1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VPDMA helper library
4 *
5 * Copyright (c) 2013 Texas Instruments Inc.
6 *
7 * David Griego, <dagriego@biglakesoftware.com>
8 * Dale Farnsworth, <dale@farnsworth.org>
9 * Archit Taneja, <archit@ti.com>
10 */
11
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/err.h>
15 #include <linux/firmware.h>
16 #include <linux/io.h>
17 #include <linux/module.h>
18 #include <linux/platform_device.h>
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/videodev2.h>
22
23 #include "vpdma.h"
24 #include "vpdma_priv.h"
25
26 #define VPDMA_FIRMWARE "vpdma-1b8.bin"
27
28 const struct vpdma_data_format vpdma_yuv_fmts[] = {
29 [VPDMA_DATA_FMT_Y444] = {
30 .type = VPDMA_DATA_FMT_TYPE_YUV,
31 .data_type = DATA_TYPE_Y444,
32 .depth = 8,
33 },
34 [VPDMA_DATA_FMT_Y422] = {
35 .type = VPDMA_DATA_FMT_TYPE_YUV,
36 .data_type = DATA_TYPE_Y422,
37 .depth = 8,
38 },
39 [VPDMA_DATA_FMT_Y420] = {
40 .type = VPDMA_DATA_FMT_TYPE_YUV,
41 .data_type = DATA_TYPE_Y420,
42 .depth = 8,
43 },
44 [VPDMA_DATA_FMT_C444] = {
45 .type = VPDMA_DATA_FMT_TYPE_YUV,
46 .data_type = DATA_TYPE_C444,
47 .depth = 8,
48 },
49 [VPDMA_DATA_FMT_C422] = {
50 .type = VPDMA_DATA_FMT_TYPE_YUV,
51 .data_type = DATA_TYPE_C422,
52 .depth = 8,
53 },
54 [VPDMA_DATA_FMT_C420] = {
55 .type = VPDMA_DATA_FMT_TYPE_YUV,
56 .data_type = DATA_TYPE_C420,
57 .depth = 4,
58 },
59 [VPDMA_DATA_FMT_CB420] = {
60 .type = VPDMA_DATA_FMT_TYPE_YUV,
61 .data_type = DATA_TYPE_CB420,
62 .depth = 4,
63 },
64 [VPDMA_DATA_FMT_YCR422] = {
65 .type = VPDMA_DATA_FMT_TYPE_YUV,
66 .data_type = DATA_TYPE_YCR422,
67 .depth = 16,
68 },
69 [VPDMA_DATA_FMT_YC444] = {
70 .type = VPDMA_DATA_FMT_TYPE_YUV,
71 .data_type = DATA_TYPE_YC444,
72 .depth = 24,
73 },
74 [VPDMA_DATA_FMT_CRY422] = {
75 .type = VPDMA_DATA_FMT_TYPE_YUV,
76 .data_type = DATA_TYPE_CRY422,
77 .depth = 16,
78 },
79 [VPDMA_DATA_FMT_CBY422] = {
80 .type = VPDMA_DATA_FMT_TYPE_YUV,
81 .data_type = DATA_TYPE_CBY422,
82 .depth = 16,
83 },
84 [VPDMA_DATA_FMT_YCB422] = {
85 .type = VPDMA_DATA_FMT_TYPE_YUV,
86 .data_type = DATA_TYPE_YCB422,
87 .depth = 16,
88 },
89 };
90 EXPORT_SYMBOL(vpdma_yuv_fmts);
91
92 const struct vpdma_data_format vpdma_rgb_fmts[] = {
93 [VPDMA_DATA_FMT_RGB565] = {
94 .type = VPDMA_DATA_FMT_TYPE_RGB,
95 .data_type = DATA_TYPE_RGB16_565,
96 .depth = 16,
97 },
98 [VPDMA_DATA_FMT_ARGB16_1555] = {
99 .type = VPDMA_DATA_FMT_TYPE_RGB,
100 .data_type = DATA_TYPE_ARGB_1555,
101 .depth = 16,
102 },
103 [VPDMA_DATA_FMT_ARGB16] = {
104 .type = VPDMA_DATA_FMT_TYPE_RGB,
105 .data_type = DATA_TYPE_ARGB_4444,
106 .depth = 16,
107 },
108 [VPDMA_DATA_FMT_RGBA16_5551] = {
109 .type = VPDMA_DATA_FMT_TYPE_RGB,
110 .data_type = DATA_TYPE_RGBA_5551,
111 .depth = 16,
112 },
113 [VPDMA_DATA_FMT_RGBA16] = {
114 .type = VPDMA_DATA_FMT_TYPE_RGB,
115 .data_type = DATA_TYPE_RGBA_4444,
116 .depth = 16,
117 },
118 [VPDMA_DATA_FMT_ARGB24] = {
119 .type = VPDMA_DATA_FMT_TYPE_RGB,
120 .data_type = DATA_TYPE_ARGB24_6666,
121 .depth = 24,
122 },
123 [VPDMA_DATA_FMT_RGB24] = {
124 .type = VPDMA_DATA_FMT_TYPE_RGB,
125 .data_type = DATA_TYPE_RGB24_888,
126 .depth = 24,
127 },
128 [VPDMA_DATA_FMT_ARGB32] = {
129 .type = VPDMA_DATA_FMT_TYPE_RGB,
130 .data_type = DATA_TYPE_ARGB32_8888,
131 .depth = 32,
132 },
133 [VPDMA_DATA_FMT_RGBA24] = {
134 .type = VPDMA_DATA_FMT_TYPE_RGB,
135 .data_type = DATA_TYPE_RGBA24_6666,
136 .depth = 24,
137 },
138 [VPDMA_DATA_FMT_RGBA32] = {
139 .type = VPDMA_DATA_FMT_TYPE_RGB,
140 .data_type = DATA_TYPE_RGBA32_8888,
141 .depth = 32,
142 },
143 [VPDMA_DATA_FMT_BGR565] = {
144 .type = VPDMA_DATA_FMT_TYPE_RGB,
145 .data_type = DATA_TYPE_BGR16_565,
146 .depth = 16,
147 },
148 [VPDMA_DATA_FMT_ABGR16_1555] = {
149 .type = VPDMA_DATA_FMT_TYPE_RGB,
150 .data_type = DATA_TYPE_ABGR_1555,
151 .depth = 16,
152 },
153 [VPDMA_DATA_FMT_ABGR16] = {
154 .type = VPDMA_DATA_FMT_TYPE_RGB,
155 .data_type = DATA_TYPE_ABGR_4444,
156 .depth = 16,
157 },
158 [VPDMA_DATA_FMT_BGRA16_5551] = {
159 .type = VPDMA_DATA_FMT_TYPE_RGB,
160 .data_type = DATA_TYPE_BGRA_5551,
161 .depth = 16,
162 },
163 [VPDMA_DATA_FMT_BGRA16] = {
164 .type = VPDMA_DATA_FMT_TYPE_RGB,
165 .data_type = DATA_TYPE_BGRA_4444,
166 .depth = 16,
167 },
168 [VPDMA_DATA_FMT_ABGR24] = {
169 .type = VPDMA_DATA_FMT_TYPE_RGB,
170 .data_type = DATA_TYPE_ABGR24_6666,
171 .depth = 24,
172 },
173 [VPDMA_DATA_FMT_BGR24] = {
174 .type = VPDMA_DATA_FMT_TYPE_RGB,
175 .data_type = DATA_TYPE_BGR24_888,
176 .depth = 24,
177 },
178 [VPDMA_DATA_FMT_ABGR32] = {
179 .type = VPDMA_DATA_FMT_TYPE_RGB,
180 .data_type = DATA_TYPE_ABGR32_8888,
181 .depth = 32,
182 },
183 [VPDMA_DATA_FMT_BGRA24] = {
184 .type = VPDMA_DATA_FMT_TYPE_RGB,
185 .data_type = DATA_TYPE_BGRA24_6666,
186 .depth = 24,
187 },
188 [VPDMA_DATA_FMT_BGRA32] = {
189 .type = VPDMA_DATA_FMT_TYPE_RGB,
190 .data_type = DATA_TYPE_BGRA32_8888,
191 .depth = 32,
192 },
193 };
194 EXPORT_SYMBOL(vpdma_rgb_fmts);
195
196 /*
197 * To handle RAW format we are re-using the CBY422
198 * vpdma data type so that we use the vpdma to re-order
199 * the incoming bytes, as the parser assumes that the
200 * first byte presented on the bus is the MSB of a 2
201 * bytes value.
