1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2020 Joyent, Inc.
25 * Copyright 2022 Spencer Evans-Cole.
26 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
28 */
29
30 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
31 /* All Rights Reserved */
32
33 /*
34 * University Copyright- Copyright (c) 1982, 1986, 1988
35 * The Regents of the University of California
36 * All Rights Reserved
37 *
38 * University Acknowledgment- Portions of this document are derived from
39 * software developed by the University of California, Berkeley, and its
40 * contributors.
41 */
42
43 #include <sys/types.h>
44 #include <sys/param.h>
45 #include <sys/t_lock.h>
46 #include <sys/errno.h>
47 #include <sys/cred.h>
48 #include <sys/user.h>
49 #include <sys/uio.h>
50 #include <sys/file.h>
51 #include <sys/pathname.h>
52 #include <sys/vfs.h>
53 #include <sys/vfs_opreg.h>
54 #include <sys/vnode.h>
55 #include <sys/filio.h>
56 #include <sys/rwstlock.h>
57 #include <sys/fem.h>
58 #include <sys/stat.h>
59 #include <sys/mode.h>
60 #include <sys/conf.h>
61 #include <sys/sysmacros.h>
62 #include <sys/cmn_err.h>
63 #include <sys/systm.h>
64 #include <sys/kmem.h>
65 #include <sys/debug.h>
66 #include <c2/audit.h>
67 #include <sys/acl.h>
68 #include <sys/nbmlock.h>
69 #include <sys/fcntl.h>
70 #include <fs/fs_subr.h>
71 #include <sys/taskq.h>
72 #include <fs/fs_reparse.h>
73 #include <sys/time.h>
74 #include <sys/sdt.h>
75
76 /* Determine if this vnode is a file that is read-only */
77 #define ISROFILE(vp) \
78 ((vp)->v_type != VCHR && (vp)->v_type != VBLK && \
79 (vp)->v_type != VFIFO && vn_is_readonly(vp))
80
81 /* Tunable via /etc/system; used only by admin/install */
82 int nfs_global_client_only;
83
84 /*
85 * Array of vopstats_t for per-FS-type vopstats. This array has the same
86 * number of entries as and parallel to the vfssw table. (Arguably, it could
87 * be part of the vfssw table.) Once it's initialized, it's accessed using
88 * the same fstype index that is used to index into the vfssw table.
89 */
90 vopstats_t **vopstats_fstype;
91
92 /* vopstats initialization template used for fast initialization via bcopy() */
93 static vopstats_t *vs_templatep;
94
95 /* Kmem cache handle for vsk_anchor_t allocations */
96 kmem_cache_t *vsk_anchor_cache;
97
98 /* file events cleanup routine */
99 extern void free_fopdata(vnode_t *);
100
101 /*
102 * Root of AVL tree for the kstats associated with vopstats. Lock protects
103 * updates to vsktat_tree.
104 */
105 avl_tree_t vskstat_tree;
106 kmutex_t vskstat_tree_lock;
107
108 /* Global variable which enables/disables the vopstats collection */
109 int vopstats_enabled = 1;
110
111 /* Global used for empty/invalid v_path */
112 char *vn_vpath_empty = "";
113
114 /*
115 * forward declarations for internal vnode specific data (vsd)
116 */
117 static void *vsd_realloc(void *, size_t, size_t);
118
119 /*
120 * forward declarations for reparse point functions
121 */
122 static int fs_reparse_mark(char *target, vattr_t *vap, xvattr_t *xvattr);
123
124 /*
125 * VSD -- VNODE SPECIFIC DATA
126 * The v_data pointer is typically used by a file system to store a
127 * pointer to the file system's private node (e.g. ufs inode, nfs rnode).
128 * However, there are times when additional project private data needs
129 * to be stored separately from the data (node) pointed to by v_data.
130 * This additional data could be stored by the file system itself or
131 * by a completely different kernel entity. VSD provides a way for
132 * callers to obtain a key and store a pointer to private data associated
133 * with a vnode.
134 *
135 * Callers are responsible for protecting the vsd by holding v_vsd_lock
136 * for calls to vsd_set() and vsd_get().
137 */
138
139 /*
140 * vsd_lock protects:
141 * vsd_nkeys - creation and deletion of vsd keys
142 * vsd_list - insertion and deletion of vsd_node in the vsd_list
143 * vsd_destructor - adding and removing destructors to the list
144 */
145 static kmutex_t vsd_lock;
146 static uint_t vsd_nkeys; /* size of destructor array */
147 /* list of vsd_node's */
148 static list_t *vsd_list = NULL;
149 /* per-key destructor funcs */
150 static void (**vsd_destructor)(void *);
151
152 /*
153 * The following is the common set of actions needed to update the
154 * vopstats structure from a vnode op. Both VOPSTATS_UPDATE() and
155 * VOPSTATS_UPDATE_IO() do almost the same thing, except for the
156 * recording of the bytes transferred. Since the code is similar
157 * but small, it is nearly a duplicate. Consequently any changes
158 * to one may need to be reflected in the other.
159 * Rundown of the variables:
160 * vp - Pointer to the vnode
161 * counter - Partial name structure member to update in vopstats for counts
162 * bytecounter - Partial name structure member to update in vopstats for bytes
163 * bytesval - Value to update in vopstats for bytes
164 * fstype - Index into vsanchor_fstype[], same as index into vfssw[]
165 * vsp - Pointer to vopstats structure (either in vfs or vsanchor_fstype[i])
166 */
167
168 #define VOPSTATS_UPDATE(vp, counter) { \
169 vfs_t *vfsp = (vp)->v_vfsp; \
170 if (vfsp && vfsp->vfs_implp && \
171 (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \
172 vopstats_t *vsp = &vfsp->vfs_vopstats; \
173 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \
174 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \
175 size_t, uint64_t *); \
176 __dtrace_probe___fsinfo_##counter(vp, 0, stataddr); \
177 (*stataddr)++; \
178 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \
179 vsp->n##counter.value.ui64++; \
180 } \
181 } \
182 }
183
184 #define VOPSTATS_UPDATE_IO(vp, counter, bytecounter, bytesval) { \
185 vfs_t *vfsp = (vp)->v_vfsp; \
186 if (vfsp && vfsp->vfs_implp && \
187 (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \
188 vopstats_t *vsp = &vfsp->vfs_vopstats; \
189 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \
190 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \
191 size_t, uint64_t *); \
192 __dtrace_probe___fsinfo_##counter(vp, bytesval, stataddr); \
193 (*stataddr)++; \
194 vsp->bytecounter.value.ui64 += bytesval; \
195 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \
196 vsp->n##counter.value.ui64++; \
197 vsp->bytecounter.value.ui64 += bytesval; \
198 } \
199 } \
200 }
201
202 /*
203 * If the filesystem does not support XIDs map credential
204 * If the vfsp is NULL, perhaps we should also map?
205 */
206 #define VOPXID_MAP_CR(vp, cr) { \
207 vfs_t *vfsp = (vp)->v_vfsp; \
208 if (vfsp != NULL && (vfsp->vfs_flag & VFS_XID) == 0) \
209 cr = crgetmapped(cr); \
210 }
211
212 /*
213 * Convert stat(2) formats to vnode types and vice versa. (Knows about
214 * numerical order of S_IFMT and vnode types.)
215 */
216 enum vtype iftovt_tab[] = {
217 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
218 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
219 };
220
221 ushort_t vttoif_tab[] = {
222 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFIFO,
223 S_IFDOOR, 0, S_IFSOCK, S_IFPORT, 0
224 };
225
226 /*
227 * The system vnode cache.
228 */
229
230 kmem_cache_t *vn_cache;
231
232
233 /*
234 * Vnode operations vector.
235 */
236
237 static const fs_operation_trans_def_t vn_ops_table[] = {
238 VOPNAME_OPEN, offsetof(struct vnodeops, vop_open),
239 fs_nosys, fs_nosys,
240
241 VOPNAME_CLOSE, offsetof(struct vnodeops, vop_close),
242 fs_nosys, fs_nosys,
243
244 VOPNAME_READ, offsetof(struct vnodeops, vop_read),
245 fs_nosys, fs_nosys,
246
247 VOPNAME_WRITE, offsetof(struct vnodeops, vop_write),
248 fs_nosys, fs_nosys,
249
250 VOPNAME_IOCTL, offsetof(struct vnodeops, vop_ioctl),
251 fs_nosys, fs_nosys,
252
253 VOPNAME_SETFL, offsetof(struct vnodeops, vop_setfl),
254 fs_setfl, fs_nosys,
255
256 VOPNAME_GETATTR, offsetof(struct vnodeops, vop_getattr),
257 fs_nosys, fs_nosys,
258
259 VOPNAME_SETATTR, offsetof(struct vnodeops, vop_setattr),
260 fs_nosys, fs_nosys,
261
262 VOPNAME_ACCESS, offsetof(struct vnodeops, vop_access),
263 fs_nosys, fs_nosys,
264
265 VOPNAME_LOOKUP, offsetof(struct vnodeops, vop_lookup),
266 fs_nosys, fs_nosys,
267
268 VOPNAME_CREATE, offsetof(struct vnodeops, vop_create),
269 fs_nosys, fs_nosys,
270
271 VOPNAME_REMOVE, offsetof(struct vnodeops, vop_remove),
272 fs_nosys, fs_nosys,
273
274 VOPNAME_LINK, offsetof(struct vnodeops, vop_link),
275 fs_nosys, fs_nosys,
276
277 VOPNAME_RENAME, offsetof(struct vnodeops, vop_rename),
278 fs_nosys, fs_nosys,
279
280 VOPNAME_MKDIR, offsetof(struct vnodeops, vop_mkdir),
281 fs_nosys, fs_nosys,
282
283 VOPNAME_RMDIR, offsetof(struct vnodeops, vop_rmdir),
284 fs_nosys, fs_nosys,
285
286 VOPNAME_READDIR, offsetof(struct vnodeops, vop_readdir),
287 fs_nosys, fs_nosys,
288
289 VOPNAME_SYMLINK, offsetof(struct vnodeops, vop_symlink),
290 fs_nosys, fs_nosys,
291
292 VOPNAME_READLINK, offsetof(struct vnodeops, vop_readlink),
293 fs_nosys, fs_nosys,
294
295 VOPNAME_FSYNC, offsetof(struct vnodeops, vop_fsync),
296 fs_nosys, fs_nosys,
297
298 VOPNAME_INACTIVE, offsetof(struct vnodeops, vop_inactive),
299 fs_nosys, fs_nosys,
300
301 VOPNAME_FID, offsetof(struct vnodeops, vop_fid),
302 fs_nosys, fs_nosys,
303
304 VOPNAME_RWLOCK, offsetof(struct vnodeops, vop_rwlock),
305 fs_rwlock, fs_rwlock,
306
307 VOPNAME_RWUNLOCK, offsetof(struct vnodeops, vop_rwunlock),
308 (fs_generic_func_p)(uintptr_t)fs_rwunlock,
309 (fs_generic_func_p)(uintptr_t)fs_rwunlock, /* no errors allowed */
310
311 VOPNAME_SEEK, offsetof(struct vnodeops, vop_seek),
312 fs_nosys, fs_nosys,
313
314 VOPNAME_CMP, offsetof(struct vnodeops, vop_cmp),
315 fs_cmp, fs_cmp, /* no errors allowed */
316
317 VOPNAME_FRLOCK, offsetof(struct vnodeops, vop_frlock),
318 fs_frlock, fs_nosys,
319
320 VOPNAME_SPACE, offsetof(struct vnodeops, vop_space),
321 fs_nosys, fs_nosys,
322
323 VOPNAME_REALVP, offsetof(struct vnodeops, vop_realvp),
324 fs_nosys, fs_nosys,
325
326 VOPNAME_GETPAGE, offsetof(struct vnodeops, vop_getpage),
327 fs_nosys, fs_nosys,
328
329 VOPNAME_PUTPAGE, offsetof(struct vnodeops, vop_putpage),
330 fs_nosys, fs_nosys,
331
332 VOPNAME_MAP, offsetof(struct vnodeops, vop_map),
333 (fs_generic_func_p) fs_nosys_map,
334 (fs_generic_func_p) fs_nosys_map,
335
336 VOPNAME_ADDMAP, offsetof(struct vnodeops, vop_addmap),
337 (fs_generic_func_p) fs_nosys_addmap,
338 (fs_generic_func_p) fs_nosys_addmap,
339
340 VOPNAME_DELMAP, offsetof(struct vnodeops, vop_delmap),
341 fs_nosys, fs_nosys,
342
343 VOPNAME_POLL, offsetof(struct vnodeops, vop_poll),
344 (fs_generic_func_p) fs_poll, (fs_generic_func_p) fs_nosys_poll,
345
346 VOPNAME_DUMP, offsetof(struct vnodeops, vop_dump),
347 fs_nosys, fs_nosys,
348
349 VOPNAME_PATHCONF, offsetof(struct vnodeops, vop_pathconf),
350 fs_pathconf, fs_nosys,
351
352 VOPNAME_PAGEIO, offsetof(struct vnodeops, vop_pageio),
353 fs_nosys, fs_nosys,
354
355 VOPNAME_DUMPCTL, offsetof(struct vnodeops, vop_dumpctl),
356 fs_nosys, fs_nosys,
357
358 VOPNAME_DISPOSE, offsetof(struct vnodeops, vop_dispose),
359 (fs_generic_func_p)(uintptr_t)fs_dispose,
360 (fs_generic_func_p)(uintptr_t)fs_nodispose,
361
362 VOPNAME_SETSECATTR, offsetof(struct vnodeops, vop_setsecattr),
363 fs_nosys, fs_nosys,
364
365 VOPNAME_GETSECATTR, offsetof(struct vnodeops, vop_getsecattr),
366 fs_fab_acl, fs_nosys,
367
368 VOPNAME_SHRLOCK, offsetof(struct vnodeops, vop_shrlock),
369 fs_shrlock, fs_nosys,
370
371 VOPNAME_VNEVENT, offsetof(struct vnodeops, vop_vnevent),
372 (fs_generic_func_p) fs_vnevent_nosupport,
373 (fs_generic_func_p) fs_vnevent_nosupport,
374
375 VOPNAME_REQZCBUF, offsetof(struct vnodeops, vop_reqzcbuf),
376 fs_nosys, fs_nosys,
377
378 VOPNAME_RETZCBUF, offsetof(struct vnodeops, vop_retzcbuf),
379 fs_nosys, fs_nosys,
380
381 NULL, 0, NULL, NULL
382 };
383
384 /* Extensible attribute (xva) routines. */
385
386 /*
387 * Zero out the structure, set the size of the requested/returned bitmaps,
388 * set AT_XVATTR in the embedded vattr_t's va_mask, and set up the pointer
389 * to the returned attributes array.
390 */
391 void
xva_init(xvattr_t * xvap)392 xva_init(xvattr_t *xvap)
393 {
394 bzero(xvap, sizeof (xvattr_t));
395 xvap->xva_mapsize = XVA_MAPSIZE;
396 xvap->xva_magic = XVA_MAGIC;
397 xvap->xva_vattr.va_mask = AT_XVATTR;
398 xvap->xva_rtnattrmapp = &(xvap->xva_rtnattrmap)[0];
399 }
400
401 /*
402 * If AT_XVATTR is set, returns a pointer to the embedded xoptattr_t
403 * structure. Otherwise, returns NULL.
404 */
405 xoptattr_t *
xva_getxoptattr(xvattr_t * xvap)406 xva_getxoptattr(xvattr_t *xvap)
407 {
408 xoptattr_t *xoap = NULL;
409 if (xvap->xva_vattr.va_mask & AT_XVATTR)
410 xoap = &xvap->xva_xoptattrs;
411 return (xoap);
412 }
413
414 /*
415 * Used by the AVL routines to compare two vsk_anchor_t structures in the tree.
416 * We use the f_fsid reported by VFS_STATVFS() since we use that for the
417 * kstat name.
418 */
419 static int
vska_compar(const void * n1,const void * n2)420 vska_compar(const void *n1, const void *n2)
421 {
422 int ret;
423 ulong_t p1 = ((vsk_anchor_t *)n1)->vsk_fsid;
424 ulong_t p2 = ((vsk_anchor_t *)n2)->vsk_fsid;
425
426 if (p1 < p2) {
427 ret = -1;
428 } else if (p1 > p2) {
429 ret = 1;
430 } else {
431 ret = 0;
432 }
433
434 return (ret);
435 }
436
437 /*
438 * Used to create a single template which will be bcopy()ed to a newly
439 * allocated vsanchor_combo_t structure in new_vsanchor(), below.
440 */
441 static vopstats_t *
create_vopstats_template()442 create_vopstats_template()
443 {
444 vopstats_t *vsp;
445
446 vsp = kmem_alloc(sizeof (vopstats_t), KM_SLEEP);
447 bzero(vsp, sizeof (*vsp)); /* Start fresh */
448
449 /* VOP_OPEN */
450 kstat_named_init(&vsp->nopen, "nopen", KSTAT_DATA_UINT64);
451 /* VOP_CLOSE */
452 kstat_named_init(&vsp->nclose, "nclose", KSTAT_DATA_UINT64);
453 /* VOP_READ I/O */
454 kstat_named_init(&vsp->nread, "nread", KSTAT_DATA_UINT64);
455 kstat_named_init(&vsp->read_bytes, "read_bytes", KSTAT_DATA_UINT64);
456 /* VOP_WRITE I/O */
457 kstat_named_init(&vsp->nwrite, "nwrite", KSTAT_DATA_UINT64);
458 kstat_named_init(&vsp->write_bytes, "write_bytes", KSTAT_DATA_UINT64);
459 /* VOP_IOCTL */
460 kstat_named_init(&vsp->nioctl, "nioctl", KSTAT_DATA_UINT64);
461 /* VOP_SETFL */
462 kstat_named_init(&vsp->nsetfl, "nsetfl", KSTAT_DATA_UINT64);
463 /* VOP_GETATTR */
464 kstat_named_init(&vsp->ngetattr, "ngetattr", KSTAT_DATA_UINT64);
465 /* VOP_SETATTR */
466 kstat_named_init(&vsp->nsetattr, "nsetattr", KSTAT_DATA_UINT64);
467 /* VOP_ACCESS */
468 kstat_named_init(&vsp->naccess, "naccess", KSTAT_DATA_UINT64);
469 /* VOP_LOOKUP */
470 kstat_named_init(&vsp->nlookup, "nlookup", KSTAT_DATA_UINT64);
471 /* VOP_CREATE */
472 kstat_named_init(&vsp->ncreate, "ncreate", KSTAT_DATA_UINT64);
473 /* VOP_REMOVE */
474 kstat_named_init(&vsp->nremove, "nremove", KSTAT_DATA_UINT64);
475 /* VOP_LINK */
476 kstat_named_init(&vsp->nlink, "nlink", KSTAT_DATA_UINT64);
477 /* VOP_RENAME */
478 kstat_named_init(&vsp->nrename, "nrename", KSTAT_DATA_UINT64);
479 /* VOP_MKDIR */
480 kstat_named_init(&vsp->nmkdir, "nmkdir", KSTAT_DATA_UINT64);
481 /* VOP_RMDIR */
482 kstat_named_init(&vsp->nrmdir, "nrmdir", KSTAT_DATA_UINT64);
483 /* VOP_READDIR I/O */
484 kstat_named_init(&vsp->nreaddir, "nreaddir", KSTAT_DATA_UINT64);
485 kstat_named_init(&vsp->readdir_bytes, "readdir_bytes",
486 KSTAT_DATA_UINT64);
487 /* VOP_SYMLINK */
488 kstat_named_init(&vsp->nsymlink, "nsymlink", KSTAT_DATA_UINT64);
489 /* VOP_READLINK */
490 kstat_named_init(&vsp->nreadlink, "nreadlink", KSTAT_DATA_UINT64);
491 /* VOP_FSYNC */
492 kstat_named_init(&vsp->nfsync, "nfsync", KSTAT_DATA_UINT64);
493 /* VOP_INACTIVE */
494 kstat_named_init(&vsp->ninactive, "ninactive", KSTAT_DATA_UINT64);
495 /* VOP_FID */
496 kstat_named_init(&vsp->nfid, "nfid", KSTAT_DATA_UINT64);
497 /* VOP_RWLOCK */
498 kstat_named_init(&vsp->nrwlock, "nrwlock", KSTAT_DATA_UINT64);
499 /* VOP_RWUNLOCK */
500 kstat_named_init(&vsp->nrwunlock, "nrwunlock", KSTAT_DATA_UINT64);
501 /* VOP_SEEK */
502 kstat_named_init(&vsp->nseek, "nseek", KSTAT_DATA_UINT64);
503 /* VOP_CMP */
504 kstat_named_init(&vsp->ncmp, "ncmp", KSTAT_DATA_UINT64);
505 /* VOP_FRLOCK */
506 kstat_named_init(&vsp->nfrlock, "nfrlock", KSTAT_DATA_UINT64);
507 /* VOP_SPACE */
508 kstat_named_init(&vsp->nspace, "nspace", KSTAT_DATA_UINT64);
509 /* VOP_REALVP */
510 kstat_named_init(&vsp->nrealvp, "nrealvp", KSTAT_DATA_UINT64);
511 /* VOP_GETPAGE */
512 kstat_named_init(&vsp->ngetpage, "ngetpage", KSTAT_DATA_UINT64);
513 /* VOP_PUTPAGE */
514 kstat_named_init(&vsp->nputpage, "nputpage", KSTAT_DATA_UINT64);
515 /* VOP_MAP */
516 kstat_named_init(&vsp->nmap, "nmap", KSTAT_DATA_UINT64);
517 /* VOP_ADDMAP */
518 kstat_named_init(&vsp->naddmap, "naddmap", KSTAT_DATA_UINT64);
519 /* VOP_DELMAP */
520 kstat_named_init(&vsp->ndelmap, "ndelmap", KSTAT_DATA_UINT64);
521 /* VOP_POLL */
522 kstat_named_init(&vsp->npoll, "npoll", KSTAT_DATA_UINT64);
523 /* VOP_DUMP */
524 kstat_named_init(&vsp->ndump, "ndump", KSTAT_DATA_UINT64);
525 /* VOP_PATHCONF */
526 kstat_named_init(&vsp->npathconf, "npathconf", KSTAT_DATA_UINT64);
527 /* VOP_PAGEIO */
528 kstat_named_init(&vsp->npageio, "npageio", KSTAT_DATA_UINT64);
529 /* VOP_DUMPCTL */
530 kstat_named_init(&vsp->ndumpctl, "ndumpctl", KSTAT_DATA_UINT64);
531 /* VOP_DISPOSE */
532 kstat_named_init(&vsp->ndispose, "ndispose", KSTAT_DATA_UINT64);
533 /* VOP_SETSECATTR */
534 kstat_named_init(&vsp->nsetsecattr, "nsetsecattr", KSTAT_DATA_UINT64);
535 /* VOP_GETSECATTR */
536 kstat_named_init(&vsp->ngetsecattr, "ngetsecattr", KSTAT_DATA_UINT64);
537 /* VOP_SHRLOCK */
538 kstat_named_init(&vsp->nshrlock, "nshrlock", KSTAT_DATA_UINT64);
539 /* VOP_VNEVENT */
540 kstat_named_init(&vsp->nvnevent, "nvnevent", KSTAT_DATA_UINT64);
541 /* VOP_REQZCBUF */
542 kstat_named_init(&vsp->nreqzcbuf, "nreqzcbuf", KSTAT_DATA_UINT64);
543 /* VOP_RETZCBUF */
544 kstat_named_init(&vsp->nretzcbuf, "nretzcbuf", KSTAT_DATA_UINT64);
545
546 return (vsp);
547 }
548
549 /*
550 * Creates a kstat structure associated with a vopstats structure.
