VNEVENT(vp, VE_REMOVE, dvp, name, ct);
2574 }
2575
2576 void
vnevent_rmdir(vnode_t * vp,vnode_t * dvp,char * name,caller_context_t * ct)2577 vnevent_rmdir(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct)
2578 {
2579 if (vp == NULL || vp->v_femhead == NULL) {
2580 return;
2581 }
2582 (void) VOP_VNEVENT(vp, VE_RMDIR, dvp, name, ct);
2583 }
2584
2585 void
vnevent_create(vnode_t * vp,caller_context_t * ct)2586 vnevent_create(vnode_t *vp, caller_context_t *ct)
2587 {
2588 if (vp == NULL || vp->v_femhead == NULL) {
2589 return;
2590 }
2591 (void) VOP_VNEVENT(vp, VE_CREATE, NULL, NULL, ct);
2592 }
2593
2594 void
vnevent_link(vnode_t * vp,caller_context_t * ct)2595 vnevent_link(vnode_t *vp, caller_context_t *ct)
2596 {
2597 if (vp == NULL || vp->v_femhead == NULL) {
2598 return;
2599 }
2600 (void) VOP_VNEVENT(vp, VE_LINK, NULL, NULL, ct);
2601 }
2602
2603 void
vnevent_mountedover(vnode_t * vp,caller_context_t * ct)2604 vnevent_mountedover(vnode_t *vp, caller_context_t *ct)
2605 {
2606 if (vp == NULL || vp->v_femhead == NULL) {
2607 return;
2608 }
2609 (void) VOP_VNEVENT(vp, VE_MOUNTEDOVER, NULL, NULL, ct);
2610 }
2611
2612 void
vnevent_truncate(vnode_t * vp,caller_context_t * ct)2613 vnevent_truncate(vnode_t *vp, caller_context_t *ct)
2614 {
2615 if (vp == NULL || vp->v_femhead == NULL) {
2616 return;
2617 }
2618 (void) VOP_VNEVENT(vp, VE_TRUNCATE, NULL, NULL, ct);
2619 }
2620
2621 /*
2622 * Vnode accessors.
2623 */
2624
2625 int
vn_is_readonly(vnode_t * vp)2626 vn_is_readonly(vnode_t *vp)
2627 {
2628 return (vp->v_vfsp->vfs_flag & VFS_RDONLY);
2629 }
2630
2631 int
vn_has_flocks(vnode_t * vp)2632 vn_has_flocks(vnode_t *vp)
2633 {
2634 return (vp->v_filocks != NULL);
2635 }
2636
2637 int
vn_has_mandatory_locks(vnode_t * vp,int mode)2638 vn_has_mandatory_locks(vnode_t *vp, int mode)
2639 {
2640 return ((vp->v_filocks != NULL) && (MANDLOCK(vp, mode)));
2641 }
2642
2643 int
vn_has_cached_data(vnode_t * vp)2644 vn_has_cached_data(vnode_t *vp)
2645 {
2646 return (vp->v_pages != NULL);
2647 }
2648
2649 /*
2650 * Return 0 if the vnode in question shouldn't be permitted into a zone via
2651 * zone_enter(2).
2652 */
2653 int
vn_can_change_zones(vnode_t * vp)2654 vn_can_change_zones(vnode_t *vp)
2655 {
2656 struct vfssw *vswp;
2657 int allow = 1;
2658 vnode_t *rvp;
2659
2660 if (nfs_global_client_only != 0)
2661 return (1);
2662
2663 /*
2664 * We always want to look at the underlying vnode if there is one.
2665 */
2666 if (VOP_REALVP(vp, &rvp, NULL) != 0)
2667 rvp = vp;
2668 /*
2669 * Some pseudo filesystems (including doorfs) don't actually register
2670 * their vfsops_t, so the following may return NULL; we happily let
2671 * such vnodes switch zones.
2672 */
2673 vswp = vfs_getvfsswbyvfsops(vfs_getops(rvp->v_vfsp));
2674 if (vswp != NULL) {
2675 if (vswp->vsw_flag & VSW_NOTZONESAFE)
2676 allow = 0;
2677 vfs_unrefvfssw(vswp);
2678 }
2679 return (allow);
2680 }
2681
2682 /*
2683 * Return nonzero if the vnode is a mount point, zero if not.
2684 */
2685 int
vn_ismntpt(vnode_t * vp)2686 vn_ismntpt(vnode_t *vp)
2687 {
2688 return (vp->v_vfsmountedhere != NULL);
2689 }
2690
2691 /* Retrieve the vfs (if any) mounted on this vnode */
2692 vfs_t *
vn_mountedvfs(vnode_t * vp)2693 vn_mountedvfs(vnode_t *vp)
2694 {
2695 return (vp->v_vfsmountedhere);
2696 }
2697
2698 /*
2699 * Return nonzero if the vnode is referenced by the dnlc, zero if not.
2700 */
2701 int
vn_in_dnlc(vnode_t * vp)2702 vn_in_dnlc(vnode_t *vp)
2703 {
2704 return (vp->v_count_dnlc > 0);
2705 }
2706
2707 /*
2708 * vn_has_other_opens() checks whether a particular file is opened by more than
2709 * just the caller and whether the open is for read and/or write.
2710 * This routine is for calling after the caller has already called VOP_OPEN()
2711 * and the caller wishes to know if they are the only one with it open for
2712 * the mode(s) specified.
2713 *
2714 * Vnode counts are only kept on regular files (v_type=VREG).
2715 */
2716 int
vn_has_other_opens(vnode_t * vp,v_mode_t mode)2717 vn_has_other_opens(
2718 vnode_t *vp,
2719 v_mode_t mode)
2720 {
2721
2722 ASSERT(vp != NULL);
2723
2724 switch (mode) {
2725 case V_WRITE:
2726 if (vp->v_wrcnt > 1)
2727 return (V_TRUE);
2728 break;
2729 case V_RDORWR:
2730 if ((vp->v_rdcnt > 1) || (vp->v_wrcnt > 1))
2731 return (V_TRUE);
2732 break;
2733 case V_RDANDWR:
2734 if ((vp->v_rdcnt > 1) && (vp->v_wrcnt > 1))
2735 return (V_TRUE);
2736 break;
2737 case V_READ:
2738 if (vp->v_rdcnt > 1)
2739 return (V_TRUE);
2740 break;
2741 }
2742
2743 return (V_FALSE);
2744 }
2745
2746 /*
2747 * vn_is_opened() checks whether a particular file is opened and
2748 * whether the open is for read and/or write.
2749 *
2750 * Vnode counts are only kept on regular files (v_type=VREG).
2751 */
2752 int
vn_is_opened(vnode_t * vp,v_mode_t mode)2753 vn_is_opened(
2754 vnode_t *vp,
2755 v_mode_t mode)
2756 {
2757
2758 ASSERT(vp != NULL);
2759
2760 switch (mode) {
2761 case V_WRITE:
2762 if (vp->v_wrcnt)
2763 return (V_TRUE);
2764 break;
2765 case V_RDANDWR:
2766 if (vp->v_rdcnt && vp->v_wrcnt)
2767 return (V_TRUE);
2768 break;
2769 case V_RDORWR:
2770 if (vp->v_rdcnt || vp->v_wrcnt)
2771 return (V_TRUE);
2772 break;
2773 case V_READ:
2774 if (vp->v_rdcnt)
2775 return (V_TRUE);
2776 break;
2777 }
2778
2779 return (V_FALSE);
2780 }
2781
2782 /*
2783 * vn_is_mapped() checks whether a particular file is mapped and whether
2784 * the file is mapped read and/or write.
2785 */
2786 int
vn_is_mapped(vnode_t * vp,v_mode_t mode)2787 vn_is_mapped(
2788 vnode_t *vp,
2789 v_mode_t mode)
2790 {
2791
2792 ASSERT(vp != NULL);
2793
2794 #if !defined(_LP64)
2795 switch (mode) {
2796 /*
2797 * The atomic_add_64_nv functions force atomicity in the
2798 * case of 32 bit architectures. Otherwise the 64 bit values
2799 * require two fetches. The value of the fields may be
2800 * (potentially) changed between the first fetch and the
2801 * second
2802 */
2803 case V_WRITE:
2804 if (atomic_add_64_nv((&(vp->v_mmap_write)), 0))
2805 return (V_TRUE);
2806 break;
2807 case V_RDANDWR:
2808 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) &&
2809 (atomic_add_64_nv((&(vp->v_mmap_write)), 0)))
2810 return (V_TRUE);
2811 break;
2812 case V_RDORWR:
2813 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) ||
2814 (atomic_add_64_nv((&(vp->v_mmap_write)), 0)))
2815 return (V_TRUE);
2816 break;
2817 case V_READ:
2818 if (atomic_add_64_nv((&(vp->v_mmap_read)), 0))
2819 return (V_TRUE);
2820 break;
2821 }
2822 #else
2823 switch (mode) {
2824 case V_WRITE:
2825 if (vp->v_mmap_write)
2826 return (V_TRUE);
2827 break;
2828 case V_RDANDWR:
2829 if (vp->v_mmap_read && vp->v_mmap_write)
2830 return (V_TRUE);
2831 break;
2832 case V_RDORWR:
2833 if (vp->v_mmap_read || vp->v_mmap_write)
2834 return (V_TRUE);
2835 break;
2836 case V_READ:
2837 if (vp->v_mmap_read)
2838 return (V_TRUE);
2839 break;
2840 }
2841 #endif
2842
2843 return (V_FALSE);
2844 }
2845
2846 /*
2847 * Set the operations vector for a vnode.
