1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2017-2018 Yandex LLC
5 * Copyright (c) 2017-2018 Andrey V. Elsukov <ae@FreeBSD.org>
6 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_ipfw.h"
34 #ifndef INET
35 #error IPFIREWALL requires INET.
36 #endif /* INET */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/hash.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/pcpu.h>
45 #include <sys/queue.h>
46 #include <sys/rmlock.h>
47 #include <sys/smp.h>
48 #include <sys/socket.h>
49 #include <sys/sysctl.h>
50 #include <sys/syslog.h>
51 #include <net/ethernet.h>
52 #include <net/if.h>
53 #include <net/if_var.h>
54 #include <net/vnet.h>
55
56 #include <netinet/in.h>
57 #include <netinet/ip.h>
58 #include <netinet/ip_var.h>
59 #include <netinet/ip_fw.h>
60 #include <netinet/udp.h>
61 #include <netinet/tcp.h>
62
63 #include <netinet/ip6.h> /* IN6_ARE_ADDR_EQUAL */
64 #ifdef INET6
65 #include <netinet6/in6_var.h>
66 #include <netinet6/ip6_var.h>
67 #include <netinet6/scope6_var.h>
68 #endif
69
70 #include <netpfil/ipfw/ip_fw_private.h>
71
72 #include <machine/in_cksum.h> /* XXX for in_cksum */
73
74 #ifdef MAC
75 #include <security/mac/mac_framework.h>
76 #endif
77
78 /*
79 * Description of dynamic states.
80 *
81 * Dynamic states are stored in lists accessed through a hash tables
82 * whose size is curr_dyn_buckets. This value can be modified through
83 * the sysctl variable dyn_buckets.
84 *
85 * Currently there are four tables: dyn_ipv4, dyn_ipv6, dyn_ipv4_parent,
86 * and dyn_ipv6_parent.
87 *
88 * When a packet is received, its address fields hashed, then matched
89 * against the entries in the corresponding list by addr_type.
90 * Dynamic states can be used for different purposes:
91 * + stateful rules;
92 * + enforcing limits on the number of sessions;
93 * + in-kernel NAT (not implemented yet)
94 *
95 * The lifetime of dynamic states is regulated by dyn_*_lifetime,
96 * measured in seconds and depending on the flags.
97 *
98 * The total number of dynamic states is equal to UMA zone items count.
99 * The max number of dynamic states is dyn_max. When we reach
100 * the maximum number of rules we do not create anymore. This is
101 * done to avoid consuming too much memory, but also too much
102 * time when searching on each packet (ideally, we should try instead
103 * to put a limit on the length of the list on each bucket...).
104 *
105 * Each state holds a pointer to the parent ipfw rule so we know what
106 * action to perform. Dynamic rules are removed when the parent rule is
107 * deleted.
108 *
109 * There are some limitations with dynamic rules -- we do not
110 * obey the 'randomized match', and we do not do multiple
111 * passes through the firewall. XXX check the latter!!!
112 */
113
114 /* By default use jenkins hash function */
115 #define IPFIREWALL_JENKINSHASH
116
117 #define DYN_COUNTER_INC(d, dir, pktlen) do { \
118 (d)->pcnt_ ## dir++; \
119 (d)->bcnt_ ## dir += pktlen; \
120 } while (0)
121
122 #define DYN_REFERENCED 0x01
123 /*
124 * DYN_REFERENCED flag is used to show that state keeps reference to named
125 * object, and this reference should be released when state becomes expired.
126 */
127
128 struct dyn_data {
129 void *parent; /* pointer to parent rule */
130 uint32_t chain_id; /* cached ruleset id */
131 uint32_t f_pos; /* cached rule index */
132
133 uint32_t hashval; /* hash value used for hash resize */
134 uint16_t fibnum; /* fib used to send keepalives */
135 uint8_t _pad[3];
136 uint8_t flags; /* internal flags */
137 uint16_t rulenum; /* parent rule number */
138 uint32_t ruleid; /* parent rule id */
139
140 uint32_t state; /* TCP session state and flags */
141 uint32_t ack_fwd; /* most recent ACKs in forward */
142 uint32_t ack_rev; /* and reverse direction (used */
143 /* to generate keepalives) */
144 uint32_t sync; /* synchronization time */
145 uint32_t expire; /* expire time */
146
147 uint64_t pcnt_fwd; /* bytes counter in forward */
148 uint64_t bcnt_fwd; /* packets counter in forward */
149 uint64_t pcnt_rev; /* bytes counter in reverse */
150 uint64_t bcnt_rev; /* packets counter in reverse */
151 };
152
153 #define DPARENT_COUNT_DEC(p) do { \
154 MPASS(p->count > 0); \
155 ck_pr_dec_32(&(p)->count); \
156 } while (0)
157 #define DPARENT_COUNT_INC(p) ck_pr_inc_32(&(p)->count)
158 #define DPARENT_COUNT(p) ck_pr_load_32(&(p)->count)
159 struct dyn_parent {
160 void *parent; /* pointer to parent rule */
161 uint32_t count; /* number of linked states */
162 uint8_t _pad[2];
163 uint16_t rulenum; /* parent rule number */
164 uint32_t ruleid; /* parent rule id */
165 uint32_t hashval; /* hash value used for hash resize */
166 uint32_t expire; /* expire time */
167 };
168
169 struct dyn_ipv4_state {
170 uint8_t type; /* State type */
171 uint8_t proto; /* UL Protocol */
172 uint16_t kidx; /* named object index */
173 uint16_t sport, dport; /* ULP source and destination ports */
174 in_addr_t src, dst; /* IPv4 source and destination */
175
176 union {
177 struct dyn_data *data;
178 struct dyn_parent *limit;
179 };
180 CK_SLIST_ENTRY(dyn_ipv4_state) entry;
181 SLIST_ENTRY(dyn_ipv4_state) expired;
182 };
183 CK_SLIST_HEAD(dyn_ipv4ck_slist, dyn_ipv4_state);
184 VNET_DEFINE_STATIC(struct dyn_ipv4ck_slist *, dyn_ipv4);
185 VNET_DEFINE_STATIC(struct dyn_ipv4ck_slist *, dyn_ipv4_parent);
186
187 SLIST_HEAD(dyn_ipv4_slist, dyn_ipv4_state);
188 VNET_DEFINE_STATIC(struct dyn_ipv4_slist, dyn_expired_ipv4);
189 #define V_dyn_ipv4 VNET(dyn_ipv4)
190 #define V_dyn_ipv4_parent VNET(dyn_ipv4_parent)
191 #define V_dyn_expired_ipv4 VNET(dyn_expired_ipv4)
192
193 #ifdef INET6
194 struct dyn_ipv6_state {
195 uint8_t type; /* State type */
196 uint8_t proto; /* UL Protocol */
197 uint16_t kidx; /* named object index */
198 uint16_t sport, dport; /* ULP source and destination ports */
199 struct in6_addr src, dst; /* IPv6 source and destination */
200 uint32_t zoneid; /* IPv6 scope zone id */
201 union {
202 struct dyn_data *data;
203 struct dyn_parent *limit;
204 };
205 CK_SLIST_ENTRY(dyn_ipv6_state) entry;
206 SLIST_ENTRY(dyn_ipv6_state) expired;
207 };
208 CK_SLIST_HEAD(dyn_ipv6ck_slist, dyn_ipv6_state);
209 VNET_DEFINE_STATIC(struct dyn_ipv6ck_slist *, dyn_ipv6);
210 VNET_DEFINE_STATIC(struct dyn_ipv6ck_slist *, dyn_ipv6_parent);
211
212 SLIST_HEAD(dyn_ipv6_slist, dyn_ipv6_state);
213 VNET_DEFINE_STATIC(struct dyn_ipv6_slist, dyn_expired_ipv6);
214 #define V_dyn_ipv6 VNET(dyn_ipv6)
215 #define V_dyn_ipv6_parent VNET(dyn_ipv6_parent)
216 #define V_dyn_expired_ipv6 VNET(dyn_expired_ipv6)
217 #endif /* INET6 */
218
219 /*
220 * Per-CPU pointer indicates that specified state is currently in use
221 * and must not be reclaimed by expiration callout.
222 */
223 static void **dyn_hp_cache;
224 DPCPU_DEFINE_STATIC(void *, dyn_hp);
225 #define DYNSTATE_GET(cpu) ck_pr_load_ptr(DPCPU_ID_PTR((cpu), dyn_hp))
226 #define DYNSTATE_PROTECT(v) ck_pr_store_ptr(DPCPU_PTR(dyn_hp), (v))
227 #define DYNSTATE_RELEASE() DYNSTATE_PROTECT(NULL)
228 #define DYNSTATE_CRITICAL_ENTER() critical_enter()
229 #define DYNSTATE_CRITICAL_EXIT() do { \
230 DYNSTATE_RELEASE(); \
231 critical_exit(); \
232 } while (0);
233
234 /*
235 * We keep two version numbers, one is updated when new entry added to
236 * the list. Second is updated when an entry deleted from the list.
237 * Versions are updated under bucket lock.
238 *
239 * Bucket "add" version number is used to know, that in the time between
240 * state lookup (i.e. ipfw_dyn_lookup_state()) and the followed state
241 * creation (i.e. ipfw_dyn_install_state()) another concurrent thread did
242 * not install some state in this bucket. Using this info we can avoid
243 * additional state lookup, because we are sure that we will not install
244 * the state twice.
245 *
246 * Also doing the tracking of bucket "del" version during lookup we can
247 * be sure, that state entry was not unlinked and freed in time between
248 * we read the state pointer and protect it with hazard pointer.
249 *
250 * An entry unlinked from CK list keeps unchanged until it is freed.
251 * Unlinked entries are linked into expired lists using "expired" field.
252 */
253
254 /*
255 * dyn_expire_lock is used to protect access to dyn_expired_xxx lists.
256 * dyn_bucket_lock is used to get write access to lists in specific bucket.
257 * Currently one dyn_bucket_lock is used for all ipv4, ipv4_parent, ipv6,
258 * and ipv6_parent lists.
259 */
260 VNET_DEFINE_STATIC(struct mtx, dyn_expire_lock);
261 VNET_DEFINE_STATIC(struct mtx *, dyn_bucket_lock);
262 #define V_dyn_expire_lock VNET(dyn_expire_lock)
263 #define V_dyn_bucket_lock VNET(dyn_bucket_lock)
264
265 /*
266 * Bucket's add/delete generation versions.
267 */
268 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_add);
269 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_del);
270 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_parent_add);
271 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_parent_del);
272 #define V_dyn_ipv4_add VNET(dyn_ipv4_add)
273 #define V_dyn_ipv4_del VNET(dyn_ipv4_del)
274 #define V_dyn_ipv4_parent_add VNET(dyn_ipv4_parent_add)
275 #define V_dyn_ipv4_parent_del VNET(dyn_ipv4_parent_del)
276
277 #ifdef INET6
278 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_add);
279 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_del);
280 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_parent_add);
281 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_parent_del);
282 #define V_dyn_ipv6_add VNET(dyn_ipv6_add)
283 #define V_dyn_ipv6_del VNET(dyn_ipv6_del)
284 #define V_dyn_ipv6_parent_add VNET(dyn_ipv6_parent_add)
285 #define V_dyn_ipv6_parent_del VNET(dyn_ipv6_parent_del)
286 #endif /* INET6 */
287
288 #define DYN_BUCKET(h, b) ((h) & (b - 1))
289 #define DYN_BUCKET_VERSION(b, v) ck_pr_load_32(&V_dyn_ ## v[(b)])
290 #define DYN_BUCKET_VERSION_BUMP(b, v) ck_pr_inc_32(&V_dyn_ ## v[(b)])
291
292 #define DYN_BUCKET_LOCK_INIT(lock, b) \
293 mtx_init(&lock[(b)], "IPFW dynamic bucket", NULL, MTX_DEF)
294 #define DYN_BUCKET_LOCK_DESTROY(lock, b) mtx_destroy(&lock[(b)])
295 #define DYN_BUCKET_LOCK(b) mtx_lock(&V_dyn_bucket_lock[(b)])
296 #define DYN_BUCKET_UNLOCK(b) mtx_unlock(&V_dyn_bucket_lock[(b)])
297 #define DYN_BUCKET_ASSERT(b) mtx_assert(&V_dyn_bucket_lock[(b)], MA_OWNED)
298
299 #define DYN_EXPIRED_LOCK_INIT() \
300 mtx_init(&V_dyn_expire_lock, "IPFW expired states list", NULL, MTX_DEF)
301 #define DYN_EXPIRED_LOCK_DESTROY() mtx_destroy(&V_dyn_expire_lock)
302 #define DYN_EXPIRED_LOCK() mtx_lock(&V_dyn_expire_lock)
303 #define DYN_EXPIRED_UNLOCK() mtx_unlock(&V_dyn_expire_lock)
304
305 VNET_DEFINE_STATIC(uint32_t, dyn_buckets_max);
306 VNET_DEFINE_STATIC(uint32_t, curr_dyn_buckets);
307 VNET_DEFINE_STATIC(struct callout, dyn_timeout);
308 #define V_dyn_buckets_max VNET(dyn_buckets_max)
309 #define V_curr_dyn_buckets VNET(curr_dyn_buckets)
310 #define V_dyn_timeout VNET(dyn_timeout)
311
312 /* Maximum length of states chain in a bucket */
313 VNET_DEFINE_STATIC(uint32_t, curr_max_length);
314 #define V_curr_max_length VNET(curr_max_length)
315
316 VNET_DEFINE_STATIC(uint32_t, dyn_keep_states);
317 #define V_dyn_keep_states VNET(dyn_keep_states)
318
319 VNET_DEFINE_STATIC(uma_zone_t, dyn_data_zone);
320 VNET_DEFINE_STATIC(uma_zone_t, dyn_parent_zone);
321 VNET_DEFINE_STATIC(uma_zone_t, dyn_ipv4_zone);
322 #ifdef INET6
323 VNET_DEFINE_STATIC(uma_zone_t, dyn_ipv6_zone);
324 #define V_dyn_ipv6_zone VNET(dyn_ipv6_zone)
325 #endif /* INET6 */
326 #define V_dyn_data_zone VNET(dyn_data_zone)
327 #define V_dyn_parent_zone VNET(dyn_parent_zone)
328 #define V_dyn_ipv4_zone VNET(dyn_ipv4_zone)
329
330 /*
331 * Timeouts for various events in handing dynamic rules.