202 * RAW8 handles from 1 to 8 bits
203 * RAW16 handles from 9 to 16 bits
204 */
205 const struct vpdma_data_format vpdma_raw_fmts[] = {
206 [VPDMA_DATA_FMT_RAW8] = {
207 .type = VPDMA_DATA_FMT_TYPE_YUV,
208 .data_type = DATA_TYPE_CBY422,
209 .depth = 8,
210 },
211 [VPDMA_DATA_FMT_RAW16] = {
212 .type = VPDMA_DATA_FMT_TYPE_YUV,
213 .data_type = DATA_TYPE_CBY422,
214 .depth = 16,
215 },
216 };
217 EXPORT_SYMBOL(vpdma_raw_fmts);
218
219 const struct vpdma_data_format vpdma_misc_fmts[] = {
220 [VPDMA_DATA_FMT_MV] = {
221 .type = VPDMA_DATA_FMT_TYPE_MISC,
222 .data_type = DATA_TYPE_MV,
223 .depth = 4,
224 },
225 };
226 EXPORT_SYMBOL(vpdma_misc_fmts);
227
228 struct vpdma_channel_info {
229 int num; /* VPDMA channel number */
230 int cstat_offset; /* client CSTAT register offset */
231 };
232
233 static const struct vpdma_channel_info chan_info[] = {
234 [VPE_CHAN_LUMA1_IN] = {
235 .num = VPE_CHAN_NUM_LUMA1_IN,
236 .cstat_offset = VPDMA_DEI_LUMA1_CSTAT,
237 },
238 [VPE_CHAN_CHROMA1_IN] = {
239 .num = VPE_CHAN_NUM_CHROMA1_IN,
240 .cstat_offset = VPDMA_DEI_CHROMA1_CSTAT,
241 },
242 [VPE_CHAN_LUMA2_IN] = {
243 .num = VPE_CHAN_NUM_LUMA2_IN,
244 .cstat_offset = VPDMA_DEI_LUMA2_CSTAT,
245 },
246 [VPE_CHAN_CHROMA2_IN] = {
247 .num = VPE_CHAN_NUM_CHROMA2_IN,
248 .cstat_offset = VPDMA_DEI_CHROMA2_CSTAT,
249 },
250 [VPE_CHAN_LUMA3_IN] = {
251 .num = VPE_CHAN_NUM_LUMA3_IN,
252 .cstat_offset = VPDMA_DEI_LUMA3_CSTAT,
253 },
254 [VPE_CHAN_CHROMA3_IN] = {
255 .num = VPE_CHAN_NUM_CHROMA3_IN,
256 .cstat_offset = VPDMA_DEI_CHROMA3_CSTAT,
257 },
258 [VPE_CHAN_MV_IN] = {
259 .num = VPE_CHAN_NUM_MV_IN,
260 .cstat_offset = VPDMA_DEI_MV_IN_CSTAT,
261 },
262 [VPE_CHAN_MV_OUT] = {
263 .num = VPE_CHAN_NUM_MV_OUT,
264 .cstat_offset = VPDMA_DEI_MV_OUT_CSTAT,
265 },
266 [VPE_CHAN_LUMA_OUT] = {
267 .num = VPE_CHAN_NUM_LUMA_OUT,
268 .cstat_offset = VPDMA_VIP_UP_Y_CSTAT,
269 },
270 [VPE_CHAN_CHROMA_OUT] = {
271 .num = VPE_CHAN_NUM_CHROMA_OUT,
272 .cstat_offset = VPDMA_VIP_UP_UV_CSTAT,
273 },
274 [VPE_CHAN_RGB_OUT] = {
275 .num = VPE_CHAN_NUM_RGB_OUT,
276 .cstat_offset = VPDMA_VIP_UP_Y_CSTAT,
277 },
278 };
279
read_reg(struct vpdma_data * vpdma,int offset)280 static u32 read_reg(struct vpdma_data *vpdma, int offset)
281 {
282 return ioread32(vpdma->base + offset);
283 }
284
write_reg(struct vpdma_data * vpdma,int offset,u32 value)285 static void write_reg(struct vpdma_data *vpdma, int offset, u32 value)
286 {
287 iowrite32(value, vpdma->base + offset);
288 }
289
read_field_reg(struct vpdma_data * vpdma,int offset,u32 mask,int shift)290 static int read_field_reg(struct vpdma_data *vpdma, int offset,
291 u32 mask, int shift)
292 {
293 return (read_reg(vpdma, offset) & (mask << shift)) >> shift;
294 }
295
write_field_reg(struct vpdma_data * vpdma,int offset,u32 field,u32 mask,int shift)296 static void write_field_reg(struct vpdma_data *vpdma, int offset, u32 field,
297 u32 mask, int shift)
298 {
299 u32 val = read_reg(vpdma, offset);
300
301 val &= ~(mask << shift);
302 val |= (field & mask) << shift;
303
304 write_reg(vpdma, offset, val);
305 }
306
vpdma_dump_regs(struct vpdma_data * vpdma)307 void vpdma_dump_regs(struct vpdma_data *vpdma)
308 {
309 struct device *dev = &vpdma->pdev->dev;
310
311 #define DUMPREG(r) dev_dbg(dev, "%-35s %08x\n", #r, read_reg(vpdma, VPDMA_##r))
312
313 dev_dbg(dev, "VPDMA Registers:\n");