2848 *
2849 * FEM ensures that the v_femhead pointer is filled in before the
2850 * v_op pointer is changed. This means that if the v_femhead pointer
2851 * is NULL, and the v_op field hasn't changed since before which checked
2852 * the v_femhead pointer; then our update is ok - we are not racing with
2853 * FEM.
2854 */
2855 void
vn_setops(vnode_t * vp,vnodeops_t * vnodeops)2856 vn_setops(vnode_t *vp, vnodeops_t *vnodeops)
2857 {
2858 vnodeops_t *op;
2859
2860 ASSERT(vp != NULL);
2861 ASSERT(vnodeops != NULL);
2862
2863 op = vp->v_op;
2864 membar_consumer();
2865 /*
2866 * If vp->v_femhead == NULL, then we'll call atomic_cas_ptr() to do
2867 * the compare-and-swap on vp->v_op. If either fails, then FEM is
2868 * in effect on the vnode and we need to have FEM deal with it.
2869 */
2870 if (vp->v_femhead != NULL || atomic_cas_ptr(&vp->v_op, op, vnodeops) !=
2871 op) {
2872 fem_setvnops(vp, vnodeops);
2873 }
2874 }
2875
2876 /*
2877 * Retrieve the operations vector for a vnode
2878 * As with vn_setops(above); make sure we aren't racing with FEM.
2879 * FEM sets the v_op to a special, internal, vnodeops that wouldn't
2880 * make sense to the callers of this routine.
2881 */
2882 vnodeops_t *
vn_getops(vnode_t * vp)2883 vn_getops(vnode_t *vp)
2884 {
2885 vnodeops_t *op;
2886
2887 ASSERT(vp != NULL);
2888
2889 op = vp->v_op;
2890 membar_consumer();
2891 if (vp->v_femhead == NULL && op == vp->v_op) {
2892 return (op);
2893 } else {
2894 return (fem_getvnops(vp));
2895 }
2896 }
2897
2898 /*
2899 * Returns non-zero (1) if the vnodeops matches that of the vnode.
2900 * Returns zero (0) if not.
2901 */
2902 int
vn_matchops(vnode_t * vp,vnodeops_t * vnodeops)2903 vn_matchops(vnode_t *vp, vnodeops_t *vnodeops)
2904 {
2905 return (vn_getops(vp) == vnodeops);
2906 }
2907
2908 /*
2909 * Returns non-zero (1) if the specified operation matches the
2910 * corresponding operation for that the vnode.
2911 * Returns zero (0) if not.
2912 */
2913
2914 #define MATCHNAME(n1, n2) (((n1)[0] == (n2)[0]) && (strcmp((n1), (n2)) == 0))
2915
2916 int
vn_matchopval(vnode_t * vp,char * vopname,fs_generic_func_p funcp)2917 vn_matchopval(vnode_t *vp, char *vopname, fs_generic_func_p funcp)
2918 {
2919 const fs_operation_trans_def_t *otdp;
2920 fs_generic_func_p *loc = NULL;
2921 vnodeops_t *vop = vn_getops(vp);
2922
2923 ASSERT(vopname != NULL);
2924
2925 for (otdp = vn_ops_table; otdp->name != NULL; otdp++) {
2926 if (MATCHNAME(otdp->name, vopname)) {
2927 loc = (fs_generic_func_p *)
2928 ((char *)(vop) + otdp->offset);
2929 break;
2930 }
2931 }
2932
2933 return ((loc != NULL) && (*loc == funcp));
2934 }
2935
2936 /*
2937 * fs_new_caller_id() needs to return a unique ID on a given local system.
2938 * The IDs do not need to survive across reboots. These are primarily
2939 * used so that (FEM) monitors can detect particular callers (such as
2940 * the NFS server) to a given vnode/vfs operation.
2941 */
2942 u_longlong_t
fs_new_caller_id()2943 fs_new_caller_id()
2944 {
2945 static uint64_t next_caller_id = 0LL; /* First call returns 1 */
2946
2947 return ((u_longlong_t)atomic_inc_64_nv(&next_caller_id));
2948 }
2949
2950 /*
2951 * Given a starting vnode and a path, updates the path in the target vnode in
2952 * a safe manner. If the vnode already has path information embedded, then the
2953 * cached path is left untouched.
2954 */
2955
2956 size_t max_vnode_path = 4 * MAXPATHLEN;
2957
2958 void
vn_setpath(vnode_t * rootvp,struct vnode * startvp,struct vnode * vp,const char * path,size_t plen)2959 vn_setpath(vnode_t *rootvp, struct vnode *startvp, struct vnode *vp,
2960 const char *path, size_t plen)
2961 {
2962 char *rpath;
2963 vnode_t *base;
2964 size_t rpathlen, rpathalloc;
2965 int doslash = 1;
2966
2967 if (*path == '/') {
2968 base = rootvp;
2969 path++;
2970 plen--;
2971 } else {
2972 base = startvp;
2973 }
2974
2975 /*
2976 * We cannot grab base->v_lock while we hold vp->v_lock because of
2977 * the potential for deadlock.
2978 */
2979 mutex_enter(&base->v_lock);
2980 if (base->v_path == NULL) {
2981 mutex_exit(&base->v_lock);
2982 return;
2983 }
2984
2985 rpathlen = strlen(base->v_path);
2986 rpathalloc = rpathlen + plen + 1;
2987 /* Avoid adding a slash if there's already one there */
2988 if (base->v_path[rpathlen-1] == '/')
2989 doslash = 0;
2990 else
2991 rpathalloc++;
2992
2993 /*
2994 * We don't want to call kmem_alloc(KM_SLEEP) with kernel locks held,
2995 * so we must do this dance. If, by chance, something changes the path,
2996 * just give up since there is no real harm.
2997 */
2998 mutex_exit(&base->v_lock);
2999
3000 /* Paths should stay within reason */
3001 if (rpathalloc > max_vnode_path)
3002 return;
3003
3004 rpath = kmem_alloc(rpathalloc, KM_SLEEP);
3005
3006 mutex_enter(&base->v_lock);
3007 if (base->v_path == NULL || strlen(base->v_path) != rpathlen) {
3008 mutex_exit(&base->v_lock);
3009 kmem_free(rpath, rpathalloc);
3010 return;
3011 }
3012 bcopy(base->v_path, rpath, rpathlen);
3013 mutex_exit(&base->v_lock);
3014
3015 if (doslash)
3016 rpath[rpathlen++] = '/';
3017 bcopy(path, rpath + rpathlen, plen);
3018 rpath[rpathlen + plen] = '\0';
3019
3020 mutex_enter(&vp->v_lock);
3021 if (vp->v_path != NULL) {
3022 mutex_exit(&vp->v_lock);
3023 kmem_free(rpath, rpathalloc);
3024 } else {
3025 vp->v_path = rpath;
3026 mutex_exit(&vp->v_lock);
3027 }
3028 }
3029
3030 /*
3031 * Sets the path to the vnode to be the given string, regardless of current
3032 * context. The string must be a complete path from rootdir. This is only used
3033 * by fsop_root() for setting the path based on the mountpoint.
3034 */
3035 void
vn_setpath_str(struct vnode * vp,const char * str,size_t len)3036 vn_setpath_str(struct vnode *vp, const char *str, size_t len)
3037 {
3038 char *buf = kmem_alloc(len + 1, KM_SLEEP);
3039
3040 mutex_enter(&vp->v_lock);
3041 if (vp->v_path != NULL) {
3042 mutex_exit(&vp->v_lock);
3043 kmem_free(buf, len + 1);
3044 return;
3045 }
3046
3047 vp->v_path = buf;
3048 bcopy(str, vp->v_path, len);
3049 vp->v_path[len] = '\0';
3050
3051 mutex_exit(&vp->v_lock);
3052 }
3053
3054 /*
3055 * Called from within filesystem's vop_rename() to handle renames once the
3056 * target vnode is available.
3057 */
3058 void
vn_renamepath(vnode_t * dvp,vnode_t * vp,const char * nm,size_t len)3059 vn_renamepath(vnode_t *dvp, vnode_t *vp, const char *nm, size_t len)
3060 {
3061 char *tmp;
3062
3063 mutex_enter(&vp->v_lock);
3064 tmp = vp->v_path;
3065 vp->v_path = NULL;
3066 mutex_exit(&vp->v_lock);
3067 vn_setpath(rootdir, dvp, vp, nm, len);
3068 if (tmp != NULL)
3069 kmem_free(tmp, strlen(tmp) + 1);
3070 }
3071
3072 /*
3073 * Similar to vn_setpath_str(), this function sets the path of the destination
3074 * vnode to the be the same as the source vnode.