551 */
552 kstat_t *
new_vskstat(char * ksname,vopstats_t * vsp)553 new_vskstat(char *ksname, vopstats_t *vsp)
554 {
555 kstat_t *ksp;
556
557 if (!vopstats_enabled) {
558 return (NULL);
559 }
560
561 ksp = kstat_create("unix", 0, ksname, "misc", KSTAT_TYPE_NAMED,
562 sizeof (vopstats_t)/sizeof (kstat_named_t),
563 KSTAT_FLAG_VIRTUAL|KSTAT_FLAG_WRITABLE);
564 if (ksp) {
565 ksp->ks_data = vsp;
566 kstat_install(ksp);
567 }
568
569 return (ksp);
570 }
571
572 /*
573 * Called from vfsinit() to initialize the support mechanisms for vopstats
574 */
575 void
vopstats_startup()576 vopstats_startup()
577 {
578 if (!vopstats_enabled)
579 return;
580
581 /*
582 * Creates the AVL tree which holds per-vfs vopstat anchors. This
583 * is necessary since we need to check if a kstat exists before we
584 * attempt to create it. Also, initialize its lock.
585 */
586 avl_create(&vskstat_tree, vska_compar, sizeof (vsk_anchor_t),
587 offsetof(vsk_anchor_t, vsk_node));
588 mutex_init(&vskstat_tree_lock, NULL, MUTEX_DEFAULT, NULL);
589
590 vsk_anchor_cache = kmem_cache_create("vsk_anchor_cache",
591 sizeof (vsk_anchor_t), sizeof (uintptr_t), NULL, NULL, NULL,
592 NULL, NULL, 0);
593
594 /*
595 * Set up the array of pointers for the vopstats-by-FS-type.
596 * The entries will be allocated/initialized as each file system
597 * goes through modload/mod_installfs.
598 */
599 vopstats_fstype = (vopstats_t **)kmem_zalloc(
600 (sizeof (vopstats_t *) * nfstype), KM_SLEEP);
601
602 /* Set up the global vopstats initialization template */
603 vs_templatep = create_vopstats_template();
604 }
605
606 /*
607 * We need to have the all of the counters zeroed.
608 * The initialization of the vopstats_t includes on the order of
609 * 50 calls to kstat_named_init(). Rather that do that on every call,
610 * we do it once in a template (vs_templatep) then bcopy it over.
611 */
612 void
initialize_vopstats(vopstats_t * vsp)613 initialize_vopstats(vopstats_t *vsp)
614 {
615 if (vsp == NULL)
616 return;
617
618 bcopy(vs_templatep, vsp, sizeof (vopstats_t));
619 }
620
621 /*
622 * If possible, determine which vopstats by fstype to use and
623 * return a pointer to the caller.
624 */
625 vopstats_t *
get_fstype_vopstats(vfs_t * vfsp,struct vfssw * vswp)626 get_fstype_vopstats(vfs_t *vfsp, struct vfssw *vswp)
627 {
628 int fstype = 0; /* Index into vfssw[] */
629 vopstats_t *vsp = NULL;
630
631 if (vfsp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 ||
632 !vopstats_enabled)
633 return (NULL);
634 /*
635 * Set up the fstype. We go to so much trouble because all versions
636 * of NFS use the same fstype in their vfs even though they have
637 * distinct entries in the vfssw[] table.
638 * NOTE: A special vfs (e.g., EIO_vfs) may not have an entry.
639 */
640 if (vswp) {
641 fstype = vswp - vfssw; /* Gets us the index */
642 } else {
643 fstype = vfsp->vfs_fstype;
644 }
645
646 /*
647 * Point to the per-fstype vopstats. The only valid values are
648 * non-zero positive values less than the number of vfssw[] table
649 * entries.
650 */
651 if (fstype > 0 && fstype < nfstype) {
652 vsp = vopstats_fstype[fstype];
653 }
654
655 return (vsp);
656 }
657
658 /*
659 * Generate a kstat name, create the kstat structure, and allocate a
660 * vsk_anchor_t to hold it together. Return the pointer to the vsk_anchor_t
661 * to the caller. This must only be called from a mount.
662 */
663 vsk_anchor_t *
get_vskstat_anchor(vfs_t * vfsp)664 get_vskstat_anchor(vfs_t *vfsp)
665 {
666 char kstatstr[KSTAT_STRLEN]; /* kstat name for vopstats */
667 statvfs64_t statvfsbuf; /* Needed to find f_fsid */
668 vsk_anchor_t *vskp = NULL; /* vfs <--> kstat anchor */
669 kstat_t *ksp; /* Ptr to new kstat */
670 avl_index_t where; /* Location in the AVL tree */
671
672 if (vfsp == NULL || vfsp->vfs_implp == NULL ||
673 (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled)
674 return (NULL);
675
676 /* Need to get the fsid to build a kstat name */
677 if (VFS_STATVFS(vfsp, &statvfsbuf) == 0) {
678 /* Create a name for our kstats based on fsid */
679 (void) snprintf(kstatstr, KSTAT_STRLEN, "%s%lx",
680 VOPSTATS_STR, statvfsbuf.f_fsid);
681
682 /* Allocate and initialize the vsk_anchor_t */
683 vskp = kmem_cache_alloc(vsk_anchor_cache, KM_SLEEP);
684 bzero(vskp, sizeof (*vskp));
685 vskp->vsk_fsid = statvfsbuf.f_fsid;
686
687 mutex_enter(&vskstat_tree_lock);
688 if (avl_find(&vskstat_tree, vskp, &where) == NULL) {
689 avl_insert(&vskstat_tree, vskp, where);
690 mutex_exit(&vskstat_tree_lock);
691
692 /*
693 * Now that we've got the anchor in the AVL
694 * tree, we can create the kstat.
695 */
696 ksp = new_vskstat(kstatstr, &vfsp->vfs_vopstats);
697 if (ksp) {
698 vskp->vsk_ksp = ksp;
699 }
700 } else {
701 /* Oops, found one! Release memory and lock. */
702 mutex_exit(&vskstat_tree_lock);
703 kmem_cache_free(vsk_anchor_cache, vskp);
704 vskp = NULL;
705 }
706 }
707 return (vskp);
708 }
709
710 /*
711 * We're in the process of tearing down the vfs and need to cleanup
712 * the data structures associated with the vopstats. Must only be called
713 * from dounmount().
714 */
715 void
teardown_vopstats(vfs_t * vfsp)716 teardown_vopstats(vfs_t *vfsp)
717 {
718 vsk_anchor_t *vskap;
719 avl_index_t where;
720
721 if (vfsp == NULL || vfsp->vfs_implp == NULL ||
722 (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled)
723 return;
724
725 /* This is a safe check since VFS_STATS must be set (see above) */
726 if ((vskap = vfsp->vfs_vskap) == NULL)
727 return;
728
729 /* Whack the pointer right away */
730 vfsp->vfs_vskap = NULL;
731
732 /* Lock the tree, remove the node, and delete the kstat */
733 mutex_enter(&vskstat_tree_lock);
734 if (avl_find(&vskstat_tree, vskap, &where)) {
735 avl_remove(&vskstat_tree, vskap);
736 }
737
738 if (vskap->vsk_ksp) {
739 kstat_delete(vskap->vsk_ksp);
740 }
741 mutex_exit(&vskstat_tree_lock);
742
743 kmem_cache_free(vsk_anchor_cache, vskap);
744 }
745
746 /*
747 * Read or write a vnode. Called from kernel code.
748 */
749 int
vn_rdwr(enum uio_rw rw,struct vnode * vp,caddr_t base,ssize_t len,offset_t offset,enum uio_seg seg,int ioflag,rlim64_t ulimit,cred_t * cr,ssize_t * residp)750 vn_rdwr(
751 enum uio_rw rw,
752 struct vnode *vp,
753 caddr_t base,
754 ssize_t len,
755 offset_t offset,
756 enum uio_seg seg,
757 int ioflag,
758 rlim64_t ulimit, /* meaningful only if rw is UIO_WRITE */
759 cred_t *cr,
760 ssize_t *residp)
761 {
762 struct uio uio;
763 struct iovec iov;
764 int error;
765 int in_crit = 0;
766
767 if (rw == UIO_WRITE && ISROFILE(vp))
768 return (EROFS);
769
770 if (len < 0)
771 return (EIO);
772
773 VOPXID_MAP_CR(vp, cr);
774
775 iov.iov_base = base;
776 iov.iov_len = len;
777 uio.uio_iov = &iov;
778 uio.uio_iovcnt = 1;
779 uio.uio_loffset = offset;
780 uio.uio_segflg = (short)seg;
781 uio.uio_resid = len;
782 uio.uio_llimit = ulimit;
783
784 /*
785 * We have to enter the critical region before calling VOP_RWLOCK
786 * to avoid a deadlock with ufs.
787 */
788 if (nbl_need_check(vp)) {
789 int svmand;
790
791 nbl_start_crit(vp, RW_READER);
792 in_crit = 1;
793 error = nbl_svmand(vp, cr, &svmand);
794 if (error != 0)
795 goto done;
796 if (nbl_conflict(vp, rw == UIO_WRITE ? NBL_WRITE : NBL_READ,
797 uio.uio_offset, uio.uio_resid, svmand, NULL)) {
798 error = EACCES;
799 goto done;
800 }
801 }
802
803 (void) VOP_RWLOCK(vp,
804 rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL);
805 if (rw == UIO_WRITE) {
806 uio.uio_fmode = FWRITE;
807 uio.uio_extflg = UIO_COPY_DEFAULT;
808 error = VOP_WRITE(vp, &uio, ioflag, cr, NULL);
809 } else {
810 uio.uio_fmode = FREAD;
811 uio.uio_extflg = UIO_COPY_CACHED;
812 error = VOP_READ(vp, &uio, ioflag, cr, NULL);
813 }
814 VOP_RWUNLOCK(vp,
815 rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL);
816 if (residp)
817 *residp = uio.uio_resid;
818 else if (uio.uio_resid)
819 error = EIO;
820
821 done:
822 if (in_crit)
823 nbl_end_crit(vp);
824 return (error);
825 }
826
827 /*
828 * Release a vnode. Call VOP_INACTIVE on last reference or
829 * decrement reference count.
830 *
831 * To avoid race conditions, the v_count is left at 1 for
832 * the call to VOP_INACTIVE. This prevents another thread
833 * from reclaiming and releasing the vnode *before* the
834 * VOP_INACTIVE routine has a chance to destroy the vnode.
835 * We can't have more than 1 thread calling VOP_INACTIVE
836 * on a vnode.
837 */
838 void
vn_rele(vnode_t * vp)839 vn_rele(vnode_t *vp)
840 {
841 mutex_enter(&vp->v_lock);
842 if (vp->v_count == 1) {
843 mutex_exit(&vp->v_lock);
844 VOP_INACTIVE(vp, CRED(), NULL);
845 return;
846 }
847 VERIFY(vp->v_count > 0);
848 VN_RELE_LOCKED(vp);
849 mutex_exit(&vp->v_lock);
850 }
851
852 /*
853 * Release a vnode referenced by the DNLC. Multiple DNLC references are treated
854 * as a single reference, so v_count is not decremented until the last DNLC hold
855 * is released. This makes it possible to distinguish vnodes that are referenced
856 * only by the DNLC.
857 */
858 void
vn_rele_dnlc(vnode_t * vp)859 vn_rele_dnlc(vnode_t *vp)
860 {
861 mutex_enter(&vp->v_lock);
862 VERIFY((vp->v_count > 0) && (vp->v_count_dnlc > 0));
863 if (--vp->v_count_dnlc == 0) {
864 if (vp->v_count == 1) {
865 mutex_exit(&vp->v_lock);
866 VOP_INACTIVE(vp, CRED(), NULL);
867 return;
868 }
869 VN_RELE_LOCKED(vp);
870 }
871 mutex_exit(&vp->v_lock);
872 }
873
874 /*
875 * Like vn_rele() except that it clears v_stream under v_lock.
876 * This is used by sockfs when it dismantles the association between
877 * the sockfs node and the vnode in the underlying file system.
878 * v_lock has to be held to prevent a thread coming through the lookupname
879 * path from accessing a stream head that is going away.
880 */
881 void
vn_rele_stream(vnode_t * vp)882 vn_rele_stream(vnode_t *vp)
883 {
884 mutex_enter(&vp->v_lock);
885 vp->v_stream = NULL;
886 if (vp->v_count == 1) {
887 mutex_exit(&vp->v_lock);
888 VOP_INACTIVE(vp, CRED(), NULL);
889 return;
890 }
891 VERIFY(vp->v_count > 0);
892 VN_RELE_LOCKED(vp);
893 mutex_exit(&vp->v_lock);
894 }
895
896 static void
vn_rele_inactive(vnode_t * vp)897 vn_rele_inactive(vnode_t *vp)
898 {
899 VOP_INACTIVE(vp, CRED(), NULL);
900 }
901
902 /*
903 * Like vn_rele() except if we are going to call VOP_INACTIVE() then do it
904 * asynchronously using a taskq. This can avoid deadlocks caused by re-entering
905 * the file system as a result of releasing the vnode. Note, file systems
906 * already have to handle the race where the vnode is incremented before the
907 * inactive routine is called and does its locking.
908 *
909 * Warning: Excessive use of this routine can lead to performance problems.
910 * This is because taskqs throttle back allocation if too many are created.
911 */
912 void
vn_rele_async(vnode_t * vp,taskq_t * taskq)913 vn_rele_async(vnode_t *vp, taskq_t *taskq)
914 {
915 mutex_enter(&vp->v_lock);
916 if (vp->v_count == 1) {
917 mutex_exit(&vp->v_lock);
918 VERIFY(taskq_dispatch(taskq, (task_func_t *)vn_rele_inactive,
919 vp, TQ_SLEEP) != TASKQID_INVALID);
920 return;
921 }
922 VERIFY(vp->v_count > 0);
923 VN_RELE_LOCKED(vp);
924 mutex_exit(&vp->v_lock);
925 }
926
927 int
vn_open(char * pnamep,enum uio_seg seg,int filemode,int createmode,struct vnode ** vpp,enum create crwhy,mode_t umask)928 vn_open(
929 char *pnamep,
930 enum uio_seg seg,
931 int filemode,
932 int createmode,
933 struct vnode **vpp,
934 enum create crwhy,
935 mode_t umask)
936 {
937 return (vn_openat(pnamep, seg, filemode, createmode, vpp, crwhy,
938 umask, NULL, -1));
939 }
940
941
942 /*
943 * Open/create a vnode.
944 * This may be callable by the kernel, the only known use
945 * of user context being that the current user credentials
946 * are used for permissions. crwhy is defined iff filemode & FCREAT.
947 */
948 int
vn_openat(char * pnamep,enum uio_seg seg,int filemode,int createmode,struct vnode ** vpp,enum create crwhy,mode_t umask,struct vnode * startvp,int fd)949 vn_openat(
950 char *pnamep,
951 enum uio_seg seg,
952 int filemode,
953 int createmode,
954 struct vnode **vpp,
955 enum create crwhy,
956 mode_t umask,
957 struct vnode *startvp,
958 int fd)
959 {
960 struct vnode *vp;
961 int mode;
962 int accessflags;
963 int error;
964 int in_crit = 0;
965 int open_done = 0;
966 int shrlock_done = 0;
967 struct vattr vattr;
968 enum symfollow follow;
969 int estale_retry = 0;
970 struct shrlock shr;
971 struct shr_locowner shr_own;
972 boolean_t create;
973
974 mode = 0;
975 accessflags = 0;
976 if (filemode & FREAD)
977 mode |= VREAD;
978 if (filemode & (FWRITE|FTRUNC))
979 mode |= VWRITE;
980 if (filemode & (FSEARCH|FEXEC|FXATTRDIROPEN))
981 mode |= VEXEC;
982
983 /* symlink interpretation */
984 if (filemode & FNOFOLLOW)
985 follow = NO_FOLLOW;
986 else
987 follow = FOLLOW;
988
989 if (filemode & FAPPEND)
990 accessflags |= V_APPEND;
991
992 /*
993 * We need to handle the case of FCREAT | FDIRECTORY and the case of
994 * FEXCL. If all three are specified, then we always fail because we
995 * cannot create a directory through this interface and FEXCL says we
996 * need to fail the request if we can't create it. If, however, only
997 * FCREAT | FDIRECTORY are specified, then we can treat this as the case
998 * of opening a file that already exists. If it exists, we can do
999 * something and if not, we fail. Effectively FCREAT | FDIRECTORY is
1000 * treated as FDIRECTORY.
1001 */
1002 if ((filemode & (FCREAT | FDIRECTORY | FEXCL)) ==
1003 (FCREAT | FDIRECTORY | FEXCL)) {
1004 return (EINVAL);
1005 }
1006
1007 if ((filemode & (FCREAT | FDIRECTORY)) == (FCREAT | FDIRECTORY)) {
1008 create = B_FALSE;
1009 } else if ((filemode & FCREAT) != 0) {
1010 create = B_TRUE;
1011 } else {
1012 create = B_FALSE;
1013 }
1014
1015 top:
1016 if (create) {
1017 enum vcexcl excl;
1018
1019 /*
1020 * Wish to create a file.
1021 */
1022 vattr.va_type = VREG;
1023 vattr.va_mode = createmode;
1024 vattr.va_mask = AT_TYPE|AT_MODE;
1025 if (filemode & FTRUNC) {
1026 vattr.va_size = 0;
1027 vattr.va_mask |= AT_SIZE;
1028 }
1029 if (filemode & FEXCL)
1030 excl = EXCL;
1031 else
1032 excl = NONEXCL;
1033
1034 if (error =
1035 vn_createat(pnamep, seg, &vattr, excl, mode, &vp, crwhy,
1036 (filemode & ~(FTRUNC|FEXCL)), umask, startvp))
1037 return (error);
1038 } else {
1039 /*
1040 * Wish to open a file. Just look it up.
1041 */
1042 if (error = lookupnameat(pnamep, seg, follow,
1043 NULLVPP, &vp, startvp)) {
1044 if ((error == ESTALE) &&
1045 fs_need_estale_retry(estale_retry++))
1046 goto top;
1047 return (error);
1048 }
1049
1050 /*
1051 * Get the attributes to check whether file is large.
1052 * We do this only if the FOFFMAX flag is not set and
1053 * only for regular files.
1054 */
1055
1056 if (!(filemode & FOFFMAX) && (vp->v_type == VREG)) {
1057 vattr.va_mask = AT_SIZE;
1058 if ((error = VOP_GETATTR(vp, &vattr, 0,
1059 CRED(), NULL))) {
1060 goto out;
1061 }
1062 if (vattr.va_size > (u_offset_t)MAXOFF32_T) {
1063 /*
1064 * Large File API - regular open fails
1065 * if FOFFMAX flag is set in file mode
1066 */
1067 error = EOVERFLOW;
1068 goto out;
1069 }
1070 }
1071 /*
1072 * Can't write directories, active texts, or
1073 * read-only filesystems. Can't truncate files
1074 * on which mandatory locking is in effect.
1075 */
1076 if (filemode & (FWRITE|FTRUNC)) {
1077 /*
1078 * Allow writable directory if VDIROPEN flag is set.
1079 */
1080 if (vp->v_type == VDIR && !(vp->v_flag & VDIROPEN)) {
1081 error = EISDIR;
1082 goto out;
1083 }
1084 if (ISROFILE(vp)) {
1085 error = EROFS;
1086 goto out;
1087 }
1088 /*
1089 * Can't truncate files on which
1090 * sysv mandatory locking is in effect.
1091 */
1092 if (filemode & FTRUNC) {
1093 vnode_t *rvp;
1094
1095 if (VOP_REALVP(vp, &rvp, NULL) != 0)
1096 rvp = vp;
1097 if (rvp->v_filocks != NULL) {
1098 vattr.va_mask = AT_MODE;
1099 if ((error = VOP_GETATTR(vp,
1100 &vattr, 0, CRED(), NULL)) == 0 &&
1101 MANDLOCK(vp, vattr.va_mode))
1102 error = EAGAIN;
1103 }
1104 }
1105 if (error)
1106 goto out;
1107 }
1108 /*
1109 * Check permissions.
1110 */
1111 if (error = VOP_ACCESS(vp, mode, accessflags, CRED(), NULL))
1112 goto out;
1113
1114 /*
1115 * Require FSEARCH and FDIRECTORY to return a directory. Require
1116 * FEXEC to return a regular file.
