xref: /linux/drivers/net/vrf.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * vrf.c: device driver to encapsulate a VRF space
4  *
5  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8  *
9  * Based on dummy, team and ipvlan drivers
10  */
11 
12 #include <linux/ethtool.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ip.h>
18 #include <linux/init.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netfilter.h>
21 #include <linux/rtnetlink.h>
22 #include <net/rtnetlink.h>
23 #include <linux/u64_stats_sync.h>
24 #include <linux/hashtable.h>
25 #include <linux/spinlock_types.h>
26 
27 #include <linux/inetdevice.h>
28 #include <net/arp.h>
29 #include <net/ip.h>
30 #include <net/ip_fib.h>
31 #include <net/ip6_fib.h>
32 #include <net/ip6_route.h>
33 #include <net/route.h>
34 #include <net/addrconf.h>
35 #include <net/l3mdev.h>
36 #include <net/fib_rules.h>
37 #include <net/netdev_lock.h>
38 #include <net/sch_generic.h>
39 #include <net/netns/generic.h>
40 #include <net/netfilter/nf_conntrack.h>
41 #include <net/inet_dscp.h>
42 
43 #define DRV_NAME	"vrf"
44 #define DRV_VERSION	"1.1"
45 
46 #define FIB_RULE_PREF  1000       /* default preference for FIB rules */
47 
48 #define HT_MAP_BITS	4
49 #define HASH_INITVAL	((u32)0xcafef00d)
50 
51 struct  vrf_map {
52 	DECLARE_HASHTABLE(ht, HT_MAP_BITS);
53 	spinlock_t vmap_lock;
54 
55 	/* shared_tables:
56 	 * count how many distinct tables do not comply with the strict mode
57 	 * requirement.
58 	 * shared_tables value must be 0 in order to enable the strict mode.
59 	 *
60 	 * example of the evolution of shared_tables:
61 	 *                                                        | time
62 	 * add  vrf0 --> table 100        shared_tables = 0       | t0
63 	 * add  vrf1 --> table 101        shared_tables = 0       | t1
64 	 * add  vrf2 --> table 100        shared_tables = 1       | t2
65 	 * add  vrf3 --> table 100        shared_tables = 1       | t3
66 	 * add  vrf4 --> table 101        shared_tables = 2       v t4
67 	 *
68 	 * shared_tables is a "step function" (or "staircase function")
69 	 * and it is increased by one when the second vrf is associated to a
70 	 * table.
71 	 *
72 	 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
73 	 *
74 	 * at t3, another dev (vrf3) is bound to the same table 100 but the
75 	 * value of shared_tables is still 1.
76 	 * This means that no matter how many new vrfs will register on the
77 	 * table 100, the shared_tables will not increase (considering only
78 	 * table 100).
79 	 *
80 	 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
81 	 *
82 	 * Looking at the value of shared_tables we can immediately know if
83 	 * the strict_mode can or cannot be enforced. Indeed, strict_mode
84 	 * can be enforced iff shared_tables = 0.
85 	 *
86 	 * Conversely, shared_tables is decreased when a vrf is de-associated
87 	 * from a table with exactly two associated vrfs.
88 	 */
89 	u32 shared_tables;
90 
91 	bool strict_mode;
92 };
93 
94 struct vrf_map_elem {
95 	struct hlist_node hnode;
96 	struct list_head vrf_list;  /* VRFs registered to this table */
97 
98 	u32 table_id;
99 	int users;
100 	int ifindex;
101 };
102 
103 static unsigned int vrf_net_id;
104 
105 /* per netns vrf data */
106 struct netns_vrf {
107 	/* protected by rtnl lock */
108 	bool add_fib_rules;
109 
110 	struct vrf_map vmap;
111 	struct ctl_table_header	*ctl_hdr;
112 };
113 
114 struct net_vrf {
115 	struct rtable __rcu	*rth;
116 	struct rt6_info	__rcu	*rt6;
117 #if IS_ENABLED(CONFIG_IPV6)
118 	struct fib6_table	*fib6_table;
119 #endif
120 	u32                     tb_id;
121 
122 	struct list_head	me_list;   /* entry in vrf_map_elem */
123 	int			ifindex;
124 };
125 
vrf_tx_error(struct net_device * vrf_dev,struct sk_buff * skb)126 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
127 {
128 	vrf_dev->stats.tx_errors++;
129 	kfree_skb(skb);
130 }
131 
netns_vrf_map(struct net * net)132 static struct vrf_map *netns_vrf_map(struct net *net)
133 {
134 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
135 
136 	return &nn_vrf->vmap;
137 }
138 
netns_vrf_map_by_dev(struct net_device * dev)139 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
140 {
141 	return netns_vrf_map(dev_net(dev));
142 }
143 
vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem * me)144 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
145 {
146 	struct list_head *me_head = &me->vrf_list;
147 	struct net_vrf *vrf;
148 
149 	if (list_empty(me_head))
150 		return -ENODEV;
151 
152 	vrf = list_first_entry(me_head, struct net_vrf, me_list);
153 
154 	return vrf->ifindex;
155 }
156 
vrf_map_elem_alloc(gfp_t flags)157 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
158 {
159 	struct vrf_map_elem *me;
160 
161 	me = kmalloc(sizeof(*me), flags);
162 	if (!me)
163 		return NULL;
164 
165 	return me;
166 }
167 
vrf_map_elem_free(struct vrf_map_elem * me)168 static void vrf_map_elem_free(struct vrf_map_elem *me)
169 {
170 	kfree(me);
171 }
172 
vrf_map_elem_init(struct vrf_map_elem * me,int table_id,int ifindex,int users)173 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
174 			      int ifindex, int users)
175 {
176 	me->table_id = table_id;
177 	me->ifindex = ifindex;
178 	me->users = users;
179 	INIT_LIST_HEAD(&me->vrf_list);
180 }
181 
vrf_map_lookup_elem(struct vrf_map * vmap,u32 table_id)182 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
183 						u32 table_id)
184 {
185 	struct vrf_map_elem *me;
186 	u32 key;
187 
188 	key = jhash_1word(table_id, HASH_INITVAL);
189 	hash_for_each_possible(vmap->ht, me, hnode, key) {
190 		if (me->table_id == table_id)
191 			return me;
192 	}
193 
194 	return NULL;
195 }
196 
vrf_map_add_elem(struct vrf_map * vmap,struct vrf_map_elem * me)197 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
198 {
199 	u32 table_id = me->table_id;
200 	u32 key;
201 
202 	key = jhash_1word(table_id, HASH_INITVAL);
203 	hash_add(vmap->ht, &me->hnode, key);
204 }
205 
vrf_map_del_elem(struct vrf_map_elem * me)206 static void vrf_map_del_elem(struct vrf_map_elem *me)
207 {
208 	hash_del(&me->hnode);
209 }
210 
vrf_map_lock(struct vrf_map * vmap)211 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
212 {
213 	spin_lock(&vmap->vmap_lock);
214 }
215 
vrf_map_unlock(struct vrf_map * vmap)216 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
217 {
218 	spin_unlock(&vmap->vmap_lock);
219 }
220 
221 /* called with rtnl lock held */
222 static int
vrf_map_register_dev(struct net_device * dev,struct netlink_ext_ack * extack)223 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
224 {
225 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
226 	struct net_vrf *vrf = netdev_priv(dev);
227 	struct vrf_map_elem *new_me, *me;
228 	u32 table_id = vrf->tb_id;
229 	bool free_new_me = false;
230 	int users;
231 	int res;
232 
233 	/* we pre-allocate elements used in the spin-locked section (so that we
234 	 * keep the spinlock as short as possible).
235 	 */
236 	new_me = vrf_map_elem_alloc(GFP_KERNEL);
237 	if (!new_me)
238 		return -ENOMEM;
239 
240 	vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
241 
242 	vrf_map_lock(vmap);
243 
244 	me = vrf_map_lookup_elem(vmap, table_id);
245 	if (!me) {
246 		me = new_me;
247 		vrf_map_add_elem(vmap, me);
248 		goto link_vrf;
249 	}
250 
251 	/* we already have an entry in the vrf_map, so it means there is (at
252 	 * least) a vrf registered on the specific table.