332 */
333 VNET_DEFINE_STATIC(uint32_t, dyn_ack_lifetime);
334 VNET_DEFINE_STATIC(uint32_t, dyn_syn_lifetime);
335 VNET_DEFINE_STATIC(uint32_t, dyn_fin_lifetime);
336 VNET_DEFINE_STATIC(uint32_t, dyn_rst_lifetime);
337 VNET_DEFINE_STATIC(uint32_t, dyn_udp_lifetime);
338 VNET_DEFINE_STATIC(uint32_t, dyn_short_lifetime);
339
340 #define V_dyn_ack_lifetime VNET(dyn_ack_lifetime)
341 #define V_dyn_syn_lifetime VNET(dyn_syn_lifetime)
342 #define V_dyn_fin_lifetime VNET(dyn_fin_lifetime)
343 #define V_dyn_rst_lifetime VNET(dyn_rst_lifetime)
344 #define V_dyn_udp_lifetime VNET(dyn_udp_lifetime)
345 #define V_dyn_short_lifetime VNET(dyn_short_lifetime)
346
347 /*
348 * Keepalives are sent if dyn_keepalive is set. They are sent every
349 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
350 * seconds of lifetime of a rule.
351 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
352 * than dyn_keepalive_period.
353 */
354 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive_interval);
355 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive_period);
356 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive);
357 VNET_DEFINE_STATIC(time_t, dyn_keepalive_last);
358
359 #define V_dyn_keepalive_interval VNET(dyn_keepalive_interval)
360 #define V_dyn_keepalive_period VNET(dyn_keepalive_period)
361 #define V_dyn_keepalive VNET(dyn_keepalive)
362 #define V_dyn_keepalive_last VNET(dyn_keepalive_last)
363
364 VNET_DEFINE_STATIC(uint32_t, dyn_max); /* max # of dynamic states */
365 VNET_DEFINE_STATIC(uint32_t, dyn_count); /* number of states */
366 VNET_DEFINE_STATIC(uint32_t, dyn_parent_max); /* max # of parent states */
367 VNET_DEFINE_STATIC(uint32_t, dyn_parent_count); /* number of parent states */
368
369 #define V_dyn_max VNET(dyn_max)
370 #define V_dyn_count VNET(dyn_count)
371 #define V_dyn_parent_max VNET(dyn_parent_max)
372 #define V_dyn_parent_count VNET(dyn_parent_count)
373
374 #define DYN_COUNT_DEC(name) do { \
375 MPASS((V_ ## name) > 0); \
376 ck_pr_dec_32(&(V_ ## name)); \
377 } while (0)
378 #define DYN_COUNT_INC(name) ck_pr_inc_32(&(V_ ## name))
379 #define DYN_COUNT(name) ck_pr_load_32(&(V_ ## name))
380
381 static time_t last_log; /* Log ratelimiting */
382
383 /*
384 * Get/set maximum number of dynamic states in given VNET instance.
385 */
386 static int
sysctl_dyn_max(SYSCTL_HANDLER_ARGS)387 sysctl_dyn_max(SYSCTL_HANDLER_ARGS)
388 {
389 uint32_t nstates;
390 int error;
391
392 nstates = V_dyn_max;
393 error = sysctl_handle_32(oidp, &nstates, 0, req);
394 /* Read operation or some error */
395 if ((error != 0) || (req->newptr == NULL))
396 return (error);
397
398 V_dyn_max = nstates;
399 uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
400 return (0);
401 }
402
403 static int
sysctl_dyn_parent_max(SYSCTL_HANDLER_ARGS)404 sysctl_dyn_parent_max(SYSCTL_HANDLER_ARGS)
405 {
406 uint32_t nstates;
407 int error;
408
409 nstates = V_dyn_parent_max;
410 error = sysctl_handle_32(oidp, &nstates, 0, req);
411 /* Read operation or some error */
412 if ((error != 0) || (req->newptr == NULL))
413 return (error);
414
415 V_dyn_parent_max = nstates;
416 uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
417 return (0);
418 }
419
420 static int
sysctl_dyn_buckets(SYSCTL_HANDLER_ARGS)421 sysctl_dyn_buckets(SYSCTL_HANDLER_ARGS)
422 {
423 uint32_t nbuckets;
424 int error;
425
426 nbuckets = V_dyn_buckets_max;
427 error = sysctl_handle_32(oidp, &nbuckets, 0, req);
428 /* Read operation or some error */
429 if ((error != 0) || (req->newptr == NULL))
430 return (error);
431
432 if (nbuckets > 256)
433 V_dyn_buckets_max = 1 << fls(nbuckets - 1);
434 else
435 return (EINVAL);
436 return (0);
437 }
438
439 SYSCTL_DECL(_net_inet_ip_fw);
440
441 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_count,
442 CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_count), 0,
443 "Current number of dynamic states.");
444 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_parent_count,
445 CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_parent_count), 0,
446 "Current number of parent states. ");
447 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
448 CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
449 "Current number of buckets for states hash table.");
450 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_max_length,
451 CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_max_length), 0,
452 "Current maximum length of states chains in hash buckets.");
453 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
454 CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
455 0, 0, sysctl_dyn_buckets, "IU",
456 "Max number of buckets for dynamic states hash table.");
457 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_max,
458 CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
459 0, 0, sysctl_dyn_max, "IU",
460 "Max number of dynamic states.");
461 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_parent_max,
462 CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
463 0, 0, sysctl_dyn_parent_max, "IU",
464 "Max number of parent dynamic states.");
465 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
466 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
467 "Lifetime of dynamic states for TCP ACK.");
468 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
469 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
470 "Lifetime of dynamic states for TCP SYN.");
471 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
472 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
473 "Lifetime of dynamic states for TCP FIN.");
474 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
475 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
476 "Lifetime of dynamic states for TCP RST.");
477 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
478 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
479 "Lifetime of dynamic states for UDP.");
480 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
481 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
482 "Lifetime of dynamic states for other situations.");
483 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
484 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
485 "Enable keepalives for dynamic states.");
486 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keep_states,
487 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keep_states), 0,
488 "Do not flush dynamic states on rule deletion");
489
490 #ifdef IPFIREWALL_DYNDEBUG
491 #define DYN_DEBUG(fmt, ...) do { \
492 printf("%s: " fmt "\n", __func__, __VA_ARGS__); \
493 } while (0)
494 #else
495 #define DYN_DEBUG(fmt, ...)
496 #endif /* !IPFIREWALL_DYNDEBUG */
497
498 #ifdef INET6
499 /* Functions to work with IPv6 states */
500 static struct dyn_ipv6_state *dyn_lookup_ipv6_state(
501 const struct ipfw_flow_id *, uint32_t, const void *,
502 struct ipfw_dyn_info *, int);
503 static int dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *,
504 uint32_t, const void *, int, uint32_t, uint16_t);
505 static struct dyn_ipv6_state *dyn_alloc_ipv6_state(
506 const struct ipfw_flow_id *, uint32_t, uint16_t, uint8_t);
507 static int dyn_add_ipv6_state(void *, uint32_t, uint16_t,
508 const struct ipfw_flow_id *, uint32_t, const void *, int, uint32_t,
509 struct ipfw_dyn_info *, uint16_t, uint16_t, uint8_t);
510 static void dyn_export_ipv6_state(const struct dyn_ipv6_state *,
511 ipfw_dyn_rule *);
512
513 static uint32_t dyn_getscopeid(const struct ip_fw_args *);
514 static void dyn_make_keepalive_ipv6(struct mbuf *, const struct in6_addr *,
515 const struct in6_addr *, uint32_t, uint32_t, uint32_t, uint16_t,
516 uint16_t);
517 static void dyn_enqueue_keepalive_ipv6(struct mbufq *,
518 const struct dyn_ipv6_state *);
519 static void dyn_send_keepalive_ipv6(struct ip_fw_chain *);
520
521 static struct dyn_ipv6_state *dyn_lookup_ipv6_parent(
522 const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint16_t,
523 uint32_t);
524 static struct dyn_ipv6_state *dyn_lookup_ipv6_parent_locked(
525 const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint16_t,
526 uint32_t);
527 static struct dyn_ipv6_state *dyn_add_ipv6_parent(void *, uint32_t, uint16_t,
528 const struct ipfw_flow_id *, uint32_t, uint32_t, uint32_t, uint16_t);
529 #endif /* INET6 */
530
531 /* Functions to work with limit states */
532 static void *dyn_get_parent_state(const struct ipfw_flow_id *, uint32_t,
533 struct ip_fw *, uint32_t, uint32_t, uint16_t);
534 static struct dyn_ipv4_state *dyn_lookup_ipv4_parent(
535 const struct ipfw_flow_id *, const void *, uint32_t, uint16_t, uint32_t);
536 static struct dyn_ipv4_state *dyn_lookup_ipv4_parent_locked(
537 const struct ipfw_flow_id *, const void *, uint32_t, uint16_t, uint32_t);
538 static struct dyn_parent *dyn_alloc_parent(void *, uint32_t, uint16_t,
539 uint32_t);
540 static struct dyn_ipv4_state *dyn_add_ipv4_parent(void *, uint32_t, uint16_t,
541 const struct ipfw_flow_id *, uint32_t, uint32_t, uint16_t);
542
543 static void dyn_tick(void *);
544 static void dyn_expire_states(struct ip_fw_chain *, ipfw_range_tlv *);
545 static void dyn_free_states(struct ip_fw_chain *);
546 static void dyn_export_parent(const struct dyn_parent *, uint16_t, uint8_t,
547 ipfw_dyn_rule *);
548 static void dyn_export_data(const struct dyn_data *, uint16_t, uint8_t,
549 uint8_t, ipfw_dyn_rule *);
550 static uint32_t dyn_update_tcp_state(struct dyn_data *,
551 const struct ipfw_flow_id *, const struct tcphdr *, int);
552 static void dyn_update_proto_state(struct dyn_data *,
553 const struct ipfw_flow_id *, const void *, int, int);
554
555 /* Functions to work with IPv4 states */
556 struct dyn_ipv4_state *dyn_lookup_ipv4_state(const struct ipfw_flow_id *,
557 const void *, struct ipfw_dyn_info *, int);
558 static int dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *,
559 const void *, int, uint32_t, uint16_t);
560 static struct dyn_ipv4_state *dyn_alloc_ipv4_state(
561 const struct ipfw_flow_id *, uint16_t, uint8_t);
562 static int dyn_add_ipv4_state(void *, uint32_t, uint16_t,
563 const struct ipfw_flow_id *, const void *, int, uint32_t,
564 struct ipfw_dyn_info *, uint16_t, uint16_t, uint8_t);
565 static void dyn_export_ipv4_state(const struct dyn_ipv4_state *,
566 ipfw_dyn_rule *);
567
568 /*
569 * Named states support.
570 */
571 static char *default_state_name = "default";
572 struct dyn_state_obj {
573 struct named_object no;
574 char name[64];
575 };
576
577 #define DYN_STATE_OBJ(ch, cmd) \
578 ((struct dyn_state_obj *)SRV_OBJECT(ch, (cmd)->arg1))
579 /*
580 * Classifier callback.
581 * Return 0 if opcode contains object that should be referenced
582 * or rewritten.
583 */
584 static int
dyn_classify(ipfw_insn * cmd,uint16_t * puidx,uint8_t * ptype)585 dyn_classify(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
586 {
587
588 DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
589 /* Don't rewrite "check-state any" */
590 if (cmd->arg1 == 0 &&
591 cmd->opcode == O_CHECK_STATE)
592 return (1);
593
594 *puidx = cmd->arg1;
595 *ptype = 0;
596 return (0);
597 }
598
599 static void
dyn_update(ipfw_insn * cmd,uint16_t idx)600 dyn_update(ipfw_insn *cmd, uint16_t idx)
601 {
602
603 cmd->arg1 = idx;
604 DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
605 }
606
607 static int
dyn_findbyname(struct ip_fw_chain * ch,struct tid_info * ti,struct named_object ** pno)608 dyn_findbyname(struct ip_fw_chain *ch, struct tid_info *ti,
609 struct named_object **pno)
610 {
611 ipfw_obj_ntlv *ntlv;
612 const char *name;
613
614 DYN_DEBUG("uidx %d", ti->uidx);
615 if (ti->uidx != 0) {
616 if (ti->tlvs == NULL)
617 return (EINVAL);
618 /* Search ntlv in the buffer provided by user */
619 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
620 IPFW_TLV_STATE_NAME);
621 if (ntlv == NULL)
622 return (EINVAL);
623 name = ntlv->name;
624 } else
625 name = default_state_name;
626 /*
627 * Search named object with corresponding name.
628 * Since states objects are global - ignore the set value
629 * and use zero instead.
630 */
631 *pno = ipfw_objhash_lookup_name_type(CHAIN_TO_SRV(ch), 0,
632 IPFW_TLV_STATE_NAME, name);
633 /*
634 * We always return success here.
635 * The caller will check *pno and mark object as unresolved,
636 * then it will automatically create "default" object.
637 */
638 return (0);
639 }
640
641 static struct named_object *
dyn_findbykidx(struct ip_fw_chain * ch,uint16_t idx)642 dyn_findbykidx(struct ip_fw_chain *ch, uint16_t idx)
643 {
644
645 DYN_DEBUG("kidx %d", idx);
646 return (ipfw_objhash_lookup_kidx(CHAIN_TO_SRV(ch), idx));
647 }
648
649 static int
dyn_create(struct ip_fw_chain * ch,struct tid_info * ti,uint16_t * pkidx)650 dyn_create(struct ip_fw_chain *ch, struct tid_info *ti,
651 uint16_t *pkidx)
652 {
653 struct namedobj_instance *ni;
654 struct dyn_state_obj *obj;
655 struct named_object *no;
656 ipfw_obj_ntlv *ntlv;
657 char *name;
658
659 DYN_DEBUG("uidx %d", ti->uidx);
660 if (ti->uidx != 0) {
661 if (ti->tlvs == NULL)
662 return (EINVAL);
663 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
664 IPFW_TLV_STATE_NAME);
665 if (ntlv == NULL)
666 return (EINVAL);
667 name = ntlv->name;
668 } else
669 name = default_state_name;
670
671 ni = CHAIN_TO_SRV(ch);
672 obj = malloc(sizeof(*obj), M_IPFW, M_WAITOK | M_ZERO);
673 obj->no.name = obj->name;
674 obj->no.etlv = IPFW_TLV_STATE_NAME;
675 strlcpy(obj->name, name, sizeof(obj->name));
676
677 IPFW_UH_WLOCK(ch);
678 no = ipfw_objhash_lookup_name_type(ni, 0,
679 IPFW_TLV_STATE_NAME, name);
680 if (no != NULL) {
681 /*
682 * Object is already created.