314
315 DUMPREG(PID);
316 DUMPREG(LIST_ADDR);
317 DUMPREG(LIST_ATTR);
318 DUMPREG(LIST_STAT_SYNC);
319 DUMPREG(BG_RGB);
320 DUMPREG(BG_YUV);
321 DUMPREG(SETUP);
322 DUMPREG(MAX_SIZE1);
323 DUMPREG(MAX_SIZE2);
324 DUMPREG(MAX_SIZE3);
325
326 /*
327 * dumping registers of only group0 and group3, because VPE channels
328 * lie within group0 and group3 registers
329 */
330 DUMPREG(INT_CHAN_STAT(0));
331 DUMPREG(INT_CHAN_MASK(0));
332 DUMPREG(INT_CHAN_STAT(3));
333 DUMPREG(INT_CHAN_MASK(3));
334 DUMPREG(INT_CLIENT0_STAT);
335 DUMPREG(INT_CLIENT0_MASK);
336 DUMPREG(INT_CLIENT1_STAT);
337 DUMPREG(INT_CLIENT1_MASK);
338 DUMPREG(INT_LIST0_STAT);
339 DUMPREG(INT_LIST0_MASK);
340
341 /*
342 * these are registers specific to VPE clients, we can make this
343 * function dump client registers specific to VPE or VIP based on
344 * who is using it
345 */
346 DUMPREG(DEI_CHROMA1_CSTAT);
347 DUMPREG(DEI_LUMA1_CSTAT);
348 DUMPREG(DEI_CHROMA2_CSTAT);
349 DUMPREG(DEI_LUMA2_CSTAT);
350 DUMPREG(DEI_CHROMA3_CSTAT);
351 DUMPREG(DEI_LUMA3_CSTAT);
352 DUMPREG(DEI_MV_IN_CSTAT);
353 DUMPREG(DEI_MV_OUT_CSTAT);
354 DUMPREG(VIP_UP_Y_CSTAT);
355 DUMPREG(VIP_UP_UV_CSTAT);
356 DUMPREG(VPI_CTL_CSTAT);
357 }
358 EXPORT_SYMBOL(vpdma_dump_regs);
359
360 /*
361 * Allocate a DMA buffer
362 */
vpdma_alloc_desc_buf(struct vpdma_buf * buf,size_t size)363 int vpdma_alloc_desc_buf(struct vpdma_buf *buf, size_t size)
364 {
365 buf->size = size;
366 buf->mapped = false;
367 buf->addr = kzalloc(size, GFP_KERNEL);
368 if (!buf->addr)
369 return -ENOMEM;
370
371 WARN_ON(((unsigned long)buf->addr & VPDMA_DESC_ALIGN) != 0);
372
373 return 0;
374 }
375 EXPORT_SYMBOL(vpdma_alloc_desc_buf);
376
vpdma_free_desc_buf(struct vpdma_buf * buf)377 void vpdma_free_desc_buf(struct vpdma_buf *buf)
378 {
379 WARN_ON(buf->mapped);
380 kfree(buf->addr);
381 buf->addr = NULL;
382 buf->size = 0;
383 }
384 EXPORT_SYMBOL(vpdma_free_desc_buf);
385
386 /*
387 * map descriptor/payload DMA buffer, enabling DMA access
388 */
vpdma_map_desc_buf(struct vpdma_data * vpdma,struct vpdma_buf * buf)389 int vpdma_map_desc_buf(struct vpdma_data *vpdma, struct vpdma_buf *buf)
390 {
391 struct device *dev = &vpdma->pdev->dev;
392
393 WARN_ON(buf->mapped);
394 buf->dma_addr = dma_map_single(dev, buf->addr, buf->size,
395 DMA_BIDIRECTIONAL);
396 if (dma_mapping_error(dev, buf->dma_addr)) {
397 dev_err(dev, "failed to map buffer\n");
398 return -EINVAL;
399 }
400
401 buf->mapped = true;
402
403 return 0;
404 }
405 EXPORT_SYMBOL(vpdma_map_desc_buf);
406
407 /*
408 * unmap descriptor/payload DMA buffer, disabling DMA access and
409 * allowing the main processor to access the data
410 */
vpdma_unmap_desc_buf(struct vpdma_data * vpdma,struct vpdma_buf * buf)411 void vpdma_unmap_desc_buf(struct vpdma_data *vpdma, struct vpdma_buf *buf)
412 {
413 struct device *dev = &vpdma->pdev->dev;
414
415 if (buf->mapped)
416 dma_unmap_single(dev, buf->dma_addr, buf->size,
417 DMA_BIDIRECTIONAL);
418
419 buf->mapped = false;
420 }
421 EXPORT_SYMBOL(vpdma_unmap_desc_buf);
422
423 /*
424 * Cleanup all pending descriptors of a list
425 * First, stop the current list being processed.
426 * If the VPDMA was busy, this step makes vpdma to accept post lists.
427 * To cleanup the internal FSM, post abort list descriptor for all the
428 * channels from @channels array of size @size.