253 	 */
254 	free_new_me = true;
255 	if (vmap->strict_mode) {
256 		/* vrfs cannot share the same table */
257 		NL_SET_ERR_MSG(extack, "Table is used by another VRF");
258 		res = -EBUSY;
259 		goto unlock;
260 	}
261 
262 link_vrf:
263 	users = ++me->users;
264 	if (users == 2)
265 		++vmap->shared_tables;
266 
267 	list_add(&vrf->me_list, &me->vrf_list);
268 
269 	res = 0;
270 
271 unlock:
272 	vrf_map_unlock(vmap);
273 
274 	/* clean-up, if needed */
275 	if (free_new_me)
276 		vrf_map_elem_free(new_me);
277 
278 	return res;
279 }
280 
281 /* called with rtnl lock held */
vrf_map_unregister_dev(struct net_device * dev)282 static void vrf_map_unregister_dev(struct net_device *dev)
283 {
284 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
285 	struct net_vrf *vrf = netdev_priv(dev);
286 	u32 table_id = vrf->tb_id;
287 	struct vrf_map_elem *me;
288 	int users;
289 
290 	vrf_map_lock(vmap);
291 
292 	me = vrf_map_lookup_elem(vmap, table_id);
293 	if (!me)
294 		goto unlock;
295 
296 	list_del(&vrf->me_list);
297 
298 	users = --me->users;
299 	if (users == 1) {
300 		--vmap->shared_tables;
301 	} else if (users == 0) {
302 		vrf_map_del_elem(me);
303 
304 		/* no one will refer to this element anymore */
305 		vrf_map_elem_free(me);
306 	}
307 
308 unlock:
309 	vrf_map_unlock(vmap);
310 }
311 
312 /* return the vrf device index associated with the table_id */
vrf_ifindex_lookup_by_table_id(struct net * net,u32 table_id)313 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
314 {
315 	struct vrf_map *vmap = netns_vrf_map(net);
316 	struct vrf_map_elem *me;
317 	int ifindex;
318 
319 	vrf_map_lock(vmap);
320 
321 	if (!vmap->strict_mode) {
322 		ifindex = -EPERM;
323 		goto unlock;
324 	}
325 
326 	me = vrf_map_lookup_elem(vmap, table_id);
327 	if (!me) {
328 		ifindex = -ENODEV;
329 		goto unlock;
330 	}
331 
332 	ifindex = vrf_map_elem_get_vrf_ifindex(me);
333 
334 unlock:
335 	vrf_map_unlock(vmap);
336 
337 	return ifindex;
338 }
339 
340 /* by default VRF devices do not have a qdisc and are expected
341  * to be created with only a single queue.
342  */
qdisc_tx_is_default(const struct net_device * dev)343 static bool qdisc_tx_is_default(const struct net_device *dev)
344 {
345 	struct netdev_queue *txq;
346 	struct Qdisc *qdisc;
347 
348 	if (dev->num_tx_queues > 1)
349 		return false;
350 
351 	txq = netdev_get_tx_queue(dev, 0);
352 	qdisc = rcu_access_pointer(txq->qdisc);
353 
354 	return !qdisc->enqueue;
355 }
356 
357 /* Local traffic destined to local address. Reinsert the packet to rx
358  * path, similar to loopback handling.
359  */
vrf_local_xmit(struct sk_buff * skb,struct net_device * dev,struct dst_entry * dst)360 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
361 			  struct dst_entry *dst)
362 {
363 	unsigned int len = skb->len;
364 
365 	skb_orphan(skb);
366 
367 	skb_dst_set(skb, dst);
368 
369 	/* set pkt_type to avoid skb hitting packet taps twice -
370 	 * once on Tx and again in Rx processing
371 	 */
372 	skb->pkt_type = PACKET_LOOPBACK;
373 
374 	skb->protocol = eth_type_trans(skb, dev);
375 
376 	if (likely(__netif_rx(skb) == NET_RX_SUCCESS))
377 		dev_dstats_rx_add(dev, len);
378 	else
379 		dev_dstats_rx_dropped(dev);
380 
381 	return NETDEV_TX_OK;
382 }
383 
vrf_nf_set_untracked(struct sk_buff * skb)384 static void vrf_nf_set_untracked(struct sk_buff *skb)
385 {
386 	if (skb_get_nfct(skb) == 0)
387 		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
388 }
389 
vrf_nf_reset_ct(struct sk_buff * skb)390 static void vrf_nf_reset_ct(struct sk_buff *skb)
391 {
392 	if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
393 		nf_reset_ct(skb);
394 }
395 
396 #if IS_ENABLED(CONFIG_IPV6)
vrf_ip6_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)397 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
398 			     struct sk_buff *skb)
399 {
400 	int err;
401 
402 	vrf_nf_reset_ct(skb);
403 
404 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
405 		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
406 
407 	if (likely(err == 1))
408 		err = dst_output(net, sk, skb);
409 
410 	return err;
411 }
412 
vrf_process_v6_outbound(struct sk_buff * skb,struct net_device * dev)413 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
414 					   struct net_device *dev)
415 {
416 	const struct ipv6hdr *iph;
417 	struct net *net = dev_net(skb->dev);
418 	struct flowi6 fl6;
419 	int ret = NET_XMIT_DROP;
420 	struct dst_entry *dst;
421 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
422 
423 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
424 		goto err;
425 
426 	iph = ipv6_hdr(skb);
427 
428 	memset(&fl6, 0, sizeof(fl6));
429 	/* needed to match OIF rule */
430 	fl6.flowi6_l3mdev = dev->ifindex;
431 	fl6.flowi6_iif = LOOPBACK_IFINDEX;
432 	fl6.daddr = iph->daddr;
433 	fl6.saddr = iph->saddr;
434 	fl6.flowlabel = ip6_flowinfo(iph);
435 	fl6.flowi6_mark = skb->mark;
436 	fl6.flowi6_proto = iph->nexthdr;
437 
438 	dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
439 	if (IS_ERR(dst) || dst == dst_null)
440 		goto err;
441 
442 	skb_dst_drop(skb);
443 
444 	/* if dst.dev is the VRF device again this is locally originated traffic
445 	 * destined to a local address. Short circuit to Rx path.
446 	 */
447 	if (dst->dev == dev)
448 		return vrf_local_xmit(skb, dev, dst);
449 
450 	skb_dst_set(skb, dst);
451 
452 	/* strip the ethernet header added for pass through VRF device */
453 	__skb_pull(skb, skb_network_offset(skb));
454 
455 	memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
456 	ret = vrf_ip6_local_out(net, skb->sk, skb);
457 	if (unlikely(net_xmit_eval(ret)))
458 		dev->stats.tx_errors++;
459 	else
460 		ret = NET_XMIT_SUCCESS;
461 
462 	return ret;
463 err:
464 	vrf_tx_error(dev, skb);
465 	return NET_XMIT_DROP;
466 }
467 #else
vrf_process_v6_outbound(struct sk_buff * skb,struct net_device * dev)468 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
469 					   struct net_device *dev)
470 {
471 	vrf_tx_error(dev, skb);
472 	return NET_XMIT_DROP;
473 }
474 #endif
475 
476 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
vrf_ip_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)477 static int vrf_ip_local_out(struct net *net, struct sock *sk,
478 			    struct sk_buff *skb)
479 {
480 	int err;
481 
482 	vrf_nf_reset_ct(skb);
483 
484 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
485 		      skb, NULL, skb_dst(skb)->dev, dst_output);
486 	if (likely(err == 1))
487 		err = dst_output(net, sk, skb);
488 
489 	return err;
490 }
491 
vrf_process_v4_outbound(struct sk_buff * skb,struct net_device * vrf_dev)492 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
493 					   struct net_device *vrf_dev)
494 {
495 	struct iphdr *ip4h;
496 	int ret = NET_XMIT_DROP;
497 	struct flowi4 fl4;
498 	struct net *net = dev_net(vrf_dev);
499 	struct rtable *rt;
500 
501 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
502 		goto err;
503 
504 	ip4h = ip_hdr(skb);
505 
506 	memset(&fl4, 0, sizeof(fl4));
507 	/* needed to match OIF rule */
508 	fl4.flowi4_l3mdev = vrf_dev->ifindex;
509 	fl4.flowi4_iif = LOOPBACK_IFINDEX;
510 	fl4.flowi4_tos = inet_dscp_to_dsfield(ip4h_dscp(ip4h));
511 	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC;
512 	fl4.flowi4_proto = ip4h->protocol;
513 	fl4.daddr = ip4h->daddr;
514 	fl4.saddr = ip4h->saddr;
515 
516 	rt = ip_route_output_flow(net, &fl4, NULL);
517 	if (IS_ERR(rt))
518 		goto err;
519 
520 	skb_dst_drop(skb);
521 
522 	/* if dst.dev is the VRF device again this is locally originated traffic
523 	 * destined to a local address. Short circuit to Rx path.