683 * Just return its kidx and bump refcount.
684 */
685 *pkidx = no->kidx;
686 no->refcnt++;
687 IPFW_UH_WUNLOCK(ch);
688 free(obj, M_IPFW);
689 DYN_DEBUG("\tfound kidx %d", *pkidx);
690 return (0);
691 }
692 if (ipfw_objhash_alloc_idx(ni, &obj->no.kidx) != 0) {
693 DYN_DEBUG("\talloc_idx failed for %s", name);
694 IPFW_UH_WUNLOCK(ch);
695 free(obj, M_IPFW);
696 return (ENOSPC);
697 }
698 ipfw_objhash_add(ni, &obj->no);
699 SRV_OBJECT(ch, obj->no.kidx) = obj;
700 obj->no.refcnt++;
701 *pkidx = obj->no.kidx;
702 IPFW_UH_WUNLOCK(ch);
703 DYN_DEBUG("\tcreated kidx %d", *pkidx);
704 return (0);
705 }
706
707 static void
dyn_destroy(struct ip_fw_chain * ch,struct named_object * no)708 dyn_destroy(struct ip_fw_chain *ch, struct named_object *no)
709 {
710 struct dyn_state_obj *obj;
711
712 IPFW_UH_WLOCK_ASSERT(ch);
713
714 KASSERT(no->etlv == IPFW_TLV_STATE_NAME,
715 ("%s: wrong object type %u", __func__, no->etlv));
716 KASSERT(no->refcnt == 1,
717 ("Destroying object '%s' (type %u, idx %u) with refcnt %u",
718 no->name, no->etlv, no->kidx, no->refcnt));
719 DYN_DEBUG("kidx %d", no->kidx);
720 obj = SRV_OBJECT(ch, no->kidx);
721 SRV_OBJECT(ch, no->kidx) = NULL;
722 ipfw_objhash_del(CHAIN_TO_SRV(ch), no);
723 ipfw_objhash_free_idx(CHAIN_TO_SRV(ch), no->kidx);
724
725 free(obj, M_IPFW);
726 }
727
728 static struct opcode_obj_rewrite dyn_opcodes[] = {
729 {
730 O_KEEP_STATE, IPFW_TLV_STATE_NAME,
731 dyn_classify, dyn_update,
732 dyn_findbyname, dyn_findbykidx,
733 dyn_create, dyn_destroy
734 },
735 {
736 O_CHECK_STATE, IPFW_TLV_STATE_NAME,
737 dyn_classify, dyn_update,
738 dyn_findbyname, dyn_findbykidx,
739 dyn_create, dyn_destroy
740 },
741 {
742 O_PROBE_STATE, IPFW_TLV_STATE_NAME,
743 dyn_classify, dyn_update,
744 dyn_findbyname, dyn_findbykidx,
745 dyn_create, dyn_destroy
746 },
747 {
748 O_LIMIT, IPFW_TLV_STATE_NAME,
749 dyn_classify, dyn_update,
750 dyn_findbyname, dyn_findbykidx,
751 dyn_create, dyn_destroy
752 },
753 };
754
755 /*
756 * IMPORTANT: the hash function for dynamic rules must be commutative
757 * in source and destination (ip,port), because rules are bidirectional
758 * and we want to find both in the same bucket.
759 */
760 #ifndef IPFIREWALL_JENKINSHASH
761 static __inline uint32_t
hash_packet(const struct ipfw_flow_id * id)762 hash_packet(const struct ipfw_flow_id *id)
763 {
764 uint32_t i;
765
766 #ifdef INET6
767 if (IS_IP6_FLOW_ID(id))
768 i = ntohl((id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
769 (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
770 (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
771 (id->src_ip6.__u6_addr.__u6_addr32[3]));
772 else
773 #endif /* INET6 */
774 i = (id->dst_ip) ^ (id->src_ip);
775 i ^= (id->dst_port) ^ (id->src_port);
776 return (i);
777 }
778
779 static __inline uint32_t
hash_parent(const struct ipfw_flow_id * id,const void * rule)780 hash_parent(const struct ipfw_flow_id *id, const void *rule)
781 {
782
783 return (hash_packet(id) ^ ((uintptr_t)rule));
784 }
785
786 #else /* IPFIREWALL_JENKINSHASH */
787
788 VNET_DEFINE_STATIC(uint32_t, dyn_hashseed);
789 #define V_dyn_hashseed VNET(dyn_hashseed)
790
791 static __inline int
addrcmp4(const struct ipfw_flow_id * id)792 addrcmp4(const struct ipfw_flow_id *id)
793 {
794
795 if (id->src_ip < id->dst_ip)
796 return (0);
797 if (id->src_ip > id->dst_ip)
798 return (1);
799 if (id->src_port <= id->dst_port)
800 return (0);
801 return (1);
802 }
803
804 #ifdef INET6
805 static __inline int
addrcmp6(const struct ipfw_flow_id * id)806 addrcmp6(const struct ipfw_flow_id *id)
807 {
808 int ret;
809
810 ret = memcmp(&id->src_ip6, &id->dst_ip6, sizeof(struct in6_addr));
811 if (ret < 0)
812 return (0);
813 if (ret > 0)
814 return (1);
815 if (id->src_port <= id->dst_port)
816 return (0);
817 return (1);
818 }
819
820 static __inline uint32_t
hash_packet6(const struct ipfw_flow_id * id)821 hash_packet6(const struct ipfw_flow_id *id)
822 {
823 struct tuple6 {
824 struct in6_addr addr[2];
825 uint16_t port[2];
826 } t6;
827
828 if (addrcmp6(id) == 0) {
829 t6.addr[0] = id->src_ip6;
830 t6.addr[1] = id->dst_ip6;
831 t6.port[0] = id->src_port;
832 t6.port[1] = id->dst_port;
833 } else {
834 t6.addr[0] = id->dst_ip6;
835 t6.addr[1] = id->src_ip6;
836 t6.port[0] = id->dst_port;
837 t6.port[1] = id->src_port;
838 }
839 return (jenkins_hash32((const uint32_t *)&t6,
840 sizeof(t6) / sizeof(uint32_t), V_dyn_hashseed));
841 }
842 #endif
843
844 static __inline uint32_t
hash_packet(const struct ipfw_flow_id * id)845 hash_packet(const struct ipfw_flow_id *id)
846 {
847 struct tuple4 {
848 in_addr_t addr[2];
849 uint16_t port[2];
850 } t4;
851
852 if (IS_IP4_FLOW_ID(id)) {
853 /* All fields are in host byte order */
854 if (addrcmp4(id) == 0) {
855 t4.addr[0] = id->src_ip;
856 t4.addr[1] = id->dst_ip;
857 t4.port[0] = id->src_port;
858 t4.port[1] = id->dst_port;
859 } else {
860 t4.addr[0] = id->dst_ip;
861 t4.addr[1] = id->src_ip;
862 t4.port[0] = id->dst_port;
863 t4.port[1] = id->src_port;
864 }
865 return (jenkins_hash32((const uint32_t *)&t4,
866 sizeof(t4) / sizeof(uint32_t), V_dyn_hashseed));
867 } else
868 #ifdef INET6
869 if (IS_IP6_FLOW_ID(id))
870 return (hash_packet6(id));
871 #endif
872 return (0);
873 }
874
875 static __inline uint32_t
hash_parent(const struct ipfw_flow_id * id,const void * rule)876 hash_parent(const struct ipfw_flow_id *id, const void *rule)
877 {
878
879 return (jenkins_hash32((const uint32_t *)&rule,
880 sizeof(rule) / sizeof(uint32_t), hash_packet(id)));
881 }
882 #endif /* IPFIREWALL_JENKINSHASH */
883
884 /*
885 * Print customizable flow id description via log(9) facility.
886 */
887 static void
print_dyn_rule_flags(const struct ipfw_flow_id * id,int dyn_type,int log_flags,char * prefix,char * postfix)888 print_dyn_rule_flags(const struct ipfw_flow_id *id, int dyn_type,
889 int log_flags, char *prefix, char *postfix)
890 {
891 struct in_addr da;
892 #ifdef INET6
893 char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN];
894 #else
895 char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
896 #endif
897
898 #ifdef INET6
899 if (IS_IP6_FLOW_ID(id)) {
900 ip6_sprintf(src, &id->src_ip6);
901 ip6_sprintf(dst, &id->dst_ip6);
902 } else
903 #endif
904 {
905 da.s_addr = htonl(id->src_ip);
906 inet_ntop(AF_INET, &da, src, sizeof(src));
907 da.s_addr = htonl(id->dst_ip);
908 inet_ntop(AF_INET, &da, dst, sizeof(dst));
909 }
910 log(log_flags, "ipfw: %s type %d %s %d -> %s %d, %d %s\n",
911 prefix, dyn_type, src, id->src_port, dst,
912 id->dst_port, V_dyn_count, postfix);
913 }
914
915 #define print_dyn_rule(id, dtype, prefix, postfix) \
916 print_dyn_rule_flags(id, dtype, LOG_DEBUG, prefix, postfix)
917
918 #define TIME_LEQ(a,b) ((int)((a)-(b)) <= 0)
919 #define TIME_LE(a,b) ((int)((a)-(b)) < 0)
920 #define _SEQ_GE(a,b) ((int)((a)-(b)) >= 0)
921 #define BOTH_SYN (TH_SYN | (TH_SYN << 8))
922 #define BOTH_FIN (TH_FIN | (TH_FIN << 8))
923 #define TCP_FLAGS (TH_FLAGS | (TH_FLAGS << 8))
924 #define ACK_FWD 0x00010000 /* fwd ack seen */
925 #define ACK_REV 0x00020000 /* rev ack seen */
926 #define ACK_BOTH (ACK_FWD | ACK_REV)
927
928 static uint32_t
dyn_update_tcp_state(struct dyn_data * data,const struct ipfw_flow_id * pkt,const struct tcphdr * tcp,int dir)929 dyn_update_tcp_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
930 const struct tcphdr *tcp, int dir)
931 {
932 uint32_t ack, expire;
933 uint32_t state, old;
934 uint8_t th_flags;
935
936 expire = data->expire;
937 old = state = data->state;
938 th_flags = pkt->_flags & (TH_FIN | TH_SYN | TH_RST);
939 state |= (dir == MATCH_FORWARD) ? th_flags: (th_flags << 8);
940 switch (state & TCP_FLAGS) {
941 case TH_SYN: /* opening */
942 expire = time_uptime + V_dyn_syn_lifetime;
943 break;
944
945 case BOTH_SYN: /* move to established */
946 case BOTH_SYN | TH_FIN: /* one side tries to close */
947 case BOTH_SYN | (TH_FIN << 8):
948 if (tcp == NULL)
949 break;
950 ack = ntohl(tcp->th_ack);
951 if (dir == MATCH_FORWARD) {
952 if (data->ack_fwd == 0 ||
953 _SEQ_GE(ack, data->ack_fwd)) {
954 state |= ACK_FWD;
955 if (data->ack_fwd != ack)
956 ck_pr_store_32(&data->ack_fwd, ack);
957 }
958 } else {
959 if (data->ack_rev == 0 ||
960 _SEQ_GE(ack, data->ack_rev)) {
961 state |= ACK_REV;
962 if (data->ack_rev != ack)
963 ck_pr_store_32(&data->ack_rev, ack);
964 }
965 }
966 if ((state & ACK_BOTH) == ACK_BOTH) {
967 /*
968 * Set expire time to V_dyn_ack_lifetime only if
969 * we got ACKs for both directions.
970 * We use XOR here to avoid possible state
971 * overwriting in concurrent thread.
972 */
973 expire = time_uptime + V_dyn_ack_lifetime;
974 ck_pr_xor_32(&data->state, ACK_BOTH);
975 } else if ((data->state & ACK_BOTH) != (state & ACK_BOTH))
976 ck_pr_or_32(&data->state, state & ACK_BOTH);
977 break;
978
979 case BOTH_SYN | BOTH_FIN: /* both sides closed */
980 if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
981 V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
982 expire = time_uptime + V_dyn_fin_lifetime;
983 break;
984
985 default:
986 if (V_dyn_keepalive != 0 &&
987 V_dyn_rst_lifetime >= V_dyn_keepalive_period)
988 V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
989 expire = time_uptime + V_dyn_rst_lifetime;
990 }
991 /* Save TCP state if it was changed */
992 if ((state & TCP_FLAGS) != (old & TCP_FLAGS))
993 ck_pr_or_32(&data->state, state & TCP_FLAGS);
994 return (expire);
995 }
996
997 /*
998 * Update ULP specific state.
999 * For TCP we keep sequence numbers and flags. For other protocols
1000 * currently we update only expire time. Packets and bytes counters
1001 * are also updated here.
1002 */
1003 static void
dyn_update_proto_state(struct dyn_data * data,const struct ipfw_flow_id * pkt,const void * ulp,int pktlen,int dir)1004 dyn_update_proto_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
1005 const void *ulp, int pktlen, int dir)
1006 {
1007 uint32_t expire;
1008
1009 /* NOTE: we are in critical section here. */
1010 switch (pkt->proto) {
1011 case IPPROTO_UDP:
1012 case IPPROTO_UDPLITE:
1013 expire = time_uptime + V_dyn_udp_lifetime;
1014 break;
1015 case IPPROTO_TCP:
1016 expire = dyn_update_tcp_state(data, pkt, ulp, dir);
1017 break;
1018 default:
1019 expire = time_uptime + V_dyn_short_lifetime;
1020 }
1021 /*
1022 * Expiration timer has the per-second granularity, no need to update
1023 * it every time when state is matched.
1024 */
1025 if (data->expire != expire)
1026 ck_pr_store_32(&data->expire, expire);
1027
1028 if (dir == MATCH_FORWARD)
1029 DYN_COUNTER_INC(data, fwd, pktlen);
1030 else
1031 DYN_COUNTER_INC(data, rev, pktlen);
1032 }
1033
1034 /*
1035 * Lookup IPv4 state.
1036 * Must be called in critical section.
