1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * vrf.c: device driver to encapsulate a VRF space
4 *
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8 *
9 * Based on dummy, team and ipvlan drivers
10 */
11
12 #include <linux/ethtool.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ip.h>
18 #include <linux/init.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netfilter.h>
21 #include <linux/rtnetlink.h>
22 #include <net/rtnetlink.h>
23 #include <linux/u64_stats_sync.h>
24 #include <linux/hashtable.h>
25 #include <linux/spinlock_types.h>
26
27 #include <linux/inetdevice.h>
28 #include <net/arp.h>
29 #include <net/ip.h>
30 #include <net/ip_fib.h>
31 #include <net/ip6_fib.h>
32 #include <net/ip6_route.h>
33 #include <net/route.h>
34 #include <net/addrconf.h>
35 #include <net/l3mdev.h>
36 #include <net/fib_rules.h>
37 #include <net/netdev_lock.h>
38 #include <net/sch_generic.h>
39 #include <net/netns/generic.h>
40 #include <net/netfilter/nf_conntrack.h>
41 #include <net/inet_dscp.h>
42
43 #define DRV_NAME "vrf"
44 #define DRV_VERSION "1.1"
45
46 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
47
48 #define HT_MAP_BITS 4
49 #define HASH_INITVAL ((u32)0xcafef00d)
50
51 struct vrf_map {
52 DECLARE_HASHTABLE(ht, HT_MAP_BITS);
53 spinlock_t vmap_lock;
54
55 /* shared_tables:
56 * count how many distinct tables do not comply with the strict mode
57 * requirement.
58 * shared_tables value must be 0 in order to enable the strict mode.
59 *
60 * example of the evolution of shared_tables:
61 * | time
62 * add vrf0 --> table 100 shared_tables = 0 | t0
63 * add vrf1 --> table 101 shared_tables = 0 | t1
64 * add vrf2 --> table 100 shared_tables = 1 | t2
65 * add vrf3 --> table 100 shared_tables = 1 | t3
66 * add vrf4 --> table 101 shared_tables = 2 v t4
67 *
68 * shared_tables is a "step function" (or "staircase function")
69 * and it is increased by one when the second vrf is associated to a
70 * table.
71 *
72 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
73 *
74 * at t3, another dev (vrf3) is bound to the same table 100 but the
75 * value of shared_tables is still 1.
76 * This means that no matter how many new vrfs will register on the
77 * table 100, the shared_tables will not increase (considering only
78 * table 100).
79 *
80 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
81 *
82 * Looking at the value of shared_tables we can immediately know if
83 * the strict_mode can or cannot be enforced. Indeed, strict_mode
84 * can be enforced iff shared_tables = 0.
85 *
86 * Conversely, shared_tables is decreased when a vrf is de-associated
87 * from a table with exactly two associated vrfs.
88 */
89 u32 shared_tables;
90
91 bool strict_mode;
92 };
93
94 struct vrf_map_elem {
95 struct hlist_node hnode;
96 struct list_head vrf_list; /* VRFs registered to this table */
97
98 u32 table_id;
99 int users;
100 int ifindex;
101 };
102
103 static unsigned int vrf_net_id;
104
105 /* per netns vrf data */
106 struct netns_vrf {
107 /* protected by rtnl lock */
108 bool add_fib_rules;
109
110 struct vrf_map vmap;
111 struct ctl_table_header *ctl_hdr;
112 };
113
114 struct net_vrf {
115 struct rtable __rcu *rth;
116 struct rt6_info __rcu *rt6;
117 #if IS_ENABLED(CONFIG_IPV6)
118 struct fib6_table *fib6_table;
119 #endif
120 u32 tb_id;
121
122 struct list_head me_list; /* entry in vrf_map_elem */
123 int ifindex;
124 };
125
vrf_tx_error(struct net_device * vrf_dev,struct sk_buff * skb)126 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
127 {
128 vrf_dev->stats.tx_errors++;
129 kfree_skb(skb);
130 }
131
netns_vrf_map(struct net * net)132 static struct vrf_map *netns_vrf_map(struct net *net)
133 {
134 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
135
136 return &nn_vrf->vmap;
137 }
138
netns_vrf_map_by_dev(struct net_device * dev)139 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
140 {
141 return netns_vrf_map(dev_net(dev));
142 }
143
vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem * me)144 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
145 {
146 struct list_head *me_head = &me->vrf_list;
147 struct net_vrf *vrf;
148
149 if (list_empty(me_head))
150 return -ENODEV;
151
152 vrf = list_first_entry(me_head, struct net_vrf, me_list);
153
154 return vrf->ifindex;
155 }
156
vrf_map_elem_alloc(gfp_t flags)157 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
158 {
159 struct vrf_map_elem *me;
160
161 me = kmalloc(sizeof(*me), flags);
162 if (!me)
163 return NULL;
164
165 return me;
166 }
167
vrf_map_elem_free(struct vrf_map_elem * me)168 static void vrf_map_elem_free(struct vrf_map_elem *me)
169 {
170 kfree(me);
171 }
172
vrf_map_elem_init(struct vrf_map_elem * me,int table_id,int ifindex,int users)173 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
174 int ifindex, int users)
175 {
176 me->table_id = table_id;
177 me->ifindex = ifindex;
178 me->users = users;
179 INIT_LIST_HEAD(&me->vrf_list);
180 }
181
vrf_map_lookup_elem(struct vrf_map * vmap,u32 table_id)182 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
183 u32 table_id)
184 {
185 struct vrf_map_elem *me;
186 u32 key;
187
188 key = jhash_1word(table_id, HASH_INITVAL);
189 hash_for_each_possible(vmap->ht, me, hnode, key) {
190 if (me->table_id == table_id)
191 return me;
192 }
193
194 return NULL;
195 }
196
vrf_map_add_elem(struct vrf_map * vmap,struct vrf_map_elem * me)197 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
198 {
199 u32 table_id = me->table_id;
200 u32 key;
201
202 key = jhash_1word(table_id, HASH_INITVAL);
203 hash_add(vmap->ht, &me->hnode, key);
204 }
205
vrf_map_del_elem(struct vrf_map_elem * me)206 static void vrf_map_del_elem(struct vrf_map_elem *me)
207 {
208 hash_del(&me->hnode);
209 }
210
vrf_map_lock(struct vrf_map * vmap)211 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
212 {
213 spin_lock(&vmap->vmap_lock);
214 }
215
vrf_map_unlock(struct vrf_map * vmap)216 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
217 {
218 spin_unlock(&vmap->vmap_lock);
219 }
220
221 /* called with rtnl lock held */
222 static int
vrf_map_register_dev(struct net_device * dev,struct netlink_ext_ack * extack)223 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
224 {
225 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
226 struct net_vrf *vrf = netdev_priv(dev);
227 struct vrf_map_elem *new_me, *me;
228 u32 table_id = vrf->tb_id;
229 bool free_new_me = false;
230 int users;
231 int res;
232
233 /* we pre-allocate elements used in the spin-locked section (so that we
234 * keep the spinlock as short as possible).
235 */
236 new_me = vrf_map_elem_alloc(GFP_KERNEL);
237 if (!new_me)
238 return -ENOMEM;
239
240 vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
241
242 vrf_map_lock(vmap);
243
244 me = vrf_map_lookup_elem(vmap, table_id);
245 if (!me) {
246 me = new_me;
247 vrf_map_add_elem(vmap, me);
248 goto link_vrf;
249 }
250
251 /* we already have an entry in the vrf_map, so it means there is (at
252 * least) a vrf registered on the specific table.