524 	 */
525 	if (rt->dst.dev == vrf_dev)
526 		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
527 
528 	skb_dst_set(skb, &rt->dst);
529 
530 	/* strip the ethernet header added for pass through VRF device */
531 	__skb_pull(skb, skb_network_offset(skb));
532 
533 	if (!ip4h->saddr) {
534 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
535 					       RT_SCOPE_LINK);
536 	}
537 
538 	memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
539 	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
540 	if (unlikely(net_xmit_eval(ret)))
541 		vrf_dev->stats.tx_errors++;
542 	else
543 		ret = NET_XMIT_SUCCESS;
544 
545 out:
546 	return ret;
547 err:
548 	vrf_tx_error(vrf_dev, skb);
549 	goto out;
550 }
551 
is_ip_tx_frame(struct sk_buff * skb,struct net_device * dev)552 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
553 {
554 	switch (skb->protocol) {
555 	case htons(ETH_P_IP):
556 		return vrf_process_v4_outbound(skb, dev);
557 	case htons(ETH_P_IPV6):
558 		return vrf_process_v6_outbound(skb, dev);
559 	default:
560 		vrf_tx_error(dev, skb);
561 		return NET_XMIT_DROP;
562 	}
563 }
564 
vrf_xmit(struct sk_buff * skb,struct net_device * dev)565 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
566 {
567 	unsigned int len = skb->len;
568 	netdev_tx_t ret;
569 
570 	ret = is_ip_tx_frame(skb, dev);
571 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN))
572 		dev_dstats_tx_add(dev, len);
573 	else
574 		dev_dstats_tx_dropped(dev);
575 
576 	return ret;
577 }
578 
vrf_finish_direct(struct sk_buff * skb)579 static void vrf_finish_direct(struct sk_buff *skb)
580 {
581 	struct net_device *vrf_dev = skb->dev;
582 
583 	if (!list_empty(&vrf_dev->ptype_all) &&
584 	    likely(skb_headroom(skb) >= ETH_HLEN)) {
585 		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
586 
587 		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
588 		eth_zero_addr(eth->h_dest);
589 		eth->h_proto = skb->protocol;
590 
591 		rcu_read_lock_bh();
592 		dev_queue_xmit_nit(skb, vrf_dev);
593 		rcu_read_unlock_bh();
594 
595 		skb_pull(skb, ETH_HLEN);
596 	}
597 
598 	vrf_nf_reset_ct(skb);
599 }
600 
601 #if IS_ENABLED(CONFIG_IPV6)
602 /* modelled after ip6_finish_output2 */
vrf_finish_output6(struct net * net,struct sock * sk,struct sk_buff * skb)603 static int vrf_finish_output6(struct net *net, struct sock *sk,
604 			      struct sk_buff *skb)
605 {
606 	struct dst_entry *dst = skb_dst(skb);
607 	struct net_device *dev = dst->dev;
608 	const struct in6_addr *nexthop;
609 	struct neighbour *neigh;
610 	int ret;
611 
612 	vrf_nf_reset_ct(skb);
613 
614 	skb->protocol = htons(ETH_P_IPV6);
615 	skb->dev = dev;
616 
617 	rcu_read_lock();
618 	nexthop = rt6_nexthop(dst_rt6_info(dst), &ipv6_hdr(skb)->daddr);
619 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
620 	if (unlikely(!neigh))
621 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
622 	if (!IS_ERR(neigh)) {
623 		sock_confirm_neigh(skb, neigh);
624 		ret = neigh_output(neigh, skb, false);
625 		rcu_read_unlock();
626 		return ret;
627 	}
628 	rcu_read_unlock();
629 
630 	IP6_INC_STATS(dev_net(dst->dev),
631 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
632 	kfree_skb(skb);
633 	return -EINVAL;
634 }
635 
636 /* modelled after ip6_output */
vrf_output6(struct net * net,struct sock * sk,struct sk_buff * skb)637 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
638 {
639 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
640 			    net, sk, skb, NULL, skb_dst(skb)->dev,
641 			    vrf_finish_output6,
642 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
643 }
644 
645 /* set dst on skb to send packet to us via dev_xmit path. Allows
646  * packet to go through device based features such as qdisc, netfilter
647  * hooks and packet sockets with skb->dev set to vrf device.
648  */
vrf_ip6_out_redirect(struct net_device * vrf_dev,struct sk_buff * skb)649 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
650 					    struct sk_buff *skb)
651 {
652 	struct net_vrf *vrf = netdev_priv(vrf_dev);
653 	struct dst_entry *dst = NULL;
654 	struct rt6_info *rt6;
655 
656 	rcu_read_lock();
657 
658 	rt6 = rcu_dereference(vrf->rt6);
659 	if (likely(rt6)) {
660 		dst = &rt6->dst;
661 		dst_hold(dst);
662 	}
663 
664 	rcu_read_unlock();
665 
666 	if (unlikely(!dst)) {
667 		vrf_tx_error(vrf_dev, skb);
668 		return NULL;
669 	}
670 
671 	skb_dst_drop(skb);
672 	skb_dst_set(skb, dst);
673 
674 	return skb;
675 }
676 
vrf_output6_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)677 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
678 				     struct sk_buff *skb)
679 {
680 	vrf_finish_direct(skb);
681 
682 	return vrf_ip6_local_out(net, sk, skb);
683 }
684 
vrf_output6_direct(struct net * net,struct sock * sk,struct sk_buff * skb)685 static int vrf_output6_direct(struct net *net, struct sock *sk,
686 			      struct sk_buff *skb)
687 {
688 	int err = 1;
689 
690 	skb->protocol = htons(ETH_P_IPV6);
691 
692 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
693 		err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
694 			      NULL, skb->dev, vrf_output6_direct_finish);
695 
696 	if (likely(err == 1))
697 		vrf_finish_direct(skb);
698 
699 	return err;
700 }
701 
vrf_ip6_out_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)702 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
703 				     struct sk_buff *skb)
704 {
705 	int err;
706 
707 	err = vrf_output6_direct(net, sk, skb);
708 	if (likely(err == 1))
709 		err = vrf_ip6_local_out(net, sk, skb);
710 
711 	return err;
712 }
713 
vrf_ip6_out_direct(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)714 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
715 					  struct sock *sk,
716 					  struct sk_buff *skb)
717 {
718 	struct net *net = dev_net(vrf_dev);
719 	int err;
720 
721 	skb->dev = vrf_dev;
722 
723 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
724 		      skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
725 
726 	if (likely(err == 1))
727 		err = vrf_output6_direct(net, sk, skb);
728 
729 	if (likely(err == 1))
730 		return skb;
731 
732 	return NULL;
733 }
734 
vrf_ip6_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)735 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
736 				   struct sock *sk,
737 				   struct sk_buff *skb)
738 {
739 	/* don't divert link scope packets */
740 	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
741 		return skb;
742 
743 	vrf_nf_set_untracked(skb);
744 
745 	if (qdisc_tx_is_default(vrf_dev) ||
746 	    IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
747 		return vrf_ip6_out_direct(vrf_dev, sk, skb);
748 
749 	return vrf_ip6_out_redirect(vrf_dev, skb);
750 }
751 
752 /* holding rtnl */
vrf_rt6_release(struct net_device * dev,struct net_vrf * vrf)753 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
754 {
755 	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
756 	struct net *net = dev_net(dev);
757 	struct dst_entry *dst;
758 
759 	RCU_INIT_POINTER(vrf->rt6, NULL);
760 	synchronize_rcu();
761 
762 	/* move dev in dst's to loopback so this VRF device can be deleted
763 	 * - based on dst_ifdown
764 	 */
765 	if (rt6) {
766 		dst = &rt6->dst;
767 		netdev_ref_replace(dst->dev, net->loopback_dev,
768 				   &dst->dev_tracker, GFP_KERNEL);
769 		dst->dev = net->loopback_dev;
770 		dst_release(dst);
771 	}
772 }
773 
vrf_rt6_create(struct net_device * dev)774 static int vrf_rt6_create(struct net_device *dev)
775 {
776 	int flags = DST_NOPOLICY | DST_NOXFRM;
777 	struct net_vrf *vrf = netdev_priv(dev);
778 	struct net *net = dev_net(dev);
779 	struct rt6_info *rt6;
780 	int rc = -ENOMEM;
781 
782 	/* IPv6 can be CONFIG enabled and then disabled runtime */
783 	if (!ipv6_mod_enabled())
784 		return 0;
785 
786 	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
787 	if (!vrf->fib6_table)
788 		goto out;
789 
790 	/* create a dst for routing packets out a VRF device */
791 	rt6 = ip6_dst_alloc(net, dev, flags);
792 	if (!rt6)
793 		goto out;
794 
795 	rt6->dst.output	= vrf_output6;
796 