1037 */
1038 struct dyn_ipv4_state *
dyn_lookup_ipv4_state(const struct ipfw_flow_id * pkt,const void * ulp,struct ipfw_dyn_info * info,int pktlen)1039 dyn_lookup_ipv4_state(const struct ipfw_flow_id *pkt, const void *ulp,
1040 struct ipfw_dyn_info *info, int pktlen)
1041 {
1042 struct dyn_ipv4_state *s;
1043 uint32_t version, bucket;
1044
1045 bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1046 info->version = DYN_BUCKET_VERSION(bucket, ipv4_add);
1047 restart:
1048 version = DYN_BUCKET_VERSION(bucket, ipv4_del);
1049 CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1050 DYNSTATE_PROTECT(s);
1051 if (version != DYN_BUCKET_VERSION(bucket, ipv4_del))
1052 goto restart;
1053 if (s->proto != pkt->proto)
1054 continue;
1055 if (info->kidx != 0 && s->kidx != info->kidx)
1056 continue;
1057 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1058 s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1059 info->direction = MATCH_FORWARD;
1060 break;
1061 }
1062 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1063 s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1064 info->direction = MATCH_REVERSE;
1065 break;
1066 }
1067 }
1068
1069 if (s != NULL)
1070 dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1071 info->direction);
1072 return (s);
1073 }
1074
1075 /*
1076 * Lookup IPv4 state.
1077 * Simplifed version is used to check that matching state doesn't exist.
1078 */
1079 static int
dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id * pkt,const void * ulp,int pktlen,uint32_t bucket,uint16_t kidx)1080 dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *pkt,
1081 const void *ulp, int pktlen, uint32_t bucket, uint16_t kidx)
1082 {
1083 struct dyn_ipv4_state *s;
1084 int dir;
1085
1086 dir = MATCH_NONE;
1087 DYN_BUCKET_ASSERT(bucket);
1088 CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1089 if (s->proto != pkt->proto ||
1090 s->kidx != kidx)
1091 continue;
1092 if (s->sport == pkt->src_port &&
1093 s->dport == pkt->dst_port &&
1094 s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1095 dir = MATCH_FORWARD;
1096 break;
1097 }
1098 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1099 s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1100 dir = MATCH_REVERSE;
1101 break;
1102 }
1103 }
1104 if (s != NULL)
1105 dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1106 return (s != NULL);
1107 }
1108
1109 struct dyn_ipv4_state *
dyn_lookup_ipv4_parent(const struct ipfw_flow_id * pkt,const void * rule,uint32_t ruleid,uint16_t rulenum,uint32_t hashval)1110 dyn_lookup_ipv4_parent(const struct ipfw_flow_id *pkt, const void *rule,
1111 uint32_t ruleid, uint16_t rulenum, uint32_t hashval)
1112 {
1113 struct dyn_ipv4_state *s;
1114 uint32_t version, bucket;
1115
1116 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1117 restart:
1118 version = DYN_BUCKET_VERSION(bucket, ipv4_parent_del);
1119 CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1120 DYNSTATE_PROTECT(s);
1121 if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_del))
1122 goto restart;
1123 /*
1124 * NOTE: we do not need to check kidx, because parent rule
1125 * can not create states with different kidx.
1126 * And parent rule always created for forward direction.
1127 */
1128 if (s->limit->parent == rule &&
1129 s->limit->ruleid == ruleid &&
1130 s->limit->rulenum == rulenum &&
1131 s->proto == pkt->proto &&
1132 s->sport == pkt->src_port &&
1133 s->dport == pkt->dst_port &&
1134 s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1135 if (s->limit->expire != time_uptime +
1136 V_dyn_short_lifetime)
1137 ck_pr_store_32(&s->limit->expire,
1138 time_uptime + V_dyn_short_lifetime);
1139 break;
1140 }
1141 }
1142 return (s);
1143 }
1144
1145 static struct dyn_ipv4_state *
dyn_lookup_ipv4_parent_locked(const struct ipfw_flow_id * pkt,const void * rule,uint32_t ruleid,uint16_t rulenum,uint32_t bucket)1146 dyn_lookup_ipv4_parent_locked(const struct ipfw_flow_id *pkt,
1147 const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t bucket)
1148 {
1149 struct dyn_ipv4_state *s;
1150
1151 DYN_BUCKET_ASSERT(bucket);
1152 CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1153 if (s->limit->parent == rule &&
1154 s->limit->ruleid == ruleid &&
1155 s->limit->rulenum == rulenum &&
1156 s->proto == pkt->proto &&
1157 s->sport == pkt->src_port &&
1158 s->dport == pkt->dst_port &&
1159 s->src == pkt->src_ip && s->dst == pkt->dst_ip)
1160 break;
1161 }
1162 return (s);
1163 }
1164
1165 #ifdef INET6
1166 static uint32_t
dyn_getscopeid(const struct ip_fw_args * args)1167 dyn_getscopeid(const struct ip_fw_args *args)
1168 {
1169
1170 /*
1171 * If source or destination address is an scopeid address, we need
1172 * determine the scope zone id to resolve address scope ambiguity.
1173 */
1174 if (IN6_IS_ADDR_LINKLOCAL(&args->f_id.src_ip6) ||
1175 IN6_IS_ADDR_LINKLOCAL(&args->f_id.dst_ip6))
1176 return (in6_getscopezone(args->ifp, IPV6_ADDR_SCOPE_LINKLOCAL));
1177
1178 return (0);
1179 }
1180
1181 /*
1182 * Lookup IPv6 state.
1183 * Must be called in critical section.
1184 */
1185 static struct dyn_ipv6_state *
dyn_lookup_ipv6_state(const struct ipfw_flow_id * pkt,uint32_t zoneid,const void * ulp,struct ipfw_dyn_info * info,int pktlen)1186 dyn_lookup_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1187 const void *ulp, struct ipfw_dyn_info *info, int pktlen)
1188 {
1189 struct dyn_ipv6_state *s;
1190 uint32_t version, bucket;
1191
1192 bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1193 info->version = DYN_BUCKET_VERSION(bucket, ipv6_add);
1194 restart:
1195 version = DYN_BUCKET_VERSION(bucket, ipv6_del);
1196 CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1197 DYNSTATE_PROTECT(s);
1198 if (version != DYN_BUCKET_VERSION(bucket, ipv6_del))
1199 goto restart;
1200 if (s->proto != pkt->proto || s->zoneid != zoneid)
1201 continue;
1202 if (info->kidx != 0 && s->kidx != info->kidx)
1203 continue;
1204 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1205 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1206 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1207 info->direction = MATCH_FORWARD;
1208 break;
1209 }
1210 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1211 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1212 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1213 info->direction = MATCH_REVERSE;
1214 break;
1215 }
1216 }
1217 if (s != NULL)
1218 dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1219 info->direction);
1220 return (s);
1221 }
1222
1223 /*
1224 * Lookup IPv6 state.
1225 * Simplifed version is used to check that matching state doesn't exist.
1226 */
1227 static int
dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id * pkt,uint32_t zoneid,const void * ulp,int pktlen,uint32_t bucket,uint16_t kidx)1228 dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1229 const void *ulp, int pktlen, uint32_t bucket, uint16_t kidx)
1230 {
1231 struct dyn_ipv6_state *s;
1232 int dir;
1233
1234 dir = MATCH_NONE;
1235 DYN_BUCKET_ASSERT(bucket);
1236 CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1237 if (s->proto != pkt->proto || s->kidx != kidx ||
1238 s->zoneid != zoneid)
1239 continue;
1240 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1241 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1242 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1243 dir = MATCH_FORWARD;
1244 break;
1245 }
1246 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1247 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1248 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1249 dir = MATCH_REVERSE;
1250 break;
1251 }
1252 }
1253 if (s != NULL)
1254 dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1255 return (s != NULL);
1256 }
1257
1258 static struct dyn_ipv6_state *
dyn_lookup_ipv6_parent(const struct ipfw_flow_id * pkt,uint32_t zoneid,const void * rule,uint32_t ruleid,uint16_t rulenum,uint32_t hashval)1259 dyn_lookup_ipv6_parent(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1260 const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t hashval)
1261 {
1262 struct dyn_ipv6_state *s;
1263 uint32_t version, bucket;
1264
1265 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1266 restart:
1267 version = DYN_BUCKET_VERSION(bucket, ipv6_parent_del);
1268 CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1269 DYNSTATE_PROTECT(s);
1270 if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_del))
1271 goto restart;
1272 /*
1273 * NOTE: we do not need to check kidx, because parent rule
1274 * can not create states with different kidx.
1275 * Also parent rule always created for forward direction.
1276 */
1277 if (s->limit->parent == rule &&
1278 s->limit->ruleid == ruleid &&
1279 s->limit->rulenum == rulenum &&
1280 s->proto == pkt->proto &&
1281 s->sport == pkt->src_port &&
1282 s->dport == pkt->dst_port && s->zoneid == zoneid &&
1283 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1284 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1285 if (s->limit->expire != time_uptime +
1286 V_dyn_short_lifetime)
1287 ck_pr_store_32(&s->limit->expire,
1288 time_uptime + V_dyn_short_lifetime);
1289 break;
1290 }
1291 }
1292 return (s);
1293 }
1294
1295 static struct dyn_ipv6_state *
dyn_lookup_ipv6_parent_locked(const struct ipfw_flow_id * pkt,uint32_t zoneid,const void * rule,uint32_t ruleid,uint16_t rulenum,uint32_t bucket)1296 dyn_lookup_ipv6_parent_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1297 const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t bucket)
1298 {
1299 struct dyn_ipv6_state *s;
1300
1301 DYN_BUCKET_ASSERT(bucket);
1302 CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1303 if (s->limit->parent == rule &&
1304 s->limit->ruleid == ruleid &&
1305 s->limit->rulenum == rulenum &&
1306 s->proto == pkt->proto &&
1307 s->sport == pkt->src_port &&
1308 s->dport == pkt->dst_port && s->zoneid == zoneid &&
1309 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1310 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6))
1311 break;
1312 }
1313 return (s);
1314 }
1315
1316 #endif /* INET6 */
1317
1318 /*
1319 * Lookup dynamic state.
1320 * pkt - filled by ipfw_chk() ipfw_flow_id;
1321 * ulp - determined by ipfw_chk() upper level protocol header;
1322 * dyn_info - info about matched state to return back;
1323 * Returns pointer to state's parent rule and dyn_info. If there is
1324 * no state, NULL is returned.
1325 * On match ipfw_dyn_lookup() updates state's counters.
1326 */
1327 struct ip_fw *
ipfw_dyn_lookup_state(const struct ip_fw_args * args,const void * ulp,int pktlen,const ipfw_insn * cmd,struct ipfw_dyn_info * info)1328 ipfw_dyn_lookup_state(const struct ip_fw_args *args, const void *ulp,
1329 int pktlen, const ipfw_insn *cmd, struct ipfw_dyn_info *info)
1330 {
1331 struct dyn_data *data;
1332 struct ip_fw *rule;
1333
1334 IPFW_RLOCK_ASSERT(&V_layer3_chain);
1335
1336 data = NULL;
1337 rule = NULL;
1338 info->kidx = cmd->arg1;
1339 info->direction = MATCH_NONE;
1340 info->hashval = hash_packet(&args->f_id);
1341
1342 DYNSTATE_CRITICAL_ENTER();
1343 if (IS_IP4_FLOW_ID(&args->f_id)) {
1344 struct dyn_ipv4_state *s;
1345
1346 s = dyn_lookup_ipv4_state(&args->f_id, ulp, info, pktlen);
1347 if (s != NULL) {
1348 /*
1349 * Dynamic states are created using the same 5-tuple,
1350 * so it is assumed, that parent rule for O_LIMIT
1351 * state has the same address family.
1352 */
1353 data = s->data;
1354 if (s->type == O_LIMIT) {
1355 s = data->parent;
1356 rule = s->limit->parent;
1357 } else
1358 rule = data->parent;
1359 }
1360 }
1361 #ifdef INET6
1362 else if (IS_IP6_FLOW_ID(&args->f_id)) {
1363 struct dyn_ipv6_state *s;
1364
1365 s = dyn_lookup_ipv6_state(&args->f_id, dyn_getscopeid(args),
1366 ulp, info, pktlen);
1367 if (s != NULL) {
1368 data = s->data;
1369 if (s->type == O_LIMIT) {
1370 s = data->parent;
1371 rule = s->limit->parent;
1372 } else
1373 rule = data->parent;
1374 }
1375 }
1376 #endif
1377 if (data != NULL) {
1378 /*
1379 * If cached chain id is the same, we can avoid rule index
1380 * lookup. Otherwise do lookup and update chain_id and f_pos.
1381 * It is safe even if there is concurrent thread that want
1382 * update the same state, because chain->id can be changed
1383 * only under IPFW_WLOCK().
1384 */
1385 if (data->chain_id != V_layer3_chain.id) {
1386 data->f_pos = ipfw_find_rule(&V_layer3_chain,
1387 data->rulenum, data->ruleid);
1388 /*
1389 * Check that found state has not orphaned.
1390 * When chain->id being changed the parent
1391 * rule can be deleted. If found rule doesn't
1392 * match the parent pointer, consider this
1393 * result as MATCH_NONE and return NULL.
1394 *
1395 * This will lead to creation of new similar state
1396 * that will be added into head of this bucket.
1397 * And the state that we currently have matched
1398 * should be deleted by dyn_expire_states().
1399 *
1400 * In case when dyn_keep_states is enabled, return
1401 * pointer to deleted rule and f_pos value
1402 * corresponding to penultimate rule.
1403 * When we have enabled V_dyn_keep_states, states
1404 * that become orphaned will get the DYN_REFERENCED
1405 * flag and rule will keep around. So we can return
1406 * it. But since it is not in the rules map, we need
1407 * return such f_pos value, so after the state
1408 * handling if the search will continue, the next rule
1409 * will be the last one - the default rule.
1410 */
1411 if (V_layer3_chain.map[data->f_pos] == rule) {
1412 data->chain_id = V_layer3_chain.id;
1413 info->f_pos = data->f_pos;
1414 } else if (V_dyn_keep_states != 0) {
1415 /*
1416 * The original rule pointer is still usable.
1417 * So, we return it, but f_pos need to be
1418 * changed to point to the penultimate rule.
1419 */
1420 MPASS(V_layer3_chain.n_rules > 1);
1421 data->chain_id = V_layer3_chain.id;
1422 data->f_pos = V_layer3_chain.n_rules - 2;
1423 info->f_pos = data->f_pos;
1424 } else {
1425 rule = NULL;
1426 info->direction = MATCH_NONE;
1427 DYN_DEBUG("rule %p [%u, %u] is considered "
1428 "invalid in data %p", rule, data->ruleid,
1429 data->rulenum, data);
1430 /* info->f_pos doesn't matter here. */
1431 }
1432 } else
1433 info->f_pos = data->f_pos;
1434 }
1435 DYNSTATE_CRITICAL_EXIT();
1436 #if 0
1437 /*
1438 * Return MATCH_NONE if parent rule is in disabled set.