253 */
254 free_new_me = true;
255 if (vmap->strict_mode) {
256 /* vrfs cannot share the same table */
257 NL_SET_ERR_MSG(extack, "Table is used by another VRF");
258 res = -EBUSY;
259 goto unlock;
260 }
261
262 link_vrf:
263 users = ++me->users;
264 if (users == 2)
265 ++vmap->shared_tables;
266
267 list_add(&vrf->me_list, &me->vrf_list);
268
269 res = 0;
270
271 unlock:
272 vrf_map_unlock(vmap);
273
274 /* clean-up, if needed */
275 if (free_new_me)
276 vrf_map_elem_free(new_me);
277
278 return res;
279 }
280
281 /* called with rtnl lock held */
vrf_map_unregister_dev(struct net_device * dev)282 static void vrf_map_unregister_dev(struct net_device *dev)
283 {
284 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
285 struct net_vrf *vrf = netdev_priv(dev);
286 u32 table_id = vrf->tb_id;
287 struct vrf_map_elem *me;
288 int users;
289
290 vrf_map_lock(vmap);
291
292 me = vrf_map_lookup_elem(vmap, table_id);
293 if (!me)
294 goto unlock;
295
296 list_del(&vrf->me_list);
297
298 users = --me->users;
299 if (users == 1) {
300 --vmap->shared_tables;
301 } else if (users == 0) {
302 vrf_map_del_elem(me);
303
304 /* no one will refer to this element anymore */
305 vrf_map_elem_free(me);
306 }
307
308 unlock:
309 vrf_map_unlock(vmap);
310 }
311
312 /* return the vrf device index associated with the table_id */
vrf_ifindex_lookup_by_table_id(struct net * net,u32 table_id)313 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
314 {
315 struct vrf_map *vmap = netns_vrf_map(net);
316 struct vrf_map_elem *me;
317 int ifindex;
318
319 vrf_map_lock(vmap);
320
321 if (!vmap->strict_mode) {
322 ifindex = -EPERM;
323 goto unlock;
324 }
325
326 me = vrf_map_lookup_elem(vmap, table_id);
327 if (!me) {
328 ifindex = -ENODEV;
329 goto unlock;
330 }
331
332 ifindex = vrf_map_elem_get_vrf_ifindex(me);
333
334 unlock:
335 vrf_map_unlock(vmap);
336
337 return ifindex;
338 }
339
340 /* by default VRF devices do not have a qdisc and are expected
341 * to be created with only a single queue.
342 */
qdisc_tx_is_default(const struct net_device * dev)343 static bool qdisc_tx_is_default(const struct net_device *dev)
344 {
345 struct netdev_queue *txq;
346 struct Qdisc *qdisc;
347
348 if (dev->num_tx_queues > 1)
349 return false;
350
351 txq = netdev_get_tx_queue(dev, 0);
352 qdisc = rcu_access_pointer(txq->qdisc);
353
354 return !qdisc->enqueue;
355 }
356
357 /* Local traffic destined to local address. Reinsert the packet to rx
358 * path, similar to loopback handling.
359 */
vrf_local_xmit(struct sk_buff * skb,struct net_device * dev,struct dst_entry * dst)360 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
361 struct dst_entry *dst)
362 {
363 unsigned int len = skb->len;
364
365 skb_orphan(skb);
366
367 skb_dst_set(skb, dst);
368
369 /* set pkt_type to avoid skb hitting packet taps twice -
370 * once on Tx and again in Rx processing
371 */
372 skb->pkt_type = PACKET_LOOPBACK;
373
374 skb->protocol = eth_type_trans(skb, dev);
375
376 if (likely(__netif_rx(skb) == NET_RX_SUCCESS))
377 dev_dstats_rx_add(dev, len);
378 else
379 dev_dstats_rx_dropped(dev);
380
381 return NETDEV_TX_OK;
382 }
383
vrf_nf_set_untracked(struct sk_buff * skb)384 static void vrf_nf_set_untracked(struct sk_buff *skb)
385 {
386 if (skb_get_nfct(skb) == 0)
387 nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
388 }
389
vrf_nf_reset_ct(struct sk_buff * skb)390 static void vrf_nf_reset_ct(struct sk_buff *skb)
391 {
392 if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
393 nf_reset_ct(skb);
394 }
395
396 #if IS_ENABLED(CONFIG_IPV6)
vrf_ip6_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)397 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
398 struct sk_buff *skb)
399 {
400 int err;
401
402 vrf_nf_reset_ct(skb);
403
404 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
405 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
406
407 if (likely(err == 1))
408 err = dst_output(net, sk, skb);
409
410 return err;
411 }
412
vrf_process_v6_outbound(struct sk_buff * skb,struct net_device * dev)413 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
414 struct net_device *dev)
415 {
416 const struct ipv6hdr *iph;
417 struct net *net = dev_net(skb->dev);
418 struct flowi6 fl6;
419 int ret = NET_XMIT_DROP;
420 struct dst_entry *dst;
421 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
422
423 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
424 goto err;
425
426 iph = ipv6_hdr(skb);
427
428 memset(&fl6, 0, sizeof(fl6));
429 /* needed to match OIF rule */
430 fl6.flowi6_l3mdev = dev->ifindex;
431 fl6.flowi6_iif = LOOPBACK_IFINDEX;
432 fl6.daddr = iph->daddr;
433 fl6.saddr = iph->saddr;
434 fl6.flowlabel = ip6_flowinfo(iph);
435 fl6.flowi6_mark = skb->mark;
436 fl6.flowi6_proto = iph->nexthdr;
437
438 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
439 if (IS_ERR(dst) || dst == dst_null)
440 goto err;
441
442 skb_dst_drop(skb);
443
444 /* if dst.dev is the VRF device again this is locally originated traffic
445 * destined to a local address. Short circuit to Rx path.
446 */
447 if (dst->dev == dev)
448 return vrf_local_xmit(skb, dev, dst);
449
450 skb_dst_set(skb, dst);
451
452 /* strip the ethernet header added for pass through VRF device */
453 __skb_pull(skb, skb_network_offset(skb));
454
455 memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
456 ret = vrf_ip6_local_out(net, skb->sk, skb);
457 if (unlikely(net_xmit_eval(ret)))
458 dev->stats.tx_errors++;
459 else
460 ret = NET_XMIT_SUCCESS;
461
462 return ret;
463 err:
464 vrf_tx_error(dev, skb);
465 return NET_XMIT_DROP;
466 }
467 #else
vrf_process_v6_outbound(struct sk_buff * skb,struct net_device * dev)468 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
469 struct net_device *dev)
470 {
471 vrf_tx_error(dev, skb);
472 return NET_XMIT_DROP;
473 }
474 #endif
475
476 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
vrf_ip_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)477 static int vrf_ip_local_out(struct net *net, struct sock *sk,
478 struct sk_buff *skb)
479 {
480 int err;
481
482 vrf_nf_reset_ct(skb);
483
484 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
485 skb, NULL, skb_dst(skb)->dev, dst_output);
486 if (likely(err == 1))
487 err = dst_output(net, sk, skb);
488
489 return err;
490 }
491
vrf_process_v4_outbound(struct sk_buff * skb,struct net_device * vrf_dev)492 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
493 struct net_device *vrf_dev)
494 {
495 struct iphdr *ip4h;
496 int ret = NET_XMIT_DROP;
497 struct flowi4 fl4;
498 struct net *net = dev_net(vrf_dev);
499 struct rtable *rt;
500
501 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
502 goto err;
503
504 ip4h = ip_hdr(skb);
505
506 memset(&fl4, 0, sizeof(fl4));
507 /* needed to match OIF rule */
508 fl4.flowi4_l3mdev = vrf_dev->ifindex;
509 fl4.flowi4_iif = LOOPBACK_IFINDEX;
510 fl4.flowi4_tos = inet_dscp_to_dsfield(ip4h_dscp(ip4h));
511 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC;
512 fl4.flowi4_proto = ip4h->protocol;
513 fl4.daddr = ip4h->daddr;
514 fl4.saddr = ip4h->saddr;
515
516 rt = ip_route_output_flow(net, &fl4, NULL);
517 if (IS_ERR(rt))
518 goto err;
519
520 skb_dst_drop(skb);
521
522 /* if dst.dev is the VRF device again this is locally originated traffic
523 * destined to a local address. Short circuit to Rx path.