429 */
vpdma_list_cleanup(struct vpdma_data * vpdma,int list_num,int * channels,int size)430 int vpdma_list_cleanup(struct vpdma_data *vpdma, int list_num,
431 int *channels, int size)
432 {
433 struct vpdma_desc_list abort_list;
434 int i, ret, timeout = 500;
435
436 write_reg(vpdma, VPDMA_LIST_ATTR,
437 (list_num << VPDMA_LIST_NUM_SHFT) |
438 (1 << VPDMA_LIST_STOP_SHFT));
439
440 if (size <= 0 || !channels)
441 return 0;
442
443 ret = vpdma_create_desc_list(&abort_list,
444 size * sizeof(struct vpdma_dtd), VPDMA_LIST_TYPE_NORMAL);
445 if (ret)
446 return ret;
447
448 for (i = 0; i < size; i++)
449 vpdma_add_abort_channel_ctd(&abort_list, channels[i]);
450
451 ret = vpdma_map_desc_buf(vpdma, &abort_list.buf);
452 if (ret)
453 goto free_desc;
454 ret = vpdma_submit_descs(vpdma, &abort_list, list_num);
455 if (ret)
456 goto unmap_desc;
457
458 while (vpdma_list_busy(vpdma, list_num) && --timeout)
459 ;
460
461 if (timeout == 0) {
462 dev_err(&vpdma->pdev->dev, "Timed out cleaning up VPDMA list\n");
463 ret = -EBUSY;
464 }
465
466 unmap_desc:
467 vpdma_unmap_desc_buf(vpdma, &abort_list.buf);
468 free_desc:
469 vpdma_free_desc_buf(&abort_list.buf);
470
471 return ret;
472 }
473 EXPORT_SYMBOL(vpdma_list_cleanup);
474
475 /*
476 * create a descriptor list, the user of this list will append configuration,
477 * control and data descriptors to this list, this list will be submitted to
478 * VPDMA. VPDMA's list parser will go through each descriptor and perform the
479 * required DMA operations
480 */
vpdma_create_desc_list(struct vpdma_desc_list * list,size_t size,int type)481 int vpdma_create_desc_list(struct vpdma_desc_list *list, size_t size, int type)
482 {
483 int r;
484
485 r = vpdma_alloc_desc_buf(&list->buf, size);
486 if (r)
487 return r;
488
489 list->next = list->buf.addr;
490
491 list->type = type;
492
493 return 0;
494 }
495 EXPORT_SYMBOL(vpdma_create_desc_list);
496
497 /*
498 * once a descriptor list is parsed by VPDMA, we reset the list by emptying it,
499 * to allow new descriptors to be added to the list.
500 */
vpdma_reset_desc_list(struct vpdma_desc_list * list)501 void vpdma_reset_desc_list(struct vpdma_desc_list *list)
502 {
503 list->next = list->buf.addr;
504 }
505 EXPORT_SYMBOL(vpdma_reset_desc_list);
506
507 /*
508 * free the buffer allocated for the VPDMA descriptor list, this should be
509 * called when the user doesn't want to use VPDMA any more.
510 */
vpdma_free_desc_list(struct vpdma_desc_list * list)511 void vpdma_free_desc_list(struct vpdma_desc_list *list)
512 {
513 vpdma_free_desc_buf(&list->buf);
514
515 list->next = NULL;
516 }
517 EXPORT_SYMBOL(vpdma_free_desc_list);
518
vpdma_list_busy(struct vpdma_data * vpdma,int list_num)519 bool vpdma_list_busy(struct vpdma_data *vpdma, int list_num)
520 {
521 return read_reg(vpdma, VPDMA_LIST_STAT_SYNC) & BIT(list_num + 16);
522 }
523 EXPORT_SYMBOL(vpdma_list_busy);
524
525 /*
526 * submit a list of DMA descriptors to the VPE VPDMA, do not wait for completion
527 */
vpdma_submit_descs(struct vpdma_data * vpdma,struct vpdma_desc_list * list,int list_num)528 int vpdma_submit_descs(struct vpdma_data *vpdma,
529 struct vpdma_desc_list *list, int list_num)
530 {
531 int list_size;
532 unsigned long flags;
533
534 if (vpdma_list_busy(vpdma, list_num))
535 return -EBUSY;
536
537 /* 16-byte granularity */
538 list_size = (list->next - list->buf.addr) >> 4;
539
540 spin_lock_irqsave(&vpdma->lock, flags);
541 write_reg(vpdma, VPDMA_LIST_ADDR, (u32) list->buf.dma_addr);
542
543 write_reg(vpdma, VPDMA_LIST_ATTR,
544 (list_num << VPDMA_LIST_NUM_SHFT) |
545 (list->type << VPDMA_LIST_TYPE_SHFT) |
546 list_size);
547 spin_unlock_irqrestore(&vpdma->lock, flags);
548
549 return 0;
550 }
551 EXPORT_SYMBOL(vpdma_submit_descs);
552
553 static void dump_dtd(struct vpdma_dtd *dtd);
554
vpdma_update_dma_addr(struct vpdma_data * vpdma,struct vpdma_desc_list * list,dma_addr_t dma_addr,void * write_dtd,int drop,int idx)555 void vpdma_update_dma_addr(struct vpdma_data *vpdma,
556 struct vpdma_desc_list *list, dma_addr_t dma_addr,
557 void *write_dtd, int drop, int idx)
558 {
559 struct vpdma_dtd *dtd = list->buf.addr;
560 dma_addr_t write_desc_addr;
561 int offset;
562
563 dtd += idx;
564 vpdma_unmap_desc_buf(vpdma, &list->buf);
565
566 dtd->start_addr = dma_addr;
567
568 /* Calculate write address from the offset of write_dtd from start
569 * of the list->buf
570 */
571 offset = (void *)write_dtd - list->buf.addr;
572 write_desc_addr = list->buf.dma_addr + offset;
573
574 if (drop)
575 dtd->desc_write_addr = dtd_desc_write_addr(write_desc_addr,
576 1, 1, 0);
577 else
578 dtd->desc_write_addr = dtd_desc_write_addr(write_desc_addr,
579 1, 0, 0);
580
581 vpdma_map_desc_buf(vpdma, &list->buf);
582
583 dump_dtd(dtd);
584 }
585 EXPORT_SYMBOL(vpdma_update_dma_addr);
586
vpdma_set_max_size(struct vpdma_data * vpdma,int reg_addr,u32 width,u32 height)587 void vpdma_set_max_size(struct vpdma_data *vpdma, int reg_addr,
588 u32 width, u32 height)
589 {
590 if (reg_addr != VPDMA_MAX_SIZE1 && reg_addr != VPDMA_MAX_SIZE2 &&
591 reg_addr != VPDMA_MAX_SIZE3)
592 reg_addr = VPDMA_MAX_SIZE1;