1439 * This will lead to creation of new similar state that
1440 * will be added into head of this bucket.
1441 *
1442 * XXXAE: we need to be able update state's set when parent
1443 * rule set is changed.
1444 */
1445 if (rule != NULL && (V_set_disable & (1 << rule->set))) {
1446 rule = NULL;
1447 info->direction = MATCH_NONE;
1448 }
1449 #endif
1450 return (rule);
1451 }
1452
1453 static struct dyn_parent *
dyn_alloc_parent(void * parent,uint32_t ruleid,uint16_t rulenum,uint32_t hashval)1454 dyn_alloc_parent(void *parent, uint32_t ruleid, uint16_t rulenum,
1455 uint32_t hashval)
1456 {
1457 struct dyn_parent *limit;
1458
1459 limit = uma_zalloc(V_dyn_parent_zone, M_NOWAIT | M_ZERO);
1460 if (limit == NULL) {
1461 if (last_log != time_uptime) {
1462 last_log = time_uptime;
1463 log(LOG_DEBUG,
1464 "ipfw: Cannot allocate parent dynamic state, "
1465 "consider increasing "
1466 "net.inet.ip.fw.dyn_parent_max\n");
1467 }
1468 return (NULL);
1469 }
1470
1471 limit->parent = parent;
1472 limit->ruleid = ruleid;
1473 limit->rulenum = rulenum;
1474 limit->hashval = hashval;
1475 limit->expire = time_uptime + V_dyn_short_lifetime;
1476 return (limit);
1477 }
1478
1479 static struct dyn_data *
dyn_alloc_dyndata(void * parent,uint32_t ruleid,uint16_t rulenum,const struct ipfw_flow_id * pkt,const void * ulp,int pktlen,uint32_t hashval,uint16_t fibnum)1480 dyn_alloc_dyndata(void *parent, uint32_t ruleid, uint16_t rulenum,
1481 const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1482 uint32_t hashval, uint16_t fibnum)
1483 {
1484 struct dyn_data *data;
1485
1486 data = uma_zalloc(V_dyn_data_zone, M_NOWAIT | M_ZERO);
1487 if (data == NULL) {
1488 if (last_log != time_uptime) {
1489 last_log = time_uptime;
1490 log(LOG_DEBUG,
1491 "ipfw: Cannot allocate dynamic state, "
1492 "consider increasing net.inet.ip.fw.dyn_max\n");
1493 }
1494 return (NULL);
1495 }
1496
1497 data->parent = parent;
1498 data->ruleid = ruleid;
1499 data->rulenum = rulenum;
1500 data->fibnum = fibnum;
1501 data->hashval = hashval;
1502 data->expire = time_uptime + V_dyn_syn_lifetime;
1503 dyn_update_proto_state(data, pkt, ulp, pktlen, MATCH_FORWARD);
1504 return (data);
1505 }
1506
1507 static struct dyn_ipv4_state *
dyn_alloc_ipv4_state(const struct ipfw_flow_id * pkt,uint16_t kidx,uint8_t type)1508 dyn_alloc_ipv4_state(const struct ipfw_flow_id *pkt, uint16_t kidx,
1509 uint8_t type)
1510 {
1511 struct dyn_ipv4_state *s;
1512
1513 s = uma_zalloc(V_dyn_ipv4_zone, M_NOWAIT | M_ZERO);
1514 if (s == NULL)
1515 return (NULL);
1516
1517 s->type = type;
1518 s->kidx = kidx;
1519 s->proto = pkt->proto;
1520 s->sport = pkt->src_port;
1521 s->dport = pkt->dst_port;
1522 s->src = pkt->src_ip;
1523 s->dst = pkt->dst_ip;
1524 return (s);
1525 }
1526
1527 /*
1528 * Add IPv4 parent state.
1529 * Returns pointer to parent state. When it is not NULL we are in
1530 * critical section and pointer protected by hazard pointer.
1531 * When some error occurs, it returns NULL and exit from critical section
1532 * is not needed.
1533 */
1534 static struct dyn_ipv4_state *
dyn_add_ipv4_parent(void * rule,uint32_t ruleid,uint16_t rulenum,const struct ipfw_flow_id * pkt,uint32_t hashval,uint32_t version,uint16_t kidx)1535 dyn_add_ipv4_parent(void *rule, uint32_t ruleid, uint16_t rulenum,
1536 const struct ipfw_flow_id *pkt, uint32_t hashval, uint32_t version,
1537 uint16_t kidx)
1538 {
1539 struct dyn_ipv4_state *s;
1540 struct dyn_parent *limit;
1541 uint32_t bucket;
1542
1543 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1544 DYN_BUCKET_LOCK(bucket);
1545 if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_add)) {
1546 /*
1547 * Bucket version has been changed since last lookup,
1548 * do lookup again to be sure that state does not exist.
1549 */
1550 s = dyn_lookup_ipv4_parent_locked(pkt, rule, ruleid,
1551 rulenum, bucket);
1552 if (s != NULL) {
1553 /*
1554 * Simultaneous thread has already created this
1555 * state. Just return it.
1556 */
1557 DYNSTATE_CRITICAL_ENTER();
1558 DYNSTATE_PROTECT(s);
1559 DYN_BUCKET_UNLOCK(bucket);
1560 return (s);
1561 }
1562 }
1563
1564 limit = dyn_alloc_parent(rule, ruleid, rulenum, hashval);
1565 if (limit == NULL) {
1566 DYN_BUCKET_UNLOCK(bucket);
1567 return (NULL);
1568 }
1569
1570 s = dyn_alloc_ipv4_state(pkt, kidx, O_LIMIT_PARENT);
1571 if (s == NULL) {
1572 DYN_BUCKET_UNLOCK(bucket);
1573 uma_zfree(V_dyn_parent_zone, limit);
1574 return (NULL);
1575 }
1576
1577 s->limit = limit;
1578 CK_SLIST_INSERT_HEAD(&V_dyn_ipv4_parent[bucket], s, entry);
1579 DYN_COUNT_INC(dyn_parent_count);
1580 DYN_BUCKET_VERSION_BUMP(bucket, ipv4_parent_add);
1581 DYNSTATE_CRITICAL_ENTER();
1582 DYNSTATE_PROTECT(s);
1583 DYN_BUCKET_UNLOCK(bucket);
1584 return (s);
1585 }
1586
1587 static int
dyn_add_ipv4_state(void * parent,uint32_t ruleid,uint16_t rulenum,const struct ipfw_flow_id * pkt,const void * ulp,int pktlen,uint32_t hashval,struct ipfw_dyn_info * info,uint16_t fibnum,uint16_t kidx,uint8_t type)1588 dyn_add_ipv4_state(void *parent, uint32_t ruleid, uint16_t rulenum,
1589 const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1590 uint32_t hashval, struct ipfw_dyn_info *info, uint16_t fibnum,
1591 uint16_t kidx, uint8_t type)
1592 {
1593 struct dyn_ipv4_state *s;
1594 void *data;
1595 uint32_t bucket;
1596
1597 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1598 DYN_BUCKET_LOCK(bucket);
1599 if (info->direction == MATCH_UNKNOWN ||
1600 info->kidx != kidx ||
1601 info->hashval != hashval ||
1602 info->version != DYN_BUCKET_VERSION(bucket, ipv4_add)) {
1603 /*
1604 * Bucket version has been changed since last lookup,
1605 * do lookup again to be sure that state does not exist.
1606 */
1607 if (dyn_lookup_ipv4_state_locked(pkt, ulp, pktlen,
1608 bucket, kidx) != 0) {
1609 DYN_BUCKET_UNLOCK(bucket);
1610 return (EEXIST);
1611 }
1612 }
1613
1614 data = dyn_alloc_dyndata(parent, ruleid, rulenum, pkt, ulp,
1615 pktlen, hashval, fibnum);
1616 if (data == NULL) {
1617 DYN_BUCKET_UNLOCK(bucket);
1618 return (ENOMEM);
1619 }
1620
1621 s = dyn_alloc_ipv4_state(pkt, kidx, type);
1622 if (s == NULL) {
1623 DYN_BUCKET_UNLOCK(bucket);
1624 uma_zfree(V_dyn_data_zone, data);
1625 return (ENOMEM);
1626 }
1627
1628 s->data = data;
1629 CK_SLIST_INSERT_HEAD(&V_dyn_ipv4[bucket], s, entry);
1630 DYN_COUNT_INC(dyn_count);
1631 DYN_BUCKET_VERSION_BUMP(bucket, ipv4_add);
1632 DYN_BUCKET_UNLOCK(bucket);
1633 return (0);
1634 }
1635
1636 #ifdef INET6
1637 static struct dyn_ipv6_state *
dyn_alloc_ipv6_state(const struct ipfw_flow_id * pkt,uint32_t zoneid,uint16_t kidx,uint8_t type)1638 dyn_alloc_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1639 uint16_t kidx, uint8_t type)
1640 {
1641 struct dyn_ipv6_state *s;
1642
1643 s = uma_zalloc(V_dyn_ipv6_zone, M_NOWAIT | M_ZERO);
1644 if (s == NULL)
1645 return (NULL);
1646
1647 s->type = type;
1648 s->kidx = kidx;
1649 s->zoneid = zoneid;
1650 s->proto = pkt->proto;
1651 s->sport = pkt->src_port;
1652 s->dport = pkt->dst_port;
1653 s->src = pkt->src_ip6;
1654 s->dst = pkt->dst_ip6;
1655 return (s);
1656 }
1657
1658 /*
1659 * Add IPv6 parent state.
1660 * Returns pointer to parent state. When it is not NULL we are in
1661 * critical section and pointer protected by hazard pointer.
1662 * When some error occurs, it return NULL and exit from critical section
1663 * is not needed.
1664 */
1665 static struct dyn_ipv6_state *
dyn_add_ipv6_parent(void * rule,uint32_t ruleid,uint16_t rulenum,const struct ipfw_flow_id * pkt,uint32_t zoneid,uint32_t hashval,uint32_t version,uint16_t kidx)1666 dyn_add_ipv6_parent(void *rule, uint32_t ruleid, uint16_t rulenum,
1667 const struct ipfw_flow_id *pkt, uint32_t zoneid, uint32_t hashval,
1668 uint32_t version, uint16_t kidx)
1669 {
1670 struct dyn_ipv6_state *s;
1671 struct dyn_parent *limit;
1672 uint32_t bucket;
1673
1674 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1675 DYN_BUCKET_LOCK(bucket);
1676 if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_add)) {
1677 /*
1678 * Bucket version has been changed since last lookup,
1679 * do lookup again to be sure that state does not exist.
1680 */
1681 s = dyn_lookup_ipv6_parent_locked(pkt, zoneid, rule, ruleid,
1682 rulenum, bucket);
1683 if (s != NULL) {
1684 /*
1685 * Simultaneous thread has already created this
1686 * state. Just return it.
1687 */
1688 DYNSTATE_CRITICAL_ENTER();
1689 DYNSTATE_PROTECT(s);
1690 DYN_BUCKET_UNLOCK(bucket);
1691 return (s);
1692 }
1693 }
1694
1695 limit = dyn_alloc_parent(rule, ruleid, rulenum, hashval);
1696 if (limit == NULL) {
1697 DYN_BUCKET_UNLOCK(bucket);
1698 return (NULL);
1699 }
1700
1701 s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, O_LIMIT_PARENT);
1702 if (s == NULL) {
1703 DYN_BUCKET_UNLOCK(bucket);
1704 uma_zfree(V_dyn_parent_zone, limit);
1705 return (NULL);
1706 }
1707
1708 s->limit = limit;
1709 CK_SLIST_INSERT_HEAD(&V_dyn_ipv6_parent[bucket], s, entry);
1710 DYN_COUNT_INC(dyn_parent_count);
1711 DYN_BUCKET_VERSION_BUMP(bucket, ipv6_parent_add);
1712 DYNSTATE_CRITICAL_ENTER();
1713 DYNSTATE_PROTECT(s);
1714 DYN_BUCKET_UNLOCK(bucket);
1715 return (s);
1716 }
1717
1718 static int
dyn_add_ipv6_state(void * parent,uint32_t ruleid,uint16_t rulenum,const struct ipfw_flow_id * pkt,uint32_t zoneid,const void * ulp,int pktlen,uint32_t hashval,struct ipfw_dyn_info * info,uint16_t fibnum,uint16_t kidx,uint8_t type)1719 dyn_add_ipv6_state(void *parent, uint32_t ruleid, uint16_t rulenum,
1720 const struct ipfw_flow_id *pkt, uint32_t zoneid, const void *ulp,
1721 int pktlen, uint32_t hashval, struct ipfw_dyn_info *info,
1722 uint16_t fibnum, uint16_t kidx, uint8_t type)
1723 {
1724 struct dyn_ipv6_state *s;
1725 struct dyn_data *data;
1726 uint32_t bucket;
1727
1728 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1729 DYN_BUCKET_LOCK(bucket);
1730 if (info->direction == MATCH_UNKNOWN ||
1731 info->kidx != kidx ||
1732 info->hashval != hashval ||
1733 info->version != DYN_BUCKET_VERSION(bucket, ipv6_add)) {
1734 /*
1735 * Bucket version has been changed since last lookup,
1736 * do lookup again to be sure that state does not exist.
1737 */
1738 if (dyn_lookup_ipv6_state_locked(pkt, zoneid, ulp, pktlen,
1739 bucket, kidx) != 0) {
1740 DYN_BUCKET_UNLOCK(bucket);
1741 return (EEXIST);
1742 }
1743 }
1744
1745 data = dyn_alloc_dyndata(parent, ruleid, rulenum, pkt, ulp,
1746 pktlen, hashval, fibnum);
1747 if (data == NULL) {
1748 DYN_BUCKET_UNLOCK(bucket);
1749 return (ENOMEM);
1750 }
1751
1752 s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, type);
1753 if (s == NULL) {
1754 DYN_BUCKET_UNLOCK(bucket);
1755 uma_zfree(V_dyn_data_zone, data);
1756 return (ENOMEM);
1757 }
1758
1759 s->data = data;
1760 CK_SLIST_INSERT_HEAD(&V_dyn_ipv6[bucket], s, entry);
1761 DYN_COUNT_INC(dyn_count);
1762 DYN_BUCKET_VERSION_BUMP(bucket, ipv6_add);
1763 DYN_BUCKET_UNLOCK(bucket);
1764 return (0);
1765 }
1766 #endif /* INET6 */
1767
1768 static void *
dyn_get_parent_state(const struct ipfw_flow_id * pkt,uint32_t zoneid,struct ip_fw * rule,uint32_t hashval,uint32_t limit,uint16_t kidx)1769 dyn_get_parent_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1770 struct ip_fw *rule, uint32_t hashval, uint32_t limit, uint16_t kidx)
1771 {
1772 char sbuf[24];
1773 struct dyn_parent *p;
1774 void *ret;
1775 uint32_t bucket, version;
1776
1777 p = NULL;
1778 ret = NULL;
1779 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1780 DYNSTATE_CRITICAL_ENTER();
1781 if (IS_IP4_FLOW_ID(pkt)) {
1782 struct dyn_ipv4_state *s;
1783
1784 version = DYN_BUCKET_VERSION(bucket, ipv4_parent_add);
1785 s = dyn_lookup_ipv4_parent(pkt, rule, rule->id,
1786 rule->rulenum, bucket);
1787 if (s == NULL) {
1788 /*
1789 * Exit from critical section because dyn_add_parent()
1790 * will acquire bucket lock.