524 */
525 if (rt->dst.dev == vrf_dev)
526 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
527
528 skb_dst_set(skb, &rt->dst);
529
530 /* strip the ethernet header added for pass through VRF device */
531 __skb_pull(skb, skb_network_offset(skb));
532
533 if (!ip4h->saddr) {
534 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
535 RT_SCOPE_LINK);
536 }
537
538 memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
539 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
540 if (unlikely(net_xmit_eval(ret)))
541 vrf_dev->stats.tx_errors++;
542 else
543 ret = NET_XMIT_SUCCESS;
544
545 out:
546 return ret;
547 err:
548 vrf_tx_error(vrf_dev, skb);
549 goto out;
550 }
551
is_ip_tx_frame(struct sk_buff * skb,struct net_device * dev)552 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
553 {
554 switch (skb->protocol) {
555 case htons(ETH_P_IP):
556 return vrf_process_v4_outbound(skb, dev);
557 case htons(ETH_P_IPV6):
558 return vrf_process_v6_outbound(skb, dev);
559 default:
560 vrf_tx_error(dev, skb);
561 return NET_XMIT_DROP;
562 }
563 }
564
vrf_xmit(struct sk_buff * skb,struct net_device * dev)565 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
566 {
567 unsigned int len = skb->len;
568 netdev_tx_t ret;
569
570 ret = is_ip_tx_frame(skb, dev);
571 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN))
572 dev_dstats_tx_add(dev, len);
573 else
574 dev_dstats_tx_dropped(dev);
575
576 return ret;
577 }
578
vrf_finish_direct(struct sk_buff * skb)579 static void vrf_finish_direct(struct sk_buff *skb)
580 {
581 struct net_device *vrf_dev = skb->dev;
582
583 if (!list_empty(&vrf_dev->ptype_all) &&
584 likely(skb_headroom(skb) >= ETH_HLEN)) {
585 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
586
587 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
588 eth_zero_addr(eth->h_dest);
589 eth->h_proto = skb->protocol;
590
591 rcu_read_lock_bh();
592 dev_queue_xmit_nit(skb, vrf_dev);
593 rcu_read_unlock_bh();
594
595 skb_pull(skb, ETH_HLEN);
596 }
597
598 vrf_nf_reset_ct(skb);
599 }
600
601 #if IS_ENABLED(CONFIG_IPV6)
602 /* modelled after ip6_finish_output2 */
vrf_finish_output6(struct net * net,struct sock * sk,struct sk_buff * skb)603 static int vrf_finish_output6(struct net *net, struct sock *sk,
604 struct sk_buff *skb)
605 {
606 struct dst_entry *dst = skb_dst(skb);
607 struct net_device *dev = dst->dev;
608 const struct in6_addr *nexthop;
609 struct neighbour *neigh;
610 int ret;
611
612 vrf_nf_reset_ct(skb);
613
614 skb->protocol = htons(ETH_P_IPV6);
615 skb->dev = dev;
616
617 rcu_read_lock();
618 nexthop = rt6_nexthop(dst_rt6_info(dst), &ipv6_hdr(skb)->daddr);
619 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
620 if (unlikely(!neigh))
621 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
622 if (!IS_ERR(neigh)) {
623 sock_confirm_neigh(skb, neigh);
624 ret = neigh_output(neigh, skb, false);
625 rcu_read_unlock();
626 return ret;
627 }
628 rcu_read_unlock();
629
630 IP6_INC_STATS(dev_net(dst->dev),
631 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
632 kfree_skb(skb);
633 return -EINVAL;
634 }
635
636 /* modelled after ip6_output */
vrf_output6(struct net * net,struct sock * sk,struct sk_buff * skb)637 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
638 {
639 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
640 net, sk, skb, NULL, skb_dst(skb)->dev,
641 vrf_finish_output6,
642 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
643 }
644
645 /* set dst on skb to send packet to us via dev_xmit path. Allows
646 * packet to go through device based features such as qdisc, netfilter
647 * hooks and packet sockets with skb->dev set to vrf device.
648 */
vrf_ip6_out_redirect(struct net_device * vrf_dev,struct sk_buff * skb)649 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
650 struct sk_buff *skb)
651 {
652 struct net_vrf *vrf = netdev_priv(vrf_dev);
653 struct dst_entry *dst = NULL;
654 struct rt6_info *rt6;
655
656 rcu_read_lock();
657
658 rt6 = rcu_dereference(vrf->rt6);
659 if (likely(rt6)) {
660 dst = &rt6->dst;
661 dst_hold(dst);
662 }
663
664 rcu_read_unlock();
665
666 if (unlikely(!dst)) {
667 vrf_tx_error(vrf_dev, skb);
668 return NULL;
669 }
670
671 skb_dst_drop(skb);
672 skb_dst_set(skb, dst);
673
674 return skb;
675 }
676
vrf_output6_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)677 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
678 struct sk_buff *skb)
679 {
680 vrf_finish_direct(skb);
681
682 return vrf_ip6_local_out(net, sk, skb);
683 }
684
vrf_output6_direct(struct net * net,struct sock * sk,struct sk_buff * skb)685 static int vrf_output6_direct(struct net *net, struct sock *sk,
686 struct sk_buff *skb)
687 {
688 int err = 1;
689
690 skb->protocol = htons(ETH_P_IPV6);
691
692 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
693 err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
694 NULL, skb->dev, vrf_output6_direct_finish);
695
696 if (likely(err == 1))
697 vrf_finish_direct(skb);
698
699 return err;
700 }
701
vrf_ip6_out_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)702 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
703 struct sk_buff *skb)
704 {
705 int err;
706
707 err = vrf_output6_direct(net, sk, skb);
708 if (likely(err == 1))
709 err = vrf_ip6_local_out(net, sk, skb);
710
711 return err;
712 }
713
vrf_ip6_out_direct(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)714 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
715 struct sock *sk,
716 struct sk_buff *skb)
717 {
718 struct net *net = dev_net(vrf_dev);
719 int err;
720
721 skb->dev = vrf_dev;
722
723 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
724 skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
725
726 if (likely(err == 1))
727 err = vrf_output6_direct(net, sk, skb);
728
729 if (likely(err == 1))
730 return skb;
731
732 return NULL;
733 }
734
vrf_ip6_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)735 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
736 struct sock *sk,
737 struct sk_buff *skb)
738 {
739 /* don't divert link scope packets */
740 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
741 return skb;
742
743 vrf_nf_set_untracked(skb);
744
745 if (qdisc_tx_is_default(vrf_dev) ||
746 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
747 return vrf_ip6_out_direct(vrf_dev, sk, skb);
748
749 return vrf_ip6_out_redirect(vrf_dev, skb);
750 }
751
752 /* holding rtnl */
vrf_rt6_release(struct net_device * dev,struct net_vrf * vrf)753 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
754 {
755 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
756 struct net *net = dev_net(dev);
757 struct dst_entry *dst;
758
759 RCU_INIT_POINTER(vrf->rt6, NULL);
760 synchronize_rcu();
761
762 /* move dev in dst's to loopback so this VRF device can be deleted
763 * - based on dst_ifdown
764 */
765 if (rt6) {
766 dst = &rt6->dst;
767 netdev_ref_replace(dst->dev, net->loopback_dev,
768 &dst->dev_tracker, GFP_KERNEL);
769 dst->dev = net->loopback_dev;
770 dst_release(dst);
771 }
772 }
773
vrf_rt6_create(struct net_device * dev)774 static int vrf_rt6_create(struct net_device *dev)
775 {
776 int flags = DST_NOPOLICY | DST_NOXFRM;
777 struct net_vrf *vrf = netdev_priv(dev);
778 struct net *net = dev_net(dev);
779 struct rt6_info *rt6;
780 int rc = -ENOMEM;
781
782 /* IPv6 can be CONFIG enabled and then disabled runtime */
783 if (!ipv6_mod_enabled())
784 return 0;
785
786 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
787 if (!vrf->fib6_table)
788 goto out;
789
790 /* create a dst for routing packets out a VRF device */
791 rt6 = ip6_dst_alloc(net, dev, flags);
792 if (!rt6)
793 goto out;
794
795 rt6->dst.output = vrf_output6;