3075 */
3076 void
vn_copypath(struct vnode * src,struct vnode * dst)3077 vn_copypath(struct vnode *src, struct vnode *dst)
3078 {
3079 char *buf;
3080 int alloc;
3081
3082 mutex_enter(&src->v_lock);
3083 if (src->v_path == NULL) {
3084 mutex_exit(&src->v_lock);
3085 return;
3086 }
3087 alloc = strlen(src->v_path) + 1;
3088
3089 /* avoid kmem_alloc() with lock held */
3090 mutex_exit(&src->v_lock);
3091 buf = kmem_alloc(alloc, KM_SLEEP);
3092 mutex_enter(&src->v_lock);
3093 if (src->v_path == NULL || strlen(src->v_path) + 1 != alloc) {
3094 mutex_exit(&src->v_lock);
3095 kmem_free(buf, alloc);
3096 return;
3097 }
3098 bcopy(src->v_path, buf, alloc);
3099 mutex_exit(&src->v_lock);
3100
3101 mutex_enter(&dst->v_lock);
3102 if (dst->v_path != NULL) {
3103 mutex_exit(&dst->v_lock);
3104 kmem_free(buf, alloc);
3105 return;
3106 }
3107 dst->v_path = buf;
3108 mutex_exit(&dst->v_lock);
3109 }
3110
3111 /*
3112 * XXX Private interface for segvn routines that handle vnode
3113 * large page segments.
3114 *
3115 * return 1 if vp's file system VOP_PAGEIO() implementation
3116 * can be safely used instead of VOP_GETPAGE() for handling
3117 * pagefaults against regular non swap files. VOP_PAGEIO()
3118 * interface is considered safe here if its implementation
3119 * is very close to VOP_GETPAGE() implementation.
3120 * e.g. It zero's out the part of the page beyond EOF. Doesn't
3121 * panic if there're file holes but instead returns an error.
3122 * Doesn't assume file won't be changed by user writes, etc.
3123 *
3124 * return 0 otherwise.
3125 *
3126 * For now allow segvn to only use VOP_PAGEIO() with ufs and nfs.
3127 */
3128 int
vn_vmpss_usepageio(vnode_t * vp)3129 vn_vmpss_usepageio(vnode_t *vp)
3130 {
3131 vfs_t *vfsp = vp->v_vfsp;
3132 char *fsname = vfssw[vfsp->vfs_fstype].vsw_name;
3133 char *pageio_ok_fss[] = {"ufs", "nfs", NULL};
3134 char **fsok = pageio_ok_fss;
3135
3136 if (fsname == NULL) {
3137 return (0);
3138 }
3139
3140 for (; *fsok; fsok++) {
3141 if (strcmp(*fsok, fsname) == 0) {
3142 return (1);
3143 }
3144 }
3145 return (0);
3146 }
3147
3148 /* VOP_XXX() macros call the corresponding fop_xxx() function */
3149
3150 int
fop_open(vnode_t ** vpp,int mode,cred_t * cr,caller_context_t * ct)3151 fop_open(
3152 vnode_t **vpp,
3153 int mode,
3154 cred_t *cr,
3155 caller_context_t *ct)
3156 {
3157 int ret;
3158 vnode_t *vp = *vpp;
3159
3160 VN_HOLD(vp);
3161 /*
3162 * Adding to the vnode counts before calling open
3163 * avoids the need for a mutex. It circumvents a race
3164 * condition where a query made on the vnode counts results in a
3165 * false negative. The inquirer goes away believing the file is
3166 * not open when there is an open on the file already under way.
3167 *
3168 * The counts are meant to prevent NFS from granting a delegation
3169 * when it would be dangerous to do so.
3170 *
3171 * The vnode counts are only kept on regular files
3172 */
3173 if ((*vpp)->v_type == VREG) {
3174 if (mode & FREAD)
3175 atomic_inc_32(&(*vpp)->v_rdcnt);
3176 if (mode & FWRITE)
3177 atomic_inc_32(&(*vpp)->v_wrcnt);
3178 }
3179
3180 VOPXID_MAP_CR(vp, cr);
3181
3182 ret = (*(*(vpp))->v_op->vop_open)(vpp, mode, cr, ct);
3183
3184 if (ret) {
3185 /*
3186 * Use the saved vp just in case the vnode ptr got trashed
3187 * by the error.
3188 */
3189 VOPSTATS_UPDATE(vp, open);
3190 if ((vp->v_type == VREG) && (mode & FREAD))
3191 atomic_dec_32(&vp->v_rdcnt);
3192 if ((vp->v_type == VREG) && (mode & FWRITE))
3193 atomic_dec_32(&vp->v_wrcnt);
3194 } else {
3195 /*
3196 * Some filesystems will return a different vnode,
3197 * but the same path was still used to open it.
3198 * So if we do change the vnode and need to
3199 * copy over the path, do so here, rather than special
3200 * casing each filesystem. Adjust the vnode counts to
3201 * reflect the vnode switch.
3202 */
3203 VOPSTATS_UPDATE(*vpp, open);
3204 if (*vpp != vp && *vpp != NULL) {
3205 vn_copypath(vp, *vpp);
3206 if (((*vpp)->v_type == VREG) && (mode & FREAD))
3207 atomic_inc_32(&(*vpp)->v_rdcnt);
3208 if ((vp->v_type == VREG) && (mode & FREAD))
3209 atomic_dec_32(&vp->v_rdcnt);
3210 if (((*vpp)->v_type == VREG) && (mode & FWRITE))
3211 atomic_inc_32(&(*vpp)->v_wrcnt);
3212 if ((vp->v_type == VREG) && (mode & FWRITE))
3213 atomic_dec_32(&vp->v_wrcnt);
3214 }
3215 }
3216 VN_RELE(vp);
3217 return (ret);
3218 }
3219
3220 int
fop_close(vnode_t * vp,int flag,int count,offset_t offset,cred_t * cr,caller_context_t * ct)3221 fop_close(
3222 vnode_t *vp,
3223 int flag,
3224 int count,
3225 offset_t offset,
3226 cred_t *cr,
3227 caller_context_t *ct)
3228 {
3229 int err;
3230
3231 VOPXID_MAP_CR(vp, cr);
3232
3233 err = (*(vp)->v_op->vop_close)(vp, flag, count, offset, cr, ct);
3234 VOPSTATS_UPDATE(vp, close);
3235 /*
3236 * Check passed in count to handle possible dups. Vnode counts are only
3237 * kept on regular files
3238 */
3239 if ((vp->v_type == VREG) && (count == 1)) {
3240 if (flag & FREAD) {
3241 ASSERT(vp->v_rdcnt > 0);
3242 atomic_dec_32(&vp->v_rdcnt);
3243 }
3244 if (flag & FWRITE) {
3245 ASSERT(vp->v_wrcnt > 0);
3246 atomic_dec_32(&vp->v_wrcnt);
3247 }
3248 }
3249 return (err);
3250 }
3251
3252 int
fop_read(vnode_t * vp,uio_t * uiop,int ioflag,cred_t * cr,caller_context_t * ct)3253 fop_read(
3254 vnode_t *vp,
3255 uio_t *uiop,
3256 int ioflag,
3257 cred_t *cr,
3258 caller_context_t *ct)
3259 {
3260 int err;
3261 ssize_t resid_start = uiop->uio_resid;
3262
3263 VOPXID_MAP_CR(vp, cr);
3264
3265 err = (*(vp)->v_op->vop_read)(vp, uiop, ioflag, cr, ct);
3266 VOPSTATS_UPDATE_IO(vp, read,
3267 read_bytes, (resid_start - uiop->uio_resid));
3268 return (err);
3269 }
3270
3271 int
fop_write(vnode_t * vp,uio_t * uiop,int ioflag,cred_t * cr,caller_context_t * ct)3272 fop_write(
3273 vnode_t *vp,
3274 uio_t *uiop,
3275 int ioflag,
3276 cred_t *cr,
3277 caller_context_t *ct)
3278 {
3279 int err;
3280 ssize_t resid_start = uiop->uio_resid;
3281
3282 VOPXID_MAP_CR(vp, cr);
3283
3284 err = (*(vp)->v_op->vop_write)(vp, uiop, ioflag, cr, ct);
3285 VOPSTATS_UPDATE_IO(vp, write,
3286 write_bytes, (resid_start - uiop->uio_resid));
3287 return (err);
3288 }
3289
3290 int
fop_ioctl(vnode_t * vp,int cmd,intptr_t arg,int flag,cred_t * cr,int * rvalp,caller_context_t * ct)3291 fop_ioctl(
3292 vnode_t *vp,
3293 int cmd,
3294 intptr_t arg,
3295 int flag,
3296 cred_t *cr,
3297 int *rvalp,
3298 caller_context_t *ct)
3299 {
3300 int err;
3301
3302 VOPXID_MAP_CR(vp, cr);
3303
3304 err = (*(vp)->v_op->vop_ioctl)(vp, cmd, arg, flag, cr, rvalp, ct);
3305 VOPSTATS_UPDATE(vp, ioctl);
3306 return (err);
3307 }
3308
3309 int
fop_setfl(vnode_t * vp,int oflags,int nflags,cred_t * cr,caller_context_t * ct)3310 fop_setfl(
3311 vnode_t *vp,
3312 int oflags,
3313 int nflags,
3314 cred_t *cr,
3315 caller_context_t *ct)
3316 {
3317 int err;
3318
3319 VOPXID_MAP_CR(vp, cr);
3320
3321 err = (*(vp)->v_op->vop_setfl)(vp, oflags, nflags, cr, ct);
3322 VOPSTATS_UPDATE(vp, setfl);
3323 return (err);
3324 }
3325
3326 int
fop_getattr(vnode_t * vp,vattr_t * vap,int flags,cred_t * cr,caller_context_t * ct)3327 fop_getattr(
3328 vnode_t *vp,
3329 vattr_t *vap,
3330 int flags,
3331 cred_t *cr,
3332 caller_context_t *ct)
3333 {
3334 int err;
3335
3336 VOPXID_MAP_CR(vp, cr);
3337
3338 /*
3339 * If this file system doesn't understand the xvattr extensions
3340 * then turn off the xvattr bit.