797 	rcu_assign_pointer(vrf->rt6, rt6);
798 
799 	rc = 0;
800 out:
801 	return rc;
802 }
803 #else
vrf_ip6_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)804 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
805 				   struct sock *sk,
806 				   struct sk_buff *skb)
807 {
808 	return skb;
809 }
810 
vrf_rt6_release(struct net_device * dev,struct net_vrf * vrf)811 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
812 {
813 }
814 
vrf_rt6_create(struct net_device * dev)815 static int vrf_rt6_create(struct net_device *dev)
816 {
817 	return 0;
818 }
819 #endif
820 
821 /* modelled after ip_finish_output2 */
vrf_finish_output(struct net * net,struct sock * sk,struct sk_buff * skb)822 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
823 {
824 	struct dst_entry *dst = skb_dst(skb);
825 	struct rtable *rt = dst_rtable(dst);
826 	struct net_device *dev = dst->dev;
827 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
828 	struct neighbour *neigh;
829 	bool is_v6gw = false;
830 
831 	vrf_nf_reset_ct(skb);
832 
833 	/* Be paranoid, rather than too clever. */
834 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
835 		skb = skb_expand_head(skb, hh_len);
836 		if (!skb) {
837 			dev->stats.tx_errors++;
838 			return -ENOMEM;
839 		}
840 	}
841 
842 	rcu_read_lock();
843 
844 	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
845 	if (!IS_ERR(neigh)) {
846 		int ret;
847 
848 		sock_confirm_neigh(skb, neigh);
849 		/* if crossing protocols, can not use the cached header */
850 		ret = neigh_output(neigh, skb, is_v6gw);
851 		rcu_read_unlock();
852 		return ret;
853 	}
854 
855 	rcu_read_unlock();
856 	vrf_tx_error(skb->dev, skb);
857 	return -EINVAL;
858 }
859 
vrf_output(struct net * net,struct sock * sk,struct sk_buff * skb)860 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
861 {
862 	struct net_device *dev = skb_dst(skb)->dev;
863 
864 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
865 
866 	skb->dev = dev;
867 	skb->protocol = htons(ETH_P_IP);
868 
869 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
870 			    net, sk, skb, NULL, dev,
871 			    vrf_finish_output,
872 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
873 }
874 
875 /* set dst on skb to send packet to us via dev_xmit path. Allows
876  * packet to go through device based features such as qdisc, netfilter
877  * hooks and packet sockets with skb->dev set to vrf device.
878  */
vrf_ip_out_redirect(struct net_device * vrf_dev,struct sk_buff * skb)879 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
880 					   struct sk_buff *skb)
881 {
882 	struct net_vrf *vrf = netdev_priv(vrf_dev);
883 	struct dst_entry *dst = NULL;
884 	struct rtable *rth;
885 
886 	rcu_read_lock();
887 
888 	rth = rcu_dereference(vrf->rth);
889 	if (likely(rth)) {
890 		dst = &rth->dst;
891 		dst_hold(dst);
892 	}
893 
894 	rcu_read_unlock();
895 
896 	if (unlikely(!dst)) {
897 		vrf_tx_error(vrf_dev, skb);
898 		return NULL;
899 	}
900 
901 	skb_dst_drop(skb);
902 	skb_dst_set(skb, dst);
903 
904 	return skb;
905 }
906 
vrf_output_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)907 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
908 				    struct sk_buff *skb)
909 {
910 	vrf_finish_direct(skb);
911 
912 	return vrf_ip_local_out(net, sk, skb);
913 }
914 
vrf_output_direct(struct net * net,struct sock * sk,struct sk_buff * skb)915 static int vrf_output_direct(struct net *net, struct sock *sk,
916 			     struct sk_buff *skb)
917 {
918 	int err = 1;
919 
920 	skb->protocol = htons(ETH_P_IP);
921 
922 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
923 		err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
924 			      NULL, skb->dev, vrf_output_direct_finish);
925 
926 	if (likely(err == 1))
927 		vrf_finish_direct(skb);
928 
929 	return err;
930 }
931 
vrf_ip_out_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)932 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
933 				    struct sk_buff *skb)
934 {
935 	int err;
936 
937 	err = vrf_output_direct(net, sk, skb);
938 	if (likely(err == 1))
939 		err = vrf_ip_local_out(net, sk, skb);
940 
941 	return err;
942 }
943 
vrf_ip_out_direct(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)944 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
945 					 struct sock *sk,
946 					 struct sk_buff *skb)
947 {
948 	struct net *net = dev_net(vrf_dev);
949 	int err;
950 
951 	skb->dev = vrf_dev;
952 
953 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
954 		      skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
955 
956 	if (likely(err == 1))
957 		err = vrf_output_direct(net, sk, skb);
958 
959 	if (likely(err == 1))
960 		return skb;
961 
962 	return NULL;
963 }
964 
vrf_ip_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)965 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
966 				  struct sock *sk,
967 				  struct sk_buff *skb)
968 {
969 	/* don't divert multicast or local broadcast */
970 	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
971 	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
972 		return skb;
973 
974 	vrf_nf_set_untracked(skb);
975 
976 	if (qdisc_tx_is_default(vrf_dev) ||
977 	    IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
978 		return vrf_ip_out_direct(vrf_dev, sk, skb);
979 
980 	return vrf_ip_out_redirect(vrf_dev, skb);
981 }
982 
983 /* called with rcu lock held */
vrf_l3_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb,u16 proto)984 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
985 				  struct sock *sk,
986 				  struct sk_buff *skb,
987 				  u16 proto)
988 {
989 	switch (proto) {
990 	case AF_INET:
991 		return vrf_ip_out(vrf_dev, sk, skb);
992 	case AF_INET6:
993 		return vrf_ip6_out(vrf_dev, sk, skb);
994 	}
995 
996 	return skb;
997 }
998 
999 /* holding rtnl */
vrf_rtable_release(struct net_device * dev,struct net_vrf * vrf)1000 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1001 {
1002 	struct rtable *rth = rtnl_dereference(vrf->rth);
1003 	struct net *net = dev_net(dev);
1004 	struct dst_entry *dst;
1005 
1006 	RCU_INIT_POINTER(vrf->rth, NULL);
1007 	synchronize_rcu();
1008 
1009 	/* move dev in dst's to loopback so this VRF device can be deleted
1010 	 * - based on dst_ifdown
1011 	 */
1012 	if (rth) {
1013 		dst = &rth->dst;
1014 		netdev_ref_replace(dst->dev, net->loopback_dev,
1015 				   &dst->dev_tracker, GFP_KERNEL);
1016 		dst->dev = net->loopback_dev;
1017 		dst_release(dst);
1018 	}
1019 }
1020 
vrf_rtable_create(struct net_device * dev)1021 static int vrf_rtable_create(struct net_device *dev)
1022 {
1023 	struct net_vrf *vrf = netdev_priv(dev);
1024 	struct rtable *rth;
1025 
1026 	if (!fib_new_table(dev_net(dev), vrf->tb_id))
1027 		return -ENOMEM;
1028 
1029 	/* create a dst for routing packets out through a VRF device */
1030 	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1);
1031 	if (!rth)
1032 		return -ENOMEM;
1033 
1034 	rth->dst.output	= vrf_output;
1035 
1036 	rcu_assign_pointer(vrf->rth, rth);
1037 
1038 	return 0;
1039 }
1040 
1041 /**************************** device handling ********************/
1042 
1043 /* cycle interface to flush neighbor cache and move routes across tables */
cycle_netdev(struct net_device * dev,struct netlink_ext_ack * extack)1044 static void cycle_netdev(struct net_device *dev,
1045 			 struct netlink_ext_ack *extack)
1046 {
1047 	unsigned int flags = dev->flags;
1048 	int ret;
1049 
1050 	if (!netif_running(dev))
1051 		return;
1052 
1053 	ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1054 	if (ret >= 0)
1055 		ret = dev_change_flags(dev, flags, extack);
1056 
1057 	if (ret < 0) {
1058 		netdev_err(dev,
1059 			   "Failed to cycle device %s; route tables might be wrong!\n",
1060 			   dev->name);
1061 	}
1062 }
1063 
do_vrf_add_slave(struct net_device * dev,struct net_device * port_dev,struct netlink_ext_ack * extack)1064 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1065 			    struct netlink_ext_ack *extack)
1066 {
1067 	int ret;
1068 
1069 	/* do not allow loopback device to be enslaved to a VRF.