593
594 write_field_reg(vpdma, reg_addr, width - 1,
595 VPDMA_MAX_SIZE_WIDTH_MASK, VPDMA_MAX_SIZE_WIDTH_SHFT);
596
597 write_field_reg(vpdma, reg_addr, height - 1,
598 VPDMA_MAX_SIZE_HEIGHT_MASK, VPDMA_MAX_SIZE_HEIGHT_SHFT);
599
600 }
601 EXPORT_SYMBOL(vpdma_set_max_size);
602
dump_cfd(struct vpdma_cfd * cfd)603 static void dump_cfd(struct vpdma_cfd *cfd)
604 {
605 int class;
606
607 class = cfd_get_class(cfd);
608
609 pr_debug("config descriptor of payload class: %s\n",
610 class == CFD_CLS_BLOCK ? "simple block" :
611 "address data block");
612
613 if (class == CFD_CLS_BLOCK)
614 pr_debug("word0: dst_addr_offset = 0x%08x\n",
615 cfd->dest_addr_offset);
616
617 if (class == CFD_CLS_BLOCK)
618 pr_debug("word1: num_data_wrds = %d\n", cfd->block_len);
619
620 pr_debug("word2: payload_addr = 0x%08x\n", cfd->payload_addr);
621
622 pr_debug("word3: pkt_type = %d, direct = %d, class = %d, dest = %d, payload_len = %d\n",
623 cfd_get_pkt_type(cfd),
624 cfd_get_direct(cfd), class, cfd_get_dest(cfd),
625 cfd_get_payload_len(cfd));
626 }
627
628 /*
629 * append a configuration descriptor to the given descriptor list, where the
630 * payload is in the form of a simple data block specified in the descriptor
631 * header, this is used to upload scaler coefficients to the scaler module
632 */
vpdma_add_cfd_block(struct vpdma_desc_list * list,int client,struct vpdma_buf * blk,u32 dest_offset)633 void vpdma_add_cfd_block(struct vpdma_desc_list *list, int client,
634 struct vpdma_buf *blk, u32 dest_offset)
635 {
636 struct vpdma_cfd *cfd;
637 int len = blk->size;
638
639 WARN_ON(blk->dma_addr & VPDMA_DESC_ALIGN);
640
641 cfd = list->next;
642 WARN_ON((void *)(cfd + 1) > (list->buf.addr + list->buf.size));
643
644 cfd->dest_addr_offset = dest_offset;
645 cfd->block_len = len;
646 cfd->payload_addr = (u32) blk->dma_addr;
647 cfd->ctl_payload_len = cfd_pkt_payload_len(CFD_INDIRECT, CFD_CLS_BLOCK,
648 client, len >> 4);
649
650 list->next = cfd + 1;
651
652 dump_cfd(cfd);
653 }
654 EXPORT_SYMBOL(vpdma_add_cfd_block);
655
656 /*
657 * append a configuration descriptor to the given descriptor list, where the
658 * payload is in the address data block format, this is used to a configure a
659 * discontiguous set of MMRs
660 */
vpdma_add_cfd_adb(struct vpdma_desc_list * list,int client,struct vpdma_buf * adb)661 void vpdma_add_cfd_adb(struct vpdma_desc_list *list, int client,
662 struct vpdma_buf *adb)
663 {
664 struct vpdma_cfd *cfd;
665 unsigned int len = adb->size;
666
667 WARN_ON(len & VPDMA_ADB_SIZE_ALIGN);
668 WARN_ON(adb->dma_addr & VPDMA_DESC_ALIGN);
669
670 cfd = list->next;
671 BUG_ON((void *)(cfd + 1) > (list->buf.addr + list->buf.size));
672
673 cfd->w0 = 0;
674 cfd->w1 = 0;
675 cfd->payload_addr = (u32) adb->dma_addr;
676 cfd->ctl_payload_len = cfd_pkt_payload_len(CFD_INDIRECT, CFD_CLS_ADB,
677 client, len >> 4);
678
679 list->next = cfd + 1;
680
681 dump_cfd(cfd);
682 };
683 EXPORT_SYMBOL(vpdma_add_cfd_adb);
684
685 /*
686 * control descriptor format change based on what type of control descriptor it
687 * is, we only use 'sync on channel' control descriptors for now, so assume it's
688 * that
689 */
dump_ctd(struct vpdma_ctd * ctd)690 static void dump_ctd(struct vpdma_ctd *ctd)
691 {
692 pr_debug("control descriptor\n");
693
694 pr_debug("word3: pkt_type = %d, source = %d, ctl_type = %d\n",
695 ctd_get_pkt_type(ctd), ctd_get_source(ctd), ctd_get_ctl(ctd));
696 }
697
698 /*
699 * append a 'sync on channel' type control descriptor to the given descriptor
700 * list, this descriptor stalls the VPDMA list till the time DMA is completed
701 * on the specified channel
702 */
vpdma_add_sync_on_channel_ctd(struct vpdma_desc_list * list,enum vpdma_channel chan)703 void vpdma_add_sync_on_channel_ctd(struct vpdma_desc_list *list,
704 enum vpdma_channel chan)
705 {
706 struct vpdma_ctd *ctd;
707
708 ctd = list->next;
709 WARN_ON((void *)(ctd + 1) > (list->buf.addr + list->buf.size));
710
711 ctd->w0 = 0;
712 ctd->w1 = 0;
713 ctd->w2 = 0;
714 ctd->type_source_ctl = ctd_type_source_ctl(chan_info[chan].num,
715 CTD_TYPE_SYNC_ON_CHANNEL);
716
717 list->next = ctd + 1;
718
719 dump_ctd(ctd);
720 }
721 EXPORT_SYMBOL(vpdma_add_sync_on_channel_ctd);
722
723 /*
724 * append an 'abort_channel' type control descriptor to the given descriptor
725 * list, this descriptor aborts any DMA transaction happening using the
726 * specified channel
727 */
vpdma_add_abort_channel_ctd(struct vpdma_desc_list * list,int chan_num)728 void vpdma_add_abort_channel_ctd(struct vpdma_desc_list *list,
729 int chan_num)
730 {
731 struct vpdma_ctd *ctd;
732
733 ctd = list->next;
734 WARN_ON((void *)(ctd + 1) > (list->buf.addr + list->buf.size));
735
736 ctd->w0 = 0;
737 ctd->w1 = 0;
738 ctd->w2 = 0;
739 ctd->type_source_ctl = ctd_type_source_ctl(chan_num,
740 CTD_TYPE_ABORT_CHANNEL);
741
742 list->next = ctd + 1;
743
744 dump_ctd(ctd);
745 }
746 EXPORT_SYMBOL(vpdma_add_abort_channel_ctd);
747
dump_dtd(struct vpdma_dtd * dtd)748 static void dump_dtd(struct vpdma_dtd *dtd)
749 {
750 int dir, chan;
751
752 dir = dtd_get_dir(dtd);
753 chan = dtd_get_chan(dtd);
754