1117 */
1118 if ((filemode & (FSEARCH|FDIRECTORY)) != 0 &&
1119 vp->v_type != VDIR) {
1120 error = ENOTDIR;
1121 goto out;
1122 }
1123 if ((filemode & FEXEC) && vp->v_type != VREG) {
1124 error = ENOEXEC; /* XXX: error code? */
1125 goto out;
1126 }
1127 }
1128
1129 /*
1130 * Do remaining checks for FNOFOLLOW and FNOLINKS.
1131 */
1132 if ((filemode & FNOFOLLOW) && vp->v_type == VLNK) {
1133 error = ELOOP;
1134 goto out;
1135 }
1136 if (filemode & FNOLINKS) {
1137 vattr.va_mask = AT_NLINK;
1138 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))) {
1139 goto out;
1140 }
1141 if (vattr.va_nlink != 1) {
1142 error = EMLINK;
1143 goto out;
1144 }
1145 }
1146
1147 /*
1148 * Opening a socket corresponding to the AF_UNIX pathname
1149 * in the filesystem name space is not supported.
1150 * However, VSOCK nodes in namefs are supported in order
1151 * to make fattach work for sockets.
1152 *
1153 * XXX This uses VOP_REALVP to distinguish between
1154 * an unopened namefs node (where VOP_REALVP returns a
1155 * different VSOCK vnode) and a VSOCK created by vn_create
1156 * in some file system (where VOP_REALVP would never return
1157 * a different vnode).
1158 */
1159 if (vp->v_type == VSOCK) {
1160 struct vnode *nvp;
1161
1162 error = VOP_REALVP(vp, &nvp, NULL);
1163 if (error != 0 || nvp == NULL || nvp == vp ||
1164 nvp->v_type != VSOCK) {
1165 error = EOPNOTSUPP;
1166 goto out;
1167 }
1168 }
1169
1170 if ((vp->v_type == VREG) && nbl_need_check(vp)) {
1171 /* get share reservation */
1172 shr.s_access = 0;
1173 if (filemode & FWRITE)
1174 shr.s_access |= F_WRACC;
1175 if (filemode & FREAD)
1176 shr.s_access |= F_RDACC;
1177 shr.s_deny = 0;
1178 shr.s_sysid = 0;
1179 shr.s_pid = ttoproc(curthread)->p_pid;
1180 shr_own.sl_pid = shr.s_pid;
1181 shr_own.sl_id = fd;
1182 shr.s_own_len = sizeof (shr_own);
1183 shr.s_owner = (caddr_t)&shr_own;
1184 error = VOP_SHRLOCK(vp, F_SHARE_NBMAND, &shr, filemode, CRED(),
1185 NULL);
1186 if (error)
1187 goto out;
1188 shrlock_done = 1;
1189
1190 /* nbmand conflict check if truncating file */
1191 if ((filemode & FTRUNC) && !(filemode & FCREAT)) {
1192 nbl_start_crit(vp, RW_READER);
1193 in_crit = 1;
1194
1195 vattr.va_mask = AT_SIZE;
1196 if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))
1197 goto out;
1198 if (nbl_conflict(vp, NBL_WRITE, 0, vattr.va_size, 0,
1199 NULL)) {
1200 error = EACCES;
1201 goto out;
1202 }
1203 }
1204 }
1205
1206 /*
1207 * Do opening protocol.
1208 */
1209 error = VOP_OPEN(&vp, filemode, CRED(), NULL);
1210 if (error)
1211 goto out;
1212 open_done = 1;
1213
1214 /*
1215 * Truncate if required.
1216 */
1217 if ((filemode & FTRUNC) && !(filemode & FCREAT)) {
1218 vattr.va_size = 0;
1219 vattr.va_mask = AT_SIZE;
1220 if ((error = VOP_SETATTR(vp, &vattr, 0, CRED(), NULL)) != 0)
1221 goto out;
1222 }
1223
1224 /*
1225 * Turn on directio, if requested.
1226 */
1227 if (filemode & FDIRECT) {
1228 if ((error = VOP_IOCTL(vp, _FIODIRECTIO, DIRECTIO_ON, 0,
1229 CRED(), NULL, NULL)) != 0) {
1230 /*
1231 * On Linux, O_DIRECT returns EINVAL when the file
1232 * system does not support directio, so we'll do the
1233 * same.
1234 */
1235 error = EINVAL;
1236 goto out;
1237 }
1238 }
1239 out:
1240 ASSERT(vp->v_count > 0);
1241
1242 if (in_crit) {
1243 nbl_end_crit(vp);
1244 in_crit = 0;
1245 }
1246 if (error) {
1247 if (open_done) {
1248 (void) VOP_CLOSE(vp, filemode, 1, (offset_t)0, CRED(),
1249 NULL);
1250 open_done = 0;
1251 shrlock_done = 0;
1252 }
1253 if (shrlock_done) {
1254 (void) VOP_SHRLOCK(vp, F_UNSHARE, &shr, 0, CRED(),
1255 NULL);
1256 shrlock_done = 0;
1257 }
1258
1259 /*
1260 * The following clause was added to handle a problem
1261 * with NFS consistency. It is possible that a lookup
1262 * of the file to be opened succeeded, but the file
1263 * itself doesn't actually exist on the server. This
1264 * is chiefly due to the DNLC containing an entry for
1265 * the file which has been removed on the server. In
1266 * this case, we just start over. If there was some
1267 * other cause for the ESTALE error, then the lookup
1268 * of the file will fail and the error will be returned
1269 * above instead of looping around from here.
1270 */
1271 VN_RELE(vp);
1272 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1273 goto top;
1274 } else
1275 *vpp = vp;
1276 return (error);
1277 }
1278
1279 /*
1280 * The following two accessor functions are for the NFSv4 server. Since there
1281 * is no VOP_OPEN_UP/DOWNGRADE we need a way for the NFS server to keep the
1282 * vnode open counts correct when a client "upgrades" an open or does an
1283 * open_downgrade. In NFS, an upgrade or downgrade can not only change the
1284 * open mode (add or subtract read or write), but also change the share/deny
1285 * modes. However, share reservations are not integrated with OPEN, yet, so
1286 * we need to handle each separately. These functions are cleaner than having
1287 * the NFS server manipulate the counts directly, however, nobody else should
1288 * use these functions.
1289 */
1290 void
vn_open_upgrade(vnode_t * vp,int filemode)1291 vn_open_upgrade(
1292 vnode_t *vp,
1293 int filemode)
1294 {
1295 ASSERT(vp->v_type == VREG);
1296
1297 if (filemode & FREAD)
1298 atomic_inc_32(&vp->v_rdcnt);
1299 if (filemode & FWRITE)
1300 atomic_inc_32(&vp->v_wrcnt);
1301
1302 }
1303
1304 void
vn_open_downgrade(vnode_t * vp,int filemode)1305 vn_open_downgrade(
1306 vnode_t *vp,
1307 int filemode)
1308 {
1309 ASSERT(vp->v_type == VREG);
1310
1311 if (filemode & FREAD) {
1312 ASSERT(vp->v_rdcnt > 0);
1313 atomic_dec_32(&vp->v_rdcnt);
1314 }
1315 if (filemode & FWRITE) {
1316 ASSERT(vp->v_wrcnt > 0);
1317 atomic_dec_32(&vp->v_wrcnt);
1318 }
1319
1320 }
1321
1322 int
vn_create(char * pnamep,enum uio_seg seg,struct vattr * vap,enum vcexcl excl,int mode,struct vnode ** vpp,enum create why,int flag,mode_t umask)1323 vn_create(
1324 char *pnamep,
1325 enum uio_seg seg,
1326 struct vattr *vap,
1327 enum vcexcl excl,
1328 int mode,
1329 struct vnode **vpp,
1330 enum create why,
1331 int flag,
1332 mode_t umask)
1333 {
1334 return (vn_createat(pnamep, seg, vap, excl, mode, vpp, why, flag,
1335 umask, NULL));
1336 }
1337
1338 /*
1339 * Create a vnode (makenode).
1340 */
1341 int
vn_createat(char * pnamep,enum uio_seg seg,struct vattr * vap,enum vcexcl excl,int mode,struct vnode ** vpp,enum create why,int flag,mode_t umask,struct vnode * startvp)1342 vn_createat(
1343 char *pnamep,
1344 enum uio_seg seg,
1345 struct vattr *vap,
1346 enum vcexcl excl,
1347 int mode,
1348 struct vnode **vpp,
1349 enum create why,
1350 int flag,
1351 mode_t umask,
1352 struct vnode *startvp)
1353 {
1354 struct vnode *dvp; /* ptr to parent dir vnode */
1355 struct vnode *vp = NULL;
1356 struct pathname pn;
1357 int error;
1358 int in_crit = 0;
1359 struct vattr vattr;
1360 enum symfollow follow;
1361 int estale_retry = 0;
1362 uint32_t auditing = AU_AUDITING();
1363
1364 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
1365
1366 /* symlink interpretation */
1367 if ((flag & FNOFOLLOW) || excl == EXCL)
1368 follow = NO_FOLLOW;
1369 else
1370 follow = FOLLOW;
1371 flag &= ~(FNOFOLLOW|FNOLINKS);
1372
1373 top:
1374 /*
1375 * Lookup directory.
1376 * If new object is a file, call lower level to create it.
1377 * Note that it is up to the lower level to enforce exclusive
1378 * creation, if the file is already there.
1379 * This allows the lower level to do whatever
1380 * locking or protocol that is needed to prevent races.
1381 * If the new object is directory call lower level to make
1382 * the new directory, with "." and "..".
1383 */
1384 if (error = pn_get(pnamep, seg, &pn))
1385 return (error);
1386 if (auditing)
1387 audit_vncreate_start();
1388 dvp = NULL;
1389 *vpp = NULL;
1390 /*
1391 * lookup will find the parent directory for the vnode.
1392 * When it is done the pn holds the name of the entry
1393 * in the directory.
1394 * If this is a non-exclusive create we also find the node itself.
1395 */
1396 error = lookuppnat(&pn, NULL, follow, &dvp,
1397 (excl == EXCL) ? NULLVPP : vpp, startvp);
1398 if (error) {
1399 pn_free(&pn);
1400 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1401 goto top;
1402 if (why == CRMKDIR && error == EINVAL)
1403 error = EEXIST; /* SVID */
1404 return (error);
1405 }
1406
1407 if (why != CRMKNOD)
1408 vap->va_mode &= ~VSVTX;
1409
1410 /*
1411 * If default ACLs are defined for the directory don't apply the
1412 * umask if umask is passed.
1413 */
1414
1415 if (umask) {
1416
1417 vsecattr_t vsec;
1418
1419 vsec.vsa_aclcnt = 0;
1420 vsec.vsa_aclentp = NULL;
1421 vsec.vsa_dfaclcnt = 0;
1422 vsec.vsa_dfaclentp = NULL;
1423 vsec.vsa_mask = VSA_DFACLCNT;
1424 error = VOP_GETSECATTR(dvp, &vsec, 0, CRED(), NULL);
1425 /*
1426 * If error is ENOSYS then treat it as no error
1427 * Don't want to force all file systems to support
1428 * aclent_t style of ACL's.
1429 */
1430 if (error == ENOSYS)
1431 error = 0;
1432 if (error) {
1433 if (*vpp != NULL)
1434 VN_RELE(*vpp);
1435 goto out;
1436 } else {
1437 /*
1438 * Apply the umask if no default ACLs.
1439 */
1440 if (vsec.vsa_dfaclcnt == 0)
1441 vap->va_mode &= ~umask;
1442
1443 /*
1444 * VOP_GETSECATTR() may have allocated memory for
1445 * ACLs we didn't request, so double-check and
1446 * free it if necessary.
1447 */
1448 if (vsec.vsa_aclcnt && vsec.vsa_aclentp != NULL)
1449 kmem_free((caddr_t)vsec.vsa_aclentp,
1450 vsec.vsa_aclcnt * sizeof (aclent_t));
1451 if (vsec.vsa_dfaclcnt && vsec.vsa_dfaclentp != NULL)
1452 kmem_free((caddr_t)vsec.vsa_dfaclentp,
1453 vsec.vsa_dfaclcnt * sizeof (aclent_t));
1454 }
1455 }
1456
1457 /*
1458 * In general we want to generate EROFS if the file system is
1459 * readonly. However, POSIX (IEEE Std. 1003.1) section 5.3.1
1460 * documents the open system call, and it says that O_CREAT has no
1461 * effect if the file already exists. Bug 1119649 states
1462 * that open(path, O_CREAT, ...) fails when attempting to open an
1463 * existing file on a read only file system. Thus, the first part
1464 * of the following if statement has 3 checks:
1465 * if the file exists &&
1466 * it is being open with write access &&
1467 * the file system is read only
1468 * then generate EROFS
1469 */
1470 if ((*vpp != NULL && (mode & VWRITE) && ISROFILE(*vpp)) ||
1471 (*vpp == NULL && dvp->v_vfsp->vfs_flag & VFS_RDONLY)) {
1472 if (*vpp)
1473 VN_RELE(*vpp);
1474 error = EROFS;
1475 } else if (excl == NONEXCL && *vpp != NULL) {
1476 vnode_t *rvp;
1477
1478 /*
1479 * File already exists. If a mandatory lock has been
1480 * applied, return error.
1481 */
1482 vp = *vpp;
1483 if (VOP_REALVP(vp, &rvp, NULL) != 0)
1484 rvp = vp;
1485 if ((vap->va_mask & AT_SIZE) && nbl_need_check(vp)) {
1486 nbl_start_crit(vp, RW_READER);
1487 in_crit = 1;
1488 }
1489 if (rvp->v_filocks != NULL || rvp->v_shrlocks != NULL) {
1490 vattr.va_mask = AT_MODE|AT_SIZE;
1491 if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL)) {
1492 goto out;
1493 }
1494 if (MANDLOCK(vp, vattr.va_mode)) {
1495 error = EAGAIN;
1496 goto out;
1497 }
1498 /*
1499 * File cannot be truncated if non-blocking mandatory
1500 * locks are currently on the file.
1501 */
1502 if ((vap->va_mask & AT_SIZE) && in_crit) {
1503 u_offset_t offset;
1504 ssize_t length;
1505
1506 offset = vap->va_size > vattr.va_size ?
1507 vattr.va_size : vap->va_size;
1508 length = vap->va_size > vattr.va_size ?
1509 vap->va_size - vattr.va_size :
1510 vattr.va_size - vap->va_size;
1511 if (nbl_conflict(vp, NBL_WRITE, offset,
1512 length, 0, NULL)) {
1513 error = EACCES;
1514 goto out;
1515 }
1516 }
1517 }
1518
1519 /*
1520 * If the file is the root of a VFS, we've crossed a
1521 * mount point and the "containing" directory that we
1522 * acquired above (dvp) is irrelevant because it's in
1523 * a different file system. We apply VOP_CREATE to the
1524 * target itself instead of to the containing directory
1525 * and supply a null path name to indicate (conventionally)
1526 * the node itself as the "component" of interest.
1527 *
1528 * The call to VOP_CREATE() is necessary to ensure
1529 * that the appropriate permission checks are made,
1530 * i.e. EISDIR, EACCES, etc. We already know that vpp
1531 * exists since we are in the else condition where this
1532 * was checked.
1533 */
1534 if (vp->v_flag & VROOT) {
1535 ASSERT(why != CRMKDIR);
1536 error = VOP_CREATE(vp, "", vap, excl, mode, vpp,
1537 CRED(), flag, NULL, NULL);
1538 /*
1539 * If the create succeeded, it will have created a
1540 * new reference on a new vnode (*vpp) in the child
1541 * file system, so we want to drop our reference on
1542 * the old (vp) upon exit.
1543 */
1544 goto out;
1545 }
1546
1547 /*
1548 * Large File API - non-large open (FOFFMAX flag not set)
1549 * of regular file fails if the file size exceeds MAXOFF32_T.
1550 */
1551 if (why != CRMKDIR &&
1552 !(flag & FOFFMAX) &&
1553 (vp->v_type == VREG)) {
1554 vattr.va_mask = AT_SIZE;
1555 if ((error = VOP_GETATTR(vp, &vattr, 0,
1556 CRED(), NULL))) {
1557 goto out;
1558 }
1559 if ((vattr.va_size > (u_offset_t)MAXOFF32_T)) {
1560 error = EOVERFLOW;
1561 goto out;
1562 }
1563 }
1564 }
1565
1566 if (error == 0) {
1567 /*
1568 * Call mkdir() if specified, otherwise create().
1569 */
1570 int must_be_dir = pn_fixslash(&pn); /* trailing '/'? */
1571
1572 if (why == CRMKDIR)
1573 /*
1574 * N.B., if vn_createat() ever requests
1575 * case-insensitive behavior then it will need
1576 * to be passed to VOP_MKDIR(). VOP_CREATE()
1577 * will already get it via "flag"
1578 */
1579 error = VOP_MKDIR(dvp, pn.pn_path, vap, vpp, CRED(),
1580 NULL, 0, NULL);
1581 else if (!must_be_dir)
1582 error = VOP_CREATE(dvp, pn.pn_path, vap,
1583 excl, mode, vpp, CRED(), flag, NULL, NULL);
1584 else
1585 error = ENOTDIR;
1586 }
1587
1588 out:
1589
1590 if (auditing)
1591 audit_vncreate_finish(*vpp, error);
1592 if (in_crit) {
1593 nbl_end_crit(vp);
1594 in_crit = 0;
1595 }
1596 if (vp != NULL) {
1597 VN_RELE(vp);
1598 vp = NULL;
1599 }
1600 pn_free(&pn);
1601 VN_RELE(dvp);
1602 /*
1603 * The following clause was added to handle a problem
1604 * with NFS consistency. It is possible that a lookup
1605 * of the file to be created succeeded, but the file
1606 * itself doesn't actually exist on the server. This
1607 * is chiefly due to the DNLC containing an entry for
1608 * the file which has been removed on the server. In
1609 * this case, we just start over. If there was some
1610 * other cause for the ESTALE error, then the lookup
1611 * of the file will fail and the error will be returned
1612 * above instead of looping around from here.
1613 */
1614 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1615 goto top;
1616 return (error);
1617 }
1618
1619 int
vn_link(char * from,char * to,enum uio_seg seg)1620 vn_link(char *from, char *to, enum uio_seg seg)
1621 {
1622 return (vn_linkat(NULL, from, NO_FOLLOW, NULL, to, seg));
1623 }
1624
1625 int
vn_linkat(vnode_t * fstartvp,char * from,enum symfollow follow,vnode_t * tstartvp,char * to,enum uio_seg seg)1626 vn_linkat(vnode_t *fstartvp, char *from, enum symfollow follow,
1627 vnode_t *tstartvp, char *to, enum uio_seg seg)
1628 {
1629 struct vnode *fvp; /* from vnode ptr */
1630 struct vnode *tdvp; /* to directory vnode ptr */
1631 struct pathname pn;
1632 int error;
1633 struct vattr vattr;
1634 dev_t fsid;
1635 int estale_retry = 0;
1636 uint32_t auditing = AU_AUDITING();
1637
1638 top:
1639 fvp = tdvp = NULL;
1640 if (error = pn_get(to, seg, &pn))
1641 return (error);
1642 if (auditing && fstartvp != NULL)
1643 audit_setfsat_path(1);
1644 if (error = lookupnameat(from, seg, follow, NULLVPP, &fvp, fstartvp))
1645 goto out;
1646 if (auditing && tstartvp != NULL)
1647 audit_setfsat_path(3);
1648 if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &tdvp, NULLVPP, tstartvp))
1649 goto out;
1650 /*
1651 * Make sure both source vnode and target directory vnode are
1652 * in the same vfs and that it is writeable.
1653 */
1654 vattr.va_mask = AT_FSID;
1655 if (error = VOP_GETATTR(fvp, &vattr, 0, CRED(), NULL))
1656 goto out;
1657 fsid = vattr.va_fsid;
1658 vattr.va_mask = AT_FSID;
1659 if (error = VOP_GETATTR(tdvp, &vattr, 0, CRED(), NULL))
1660 goto out;
1661 if (fsid != vattr.va_fsid) {
1662 error = EXDEV;
1663 goto out;
1664 }
1665 if (tdvp->v_vfsp->vfs_flag & VFS_RDONLY) {
1666 error = EROFS;
1667 goto out;
1668 }
1669 /*
1670 * Do the link.
1671 */
1672 (void) pn_fixslash(&pn);
1673 error = VOP_LINK(tdvp, fvp, pn.pn_path, CRED(), NULL, 0);
1674 out:
1675 pn_free(&pn);
1676 if (fvp)
1677 VN_RELE(fvp);
1678 if (tdvp)
1679 VN_RELE(tdvp);
1680 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1681 goto top;
1682 return (error);
1683 }
1684
1685 int
vn_rename(char * from,char * to,enum uio_seg seg)1686 vn_rename(char *from, char *to, enum uio_seg seg)
1687 {
1688 return (vn_renameat(NULL, from, NULL, to, seg));
1689 }
1690
1691 int
vn_renameat(vnode_t * fdvp,char * fname,vnode_t * tdvp,char * tname,enum uio_seg seg)1692 vn_renameat(vnode_t *fdvp, char *fname, vnode_t *tdvp,
1693 char *tname, enum uio_seg seg)
1694 {
1695 int error;
1696 struct vattr vattr;
1697 struct pathname fpn; /* from pathname */
1698 struct pathname tpn; /* to pathname */
1699 dev_t fsid;
1700 int in_crit_src, in_crit_targ;
1701 vnode_t *fromvp, *fvp;
1702 vnode_t *tovp, *targvp;
1703 int estale_retry = 0;
1704 uint32_t auditing = AU_AUDITING();
1705
1706 top:
1707 fvp = fromvp = tovp = targvp = NULL;
1708 in_crit_src = in_crit_targ = 0;
1709 /*
1710 * Get to and from pathnames.
1711 */
1712 if (error = pn_get(fname, seg, &fpn))
1713 return (error);
1714 if (error = pn_get(tname, seg, &tpn)) {
1715 pn_free(&fpn);
1716 return (error);
1717 }
1718
1719 /*
1720 * First we need to resolve the correct directories
1721 * The passed in directories may only be a starting point,
1722 * but we need the real directories the file(s) live in.