1070 	 * The vrf device acts as the loopback for the vrf.
1071 	 */
1072 	if (port_dev == dev_net(dev)->loopback_dev) {
1073 		NL_SET_ERR_MSG(extack,
1074 			       "Can not enslave loopback device to a VRF");
1075 		return -EOPNOTSUPP;
1076 	}
1077 
1078 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1079 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1080 	if (ret < 0)
1081 		goto err;
1082 
1083 	cycle_netdev(port_dev, extack);
1084 
1085 	return 0;
1086 
1087 err:
1088 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1089 	return ret;
1090 }
1091 
vrf_add_slave(struct net_device * dev,struct net_device * port_dev,struct netlink_ext_ack * extack)1092 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1093 			 struct netlink_ext_ack *extack)
1094 {
1095 	if (netif_is_l3_master(port_dev)) {
1096 		NL_SET_ERR_MSG(extack,
1097 			       "Can not enslave an L3 master device to a VRF");
1098 		return -EINVAL;
1099 	}
1100 
1101 	if (netif_is_l3_slave(port_dev))
1102 		return -EINVAL;
1103 
1104 	return do_vrf_add_slave(dev, port_dev, extack);
1105 }
1106 
1107 /* inverse of do_vrf_add_slave */
do_vrf_del_slave(struct net_device * dev,struct net_device * port_dev)1108 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1109 {
1110 	netdev_upper_dev_unlink(port_dev, dev);
1111 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1112 
1113 	cycle_netdev(port_dev, NULL);
1114 
1115 	return 0;
1116 }
1117 
vrf_del_slave(struct net_device * dev,struct net_device * port_dev)1118 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1119 {
1120 	return do_vrf_del_slave(dev, port_dev);
1121 }
1122 
vrf_dev_uninit(struct net_device * dev)1123 static void vrf_dev_uninit(struct net_device *dev)
1124 {
1125 	struct net_vrf *vrf = netdev_priv(dev);
1126 
1127 	vrf_rtable_release(dev, vrf);
1128 	vrf_rt6_release(dev, vrf);
1129 }
1130 
vrf_dev_init(struct net_device * dev)1131 static int vrf_dev_init(struct net_device *dev)
1132 {
1133 	struct net_vrf *vrf = netdev_priv(dev);
1134 
1135 	/* create the default dst which points back to us */
1136 	if (vrf_rtable_create(dev) != 0)
1137 		goto out_nomem;
1138 
1139 	if (vrf_rt6_create(dev) != 0)
1140 		goto out_rth;
1141 
1142 	dev->flags = IFF_MASTER | IFF_NOARP;
1143 
1144 	/* similarly, oper state is irrelevant; set to up to avoid confusion */
1145 	dev->operstate = IF_OPER_UP;
1146 	netdev_lockdep_set_classes(dev);
1147 	return 0;
1148 
1149 out_rth:
1150 	vrf_rtable_release(dev, vrf);
1151 out_nomem:
1152 	return -ENOMEM;
1153 }
1154 
1155 static const struct net_device_ops vrf_netdev_ops = {
1156 	.ndo_init		= vrf_dev_init,
1157 	.ndo_uninit		= vrf_dev_uninit,
1158 	.ndo_start_xmit		= vrf_xmit,
1159 	.ndo_set_mac_address	= eth_mac_addr,
1160 	.ndo_add_slave		= vrf_add_slave,
1161 	.ndo_del_slave		= vrf_del_slave,
1162 };
1163 
vrf_fib_table(const struct net_device * dev)1164 static u32 vrf_fib_table(const struct net_device *dev)
1165 {
1166 	struct net_vrf *vrf = netdev_priv(dev);
1167 
1168 	return vrf->tb_id;
1169 }
1170 
vrf_rcv_finish(struct net * net,struct sock * sk,struct sk_buff * skb)1171 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1172 {
1173 	kfree_skb(skb);
1174 	return 0;
1175 }
1176 
vrf_rcv_nfhook(u8 pf,unsigned int hook,struct sk_buff * skb,struct net_device * dev)1177 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1178 				      struct sk_buff *skb,
1179 				      struct net_device *dev)
1180 {
1181 	struct net *net = dev_net(dev);
1182 
1183 	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1184 		skb = NULL;    /* kfree_skb(skb) handled by nf code */
1185 
1186 	return skb;
1187 }
1188 
vrf_prepare_mac_header(struct sk_buff * skb,struct net_device * vrf_dev,u16 proto)1189 static int vrf_prepare_mac_header(struct sk_buff *skb,
1190 				  struct net_device *vrf_dev, u16 proto)
1191 {
1192 	struct ethhdr *eth;
1193 	int err;
1194 
1195 	/* in general, we do not know if there is enough space in the head of
1196 	 * the packet for hosting the mac header.
1197 	 */
1198 	err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1199 	if (unlikely(err))
1200 		/* no space in the skb head */
1201 		return -ENOBUFS;
1202 
1203 	__skb_push(skb, ETH_HLEN);
1204 	eth = (struct ethhdr *)skb->data;
1205 
1206 	skb_reset_mac_header(skb);
1207 	skb_reset_mac_len(skb);
1208 
1209 	/* we set the ethernet destination and the source addresses to the
1210 	 * address of the VRF device.
1211 	 */
1212 	ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1213 	ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1214 	eth->h_proto = htons(proto);
1215 
1216 	/* the destination address of the Ethernet frame corresponds to the
1217 	 * address set on the VRF interface; therefore, the packet is intended
1218 	 * to be processed locally.
1219 	 */
1220 	skb->protocol = eth->h_proto;
1221 	skb->pkt_type = PACKET_HOST;
1222 
1223 	skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1224 
1225 	skb_pull_inline(skb, ETH_HLEN);
1226 
1227 	return 0;
1228 }
1229 
1230 /* prepare and add the mac header to the packet if it was not set previously.
1231  * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1232  * If the mac header was already set, the original mac header is left
1233  * untouched and the function returns immediately.
1234  */
vrf_add_mac_header_if_unset(struct sk_buff * skb,struct net_device * vrf_dev,u16 proto,struct net_device * orig_dev)1235 static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1236 				       struct net_device *vrf_dev,
1237 				       u16 proto, struct net_device *orig_dev)
1238 {
1239 	if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev))
1240 		return 0;
1241 
1242 	return vrf_prepare_mac_header(skb, vrf_dev, proto);
1243 }
1244 
1245 #if IS_ENABLED(CONFIG_IPV6)
1246 /* neighbor handling is done with actual device; do not want
1247  * to flip skb->dev for those ndisc packets. This really fails
1248  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1249  * a start.