796
797 rcu_assign_pointer(vrf->rt6, rt6);
798
799 rc = 0;
800 out:
801 return rc;
802 }
803 #else
vrf_ip6_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)804 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
805 struct sock *sk,
806 struct sk_buff *skb)
807 {
808 return skb;
809 }
810
vrf_rt6_release(struct net_device * dev,struct net_vrf * vrf)811 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
812 {
813 }
814
vrf_rt6_create(struct net_device * dev)815 static int vrf_rt6_create(struct net_device *dev)
816 {
817 return 0;
818 }
819 #endif
820
821 /* modelled after ip_finish_output2 */
vrf_finish_output(struct net * net,struct sock * sk,struct sk_buff * skb)822 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
823 {
824 struct dst_entry *dst = skb_dst(skb);
825 struct rtable *rt = dst_rtable(dst);
826 struct net_device *dev = dst->dev;
827 unsigned int hh_len = LL_RESERVED_SPACE(dev);
828 struct neighbour *neigh;
829 bool is_v6gw = false;
830
831 vrf_nf_reset_ct(skb);
832
833 /* Be paranoid, rather than too clever. */
834 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
835 skb = skb_expand_head(skb, hh_len);
836 if (!skb) {
837 dev->stats.tx_errors++;
838 return -ENOMEM;
839 }
840 }
841
842 rcu_read_lock();
843
844 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
845 if (!IS_ERR(neigh)) {
846 int ret;
847
848 sock_confirm_neigh(skb, neigh);
849 /* if crossing protocols, can not use the cached header */
850 ret = neigh_output(neigh, skb, is_v6gw);
851 rcu_read_unlock();
852 return ret;
853 }
854
855 rcu_read_unlock();
856 vrf_tx_error(skb->dev, skb);
857 return -EINVAL;
858 }
859
vrf_output(struct net * net,struct sock * sk,struct sk_buff * skb)860 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
861 {
862 struct net_device *dev = skb_dst(skb)->dev;
863
864 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
865
866 skb->dev = dev;
867 skb->protocol = htons(ETH_P_IP);
868
869 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
870 net, sk, skb, NULL, dev,
871 vrf_finish_output,
872 !(IPCB(skb)->flags & IPSKB_REROUTED));
873 }
874
875 /* set dst on skb to send packet to us via dev_xmit path. Allows
876 * packet to go through device based features such as qdisc, netfilter
877 * hooks and packet sockets with skb->dev set to vrf device.
878 */
vrf_ip_out_redirect(struct net_device * vrf_dev,struct sk_buff * skb)879 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
880 struct sk_buff *skb)
881 {
882 struct net_vrf *vrf = netdev_priv(vrf_dev);
883 struct dst_entry *dst = NULL;
884 struct rtable *rth;
885
886 rcu_read_lock();
887
888 rth = rcu_dereference(vrf->rth);
889 if (likely(rth)) {
890 dst = &rth->dst;
891 dst_hold(dst);
892 }
893
894 rcu_read_unlock();
895
896 if (unlikely(!dst)) {
897 vrf_tx_error(vrf_dev, skb);
898 return NULL;
899 }
900
901 skb_dst_drop(skb);
902 skb_dst_set(skb, dst);
903
904 return skb;
905 }
906
vrf_output_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)907 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
908 struct sk_buff *skb)
909 {
910 vrf_finish_direct(skb);
911
912 return vrf_ip_local_out(net, sk, skb);
913 }
914
vrf_output_direct(struct net * net,struct sock * sk,struct sk_buff * skb)915 static int vrf_output_direct(struct net *net, struct sock *sk,
916 struct sk_buff *skb)
917 {
918 int err = 1;
919
920 skb->protocol = htons(ETH_P_IP);
921
922 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
923 err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
924 NULL, skb->dev, vrf_output_direct_finish);
925
926 if (likely(err == 1))
927 vrf_finish_direct(skb);
928
929 return err;
930 }
931
vrf_ip_out_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)932 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
933 struct sk_buff *skb)
934 {
935 int err;
936
937 err = vrf_output_direct(net, sk, skb);
938 if (likely(err == 1))
939 err = vrf_ip_local_out(net, sk, skb);
940
941 return err;
942 }
943
vrf_ip_out_direct(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)944 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
945 struct sock *sk,
946 struct sk_buff *skb)
947 {
948 struct net *net = dev_net(vrf_dev);
949 int err;
950
951 skb->dev = vrf_dev;
952
953 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
954 skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
955
956 if (likely(err == 1))
957 err = vrf_output_direct(net, sk, skb);
958
959 if (likely(err == 1))
960 return skb;
961
962 return NULL;
963 }
964
vrf_ip_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)965 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
966 struct sock *sk,
967 struct sk_buff *skb)
968 {
969 /* don't divert multicast or local broadcast */
970 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
971 ipv4_is_lbcast(ip_hdr(skb)->daddr))
972 return skb;
973
974 vrf_nf_set_untracked(skb);
975
976 if (qdisc_tx_is_default(vrf_dev) ||
977 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
978 return vrf_ip_out_direct(vrf_dev, sk, skb);
979
980 return vrf_ip_out_redirect(vrf_dev, skb);
981 }
982
983 /* called with rcu lock held */
vrf_l3_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb,u16 proto)984 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
985 struct sock *sk,
986 struct sk_buff *skb,
987 u16 proto)
988 {
989 switch (proto) {
990 case AF_INET:
991 return vrf_ip_out(vrf_dev, sk, skb);
992 case AF_INET6:
993 return vrf_ip6_out(vrf_dev, sk, skb);
994 }
995
996 return skb;
997 }
998
999 /* holding rtnl */
vrf_rtable_release(struct net_device * dev,struct net_vrf * vrf)1000 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1001 {
1002 struct rtable *rth = rtnl_dereference(vrf->rth);
1003 struct net *net = dev_net(dev);
1004 struct dst_entry *dst;
1005
1006 RCU_INIT_POINTER(vrf->rth, NULL);
1007 synchronize_rcu();
1008
1009 /* move dev in dst's to loopback so this VRF device can be deleted
1010 * - based on dst_ifdown
1011 */
1012 if (rth) {
1013 dst = &rth->dst;
1014 netdev_ref_replace(dst->dev, net->loopback_dev,
1015 &dst->dev_tracker, GFP_KERNEL);
1016 dst->dev = net->loopback_dev;
1017 dst_release(dst);
1018 }
1019 }
1020
vrf_rtable_create(struct net_device * dev)1021 static int vrf_rtable_create(struct net_device *dev)
1022 {
1023 struct net_vrf *vrf = netdev_priv(dev);
1024 struct rtable *rth;
1025
1026 if (!fib_new_table(dev_net(dev), vrf->tb_id))
1027 return -ENOMEM;
1028
1029 /* create a dst for routing packets out through a VRF device */
1030 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1);
1031 if (!rth)
1032 return -ENOMEM;
1033
1034 rth->dst.output = vrf_output;
1035
1036 rcu_assign_pointer(vrf->rth, rth);
1037
1038 return 0;
1039 }
1040
1041 /**************************** device handling ********************/
1042
1043 /* cycle interface to flush neighbor cache and move routes across tables */
cycle_netdev(struct net_device * dev,struct netlink_ext_ack * extack)1044 static void cycle_netdev(struct net_device *dev,
1045 struct netlink_ext_ack *extack)
1046 {
1047 unsigned int flags = dev->flags;
1048 int ret;
1049
1050 if (!netif_running(dev))
1051 return;
1052
1053 ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1054 if (ret >= 0)
1055 ret = dev_change_flags(dev, flags, extack);
1056
1057 if (ret < 0) {
1058 netdev_err(dev,
1059 "Failed to cycle device %s; route tables might be wrong!\n",
1060 dev->name);
1061 }
1062 }
1063
do_vrf_add_slave(struct net_device * dev,struct net_device * port_dev,struct netlink_ext_ack * extack)1064 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1065 struct netlink_ext_ack *extack)
1066 {
1067 int ret;
1068
1069 /* do not allow loopback device to be enslaved to a VRF.