1723 * For example the fname may be something like usr/lib/sparc
1724 * and we were passed in the / directory, but we need to
1725 * use the lib directory for the rename.
1726 */
1727
1728 if (auditing && fdvp != NULL)
1729 audit_setfsat_path(1);
1730 /*
1731 * Lookup to and from directories.
1732 */
1733 if (error = lookuppnat(&fpn, NULL, NO_FOLLOW, &fromvp, &fvp, fdvp)) {
1734 goto out;
1735 }
1736
1737 /*
1738 * Make sure there is an entry.
1739 */
1740 if (fvp == NULL) {
1741 error = ENOENT;
1742 goto out;
1743 }
1744
1745 if (auditing && tdvp != NULL)
1746 audit_setfsat_path(3);
1747 if (error = lookuppnat(&tpn, NULL, NO_FOLLOW, &tovp, &targvp, tdvp)) {
1748 goto out;
1749 }
1750
1751 /*
1752 * Make sure both the from vnode directory and the to directory
1753 * are in the same vfs and the to directory is writable.
1754 * We check fsid's, not vfs pointers, so loopback fs works.
1755 */
1756 if (fromvp != tovp) {
1757 vattr.va_mask = AT_FSID;
1758 if (error = VOP_GETATTR(fromvp, &vattr, 0, CRED(), NULL))
1759 goto out;
1760 fsid = vattr.va_fsid;
1761 vattr.va_mask = AT_FSID;
1762 if (error = VOP_GETATTR(tovp, &vattr, 0, CRED(), NULL))
1763 goto out;
1764 if (fsid != vattr.va_fsid) {
1765 error = EXDEV;
1766 goto out;
1767 }
1768 }
1769
1770 if (tovp->v_vfsp->vfs_flag & VFS_RDONLY) {
1771 error = EROFS;
1772 goto out;
1773 }
1774
1775 /*
1776 * Make sure "from" vp is not a mount point.
1777 * Note, lookup did traverse() already, so
1778 * we'll be looking at the mounted FS root.
1779 * (but allow files like mnttab)
1780 */
1781 if ((fvp->v_flag & VROOT) != 0 && fvp->v_type == VDIR) {
1782 error = EBUSY;
1783 goto out;
1784 }
1785
1786 if (targvp && (fvp != targvp)) {
1787 nbl_start_crit(targvp, RW_READER);
1788 in_crit_targ = 1;
1789 if (nbl_conflict(targvp, NBL_REMOVE, 0, 0, 0, NULL)) {
1790 error = EACCES;
1791 goto out;
1792 }
1793 }
1794
1795 if (nbl_need_check(fvp)) {
1796 nbl_start_crit(fvp, RW_READER);
1797 in_crit_src = 1;
1798 if (nbl_conflict(fvp, NBL_RENAME, 0, 0, 0, NULL)) {
1799 error = EACCES;
1800 goto out;
1801 }
1802 }
1803
1804 /*
1805 * Do the rename.
1806 */
1807 (void) pn_fixslash(&tpn);
1808 error = VOP_RENAME(fromvp, fpn.pn_path, tovp, tpn.pn_path, CRED(),
1809 NULL, 0);
1810
1811 out:
1812 pn_free(&fpn);
1813 pn_free(&tpn);
1814 if (in_crit_src)
1815 nbl_end_crit(fvp);
1816 if (in_crit_targ)
1817 nbl_end_crit(targvp);
1818 if (fromvp)
1819 VN_RELE(fromvp);
1820 if (tovp)
1821 VN_RELE(tovp);
1822 if (targvp)
1823 VN_RELE(targvp);
1824 if (fvp)
1825 VN_RELE(fvp);
1826 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1827 goto top;
1828 return (error);
1829 }
1830
1831 /*
1832 * Remove a file or directory.
1833 */
1834 int
vn_remove(char * fnamep,enum uio_seg seg,enum rm dirflag)1835 vn_remove(char *fnamep, enum uio_seg seg, enum rm dirflag)
1836 {
1837 return (vn_removeat(NULL, fnamep, seg, dirflag));
1838 }
1839
1840 int
vn_removeat(vnode_t * startvp,char * fnamep,enum uio_seg seg,enum rm dirflag)1841 vn_removeat(vnode_t *startvp, char *fnamep, enum uio_seg seg, enum rm dirflag)
1842 {
1843 struct vnode *vp; /* entry vnode */
1844 struct vnode *dvp; /* ptr to parent dir vnode */
1845 struct vnode *coveredvp;
1846 struct pathname pn; /* name of entry */
1847 enum vtype vtype;
1848 int error;
1849 struct vfs *vfsp;
1850 struct vfs *dvfsp; /* ptr to parent dir vfs */
1851 int in_crit = 0;
1852 int estale_retry = 0;
1853
1854 top:
1855 if (error = pn_get(fnamep, seg, &pn))
1856 return (error);
1857 dvp = vp = NULL;
1858 if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &dvp, &vp, startvp)) {
1859 pn_free(&pn);
1860 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1861 goto top;
1862 return (error);
1863 }
1864
1865 /*
1866 * Make sure there is an entry.
1867 */
1868 if (vp == NULL) {
1869 error = ENOENT;
1870 goto out;
1871 }
1872
1873 vfsp = vp->v_vfsp;
1874 dvfsp = dvp->v_vfsp;
1875
1876 /*
1877 * If the named file is the root of a mounted filesystem, fail,
1878 * unless it's marked unlinkable. In that case, unmount the
1879 * filesystem and proceed to unlink the covered vnode. (If the
1880 * covered vnode is a directory, use rmdir instead of unlink,
1881 * to avoid file system corruption.)
1882 */
1883 if (vp->v_flag & VROOT) {
1884 if ((vfsp->vfs_flag & VFS_UNLINKABLE) == 0) {
1885 error = EBUSY;
1886 goto out;
1887 }
1888
1889 /*
1890 * Namefs specific code starts here.
1891 */
1892
1893 if (dirflag == RMDIRECTORY) {
1894 /*
1895 * User called rmdir(2) on a file that has
1896 * been namefs mounted on top of. Since
1897 * namefs doesn't allow directories to
1898 * be mounted on other files we know
1899 * vp is not of type VDIR so fail to operation.
1900 */
1901 error = ENOTDIR;
1902 goto out;
1903 }
1904
1905 /*
1906 * If VROOT is still set after grabbing vp->v_lock,
1907 * noone has finished nm_unmount so far and coveredvp
1908 * is valid.
1909 * If we manage to grab vn_vfswlock(coveredvp) before releasing
1910 * vp->v_lock, any race window is eliminated.
1911 */
1912
1913 mutex_enter(&vp->v_lock);
1914 if ((vp->v_flag & VROOT) == 0) {
1915 /* Someone beat us to the unmount */
1916 mutex_exit(&vp->v_lock);
1917 error = EBUSY;
1918 goto out;
1919 }
1920 vfsp = vp->v_vfsp;
1921 coveredvp = vfsp->vfs_vnodecovered;
1922 ASSERT(coveredvp);
1923 /*
1924 * Note: Implementation of vn_vfswlock shows that ordering of
1925 * v_lock / vn_vfswlock is not an issue here.
1926 */
1927 error = vn_vfswlock(coveredvp);
1928 mutex_exit(&vp->v_lock);
1929
1930 if (error)
1931 goto out;
1932
1933 VN_HOLD(coveredvp);
1934 VN_RELE(vp);
1935 error = dounmount(vfsp, 0, CRED());
1936
1937 /*
1938 * Unmounted the namefs file system; now get
1939 * the object it was mounted over.
1940 */
1941 vp = coveredvp;
1942 /*
1943 * If namefs was mounted over a directory, then
1944 * we want to use rmdir() instead of unlink().
1945 */
1946 if (vp->v_type == VDIR)
1947 dirflag = RMDIRECTORY;
1948
1949 if (error)
1950 goto out;
1951 }
1952
1953 /*
1954 * Make sure filesystem is writeable.
1955 * We check the parent directory's vfs in case this is an lofs vnode.
1956 */
1957 if (dvfsp && dvfsp->vfs_flag & VFS_RDONLY) {
1958 error = EROFS;
1959 goto out;
1960 }
1961
1962 vtype = vp->v_type;
1963
1964 /*
1965 * If there is the possibility of an nbmand share reservation, make
1966 * sure it's okay to remove the file. Keep a reference to the
1967 * vnode, so that we can exit the nbl critical region after
1968 * calling VOP_REMOVE.
1969 * If there is no possibility of an nbmand share reservation,
1970 * release the vnode reference now. Filesystems like NFS may
1971 * behave differently if there is an extra reference, so get rid of
1972 * this one. Fortunately, we can't have nbmand mounts on NFS
1973 * filesystems.
1974 */
1975 if (nbl_need_check(vp)) {
1976 nbl_start_crit(vp, RW_READER);
1977 in_crit = 1;
1978 if (nbl_conflict(vp, NBL_REMOVE, 0, 0, 0, NULL)) {
1979 error = EACCES;
1980 goto out;
1981 }
1982 } else {
1983 VN_RELE(vp);
1984 vp = NULL;
1985 }
1986
1987 if (dirflag == RMDIRECTORY) {
1988 /*
1989 * Caller is using rmdir(2), which can only be applied to
1990 * directories.
1991 */
1992 if (vtype != VDIR) {
1993 error = ENOTDIR;
1994 } else {
1995 vnode_t *cwd;
1996 proc_t *pp = curproc;
1997
1998 mutex_enter(&pp->p_lock);
1999 cwd = PTOU(pp)->u_cdir;
2000 VN_HOLD(cwd);
2001 mutex_exit(&pp->p_lock);
2002 error = VOP_RMDIR(dvp, pn.pn_path, cwd, CRED(),
2003 NULL, 0);
2004 VN_RELE(cwd);
2005 }
2006 } else {
2007 /*
2008 * Unlink(2) can be applied to anything.
2009 */
2010 error = VOP_REMOVE(dvp, pn.pn_path, CRED(), NULL, 0);
2011 }
2012
2013 out:
2014 pn_free(&pn);
2015 if (in_crit) {
2016 nbl_end_crit(vp);
2017 in_crit = 0;
2018 }
2019 if (vp != NULL)
2020 VN_RELE(vp);
2021 if (dvp != NULL)
2022 VN_RELE(dvp);
2023 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
2024 goto top;
2025 return (error);
2026 }
2027
2028 /*
2029 * Utility function to compare equality of vnodes.
2030 * Compare the underlying real vnodes, if there are underlying vnodes.
2031 * This is a more thorough comparison than the VN_CMP() macro provides.
2032 */
2033 int
vn_compare(vnode_t * vp1,vnode_t * vp2)2034 vn_compare(vnode_t *vp1, vnode_t *vp2)
2035 {
2036 vnode_t *realvp;
2037
2038 if (vp1 != NULL && VOP_REALVP(vp1, &realvp, NULL) == 0)
2039 vp1 = realvp;
2040 if (vp2 != NULL && VOP_REALVP(vp2, &realvp, NULL) == 0)
2041 vp2 = realvp;
2042 return (VN_CMP(vp1, vp2));
2043 }
2044
2045 /*
2046 * The number of locks to hash into. This value must be a power
2047 * of 2 minus 1 and should probably also be prime.
2048 */
2049 #define NUM_BUCKETS 1023
2050
2051 struct vn_vfslocks_bucket {
2052 kmutex_t vb_lock;
2053 vn_vfslocks_entry_t *vb_list;
2054 char pad[64 - sizeof (kmutex_t) - sizeof (void *)];
2055 };
2056
2057 /*
2058 * Total number of buckets will be NUM_BUCKETS + 1 .
2059 */
2060
2061 #pragma align 64(vn_vfslocks_buckets)
2062 static struct vn_vfslocks_bucket vn_vfslocks_buckets[NUM_BUCKETS + 1];
2063
2064 #define VN_VFSLOCKS_SHIFT 9
2065
2066 #define VN_VFSLOCKS_HASH(vfsvpptr) \
2067 ((((intptr_t)(vfsvpptr)) >> VN_VFSLOCKS_SHIFT) & NUM_BUCKETS)
2068
2069 /*
2070 * vn_vfslocks_getlock() uses an HASH scheme to generate
2071 * rwstlock using vfs/vnode pointer passed to it.
2072 *
2073 * vn_vfslocks_rele() releases a reference in the
2074 * HASH table which allows the entry allocated by
2075 * vn_vfslocks_getlock() to be freed at a later
2076 * stage when the refcount drops to zero.
2077 */
2078
2079 vn_vfslocks_entry_t *
vn_vfslocks_getlock(void * vfsvpptr)2080 vn_vfslocks_getlock(void *vfsvpptr)
2081 {
2082 struct vn_vfslocks_bucket *bp;
2083 vn_vfslocks_entry_t *vep;
2084 vn_vfslocks_entry_t *tvep;
2085
2086 ASSERT(vfsvpptr != NULL);
2087 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vfsvpptr)];
2088
2089 mutex_enter(&bp->vb_lock);
2090 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) {
2091 if (vep->ve_vpvfs == vfsvpptr) {
2092 vep->ve_refcnt++;
2093 mutex_exit(&bp->vb_lock);
2094 return (vep);
2095 }
2096 }
2097 mutex_exit(&bp->vb_lock);
2098 vep = kmem_alloc(sizeof (*vep), KM_SLEEP);
2099 rwst_init(&vep->ve_lock, NULL, RW_DEFAULT, NULL);
2100 vep->ve_vpvfs = (char *)vfsvpptr;
2101 vep->ve_refcnt = 1;
2102 mutex_enter(&bp->vb_lock);
2103 for (tvep = bp->vb_list; tvep != NULL; tvep = tvep->ve_next) {
2104 if (tvep->ve_vpvfs == vfsvpptr) {
2105 tvep->ve_refcnt++;
2106 mutex_exit(&bp->vb_lock);
2107
2108 /*
2109 * There is already an entry in the hash
2110 * destroy what we just allocated.
2111 */
2112 rwst_destroy(&vep->ve_lock);
2113 kmem_free(vep, sizeof (*vep));
2114 return (tvep);
2115 }
2116 }
2117 vep->ve_next = bp->vb_list;
2118 bp->vb_list = vep;
2119 mutex_exit(&bp->vb_lock);
2120 return (vep);
2121 }
2122
2123 void
vn_vfslocks_rele(vn_vfslocks_entry_t * vepent)2124 vn_vfslocks_rele(vn_vfslocks_entry_t *vepent)
2125 {
2126 struct vn_vfslocks_bucket *bp;
2127 vn_vfslocks_entry_t *vep;
2128 vn_vfslocks_entry_t *pvep;
2129
2130 ASSERT(vepent != NULL);
2131 ASSERT(vepent->ve_vpvfs != NULL);
2132
2133 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vepent->ve_vpvfs)];
2134
2135 mutex_enter(&bp->vb_lock);
2136 vepent->ve_refcnt--;
2137
2138 if ((int32_t)vepent->ve_refcnt < 0)
2139 cmn_err(CE_PANIC, "vn_vfslocks_rele: refcount negative");
2140
2141 pvep = NULL;
2142 if (vepent->ve_refcnt == 0) {
2143 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) {
2144 if (vep->ve_vpvfs == vepent->ve_vpvfs) {
2145 if (pvep == NULL)
2146 bp->vb_list = vep->ve_next;
2147 else {
2148 pvep->ve_next = vep->ve_next;
2149 }
2150 mutex_exit(&bp->vb_lock);
2151 rwst_destroy(&vep->ve_lock);
2152 kmem_free(vep, sizeof (*vep));
2153 return;
2154 }
2155 pvep = vep;
2156 }
2157 cmn_err(CE_PANIC, "vn_vfslocks_rele: vp/vfs not found");
2158 }
2159 mutex_exit(&bp->vb_lock);
2160 }
2161
2162 /*
2163 * vn_vfswlock_wait is used to implement a lock which is logically a writers
2164 * lock protecting the v_vfsmountedhere field.
2165 * vn_vfswlock_wait has been modified to be similar to vn_vfswlock,
2166 * except that it blocks to acquire the lock VVFSLOCK.
2167 *
2168 * traverse() and routines re-implementing part of traverse (e.g. autofs)
2169 * need to hold this lock. mount(), vn_rename(), vn_remove() and so on
2170 * need the non-blocking version of the writers lock i.e. vn_vfswlock
2171 */
2172 int
vn_vfswlock_wait(vnode_t * vp)2173 vn_vfswlock_wait(vnode_t *vp)
2174 {
2175 int retval;
2176 vn_vfslocks_entry_t *vpvfsentry;
2177 ASSERT(vp != NULL);
2178
2179 vpvfsentry = vn_vfslocks_getlock(vp);
2180 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_WRITER);
2181
2182 if (retval == EINTR) {
2183 vn_vfslocks_rele(vpvfsentry);
2184 return (EINTR);
2185 }
2186 return (retval);
2187 }
2188
2189 int
vn_vfsrlock_wait(vnode_t * vp)2190 vn_vfsrlock_wait(vnode_t *vp)
2191 {
2192 int retval;
2193 vn_vfslocks_entry_t *vpvfsentry;
2194 ASSERT(vp != NULL);
2195
2196 vpvfsentry = vn_vfslocks_getlock(vp);
2197 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_READER);
2198
2199 if (retval == EINTR) {
2200 vn_vfslocks_rele(vpvfsentry);
2201 return (EINTR);
2202 }
2203
2204 return (retval);
2205 }
2206
2207
2208 /*
2209 * vn_vfswlock is used to implement a lock which is logically a writers lock
2210 * protecting the v_vfsmountedhere field.
2211 */
2212 int
vn_vfswlock(vnode_t * vp)2213 vn_vfswlock(vnode_t *vp)
2214 {
2215 vn_vfslocks_entry_t *vpvfsentry;
2216
2217 /*
2218 * If vp is NULL then somebody is trying to lock the covered vnode
2219 * of /. (vfs_vnodecovered is NULL for /). This situation will
2220 * only happen when unmounting /. Since that operation will fail
2221 * anyway, return EBUSY here instead of in VFS_UNMOUNT.
2222 */
2223 if (vp == NULL)
2224 return (EBUSY);
2225
2226 vpvfsentry = vn_vfslocks_getlock(vp);
2227
2228 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
2229 return (0);
2230
2231 vn_vfslocks_rele(vpvfsentry);
2232 return (EBUSY);
2233 }
2234
2235 int
vn_vfsrlock(vnode_t * vp)2236 vn_vfsrlock(vnode_t *vp)
2237 {
2238 vn_vfslocks_entry_t *vpvfsentry;
2239
2240 /*
2241 * If vp is NULL then somebody is trying to lock the covered vnode
2242 * of /. (vfs_vnodecovered is NULL for /). This situation will
2243 * only happen when unmounting /. Since that operation will fail
2244 * anyway, return EBUSY here instead of in VFS_UNMOUNT.
2245 */
2246 if (vp == NULL)
2247 return (EBUSY);
2248
2249 vpvfsentry = vn_vfslocks_getlock(vp);
2250
2251 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
2252 return (0);
2253
2254 vn_vfslocks_rele(vpvfsentry);
2255 return (EBUSY);
2256 }
2257
2258 void
vn_vfsunlock(vnode_t * vp)2259 vn_vfsunlock(vnode_t *vp)
2260 {
2261 vn_vfslocks_entry_t *vpvfsentry;
2262
2263 /*
2264 * ve_refcnt needs to be decremented twice.
2265 * 1. To release refernce after a call to vn_vfslocks_getlock()
2266 * 2. To release the reference from the locking routines like
2267 * vn_vfsrlock/vn_vfswlock etc,.
2268 */
2269 vpvfsentry = vn_vfslocks_getlock(vp);
2270 vn_vfslocks_rele(vpvfsentry);
2271
2272 rwst_exit(&vpvfsentry->ve_lock);
2273 vn_vfslocks_rele(vpvfsentry);
2274 }
2275
2276 int
vn_vfswlock_held(vnode_t * vp)2277 vn_vfswlock_held(vnode_t *vp)
2278 {
2279 int held;
2280 vn_vfslocks_entry_t *vpvfsentry;
2281
2282 ASSERT(vp != NULL);
2283
2284 vpvfsentry = vn_vfslocks_getlock(vp);
2285 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
2286
2287 vn_vfslocks_rele(vpvfsentry);
2288 return (held);
2289 }
2290
2291
2292 int
vn_make_ops(const char * name,const fs_operation_def_t * templ,vnodeops_t ** actual)2293 vn_make_ops(
2294 const char *name, /* Name of file system */
2295 const fs_operation_def_t *templ, /* Operation specification */
2296 vnodeops_t **actual) /* Return the vnodeops */
2297 {
2298 int unused_ops;
2299 int error;
2300
2301 *actual = (vnodeops_t *)kmem_alloc(sizeof (vnodeops_t), KM_SLEEP);
2302
2303 (*actual)->vnop_name = name;
2304
2305 error = fs_build_vector(*actual, &unused_ops, vn_ops_table, templ);
2306 if (error) {
2307 kmem_free(*actual, sizeof (vnodeops_t));
2308 }
2309
2310 #if DEBUG
2311 if (unused_ops != 0)
2312 cmn_err(CE_WARN, "vn_make_ops: %s: %d operations supplied "
2313 "but not used", name, unused_ops);
2314 #endif
2315
2316 return (error);
2317 }
2318
2319 /*
2320 * Free the vnodeops created as a result of vn_make_ops()
2321 */
2322 void
vn_freevnodeops(vnodeops_t * vnops)2323 vn_freevnodeops(vnodeops_t *vnops)
2324 {
2325 kmem_free(vnops, sizeof (vnodeops_t));
2326 }
2327
2328 /*
2329 * Vnode cache.