3341 */
3342 if (vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) == 0) {
3343 vap->va_mask &= ~AT_XVATTR;
3344 }
3345
3346 /*
3347 * We're only allowed to skip the ACL check iff we used a 32 bit
3348 * ACE mask with VOP_ACCESS() to determine permissions.
3349 */
3350 if ((flags & ATTR_NOACLCHECK) &&
3351 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
3352 return (EINVAL);
3353 }
3354 err = (*(vp)->v_op->vop_getattr)(vp, vap, flags, cr, ct);
3355 VOPSTATS_UPDATE(vp, getattr);
3356 return (err);
3357 }
3358
3359 int
fop_setattr(vnode_t * vp,vattr_t * vap,int flags,cred_t * cr,caller_context_t * ct)3360 fop_setattr(
3361 vnode_t *vp,
3362 vattr_t *vap,
3363 int flags,
3364 cred_t *cr,
3365 caller_context_t *ct)
3366 {
3367 int err;
3368
3369 VOPXID_MAP_CR(vp, cr);
3370
3371 /*
3372 * If this file system doesn't understand the xvattr extensions
3373 * then turn off the xvattr bit.
3374 */
3375 if (vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) == 0) {
3376 vap->va_mask &= ~AT_XVATTR;
3377 }
3378
3379 /*
3380 * We're only allowed to skip the ACL check iff we used a 32 bit
3381 * ACE mask with VOP_ACCESS() to determine permissions.
3382 */
3383 if ((flags & ATTR_NOACLCHECK) &&
3384 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
3385 return (EINVAL);
3386 }
3387 err = (*(vp)->v_op->vop_setattr)(vp, vap, flags, cr, ct);
3388 VOPSTATS_UPDATE(vp, setattr);
3389 return (err);
3390 }
3391
3392 int
fop_access(vnode_t * vp,int mode,int flags,cred_t * cr,caller_context_t * ct)3393 fop_access(
3394 vnode_t *vp,
3395 int mode,
3396 int flags,
3397 cred_t *cr,
3398 caller_context_t *ct)
3399 {
3400 int err;
3401
3402 if ((flags & V_ACE_MASK) &&
3403 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
3404 return (EINVAL);
3405 }
3406
3407 VOPXID_MAP_CR(vp, cr);
3408
3409 err = (*(vp)->v_op->vop_access)(vp, mode, flags, cr, ct);
3410 VOPSTATS_UPDATE(vp, access);
3411 return (err);
3412 }
3413
3414 int
fop_lookup(vnode_t * dvp,char * nm,vnode_t ** vpp,pathname_t * pnp,int flags,vnode_t * rdir,cred_t * cr,caller_context_t * ct,int * deflags,pathname_t * ppnp)3415 fop_lookup(
3416 vnode_t *dvp,
3417 char *nm,
3418 vnode_t **vpp,
3419 pathname_t *pnp,
3420 int flags,
3421 vnode_t *rdir,
3422 cred_t *cr,
3423 caller_context_t *ct,
3424 int *deflags, /* Returned per-dirent flags */
3425 pathname_t *ppnp) /* Returned case-preserved name in directory */
3426 {
3427 int ret;
3428
3429 /*
3430 * If this file system doesn't support case-insensitive access
3431 * and said access is requested, fail quickly. It is required
3432 * that if the vfs supports case-insensitive lookup, it also
3433 * supports extended dirent flags.
3434 */
3435 if (flags & FIGNORECASE &&
3436 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3437 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3438 return (EINVAL);
3439
3440 VOPXID_MAP_CR(dvp, cr);
3441
3442 if ((flags & LOOKUP_XATTR) && (flags & LOOKUP_HAVE_SYSATTR_DIR) == 0) {
3443 ret = xattr_dir_lookup(dvp, vpp, flags, cr);
3444 } else {
3445 ret = (*(dvp)->v_op->vop_lookup)
3446 (dvp, nm, vpp, pnp, flags, rdir, cr, ct, deflags, ppnp);
3447 }
3448 if (ret == 0 && *vpp) {
3449 VOPSTATS_UPDATE(*vpp, lookup);
3450 if ((*vpp)->v_path == NULL) {
3451 vn_setpath(rootdir, dvp, *vpp, nm, strlen(nm));
3452 }
3453 }
3454
3455 return (ret);
3456 }
3457
3458 int
fop_create(vnode_t * dvp,char * name,vattr_t * vap,vcexcl_t excl,int mode,vnode_t ** vpp,cred_t * cr,int flags,caller_context_t * ct,vsecattr_t * vsecp)3459 fop_create(
3460 vnode_t *dvp,
3461 char *name,
3462 vattr_t *vap,
3463 vcexcl_t excl,
3464 int mode,
3465 vnode_t **vpp,
3466 cred_t *cr,
3467 int flags,
3468 caller_context_t *ct,
3469 vsecattr_t *vsecp) /* ACL to set during create */
3470 {
3471 int ret;
3472
3473 if (vsecp != NULL &&
3474 vfs_has_feature(dvp->v_vfsp, VFSFT_ACLONCREATE) == 0) {
3475 return (EINVAL);
3476 }
3477 /*
3478 * If this file system doesn't support case-insensitive access
3479 * and said access is requested, fail quickly.
3480 */
3481 if (flags & FIGNORECASE &&
3482 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3483 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3484 return (EINVAL);
3485
3486 VOPXID_MAP_CR(dvp, cr);
3487
3488 ret = (*(dvp)->v_op->vop_create)
3489 (dvp, name, vap, excl, mode, vpp, cr, flags, ct, vsecp);
3490 if (ret == 0 && *vpp) {
3491 VOPSTATS_UPDATE(*vpp, create);
3492 if ((*vpp)->v_path == NULL) {
3493 vn_setpath(rootdir, dvp, *vpp, name, strlen(name));
3494 }
3495 }
3496
3497 return (ret);
3498 }
3499
3500 int
fop_remove(vnode_t * dvp,char * nm,cred_t * cr,caller_context_t * ct,int flags)3501 fop_remove(
3502 vnode_t *dvp,
3503 char *nm,
3504 cred_t *cr,
3505 caller_context_t *ct,
3506 int flags)
3507 {
3508 int err;
3509
3510 /*
3511 * If this file system doesn't support case-insensitive access
3512 * and said access is requested, fail quickly.
3513 */
3514 if (flags & FIGNORECASE &&
3515 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3516 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3517 return (EINVAL);
3518
3519 VOPXID_MAP_CR(dvp, cr);
3520
3521 err = (*(dvp)->v_op->vop_remove)(dvp, nm, cr, ct, flags);
3522 VOPSTATS_UPDATE(dvp, remove);
3523 return (err);
3524 }
3525
3526 int
fop_link(vnode_t * tdvp,vnode_t * svp,char * tnm,cred_t * cr,caller_context_t * ct,int flags)3527 fop_link(
3528 vnode_t *tdvp,
3529 vnode_t *svp,
3530 char *tnm,
3531 cred_t *cr,
3532 caller_context_t *ct,
3533 int flags)
3534 {
3535 int err;
3536
3537 /*
3538 * If the target file system doesn't support case-insensitive access
3539 * and said access is requested, fail quickly.
3540 */
3541 if (flags & FIGNORECASE &&
3542 (vfs_has_feature(tdvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3543 vfs_has_feature(tdvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3544 return (EINVAL);
3545
3546 VOPXID_MAP_CR(tdvp, cr);
3547
3548 err = (*(tdvp)->v_op->vop_link)(tdvp, svp, tnm, cr, ct, flags);
3549 VOPSTATS_UPDATE(tdvp, link);
3550 return (err);
3551 }
3552
3553 int
fop_rename(vnode_t * sdvp,char * snm,vnode_t * tdvp,char * tnm,cred_t * cr,caller_context_t * ct,int flags)3554 fop_rename(
3555 vnode_t *sdvp,
3556 char *snm,
3557 vnode_t *tdvp,
3558 char *tnm,
3559 cred_t *cr,
3560 caller_context_t *ct,
3561 int flags)
3562 {
3563 int err;
3564
3565 /*
3566 * If the file system involved does not support
3567 * case-insensitive access and said access is requested, fail
3568 * quickly.