1791 */
1792 DYNSTATE_CRITICAL_EXIT();
1793
1794 s = dyn_add_ipv4_parent(rule, rule->id,
1795 rule->rulenum, pkt, hashval, version, kidx);
1796 if (s == NULL)
1797 return (NULL);
1798 /* Now we are in critical section again. */
1799 }
1800 ret = s;
1801 p = s->limit;
1802 }
1803 #ifdef INET6
1804 else if (IS_IP6_FLOW_ID(pkt)) {
1805 struct dyn_ipv6_state *s;
1806
1807 version = DYN_BUCKET_VERSION(bucket, ipv6_parent_add);
1808 s = dyn_lookup_ipv6_parent(pkt, zoneid, rule, rule->id,
1809 rule->rulenum, bucket);
1810 if (s == NULL) {
1811 /*
1812 * Exit from critical section because dyn_add_parent()
1813 * can acquire bucket mutex.
1814 */
1815 DYNSTATE_CRITICAL_EXIT();
1816
1817 s = dyn_add_ipv6_parent(rule, rule->id,
1818 rule->rulenum, pkt, zoneid, hashval, version,
1819 kidx);
1820 if (s == NULL)
1821 return (NULL);
1822 /* Now we are in critical section again. */
1823 }
1824 ret = s;
1825 p = s->limit;
1826 }
1827 #endif
1828 else {
1829 DYNSTATE_CRITICAL_EXIT();
1830 return (NULL);
1831 }
1832
1833 /* Check the limit */
1834 if (DPARENT_COUNT(p) >= limit) {
1835 DYNSTATE_CRITICAL_EXIT();
1836 if (V_fw_verbose && last_log != time_uptime) {
1837 last_log = time_uptime;
1838 snprintf(sbuf, sizeof(sbuf), "%u drop session",
1839 rule->rulenum);
1840 print_dyn_rule_flags(pkt, O_LIMIT,
1841 LOG_SECURITY | LOG_DEBUG, sbuf,
1842 "too many entries");
1843 }
1844 return (NULL);
1845 }
1846
1847 /* Take new session into account. */
1848 DPARENT_COUNT_INC(p);
1849 /*
1850 * We must exit from critical section because the following code
1851 * can acquire bucket mutex.
1852 * We rely on the 'count' field. The state will not expire
1853 * until it has some child states, i.e. 'count' field is not zero.
1854 * Return state pointer, it will be used by child states as parent.
1855 */
1856 DYNSTATE_CRITICAL_EXIT();
1857 return (ret);
1858 }
1859
1860 static int
dyn_install_state(const struct ipfw_flow_id * pkt,uint32_t zoneid,uint16_t fibnum,const void * ulp,int pktlen,struct ip_fw * rule,struct ipfw_dyn_info * info,uint32_t limit,uint16_t limit_mask,uint16_t kidx,uint8_t type)1861 dyn_install_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1862 uint16_t fibnum, const void *ulp, int pktlen, struct ip_fw *rule,
1863 struct ipfw_dyn_info *info, uint32_t limit, uint16_t limit_mask,
1864 uint16_t kidx, uint8_t type)
1865 {
1866 struct ipfw_flow_id id;
1867 uint32_t hashval, parent_hashval, ruleid, rulenum;
1868 int ret;
1869
1870 MPASS(type == O_LIMIT || type == O_KEEP_STATE);
1871
1872 ruleid = rule->id;
1873 rulenum = rule->rulenum;
1874 if (type == O_LIMIT) {
1875 /* Create masked flow id and calculate bucket */
1876 id.addr_type = pkt->addr_type;
1877 id.proto = pkt->proto;
1878 id.fib = fibnum; /* unused */
1879 id.src_port = (limit_mask & DYN_SRC_PORT) ?
1880 pkt->src_port: 0;
1881 id.dst_port = (limit_mask & DYN_DST_PORT) ?
1882 pkt->dst_port: 0;
1883 if (IS_IP4_FLOW_ID(pkt)) {
1884 id.src_ip = (limit_mask & DYN_SRC_ADDR) ?
1885 pkt->src_ip: 0;
1886 id.dst_ip = (limit_mask & DYN_DST_ADDR) ?
1887 pkt->dst_ip: 0;
1888 }
1889 #ifdef INET6
1890 else if (IS_IP6_FLOW_ID(pkt)) {
1891 if (limit_mask & DYN_SRC_ADDR)
1892 id.src_ip6 = pkt->src_ip6;
1893 else
1894 memset(&id.src_ip6, 0, sizeof(id.src_ip6));
1895 if (limit_mask & DYN_DST_ADDR)
1896 id.dst_ip6 = pkt->dst_ip6;
1897 else
1898 memset(&id.dst_ip6, 0, sizeof(id.dst_ip6));
1899 }
1900 #endif
1901 else
1902 return (EAFNOSUPPORT);
1903
1904 parent_hashval = hash_parent(&id, rule);
1905 rule = dyn_get_parent_state(&id, zoneid, rule, parent_hashval,
1906 limit, kidx);
1907 if (rule == NULL) {
1908 #if 0
1909 if (V_fw_verbose && last_log != time_uptime) {
1910 last_log = time_uptime;
1911 snprintf(sbuf, sizeof(sbuf),
1912 "%u drop session", rule->rulenum);
1913 print_dyn_rule_flags(pkt, O_LIMIT,
1914 LOG_SECURITY | LOG_DEBUG, sbuf,
1915 "too many entries");
1916 }
1917 #endif
1918 return (EACCES);
1919 }
1920 /*
1921 * Limit is not reached, create new state.
1922 * Now rule points to parent state.
1923 */
1924 }
1925
1926 hashval = hash_packet(pkt);
1927 if (IS_IP4_FLOW_ID(pkt))
1928 ret = dyn_add_ipv4_state(rule, ruleid, rulenum, pkt,
1929 ulp, pktlen, hashval, info, fibnum, kidx, type);
1930 #ifdef INET6
1931 else if (IS_IP6_FLOW_ID(pkt))
1932 ret = dyn_add_ipv6_state(rule, ruleid, rulenum, pkt,
1933 zoneid, ulp, pktlen, hashval, info, fibnum, kidx, type);
1934 #endif /* INET6 */
1935 else
1936 ret = EAFNOSUPPORT;
1937
1938 if (type == O_LIMIT) {
1939 if (ret != 0) {
1940 /*
1941 * We failed to create child state for O_LIMIT
1942 * opcode. Since we already counted it in the parent,
1943 * we must revert counter back. The 'rule' points to
1944 * parent state, use it to get dyn_parent.
1945 *
1946 * XXXAE: it should be safe to use 'rule' pointer
1947 * without extra lookup, parent state is referenced
1948 * and should not be freed.
1949 */
1950 if (IS_IP4_FLOW_ID(&id))
1951 DPARENT_COUNT_DEC(
1952 ((struct dyn_ipv4_state *)rule)->limit);
1953 #ifdef INET6
1954 else if (IS_IP6_FLOW_ID(&id))
1955 DPARENT_COUNT_DEC(
1956 ((struct dyn_ipv6_state *)rule)->limit);
1957 #endif
1958 }
1959 }
1960 /*
1961 * EEXIST means that simultaneous thread has created this
1962 * state. Consider this as success.
1963 *
1964 * XXXAE: should we invalidate 'info' content here?
1965 */
1966 if (ret == EEXIST)
1967 return (0);
1968 return (ret);
1969 }
1970
1971 /*
1972 * Install dynamic state.
1973 * chain - ipfw's instance;
1974 * rule - the parent rule that installs the state;
1975 * cmd - opcode that installs the state;
1976 * args - ipfw arguments;
1977 * ulp - upper level protocol header;
1978 * pktlen - packet length;
1979 * info - dynamic state lookup info;
1980 * tablearg - tablearg id.
1981 *
1982 * Returns non-zero value (failure) if state is not installed because
1983 * of errors or because session limitations are enforced.
1984 */
1985 int
ipfw_dyn_install_state(struct ip_fw_chain * chain,struct ip_fw * rule,const ipfw_insn_limit * cmd,const struct ip_fw_args * args,const void * ulp,int pktlen,struct ipfw_dyn_info * info,uint32_t tablearg)1986 ipfw_dyn_install_state(struct ip_fw_chain *chain, struct ip_fw *rule,
1987 const ipfw_insn_limit *cmd, const struct ip_fw_args *args,
1988 const void *ulp, int pktlen, struct ipfw_dyn_info *info,
1989 uint32_t tablearg)
1990 {
1991 uint32_t limit;
1992 uint16_t limit_mask;
1993
1994 if (cmd->o.opcode == O_LIMIT) {
1995 limit = IP_FW_ARG_TABLEARG(chain, cmd->conn_limit, limit);
1996 limit_mask = cmd->limit_mask;
1997 } else {
1998 limit = 0;
1999 limit_mask = 0;
2000 }
2001 return (dyn_install_state(&args->f_id,
2002 #ifdef INET6
2003 IS_IP6_FLOW_ID(&args->f_id) ? dyn_getscopeid(args):
2004 #endif
2005 0, M_GETFIB(args->m), ulp, pktlen, rule, info, limit,
2006 limit_mask, cmd->o.arg1, cmd->o.opcode));
2007 }
2008
2009 /*
2010 * Free safe to remove state entries from expired lists.
2011 */
2012 static void
dyn_free_states(struct ip_fw_chain * chain)2013 dyn_free_states(struct ip_fw_chain *chain)
2014 {
2015 struct dyn_ipv4_state *s4, *s4n;
2016 #ifdef INET6
2017 struct dyn_ipv6_state *s6, *s6n;
2018 #endif
2019 int cached_count, i;
2020
2021 /*
2022 * We keep pointers to objects that are in use on each CPU
2023 * in the per-cpu dyn_hp pointer. When object is going to be
2024 * removed, first of it is unlinked from the corresponding
2025 * list. This leads to changing of dyn_bucket_xxx_delver version.
2026 * Unlinked objects is placed into corresponding dyn_expired_xxx
2027 * list. Reader that is going to dereference object pointer checks
2028 * dyn_bucket_xxx_delver version before and after storing pointer
2029 * into dyn_hp. If version is the same, the object is protected
2030 * from freeing and it is safe to dereference. Othervise reader
2031 * tries to iterate list again from the beginning, but this object
2032 * now unlinked and thus will not be accessible.
2033 *
2034 * Copy dyn_hp pointers for each CPU into dyn_hp_cache array.
2035 * It does not matter that some pointer can be changed in
2036 * time while we are copying. We need to check, that objects
2037 * removed in the previous pass are not in use. And if dyn_hp
2038 * pointer does not contain it in the time when we are copying,
2039 * it will not appear there, because it is already unlinked.
2040 * And for new pointers we will not free objects that will be
2041 * unlinked in this pass.
2042 */
2043 cached_count = 0;
2044 CPU_FOREACH(i) {
2045 dyn_hp_cache[cached_count] = DYNSTATE_GET(i);
2046 if (dyn_hp_cache[cached_count] != NULL)
2047 cached_count++;
2048 }
2049
2050 /*
2051 * Free expired states that are safe to free.
2052 * Check each entry from previous pass in the dyn_expired_xxx
2053 * list, if pointer to the object is in the dyn_hp_cache array,
2054 * keep it until next pass. Otherwise it is safe to free the
2055 * object.
2056 *
2057 * XXXAE: optimize this to use SLIST_REMOVE_AFTER.
2058 */
2059 #define DYN_FREE_STATES(s, next, name) do { \
2060 s = SLIST_FIRST(&V_dyn_expired_ ## name); \
2061 while (s != NULL) { \
2062 next = SLIST_NEXT(s, expired); \
2063 for (i = 0; i < cached_count; i++) \
2064 if (dyn_hp_cache[i] == s) \
2065 break; \
2066 if (i == cached_count) { \
2067 if (s->type == O_LIMIT_PARENT && \
2068 s->limit->count != 0) { \
2069 s = next; \
2070 continue; \
2071 } \
2072 SLIST_REMOVE(&V_dyn_expired_ ## name, \
2073 s, dyn_ ## name ## _state, expired); \
2074 if (s->type == O_LIMIT_PARENT) \
2075 uma_zfree(V_dyn_parent_zone, s->limit); \
2076 else \
2077 uma_zfree(V_dyn_data_zone, s->data); \
2078 uma_zfree(V_dyn_ ## name ## _zone, s); \
2079 } \
2080 s = next; \
2081 } \
2082 } while (0)
2083
2084 /*
2085 * Protect access to expired lists with DYN_EXPIRED_LOCK.
2086 * Userland can invoke ipfw_expire_dyn_states() to delete
2087 * specific states, this will lead to modification of expired
2088 * lists.
2089 *
2090 * XXXAE: do we need DYN_EXPIRED_LOCK? We can just use
2091 * IPFW_UH_WLOCK to protect access to these lists.
2092 */
2093 DYN_EXPIRED_LOCK();
2094 DYN_FREE_STATES(s4, s4n, ipv4);
2095 #ifdef INET6
2096 DYN_FREE_STATES(s6, s6n, ipv6);
2097 #endif
2098 DYN_EXPIRED_UNLOCK();
2099 #undef DYN_FREE_STATES
2100 }
2101
2102 /*
2103 * Returns:
2104 * 0 when state is not matched by specified range;
2105 * 1 when state is matched by specified range;
2106 * 2 when state is matched by specified range and requested deletion of
2107 * dynamic states.