2330 */
2331
2332 /* ARGSUSED */
2333 static int
vn_cache_constructor(void * buf,void * cdrarg,int kmflags)2334 vn_cache_constructor(void *buf, void *cdrarg, int kmflags)
2335 {
2336 struct vnode *vp;
2337
2338 vp = buf;
2339
2340 mutex_init(&vp->v_lock, NULL, MUTEX_DEFAULT, NULL);
2341 mutex_init(&vp->v_vsd_lock, NULL, MUTEX_DEFAULT, NULL);
2342 cv_init(&vp->v_cv, NULL, CV_DEFAULT, NULL);
2343 rw_init(&vp->v_nbllock, NULL, RW_DEFAULT, NULL);
2344 vp->v_femhead = NULL; /* Must be done before vn_reinit() */
2345 vp->v_path = vn_vpath_empty;
2346 vp->v_path_stamp = 0;
2347 vp->v_mpssdata = NULL;
2348 vp->v_vsd = NULL;
2349 vp->v_fopdata = NULL;
2350
2351 return (0);
2352 }
2353
2354 /* ARGSUSED */
2355 static void
vn_cache_destructor(void * buf,void * cdrarg)2356 vn_cache_destructor(void *buf, void *cdrarg)
2357 {
2358 struct vnode *vp;
2359
2360 vp = buf;
2361
2362 rw_destroy(&vp->v_nbllock);
2363 cv_destroy(&vp->v_cv);
2364 mutex_destroy(&vp->v_vsd_lock);
2365 mutex_destroy(&vp->v_lock);
2366 }
2367
2368 void
vn_create_cache(void)2369 vn_create_cache(void)
2370 {
2371 /* LINTED */
2372 ASSERT((1 << VNODE_ALIGN_LOG2) ==
2373 P2ROUNDUP(sizeof (struct vnode), VNODE_ALIGN));
2374 vn_cache = kmem_cache_create("vn_cache", sizeof (struct vnode),
2375 VNODE_ALIGN, vn_cache_constructor, vn_cache_destructor, NULL, NULL,
2376 NULL, 0);
2377 }
2378
2379 void
vn_destroy_cache(void)2380 vn_destroy_cache(void)
2381 {
2382 kmem_cache_destroy(vn_cache);
2383 }
2384
2385 /*
2386 * Used by file systems when fs-specific nodes (e.g., ufs inodes) are
2387 * cached by the file system and vnodes remain associated.
2388 */
2389 void
vn_recycle(vnode_t * vp)2390 vn_recycle(vnode_t *vp)
2391 {
2392 ASSERT(vp->v_pages == NULL);
2393 VERIFY(vp->v_path != NULL);
2394
2395 /*
2396 * XXX - This really belongs in vn_reinit(), but we have some issues
2397 * with the counts. Best to have it here for clean initialization.
2398 */
2399 vp->v_rdcnt = 0;
2400 vp->v_wrcnt = 0;
2401 vp->v_mmap_read = 0;
2402 vp->v_mmap_write = 0;
2403
2404 /*
2405 * If FEM was in use, make sure everything gets cleaned up
2406 * NOTE: vp->v_femhead is initialized to NULL in the vnode
2407 * constructor.
2408 */
2409 if (vp->v_femhead) {
2410 /* XXX - There should be a free_femhead() that does all this */
2411 ASSERT(vp->v_femhead->femh_list == NULL);
2412 mutex_destroy(&vp->v_femhead->femh_lock);
2413 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead)));
2414 vp->v_femhead = NULL;
2415 }
2416 if (vp->v_path != vn_vpath_empty) {
2417 kmem_free(vp->v_path, strlen(vp->v_path) + 1);
2418 vp->v_path = vn_vpath_empty;
2419 }
2420 vp->v_path_stamp = 0;
2421
2422 if (vp->v_fopdata != NULL) {
2423 free_fopdata(vp);
2424 }
2425 vp->v_mpssdata = NULL;
2426 vsd_free(vp);
2427 }
2428
2429 /*
2430 * Used to reset the vnode fields including those that are directly accessible
2431 * as well as those which require an accessor function.
2432 *
2433 * Does not initialize:
2434 * synchronization objects: v_lock, v_vsd_lock, v_nbllock, v_cv
2435 * v_data (since FS-nodes and vnodes point to each other and should
2436 * be updated simultaneously)
2437 * v_op (in case someone needs to make a VOP call on this object)
2438 */
2439 void
vn_reinit(vnode_t * vp)2440 vn_reinit(vnode_t *vp)
2441 {
2442 vp->v_count = 1;
2443 vp->v_count_dnlc = 0;
2444 vp->v_vfsp = NULL;
2445 vp->v_stream = NULL;
2446 vp->v_vfsmountedhere = NULL;
2447 vp->v_flag = 0;
2448 vp->v_type = VNON;
2449 vp->v_rdev = NODEV;
2450
2451 vp->v_filocks = NULL;
2452 vp->v_shrlocks = NULL;
2453 vp->v_pages = NULL;
2454
2455 vp->v_locality = NULL;
2456 vp->v_xattrdir = NULL;
2457
2458 /*
2459 * In a few specific instances, vn_reinit() is used to initialize
2460 * locally defined vnode_t instances. Lacking the construction offered
2461 * by vn_alloc(), these vnodes require v_path initialization.
2462 */
2463 if (vp->v_path == NULL) {
2464 vp->v_path = vn_vpath_empty;
2465 }
2466
2467 /* Handles v_femhead, v_path, and the r/w/map counts */
2468 vn_recycle(vp);
2469 }
2470
2471 vnode_t *
vn_alloc(int kmflag)2472 vn_alloc(int kmflag)
2473 {
2474 vnode_t *vp;
2475
2476 vp = kmem_cache_alloc(vn_cache, kmflag);
2477
2478 if (vp != NULL) {
2479 vp->v_femhead = NULL; /* Must be done before vn_reinit() */
2480 vp->v_fopdata = NULL;
2481 vn_reinit(vp);
2482 }
2483
2484 return (vp);
2485 }
2486
2487 void
vn_free(vnode_t * vp)2488 vn_free(vnode_t *vp)
2489 {
2490 ASSERT(vp->v_shrlocks == NULL);
2491 ASSERT(vp->v_filocks == NULL);
2492
2493 /*
2494 * Some file systems call vn_free() with v_count of zero,
2495 * some with v_count of 1. In any case, the value should
2496 * never be anything else.
2497 */
2498 ASSERT((vp->v_count == 0) || (vp->v_count == 1));
2499 ASSERT(vp->v_count_dnlc == 0);
2500 VERIFY(vp->v_path != NULL);
2501 if (vp->v_path != vn_vpath_empty) {
2502 kmem_free(vp->v_path, strlen(vp->v_path) + 1);
2503 vp->v_path = vn_vpath_empty;
2504 }
2505
2506 /* If FEM was in use, make sure everything gets cleaned up */
2507 if (vp->v_femhead) {
2508 /* XXX - There should be a free_femhead() that does all this */
2509 ASSERT(vp->v_femhead->femh_list == NULL);
2510 mutex_destroy(&vp->v_femhead->femh_lock);
2511 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead)));
2512 vp->v_femhead = NULL;
2513 }
2514
2515 if (vp->v_fopdata != NULL) {
2516 free_fopdata(vp);
2517 }
2518 vp->v_mpssdata = NULL;
2519 vsd_free(vp);
2520 kmem_cache_free(vn_cache, vp);
2521 }
2522
2523 /*
2524 * vnode status changes, should define better states than 1, 0.
2525 */
2526 void
vn_reclaim(vnode_t * vp)2527 vn_reclaim(vnode_t *vp)
2528 {
2529 vfs_t *vfsp = vp->v_vfsp;
2530
2531 if (vfsp == NULL ||
2532 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
2533 return;
2534 }
2535 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_RECLAIMED);
2536 }
2537
2538 void
vn_idle(vnode_t * vp)2539 vn_idle(vnode_t *vp)
2540 {
2541 vfs_t *vfsp = vp->v_vfsp;
2542
2543 if (vfsp == NULL ||
2544 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
2545 return;
2546 }
2547 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_IDLED);
2548 }
2549 void
vn_exists(vnode_t * vp)2550 vn_exists(vnode_t *vp)
2551 {
2552 vfs_t *vfsp = vp->v_vfsp;
2553
2554 if (vfsp == NULL ||
2555 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
2556 return;
2557 }
2558 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_EXISTS);
2559 }
2560
2561 void
vn_invalid(vnode_t * vp)2562 vn_invalid(vnode_t *vp)
2563 {
2564 vfs_t *vfsp = vp->v_vfsp;
2565
2566 if (vfsp == NULL ||
2567 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
2568 return;
2569 }
2570 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_DESTROYED);
2571 }
2572
2573 /* Vnode event notification */
2574
2575 int
vnevent_support(vnode_t * vp,caller_context_t * ct)2576 vnevent_support(vnode_t *vp, caller_context_t *ct)
2577 {
2578 if (vp == NULL)
2579 return (EINVAL);
2580
2581 return (VOP_VNEVENT(vp, VE_SUPPORT, NULL, NULL, ct));
2582 }
2583
2584 void
vnevent_rename_src(vnode_t * vp,vnode_t * dvp,char * name,caller_context_t * ct)2585 vnevent_rename_src(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct)
2586 {
2587 if (vp == NULL || vp->v_femhead == NULL) {
2588 return;
2589 }
2590 (void) VOP_VNEVENT(vp, VE_RENAME_SRC, dvp, name, ct);
2591 }
2592
2593 void
vnevent_rename_dest(vnode_t * vp,vnode_t * dvp,char * name,caller_context_t * ct)2594 vnevent_rename_dest(vnode_t *vp, vnode_t *dvp, char *name,
2595 caller_context_t *ct)
2596 {
2597 if (vp == NULL || vp->v_femhead == NULL) {
2598 return;
2599 }
2600 (void) VOP_VNEVENT(vp, VE_RENAME_DEST, dvp, name, ct);
2601 }
2602
2603 void
vnevent_rename_dest_dir(vnode_t * vp,caller_context_t * ct)2604 vnevent_rename_dest_dir(vnode_t *vp, caller_context_t *ct)
2605 {
2606 if (vp == NULL || vp->v_femhead == NULL) {
2607 return;
2608 }
2609 (void) VOP_VNEVENT(vp, VE_RENAME_DEST_DIR, NULL, NULL, ct);
2610 }
2611
2612 void
vnevent_remove(vnode_t * vp,vnode_t * dvp,char * name,caller_context_t * ct)2613 vnevent_remove(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct)
2614 {
2615 if (vp == NULL || vp->v_femhead == NULL) {
2616 return;
2617 }
2618 (void) VOP_VNEVENT(vp, VE_REMOVE, dvp, name, ct);
2619 }
2620
2621 void
vnevent_rmdir(vnode_t * vp,vnode_t * dvp,char * name,caller_context_t * ct)2622 vnevent_rmdir(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct)
2623 {
2624 if (vp == NULL || vp->v_femhead == NULL) {
2625 return;
2626 }
2627 (void) VOP_VNEVENT(vp, VE_RMDIR, dvp, name, ct);
2628 }
2629
2630 void
vnevent_pre_rename_src(vnode_t * vp,vnode_t * dvp,char * name,caller_context_t * ct)2631 vnevent_pre_rename_src(vnode_t *vp, vnode_t *dvp, char *name,
2632 caller_context_t *ct)
2633 {
2634 if (vp == NULL || vp->v_femhead == NULL) {
2635 return;
2636 }
2637 (void) VOP_VNEVENT(vp, VE_PRE_RENAME_SRC, dvp, name, ct);
2638 }
2639
2640 void
vnevent_pre_rename_dest(vnode_t * vp,vnode_t * dvp,char * name,caller_context_t * ct)2641 vnevent_pre_rename_dest(vnode_t *vp, vnode_t *dvp, char *name,
2642 caller_context_t *ct)
2643 {
2644 if (vp == NULL || vp->v_femhead == NULL) {
2645 return;
2646 }
2647 (void) VOP_VNEVENT(vp, VE_PRE_RENAME_DEST, dvp, name, ct);
2648 }
2649
2650 void
vnevent_pre_rename_dest_dir(vnode_t * vp,vnode_t * nvp,char * name,caller_context_t * ct)2651 vnevent_pre_rename_dest_dir(vnode_t *vp, vnode_t *nvp, char *name,
2652 caller_context_t *ct)
2653 {
2654 if (vp == NULL || vp->v_femhead == NULL) {
2655 return;
2656 }
2657 (void) VOP_VNEVENT(vp, VE_PRE_RENAME_DEST_DIR, nvp, name, ct);
2658 }
2659
2660 void
vnevent_create(vnode_t * vp,caller_context_t * ct)2661 vnevent_create(vnode_t *vp, caller_context_t *ct)
2662 {
2663 if (vp == NULL || vp->v_femhead == NULL) {
2664 return;
2665 }
2666 (void) VOP_VNEVENT(vp, VE_CREATE, NULL, NULL, ct);
2667 }
2668
2669 void
vnevent_link(vnode_t * vp,caller_context_t * ct)2670 vnevent_link(vnode_t *vp, caller_context_t *ct)
2671 {
2672 if (vp == NULL || vp->v_femhead == NULL) {
2673 return;
2674 }
2675 (void) VOP_VNEVENT(vp, VE_LINK, NULL, NULL, ct);
2676 }
2677
2678 void
vnevent_mountedover(vnode_t * vp,caller_context_t * ct)2679 vnevent_mountedover(vnode_t *vp, caller_context_t *ct)
2680 {
2681 if (vp == NULL || vp->v_femhead == NULL) {
2682 return;
2683 }
2684 (void) VOP_VNEVENT(vp, VE_MOUNTEDOVER, NULL, NULL, ct);
2685 }
2686
2687 void
vnevent_truncate(vnode_t * vp,caller_context_t * ct)2688 vnevent_truncate(vnode_t *vp, caller_context_t *ct)
2689 {
2690 if (vp == NULL || vp->v_femhead == NULL) {
2691 return;
2692 }
2693 (void) VOP_VNEVENT(vp, VE_TRUNCATE, NULL, NULL, ct);
2694 }
2695
2696 /*
2697 * Vnode accessors.
2698 */
2699
2700 int
vn_is_readonly(vnode_t * vp)2701 vn_is_readonly(vnode_t *vp)
2702 {
2703 return (vp->v_vfsp->vfs_flag & VFS_RDONLY);
2704 }
2705
2706 int
vn_has_flocks(vnode_t * vp)2707 vn_has_flocks(vnode_t *vp)
2708 {
2709 return (vp->v_filocks != NULL);
2710 }
2711
2712 int
vn_has_mandatory_locks(vnode_t * vp,int mode)2713 vn_has_mandatory_locks(vnode_t *vp, int mode)
2714 {
2715 return ((vp->v_filocks != NULL) && (MANDLOCK(vp, mode)));
2716 }
2717
2718 int
vn_has_cached_data(vnode_t * vp)2719 vn_has_cached_data(vnode_t *vp)
2720 {
2721 return (vp->v_pages != NULL);
2722 }
2723
2724 /*
2725 * Return 0 if the vnode in question shouldn't be permitted into a zone via
2726 * zone_enter(2).
2727 */
2728 int
vn_can_change_zones(vnode_t * vp)2729 vn_can_change_zones(vnode_t *vp)
2730 {
2731 struct vfssw *vswp;
2732 int allow = 1;
2733 vnode_t *rvp;
2734
2735 if (nfs_global_client_only != 0)
2736 return (1);
2737
2738 /*
2739 * We always want to look at the underlying vnode if there is one.
2740 */
2741 if (VOP_REALVP(vp, &rvp, NULL) != 0)
2742 rvp = vp;
2743 /*
2744 * Some pseudo filesystems (including doorfs) don't actually register
2745 * their vfsops_t, so the following may return NULL; we happily let
2746 * such vnodes switch zones.
2747 */
2748 vswp = vfs_getvfsswbyvfsops(vfs_getops(rvp->v_vfsp));
2749 if (vswp != NULL) {
2750 if (vswp->vsw_flag & VSW_NOTZONESAFE)
2751 allow = 0;
2752 vfs_unrefvfssw(vswp);
2753 }
2754 return (allow);
2755 }
2756
2757 /*
2758 * Return nonzero if the vnode is a mount point, zero if not.
2759 */
2760 int
vn_ismntpt(vnode_t * vp)2761 vn_ismntpt(vnode_t *vp)
2762 {
2763 return (vp->v_vfsmountedhere != NULL);
2764 }
2765
2766 /* Retrieve the vfs (if any) mounted on this vnode */
2767 vfs_t *
vn_mountedvfs(vnode_t * vp)2768 vn_mountedvfs(vnode_t *vp)
2769 {
2770 return (vp->v_vfsmountedhere);
2771 }
2772
2773 /*
2774 * Return nonzero if the vnode is referenced by the dnlc, zero if not.
2775 */
2776 int
vn_in_dnlc(vnode_t * vp)2777 vn_in_dnlc(vnode_t *vp)
2778 {
2779 return (vp->v_count_dnlc > 0);
2780 }
2781
2782 /*
2783 * vn_has_other_opens() checks whether a particular file is opened by more than
2784 * just the caller and whether the open is for read and/or write.
2785 * This routine is for calling after the caller has already called VOP_OPEN()
2786 * and the caller wishes to know if they are the only one with it open for
2787 * the mode(s) specified.
2788 *
2789 * Vnode counts are only kept on regular files (v_type=VREG).
2790 */
2791 int
vn_has_other_opens(vnode_t * vp,v_mode_t mode)2792 vn_has_other_opens(
2793 vnode_t *vp,
2794 v_mode_t mode)
2795 {
2796
2797 ASSERT(vp != NULL);
2798
2799 switch (mode) {
2800 case V_WRITE:
2801 if (vp->v_wrcnt > 1)
2802 return (V_TRUE);
2803 break;
2804 case V_RDORWR:
2805 if ((vp->v_rdcnt > 1) || (vp->v_wrcnt > 1))
2806 return (V_TRUE);
2807 break;
2808 case V_RDANDWR:
2809 if ((vp->v_rdcnt > 1) && (vp->v_wrcnt > 1))
2810 return (V_TRUE);
2811 break;
2812 case V_READ:
2813 if (vp->v_rdcnt > 1)
2814 return (V_TRUE);
2815 break;
2816 }
2817
2818 return (V_FALSE);
2819 }
2820
2821 /*
2822 * vn_is_opened() checks whether a particular file is opened and
2823 * whether the open is for read and/or write.
2824 *
2825 * Vnode counts are only kept on regular files (v_type=VREG).
2826 */
2827 int
vn_is_opened(vnode_t * vp,v_mode_t mode)2828 vn_is_opened(
2829 vnode_t *vp,
2830 v_mode_t mode)
2831 {
2832
2833 ASSERT(vp != NULL);
2834
2835 switch (mode) {
2836 case V_WRITE:
2837 if (vp->v_wrcnt)
2838 return (V_TRUE);
2839 break;
2840 case V_RDANDWR:
2841 if (vp->v_rdcnt && vp->v_wrcnt)
2842 return (V_TRUE);
2843 break;
2844 case V_RDORWR:
2845 if (vp->v_rdcnt || vp->v_wrcnt)
2846 return (V_TRUE);
2847 break;
2848 case V_READ:
2849 if (vp->v_rdcnt)
2850 return (V_TRUE);
2851 break;
2852 }
2853
2854 return (V_FALSE);
2855 }
2856
2857 /*
2858 * vn_is_mapped() checks whether a particular file is mapped and whether
2859 * the file is mapped read and/or write.
2860 */
2861 int
vn_is_mapped(vnode_t * vp,v_mode_t mode)2862 vn_is_mapped(
2863 vnode_t *vp,
2864 v_mode_t mode)
2865 {
2866
2867 ASSERT(vp != NULL);
2868
2869 #if !defined(_LP64)
2870 switch (mode) {
2871 /*
2872 * The atomic_add_64_nv functions force atomicity in the
2873 * case of 32 bit architectures. Otherwise the 64 bit values
2874 * require two fetches. The value of the fields may be
2875 * (potentially) changed between the first fetch and the
2876 * second
2877 */
2878 case V_WRITE:
2879 if (atomic_add_64_nv((&(vp->v_mmap_write)), 0))
2880 return (V_TRUE);
2881 break;
2882 case V_RDANDWR:
2883 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) &&
2884 (atomic_add_64_nv((&(vp->v_mmap_write)), 0)))
2885 return (V_TRUE);
2886 break;
2887 case V_RDORWR:
2888 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) ||
2889 (atomic_add_64_nv((&(vp->v_mmap_write)), 0)))
2890 return (V_TRUE);
2891 break;
2892 case V_READ:
2893 if (atomic_add_64_nv((&(vp->v_mmap_read)), 0))
2894 return (V_TRUE);
2895 break;
2896 }
2897 #else
2898 switch (mode) {
2899 case V_WRITE:
2900 if (vp->v_mmap_write)
2901 return (V_TRUE);
2902 break;
2903 case V_RDANDWR:
2904 if (vp->v_mmap_read && vp->v_mmap_write)
2905 return (V_TRUE);
2906 break;
2907 case V_RDORWR:
2908 if (vp->v_mmap_read || vp->v_mmap_write)
2909 return (V_TRUE);
2910 break;
2911 case V_READ:
2912 if (vp->v_mmap_read)
2913 return (V_TRUE);
2914 break;
2915 }
2916 #endif
2917
2918 return (V_FALSE);
2919 }
2920
2921 /*
2922 * Set the operations vector for a vnode.
2923 *
2924 * FEM ensures that the v_femhead pointer is filled in before the
2925 * v_op pointer is changed. This means that if the v_femhead pointer
2926 * is NULL, and the v_op field hasn't changed since before which checked
2927 * the v_femhead pointer; then our update is ok - we are not racing with
2928 * FEM.
2929 */
2930 void
vn_setops(vnode_t * vp,vnodeops_t * vnodeops)2931 vn_setops(vnode_t *vp, vnodeops_t *vnodeops)
2932 {
2933 vnodeops_t *op;
2934
2935 ASSERT(vp != NULL);
2936 ASSERT(vnodeops != NULL);
2937
2938 op = vp->v_op;
2939 membar_consumer();
2940 /*
2941 * If vp->v_femhead == NULL, then we'll call atomic_cas_ptr() to do
2942 * the compare-and-swap on vp->v_op. If either fails, then FEM is
2943 * in effect on the vnode and we need to have FEM deal with it.
2944 */
2945 if (vp->v_femhead != NULL || atomic_cas_ptr(&vp->v_op, op, vnodeops) !=
2946 op) {
2947 fem_setvnops(vp, vnodeops);
2948 }
2949 }
2950
2951 /*
2952 * Retrieve the operations vector for a vnode
2953 * As with vn_setops(above); make sure we aren't racing with FEM.