755 pr_debug("%s data transfer descriptor for channel %d\n",
756 dir == DTD_DIR_OUT ? "outbound" : "inbound", chan);
757
758 pr_debug("word0: data_type = %d, notify = %d, field = %d, 1D = %d, even_ln_skp = %d, odd_ln_skp = %d, line_stride = %d\n",
759 dtd_get_data_type(dtd), dtd_get_notify(dtd), dtd_get_field(dtd),
760 dtd_get_1d(dtd), dtd_get_even_line_skip(dtd),
761 dtd_get_odd_line_skip(dtd), dtd_get_line_stride(dtd));
762
763 if (dir == DTD_DIR_IN)
764 pr_debug("word1: line_length = %d, xfer_height = %d\n",
765 dtd_get_line_length(dtd), dtd_get_xfer_height(dtd));
766
767 pr_debug("word2: start_addr = %x\n", dtd->start_addr);
768
769 pr_debug("word3: pkt_type = %d, mode = %d, dir = %d, chan = %d, pri = %d, next_chan = %d\n",
770 dtd_get_pkt_type(dtd),
771 dtd_get_mode(dtd), dir, chan, dtd_get_priority(dtd),
772 dtd_get_next_chan(dtd));
773
774 if (dir == DTD_DIR_IN)
775 pr_debug("word4: frame_width = %d, frame_height = %d\n",
776 dtd_get_frame_width(dtd), dtd_get_frame_height(dtd));
777 else
778 pr_debug("word4: desc_write_addr = 0x%08x, write_desc = %d, drp_data = %d, use_desc_reg = %d\n",
779 dtd_get_desc_write_addr(dtd), dtd_get_write_desc(dtd),
780 dtd_get_drop_data(dtd), dtd_get_use_desc(dtd));
781
782 if (dir == DTD_DIR_IN)
783 pr_debug("word5: hor_start = %d, ver_start = %d\n",
784 dtd_get_h_start(dtd), dtd_get_v_start(dtd));
785 else
786 pr_debug("word5: max_width %d, max_height %d\n",
787 dtd_get_max_width(dtd), dtd_get_max_height(dtd));
788
789 pr_debug("word6: client specific attr0 = 0x%08x\n", dtd->client_attr0);
790 pr_debug("word7: client specific attr1 = 0x%08x\n", dtd->client_attr1);
791 }
792
793 /*
794 * append an outbound data transfer descriptor to the given descriptor list,
795 * this sets up a 'client to memory' VPDMA transfer for the given VPDMA channel
796 *
797 * @list: vpdma desc list to which we add this descriptor
798 * @width: width of the image in pixels in memory
799 * @c_rect: compose params of output image
800 * @fmt: vpdma data format of the buffer
801 * dma_addr: dma address as seen by VPDMA
802 * max_width: enum for maximum width of data transfer
803 * max_height: enum for maximum height of data transfer
804 * chan: VPDMA channel
805 * flags: VPDMA flags to configure some descriptor fields
806 */
vpdma_add_out_dtd(struct vpdma_desc_list * list,int width,int stride,const struct v4l2_rect * c_rect,const struct vpdma_data_format * fmt,dma_addr_t dma_addr,int max_w,int max_h,enum vpdma_channel chan,u32 flags)807 void vpdma_add_out_dtd(struct vpdma_desc_list *list, int width,
808 int stride, const struct v4l2_rect *c_rect,
809 const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
810 int max_w, int max_h, enum vpdma_channel chan, u32 flags)
811 {
812 vpdma_rawchan_add_out_dtd(list, width, stride, c_rect, fmt, dma_addr,
813 max_w, max_h, chan_info[chan].num, flags);
814 }
815 EXPORT_SYMBOL(vpdma_add_out_dtd);
816
vpdma_rawchan_add_out_dtd(struct vpdma_desc_list * list,int width,int stride,const struct v4l2_rect * c_rect,const struct vpdma_data_format * fmt,dma_addr_t dma_addr,int max_w,int max_h,int raw_vpdma_chan,u32 flags)817 void vpdma_rawchan_add_out_dtd(struct vpdma_desc_list *list, int width,
818 int stride, const struct v4l2_rect *c_rect,
819 const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
820 int max_w, int max_h, int raw_vpdma_chan, u32 flags)
821 {
822 int priority = 0;
823 int field = 0;
824 int notify = 1;
825 int channel, next_chan;
826 struct v4l2_rect rect = *c_rect;
827 int depth = fmt->depth;
828 struct vpdma_dtd *dtd;
829
830 channel = next_chan = raw_vpdma_chan;
831
832 if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV &&
833 (fmt->data_type == DATA_TYPE_C420 ||
834 fmt->data_type == DATA_TYPE_CB420)) {
835 rect.height >>= 1;
836 rect.top >>= 1;
837 depth = 8;
838 }
839
840 dma_addr += rect.top * stride + (rect.left * depth >> 3);
841
842 dtd = list->next;
843 WARN_ON((void *)(dtd + 1) > (list->buf.addr + list->buf.size));
844
845 dtd->type_ctl_stride = dtd_type_ctl_stride(fmt->data_type,
846 notify,
847 field,
848 !!(flags & VPDMA_DATA_FRAME_1D),
849 !!(flags & VPDMA_DATA_EVEN_LINE_SKIP),
850 !!(flags & VPDMA_DATA_ODD_LINE_SKIP),
851 stride);
852 dtd->w1 = 0;
853 dtd->start_addr = (u32) dma_addr;
854 dtd->pkt_ctl = dtd_pkt_ctl(!!(flags & VPDMA_DATA_MODE_TILED),
855 DTD_DIR_OUT, channel, priority, next_chan);
856 dtd->desc_write_addr = dtd_desc_write_addr(0, 0, 0, 0);
857 dtd->max_width_height = dtd_max_width_height(max_w, max_h);
858 dtd->client_attr0 = 0;
859 dtd->client_attr1 = 0;
860
861 list->next = dtd + 1;
862
863 dump_dtd(dtd);
864 }
865 EXPORT_SYMBOL(vpdma_rawchan_add_out_dtd);
866
867 /*
868 * append an inbound data transfer descriptor to the given descriptor list,
869 * this sets up a 'memory to client' VPDMA transfer for the given VPDMA channel
870 *
871 * @list: vpdma desc list to which we add this descriptor
872 * @width: width of the image in pixels in memory(not the cropped width)
873 * @c_rect: crop params of input image
874 * @fmt: vpdma data format of the buffer
875 * dma_addr: dma address as seen by VPDMA
876 * chan: VPDMA channel