1250  */
ipv6_ndisc_frame(const struct sk_buff * skb)1251 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1252 {
1253 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1254 	bool rc = false;
1255 
1256 	if (iph->nexthdr == NEXTHDR_ICMP) {
1257 		const struct icmp6hdr *icmph;
1258 		struct icmp6hdr _icmph;
1259 
1260 		icmph = skb_header_pointer(skb, sizeof(*iph),
1261 					   sizeof(_icmph), &_icmph);
1262 		if (!icmph)
1263 			goto out;
1264 
1265 		switch (icmph->icmp6_type) {
1266 		case NDISC_ROUTER_SOLICITATION:
1267 		case NDISC_ROUTER_ADVERTISEMENT:
1268 		case NDISC_NEIGHBOUR_SOLICITATION:
1269 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
1270 		case NDISC_REDIRECT:
1271 			rc = true;
1272 			break;
1273 		}
1274 	}
1275 
1276 out:
1277 	return rc;
1278 }
1279 
vrf_ip6_route_lookup(struct net * net,const struct net_device * dev,struct flowi6 * fl6,int ifindex,const struct sk_buff * skb,int flags)1280 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1281 					     const struct net_device *dev,
1282 					     struct flowi6 *fl6,
1283 					     int ifindex,
1284 					     const struct sk_buff *skb,
1285 					     int flags)
1286 {
1287 	struct net_vrf *vrf = netdev_priv(dev);
1288 
1289 	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1290 }
1291 
vrf_ip6_input_dst(struct sk_buff * skb,struct net_device * vrf_dev,int ifindex)1292 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1293 			      int ifindex)
1294 {
1295 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1296 	struct flowi6 fl6 = {
1297 		.flowi6_iif     = ifindex,
1298 		.flowi6_mark    = skb->mark,
1299 		.flowi6_proto   = iph->nexthdr,
1300 		.daddr          = iph->daddr,
1301 		.saddr          = iph->saddr,
1302 		.flowlabel      = ip6_flowinfo(iph),
1303 	};
1304 	struct net *net = dev_net(vrf_dev);
1305 	struct rt6_info *rt6;
1306 
1307 	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1308 				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1309 	if (unlikely(!rt6))
1310 		return;
1311 
1312 	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1313 		return;
1314 
1315 	skb_dst_set(skb, &rt6->dst);
1316 }
1317 
vrf_ip6_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1318 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1319 				   struct sk_buff *skb)
1320 {
1321 	int orig_iif = skb->skb_iif;
1322 	bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1323 	bool is_ndisc = ipv6_ndisc_frame(skb);
1324 
1325 	/* loopback, multicast & non-ND link-local traffic; do not push through
1326 	 * packet taps again. Reset pkt_type for upper layers to process skb.
1327 	 * For non-loopback strict packets, determine the dst using the original
1328 	 * ifindex.
1329 	 */
1330 	if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1331 		skb->dev = vrf_dev;
1332 		skb->skb_iif = vrf_dev->ifindex;
1333 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1334 
1335 		if (skb->pkt_type == PACKET_LOOPBACK)
1336 			skb->pkt_type = PACKET_HOST;
1337 		else
1338 			vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1339 
1340 		goto out;
1341 	}
1342 
1343 	/* if packet is NDISC then keep the ingress interface */
1344 	if (!is_ndisc) {
1345 		struct net_device *orig_dev = skb->dev;
1346 
1347 		dev_dstats_rx_add(vrf_dev, skb->len);
1348 		skb->dev = vrf_dev;
1349 		skb->skb_iif = vrf_dev->ifindex;
1350 
1351 		if (!list_empty(&vrf_dev->ptype_all)) {
1352 			int err;
1353 
1354 			err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1355 							  ETH_P_IPV6,
1356 							  orig_dev);
1357 			if (likely(!err)) {
1358 				skb_push(skb, skb->mac_len);
1359 				dev_queue_xmit_nit(skb, vrf_dev);
1360 				skb_pull(skb, skb->mac_len);
1361 			}
1362 		}
1363 
1364 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1365 	}
1366 
1367 	if (need_strict)
1368 		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1369 
1370 	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1371 out:
1372 	return skb;
1373 }
1374 
1375 #else
vrf_ip6_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1376 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1377 				   struct sk_buff *skb)
1378 {
1379 	return skb;
1380 }
1381 #endif
1382 
vrf_ip_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1383 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1384 				  struct sk_buff *skb)
1385 {
1386 	struct net_device *orig_dev = skb->dev;
1387 
1388 	skb->dev = vrf_dev;
1389 	skb->skb_iif = vrf_dev->ifindex;
1390 	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1391 
1392 	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1393 		goto out;
1394 
1395 	/* loopback traffic; do not push through packet taps again.
1396 	 * Reset pkt_type for upper layers to process skb
1397 	 */
1398 	if (skb->pkt_type == PACKET_LOOPBACK) {
1399 		skb->pkt_type = PACKET_HOST;
1400 		goto out;
1401 	}
1402 
1403 	dev_dstats_rx_add(vrf_dev, skb->len);
1404 
1405 	if (!list_empty(&vrf_dev->ptype_all)) {
1406 		int err;
1407 
1408 		err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP,
1409 						  orig_dev);
1410 		if (likely(!err)) {
1411 			skb_push(skb, skb->mac_len);
1412 			dev_queue_xmit_nit(skb, vrf_dev);
1413 			skb_pull(skb, skb->mac_len);
1414 		}
1415 	}
1416 
1417 	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1418 out:
1419 	return skb;
1420 }
1421 
1422 /* called with rcu lock held */
vrf_l3_rcv(struct net_device * vrf_dev,struct sk_buff * skb,u16 proto)1423 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1424 				  struct sk_buff *skb,
1425 				  u16 proto)
1426 {
1427 	switch (proto) {
1428 	case AF_INET:
1429 		return vrf_ip_rcv(vrf_dev, skb);
1430 	case AF_INET6:
1431 		return vrf_ip6_rcv(vrf_dev, skb);
1432 	}
1433 
1434 	return skb;
1435 }
1436 
1437 #if IS_ENABLED(CONFIG_IPV6)
1438 /* send to link-local or multicast address via interface enslaved to
1439  * VRF device. Force lookup to VRF table without changing flow struct
1440  * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1441  * is taken on the dst by this function.