1070 * The vrf device acts as the loopback for the vrf.
1071 */
1072 if (port_dev == dev_net(dev)->loopback_dev) {
1073 NL_SET_ERR_MSG(extack,
1074 "Can not enslave loopback device to a VRF");
1075 return -EOPNOTSUPP;
1076 }
1077
1078 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1079 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1080 if (ret < 0)
1081 goto err;
1082
1083 cycle_netdev(port_dev, extack);
1084
1085 return 0;
1086
1087 err:
1088 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1089 return ret;
1090 }
1091
vrf_add_slave(struct net_device * dev,struct net_device * port_dev,struct netlink_ext_ack * extack)1092 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1093 struct netlink_ext_ack *extack)
1094 {
1095 if (netif_is_l3_master(port_dev)) {
1096 NL_SET_ERR_MSG(extack,
1097 "Can not enslave an L3 master device to a VRF");
1098 return -EINVAL;
1099 }
1100
1101 if (netif_is_l3_slave(port_dev))
1102 return -EINVAL;
1103
1104 return do_vrf_add_slave(dev, port_dev, extack);
1105 }
1106
1107 /* inverse of do_vrf_add_slave */
do_vrf_del_slave(struct net_device * dev,struct net_device * port_dev)1108 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1109 {
1110 netdev_upper_dev_unlink(port_dev, dev);
1111 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1112
1113 cycle_netdev(port_dev, NULL);
1114
1115 return 0;
1116 }
1117
vrf_del_slave(struct net_device * dev,struct net_device * port_dev)1118 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1119 {
1120 return do_vrf_del_slave(dev, port_dev);
1121 }
1122
vrf_dev_uninit(struct net_device * dev)1123 static void vrf_dev_uninit(struct net_device *dev)
1124 {
1125 struct net_vrf *vrf = netdev_priv(dev);
1126
1127 vrf_rtable_release(dev, vrf);
1128 vrf_rt6_release(dev, vrf);
1129 }
1130
vrf_dev_init(struct net_device * dev)1131 static int vrf_dev_init(struct net_device *dev)
1132 {
1133 struct net_vrf *vrf = netdev_priv(dev);
1134
1135 /* create the default dst which points back to us */
1136 if (vrf_rtable_create(dev) != 0)
1137 goto out_nomem;
1138
1139 if (vrf_rt6_create(dev) != 0)
1140 goto out_rth;
1141
1142 dev->flags = IFF_MASTER | IFF_NOARP;
1143
1144 /* similarly, oper state is irrelevant; set to up to avoid confusion */
1145 dev->operstate = IF_OPER_UP;
1146 netdev_lockdep_set_classes(dev);
1147 return 0;
1148
1149 out_rth:
1150 vrf_rtable_release(dev, vrf);
1151 out_nomem:
1152 return -ENOMEM;
1153 }
1154
1155 static const struct net_device_ops vrf_netdev_ops = {
1156 .ndo_init = vrf_dev_init,
1157 .ndo_uninit = vrf_dev_uninit,
1158 .ndo_start_xmit = vrf_xmit,
1159 .ndo_set_mac_address = eth_mac_addr,
1160 .ndo_add_slave = vrf_add_slave,
1161 .ndo_del_slave = vrf_del_slave,
1162 };
1163
vrf_fib_table(const struct net_device * dev)1164 static u32 vrf_fib_table(const struct net_device *dev)
1165 {
1166 struct net_vrf *vrf = netdev_priv(dev);
1167
1168 return vrf->tb_id;
1169 }
1170
vrf_rcv_finish(struct net * net,struct sock * sk,struct sk_buff * skb)1171 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1172 {
1173 kfree_skb(skb);
1174 return 0;
1175 }
1176
vrf_rcv_nfhook(u8 pf,unsigned int hook,struct sk_buff * skb,struct net_device * dev)1177 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1178 struct sk_buff *skb,
1179 struct net_device *dev)
1180 {
1181 struct net *net = dev_net(dev);
1182
1183 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1184 skb = NULL; /* kfree_skb(skb) handled by nf code */
1185
1186 return skb;
1187 }
1188
vrf_prepare_mac_header(struct sk_buff * skb,struct net_device * vrf_dev,u16 proto)1189 static int vrf_prepare_mac_header(struct sk_buff *skb,
1190 struct net_device *vrf_dev, u16 proto)
1191 {
1192 struct ethhdr *eth;
1193 int err;
1194
1195 /* in general, we do not know if there is enough space in the head of
1196 * the packet for hosting the mac header.
1197 */
1198 err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1199 if (unlikely(err))
1200 /* no space in the skb head */
1201 return -ENOBUFS;
1202
1203 __skb_push(skb, ETH_HLEN);
1204 eth = (struct ethhdr *)skb->data;
1205
1206 skb_reset_mac_header(skb);
1207 skb_reset_mac_len(skb);
1208
1209 /* we set the ethernet destination and the source addresses to the
1210 * address of the VRF device.
1211 */
1212 ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1213 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1214 eth->h_proto = htons(proto);
1215
1216 /* the destination address of the Ethernet frame corresponds to the
1217 * address set on the VRF interface; therefore, the packet is intended
1218 * to be processed locally.
1219 */
1220 skb->protocol = eth->h_proto;
1221 skb->pkt_type = PACKET_HOST;
1222
1223 skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1224
1225 skb_pull_inline(skb, ETH_HLEN);
1226
1227 return 0;
1228 }
1229
1230 /* prepare and add the mac header to the packet if it was not set previously.
1231 * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1232 * If the mac header was already set, the original mac header is left
1233 * untouched and the function returns immediately.
1234 */
vrf_add_mac_header_if_unset(struct sk_buff * skb,struct net_device * vrf_dev,u16 proto,struct net_device * orig_dev)1235 static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1236 struct net_device *vrf_dev,
1237 u16 proto, struct net_device *orig_dev)
1238 {
1239 if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev))
1240 return 0;
1241
1242 return vrf_prepare_mac_header(skb, vrf_dev, proto);
1243 }
1244
1245 #if IS_ENABLED(CONFIG_IPV6)
1246 /* neighbor handling is done with actual device; do not want
1247 * to flip skb->dev for those ndisc packets. This really fails
1248 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1249 * a start.