3569 */
3570 if (flags & FIGNORECASE &&
3571 ((vfs_has_feature(sdvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3572 vfs_has_feature(sdvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)))
3573 return (EINVAL);
3574
3575 VOPXID_MAP_CR(tdvp, cr);
3576
3577 err = (*(sdvp)->v_op->vop_rename)(sdvp, snm, tdvp, tnm, cr, ct, flags);
3578 VOPSTATS_UPDATE(sdvp, rename);
3579 return (err);
3580 }
3581
3582 int
fop_mkdir(vnode_t * dvp,char * dirname,vattr_t * vap,vnode_t ** vpp,cred_t * cr,caller_context_t * ct,int flags,vsecattr_t * vsecp)3583 fop_mkdir(
3584 vnode_t *dvp,
3585 char *dirname,
3586 vattr_t *vap,
3587 vnode_t **vpp,
3588 cred_t *cr,
3589 caller_context_t *ct,
3590 int flags,
3591 vsecattr_t *vsecp) /* ACL to set during create */
3592 {
3593 int ret;
3594
3595 if (vsecp != NULL &&
3596 vfs_has_feature(dvp->v_vfsp, VFSFT_ACLONCREATE) == 0) {
3597 return (EINVAL);
3598 }
3599 /*
3600 * If this file system doesn't support case-insensitive access
3601 * and said access is requested, fail quickly.
3602 */
3603 if (flags & FIGNORECASE &&
3604 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3605 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3606 return (EINVAL);
3607
3608 VOPXID_MAP_CR(dvp, cr);
3609
3610 ret = (*(dvp)->v_op->vop_mkdir)
3611 (dvp, dirname, vap, vpp, cr, ct, flags, vsecp);
3612 if (ret == 0 && *vpp) {
3613 VOPSTATS_UPDATE(*vpp, mkdir);
3614 if ((*vpp)->v_path == NULL) {
3615 vn_setpath(rootdir, dvp, *vpp, dirname,
3616 strlen(dirname));
3617 }
3618 }
3619
3620 return (ret);
3621 }
3622
3623 int
fop_rmdir(vnode_t * dvp,char * nm,vnode_t * cdir,cred_t * cr,caller_context_t * ct,int flags)3624 fop_rmdir(
3625 vnode_t *dvp,
3626 char *nm,
3627 vnode_t *cdir,
3628 cred_t *cr,
3629 caller_context_t *ct,
3630 int flags)
3631 {
3632 int err;
3633
3634 /*
3635 * If this file system doesn't support case-insensitive access
3636 * and said access is requested, fail quickly.
3637 */
3638 if (flags & FIGNORECASE &&
3639 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3640 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3641 return (EINVAL);
3642
3643 VOPXID_MAP_CR(dvp, cr);
3644
3645 err = (*(dvp)->v_op->vop_rmdir)(dvp, nm, cdir, cr, ct, flags);
3646 VOPSTATS_UPDATE(dvp, rmdir);
3647 return (err);
3648 }
3649
3650 int
fop_readdir(vnode_t * vp,uio_t * uiop,cred_t * cr,int * eofp,caller_context_t * ct,int flags)3651 fop_readdir(
3652 vnode_t *vp,
3653 uio_t *uiop,
3654 cred_t *cr,
3655 int *eofp,
3656 caller_context_t *ct,
3657 int flags)
3658 {
3659 int err;
3660 ssize_t resid_start = uiop->uio_resid;
3661
3662 /*
3663 * If this file system doesn't support retrieving directory
3664 * entry flags and said access is requested, fail quickly.
3665 */
3666 if (flags & V_RDDIR_ENTFLAGS &&
3667 vfs_has_feature(vp->v_vfsp, VFSFT_DIRENTFLAGS) == 0)
3668 return (EINVAL);
3669
3670 VOPXID_MAP_CR(vp, cr);
3671
3672 err = (*(vp)->v_op->vop_readdir)(vp, uiop, cr, eofp, ct, flags);
3673 VOPSTATS_UPDATE_IO(vp, readdir,
3674 readdir_bytes, (resid_start - uiop->uio_resid));
3675 return (err);
3676 }
3677
3678 int
fop_symlink(vnode_t * dvp,char * linkname,vattr_t * vap,char * target,cred_t * cr,caller_context_t * ct,int flags)3679 fop_symlink(
3680 vnode_t *dvp,
3681 char *linkname,
3682 vattr_t *vap,
3683 char *target,
3684 cred_t *cr,
3685 caller_context_t *ct,
3686 int flags)
3687 {
3688 int err;
3689 xvattr_t xvattr;
3690
3691 /*
3692 * If this file system doesn't support case-insensitive access
3693 * and said access is requested, fail quickly.
3694 */
3695 if (flags & FIGNORECASE &&
3696 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3697 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3698 return (EINVAL);
3699
3700 VOPXID_MAP_CR(dvp, cr);
3701
3702 /* check for reparse point */
3703 if ((vfs_has_feature(dvp->v_vfsp, VFSFT_REPARSE)) &&
3704 (strncmp(target, FS_REPARSE_TAG_STR,
3705 strlen(FS_REPARSE_TAG_STR)) == 0)) {
3706 if (!fs_reparse_mark(target, vap, &xvattr))
3707 vap = (vattr_t *)&xvattr;
3708 }
3709
3710 err = (*(dvp)->v_op->vop_symlink)
3711 (dvp, linkname, vap, target, cr, ct, flags);
3712 VOPSTATS_UPDATE(dvp, symlink);
3713 return (err);
3714 }
3715
3716 int
fop_readlink(vnode_t * vp,uio_t * uiop,cred_t * cr,caller_context_t * ct)3717 fop_readlink(
3718 vnode_t *vp,
3719 uio_t *uiop,
3720 cred_t *cr,
3721 caller_context_t *ct)
3722 {
3723 int err;
3724
3725 VOPXID_MAP_CR(vp, cr);
3726
3727 err = (*(vp)->v_op->vop_readlink)(vp, uiop, cr, ct);
3728 VOPSTATS_UPDATE(vp, readlink);
3729 return (err);
3730 }
3731
3732 int
fop_fsync(vnode_t * vp,int syncflag,cred_t * cr,caller_context_t * ct)3733 fop_fsync(
3734 vnode_t *vp,
3735 int syncflag,
3736 cred_t *cr,
3737 caller_context_t *ct)
3738 {
3739 int err;
3740
3741 VOPXID_MAP_CR(vp, cr);
3742
3743 err = (*(vp)->v_op->vop_fsync)(vp, syncflag, cr, ct);
3744 VOPSTATS_UPDATE(vp, fsync);
3745 return (err);
3746 }
3747
3748 void
fop_inactive(vnode_t * vp,cred_t * cr,caller_context_t * ct)3749 fop_inactive(
3750 vnode_t *vp,
3751 cred_t *cr,
3752 caller_context_t *ct)
3753 {
3754 /* Need to update stats before vop call since we may lose the vnode */
3755 VOPSTATS_UPDATE(vp, inactive);
3756
3757 VOPXID_MAP_CR(vp, cr);
3758
3759 (*(vp)->v_op->vop_inactive)(vp, cr, ct);
3760 }
3761
3762 int
fop_fid(vnode_t * vp,fid_t * fidp,caller_context_t * ct)3763 fop_fid(
3764 vnode_t *vp,
3765 fid_t *fidp,
3766 caller_context_t *ct)
3767 {
3768 int err;
3769
3770 err = (*(vp)->v_op->vop_fid)(vp, fidp, ct);
3771 VOPSTATS_UPDATE(vp, fid);
3772 return (err);
3773 }
3774
3775 int
fop_rwlock(vnode_t * vp,int write_lock,caller_context_t * ct)3776 fop_rwlock(
3777 vnode_t *vp,
3778 int write_lock,
3779 caller_context_t *ct)
3780 {
3781 int ret;
3782
3783 ret = ((*(vp)->v_op->vop_rwlock)(vp, write_lock, ct));
3784 VOPSTATS_UPDATE(vp, rwlock);
3785 return (ret);
3786 }
3787
3788 void
fop_rwunlock(vnode_t * vp,int write_lock,caller_context_t * ct)3789 fop_rwunlock(