877 * field: top or bottom field info of the input image
878 * flags: VPDMA flags to configure some descriptor fields
879 * frame_width/height: the complete width/height of the image presented to the
880 * client (this makes sense when multiple channels are
881 * connected to the same client, forming a larger frame)
882 * start_h, start_v: position where the given channel starts providing pixel
883 * data to the client (makes sense when multiple channels
884 * contribute to the client)
885 */
vpdma_add_in_dtd(struct vpdma_desc_list * list,int width,int stride,const struct v4l2_rect * c_rect,const struct vpdma_data_format * fmt,dma_addr_t dma_addr,enum vpdma_channel chan,int field,u32 flags,int frame_width,int frame_height,int start_h,int start_v)886 void vpdma_add_in_dtd(struct vpdma_desc_list *list, int width,
887 int stride, const struct v4l2_rect *c_rect,
888 const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
889 enum vpdma_channel chan, int field, u32 flags, int frame_width,
890 int frame_height, int start_h, int start_v)
891 {
892 int priority = 0;
893 int notify = 1;
894 int depth = fmt->depth;
895 int channel, next_chan;
896 struct v4l2_rect rect = *c_rect;
897 struct vpdma_dtd *dtd;
898
899 channel = next_chan = chan_info[chan].num;
900
901 if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV &&
902 (fmt->data_type == DATA_TYPE_C420 ||
903 fmt->data_type == DATA_TYPE_CB420)) {
904 rect.height >>= 1;
905 rect.top >>= 1;
906 depth = 8;
907 }
908
909 dma_addr += rect.top * stride + (rect.left * depth >> 3);
910
911 dtd = list->next;
912 WARN_ON((void *)(dtd + 1) > (list->buf.addr + list->buf.size));
913
914 dtd->type_ctl_stride = dtd_type_ctl_stride(fmt->data_type,
915 notify,
916 field,
917 !!(flags & VPDMA_DATA_FRAME_1D),
918 !!(flags & VPDMA_DATA_EVEN_LINE_SKIP),
919 !!(flags & VPDMA_DATA_ODD_LINE_SKIP),
920 stride);
921
922 dtd->xfer_length_height = dtd_xfer_length_height(rect.width,
923 rect.height);
924 dtd->start_addr = (u32) dma_addr;
925 dtd->pkt_ctl = dtd_pkt_ctl(!!(flags & VPDMA_DATA_MODE_TILED),
926 DTD_DIR_IN, channel, priority, next_chan);
927 dtd->frame_width_height = dtd_frame_width_height(frame_width,
928 frame_height);
929 dtd->start_h_v = dtd_start_h_v(start_h, start_v);
930 dtd->client_attr0 = 0;
931 dtd->client_attr1 = 0;
932
933 list->next = dtd + 1;
934
935 dump_dtd(dtd);
936 }
937 EXPORT_SYMBOL(vpdma_add_in_dtd);
938
vpdma_hwlist_alloc(struct vpdma_data * vpdma,void * priv)939 int vpdma_hwlist_alloc(struct vpdma_data *vpdma, void *priv)
940 {
941 int i, list_num = -1;
942 unsigned long flags;
943
944 spin_lock_irqsave(&vpdma->lock, flags);
945 for (i = 0; i < VPDMA_MAX_NUM_LIST && vpdma->hwlist_used[i]; i++)
946 ;
947
948 if (i < VPDMA_MAX_NUM_LIST) {
949 list_num = i;
950 vpdma->hwlist_used[i] = true;
951 vpdma->hwlist_priv[i] = priv;
952 }
953 spin_unlock_irqrestore(&vpdma->lock, flags);
954
955 return list_num;
956 }
957 EXPORT_SYMBOL(vpdma_hwlist_alloc);
958
vpdma_hwlist_get_priv(struct vpdma_data * vpdma,int list_num)959 void *vpdma_hwlist_get_priv(struct vpdma_data *vpdma, int list_num)
960 {
961 if (!vpdma || list_num >= VPDMA_MAX_NUM_LIST)
962 return NULL;
963
964 return vpdma->hwlist_priv[list_num];
965 }
966 EXPORT_SYMBOL(vpdma_hwlist_get_priv);
967
vpdma_hwlist_release(struct vpdma_data * vpdma,int list_num)968 void *vpdma_hwlist_release(struct vpdma_data *vpdma, int list_num)
969 {
970 void *priv;
971 unsigned long flags;
972
973 spin_lock_irqsave(&vpdma->lock, flags);
974 vpdma->hwlist_used[list_num] = false;
975 priv = vpdma->hwlist_priv;
976 spin_unlock_irqrestore(&vpdma->lock, flags);
977
978 return priv;
979 }
980 EXPORT_SYMBOL(vpdma_hwlist_release);
981
982 /* set or clear the mask for list complete interrupt */
vpdma_enable_list_complete_irq(struct vpdma_data * vpdma,int irq_num,int list_num,bool enable)983 void vpdma_enable_list_complete_irq(struct vpdma_data *vpdma, int irq_num,
984 int list_num, bool enable)
985 {
986 u32 reg_addr = VPDMA_INT_LIST0_MASK + VPDMA_INTX_OFFSET * irq_num;
987 u32 val;
988
989 val = read_reg(vpdma, reg_addr);
990 if (enable)
991 val |= (1 << (list_num * 2));
992 else
993 val &= ~(1 << (list_num * 2));
994 write_reg(vpdma, reg_addr, val);
995 }
996 EXPORT_SYMBOL(vpdma_enable_list_complete_irq);
997
998 /* get the LIST_STAT register */
vpdma_get_list_stat(struct vpdma_data * vpdma,int irq_num)999 unsigned int vpdma_get_list_stat(struct vpdma_data *vpdma, int irq_num)
1000 {
1001 u32 reg_addr = VPDMA_INT_LIST0_STAT + VPDMA_INTX_OFFSET * irq_num;
1002
1003 return read_reg(vpdma, reg_addr);
1004 }
1005 EXPORT_SYMBOL(vpdma_get_list_stat);
1006
1007 /* get the LIST_MASK register */
vpdma_get_list_mask(struct vpdma_data * vpdma,int irq_num)1008 unsigned int vpdma_get_list_mask(struct vpdma_data *vpdma, int irq_num)
1009 {
1010 u32 reg_addr = VPDMA_INT_LIST0_MASK + VPDMA_INTX_OFFSET * irq_num;
1011
1012 return read_reg(vpdma, reg_addr);
1013 }
1014 EXPORT_SYMBOL(vpdma_get_list_mask);
1015
1016 /* clear previously occurred list interrupts in the LIST_STAT register */
vpdma_clear_list_stat(struct vpdma_data * vpdma,int irq_num,int list_num)1017 void vpdma_clear_list_stat(struct vpdma_data *vpdma, int irq_num,