2954 * FEM sets the v_op to a special, internal, vnodeops that wouldn't
2955 * make sense to the callers of this routine.
2956 */
2957 vnodeops_t *
vn_getops(vnode_t * vp)2958 vn_getops(vnode_t *vp)
2959 {
2960 vnodeops_t *op;
2961
2962 ASSERT(vp != NULL);
2963
2964 op = vp->v_op;
2965 membar_consumer();
2966 if (vp->v_femhead == NULL && op == vp->v_op) {
2967 return (op);
2968 } else {
2969 return (fem_getvnops(vp));
2970 }
2971 }
2972
2973 /*
2974 * Returns non-zero (1) if the vnodeops matches that of the vnode.
2975 * Returns zero (0) if not.
2976 */
2977 int
vn_matchops(vnode_t * vp,vnodeops_t * vnodeops)2978 vn_matchops(vnode_t *vp, vnodeops_t *vnodeops)
2979 {
2980 return (vn_getops(vp) == vnodeops);
2981 }
2982
2983 /*
2984 * Returns non-zero (1) if the specified operation matches the
2985 * corresponding operation for that the vnode.
2986 * Returns zero (0) if not.
2987 */
2988
2989 #define MATCHNAME(n1, n2) (((n1)[0] == (n2)[0]) && (strcmp((n1), (n2)) == 0))
2990
2991 int
vn_matchopval(vnode_t * vp,char * vopname,fs_generic_func_p funcp)2992 vn_matchopval(vnode_t *vp, char *vopname, fs_generic_func_p funcp)
2993 {
2994 const fs_operation_trans_def_t *otdp;
2995 fs_generic_func_p *loc = NULL;
2996 vnodeops_t *vop = vn_getops(vp);
2997
2998 ASSERT(vopname != NULL);
2999
3000 for (otdp = vn_ops_table; otdp->name != NULL; otdp++) {
3001 if (MATCHNAME(otdp->name, vopname)) {
3002 loc = (fs_generic_func_p *)
3003 ((char *)(vop) + otdp->offset);
3004 break;
3005 }
3006 }
3007
3008 return ((loc != NULL) && (*loc == funcp));
3009 }
3010
3011 /*
3012 * fs_new_caller_id() needs to return a unique ID on a given local system.
3013 * The IDs do not need to survive across reboots. These are primarily
3014 * used so that (FEM) monitors can detect particular callers (such as
3015 * the NFS server) to a given vnode/vfs operation.
3016 */
3017 u_longlong_t
fs_new_caller_id()3018 fs_new_caller_id()
3019 {
3020 static uint64_t next_caller_id = 0LL; /* First call returns 1 */
3021
3022 return ((u_longlong_t)atomic_inc_64_nv(&next_caller_id));
3023 }
3024
3025 /*
3026 * The value stored in v_path is relative to rootdir, located in the global
3027 * zone. Zones or chroot environments which reside deeper inside the VFS
3028 * hierarchy will have a relative view of MAXPATHLEN since they are unaware of
3029 * what lies below their perceived root. In order to keep v_path usable for
3030 * these child environments, its allocations are allowed to exceed MAXPATHLEN.
3031 *
3032 * An upper bound of max_vnode_path is placed upon v_path allocations to
3033 * prevent the system from going too wild at the behest of pathological
3034 * behavior from the operator.
3035 */
3036 size_t max_vnode_path = 4 * MAXPATHLEN;
3037
3038
3039 void
vn_clearpath(vnode_t * vp,hrtime_t compare_stamp)3040 vn_clearpath(vnode_t *vp, hrtime_t compare_stamp)
3041 {
3042 char *buf;
3043
3044 mutex_enter(&vp->v_lock);
3045 /*
3046 * If the snapshot of v_path_stamp passed in via compare_stamp does not
3047 * match the present value on the vnode, it indicates that subsequent
3048 * changes have occurred. The v_path value is not cleared in this case
3049 * since the new value may be valid.
3050 */
3051 if (compare_stamp != 0 && vp->v_path_stamp != compare_stamp) {
3052 mutex_exit(&vp->v_lock);
3053 return;
3054 }
3055 buf = vp->v_path;
3056 vp->v_path = vn_vpath_empty;
3057 vp->v_path_stamp = 0;
3058 mutex_exit(&vp->v_lock);
3059 if (buf != vn_vpath_empty) {
3060 kmem_free(buf, strlen(buf) + 1);
3061 }
3062 }
3063
3064 static void
vn_setpath_common(vnode_t * pvp,vnode_t * vp,const char * name,size_t len,boolean_t is_rename)3065 vn_setpath_common(vnode_t *pvp, vnode_t *vp, const char *name, size_t len,
3066 boolean_t is_rename)
3067 {
3068 char *buf, *oldbuf;
3069 hrtime_t pstamp;
3070 size_t baselen, buflen = 0;
3071
3072 /* Handle the vn_setpath_str case. */
3073 if (pvp == NULL) {
3074 if (len + 1 > max_vnode_path) {
3075 DTRACE_PROBE4(vn__setpath__too__long, vnode_t *, pvp,
3076 vnode_t *, vp, char *, name, size_t, len + 1);
3077 return;
3078 }
3079 buf = kmem_alloc(len + 1, KM_SLEEP);
3080 bcopy(name, buf, len);
3081 buf[len] = '\0';
3082
3083 mutex_enter(&vp->v_lock);
3084 oldbuf = vp->v_path;
3085 vp->v_path = buf;
3086 vp->v_path_stamp = gethrtime();
3087 mutex_exit(&vp->v_lock);
3088 if (oldbuf != vn_vpath_empty) {
3089 kmem_free(oldbuf, strlen(oldbuf) + 1);
3090 }
3091 return;
3092 }
3093
3094 /* Take snapshot of parent dir */
3095 mutex_enter(&pvp->v_lock);
3096
3097 if ((pvp->v_flag & VTRAVERSE) != 0) {
3098 /*
3099 * When the parent vnode has VTRAVERSE set in its flags, normal
3100 * assumptions about v_path calculation no longer apply. The
3101 * primary situation where this occurs is via the VFS tricks
3102 * which procfs plays in order to allow /proc/PID/(root|cwd) to
3103 * yield meaningful results.
3104 *
3105 * When this flag is set, v_path on the child must not be
3106 * updated since the calculated value is likely to be
3107 * incorrect, given the current context.
3108 */
3109 mutex_exit(&pvp->v_lock);
3110 return;
3111 }
3112
3113 retrybuf:
3114 if (pvp->v_path == vn_vpath_empty) {
3115 /*
3116 * Without v_path from the parent directory, generating a child
3117 * path from the name is impossible.
3118 */
3119 if (len > 0) {
3120 pstamp = pvp->v_path_stamp;
3121 mutex_exit(&pvp->v_lock);
3122 vn_clearpath(vp, pstamp);
3123 return;
3124 }
3125
3126 /*
3127 * The only feasible case here is where a NUL lookup is being
3128 * performed on rootdir prior to its v_path being populated.
3129 */
3130 ASSERT(pvp->v_path_stamp == 0);
3131 baselen = 0;
3132 pstamp = 0;
3133 } else {
3134 pstamp = pvp->v_path_stamp;
3135 baselen = strlen(pvp->v_path);
3136 /* ignore a trailing slash if present */
3137 if (pvp->v_path[baselen - 1] == '/') {
3138 /* This should only the be case for rootdir */
3139 ASSERT(baselen == 1 && pvp == rootdir);
3140 baselen--;
3141 }
3142 }
3143 mutex_exit(&pvp->v_lock);
3144
3145 if (buflen != 0) {
3146 /* Free the existing (mis-sized) buffer in case of retry */
3147 kmem_free(buf, buflen);
3148 }
3149 /* base, '/', name and trailing NUL */
3150 buflen = baselen + len + 2;
3151 if (buflen > max_vnode_path) {
3152 DTRACE_PROBE4(vn__setpath_too__long, vnode_t *, pvp,
3153 vnode_t *, vp, char *, name, size_t, buflen);
3154 return;
3155 }
3156 buf = kmem_alloc(buflen, KM_SLEEP);
3157
3158 mutex_enter(&pvp->v_lock);
3159 if (pvp->v_path_stamp != pstamp) {
3160 size_t vlen;
3161
3162 /*
3163 * Since v_path_stamp changed on the parent, it is likely that
3164 * v_path has been altered as well. If the length does not
3165 * exactly match what was previously measured, the buffer
3166 * allocation must be repeated for proper sizing.
3167 */
3168 if (pvp->v_path == vn_vpath_empty) {
3169 /* Give up if parent lack v_path */
3170 mutex_exit(&pvp->v_lock);
3171 kmem_free(buf, buflen);
3172 return;
3173 }
3174 vlen = strlen(pvp->v_path);
3175 if (pvp->v_path[vlen - 1] == '/') {
3176 vlen--;
3177 }
3178 if (vlen != baselen) {
3179 goto retrybuf;
3180 }
3181 }
3182 bcopy(pvp->v_path, buf, baselen);
3183 mutex_exit(&pvp->v_lock);
3184
3185 buf[baselen] = '/';
3186 baselen++;
3187 bcopy(name, &buf[baselen], len + 1);
3188
3189 mutex_enter(&vp->v_lock);
3190 if (vp->v_path_stamp == 0) {
3191 /* never-visited vnode can inherit stamp from parent */
3192 ASSERT(vp->v_path == vn_vpath_empty);
3193 vp->v_path_stamp = pstamp;
3194 vp->v_path = buf;
3195 mutex_exit(&vp->v_lock);
3196 } else if (vp->v_path_stamp < pstamp || is_rename) {
3197 /*
3198 * Install the updated path and stamp, ensuring that the v_path
3199 * pointer is valid at all times for dtrace.
3200 */
3201 oldbuf = vp->v_path;
3202 vp->v_path = buf;
3203 vp->v_path_stamp = gethrtime();
3204 mutex_exit(&vp->v_lock);
3205 kmem_free(oldbuf, strlen(oldbuf) + 1);
3206 } else {
3207 /*
3208 * If the timestamp matches or is greater, it means another
3209 * thread performed the update first while locks were dropped
3210 * here to make the allocation. We defer to the newer value.
3211 */
3212 mutex_exit(&vp->v_lock);
3213 kmem_free(buf, buflen);
3214 }
3215 ASSERT(MUTEX_NOT_HELD(&vp->v_lock));
3216 }
3217
3218 void
vn_updatepath(vnode_t * pvp,vnode_t * vp,const char * name)3219 vn_updatepath(vnode_t *pvp, vnode_t *vp, const char *name)
3220 {
3221 size_t len;
3222
3223 /*
3224 * If the parent is older or empty, there's nothing further to do.
3225 */
3226 if (pvp->v_path == vn_vpath_empty ||
3227 pvp->v_path_stamp <= vp->v_path_stamp) {
3228 return;
3229 }
3230
3231 /*
3232 * Given the lack of appropriate context, meaningful updates to v_path
3233 * cannot be made for during lookups for the '.' or '..' entries.
3234 */
3235 len = strlen(name);
3236 if (len == 0 || (len == 1 && name[0] == '.') ||
3237 (len == 2 && name[0] == '.' && name[1] == '.')) {
3238 return;
3239 }
3240
3241 vn_setpath_common(pvp, vp, name, len, B_FALSE);
3242 }
3243
3244 /*
3245 * Given a starting vnode and a path, updates the path in the target vnode in
3246 * a safe manner. If the vnode already has path information embedded, then the
3247 * cached path is left untouched.
3248 */
3249 /* ARGSUSED */
3250 void
vn_setpath(vnode_t * rootvp,vnode_t * pvp,vnode_t * vp,const char * name,size_t len)3251 vn_setpath(vnode_t *rootvp, vnode_t *pvp, vnode_t *vp, const char *name,
3252 size_t len)
3253 {
3254 vn_setpath_common(pvp, vp, name, len, B_FALSE);
3255 }
3256
3257 /*
3258 * Sets the path to the vnode to be the given string, regardless of current
3259 * context. The string must be a complete path from rootdir. This is only used
3260 * by fsop_root() for setting the path based on the mountpoint.
3261 */
3262 void
vn_setpath_str(vnode_t * vp,const char * str,size_t len)3263 vn_setpath_str(vnode_t *vp, const char *str, size_t len)
3264 {
3265 vn_setpath_common(NULL, vp, str, len, B_FALSE);
3266 }
3267
3268 /*
3269 * Called from within filesystem's vop_rename() to handle renames once the
3270 * target vnode is available.
3271 */
3272 void
vn_renamepath(vnode_t * pvp,vnode_t * vp,const char * name,size_t len)3273 vn_renamepath(vnode_t *pvp, vnode_t *vp, const char *name, size_t len)
3274 {
3275 vn_setpath_common(pvp, vp, name, len, B_TRUE);
3276 }
3277
3278 /*
3279 * Similar to vn_setpath_str(), this function sets the path of the destination
3280 * vnode to the be the same as the source vnode.
3281 */
3282 void
vn_copypath(struct vnode * src,struct vnode * dst)3283 vn_copypath(struct vnode *src, struct vnode *dst)
3284 {
3285 char *buf;
3286 hrtime_t stamp;
3287 size_t buflen;
3288
3289 mutex_enter(&src->v_lock);
3290 if (src->v_path == vn_vpath_empty) {
3291 mutex_exit(&src->v_lock);
3292 return;
3293 }
3294 buflen = strlen(src->v_path) + 1;
3295 mutex_exit(&src->v_lock);
3296
3297 buf = kmem_alloc(buflen, KM_SLEEP);
3298
3299 mutex_enter(&src->v_lock);
3300 if (src->v_path == vn_vpath_empty ||
3301 strlen(src->v_path) + 1 != buflen) {
3302 mutex_exit(&src->v_lock);
3303 kmem_free(buf, buflen);
3304 return;
3305 }
3306 bcopy(src->v_path, buf, buflen);
3307 stamp = src->v_path_stamp;
3308 mutex_exit(&src->v_lock);
3309
3310 mutex_enter(&dst->v_lock);
3311 if (dst->v_path != vn_vpath_empty) {
3312 mutex_exit(&dst->v_lock);
3313 kmem_free(buf, buflen);
3314 return;
3315 }
3316 dst->v_path = buf;
3317 dst->v_path_stamp = stamp;
3318 mutex_exit(&dst->v_lock);
3319 }
3320
3321
3322 /*
3323 * XXX Private interface for segvn routines that handle vnode
3324 * large page segments.
3325 *
3326 * return 1 if vp's file system VOP_PAGEIO() implementation
3327 * can be safely used instead of VOP_GETPAGE() for handling
3328 * pagefaults against regular non swap files. VOP_PAGEIO()
3329 * interface is considered safe here if its implementation
3330 * is very close to VOP_GETPAGE() implementation.
3331 * e.g. It zero's out the part of the page beyond EOF. Doesn't
3332 * panic if there're file holes but instead returns an error.
3333 * Doesn't assume file won't be changed by user writes, etc.
3334 *
3335 * return 0 otherwise.
3336 *
3337 * For now allow segvn to only use VOP_PAGEIO() with ufs and nfs.
3338 */
3339 int
vn_vmpss_usepageio(vnode_t * vp)3340 vn_vmpss_usepageio(vnode_t *vp)
3341 {
3342 vfs_t *vfsp = vp->v_vfsp;
3343 char *fsname = vfssw[vfsp->vfs_fstype].vsw_name;
3344 char *pageio_ok_fss[] = {"ufs", "nfs", NULL};
3345 char **fsok = pageio_ok_fss;
3346
3347 if (fsname == NULL) {
3348 return (0);
3349 }
3350
3351 for (; *fsok; fsok++) {
3352 if (strcmp(*fsok, fsname) == 0) {
3353 return (1);
3354 }
3355 }
3356 return (0);
3357 }
3358
3359 /* VOP_XXX() macros call the corresponding fop_xxx() function */
3360
3361 int
fop_open(vnode_t ** vpp,int mode,cred_t * cr,caller_context_t * ct)3362 fop_open(
3363 vnode_t **vpp,
3364 int mode,
3365 cred_t *cr,
3366 caller_context_t *ct)
3367 {
3368 int ret;
3369 vnode_t *vp = *vpp;
3370
3371 VN_HOLD(vp);
3372 /*
3373 * Adding to the vnode counts before calling open
3374 * avoids the need for a mutex. It circumvents a race
3375 * condition where a query made on the vnode counts results in a
3376 * false negative. The inquirer goes away believing the file is
3377 * not open when there is an open on the file already under way.
3378 *
3379 * The counts are meant to prevent NFS from granting a delegation
3380 * when it would be dangerous to do so.
3381 *
3382 * The vnode counts are only kept on regular files
3383 */
3384 if ((*vpp)->v_type == VREG) {
3385 if (mode & FREAD)
3386 atomic_inc_32(&(*vpp)->v_rdcnt);
3387 if (mode & FWRITE)
3388 atomic_inc_32(&(*vpp)->v_wrcnt);
3389 }
3390
3391 VOPXID_MAP_CR(vp, cr);
3392
3393 ret = (*(*(vpp))->v_op->vop_open)(vpp, mode, cr, ct);
3394
3395 if (ret) {
3396 /*
3397 * Use the saved vp just in case the vnode ptr got trashed
3398 * by the error.
3399 */
3400 VOPSTATS_UPDATE(vp, open);
3401 if ((vp->v_type == VREG) && (mode & FREAD))
3402 atomic_dec_32(&vp->v_rdcnt);
3403 if ((vp->v_type == VREG) && (mode & FWRITE))
3404 atomic_dec_32(&vp->v_wrcnt);
3405 } else {
3406 /*
3407 * Some filesystems will return a different vnode,
3408 * but the same path was still used to open it.
3409 * So if we do change the vnode and need to
3410 * copy over the path, do so here, rather than special
3411 * casing each filesystem. Adjust the vnode counts to
3412 * reflect the vnode switch.
3413 */
3414 VOPSTATS_UPDATE(*vpp, open);
3415 if (*vpp != vp) {
3416 vn_copypath(vp, *vpp);
3417 if (((*vpp)->v_type == VREG) && (mode & FREAD))
3418 atomic_inc_32(&(*vpp)->v_rdcnt);
3419 if ((vp->v_type == VREG) && (mode & FREAD))
3420 atomic_dec_32(&vp->v_rdcnt);
3421 if (((*vpp)->v_type == VREG) && (mode & FWRITE))
3422 atomic_inc_32(&(*vpp)->v_wrcnt);
3423 if ((vp->v_type == VREG) && (mode & FWRITE))
3424 atomic_dec_32(&vp->v_wrcnt);
3425 }
3426 }
3427 VN_RELE(vp);
3428 return (ret);
3429 }
3430
3431 int
fop_close(vnode_t * vp,int flag,int count,offset_t offset,cred_t * cr,caller_context_t * ct)3432 fop_close(
3433 vnode_t *vp,
3434 int flag,
3435 int count,
3436 offset_t offset,
3437 cred_t *cr,
3438 caller_context_t *ct)
3439 {
3440 int err;
3441
3442 VOPXID_MAP_CR(vp, cr);
3443
3444 err = (*(vp)->v_op->vop_close)(vp, flag, count, offset, cr, ct);
3445 VOPSTATS_UPDATE(vp, close);
3446 /*
3447 * Check passed in count to handle possible dups. Vnode counts are only
3448 * kept on regular files
3449 */
3450 if ((vp->v_type == VREG) && (count == 1)) {
3451 if (flag & FREAD) {
3452 ASSERT(vp->v_rdcnt > 0);
3453 atomic_dec_32(&vp->v_rdcnt);
3454 }
3455 if (flag & FWRITE) {
3456 ASSERT(vp->v_wrcnt > 0);
3457 atomic_dec_32(&vp->v_wrcnt);
3458 }
3459 }
3460 return (err);
3461 }
3462
3463 int
fop_read(vnode_t * vp,uio_t * uiop,int ioflag,cred_t * cr,caller_context_t * ct)3464 fop_read(
3465 vnode_t *vp,
3466 uio_t *uiop,
3467 int ioflag,
3468 cred_t *cr,
3469 caller_context_t *ct)
3470 {
3471 int err;
3472 ssize_t resid_start = uiop->uio_resid;
3473
3474 VOPXID_MAP_CR(vp, cr);
3475
3476 err = (*(vp)->v_op->vop_read)(vp, uiop, ioflag, cr, ct);
3477 VOPSTATS_UPDATE_IO(vp, read,
3478 read_bytes, (resid_start - uiop->uio_resid));
3479 return (err);
3480 }
3481
3482 int
fop_write(vnode_t * vp,uio_t * uiop,int ioflag,cred_t * cr,caller_context_t * ct)3483 fop_write(
3484 vnode_t *vp,
3485 uio_t *uiop,
3486 int ioflag,
3487 cred_t *cr,
3488 caller_context_t *ct)
3489 {
3490 int err;
3491 ssize_t resid_start = uiop->uio_resid;
3492
3493 VOPXID_MAP_CR(vp, cr);
3494
3495 err = (*(vp)->v_op->vop_write)(vp, uiop, ioflag, cr, ct);
3496 VOPSTATS_UPDATE_IO(vp, write,
3497 write_bytes, (resid_start - uiop->uio_resid));
3498 return (err);
3499 }
3500
3501 int
fop_ioctl(vnode_t * vp,int cmd,intptr_t arg,int flag,cred_t * cr,int * rvalp,caller_context_t * ct)3502 fop_ioctl(
3503 vnode_t *vp,
3504 int cmd,
3505 intptr_t arg,
3506 int flag,
3507 cred_t *cr,
3508 int *rvalp,
3509 caller_context_t *ct)
3510 {
3511 int err;
3512
3513 VOPXID_MAP_CR(vp, cr);
3514
3515 err = (*(vp)->v_op->vop_ioctl)(vp, cmd, arg, flag, cr, rvalp, ct);
3516 VOPSTATS_UPDATE(vp, ioctl);
3517 return (err);
3518 }
3519
3520 int
fop_setfl(vnode_t * vp,int oflags,int nflags,cred_t * cr,caller_context_t * ct)3521 fop_setfl(
3522 vnode_t *vp,
3523 int oflags,
3524 int nflags,
3525 cred_t *cr,
3526 caller_context_t *ct)
3527 {
3528 int err;
3529
3530 VOPXID_MAP_CR(vp, cr);
3531
3532 err = (*(vp)->v_op->vop_setfl)(vp, oflags, nflags, cr, ct);
3533 VOPSTATS_UPDATE(vp, setfl);
3534 return (err);
3535 }
3536
3537 int
fop_getattr(vnode_t * vp,vattr_t * vap,int flags,cred_t * cr,caller_context_t * ct)3538 fop_getattr(
3539 vnode_t *vp,
3540 vattr_t *vap,
3541 int flags,
3542 cred_t *cr,
3543 caller_context_t *ct)
3544 {
3545 int err;
3546
3547 VOPXID_MAP_CR(vp, cr);
3548
3549 /*
3550 * If this file system doesn't understand the xvattr extensions
3551 * then turn off the xvattr bit.