1442  */
vrf_link_scope_lookup(const struct net_device * dev,struct flowi6 * fl6)1443 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1444 					      struct flowi6 *fl6)
1445 {
1446 	struct net *net = dev_net(dev);
1447 	int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1448 	struct dst_entry *dst = NULL;
1449 	struct rt6_info *rt;
1450 
1451 	/* VRF device does not have a link-local address and
1452 	 * sending packets to link-local or mcast addresses over
1453 	 * a VRF device does not make sense
1454 	 */
1455 	if (fl6->flowi6_oif == dev->ifindex) {
1456 		dst = &net->ipv6.ip6_null_entry->dst;
1457 		return dst;
1458 	}
1459 
1460 	if (!ipv6_addr_any(&fl6->saddr))
1461 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1462 
1463 	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1464 	if (rt)
1465 		dst = &rt->dst;
1466 
1467 	return dst;
1468 }
1469 #endif
1470 
1471 static const struct l3mdev_ops vrf_l3mdev_ops = {
1472 	.l3mdev_fib_table	= vrf_fib_table,
1473 	.l3mdev_l3_rcv		= vrf_l3_rcv,
1474 	.l3mdev_l3_out		= vrf_l3_out,
1475 #if IS_ENABLED(CONFIG_IPV6)
1476 	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1477 #endif
1478 };
1479 
vrf_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1480 static void vrf_get_drvinfo(struct net_device *dev,
1481 			    struct ethtool_drvinfo *info)
1482 {
1483 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1484 	strscpy(info->version, DRV_VERSION, sizeof(info->version));
1485 }
1486 
1487 static const struct ethtool_ops vrf_ethtool_ops = {
1488 	.get_drvinfo	= vrf_get_drvinfo,
1489 };
1490 
vrf_fib_rule_nl_size(void)1491 static inline size_t vrf_fib_rule_nl_size(void)
1492 {
1493 	size_t sz;
1494 
1495 	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1496 	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1497 	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1498 	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1499 
1500 	return sz;
1501 }
1502 
vrf_fib_rule(const struct net_device * dev,__u8 family,bool add_it)1503 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1504 {
1505 	struct fib_rule_hdr *frh;
1506 	struct nlmsghdr *nlh;
1507 	struct sk_buff *skb;
1508 	int err;
1509 
1510 	if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1511 	    !ipv6_mod_enabled())
1512 		return 0;
1513 
1514 	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1515 	if (!skb)
1516 		return -ENOMEM;
1517 
1518 	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1519 	if (!nlh)
1520 		goto nla_put_failure;
1521 
1522 	/* rule only needs to appear once */
1523 	nlh->nlmsg_flags |= NLM_F_EXCL;
1524 
1525 	frh = nlmsg_data(nlh);
1526 	memset(frh, 0, sizeof(*frh));
1527 	frh->family = family;
1528 	frh->action = FR_ACT_TO_TBL;
1529 
1530 	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1531 		goto nla_put_failure;
1532 
1533 	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1534 		goto nla_put_failure;
1535 
1536 	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1537 		goto nla_put_failure;
1538 
1539 	nlmsg_end(skb, nlh);
1540 
1541 	if (add_it) {
1542 		err = fib_newrule(dev_net(dev), skb, nlh, NULL, true);
1543 		if (err == -EEXIST)
1544 			err = 0;
1545 	} else {
1546 		err = fib_delrule(dev_net(dev), skb, nlh, NULL, true);
1547 		if (err == -ENOENT)
1548 			err = 0;
1549 	}
1550 	nlmsg_free(skb);
1551 
1552 	return err;
1553 
1554 nla_put_failure:
1555 	nlmsg_free(skb);
1556 
1557 	return -EMSGSIZE;
1558 }
1559 
vrf_add_fib_rules(const struct net_device * dev)1560 static int vrf_add_fib_rules(const struct net_device *dev)
1561 {
1562 	int err;
1563 
1564 	err = vrf_fib_rule(dev, AF_INET,  true);
1565 	if (err < 0)
1566 		goto out_err;
1567 
1568 	err = vrf_fib_rule(dev, AF_INET6, true);
1569 	if (err < 0)
1570 		goto ipv6_err;
1571 
1572 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1573 	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1574 	if (err < 0)
1575 		goto ipmr_err;
1576 #endif
1577 
1578 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1579 	err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1580 	if (err < 0)
1581 		goto ip6mr_err;
1582 #endif
1583 
1584 	return 0;
1585 
1586 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1587 ip6mr_err:
1588 	vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1589 #endif
1590 
1591 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1592 ipmr_err:
1593 	vrf_fib_rule(dev, AF_INET6,  false);
1594 #endif
1595 
1596 ipv6_err:
1597 	vrf_fib_rule(dev, AF_INET,  false);
1598 
1599 out_err:
1600 	netdev_err(dev, "Failed to add FIB rules.\n");
1601 	return err;
1602 }
1603 
vrf_setup(struct net_device * dev)1604 static void vrf_setup(struct net_device *dev)
1605 {
1606 	ether_setup(dev);
1607 
1608 	/* Initialize the device structure. */
1609 	dev->netdev_ops = &vrf_netdev_ops;
1610 	dev->l3mdev_ops = &vrf_l3mdev_ops;
1611 	dev->ethtool_ops = &vrf_ethtool_ops;
1612 	dev->needs_free_netdev = true;
1613 
1614 	/* Fill in device structure with ethernet-generic values. */
1615 	eth_hw_addr_random(dev);
1616 
1617 	/* don't acquire vrf device's netif_tx_lock when transmitting */
1618 	dev->lltx = true;
1619 
1620 	/* don't allow vrf devices to change network namespaces. */
1621 	dev->netns_immutable = true;
1622 
1623 	/* does not make sense for a VLAN to be added to a vrf device */
1624 	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1625 
1626 	/* enable offload features */
1627 	dev->features   |= NETIF_F_GSO_SOFTWARE;
1628 	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1629 	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1630 
1631 	dev->hw_features = dev->features;
1632 	dev->hw_enc_features = dev->features;
1633 
1634 	/* default to no qdisc; user can add if desired */
1635 	dev->priv_flags |= IFF_NO_QUEUE;
1636 	dev->priv_flags |= IFF_NO_RX_HANDLER;
1637 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1638 
1639 	/* VRF devices do not care about MTU, but if the MTU is set
1640 	 * too low then the ipv4 and ipv6 protocols are disabled
1641 	 * which breaks networking.
1642 	 */
1643 	dev->min_mtu = IPV6_MIN_MTU;
1644 	dev->max_mtu = IP6_MAX_MTU;
1645 	dev->mtu = dev->max_mtu;
1646 
1647 	dev->pcpu_stat_type = NETDEV_PCPU_STAT_DSTATS;
1648 }
1649 
vrf_validate(struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1650 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1651 			struct netlink_ext_ack *extack)
1652 {
1653 	if (tb[IFLA_ADDRESS]) {
1654 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1655 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1656 			return -EINVAL;
1657 		}
1658 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1659 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1660 			return -EADDRNOTAVAIL;
1661 		}
1662 	}
1663 	return 0;
1664 }
1665 
vrf_dellink(struct net_device * dev,struct list_head * head)1666 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1667 {
1668 	struct net_device *port_dev;
1669 	struct list_head *iter;
1670 
1671 	netdev_for_each_lower_dev(dev, port_dev, iter)
1672 		vrf_del_slave(dev, port_dev);
1673 
1674 	vrf_map_unregister_dev(dev);
1675 
1676 	unregister_netdevice_queue(dev, head);
1677 }
1678 
vrf_newlink(struct net_device * dev,struct rtnl_newlink_params * params,struct netlink_ext_ack * extack)1679 static int vrf_newlink(struct net_device *dev,
1680 		       struct rtnl_newlink_params *params,
1681 		       struct netlink_ext_ack *extack)
1682 {
1683 	struct net_vrf *vrf = netdev_priv(dev);
1684 	struct nlattr **data = params->data;
1685 	struct netns_vrf *nn_vrf;
1686 	bool *add_fib_rules;
1687 	struct net *net;
1688 	int err;
1689 
1690 	if (!data || !data[IFLA_VRF_TABLE]) {
1691 		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1692 		return -EINVAL;
1693 	}
1694 
1695 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1696 	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1697 		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1698 				    "Invalid VRF table id");
1699 		return -EINVAL;
1700 	}
1701 
1702 	dev->priv_flags |= IFF_L3MDEV_MASTER;
1703 
1704 	err = register_netdevice(dev);
1705 	if (err)
1706 		goto out;
1707 
1708 	/* mapping between table_id and vrf;
1709 	 * note: such binding could not be done in the dev init function
1710 	 * because dev->ifindex id is not available yet.