2108 */
2109 static int
dyn_match_range(uint16_t rulenum,uint8_t set,const ipfw_range_tlv * rt)2110 dyn_match_range(uint16_t rulenum, uint8_t set, const ipfw_range_tlv *rt)
2111 {
2112
2113 MPASS(rt != NULL);
2114 /* flush all states */
2115 if (rt->flags & IPFW_RCFLAG_ALL) {
2116 if (rt->flags & IPFW_RCFLAG_DYNAMIC)
2117 return (2); /* forced */
2118 return (1);
2119 }
2120 if ((rt->flags & IPFW_RCFLAG_SET) != 0 && set != rt->set)
2121 return (0);
2122 if ((rt->flags & IPFW_RCFLAG_RANGE) != 0 &&
2123 (rulenum < rt->start_rule || rulenum > rt->end_rule))
2124 return (0);
2125 if (rt->flags & IPFW_RCFLAG_DYNAMIC)
2126 return (2);
2127 return (1);
2128 }
2129
2130 static void
dyn_acquire_rule(struct ip_fw_chain * ch,struct dyn_data * data,struct ip_fw * rule,uint16_t kidx)2131 dyn_acquire_rule(struct ip_fw_chain *ch, struct dyn_data *data,
2132 struct ip_fw *rule, uint16_t kidx)
2133 {
2134 struct dyn_state_obj *obj;
2135
2136 /*
2137 * Do not acquire reference twice.
2138 * This can happen when rule deletion executed for
2139 * the same range, but different ruleset id.
2140 */
2141 if (data->flags & DYN_REFERENCED)
2142 return;
2143
2144 IPFW_UH_WLOCK_ASSERT(ch);
2145 MPASS(kidx != 0);
2146
2147 data->flags |= DYN_REFERENCED;
2148 /* Reference the named object */
2149 obj = SRV_OBJECT(ch, kidx);
2150 obj->no.refcnt++;
2151 MPASS(obj->no.etlv == IPFW_TLV_STATE_NAME);
2152
2153 /* Reference the parent rule */
2154 rule->refcnt++;
2155 }
2156
2157 static void
dyn_release_rule(struct ip_fw_chain * ch,struct dyn_data * data,struct ip_fw * rule,uint16_t kidx)2158 dyn_release_rule(struct ip_fw_chain *ch, struct dyn_data *data,
2159 struct ip_fw *rule, uint16_t kidx)
2160 {
2161 struct dyn_state_obj *obj;
2162
2163 IPFW_UH_WLOCK_ASSERT(ch);
2164 MPASS(kidx != 0);
2165
2166 obj = SRV_OBJECT(ch, kidx);
2167 if (obj->no.refcnt == 1)
2168 dyn_destroy(ch, &obj->no);
2169 else
2170 obj->no.refcnt--;
2171
2172 if (--rule->refcnt == 1)
2173 ipfw_free_rule(rule);
2174 }
2175
2176 /*
2177 * We do not keep O_LIMIT_PARENT states when V_dyn_keep_states is enabled.
2178 * O_LIMIT state is created when new connection is going to be established
2179 * and there is no matching state. So, since the old parent rule was deleted
2180 * we can't create new states with old parent, and thus we can not account
2181 * new connections with already established connections, and can not do
2182 * proper limiting.
2183 */
2184 static int
dyn_match_ipv4_state(struct ip_fw_chain * ch,struct dyn_ipv4_state * s,const ipfw_range_tlv * rt)2185 dyn_match_ipv4_state(struct ip_fw_chain *ch, struct dyn_ipv4_state *s,
2186 const ipfw_range_tlv *rt)
2187 {
2188 struct ip_fw *rule;
2189 int ret;
2190
2191 if (s->type == O_LIMIT_PARENT) {
2192 rule = s->limit->parent;
2193 return (dyn_match_range(s->limit->rulenum, rule->set, rt));
2194 }
2195
2196 rule = s->data->parent;
2197 if (s->type == O_LIMIT)
2198 rule = ((struct dyn_ipv4_state *)rule)->limit->parent;
2199
2200 ret = dyn_match_range(s->data->rulenum, rule->set, rt);
2201 if (ret == 0 || V_dyn_keep_states == 0 || ret > 1)
2202 return (ret);
2203
2204 dyn_acquire_rule(ch, s->data, rule, s->kidx);
2205 return (0);
2206 }
2207
2208 #ifdef INET6
2209 static int
dyn_match_ipv6_state(struct ip_fw_chain * ch,struct dyn_ipv6_state * s,const ipfw_range_tlv * rt)2210 dyn_match_ipv6_state(struct ip_fw_chain *ch, struct dyn_ipv6_state *s,
2211 const ipfw_range_tlv *rt)
2212 {
2213 struct ip_fw *rule;
2214 int ret;
2215
2216 if (s->type == O_LIMIT_PARENT) {
2217 rule = s->limit->parent;
2218 return (dyn_match_range(s->limit->rulenum, rule->set, rt));
2219 }
2220
2221 rule = s->data->parent;
2222 if (s->type == O_LIMIT)
2223 rule = ((struct dyn_ipv6_state *)rule)->limit->parent;
2224
2225 ret = dyn_match_range(s->data->rulenum, rule->set, rt);
2226 if (ret == 0 || V_dyn_keep_states == 0 || ret > 1)
2227 return (ret);
2228
2229 dyn_acquire_rule(ch, s->data, rule, s->kidx);
2230 return (0);
2231 }
2232 #endif
2233
2234 /*
2235 * Unlink expired entries from states lists.
2236 * @rt can be used to specify the range of states for deletion.
2237 */
2238 static void
dyn_expire_states(struct ip_fw_chain * ch,ipfw_range_tlv * rt)2239 dyn_expire_states(struct ip_fw_chain *ch, ipfw_range_tlv *rt)
2240 {
2241 struct dyn_ipv4_slist expired_ipv4;
2242 #ifdef INET6
2243 struct dyn_ipv6_slist expired_ipv6;
2244 struct dyn_ipv6_state *s6, *s6n, *s6p;
2245 #endif
2246 struct dyn_ipv4_state *s4, *s4n, *s4p;
2247 void *rule;
2248 int bucket, removed, length, max_length;
2249
2250 IPFW_UH_WLOCK_ASSERT(ch);
2251
2252 /*
2253 * Unlink expired states from each bucket.
2254 * With acquired bucket lock iterate entries of each lists:
2255 * ipv4, ipv4_parent, ipv6, and ipv6_parent. Check expired time
2256 * and unlink entry from the list, link entry into temporary
2257 * expired_xxx lists then bump "del" bucket version.
2258 *
2259 * When an entry is removed, corresponding states counter is
2260 * decremented. If entry has O_LIMIT type, parent's reference
2261 * counter is decremented.
2262 *
2263 * NOTE: this function can be called from userspace context
2264 * when user deletes rules. In this case all matched states
2265 * will be forcedly unlinked. O_LIMIT_PARENT states will be kept
2266 * in the expired lists until reference counter become zero.
2267 */
2268 #define DYN_UNLINK_STATES(s, prev, next, exp, af, name, extra) do { \
2269 length = 0; \
2270 removed = 0; \
2271 prev = NULL; \
2272 s = CK_SLIST_FIRST(&V_dyn_ ## name [bucket]); \
2273 while (s != NULL) { \
2274 next = CK_SLIST_NEXT(s, entry); \
2275 if ((TIME_LEQ((s)->exp, time_uptime) && extra) || \
2276 (rt != NULL && \
2277 dyn_match_ ## af ## _state(ch, s, rt))) { \
2278 if (prev != NULL) \
2279 CK_SLIST_REMOVE_AFTER(prev, entry); \
2280 else \
2281 CK_SLIST_REMOVE_HEAD( \
2282 &V_dyn_ ## name [bucket], entry); \
2283 removed++; \
2284 SLIST_INSERT_HEAD(&expired_ ## af, s, expired); \
2285 if (s->type == O_LIMIT_PARENT) \
2286 DYN_COUNT_DEC(dyn_parent_count); \
2287 else { \
2288 DYN_COUNT_DEC(dyn_count); \
2289 if (s->data->flags & DYN_REFERENCED) { \
2290 rule = s->data->parent; \
2291 if (s->type == O_LIMIT) \
2292 rule = ((__typeof(s)) \
2293 rule)->limit->parent;\
2294 dyn_release_rule(ch, s->data, \
2295 rule, s->kidx); \
2296 } \
2297 if (s->type == O_LIMIT) { \
2298 s = s->data->parent; \
2299 DPARENT_COUNT_DEC(s->limit); \
2300 } \
2301 } \
2302 } else { \
2303 prev = s; \
2304 length++; \
2305 } \
2306 s = next; \
2307 } \
2308 if (removed != 0) \
2309 DYN_BUCKET_VERSION_BUMP(bucket, name ## _del); \
2310 if (length > max_length) \
2311 max_length = length; \
2312 } while (0)
2313
2314 SLIST_INIT(&expired_ipv4);
2315 #ifdef INET6
2316 SLIST_INIT(&expired_ipv6);
2317 #endif
2318 max_length = 0;
2319 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2320 DYN_BUCKET_LOCK(bucket);
2321 DYN_UNLINK_STATES(s4, s4p, s4n, data->expire, ipv4, ipv4, 1);
2322 DYN_UNLINK_STATES(s4, s4p, s4n, limit->expire, ipv4,
2323 ipv4_parent, (s4->limit->count == 0));
2324 #ifdef INET6
2325 DYN_UNLINK_STATES(s6, s6p, s6n, data->expire, ipv6, ipv6, 1);
2326 DYN_UNLINK_STATES(s6, s6p, s6n, limit->expire, ipv6,
2327 ipv6_parent, (s6->limit->count == 0));
2328 #endif
2329 DYN_BUCKET_UNLOCK(bucket);
2330 }
2331 /* Update curr_max_length for statistics. */
2332 V_curr_max_length = max_length;
2333 /*
2334 * Concatenate temporary lists with global expired lists.
2335 */
2336 DYN_EXPIRED_LOCK();
2337 SLIST_CONCAT(&V_dyn_expired_ipv4, &expired_ipv4,
2338 dyn_ipv4_state, expired);
2339 #ifdef INET6
2340 SLIST_CONCAT(&V_dyn_expired_ipv6, &expired_ipv6,
2341 dyn_ipv6_state, expired);
2342 #endif
2343 DYN_EXPIRED_UNLOCK();
2344 #undef DYN_UNLINK_STATES
2345 #undef DYN_UNREF_STATES
2346 }
2347
2348 static struct mbuf *
dyn_mgethdr(int len,uint16_t fibnum)2349 dyn_mgethdr(int len, uint16_t fibnum)
2350 {
2351 struct mbuf *m;
2352
2353 m = m_gethdr(M_NOWAIT, MT_DATA);
2354 if (m == NULL)
2355 return (NULL);
2356 #ifdef MAC
2357 mac_netinet_firewall_send(m);
2358 #endif
2359 M_SETFIB(m, fibnum);
2360 m->m_data += max_linkhdr;
2361 m->m_flags |= M_SKIP_FIREWALL;
2362 m->m_len = m->m_pkthdr.len = len;
2363 bzero(m->m_data, len);
2364 return (m);
2365 }
2366
2367 static void
dyn_make_keepalive_ipv4(struct mbuf * m,in_addr_t src,in_addr_t dst,uint32_t seq,uint32_t ack,uint16_t sport,uint16_t dport)2368 dyn_make_keepalive_ipv4(struct mbuf *m, in_addr_t src, in_addr_t dst,
2369 uint32_t seq, uint32_t ack, uint16_t sport, uint16_t dport)
2370 {
2371 struct tcphdr *tcp;
2372 struct ip *ip;
2373
2374 ip = mtod(m, struct ip *);
2375 ip->ip_v = 4;
2376 ip->ip_hl = sizeof(*ip) >> 2;
2377 ip->ip_tos = IPTOS_LOWDELAY;
2378 ip->ip_len = htons(m->m_len);
2379 ip->ip_off |= htons(IP_DF);
2380 ip->ip_ttl = V_ip_defttl;
2381 ip->ip_p = IPPROTO_TCP;
2382 ip->ip_src.s_addr = htonl(src);
2383 ip->ip_dst.s_addr = htonl(dst);
2384
2385 tcp = mtodo(m, sizeof(struct ip));
2386 tcp->th_sport = htons(sport);
2387 tcp->th_dport = htons(dport);
2388 tcp->th_off = sizeof(struct tcphdr) >> 2;
2389 tcp->th_seq = htonl(seq);
2390 tcp->th_ack = htonl(ack);
2391 tcp->th_flags = TH_ACK;
2392 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2393 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
2394
2395 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2396 m->m_pkthdr.csum_flags = CSUM_TCP;
2397 }
2398
2399 static void
dyn_enqueue_keepalive_ipv4(struct mbufq * q,const struct dyn_ipv4_state * s)2400 dyn_enqueue_keepalive_ipv4(struct mbufq *q, const struct dyn_ipv4_state *s)
2401 {
2402 struct mbuf *m;
2403
2404 if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2405 m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2406 s->data->fibnum);
2407 if (m != NULL) {
2408 dyn_make_keepalive_ipv4(m, s->dst, s->src,
2409 s->data->ack_fwd - 1, s->data->ack_rev,
2410 s->dport, s->sport);
2411 if (mbufq_enqueue(q, m)) {
2412 m_freem(m);
2413 log(LOG_DEBUG, "ipfw: limit for IPv4 "
2414 "keepalive queue is reached.\n");
2415 return;
2416 }
2417 }
2418 }
2419
2420 if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2421 m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2422 s->data->fibnum);
2423 if (m != NULL) {
2424 dyn_make_keepalive_ipv4(m, s->src, s->dst,
2425 s->data->ack_rev - 1, s->data->ack_fwd,
2426 s->sport, s->dport);
2427 if (mbufq_enqueue(q, m)) {
2428 m_freem(m);
2429 log(LOG_DEBUG, "ipfw: limit for IPv4 "
2430 "keepalive queue is reached.\n");
2431 return;
2432 }
2433 }
2434 }
2435 }
2436
2437 /*
2438 * Prepare and send keep-alive packets.
2439 */
2440 static void
dyn_send_keepalive_ipv4(struct ip_fw_chain * chain)2441 dyn_send_keepalive_ipv4(struct ip_fw_chain *chain)
2442 {
2443 struct mbufq q;
2444 struct mbuf *m;
2445 struct dyn_ipv4_state *s;
2446 uint32_t bucket;
2447
2448 mbufq_init(&q, INT_MAX);
2449 IPFW_UH_RLOCK(chain);
2450 /*
2451 * It is safe to not use hazard pointer and just do lockless
2452 * access to the lists, because states entries can not be deleted
2453 * while we hold IPFW_UH_RLOCK.