3552 */
3553 if (vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) == 0) {
3554 vap->va_mask &= ~AT_XVATTR;
3555 }
3556
3557 /*
3558 * We're only allowed to skip the ACL check iff we used a 32 bit
3559 * ACE mask with VOP_ACCESS() to determine permissions.
3560 */
3561 if ((flags & ATTR_NOACLCHECK) &&
3562 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
3563 return (EINVAL);
3564 }
3565 err = (*(vp)->v_op->vop_getattr)(vp, vap, flags, cr, ct);
3566 VOPSTATS_UPDATE(vp, getattr);
3567 return (err);
3568 }
3569
3570 int
fop_setattr(vnode_t * vp,vattr_t * vap,int flags,cred_t * cr,caller_context_t * ct)3571 fop_setattr(
3572 vnode_t *vp,
3573 vattr_t *vap,
3574 int flags,
3575 cred_t *cr,
3576 caller_context_t *ct)
3577 {
3578 int err;
3579
3580 VOPXID_MAP_CR(vp, cr);
3581
3582 /*
3583 * If this file system doesn't understand the xvattr extensions
3584 * then turn off the xvattr bit.
3585 */
3586 if (vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) == 0) {
3587 vap->va_mask &= ~AT_XVATTR;
3588 }
3589
3590 /*
3591 * We're only allowed to skip the ACL check iff we used a 32 bit
3592 * ACE mask with VOP_ACCESS() to determine permissions.
3593 */
3594 if ((flags & ATTR_NOACLCHECK) &&
3595 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
3596 return (EINVAL);
3597 }
3598 err = (*(vp)->v_op->vop_setattr)(vp, vap, flags, cr, ct);
3599 VOPSTATS_UPDATE(vp, setattr);
3600 return (err);
3601 }
3602
3603 int
fop_access(vnode_t * vp,int mode,int flags,cred_t * cr,caller_context_t * ct)3604 fop_access(
3605 vnode_t *vp,
3606 int mode,
3607 int flags,
3608 cred_t *cr,
3609 caller_context_t *ct)
3610 {
3611 int err;
3612
3613 if ((flags & V_ACE_MASK) &&
3614 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
3615 return (EINVAL);
3616 }
3617
3618 VOPXID_MAP_CR(vp, cr);
3619
3620 err = (*(vp)->v_op->vop_access)(vp, mode, flags, cr, ct);
3621 VOPSTATS_UPDATE(vp, access);
3622 return (err);
3623 }
3624
3625 int
fop_lookup(vnode_t * dvp,char * nm,vnode_t ** vpp,pathname_t * pnp,int flags,vnode_t * rdir,cred_t * cr,caller_context_t * ct,int * deflags,pathname_t * ppnp)3626 fop_lookup(
3627 vnode_t *dvp,
3628 char *nm,
3629 vnode_t **vpp,
3630 pathname_t *pnp,
3631 int flags,
3632 vnode_t *rdir,
3633 cred_t *cr,
3634 caller_context_t *ct,
3635 int *deflags, /* Returned per-dirent flags */
3636 pathname_t *ppnp) /* Returned case-preserved name in directory */
3637 {
3638 int ret;
3639
3640 /*
3641 * If this file system doesn't support case-insensitive access
3642 * and said access is requested, fail quickly. It is required
3643 * that if the vfs supports case-insensitive lookup, it also
3644 * supports extended dirent flags.
3645 */
3646 if (flags & FIGNORECASE &&
3647 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3648 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3649 return (EINVAL);
3650
3651 VOPXID_MAP_CR(dvp, cr);
3652
3653 if ((flags & LOOKUP_XATTR) && (flags & LOOKUP_HAVE_SYSATTR_DIR) == 0) {
3654 ret = xattr_dir_lookup(dvp, vpp, flags, cr);
3655 } else {
3656 ret = (*(dvp)->v_op->vop_lookup)
3657 (dvp, nm, vpp, pnp, flags, rdir, cr, ct, deflags, ppnp);
3658 }
3659 if (ret == 0 && *vpp) {
3660 VOPSTATS_UPDATE(*vpp, lookup);
3661 vn_updatepath(dvp, *vpp, nm);
3662 }
3663
3664 return (ret);
3665 }
3666
3667 int
fop_create(vnode_t * dvp,char * name,vattr_t * vap,vcexcl_t excl,int mode,vnode_t ** vpp,cred_t * cr,int flags,caller_context_t * ct,vsecattr_t * vsecp)3668 fop_create(
3669 vnode_t *dvp,
3670 char *name,
3671 vattr_t *vap,
3672 vcexcl_t excl,
3673 int mode,
3674 vnode_t **vpp,
3675 cred_t *cr,
3676 int flags,
3677 caller_context_t *ct,
3678 vsecattr_t *vsecp) /* ACL to set during create */
3679 {
3680 int ret;
3681
3682 if (vsecp != NULL &&
3683 vfs_has_feature(dvp->v_vfsp, VFSFT_ACLONCREATE) == 0) {
3684 return (EINVAL);
3685 }
3686 /*
3687 * If this file system doesn't support case-insensitive access
3688 * and said access is requested, fail quickly.
3689 */
3690 if (flags & FIGNORECASE &&
3691 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3692 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3693 return (EINVAL);
3694
3695 VOPXID_MAP_CR(dvp, cr);
3696
3697 ret = (*(dvp)->v_op->vop_create)
3698 (dvp, name, vap, excl, mode, vpp, cr, flags, ct, vsecp);
3699 if (ret == 0 && *vpp) {
3700 VOPSTATS_UPDATE(*vpp, create);
3701 vn_updatepath(dvp, *vpp, name);
3702 }
3703
3704 return (ret);
3705 }
3706
3707 int
fop_remove(vnode_t * dvp,char * nm,cred_t * cr,caller_context_t * ct,int flags)3708 fop_remove(
3709 vnode_t *dvp,
3710 char *nm,
3711 cred_t *cr,
3712 caller_context_t *ct,
3713 int flags)
3714 {
3715 int err;
3716
3717 /*
3718 * If this file system doesn't support case-insensitive access
3719 * and said access is requested, fail quickly.
3720 */
3721 if (flags & FIGNORECASE &&
3722 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3723 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3724 return (EINVAL);
3725
3726 VOPXID_MAP_CR(dvp, cr);
3727
3728 err = (*(dvp)->v_op->vop_remove)(dvp, nm, cr, ct, flags);
3729 VOPSTATS_UPDATE(dvp, remove);
3730 return (err);
3731 }
3732
3733 int
fop_link(vnode_t * tdvp,vnode_t * svp,char * tnm,cred_t * cr,caller_context_t * ct,int flags)3734 fop_link(
3735 vnode_t *tdvp,
3736 vnode_t *svp,
3737 char *tnm,
3738 cred_t *cr,
3739 caller_context_t *ct,
3740 int flags)
3741 {
3742 int err;
3743
3744 /*
3745 * If the target file system doesn't support case-insensitive access
3746 * and said access is requested, fail quickly.
3747 */
3748 if (flags & FIGNORECASE &&
3749 (vfs_has_feature(tdvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3750 vfs_has_feature(tdvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3751 return (EINVAL);
3752
3753 VOPXID_MAP_CR(tdvp, cr);
3754
3755 err = (*(tdvp)->v_op->vop_link)(tdvp, svp, tnm, cr, ct, flags);
3756 VOPSTATS_UPDATE(tdvp, link);
3757 return (err);
3758 }
3759
3760 int
fop_rename(vnode_t * sdvp,char * snm,vnode_t * tdvp,char * tnm,cred_t * cr,caller_context_t * ct,int flags)3761 fop_rename(
3762 vnode_t *sdvp,
3763 char *snm,
3764 vnode_t *tdvp,
3765 char *tnm,
3766 cred_t *cr,
3767 caller_context_t *ct,
3768 int flags)
3769 {
3770 int err;
3771
3772 /*
3773 * If the file system involved does not support
3774 * case-insensitive access and said access is requested, fail
3775 * quickly.
3776 */
3777 if (flags & FIGNORECASE &&
3778 ((vfs_has_feature(sdvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3779 vfs_has_feature(sdvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)))
3780 return (EINVAL);
3781
3782 VOPXID_MAP_CR(tdvp, cr);
3783
3784 err = (*(sdvp)->v_op->vop_rename)(sdvp, snm, tdvp, tnm, cr, ct, flags);
3785 VOPSTATS_UPDATE(sdvp, rename);
3786 return (err);
3787 }
3788
3789 int
fop_mkdir(vnode_t * dvp,char * dirname,vattr_t * vap,vnode_t ** vpp,cred_t * cr,caller_context_t * ct,int flags,vsecattr_t * vsecp)3790 fop_mkdir(
3791 vnode_t *dvp,
3792 char *dirname,
3793 vattr_t *vap,
3794 vnode_t **vpp,
3795 cred_t *cr,
3796 caller_context_t *ct,
3797 int flags,
3798 vsecattr_t *vsecp) /* ACL to set during create */
3799 {
3800 int ret;
3801
3802 if (vsecp != NULL &&
3803 vfs_has_feature(dvp->v_vfsp, VFSFT_ACLONCREATE) == 0) {
3804 return (EINVAL);
3805 }
3806 /*
3807 * If this file system doesn't support case-insensitive access
3808 * and said access is requested, fail quickly.
3809 */
3810 if (flags & FIGNORECASE &&
3811 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3812 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3813 return (EINVAL);
3814
3815 VOPXID_MAP_CR(dvp, cr);
3816
3817 ret = (*(dvp)->v_op->vop_mkdir)
3818 (dvp, dirname, vap, vpp, cr, ct, flags, vsecp);
3819 if (ret == 0 && *vpp) {
3820 VOPSTATS_UPDATE(*vpp, mkdir);
3821 vn_updatepath(dvp, *vpp, dirname);
3822 }
3823
3824 return (ret);
3825 }
3826
3827 int
fop_rmdir(vnode_t * dvp,char * nm,vnode_t * cdir,cred_t * cr,caller_context_t * ct,int flags)3828 fop_rmdir(
3829 vnode_t *dvp,
3830 char *nm,
3831 vnode_t *cdir,
3832 cred_t *cr,
3833 caller_context_t *ct,
3834 int flags)
3835 {
3836 int err;
3837
3838 /*
3839 * If this file system doesn't support case-insensitive access
3840 * and said access is requested, fail quickly.
3841 */
3842 if (flags & FIGNORECASE &&
3843 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3844 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3845 return (EINVAL);
3846
3847 VOPXID_MAP_CR(dvp, cr);
3848
3849 err = (*(dvp)->v_op->vop_rmdir)(dvp, nm, cdir, cr, ct, flags);
3850 VOPSTATS_UPDATE(dvp, rmdir);
3851 return (err);
3852 }
3853
3854 int
fop_readdir(vnode_t * vp,uio_t * uiop,cred_t * cr,int * eofp,caller_context_t * ct,int flags)3855 fop_readdir(
3856 vnode_t *vp,
3857 uio_t *uiop,
3858 cred_t *cr,
3859 int *eofp,
3860 caller_context_t *ct,
3861 int flags)
3862 {
3863 int err;
3864 ssize_t resid_start = uiop->uio_resid;
3865
3866 /*
3867 * If this file system doesn't support retrieving directory
3868 * entry flags and said access is requested, fail quickly.
3869 */
3870 if (flags & V_RDDIR_ENTFLAGS &&
3871 vfs_has_feature(vp->v_vfsp, VFSFT_DIRENTFLAGS) == 0)
3872 return (EINVAL);
3873
3874 VOPXID_MAP_CR(vp, cr);
3875
3876 err = (*(vp)->v_op->vop_readdir)(vp, uiop, cr, eofp, ct, flags);
3877 VOPSTATS_UPDATE_IO(vp, readdir,
3878 readdir_bytes, (resid_start - uiop->uio_resid));
3879 return (err);
3880 }
3881
3882 int
fop_symlink(vnode_t * dvp,char * linkname,vattr_t * vap,char * target,cred_t * cr,caller_context_t * ct,int flags)3883 fop_symlink(
3884 vnode_t *dvp,
3885 char *linkname,
3886 vattr_t *vap,
3887 char *target,
3888 cred_t *cr,
3889 caller_context_t *ct,
3890 int flags)
3891 {
3892 int err;
3893 xvattr_t xvattr;
3894
3895 /*
3896 * If this file system doesn't support case-insensitive access
3897 * and said access is requested, fail quickly.
3898 */
3899 if (flags & FIGNORECASE &&
3900 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3901 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3902 return (EINVAL);
3903
3904 VOPXID_MAP_CR(dvp, cr);
3905
3906 /* check for reparse point */
3907 if ((vfs_has_feature(dvp->v_vfsp, VFSFT_REPARSE)) &&
3908 (strncmp(target, FS_REPARSE_TAG_STR,
3909 strlen(FS_REPARSE_TAG_STR)) == 0)) {
3910 if (!fs_reparse_mark(target, vap, &xvattr))
3911 vap = (vattr_t *)&xvattr;
3912 }
3913
3914 err = (*(dvp)->v_op->vop_symlink)
3915 (dvp, linkname, vap, target, cr, ct, flags);
3916 VOPSTATS_UPDATE(dvp, symlink);
3917 return (err);
3918 }
3919
3920 int
fop_readlink(vnode_t * vp,uio_t * uiop,cred_t * cr,caller_context_t * ct)3921 fop_readlink(
3922 vnode_t *vp,
3923 uio_t *uiop,
3924 cred_t *cr,
3925 caller_context_t *ct)
3926 {
3927 int err;
3928
3929 VOPXID_MAP_CR(vp, cr);
3930
3931 err = (*(vp)->v_op->vop_readlink)(vp, uiop, cr, ct);
3932 VOPSTATS_UPDATE(vp, readlink);
3933 return (err);
3934 }
3935
3936 int
fop_fsync(vnode_t * vp,int syncflag,cred_t * cr,caller_context_t * ct)3937 fop_fsync(
3938 vnode_t *vp,
3939 int syncflag,
3940 cred_t *cr,
3941 caller_context_t *ct)
3942 {
3943 int err;
3944
3945 VOPXID_MAP_CR(vp, cr);
3946
3947 err = (*(vp)->v_op->vop_fsync)(vp, syncflag, cr, ct);
3948 VOPSTATS_UPDATE(vp, fsync);
3949 return (err);
3950 }
3951
3952 void
fop_inactive(vnode_t * vp,cred_t * cr,caller_context_t * ct)3953 fop_inactive(
3954 vnode_t *vp,
3955 cred_t *cr,
3956 caller_context_t *ct)
3957 {
3958 /* Need to update stats before vop call since we may lose the vnode */
3959 VOPSTATS_UPDATE(vp, inactive);
3960
3961 VOPXID_MAP_CR(vp, cr);
3962
3963 (*(vp)->v_op->vop_inactive)(vp, cr, ct);
3964 }
3965
3966 int
fop_fid(vnode_t * vp,fid_t * fidp,caller_context_t * ct)3967 fop_fid(
3968 vnode_t *vp,
3969 fid_t *fidp,
3970 caller_context_t *ct)
3971 {
3972 int err;
3973
3974 err = (*(vp)->v_op->vop_fid)(vp, fidp, ct);
3975 VOPSTATS_UPDATE(vp, fid);
3976 return (err);
3977 }
3978
3979 int
fop_rwlock(vnode_t * vp,int write_lock,caller_context_t * ct)3980 fop_rwlock(
3981 vnode_t *vp,
3982 int write_lock,
3983 caller_context_t *ct)
3984 {
3985 int ret;
3986
3987 ret = ((*(vp)->v_op->vop_rwlock)(vp, write_lock, ct));
3988 VOPSTATS_UPDATE(vp, rwlock);
3989 return (ret);
3990 }
3991
3992 void
fop_rwunlock(vnode_t * vp,int write_lock,caller_context_t * ct)3993 fop_rwunlock(
3994 vnode_t *vp,
3995 int write_lock,
3996 caller_context_t *ct)
3997 {
3998 (*(vp)->v_op->vop_rwunlock)(vp, write_lock, ct);
3999 VOPSTATS_UPDATE(vp, rwunlock);
4000 }
4001
4002 int
fop_seek(vnode_t * vp,offset_t ooff,offset_t * noffp,caller_context_t * ct)4003 fop_seek(
4004 vnode_t *vp,
4005 offset_t ooff,
4006 offset_t *noffp,
4007 caller_context_t *ct)
4008 {
4009 int err;
4010
4011 err = (*(vp)->v_op->vop_seek)(vp, ooff, noffp, ct);
4012 VOPSTATS_UPDATE(vp, seek);
4013 return (err);
4014 }
4015
4016 int
fop_cmp(vnode_t * vp1,vnode_t * vp2,caller_context_t * ct)4017 fop_cmp(
4018 vnode_t *vp1,
4019 vnode_t *vp2,
4020 caller_context_t *ct)
4021 {
4022 int err;
4023
4024 err = (*(vp1)->v_op->vop_cmp)(vp1, vp2, ct);
4025 VOPSTATS_UPDATE(vp1, cmp);
4026 return (err);
4027 }
4028
4029 int
fop_frlock(vnode_t * vp,int cmd,flock64_t * bfp,int flag,offset_t offset,struct flk_callback * flk_cbp,cred_t * cr,caller_context_t * ct)4030 fop_frlock(
4031 vnode_t *vp,
4032 int cmd,
4033 flock64_t *bfp,
4034 int flag,
4035 offset_t offset,
4036 struct flk_callback *flk_cbp,
4037 cred_t *cr,
4038 caller_context_t *ct)
4039 {
4040 int err;
4041
4042 VOPXID_MAP_CR(vp, cr);
4043
4044 err = (*(vp)->v_op->vop_frlock)
4045 (vp, cmd, bfp, flag, offset, flk_cbp, cr, ct);
4046 VOPSTATS_UPDATE(vp, frlock);
4047 return (err);
4048 }
4049
4050 int
fop_space(vnode_t * vp,int cmd,flock64_t * bfp,int flag,offset_t offset,cred_t * cr,caller_context_t * ct)4051 fop_space(
4052 vnode_t *vp,
4053 int cmd,
4054 flock64_t *bfp,
4055 int flag,
4056 offset_t offset,
4057 cred_t *cr,
4058 caller_context_t *ct)
4059 {
4060 int err;
4061
4062 VOPXID_MAP_CR(vp, cr);
4063
4064 err = (*(vp)->v_op->vop_space)(vp, cmd, bfp, flag, offset, cr, ct);
4065 VOPSTATS_UPDATE(vp, space);
4066 return (err);
4067 }
4068
4069 int
fop_realvp(vnode_t * vp,vnode_t ** vpp,caller_context_t * ct)4070 fop_realvp(
4071 vnode_t *vp,
4072 vnode_t **vpp,
4073 caller_context_t *ct)
4074 {
4075 int err;
4076
4077 err = (*(vp)->v_op->vop_realvp)(vp, vpp, ct);
4078 VOPSTATS_UPDATE(vp, realvp);
4079 return (err);
4080 }
4081
4082 int
fop_getpage(vnode_t * vp,offset_t off,size_t len,uint_t * protp,page_t ** plarr,size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,cred_t * cr,caller_context_t * ct)4083 fop_getpage(
4084 vnode_t *vp,
4085 offset_t off,
4086 size_t len,
4087 uint_t *protp,
4088 page_t **plarr,
4089 size_t plsz,
4090 struct seg *seg,
4091 caddr_t addr,
4092 enum seg_rw rw,
4093 cred_t *cr,
4094 caller_context_t *ct)
4095 {
4096 int err;
4097
4098 VOPXID_MAP_CR(vp, cr);
4099
4100 err = (*(vp)->v_op->vop_getpage)
4101 (vp, off, len, protp, plarr, plsz, seg, addr, rw, cr, ct);
4102 VOPSTATS_UPDATE(vp, getpage);
4103 return (err);
4104 }
4105
4106 int
fop_putpage(vnode_t * vp,offset_t off,size_t len,int flags,cred_t * cr,caller_context_t * ct)4107 fop_putpage(
4108 vnode_t *vp,
4109 offset_t off,
4110 size_t len,
4111 int flags,
4112 cred_t *cr,
4113 caller_context_t *ct)
4114 {
4115 int err;
4116
4117 VOPXID_MAP_CR(vp, cr);
4118
4119 err = (*(vp)->v_op->vop_putpage)(vp, off, len, flags, cr, ct);
4120 VOPSTATS_UPDATE(vp, putpage);
4121 return (err);
4122 }
4123
4124 int
fop_map(vnode_t * vp,offset_t off,struct as * as,caddr_t * addrp,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)4125 fop_map(
4126 vnode_t *vp,
4127 offset_t off,
4128 struct as *as,
4129 caddr_t *addrp,
4130 size_t len,
4131 uchar_t prot,
4132 uchar_t maxprot,
4133 uint_t flags,
4134 cred_t *cr,
4135 caller_context_t *ct)
4136 {
4137 int err;
4138
4139 VOPXID_MAP_CR(vp, cr);
4140
4141 err = (*(vp)->v_op->vop_map)
4142 (vp, off, as, addrp, len, prot, maxprot, flags, cr, ct);
4143 VOPSTATS_UPDATE(vp, map);
4144 return (err);
4145 }
4146
4147 int
fop_addmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)4148 fop_addmap(
4149 vnode_t *vp,
4150 offset_t off,
4151 struct as *as,
4152 caddr_t addr,
4153 size_t len,
4154 uchar_t prot,
4155 uchar_t maxprot,
4156 uint_t flags,
4157 cred_t *cr,
4158 caller_context_t *ct)
4159 {
4160 int error;
4161 u_longlong_t delta;
4162
4163 VOPXID_MAP_CR(vp, cr);
4164
4165 error = (*(vp)->v_op->vop_addmap)
4166 (vp, off, as, addr, len, prot, maxprot, flags, cr, ct);
4167
4168 if ((!error) && (vp->v_type == VREG)) {
4169 delta = (u_longlong_t)btopr(len);
4170 /*
4171 * If file is declared MAP_PRIVATE, it can't be written back
4172 * even if open for write. Handle as read.