1018 int list_num)
1019 {
1020 u32 reg_addr = VPDMA_INT_LIST0_STAT + VPDMA_INTX_OFFSET * irq_num;
1021
1022 write_reg(vpdma, reg_addr, 3 << (list_num * 2));
1023 }
1024 EXPORT_SYMBOL(vpdma_clear_list_stat);
1025
vpdma_set_bg_color(struct vpdma_data * vpdma,struct vpdma_data_format * fmt,u32 color)1026 void vpdma_set_bg_color(struct vpdma_data *vpdma,
1027 struct vpdma_data_format *fmt, u32 color)
1028 {
1029 if (fmt->type == VPDMA_DATA_FMT_TYPE_RGB)
1030 write_reg(vpdma, VPDMA_BG_RGB, color);
1031 else if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV)
1032 write_reg(vpdma, VPDMA_BG_YUV, color);
1033 }
1034 EXPORT_SYMBOL(vpdma_set_bg_color);
1035
1036 /*
1037 * configures the output mode of the line buffer for the given client, the
1038 * line buffer content can either be mirrored(each line repeated twice) or
1039 * passed to the client as is
1040 */
vpdma_set_line_mode(struct vpdma_data * vpdma,int line_mode,enum vpdma_channel chan)1041 void vpdma_set_line_mode(struct vpdma_data *vpdma, int line_mode,
1042 enum vpdma_channel chan)
1043 {
1044 int client_cstat = chan_info[chan].cstat_offset;
1045
1046 write_field_reg(vpdma, client_cstat, line_mode,
1047 VPDMA_CSTAT_LINE_MODE_MASK, VPDMA_CSTAT_LINE_MODE_SHIFT);
1048 }
1049 EXPORT_SYMBOL(vpdma_set_line_mode);
1050
1051 /*
1052 * configures the event which should trigger VPDMA transfer for the given
1053 * client
1054 */
vpdma_set_frame_start_event(struct vpdma_data * vpdma,enum vpdma_frame_start_event fs_event,enum vpdma_channel chan)1055 void vpdma_set_frame_start_event(struct vpdma_data *vpdma,
1056 enum vpdma_frame_start_event fs_event,
1057 enum vpdma_channel chan)
1058 {
1059 int client_cstat = chan_info[chan].cstat_offset;
1060
1061 write_field_reg(vpdma, client_cstat, fs_event,
1062 VPDMA_CSTAT_FRAME_START_MASK, VPDMA_CSTAT_FRAME_START_SHIFT);
1063 }
1064 EXPORT_SYMBOL(vpdma_set_frame_start_event);
1065
vpdma_firmware_cb(const struct firmware * f,void * context)1066 static void vpdma_firmware_cb(const struct firmware *f, void *context)
1067 {
1068 struct vpdma_data *vpdma = context;
1069 struct vpdma_buf fw_dma_buf;
1070 int i, r;
1071
1072 dev_dbg(&vpdma->pdev->dev, "firmware callback\n");
1073
1074 if (!f || !f->data) {
1075 dev_err(&vpdma->pdev->dev, "couldn't get firmware\n");
1076 return;
1077 }
1078
1079 /* already initialized */
1080 if (read_field_reg(vpdma, VPDMA_LIST_ATTR, VPDMA_LIST_RDY_MASK,
1081 VPDMA_LIST_RDY_SHFT)) {
1082 vpdma->cb(vpdma->pdev);
1083 return;
1084 }
1085
1086 r = vpdma_alloc_desc_buf(&fw_dma_buf, f->size);
1087 if (r) {
1088 dev_err(&vpdma->pdev->dev,
1089 "failed to allocate dma buffer for firmware\n");
1090 goto rel_fw;
1091 }
1092
1093 memcpy(fw_dma_buf.addr, f->data, f->size);
1094
1095 vpdma_map_desc_buf(vpdma, &fw_dma_buf);
1096
1097 write_reg(vpdma, VPDMA_LIST_ADDR, (u32) fw_dma_buf.dma_addr);
1098
1099 for (i = 0; i < 100; i++) { /* max 1 second */
1100 msleep_interruptible(10);
1101
1102 if (read_field_reg(vpdma, VPDMA_LIST_ATTR, VPDMA_LIST_RDY_MASK,
1103 VPDMA_LIST_RDY_SHFT))
1104 break;
1105 }
1106
1107 if (i == 100) {
1108 dev_err(&vpdma->pdev->dev, "firmware upload failed\n");
1109 goto free_buf;
1110 }
1111
1112 vpdma->cb(vpdma->pdev);
1113
1114 free_buf:
1115 vpdma_unmap_desc_buf(vpdma, &fw_dma_buf);
1116
1117 vpdma_free_desc_buf(&fw_dma_buf);
1118 rel_fw:
1119 release_firmware(f);
1120 }
1121
vpdma_load_firmware(struct vpdma_data * vpdma)1122 static int vpdma_load_firmware(struct vpdma_data *vpdma)
1123 {
1124 int r;
1125 struct device *dev = &vpdma->pdev->dev;
1126
1127 r = request_firmware_nowait(THIS_MODULE, 1,
1128 (const char *) VPDMA_FIRMWARE, dev, GFP_KERNEL, vpdma,
1129 vpdma_firmware_cb);
1130 if (r) {
1131 dev_err(dev, "firmware not available %s\n", VPDMA_FIRMWARE);
1132 return r;
1133 } else {
1134 dev_info(dev, "loading firmware %s\n", VPDMA_FIRMWARE);
1135 }
1136
1137 return 0;
1138 }
1139
vpdma_create(struct platform_device * pdev,struct vpdma_data * vpdma,void (* cb)(struct platform_device * pdev))1140 int vpdma_create(struct platform_device *pdev, struct vpdma_data *vpdma,
1141 void (*cb)(struct platform_device *pdev))
1142 {
1143 struct resource *res;
1144 int r;
1145
1146 dev_dbg(&pdev->dev, "vpdma_create\n");
1147
1148 vpdma->pdev = pdev;
1149 vpdma->cb = cb;
1150 spin_lock_init(&vpdma->lock);
1151
1152 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "vpdma");
1153 if (res == NULL) {
1154 dev_err(&pdev->dev, "missing platform resources data\n");
1155 return -ENODEV;
1156 }
1157
1158 vpdma->base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
1159 if (!vpdma->base) {
1160 dev_err(&pdev->dev, "failed to ioremap\n");
1161 return -ENOMEM;
1162 }
1163
1164 r = vpdma_load_firmware(vpdma);
1165 if (r) {
1166 pr_err("failed to load firmware %s\n", VPDMA_FIRMWARE);
1167 return r;
1168 }
1169
1170 return 0;
1171 }
1172 EXPORT_SYMBOL(vpdma_create);
1173
1174 MODULE_AUTHOR("Texas Instruments Inc.");
1175 MODULE_FIRMWARE(VPDMA_FIRMWARE);
1176 MODULE_DESCRIPTION("TI VPDMA helper library");
1177 MODULE_LICENSE("GPL v2");
1178