3790 vnode_t *vp,
3791 int write_lock,
3792 caller_context_t *ct)
3793 {
3794 (*(vp)->v_op->vop_rwunlock)(vp, write_lock, ct);
3795 VOPSTATS_UPDATE(vp, rwunlock);
3796 }
3797
3798 int
fop_seek(vnode_t * vp,offset_t ooff,offset_t * noffp,caller_context_t * ct)3799 fop_seek(
3800 vnode_t *vp,
3801 offset_t ooff,
3802 offset_t *noffp,
3803 caller_context_t *ct)
3804 {
3805 int err;
3806
3807 err = (*(vp)->v_op->vop_seek)(vp, ooff, noffp, ct);
3808 VOPSTATS_UPDATE(vp, seek);
3809 return (err);
3810 }
3811
3812 int
fop_cmp(vnode_t * vp1,vnode_t * vp2,caller_context_t * ct)3813 fop_cmp(
3814 vnode_t *vp1,
3815 vnode_t *vp2,
3816 caller_context_t *ct)
3817 {
3818 int err;
3819
3820 err = (*(vp1)->v_op->vop_cmp)(vp1, vp2, ct);
3821 VOPSTATS_UPDATE(vp1, cmp);
3822 return (err);
3823 }
3824
3825 int
fop_frlock(vnode_t * vp,int cmd,flock64_t * bfp,int flag,offset_t offset,struct flk_callback * flk_cbp,cred_t * cr,caller_context_t * ct)3826 fop_frlock(
3827 vnode_t *vp,
3828 int cmd,
3829 flock64_t *bfp,
3830 int flag,
3831 offset_t offset,
3832 struct flk_callback *flk_cbp,
3833 cred_t *cr,
3834 caller_context_t *ct)
3835 {
3836 int err;
3837
3838 VOPXID_MAP_CR(vp, cr);
3839
3840 err = (*(vp)->v_op->vop_frlock)
3841 (vp, cmd, bfp, flag, offset, flk_cbp, cr, ct);
3842 VOPSTATS_UPDATE(vp, frlock);
3843 return (err);
3844 }
3845
3846 int
fop_space(vnode_t * vp,int cmd,flock64_t * bfp,int flag,offset_t offset,cred_t * cr,caller_context_t * ct)3847 fop_space(
3848 vnode_t *vp,
3849 int cmd,
3850 flock64_t *bfp,
3851 int flag,
3852 offset_t offset,
3853 cred_t *cr,
3854 caller_context_t *ct)
3855 {
3856 int err;
3857
3858 VOPXID_MAP_CR(vp, cr);
3859
3860 err = (*(vp)->v_op->vop_space)(vp, cmd, bfp, flag, offset, cr, ct);
3861 VOPSTATS_UPDATE(vp, space);
3862 return (err);
3863 }
3864
3865 int
fop_realvp(vnode_t * vp,vnode_t ** vpp,caller_context_t * ct)3866 fop_realvp(
3867 vnode_t *vp,
3868 vnode_t **vpp,
3869 caller_context_t *ct)
3870 {
3871 int err;
3872
3873 err = (*(vp)->v_op->vop_realvp)(vp, vpp, ct);
3874 VOPSTATS_UPDATE(vp, realvp);
3875 return (err);
3876 }
3877
3878 int
fop_getpage(vnode_t * vp,offset_t off,size_t len,uint_t * protp,page_t ** plarr,size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,cred_t * cr,caller_context_t * ct)3879 fop_getpage(
3880 vnode_t *vp,
3881 offset_t off,
3882 size_t len,
3883 uint_t *protp,
3884 page_t **plarr,
3885 size_t plsz,
3886 struct seg *seg,
3887 caddr_t addr,
3888 enum seg_rw rw,
3889 cred_t *cr,
3890 caller_context_t *ct)
3891 {
3892 int err;
3893
3894 VOPXID_MAP_CR(vp, cr);
3895
3896 err = (*(vp)->v_op->vop_getpage)
3897 (vp, off, len, protp, plarr, plsz, seg, addr, rw, cr, ct);
3898 VOPSTATS_UPDATE(vp, getpage);
3899 return (err);
3900 }
3901
3902 int
fop_putpage(vnode_t * vp,offset_t off,size_t len,int flags,cred_t * cr,caller_context_t * ct)3903 fop_putpage(
3904 vnode_t *vp,
3905 offset_t off,
3906 size_t len,
3907 int flags,
3908 cred_t *cr,
3909 caller_context_t *ct)
3910 {
3911 int err;
3912
3913 VOPXID_MAP_CR(vp, cr);
3914
3915 err = (*(vp)->v_op->vop_putpage)(vp, off, len, flags, cr, ct);
3916 VOPSTATS_UPDATE(vp, putpage);
3917 return (err);
3918 }
3919
3920 int
fop_map(vnode_t * vp,offset_t off,struct as * as,caddr_t * addrp,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)3921 fop_map(
3922 vnode_t *vp,
3923 offset_t off,
3924 struct as *as,
3925 caddr_t *addrp,
3926 size_t len,
3927 uchar_t prot,
3928 uchar_t maxprot,
3929 uint_t flags,
3930 cred_t *cr,
3931 caller_context_t *ct)
3932 {
3933 int err;
3934
3935 VOPXID_MAP_CR(vp, cr);
3936
3937 err = (*(vp)->v_op->vop_map)
3938 (vp, off, as, addrp, len, prot, maxprot, flags, cr, ct);
3939 VOPSTATS_UPDATE(vp, map);
3940 return (err);
3941 }
3942
3943 int
fop_addmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)3944 fop_addmap(
3945 vnode_t *vp,
3946 offset_t off,
3947 struct as *as,
3948 caddr_t addr,
3949 size_t len,
3950 uchar_t prot,
3951 uchar_t maxprot,
3952 uint_t flags,
3953 cred_t *cr,
3954 caller_context_t *ct)
3955 {
3956 int error;
3957 u_longlong_t delta;
3958
3959 VOPXID_MAP_CR(vp, cr);
3960
3961 error = (*(vp)->v_op->vop_addmap)
3962 (vp, off, as, addr, len, prot, maxprot, flags, cr, ct);
3963
3964 if ((!error) && (vp->v_type == VREG)) {
3965 delta = (u_longlong_t)btopr(len);
3966 /*
3967 * If file is declared MAP_PRIVATE, it can't be written back
3968 * even if open for write. Handle as read.
3969 */
3970 if (flags & MAP_PRIVATE) {
3971 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
3972 (int64_t)delta);
3973 } else {
3974 /*
3975 * atomic_add_64 forces the fetch of a 64 bit value to
3976 * be atomic on 32 bit machines
3977 */
3978 if (maxprot & PROT_WRITE)
3979 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)),
3980 (int64_t)delta);
3981 if (maxprot & PROT_READ)
3982 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
3983 (int64_t)delta);
3984 if (maxprot & PROT_EXEC)
3985 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
3986 (int64_t)delta);
3987 }
3988 }
3989 VOPSTATS_UPDATE(vp, addmap);
3990 return (error);
3991 }
3992
3993 int
fop_delmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uint_t prot,uint_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)3994 fop_delmap(
3995 vnode_t *vp,
3996 offset_t off,
3997 struct as *as,
3998 caddr_t addr,
3999 size_t len,
4000 uint_t prot,
4001 uint_t maxprot,
4002 uint_t flags,
4003 cred_t *cr,
4004 caller_context_t *ct)
4005 {
4006 int error;
4007 u_longlong_t delta;
4008
4009 VOPXID_MAP_CR(vp, cr);
4010
4011 error = (*(vp)->v_op->vop_delmap)
4012 (vp, off, as, addr, len, prot, maxprot, flags, cr, ct);
4013
4014 /*
4015 * NFS calls into delmap twice, the first time
4016 * it simply establishes a callback mechanism and returns EAGAIN
4017 * while the real work is being done upon the second invocation.
4018 * We have to detect this here and only decrement the counts upon
4019 * the second delmap request.