1250 */
ipv6_ndisc_frame(const struct sk_buff * skb)1251 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1252 {
1253 const struct ipv6hdr *iph = ipv6_hdr(skb);
1254 bool rc = false;
1255
1256 if (iph->nexthdr == NEXTHDR_ICMP) {
1257 const struct icmp6hdr *icmph;
1258 struct icmp6hdr _icmph;
1259
1260 icmph = skb_header_pointer(skb, sizeof(*iph),
1261 sizeof(_icmph), &_icmph);
1262 if (!icmph)
1263 goto out;
1264
1265 switch (icmph->icmp6_type) {
1266 case NDISC_ROUTER_SOLICITATION:
1267 case NDISC_ROUTER_ADVERTISEMENT:
1268 case NDISC_NEIGHBOUR_SOLICITATION:
1269 case NDISC_NEIGHBOUR_ADVERTISEMENT:
1270 case NDISC_REDIRECT:
1271 rc = true;
1272 break;
1273 }
1274 }
1275
1276 out:
1277 return rc;
1278 }
1279
vrf_ip6_route_lookup(struct net * net,const struct net_device * dev,struct flowi6 * fl6,int ifindex,const struct sk_buff * skb,int flags)1280 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1281 const struct net_device *dev,
1282 struct flowi6 *fl6,
1283 int ifindex,
1284 const struct sk_buff *skb,
1285 int flags)
1286 {
1287 struct net_vrf *vrf = netdev_priv(dev);
1288
1289 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1290 }
1291
vrf_ip6_input_dst(struct sk_buff * skb,struct net_device * vrf_dev,int ifindex)1292 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1293 int ifindex)
1294 {
1295 const struct ipv6hdr *iph = ipv6_hdr(skb);
1296 struct flowi6 fl6 = {
1297 .flowi6_iif = ifindex,
1298 .flowi6_mark = skb->mark,
1299 .flowi6_proto = iph->nexthdr,
1300 .daddr = iph->daddr,
1301 .saddr = iph->saddr,
1302 .flowlabel = ip6_flowinfo(iph),
1303 };
1304 struct net *net = dev_net(vrf_dev);
1305 struct rt6_info *rt6;
1306
1307 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1308 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1309 if (unlikely(!rt6))
1310 return;
1311
1312 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1313 return;
1314
1315 skb_dst_set(skb, &rt6->dst);
1316 }
1317
vrf_ip6_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1318 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1319 struct sk_buff *skb)
1320 {
1321 int orig_iif = skb->skb_iif;
1322 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1323 bool is_ndisc = ipv6_ndisc_frame(skb);
1324
1325 /* loopback, multicast & non-ND link-local traffic; do not push through
1326 * packet taps again. Reset pkt_type for upper layers to process skb.
1327 * For non-loopback strict packets, determine the dst using the original
1328 * ifindex.
1329 */
1330 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1331 skb->dev = vrf_dev;
1332 skb->skb_iif = vrf_dev->ifindex;
1333 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1334
1335 if (skb->pkt_type == PACKET_LOOPBACK)
1336 skb->pkt_type = PACKET_HOST;
1337 else
1338 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1339
1340 goto out;
1341 }
1342
1343 /* if packet is NDISC then keep the ingress interface */
1344 if (!is_ndisc) {
1345 struct net_device *orig_dev = skb->dev;
1346
1347 dev_dstats_rx_add(vrf_dev, skb->len);
1348 skb->dev = vrf_dev;
1349 skb->skb_iif = vrf_dev->ifindex;
1350
1351 if (!list_empty(&vrf_dev->ptype_all)) {
1352 int err;
1353
1354 err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1355 ETH_P_IPV6,
1356 orig_dev);
1357 if (likely(!err)) {
1358 skb_push(skb, skb->mac_len);
1359 dev_queue_xmit_nit(skb, vrf_dev);
1360 skb_pull(skb, skb->mac_len);
1361 }
1362 }
1363
1364 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1365 }
1366
1367 if (need_strict)
1368 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1369
1370 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1371 out:
1372 return skb;
1373 }
1374
1375 #else
vrf_ip6_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1376 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1377 struct sk_buff *skb)
1378 {
1379 return skb;
1380 }
1381 #endif
1382
vrf_ip_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1383 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1384 struct sk_buff *skb)
1385 {
1386 struct net_device *orig_dev = skb->dev;
1387
1388 skb->dev = vrf_dev;
1389 skb->skb_iif = vrf_dev->ifindex;
1390 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1391
1392 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1393 goto out;
1394
1395 /* loopback traffic; do not push through packet taps again.
1396 * Reset pkt_type for upper layers to process skb
1397 */
1398 if (skb->pkt_type == PACKET_LOOPBACK) {
1399 skb->pkt_type = PACKET_HOST;
1400 goto out;
1401 }
1402
1403 dev_dstats_rx_add(vrf_dev, skb->len);
1404
1405 if (!list_empty(&vrf_dev->ptype_all)) {
1406 int err;
1407
1408 err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP,
1409 orig_dev);
1410 if (likely(!err)) {
1411 skb_push(skb, skb->mac_len);
1412 dev_queue_xmit_nit(skb, vrf_dev);
1413 skb_pull(skb, skb->mac_len);
1414 }
1415 }
1416
1417 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1418 out:
1419 return skb;
1420 }
1421
1422 /* called with rcu lock held */
vrf_l3_rcv(struct net_device * vrf_dev,struct sk_buff * skb,u16 proto)1423 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1424 struct sk_buff *skb,
1425 u16 proto)
1426 {
1427 switch (proto) {
1428 case AF_INET:
1429 return vrf_ip_rcv(vrf_dev, skb);
1430 case AF_INET6:
1431 return vrf_ip6_rcv(vrf_dev, skb);
1432 }
1433
1434 return skb;
1435 }
1436
1437 #if IS_ENABLED(CONFIG_IPV6)
1438 /* send to link-local or multicast address via interface enslaved to
1439 * VRF device. Force lookup to VRF table without changing flow struct
1440 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1441 * is taken on the dst by this function.