4173 */
4174 if (flags & MAP_PRIVATE) {
4175 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4176 (int64_t)delta);
4177 } else {
4178 /*
4179 * atomic_add_64 forces the fetch of a 64 bit value to
4180 * be atomic on 32 bit machines
4181 */
4182 if (maxprot & PROT_WRITE)
4183 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)),
4184 (int64_t)delta);
4185 if (maxprot & PROT_READ)
4186 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4187 (int64_t)delta);
4188 if (maxprot & PROT_EXEC)
4189 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4190 (int64_t)delta);
4191 }
4192 }
4193 VOPSTATS_UPDATE(vp, addmap);
4194 return (error);
4195 }
4196
4197 int
fop_delmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uint_t prot,uint_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)4198 fop_delmap(
4199 vnode_t *vp,
4200 offset_t off,
4201 struct as *as,
4202 caddr_t addr,
4203 size_t len,
4204 uint_t prot,
4205 uint_t maxprot,
4206 uint_t flags,
4207 cred_t *cr,
4208 caller_context_t *ct)
4209 {
4210 int error;
4211 u_longlong_t delta;
4212
4213 VOPXID_MAP_CR(vp, cr);
4214
4215 error = (*(vp)->v_op->vop_delmap)
4216 (vp, off, as, addr, len, prot, maxprot, flags, cr, ct);
4217
4218 /*
4219 * NFS calls into delmap twice, the first time
4220 * it simply establishes a callback mechanism and returns EAGAIN
4221 * while the real work is being done upon the second invocation.
4222 * We have to detect this here and only decrement the counts upon
4223 * the second delmap request.
4224 */
4225 if ((error != EAGAIN) && (vp->v_type == VREG)) {
4226
4227 delta = (u_longlong_t)btopr(len);
4228
4229 if (flags & MAP_PRIVATE) {
4230 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4231 (int64_t)(-delta));
4232 } else {
4233 /*
4234 * atomic_add_64 forces the fetch of a 64 bit value
4235 * to be atomic on 32 bit machines
4236 */
4237 if (maxprot & PROT_WRITE)
4238 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)),
4239 (int64_t)(-delta));
4240 if (maxprot & PROT_READ)
4241 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4242 (int64_t)(-delta));
4243 if (maxprot & PROT_EXEC)
4244 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4245 (int64_t)(-delta));
4246 }
4247 }
4248 VOPSTATS_UPDATE(vp, delmap);
4249 return (error);
4250 }
4251
4252
4253 int
fop_poll(vnode_t * vp,short events,int anyyet,short * reventsp,struct pollhead ** phpp,caller_context_t * ct)4254 fop_poll(
4255 vnode_t *vp,
4256 short events,
4257 int anyyet,
4258 short *reventsp,
4259 struct pollhead **phpp,
4260 caller_context_t *ct)
4261 {
4262 int err;
4263
4264 err = (*(vp)->v_op->vop_poll)(vp, events, anyyet, reventsp, phpp, ct);
4265 VOPSTATS_UPDATE(vp, poll);
4266 return (err);
4267 }
4268
4269 int
fop_dump(vnode_t * vp,caddr_t addr,offset_t lbdn,offset_t dblks,caller_context_t * ct)4270 fop_dump(
4271 vnode_t *vp,
4272 caddr_t addr,
4273 offset_t lbdn,
4274 offset_t dblks,
4275 caller_context_t *ct)
4276 {
4277 int err;
4278
4279 /* ensure lbdn and dblks can be passed safely to bdev_dump */
4280 if ((lbdn != (daddr_t)lbdn) || (dblks != (int)dblks))
4281 return (EIO);
4282
4283 err = (*(vp)->v_op->vop_dump)(vp, addr, lbdn, dblks, ct);
4284 VOPSTATS_UPDATE(vp, dump);
4285 return (err);
4286 }
4287
4288 int
fop_pathconf(vnode_t * vp,int cmd,ulong_t * valp,cred_t * cr,caller_context_t * ct)4289 fop_pathconf(
4290 vnode_t *vp,
4291 int cmd,
4292 ulong_t *valp,
4293 cred_t *cr,
4294 caller_context_t *ct)
4295 {
4296 int err;
4297
4298 VOPXID_MAP_CR(vp, cr);
4299
4300 err = (*(vp)->v_op->vop_pathconf)(vp, cmd, valp, cr, ct);
4301 VOPSTATS_UPDATE(vp, pathconf);
4302 return (err);
4303 }
4304
4305 int
fop_pageio(vnode_t * vp,struct page * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr,caller_context_t * ct)4306 fop_pageio(
4307 vnode_t *vp,
4308 struct page *pp,
4309 u_offset_t io_off,
4310 size_t io_len,
4311 int flags,
4312 cred_t *cr,
4313 caller_context_t *ct)
4314 {
4315 int err;
4316
4317 VOPXID_MAP_CR(vp, cr);
4318
4319 err = (*(vp)->v_op->vop_pageio)(vp, pp, io_off, io_len, flags, cr, ct);
4320 VOPSTATS_UPDATE(vp, pageio);
4321 return (err);
4322 }
4323
4324 int
fop_dumpctl(vnode_t * vp,int action,offset_t * blkp,caller_context_t * ct)4325 fop_dumpctl(
4326 vnode_t *vp,
4327 int action,
4328 offset_t *blkp,
4329 caller_context_t *ct)
4330 {
4331 int err;
4332 err = (*(vp)->v_op->vop_dumpctl)(vp, action, blkp, ct);
4333 VOPSTATS_UPDATE(vp, dumpctl);
4334 return (err);
4335 }
4336
4337 void
fop_dispose(vnode_t * vp,page_t * pp,int flag,int dn,cred_t * cr,caller_context_t * ct)4338 fop_dispose(
4339 vnode_t *vp,
4340 page_t *pp,
4341 int flag,
4342 int dn,
4343 cred_t *cr,
4344 caller_context_t *ct)
4345 {
4346 /* Must do stats first since it's possible to lose the vnode */
4347 VOPSTATS_UPDATE(vp, dispose);
4348
4349 VOPXID_MAP_CR(vp, cr);
4350
4351 (*(vp)->v_op->vop_dispose)(vp, pp, flag, dn, cr, ct);
4352 }
4353
4354 int
fop_setsecattr(vnode_t * vp,vsecattr_t * vsap,int flag,cred_t * cr,caller_context_t * ct)4355 fop_setsecattr(
4356 vnode_t *vp,
4357 vsecattr_t *vsap,
4358 int flag,
4359 cred_t *cr,
4360 caller_context_t *ct)
4361 {
4362 int err;
4363
4364 VOPXID_MAP_CR(vp, cr);
4365
4366 /*
4367 * We're only allowed to skip the ACL check iff we used a 32 bit
4368 * ACE mask with VOP_ACCESS() to determine permissions.
4369 */
4370 if ((flag & ATTR_NOACLCHECK) &&
4371 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
4372 return (EINVAL);
4373 }
4374 err = (*(vp)->v_op->vop_setsecattr) (vp, vsap, flag, cr, ct);
4375 VOPSTATS_UPDATE(vp, setsecattr);
4376 return (err);
4377 }
4378
4379 int
fop_getsecattr(vnode_t * vp,vsecattr_t * vsap,int flag,cred_t * cr,caller_context_t * ct)4380 fop_getsecattr(
4381 vnode_t *vp,
4382 vsecattr_t *vsap,
4383 int flag,
4384 cred_t *cr,
4385 caller_context_t *ct)
4386 {
4387 int err;
4388
4389 /*
4390 * We're only allowed to skip the ACL check iff we used a 32 bit
4391 * ACE mask with VOP_ACCESS() to determine permissions.
4392 */
4393 if ((flag & ATTR_NOACLCHECK) &&
4394 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
4395 return (EINVAL);
4396 }
4397
4398 VOPXID_MAP_CR(vp, cr);
4399
4400 err = (*(vp)->v_op->vop_getsecattr) (vp, vsap, flag, cr, ct);
4401 VOPSTATS_UPDATE(vp, getsecattr);
4402 return (err);
4403 }
4404
4405 int
fop_shrlock(vnode_t * vp,int cmd,struct shrlock * shr,int flag,cred_t * cr,caller_context_t * ct)4406 fop_shrlock(
4407 vnode_t *vp,
4408 int cmd,
4409 struct shrlock *shr,
4410 int flag,
4411 cred_t *cr,
4412 caller_context_t *ct)
4413 {
4414 int err;
4415
4416 VOPXID_MAP_CR(vp, cr);
4417
4418 err = (*(vp)->v_op->vop_shrlock)(vp, cmd, shr, flag, cr, ct);
4419 VOPSTATS_UPDATE(vp, shrlock);
4420 return (err);
4421 }
4422
4423 int
fop_vnevent(vnode_t * vp,vnevent_t vnevent,vnode_t * dvp,char * fnm,caller_context_t * ct)4424 fop_vnevent(vnode_t *vp, vnevent_t vnevent, vnode_t *dvp, char *fnm,
4425 caller_context_t *ct)
4426 {
4427 int err;
4428
4429 err = (*(vp)->v_op->vop_vnevent)(vp, vnevent, dvp, fnm, ct);
4430 VOPSTATS_UPDATE(vp, vnevent);
4431 return (err);
4432 }
4433
4434 int
fop_reqzcbuf(vnode_t * vp,enum uio_rw ioflag,xuio_t * uiop,cred_t * cr,caller_context_t * ct)4435 fop_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *uiop, cred_t *cr,
4436 caller_context_t *ct)
4437 {
4438 int err;
4439
4440 if (vfs_has_feature(vp->v_vfsp, VFSFT_ZEROCOPY_SUPPORTED) == 0)
4441 return (ENOTSUP);
4442 err = (*(vp)->v_op->vop_reqzcbuf)(vp, ioflag, uiop, cr, ct);
4443 VOPSTATS_UPDATE(vp, reqzcbuf);
4444 return (err);
4445 }
4446
4447 int
fop_retzcbuf(vnode_t * vp,xuio_t * uiop,cred_t * cr,caller_context_t * ct)4448 fop_retzcbuf(vnode_t *vp, xuio_t *uiop, cred_t *cr, caller_context_t *ct)
4449 {
4450 int err;
4451
4452 if (vfs_has_feature(vp->v_vfsp, VFSFT_ZEROCOPY_SUPPORTED) == 0)
4453 return (ENOTSUP);
4454 err = (*(vp)->v_op->vop_retzcbuf)(vp, uiop, cr, ct);
4455 VOPSTATS_UPDATE(vp, retzcbuf);
4456 return (err);
4457 }
4458
4459 /*
4460 * Default destructor
4461 * Needed because NULL destructor means that the key is unused
4462 */
4463 /* ARGSUSED */
4464 void
vsd_defaultdestructor(void * value)4465 vsd_defaultdestructor(void *value)
4466 {}
4467
4468 /*
4469 * Create a key (index into per vnode array)
4470 * Locks out vsd_create, vsd_destroy, and vsd_free
4471 * May allocate memory with lock held
4472 */
4473 void
vsd_create(uint_t * keyp,void (* destructor)(void *))4474 vsd_create(uint_t *keyp, void (*destructor)(void *))
4475 {
4476 int i;
4477 uint_t nkeys;
4478
4479 /*
4480 * if key is allocated, do nothing
4481 */
4482 mutex_enter(&vsd_lock);
4483 if (*keyp) {
4484 mutex_exit(&vsd_lock);
4485 return;
4486 }
4487 /*
4488 * find an unused key
4489 */
4490 if (destructor == NULL)
4491 destructor = vsd_defaultdestructor;
4492
4493 for (i = 0; i < vsd_nkeys; ++i)
4494 if (vsd_destructor[i] == NULL)
4495 break;
4496
4497 /*
4498 * if no unused keys, increase the size of the destructor array
4499 */
4500 if (i == vsd_nkeys) {
4501 if ((nkeys = (vsd_nkeys << 1)) == 0)
4502 nkeys = 1;
4503 vsd_destructor =
4504 (void (**)(void *))vsd_realloc((void *)vsd_destructor,
4505 (size_t)(vsd_nkeys * sizeof (void (*)(void *))),
4506 (size_t)(nkeys * sizeof (void (*)(void *))));
4507 vsd_nkeys = nkeys;
4508 }
4509
4510 /*
4511 * allocate the next available unused key
4512 */
4513 vsd_destructor[i] = destructor;
4514 *keyp = i + 1;
4515
4516 /* create vsd_list, if it doesn't exist */
4517 if (vsd_list == NULL) {
4518 vsd_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
4519 list_create(vsd_list, sizeof (struct vsd_node),
4520 offsetof(struct vsd_node, vs_nodes));
4521 }
4522
4523 mutex_exit(&vsd_lock);
4524 }
4525
4526 /*
4527 * Destroy a key
4528 *
4529 * Assumes that the caller is preventing vsd_set and vsd_get
4530 * Locks out vsd_create, vsd_destroy, and vsd_free
4531 * May free memory with lock held
4532 */
4533 void
vsd_destroy(uint_t * keyp)4534 vsd_destroy(uint_t *keyp)
4535 {
4536 uint_t key;
4537 struct vsd_node *vsd;
4538
4539 /*
4540 * protect the key namespace and our destructor lists
4541 */
4542 mutex_enter(&vsd_lock);
4543 key = *keyp;
4544 *keyp = 0;
4545
4546 ASSERT(key <= vsd_nkeys);
4547
4548 /*
4549 * if the key is valid
4550 */
4551 if (key != 0) {
4552 uint_t k = key - 1;
4553 /*
4554 * for every vnode with VSD, call key's destructor
4555 */
4556 for (vsd = list_head(vsd_list); vsd != NULL;
4557 vsd = list_next(vsd_list, vsd)) {
4558 /*
4559 * no VSD for key in this vnode
4560 */
4561 if (key > vsd->vs_nkeys)
4562 continue;
4563 /*
4564 * call destructor for key
4565 */
4566 if (vsd->vs_value[k] && vsd_destructor[k])
4567 (*vsd_destructor[k])(vsd->vs_value[k]);
4568 /*
4569 * reset value for key
4570 */
4571 vsd->vs_value[k] = NULL;
4572 }
4573 /*
4574 * actually free the key (NULL destructor == unused)
4575 */
4576 vsd_destructor[k] = NULL;
4577 }
4578
4579 mutex_exit(&vsd_lock);
4580 }
4581
4582 /*
4583 * Quickly return the per vnode value that was stored with the specified key
4584 * Assumes the caller is protecting key from vsd_create and vsd_destroy
4585 * Assumes the caller is holding v_vsd_lock to protect the vsd.
4586 */
4587 void *
vsd_get(vnode_t * vp,uint_t key)4588 vsd_get(vnode_t *vp, uint_t key)
4589 {
4590 struct vsd_node *vsd;
4591
4592 ASSERT(vp != NULL);
4593 ASSERT(mutex_owned(&vp->v_vsd_lock));
4594
4595 vsd = vp->v_vsd;
4596
4597 if (key && vsd != NULL && key <= vsd->vs_nkeys)
4598 return (vsd->vs_value[key - 1]);
4599 return (NULL);
4600 }
4601
4602 /*
4603 * Set a per vnode value indexed with the specified key
4604 * Assumes the caller is holding v_vsd_lock to protect the vsd.
4605 */
4606 int
vsd_set(vnode_t * vp,uint_t key,void * value)4607 vsd_set(vnode_t *vp, uint_t key, void *value)
4608 {
4609 struct vsd_node *vsd;
4610
4611 ASSERT(vp != NULL);
4612 ASSERT(mutex_owned(&vp->v_vsd_lock));
4613
4614 if (key == 0)
4615 return (EINVAL);
4616
4617 vsd = vp->v_vsd;
4618 if (vsd == NULL)
4619 vsd = vp->v_vsd = kmem_zalloc(sizeof (*vsd), KM_SLEEP);
4620
4621 /*
4622 * If the vsd was just allocated, vs_nkeys will be 0, so the following
4623 * code won't happen and we will continue down and allocate space for
4624 * the vs_value array.
4625 * If the caller is replacing one value with another, then it is up
4626 * to the caller to free/rele/destroy the previous value (if needed).
4627 */
4628 if (key <= vsd->vs_nkeys) {
4629 vsd->vs_value[key - 1] = value;
4630 return (0);
4631 }
4632
4633 ASSERT(key <= vsd_nkeys);
4634
4635 if (vsd->vs_nkeys == 0) {
4636 mutex_enter(&vsd_lock); /* lock out vsd_destroy() */
4637 /*
4638 * Link onto list of all VSD nodes.
4639 */
4640 list_insert_head(vsd_list, vsd);
4641 mutex_exit(&vsd_lock);
4642 }
4643
4644 /*
4645 * Allocate vnode local storage and set the value for key
4646 */
4647 vsd->vs_value = vsd_realloc(vsd->vs_value,
4648 vsd->vs_nkeys * sizeof (void *),
4649 key * sizeof (void *));
4650 vsd->vs_nkeys = key;
4651 vsd->vs_value[key - 1] = value;
4652
4653 return (0);
4654 }
4655
4656 /*
4657 * Called from vn_free() to run the destructor function for each vsd
4658 * Locks out vsd_create and vsd_destroy
4659 * Assumes that the destructor *DOES NOT* use vsd
4660 */
4661 void
vsd_free(vnode_t * vp)4662 vsd_free(vnode_t *vp)
4663 {
4664 int i;
4665 struct vsd_node *vsd = vp->v_vsd;
4666
4667 if (vsd == NULL)
4668 return;
4669
4670 if (vsd->vs_nkeys == 0) {
4671 kmem_free(vsd, sizeof (*vsd));
4672 vp->v_vsd = NULL;
4673 return;
4674 }
4675
4676 /*
4677 * lock out vsd_create and vsd_destroy, call
4678 * the destructor, and mark the value as destroyed.
4679 */
4680 mutex_enter(&vsd_lock);
4681
4682 for (i = 0; i < vsd->vs_nkeys; i++) {
4683 if (vsd->vs_value[i] && vsd_destructor[i])
4684 (*vsd_destructor[i])(vsd->vs_value[i]);
4685 vsd->vs_value[i] = NULL;
4686 }
4687
4688 /*
4689 * remove from linked list of VSD nodes
4690 */
4691 list_remove(vsd_list, vsd);
4692
4693 mutex_exit(&vsd_lock);
4694
4695 /*
4696 * free up the VSD
4697 */
4698 kmem_free(vsd->vs_value, vsd->vs_nkeys * sizeof (void *));
4699 kmem_free(vsd, sizeof (struct vsd_node));
4700 vp->v_vsd = NULL;
4701 }
4702
4703 /*
4704 * realloc
4705 */
4706 static void *
vsd_realloc(void * old,size_t osize,size_t nsize)4707 vsd_realloc(void *old, size_t osize, size_t nsize)
4708 {
4709 void *new;
4710
4711 new = kmem_zalloc(nsize, KM_SLEEP);
4712 if (old) {
4713 bcopy(old, new, osize);
4714 kmem_free(old, osize);
4715 }
4716 return (new);
4717 }
4718
4719 /*
4720 * Setup the extensible system attribute for creating a reparse point.
4721 * The symlink data 'target' is validated for proper format of a reparse
4722 * string and a check also made to make sure the symlink data does not
4723 * point to an existing file.
4724 *
4725 * return 0 if ok else -1.
4726 */
4727 static int
fs_reparse_mark(char * target,vattr_t * vap,xvattr_t * xvattr)4728 fs_reparse_mark(char *target, vattr_t *vap, xvattr_t *xvattr)
4729 {
4730 xoptattr_t *xoap;
4731
4732 if ((!target) || (!vap) || (!xvattr))
4733 return (-1);
4734
4735 /* validate reparse string */
4736 if (reparse_validate((const char *)target))
4737 return (-1);
4738
4739 xva_init(xvattr);
4740 xvattr->xva_vattr = *vap;
4741 xvattr->xva_vattr.va_mask |= AT_XVATTR;
4742 xoap = xva_getxoptattr(xvattr);
4743 ASSERT(xoap);
4744 XVA_SET_REQ(xvattr, XAT_REPARSE);
4745 xoap->xoa_reparse = 1;
4746
4747 return (0);
4748 }
4749
4750 /*
4751 * Function to check whether a symlink is a reparse point.
4752 * Return B_TRUE if it is a reparse point, else return B_FALSE
4753 */
4754 boolean_t
vn_is_reparse(vnode_t * vp,cred_t * cr,caller_context_t * ct)4755 vn_is_reparse(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4756 {
4757 xvattr_t xvattr;
4758 xoptattr_t *xoap;
4759
4760 if ((vp->v_type != VLNK) ||
4761 !(vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR)))
4762 return (B_FALSE);
4763
4764 xva_init(&xvattr);
4765 xoap = xva_getxoptattr(&xvattr);
4766 ASSERT(xoap);
4767 XVA_SET_REQ(&xvattr, XAT_REPARSE);
4768
4769 if (VOP_GETATTR(vp, &xvattr.xva_vattr, 0, cr, ct))
4770 return (B_FALSE);
4771
4772 if ((!(xvattr.xva_vattr.va_mask & AT_XVATTR)) ||
4773 (!(XVA_ISSET_RTN(&xvattr, XAT_REPARSE))))
4774 return (B_FALSE);
4775
4776 return (xoap->xoa_reparse ? B_TRUE : B_FALSE);
4777 }
4778