4020 */
4021 if ((error != EAGAIN) && (vp->v_type == VREG)) {
4022
4023 delta = (u_longlong_t)btopr(len);
4024
4025 if (flags & MAP_PRIVATE) {
4026 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4027 (int64_t)(-delta));
4028 } else {
4029 /*
4030 * atomic_add_64 forces the fetch of a 64 bit value
4031 * to be atomic on 32 bit machines
4032 */
4033 if (maxprot & PROT_WRITE)
4034 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)),
4035 (int64_t)(-delta));
4036 if (maxprot & PROT_READ)
4037 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4038 (int64_t)(-delta));
4039 if (maxprot & PROT_EXEC)
4040 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4041 (int64_t)(-delta));
4042 }
4043 }
4044 VOPSTATS_UPDATE(vp, delmap);
4045 return (error);
4046 }
4047
4048
4049 int
fop_poll(vnode_t * vp,short events,int anyyet,short * reventsp,struct pollhead ** phpp,caller_context_t * ct)4050 fop_poll(
4051 vnode_t *vp,
4052 short events,
4053 int anyyet,
4054 short *reventsp,
4055 struct pollhead **phpp,
4056 caller_context_t *ct)
4057 {
4058 int err;
4059
4060 err = (*(vp)->v_op->vop_poll)(vp, events, anyyet, reventsp, phpp, ct);
4061 VOPSTATS_UPDATE(vp, poll);
4062 return (err);
4063 }
4064
4065 int
fop_dump(vnode_t * vp,caddr_t addr,offset_t lbdn,offset_t dblks,caller_context_t * ct)4066 fop_dump(
4067 vnode_t *vp,
4068 caddr_t addr,
4069 offset_t lbdn,
4070 offset_t dblks,
4071 caller_context_t *ct)
4072 {
4073 int err;
4074
4075 /* ensure lbdn and dblks can be passed safely to bdev_dump */
4076 if ((lbdn != (daddr_t)lbdn) || (dblks != (int)dblks))
4077 return (EIO);
4078
4079 err = (*(vp)->v_op->vop_dump)(vp, addr, lbdn, dblks, ct);
4080 VOPSTATS_UPDATE(vp, dump);
4081 return (err);
4082 }
4083
4084 int
fop_pathconf(vnode_t * vp,int cmd,ulong_t * valp,cred_t * cr,caller_context_t * ct)4085 fop_pathconf(
4086 vnode_t *vp,
4087 int cmd,
4088 ulong_t *valp,
4089 cred_t *cr,
4090 caller_context_t *ct)
4091 {
4092 int err;
4093
4094 VOPXID_MAP_CR(vp, cr);
4095
4096 err = (*(vp)->v_op->vop_pathconf)(vp, cmd, valp, cr, ct);
4097 VOPSTATS_UPDATE(vp, pathconf);
4098 return (err);
4099 }
4100
4101 int
fop_pageio(vnode_t * vp,struct page * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr,caller_context_t * ct)4102 fop_pageio(
4103 vnode_t *vp,
4104 struct page *pp,
4105 u_offset_t io_off,
4106 size_t io_len,
4107 int flags,
4108 cred_t *cr,
4109 caller_context_t *ct)
4110 {
4111 int err;
4112
4113 VOPXID_MAP_CR(vp, cr);
4114
4115 err = (*(vp)->v_op->vop_pageio)(vp, pp, io_off, io_len, flags, cr, ct);
4116 VOPSTATS_UPDATE(vp, pageio);
4117 return (err);
4118 }
4119
4120 int
fop_dumpctl(vnode_t * vp,int action,offset_t * blkp,caller_context_t * ct)4121 fop_dumpctl(
4122 vnode_t *vp,
4123 int action,
4124 offset_t *blkp,
4125 caller_context_t *ct)
4126 {
4127 int err;
4128 err = (*(vp)->v_op->vop_dumpctl)(vp, action, blkp, ct);
4129 VOPSTATS_UPDATE(vp, dumpctl);
4130 return (err);
4131 }
4132
4133 void
fop_dispose(vnode_t * vp,page_t * pp,int flag,int dn,cred_t * cr,caller_context_t * ct)4134 fop_dispose(
4135 vnode_t *vp,
4136 page_t *pp,
4137 int flag,
4138 int dn,
4139 cred_t *cr,
4140 caller_context_t *ct)
4141 {
4142 /* Must do stats first since it's possible to lose the vnode */
4143 VOPSTATS_UPDATE(vp, dispose);
4144
4145 VOPXID_MAP_CR(vp, cr);
4146
4147 (*(vp)->v_op->vop_dispose)(vp, pp, flag, dn, cr, ct);
4148 }
4149
4150 int
fop_setsecattr(vnode_t * vp,vsecattr_t * vsap,int flag,cred_t * cr,caller_context_t * ct)4151 fop_setsecattr(
4152 vnode_t *vp,
4153 vsecattr_t *vsap,
4154 int flag,
4155 cred_t *cr,
4156 caller_context_t *ct)
4157 {
4158 int err;
4159
4160 VOPXID_MAP_CR(vp, cr);
4161
4162 /*
4163 * We're only allowed to skip the ACL check iff we used a 32 bit
4164 * ACE mask with VOP_ACCESS() to determine permissions.
4165 */
4166 if ((flag & ATTR_NOACLCHECK) &&
4167 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
4168 return (EINVAL);
4169 }
4170 err = (*(vp)->v_op->vop_setsecattr) (vp, vsap, flag, cr, ct);
4171 VOPSTATS_UPDATE(vp, setsecattr);
4172 return (err);
4173 }
4174
4175 int
fop_getsecattr(vnode_t * vp,vsecattr_t * vsap,int flag,cred_t * cr,caller_context_t * ct)4176 fop_getsecattr(
4177 vnode_t *vp,
4178 vsecattr_t *vsap,
4179 int flag,
4180 cred_t *cr,
4181 caller_context_t *ct)
4182 {
4183 int err;
4184
4185 /*
4186 * We're only allowed to skip the ACL check iff we used a 32 bit
4187 * ACE mask with VOP_ACCESS() to determine permissions.
4188 */
4189 if ((flag & ATTR_NOACLCHECK) &&
4190 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
4191 return (EINVAL);
4192 }
4193
4194 VOPXID_MAP_CR(vp, cr);
4195
4196 err = (*(vp)->v_op->vop_getsecattr) (vp, vsap, flag, cr, ct);
4197 VOPSTATS_UPDATE(vp, getsecattr);
4198 return (err);
4199 }
4200
4201 int
fop_shrlock(vnode_t * vp,int cmd,struct shrlock * shr,int flag,cred_t * cr,caller_context_t * ct)4202 fop_shrlock(
4203 vnode_t *vp,
4204 int cmd,
4205 struct shrlock *shr,
4206 int flag,
4207 cred_t *cr,
4208 caller_context_t *ct)
4209 {
4210 int err;
4211
4212 VOPXID_MAP_CR(vp, cr);
4213
4214 err = (*(vp)->v_op->vop_shrlock)(vp, cmd, shr, flag, cr, ct);
4215 VOPSTATS_UPDATE(vp, shrlock);
4216 return (err);
4217 }
4218
4219 int
fop_vnevent(vnode_t * vp,vnevent_t vnevent,vnode_t * dvp,char * fnm,caller_context_t * ct)4220 fop_vnevent(vnode_t *vp, vnevent_t vnevent, vnode_t *dvp, char *fnm,
4221 caller_context_t *ct)
4222 {
4223 int err;
4224
4225 err = (*(vp)->v_op->vop_vnevent)(vp, vnevent, dvp, fnm, ct);
4226 VOPSTATS_UPDATE(vp, vnevent);
4227 return (err);
4228 }
4229
4230 int
fop_reqzcbuf(vnode_t * vp,enum uio_rw ioflag,xuio_t * uiop,cred_t * cr,caller_context_t * ct)4231 fop_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *uiop, cred_t *cr,
4232 caller_context_t *ct)
4233 {
4234 int err;
4235
4236 if (vfs_has_feature(vp->v_vfsp, VFSFT_ZEROCOPY_SUPPORTED) == 0)
4237 return (ENOTSUP);
4238 err = (*(vp)->v_op->vop_reqzcbuf)(vp, ioflag, uiop, cr, ct);
4239 VOPSTATS_UPDATE(vp, reqzcbuf);
4240 return (err);
4241 }
4242
4243 int
fop_retzcbuf(vnode_t * vp,xuio_t * uiop,cred_t * cr,caller_context_t * ct)4244 fop_retzcbuf(vnode_t *vp, xuio_t *uiop, cred_t *cr, caller_context_t *ct)
4245 {
4246 int err;
4247
4248 if (vfs_has_feature(vp->v_vfsp, VFSFT_ZEROCOPY_SUPPORTED) == 0)
4249 return (ENOTSUP);
4250 err = (*(vp)->v_op->vop_retzcbuf)(vp, uiop, cr, ct);
4251 VOPSTATS_UPDATE(vp, retzcbuf);
4252 return (err);
4253 }
4254
4255 /*
4256 * Default destructor
4257 * Needed because NULL destructor means that the key is unused
4258 */
4259 /* ARGSUSED */
4260 void
vsd_defaultdestructor(void * value)4261 vsd_defaultdestructor(void *value)
4262 {}
4263
4264 /*
4265 * Create a key (index into per vnode array)
4266 * Locks out vsd_create, vsd_destroy, and vsd_free
4267 * May allocate memory with lock held
4268 */
4269 void
vsd_create(uint_t * keyp,void (* destructor)(void *))4270 vsd_create(uint_t *keyp, void (*destructor)(void *))
4271 {
4272 int i;
4273 uint_t nkeys;
4274
4275 /*
4276 * if key is allocated, do nothing
4277 */
4278 mutex_enter(&vsd_lock);
4279 if (*keyp) {
4280 mutex_exit(&vsd_lock);
4281 return;
4282 }
4283 /*
4284 * find an unused key
4285 */
4286 if (destructor == NULL)
4287 destructor = vsd_defaultdestructor;
4288
4289 for (i = 0; i < vsd_nkeys; ++i)
4290 if (vsd_destructor[i] == NULL)
4291 break;
4292
4293 /*
4294 * if no unused keys, increase the size of the destructor array
4295 */
4296 if (i == vsd_nkeys) {
4297 if ((nkeys = (vsd_nkeys << 1)) == 0)
4298 nkeys = 1;
4299 vsd_destructor =
4300 (void (**)(void *))vsd_realloc((void *)vsd_destructor,
4301 (size_t)(vsd_nkeys * sizeof (void (*)(void *))),
4302 (size_t)(nkeys * sizeof (void (*)(void *))));
4303 vsd_nkeys = nkeys;
4304 }
4305
4306 /*
4307 * allocate the next available unused key
4308 */
4309 vsd_destructor[i] = destructor;
4310 *keyp = i + 1;
4311
4312 /* create vsd_list, if it doesn't exist */
4313 if (vsd_list == NULL) {
4314 vsd_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
4315 list_create(vsd_list, sizeof (struct vsd_node),
4316 offsetof(struct vsd_node, vs_nodes));
4317 }
4318
4319 mutex_exit(&vsd_lock);
4320 }
4321
4322 /*
4323 * Destroy a key
4324 *
4325 * Assumes that the caller is preventing vsd_set and vsd_get
4326 * Locks out vsd_create, vsd_destroy, and vsd_free
4327 * May free memory with lock held
4328 */
4329 void
vsd_destroy(uint_t * keyp)4330 vsd_destroy(uint_t *keyp)
4331 {
4332 uint_t key;
4333 struct vsd_node *vsd;
4334
4335 /*
4336 * protect the key namespace and our destructor lists
4337 */
4338 mutex_enter(&vsd_lock);
4339 key = *keyp;
4340 *keyp = 0;
4341
4342 ASSERT(key <= vsd_nkeys);
4343
4344 /*
4345 * if the key is valid
4346 */
4347 if (key != 0) {
4348 uint_t k = key - 1;
4349 /*
4350 * for every vnode with VSD, call key's destructor
4351 */
4352 for (vsd = list_head(vsd_list); vsd != NULL;
4353 vsd = list_next(vsd_list, vsd)) {
4354 /*
4355 * no VSD for key in this vnode
4356 */
4357 if (key > vsd->vs_nkeys)
4358 continue;
4359 /*
4360 * call destructor for key
4361 */
4362 if (vsd->vs_value[k] && vsd_destructor[k])
4363 (*vsd_destructor[k])(vsd->vs_value[k]);
4364 /*
4365 * reset value for key
4366 */
4367 vsd->vs_value[k] = NULL;
4368 }
4369 /*
4370 * actually free the key (NULL destructor == unused)
4371 */
4372 vsd_destructor[k] = NULL;
4373 }
4374
4375 mutex_exit(&vsd_lock);
4376 }
4377
4378 /*
4379 * Quickly return the per vnode value that was stored with the specified key
4380 * Assumes the caller is protecting key from vsd_create and vsd_destroy
4381 * Assumes the caller is holding v_vsd_lock to protect the vsd.