1442 */
vrf_link_scope_lookup(const struct net_device * dev,struct flowi6 * fl6)1443 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1444 struct flowi6 *fl6)
1445 {
1446 struct net *net = dev_net(dev);
1447 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1448 struct dst_entry *dst = NULL;
1449 struct rt6_info *rt;
1450
1451 /* VRF device does not have a link-local address and
1452 * sending packets to link-local or mcast addresses over
1453 * a VRF device does not make sense
1454 */
1455 if (fl6->flowi6_oif == dev->ifindex) {
1456 dst = &net->ipv6.ip6_null_entry->dst;
1457 return dst;
1458 }
1459
1460 if (!ipv6_addr_any(&fl6->saddr))
1461 flags |= RT6_LOOKUP_F_HAS_SADDR;
1462
1463 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1464 if (rt)
1465 dst = &rt->dst;
1466
1467 return dst;
1468 }
1469 #endif
1470
1471 static const struct l3mdev_ops vrf_l3mdev_ops = {
1472 .l3mdev_fib_table = vrf_fib_table,
1473 .l3mdev_l3_rcv = vrf_l3_rcv,
1474 .l3mdev_l3_out = vrf_l3_out,
1475 #if IS_ENABLED(CONFIG_IPV6)
1476 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1477 #endif
1478 };
1479
vrf_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1480 static void vrf_get_drvinfo(struct net_device *dev,
1481 struct ethtool_drvinfo *info)
1482 {
1483 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1484 strscpy(info->version, DRV_VERSION, sizeof(info->version));
1485 }
1486
1487 static const struct ethtool_ops vrf_ethtool_ops = {
1488 .get_drvinfo = vrf_get_drvinfo,
1489 };
1490
vrf_fib_rule_nl_size(void)1491 static inline size_t vrf_fib_rule_nl_size(void)
1492 {
1493 size_t sz;
1494
1495 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1496 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1497 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1498 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1499
1500 return sz;
1501 }
1502
vrf_fib_rule(const struct net_device * dev,__u8 family,bool add_it)1503 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1504 {
1505 struct fib_rule_hdr *frh;
1506 struct nlmsghdr *nlh;
1507 struct sk_buff *skb;
1508 int err;
1509
1510 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1511 !ipv6_mod_enabled())
1512 return 0;
1513
1514 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1515 if (!skb)
1516 return -ENOMEM;
1517
1518 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1519 if (!nlh)
1520 goto nla_put_failure;
1521
1522 /* rule only needs to appear once */
1523 nlh->nlmsg_flags |= NLM_F_EXCL;
1524
1525 frh = nlmsg_data(nlh);
1526 memset(frh, 0, sizeof(*frh));
1527 frh->family = family;
1528 frh->action = FR_ACT_TO_TBL;
1529
1530 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1531 goto nla_put_failure;
1532
1533 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1534 goto nla_put_failure;
1535
1536 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1537 goto nla_put_failure;
1538
1539 nlmsg_end(skb, nlh);
1540
1541 if (add_it) {
1542 err = fib_newrule(dev_net(dev), skb, nlh, NULL, true);
1543 if (err == -EEXIST)
1544 err = 0;
1545 } else {
1546 err = fib_delrule(dev_net(dev), skb, nlh, NULL, true);
1547 if (err == -ENOENT)
1548 err = 0;
1549 }
1550 nlmsg_free(skb);
1551
1552 return err;
1553
1554 nla_put_failure:
1555 nlmsg_free(skb);
1556
1557 return -EMSGSIZE;
1558 }
1559
vrf_add_fib_rules(const struct net_device * dev)1560 static int vrf_add_fib_rules(const struct net_device *dev)
1561 {
1562 int err;
1563
1564 err = vrf_fib_rule(dev, AF_INET, true);
1565 if (err < 0)
1566 goto out_err;
1567
1568 err = vrf_fib_rule(dev, AF_INET6, true);
1569 if (err < 0)
1570 goto ipv6_err;
1571
1572 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1573 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1574 if (err < 0)
1575 goto ipmr_err;
1576 #endif
1577
1578 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1579 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1580 if (err < 0)
1581 goto ip6mr_err;
1582 #endif
1583
1584 return 0;
1585
1586 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1587 ip6mr_err:
1588 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
1589 #endif
1590
1591 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1592 ipmr_err:
1593 vrf_fib_rule(dev, AF_INET6, false);
1594 #endif
1595
1596 ipv6_err:
1597 vrf_fib_rule(dev, AF_INET, false);
1598
1599 out_err:
1600 netdev_err(dev, "Failed to add FIB rules.\n");
1601 return err;
1602 }
1603
vrf_setup(struct net_device * dev)1604 static void vrf_setup(struct net_device *dev)
1605 {
1606 ether_setup(dev);
1607
1608 /* Initialize the device structure. */
1609 dev->netdev_ops = &vrf_netdev_ops;
1610 dev->l3mdev_ops = &vrf_l3mdev_ops;
1611 dev->ethtool_ops = &vrf_ethtool_ops;
1612 dev->needs_free_netdev = true;
1613
1614 /* Fill in device structure with ethernet-generic values. */
1615 eth_hw_addr_random(dev);
1616
1617 /* don't acquire vrf device's netif_tx_lock when transmitting */
1618 dev->lltx = true;
1619
1620 /* don't allow vrf devices to change network namespaces. */
1621 dev->netns_immutable = true;
1622
1623 /* does not make sense for a VLAN to be added to a vrf device */
1624 dev->features |= NETIF_F_VLAN_CHALLENGED;
1625
1626 /* enable offload features */
1627 dev->features |= NETIF_F_GSO_SOFTWARE;
1628 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1629 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1630
1631 dev->hw_features = dev->features;
1632 dev->hw_enc_features = dev->features;
1633
1634 /* default to no qdisc; user can add if desired */
1635 dev->priv_flags |= IFF_NO_QUEUE;
1636 dev->priv_flags |= IFF_NO_RX_HANDLER;
1637 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1638
1639 /* VRF devices do not care about MTU, but if the MTU is set
1640 * too low then the ipv4 and ipv6 protocols are disabled
1641 * which breaks networking.
1642 */
1643 dev->min_mtu = IPV6_MIN_MTU;
1644 dev->max_mtu = IP6_MAX_MTU;
1645 dev->mtu = dev->max_mtu;
1646
1647 dev->pcpu_stat_type = NETDEV_PCPU_STAT_DSTATS;
1648 }
1649
vrf_validate(struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1650 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1651 struct netlink_ext_ack *extack)
1652 {
1653 if (tb[IFLA_ADDRESS]) {
1654 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1655 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1656 return -EINVAL;
1657 }
1658 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1659 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1660 return -EADDRNOTAVAIL;
1661 }
1662 }
1663 return 0;
1664 }
1665
vrf_dellink(struct net_device * dev,struct list_head * head)1666 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1667 {
1668 struct net_device *port_dev;
1669 struct list_head *iter;
1670
1671 netdev_for_each_lower_dev(dev, port_dev, iter)
1672 vrf_del_slave(dev, port_dev);
1673
1674 vrf_map_unregister_dev(dev);
1675
1676 unregister_netdevice_queue(dev, head);
1677 }
1678
vrf_newlink(struct net_device * dev,struct rtnl_newlink_params * params,struct netlink_ext_ack * extack)1679 static int vrf_newlink(struct net_device *dev,
1680 struct rtnl_newlink_params *params,
1681 struct netlink_ext_ack *extack)
1682 {
1683 struct net_vrf *vrf = netdev_priv(dev);
1684 struct nlattr **data = params->data;
1685 struct netns_vrf *nn_vrf;
1686 bool *add_fib_rules;
1687 struct net *net;
1688 int err;
1689
1690 if (!data || !data[IFLA_VRF_TABLE]) {
1691 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1692 return -EINVAL;
1693 }
1694
1695 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1696 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1697 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1698 "Invalid VRF table id");
1699 return -EINVAL;
1700 }
1701
1702 dev->priv_flags |= IFF_L3MDEV_MASTER;
1703
1704 err = register_netdevice(dev);
1705 if (err)
1706 goto out;
1707
1708 /* mapping between table_id and vrf;
1709 * note: such binding could not be done in the dev init function
1710 * because dev->ifindex id is not available yet.