1711 	 */
1712 	vrf->ifindex = dev->ifindex;
1713 
1714 	err = vrf_map_register_dev(dev, extack);
1715 	if (err) {
1716 		unregister_netdevice(dev);
1717 		goto out;
1718 	}
1719 
1720 	net = dev_net(dev);
1721 	nn_vrf = net_generic(net, vrf_net_id);
1722 
1723 	add_fib_rules = &nn_vrf->add_fib_rules;
1724 	if (*add_fib_rules) {
1725 		err = vrf_add_fib_rules(dev);
1726 		if (err) {
1727 			vrf_map_unregister_dev(dev);
1728 			unregister_netdevice(dev);
1729 			goto out;
1730 		}
1731 		*add_fib_rules = false;
1732 	}
1733 
1734 out:
1735 	return err;
1736 }
1737 
vrf_nl_getsize(const struct net_device * dev)1738 static size_t vrf_nl_getsize(const struct net_device *dev)
1739 {
1740 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1741 }
1742 
vrf_fillinfo(struct sk_buff * skb,const struct net_device * dev)1743 static int vrf_fillinfo(struct sk_buff *skb,
1744 			const struct net_device *dev)
1745 {
1746 	struct net_vrf *vrf = netdev_priv(dev);
1747 
1748 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1749 }
1750 
vrf_get_slave_size(const struct net_device * bond_dev,const struct net_device * slave_dev)1751 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1752 				 const struct net_device *slave_dev)
1753 {
1754 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1755 }
1756 
vrf_fill_slave_info(struct sk_buff * skb,const struct net_device * vrf_dev,const struct net_device * slave_dev)1757 static int vrf_fill_slave_info(struct sk_buff *skb,
1758 			       const struct net_device *vrf_dev,
1759 			       const struct net_device *slave_dev)
1760 {
1761 	struct net_vrf *vrf = netdev_priv(vrf_dev);
1762 
1763 	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1764 		return -EMSGSIZE;
1765 
1766 	return 0;
1767 }
1768 
1769 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1770 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1771 };
1772 
1773 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1774 	.kind		= DRV_NAME,
1775 	.priv_size	= sizeof(struct net_vrf),
1776 
1777 	.get_size	= vrf_nl_getsize,
1778 	.policy		= vrf_nl_policy,
1779 	.validate	= vrf_validate,
1780 	.fill_info	= vrf_fillinfo,
1781 
1782 	.get_slave_size  = vrf_get_slave_size,
1783 	.fill_slave_info = vrf_fill_slave_info,
1784 
1785 	.newlink	= vrf_newlink,
1786 	.dellink	= vrf_dellink,
1787 	.setup		= vrf_setup,
1788 	.maxtype	= IFLA_VRF_MAX,
1789 };
1790 
vrf_device_event(struct notifier_block * unused,unsigned long event,void * ptr)1791 static int vrf_device_event(struct notifier_block *unused,
1792 			    unsigned long event, void *ptr)
1793 {
1794 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1795 
1796 	/* only care about unregister events to drop slave references */
1797 	if (event == NETDEV_UNREGISTER) {
1798 		struct net_device *vrf_dev;
1799 
1800 		if (!netif_is_l3_slave(dev))
1801 			goto out;
1802 
1803 		vrf_dev = netdev_master_upper_dev_get(dev);
1804 		vrf_del_slave(vrf_dev, dev);
1805 	}
1806 out:
1807 	return NOTIFY_DONE;
1808 }
1809 
1810 static struct notifier_block vrf_notifier_block __read_mostly = {
1811 	.notifier_call = vrf_device_event,
1812 };
1813 
vrf_map_init(struct vrf_map * vmap)1814 static int vrf_map_init(struct vrf_map *vmap)
1815 {
1816 	spin_lock_init(&vmap->vmap_lock);
1817 	hash_init(vmap->ht);
1818 
1819 	vmap->strict_mode = false;
1820 
1821 	return 0;
1822 }
1823 
1824 #ifdef CONFIG_SYSCTL
vrf_strict_mode(struct vrf_map * vmap)1825 static bool vrf_strict_mode(struct vrf_map *vmap)
1826 {
1827 	bool strict_mode;
1828 
1829 	vrf_map_lock(vmap);
1830 	strict_mode = vmap->strict_mode;
1831 	vrf_map_unlock(vmap);
1832 
1833 	return strict_mode;
1834 }
1835 
vrf_strict_mode_change(struct vrf_map * vmap,bool new_mode)1836 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1837 {
1838 	bool *cur_mode;
1839 	int res = 0;
1840 
1841 	vrf_map_lock(vmap);
1842 
1843 	cur_mode = &vmap->strict_mode;
1844 	if (*cur_mode == new_mode)
1845 		goto unlock;
1846 
1847 	if (*cur_mode) {
1848 		/* disable strict mode */
1849 		*cur_mode = false;
1850 	} else {
1851 		if (vmap->shared_tables) {
1852 			/* we cannot allow strict_mode because there are some
1853 			 * vrfs that share one or more tables.
1854 			 */
1855 			res = -EBUSY;
1856 			goto unlock;
1857 		}
1858 
1859 		/* no tables are shared among vrfs, so we can go back
1860 		 * to 1:1 association between a vrf with its table.
1861 		 */
1862 		*cur_mode = true;
1863 	}
1864 
1865 unlock:
1866 	vrf_map_unlock(vmap);
1867 
1868 	return res;
1869 }
1870 
vrf_shared_table_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1871 static int vrf_shared_table_handler(const struct ctl_table *table, int write,
1872 				    void *buffer, size_t *lenp, loff_t *ppos)
1873 {
1874 	struct net *net = (struct net *)table->extra1;
1875 	struct vrf_map *vmap = netns_vrf_map(net);
1876 	int proc_strict_mode = 0;
1877 	struct ctl_table tmp = {
1878 		.procname	= table->procname,
1879 		.data		= &proc_strict_mode,
1880 		.maxlen		= sizeof(int),
1881 		.mode		= table->mode,
1882 		.extra1		= SYSCTL_ZERO,
1883 		.extra2		= SYSCTL_ONE,
1884 	};
1885 	int ret;
1886 
1887 	if (!write)
1888 		proc_strict_mode = vrf_strict_mode(vmap);
1889 
1890 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1891 
1892 	if (write && ret == 0)
1893 		ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1894 
1895 	return ret;
1896 }
1897 
1898 static const struct ctl_table vrf_table[] = {
1899 	{
1900 		.procname	= "strict_mode",
1901 		.data		= NULL,
1902 		.maxlen		= sizeof(int),
1903 		.mode		= 0644,
1904 		.proc_handler	= vrf_shared_table_handler,
1905 		/* set by the vrf_netns_init */
1906 		.extra1		= NULL,
1907 	},
1908 };
1909 
vrf_netns_init_sysctl(struct net * net,struct netns_vrf * nn_vrf)1910 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1911 {
1912 	struct ctl_table *table;
1913 
1914 	table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1915 	if (!table)
1916 		return -ENOMEM;
1917 
1918 	/* init the extra1 parameter with the reference to current netns */
1919 	table[0].extra1 = net;
1920 
1921 	nn_vrf->ctl_hdr = register_net_sysctl_sz(net, "net/vrf", table,
1922 						 ARRAY_SIZE(vrf_table));
1923 	if (!nn_vrf->ctl_hdr) {
1924 		kfree(table);
1925 		return -ENOMEM;
1926 	}
1927 
1928 	return 0;
1929 }
1930 
vrf_netns_exit_sysctl(struct net * net)1931 static void vrf_netns_exit_sysctl(struct net *net)
1932 {
1933 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1934 	const struct ctl_table *table;
1935 
1936 	table = nn_vrf->ctl_hdr->ctl_table_arg;
1937 	unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1938 	kfree(table);
1939 }
1940 #else
vrf_netns_init_sysctl(struct net * net,struct netns_vrf * nn_vrf)1941 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1942 {
1943 	return 0;
1944 }
1945 
vrf_netns_exit_sysctl(struct net * net)1946 static void vrf_netns_exit_sysctl(struct net *net)
1947 {
1948 }
1949 #endif
1950 
1951 /* Initialize per network namespace state */
vrf_netns_init(struct net * net)1952 static int __net_init vrf_netns_init(struct net *net)
1953 {
1954 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1955 
1956 	nn_vrf->add_fib_rules = true;
1957 	vrf_map_init(&nn_vrf->vmap);
1958 
1959 	return vrf_netns_init_sysctl(net, nn_vrf);
1960 }
1961 
vrf_netns_exit(struct net * net)1962 static void __net_exit vrf_netns_exit(struct net *net)
1963 {
1964 	vrf_netns_exit_sysctl(net);
1965 }
1966 
1967 static struct pernet_operations vrf_net_ops __net_initdata = {
1968 	.init = vrf_netns_init,
1969 	.exit = vrf_netns_exit,
1970 	.id   = &vrf_net_id,
1971 	.size = sizeof(struct netns_vrf),
1972 };
1973 
vrf_init_module(void)1974 static int __init vrf_init_module(void)
1975 {
1976 	int rc;
1977 
1978 	register_netdevice_notifier(&vrf_notifier_block);
1979 
1980 	rc = register_pernet_subsys(&vrf_net_ops);
1981 	if (rc < 0)
1982 		goto error;
1983 
1984 	rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
1985 					  vrf_ifindex_lookup_by_table_id);
1986 	if (rc < 0)
1987 		goto unreg_pernet;
1988 
1989 	rc = rtnl_link_register(&vrf_link_ops);
1990 	if (rc < 0)
1991 		goto table_lookup_unreg;
1992 
1993 	return 0;
1994 
1995 table_lookup_unreg:
1996 	l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
1997 				       vrf_ifindex_lookup_by_table_id);
1998 
1999 unreg_pernet:
2000 	unregister_pernet_subsys(&vrf_net_ops);
2001 
2002 error:
2003 	unregister_netdevice_notifier(&vrf_notifier_block);
2004 	return rc;
2005 }
2006 
2007 module_init(vrf_init_module);
2008 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2009 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2010 MODULE_LICENSE("GPL");
2011 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2012 MODULE_VERSION(DRV_VERSION);
2013