4382 */
4383 void *
vsd_get(vnode_t * vp,uint_t key)4384 vsd_get(vnode_t *vp, uint_t key)
4385 {
4386 struct vsd_node *vsd;
4387
4388 ASSERT(vp != NULL);
4389 ASSERT(mutex_owned(&vp->v_vsd_lock));
4390
4391 vsd = vp->v_vsd;
4392
4393 if (key && vsd != NULL && key <= vsd->vs_nkeys)
4394 return (vsd->vs_value[key - 1]);
4395 return (NULL);
4396 }
4397
4398 /*
4399 * Set a per vnode value indexed with the specified key
4400 * Assumes the caller is holding v_vsd_lock to protect the vsd.
4401 */
4402 int
vsd_set(vnode_t * vp,uint_t key,void * value)4403 vsd_set(vnode_t *vp, uint_t key, void *value)
4404 {
4405 struct vsd_node *vsd;
4406
4407 ASSERT(vp != NULL);
4408 ASSERT(mutex_owned(&vp->v_vsd_lock));
4409
4410 if (key == 0)
4411 return (EINVAL);
4412
4413 vsd = vp->v_vsd;
4414 if (vsd == NULL)
4415 vsd = vp->v_vsd = kmem_zalloc(sizeof (*vsd), KM_SLEEP);
4416
4417 /*
4418 * If the vsd was just allocated, vs_nkeys will be 0, so the following
4419 * code won't happen and we will continue down and allocate space for
4420 * the vs_value array.
4421 * If the caller is replacing one value with another, then it is up
4422 * to the caller to free/rele/destroy the previous value (if needed).
4423 */
4424 if (key <= vsd->vs_nkeys) {
4425 vsd->vs_value[key - 1] = value;
4426 return (0);
4427 }
4428
4429 ASSERT(key <= vsd_nkeys);
4430
4431 if (vsd->vs_nkeys == 0) {
4432 mutex_enter(&vsd_lock); /* lock out vsd_destroy() */
4433 /*
4434 * Link onto list of all VSD nodes.
4435 */
4436 list_insert_head(vsd_list, vsd);
4437 mutex_exit(&vsd_lock);
4438 }
4439
4440 /*
4441 * Allocate vnode local storage and set the value for key
4442 */
4443 vsd->vs_value = vsd_realloc(vsd->vs_value,
4444 vsd->vs_nkeys * sizeof (void *),
4445 key * sizeof (void *));
4446 vsd->vs_nkeys = key;
4447 vsd->vs_value[key - 1] = value;
4448
4449 return (0);
4450 }
4451
4452 /*
4453 * Called from vn_free() to run the destructor function for each vsd
4454 * Locks out vsd_create and vsd_destroy
4455 * Assumes that the destructor *DOES NOT* use vsd
4456 */
4457 void
vsd_free(vnode_t * vp)4458 vsd_free(vnode_t *vp)
4459 {
4460 int i;
4461 struct vsd_node *vsd = vp->v_vsd;
4462
4463 if (vsd == NULL)
4464 return;
4465
4466 if (vsd->vs_nkeys == 0) {
4467 kmem_free(vsd, sizeof (*vsd));
4468 vp->v_vsd = NULL;
4469 return;
4470 }
4471
4472 /*
4473 * lock out vsd_create and vsd_destroy, call
4474 * the destructor, and mark the value as destroyed.
4475 */
4476 mutex_enter(&vsd_lock);
4477
4478 for (i = 0; i < vsd->vs_nkeys; i++) {
4479 if (vsd->vs_value[i] && vsd_destructor[i])
4480 (*vsd_destructor[i])(vsd->vs_value[i]);
4481 vsd->vs_value[i] = NULL;
4482 }
4483
4484 /*
4485 * remove from linked list of VSD nodes
4486 */
4487 list_remove(vsd_list, vsd);
4488
4489 mutex_exit(&vsd_lock);
4490
4491 /*
4492 * free up the VSD
4493 */
4494 kmem_free(vsd->vs_value, vsd->vs_nkeys * sizeof (void *));
4495 kmem_free(vsd, sizeof (struct vsd_node));
4496 vp->v_vsd = NULL;
4497 }
4498
4499 /*
4500 * realloc
4501 */
4502 static void *
vsd_realloc(void * old,size_t osize,size_t nsize)4503 vsd_realloc(void *old, size_t osize, size_t nsize)
4504 {
4505 void *new;
4506
4507 new = kmem_zalloc(nsize, KM_SLEEP);
4508 if (old) {
4509 bcopy(old, new, osize);
4510 kmem_free(old, osize);
4511 }
4512 return (new);
4513 }
4514
4515 /*
4516 * Setup the extensible system attribute for creating a reparse point.
4517 * The symlink data 'target' is validated for proper format of a reparse
4518 * string and a check also made to make sure the symlink data does not
4519 * point to an existing file.
4520 *
4521 * return 0 if ok else -1.
4522 */
4523 static int
fs_reparse_mark(char * target,vattr_t * vap,xvattr_t * xvattr)4524 fs_reparse_mark(char *target, vattr_t *vap, xvattr_t *xvattr)
4525 {
4526 xoptattr_t *xoap;
4527
4528 if ((!target) || (!vap) || (!xvattr))
4529 return (-1);
4530
4531 /* validate reparse string */
4532 if (reparse_validate((const char *)target))
4533 return (-1);
4534
4535 xva_init(xvattr);
4536 xvattr->xva_vattr = *vap;
4537 xvattr->xva_vattr.va_mask |= AT_XVATTR;
4538 xoap = xva_getxoptattr(xvattr);
4539 ASSERT(xoap);
4540 XVA_SET_REQ(xvattr, XAT_REPARSE);
4541 xoap->xoa_reparse = 1;
4542
4543 return (0);
4544 }
4545
4546 /*
4547 * Function to check whether a symlink is a reparse point.
4548 * Return B_TRUE if it is a reparse point, else return B_FALSE
4549 */
4550 boolean_t
vn_is_reparse(vnode_t * vp,cred_t * cr,caller_context_t * ct)4551 vn_is_reparse(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4552 {
4553 xvattr_t xvattr;
4554 xoptattr_t *xoap;
4555
4556 if ((vp->v_type != VLNK) ||
4557 !(vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR)))
4558 return (B_FALSE);
4559
4560 xva_init(&xvattr);
4561 xoap = xva_getxoptattr(&xvattr);
4562 ASSERT(xoap);
4563 XVA_SET_REQ(&xvattr, XAT_REPARSE);
4564
4565 if (VOP_GETATTR(vp, &xvattr.xva_vattr, 0, cr, ct))
4566 return (B_FALSE);
4567
4568 if ((!(xvattr.xva_vattr.va_mask & AT_XVATTR)) ||
4569 (!(XVA_ISSET_RTN(&xvattr, XAT_REPARSE))))
4570 return (B_FALSE);
4571
4572 return (xoap->xoa_reparse ? B_TRUE : B_FALSE);
4573 }
4574