1711 */
1712 vrf->ifindex = dev->ifindex;
1713
1714 err = vrf_map_register_dev(dev, extack);
1715 if (err) {
1716 unregister_netdevice(dev);
1717 goto out;
1718 }
1719
1720 net = dev_net(dev);
1721 nn_vrf = net_generic(net, vrf_net_id);
1722
1723 add_fib_rules = &nn_vrf->add_fib_rules;
1724 if (*add_fib_rules) {
1725 err = vrf_add_fib_rules(dev);
1726 if (err) {
1727 vrf_map_unregister_dev(dev);
1728 unregister_netdevice(dev);
1729 goto out;
1730 }
1731 *add_fib_rules = false;
1732 }
1733
1734 out:
1735 return err;
1736 }
1737
vrf_nl_getsize(const struct net_device * dev)1738 static size_t vrf_nl_getsize(const struct net_device *dev)
1739 {
1740 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1741 }
1742
vrf_fillinfo(struct sk_buff * skb,const struct net_device * dev)1743 static int vrf_fillinfo(struct sk_buff *skb,
1744 const struct net_device *dev)
1745 {
1746 struct net_vrf *vrf = netdev_priv(dev);
1747
1748 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1749 }
1750
vrf_get_slave_size(const struct net_device * bond_dev,const struct net_device * slave_dev)1751 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1752 const struct net_device *slave_dev)
1753 {
1754 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1755 }
1756
vrf_fill_slave_info(struct sk_buff * skb,const struct net_device * vrf_dev,const struct net_device * slave_dev)1757 static int vrf_fill_slave_info(struct sk_buff *skb,
1758 const struct net_device *vrf_dev,
1759 const struct net_device *slave_dev)
1760 {
1761 struct net_vrf *vrf = netdev_priv(vrf_dev);
1762
1763 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1764 return -EMSGSIZE;
1765
1766 return 0;
1767 }
1768
1769 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1770 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1771 };
1772
1773 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1774 .kind = DRV_NAME,
1775 .priv_size = sizeof(struct net_vrf),
1776
1777 .get_size = vrf_nl_getsize,
1778 .policy = vrf_nl_policy,
1779 .validate = vrf_validate,
1780 .fill_info = vrf_fillinfo,
1781
1782 .get_slave_size = vrf_get_slave_size,
1783 .fill_slave_info = vrf_fill_slave_info,
1784
1785 .newlink = vrf_newlink,
1786 .dellink = vrf_dellink,
1787 .setup = vrf_setup,
1788 .maxtype = IFLA_VRF_MAX,
1789 };
1790
vrf_device_event(struct notifier_block * unused,unsigned long event,void * ptr)1791 static int vrf_device_event(struct notifier_block *unused,
1792 unsigned long event, void *ptr)
1793 {
1794 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1795
1796 /* only care about unregister events to drop slave references */
1797 if (event == NETDEV_UNREGISTER) {
1798 struct net_device *vrf_dev;
1799
1800 if (!netif_is_l3_slave(dev))
1801 goto out;
1802
1803 vrf_dev = netdev_master_upper_dev_get(dev);
1804 vrf_del_slave(vrf_dev, dev);
1805 }
1806 out:
1807 return NOTIFY_DONE;
1808 }
1809
1810 static struct notifier_block vrf_notifier_block __read_mostly = {
1811 .notifier_call = vrf_device_event,
1812 };
1813
vrf_map_init(struct vrf_map * vmap)1814 static int vrf_map_init(struct vrf_map *vmap)
1815 {
1816 spin_lock_init(&vmap->vmap_lock);
1817 hash_init(vmap->ht);
1818
1819 vmap->strict_mode = false;
1820
1821 return 0;
1822 }
1823
1824 #ifdef CONFIG_SYSCTL
vrf_strict_mode(struct vrf_map * vmap)1825 static bool vrf_strict_mode(struct vrf_map *vmap)
1826 {
1827 bool strict_mode;
1828
1829 vrf_map_lock(vmap);
1830 strict_mode = vmap->strict_mode;
1831 vrf_map_unlock(vmap);
1832
1833 return strict_mode;
1834 }
1835
vrf_strict_mode_change(struct vrf_map * vmap,bool new_mode)1836 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1837 {
1838 bool *cur_mode;
1839 int res = 0;
1840
1841 vrf_map_lock(vmap);
1842
1843 cur_mode = &vmap->strict_mode;
1844 if (*cur_mode == new_mode)
1845 goto unlock;
1846
1847 if (*cur_mode) {
1848 /* disable strict mode */
1849 *cur_mode = false;
1850 } else {
1851 if (vmap->shared_tables) {
1852 /* we cannot allow strict_mode because there are some
1853 * vrfs that share one or more tables.
1854 */
1855 res = -EBUSY;
1856 goto unlock;
1857 }
1858
1859 /* no tables are shared among vrfs, so we can go back
1860 * to 1:1 association between a vrf with its table.
1861 */
1862 *cur_mode = true;
1863 }
1864
1865 unlock:
1866 vrf_map_unlock(vmap);
1867
1868 return res;
1869 }
1870
vrf_shared_table_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1871 static int vrf_shared_table_handler(const struct ctl_table *table, int write,
1872 void *buffer, size_t *lenp, loff_t *ppos)
1873 {
1874 struct net *net = (struct net *)table->extra1;
1875 struct vrf_map *vmap = netns_vrf_map(net);
1876 int proc_strict_mode = 0;
1877 struct ctl_table tmp = {
1878 .procname = table->procname,
1879 .data = &proc_strict_mode,
1880 .maxlen = sizeof(int),
1881 .mode = table->mode,
1882 .extra1 = SYSCTL_ZERO,
1883 .extra2 = SYSCTL_ONE,
1884 };
1885 int ret;
1886
1887 if (!write)
1888 proc_strict_mode = vrf_strict_mode(vmap);
1889
1890 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1891
1892 if (write && ret == 0)
1893 ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1894
1895 return ret;
1896 }
1897
1898 static const struct ctl_table vrf_table[] = {
1899 {
1900 .procname = "strict_mode",
1901 .data = NULL,
1902 .maxlen = sizeof(int),
1903 .mode = 0644,
1904 .proc_handler = vrf_shared_table_handler,
1905 /* set by the vrf_netns_init */
1906 .extra1 = NULL,
1907 },
1908 };
1909
vrf_netns_init_sysctl(struct net * net,struct netns_vrf * nn_vrf)1910 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1911 {
1912 struct ctl_table *table;
1913
1914 table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1915 if (!table)
1916 return -ENOMEM;
1917
1918 /* init the extra1 parameter with the reference to current netns */
1919 table[0].extra1 = net;
1920
1921 nn_vrf->ctl_hdr = register_net_sysctl_sz(net, "net/vrf", table,
1922 ARRAY_SIZE(vrf_table));
1923 if (!nn_vrf->ctl_hdr) {
1924 kfree(table);
1925 return -ENOMEM;
1926 }
1927
1928 return 0;
1929 }
1930
vrf_netns_exit_sysctl(struct net * net)1931 static void vrf_netns_exit_sysctl(struct net *net)
1932 {
1933 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1934 const struct ctl_table *table;
1935
1936 table = nn_vrf->ctl_hdr->ctl_table_arg;
1937 unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1938 kfree(table);
1939 }
1940 #else
vrf_netns_init_sysctl(struct net * net,struct netns_vrf * nn_vrf)1941 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1942 {
1943 return 0;
1944 }
1945
vrf_netns_exit_sysctl(struct net * net)1946 static void vrf_netns_exit_sysctl(struct net *net)
1947 {
1948 }
1949 #endif
1950
1951 /* Initialize per network namespace state */
vrf_netns_init(struct net * net)1952 static int __net_init vrf_netns_init(struct net *net)
1953 {
1954 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1955
1956 nn_vrf->add_fib_rules = true;
1957 vrf_map_init(&nn_vrf->vmap);
1958
1959 return vrf_netns_init_sysctl(net, nn_vrf);
1960 }
1961
vrf_netns_exit(struct net * net)1962 static void __net_exit vrf_netns_exit(struct net *net)
1963 {
1964 vrf_netns_exit_sysctl(net);
1965 }
1966
1967 static struct pernet_operations vrf_net_ops __net_initdata = {
1968 .init = vrf_netns_init,
1969 .exit = vrf_netns_exit,
1970 .id = &vrf_net_id,
1971 .size = sizeof(struct netns_vrf),
1972 };
1973
vrf_init_module(void)1974 static int __init vrf_init_module(void)
1975 {
1976 int rc;
1977
1978 register_netdevice_notifier(&vrf_notifier_block);
1979
1980 rc = register_pernet_subsys(&vrf_net_ops);
1981 if (rc < 0)
1982 goto error;
1983
1984 rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
1985 vrf_ifindex_lookup_by_table_id);
1986 if (rc < 0)
1987 goto unreg_pernet;
1988
1989 rc = rtnl_link_register(&vrf_link_ops);
1990 if (rc < 0)
1991 goto table_lookup_unreg;
1992
1993 return 0;
1994
1995 table_lookup_unreg:
1996 l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
1997 vrf_ifindex_lookup_by_table_id);
1998
1999 unreg_pernet:
2000 unregister_pernet_subsys(&vrf_net_ops);
2001
2002 error:
2003 unregister_netdevice_notifier(&vrf_notifier_block);
2004 return rc;
2005 }
2006
2007 module_init(vrf_init_module);
2008 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2009 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2010 MODULE_LICENSE("GPL");
2011 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2012 MODULE_VERSION(DRV_VERSION);
2013