2454 */
2455 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2456 CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
2457 /*
2458 * Only established TCP connections that will
2459 * become expired within dyn_keepalive_interval.
2460 */
2461 if (s->proto != IPPROTO_TCP ||
2462 (s->data->state & BOTH_SYN) != BOTH_SYN ||
2463 TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2464 s->data->expire))
2465 continue;
2466 dyn_enqueue_keepalive_ipv4(&q, s);
2467 }
2468 }
2469 IPFW_UH_RUNLOCK(chain);
2470 while ((m = mbufq_dequeue(&q)) != NULL)
2471 ip_output(m, NULL, NULL, 0, NULL, NULL);
2472 }
2473
2474 #ifdef INET6
2475 static void
dyn_make_keepalive_ipv6(struct mbuf * m,const struct in6_addr * src,const struct in6_addr * dst,uint32_t zoneid,uint32_t seq,uint32_t ack,uint16_t sport,uint16_t dport)2476 dyn_make_keepalive_ipv6(struct mbuf *m, const struct in6_addr *src,
2477 const struct in6_addr *dst, uint32_t zoneid, uint32_t seq, uint32_t ack,
2478 uint16_t sport, uint16_t dport)
2479 {
2480 struct tcphdr *tcp;
2481 struct ip6_hdr *ip6;
2482
2483 ip6 = mtod(m, struct ip6_hdr *);
2484 ip6->ip6_vfc |= IPV6_VERSION;
2485 ip6->ip6_plen = htons(sizeof(struct tcphdr));
2486 ip6->ip6_nxt = IPPROTO_TCP;
2487 ip6->ip6_hlim = IPV6_DEFHLIM;
2488 ip6->ip6_src = *src;
2489 if (IN6_IS_ADDR_LINKLOCAL(src))
2490 ip6->ip6_src.s6_addr16[1] = htons(zoneid & 0xffff);
2491 ip6->ip6_dst = *dst;
2492 if (IN6_IS_ADDR_LINKLOCAL(dst))
2493 ip6->ip6_dst.s6_addr16[1] = htons(zoneid & 0xffff);
2494
2495 tcp = mtodo(m, sizeof(struct ip6_hdr));
2496 tcp->th_sport = htons(sport);
2497 tcp->th_dport = htons(dport);
2498 tcp->th_off = sizeof(struct tcphdr) >> 2;
2499 tcp->th_seq = htonl(seq);
2500 tcp->th_ack = htonl(ack);
2501 tcp->th_flags = TH_ACK;
2502 tcp->th_sum = in6_cksum_pseudo(ip6, sizeof(struct tcphdr),
2503 IPPROTO_TCP, 0);
2504
2505 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2506 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
2507 }
2508
2509 static void
dyn_enqueue_keepalive_ipv6(struct mbufq * q,const struct dyn_ipv6_state * s)2510 dyn_enqueue_keepalive_ipv6(struct mbufq *q, const struct dyn_ipv6_state *s)
2511 {
2512 struct mbuf *m;
2513
2514 if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2515 m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2516 sizeof(struct tcphdr), s->data->fibnum);
2517 if (m != NULL) {
2518 dyn_make_keepalive_ipv6(m, &s->dst, &s->src,
2519 s->zoneid, s->data->ack_fwd - 1, s->data->ack_rev,
2520 s->dport, s->sport);
2521 if (mbufq_enqueue(q, m)) {
2522 m_freem(m);
2523 log(LOG_DEBUG, "ipfw: limit for IPv6 "
2524 "keepalive queue is reached.\n");
2525 return;
2526 }
2527 }
2528 }
2529
2530 if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2531 m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2532 sizeof(struct tcphdr), s->data->fibnum);
2533 if (m != NULL) {
2534 dyn_make_keepalive_ipv6(m, &s->src, &s->dst,
2535 s->zoneid, s->data->ack_rev - 1, s->data->ack_fwd,
2536 s->sport, s->dport);
2537 if (mbufq_enqueue(q, m)) {
2538 m_freem(m);
2539 log(LOG_DEBUG, "ipfw: limit for IPv6 "
2540 "keepalive queue is reached.\n");
2541 return;
2542 }
2543 }
2544 }
2545 }
2546
2547 static void
dyn_send_keepalive_ipv6(struct ip_fw_chain * chain)2548 dyn_send_keepalive_ipv6(struct ip_fw_chain *chain)
2549 {
2550 struct mbufq q;
2551 struct mbuf *m;
2552 struct dyn_ipv6_state *s;
2553 uint32_t bucket;
2554
2555 mbufq_init(&q, INT_MAX);
2556 IPFW_UH_RLOCK(chain);
2557 /*
2558 * It is safe to not use hazard pointer and just do lockless
2559 * access to the lists, because states entries can not be deleted
2560 * while we hold IPFW_UH_RLOCK.
2561 */
2562 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2563 CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
2564 /*
2565 * Only established TCP connections that will
2566 * become expired within dyn_keepalive_interval.
2567 */
2568 if (s->proto != IPPROTO_TCP ||
2569 (s->data->state & BOTH_SYN) != BOTH_SYN ||
2570 TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2571 s->data->expire))
2572 continue;
2573 dyn_enqueue_keepalive_ipv6(&q, s);
2574 }
2575 }
2576 IPFW_UH_RUNLOCK(chain);
2577 while ((m = mbufq_dequeue(&q)) != NULL)
2578 ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
2579 }
2580 #endif /* INET6 */
2581
2582 static void
dyn_grow_hashtable(struct ip_fw_chain * chain,uint32_t new,int flags)2583 dyn_grow_hashtable(struct ip_fw_chain *chain, uint32_t new, int flags)
2584 {
2585 #ifdef INET6
2586 struct dyn_ipv6ck_slist *ipv6, *ipv6_parent;
2587 uint32_t *ipv6_add, *ipv6_del, *ipv6_parent_add, *ipv6_parent_del;
2588 struct dyn_ipv6_state *s6;
2589 #endif
2590 struct dyn_ipv4ck_slist *ipv4, *ipv4_parent;
2591 uint32_t *ipv4_add, *ipv4_del, *ipv4_parent_add, *ipv4_parent_del;
2592 struct dyn_ipv4_state *s4;
2593 struct mtx *bucket_lock;
2594 void *tmp;
2595 uint32_t bucket;
2596
2597 MPASS(powerof2(new));
2598 DYN_DEBUG("grow hash size %u -> %u", V_curr_dyn_buckets, new);
2599 /*
2600 * Allocate and initialize new lists.
2601 */
2602 bucket_lock = malloc(new * sizeof(struct mtx), M_IPFW,
2603 flags | M_ZERO);
2604 if (bucket_lock == NULL)
2605 return;
2606
2607 ipv4 = ipv4_parent = NULL;
2608 ipv4_add = ipv4_del = ipv4_parent_add = ipv4_parent_del = NULL;
2609 #ifdef INET6
2610 ipv6 = ipv6_parent = NULL;
2611 ipv6_add = ipv6_del = ipv6_parent_add = ipv6_parent_del = NULL;
2612 #endif
2613
2614 ipv4 = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2615 flags | M_ZERO);
2616 if (ipv4 == NULL)
2617 goto bad;
2618 ipv4_parent = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2619 flags | M_ZERO);
2620 if (ipv4_parent == NULL)
2621 goto bad;
2622 ipv4_add = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2623 if (ipv4_add == NULL)
2624 goto bad;
2625 ipv4_del = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2626 if (ipv4_del == NULL)
2627 goto bad;
2628 ipv4_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2629 flags | M_ZERO);
2630 if (ipv4_parent_add == NULL)
2631 goto bad;
2632 ipv4_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2633 flags | M_ZERO);
2634 if (ipv4_parent_del == NULL)
2635 goto bad;
2636 #ifdef INET6
2637 ipv6 = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2638 flags | M_ZERO);
2639 if (ipv6 == NULL)
2640 goto bad;
2641 ipv6_parent = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2642 flags | M_ZERO);
2643 if (ipv6_parent == NULL)
2644 goto bad;
2645 ipv6_add = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2646 if (ipv6_add == NULL)
2647 goto bad;
2648 ipv6_del = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2649 if (ipv6_del == NULL)
2650 goto bad;
2651 ipv6_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2652 flags | M_ZERO);
2653 if (ipv6_parent_add == NULL)
2654 goto bad;
2655 ipv6_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2656 flags | M_ZERO);
2657 if (ipv6_parent_del == NULL)
2658 goto bad;
2659 #endif
2660 for (bucket = 0; bucket < new; bucket++) {
2661 DYN_BUCKET_LOCK_INIT(bucket_lock, bucket);
2662 CK_SLIST_INIT(&ipv4[bucket]);
2663 CK_SLIST_INIT(&ipv4_parent[bucket]);
2664 #ifdef INET6
2665 CK_SLIST_INIT(&ipv6[bucket]);
2666 CK_SLIST_INIT(&ipv6_parent[bucket]);
2667 #endif
2668 }
2669
2670 #define DYN_RELINK_STATES(s, hval, i, head, ohead) do { \
2671 while ((s = CK_SLIST_FIRST(&V_dyn_ ## ohead[i])) != NULL) { \
2672 CK_SLIST_REMOVE_HEAD(&V_dyn_ ## ohead[i], entry); \
2673 CK_SLIST_INSERT_HEAD(&head[DYN_BUCKET(s->hval, new)], \
2674 s, entry); \
2675 } \
2676 } while (0)
2677 /*
2678 * Prevent rules changing from userland.
2679 */
2680 IPFW_UH_WLOCK(chain);
2681 /*
2682 * Hold traffic processing until we finish resize to
2683 * prevent access to states lists.
2684 */
2685 IPFW_WLOCK(chain);
2686 /* Re-link all dynamic states */
2687 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2688 DYN_RELINK_STATES(s4, data->hashval, bucket, ipv4, ipv4);
2689 DYN_RELINK_STATES(s4, limit->hashval, bucket, ipv4_parent,
2690 ipv4_parent);
2691 #ifdef INET6
2692 DYN_RELINK_STATES(s6, data->hashval, bucket, ipv6, ipv6);
2693 DYN_RELINK_STATES(s6, limit->hashval, bucket, ipv6_parent,
2694 ipv6_parent);
2695 #endif
2696 }
2697
2698 #define DYN_SWAP_PTR(old, new, tmp) do { \
2699 tmp = old; \
2700 old = new; \
2701 new = tmp; \
2702 } while (0)
2703 /* Swap pointers */
2704 DYN_SWAP_PTR(V_dyn_bucket_lock, bucket_lock, tmp);
2705 DYN_SWAP_PTR(V_dyn_ipv4, ipv4, tmp);
2706 DYN_SWAP_PTR(V_dyn_ipv4_parent, ipv4_parent, tmp);
2707 DYN_SWAP_PTR(V_dyn_ipv4_add, ipv4_add, tmp);
2708 DYN_SWAP_PTR(V_dyn_ipv4_parent_add, ipv4_parent_add, tmp);
2709 DYN_SWAP_PTR(V_dyn_ipv4_del, ipv4_del, tmp);
2710 DYN_SWAP_PTR(V_dyn_ipv4_parent_del, ipv4_parent_del, tmp);
2711
2712 #ifdef INET6
2713 DYN_SWAP_PTR(V_dyn_ipv6, ipv6, tmp);
2714 DYN_SWAP_PTR(V_dyn_ipv6_parent, ipv6_parent, tmp);
2715 DYN_SWAP_PTR(V_dyn_ipv6_add, ipv6_add, tmp);
2716 DYN_SWAP_PTR(V_dyn_ipv6_parent_add, ipv6_parent_add, tmp);
2717 DYN_SWAP_PTR(V_dyn_ipv6_del, ipv6_del, tmp);
2718 DYN_SWAP_PTR(V_dyn_ipv6_parent_del, ipv6_parent_del, tmp);
2719 #endif
2720 bucket = V_curr_dyn_buckets;
2721 V_curr_dyn_buckets = new;
2722
2723 IPFW_WUNLOCK(chain);
2724 IPFW_UH_WUNLOCK(chain);
2725
2726 /* Release old resources */
2727 while (bucket-- != 0)
2728 DYN_BUCKET_LOCK_DESTROY(bucket_lock, bucket);
2729 bad:
2730 free(bucket_lock, M_IPFW);
2731 free(ipv4, M_IPFW);
2732 free(ipv4_parent, M_IPFW);
2733 free(ipv4_add, M_IPFW);
2734 free(ipv4_parent_add, M_IPFW);
2735 free(ipv4_del, M_IPFW);
2736 free(ipv4_parent_del, M_IPFW);
2737 #ifdef INET6
2738 free(ipv6, M_IPFW);
2739 free(ipv6_parent, M_IPFW);
2740 free(ipv6_add, M_IPFW);
2741 free(ipv6_parent_add, M_IPFW);
2742 free(ipv6_del, M_IPFW);
2743 free(ipv6_parent_del, M_IPFW);
2744 #endif
2745 }
2746
2747 /*
2748 * This function is used to perform various maintenance
2749 * on dynamic hash lists. Currently it is called every second.
2750 */
2751 static void
dyn_tick(void * vnetx)2752 dyn_tick(void *vnetx)
2753 {
2754 struct epoch_tracker et;
2755 uint32_t buckets;
2756
2757 CURVNET_SET((struct vnet *)vnetx);
2758 /*
2759 * First free states unlinked in previous passes.
2760 */
2761 dyn_free_states(&V_layer3_chain);
2762 /*
2763 * Now unlink others expired states.
2764 * We use IPFW_UH_WLOCK to avoid concurrent call of
2765 * dyn_expire_states(). It is the only function that does
2766 * deletion of state entries from states lists.
2767 */
2768 IPFW_UH_WLOCK(&V_layer3_chain);
2769 dyn_expire_states(&V_layer3_chain, NULL);
2770 IPFW_UH_WUNLOCK(&V_layer3_chain);
2771 /*
2772 * Send keepalives if they are enabled and the time has come.
2773 */
2774 if (V_dyn_keepalive != 0 &&
2775 V_dyn_keepalive_last + V_dyn_keepalive_period <= time_uptime) {
2776 V_dyn_keepalive_last = time_uptime;
2777 NET_EPOCH_ENTER(et);
2778 dyn_send_keepalive_ipv4(&V_layer3_chain);
2779 #ifdef INET6
2780 dyn_send_keepalive_ipv6(&V_layer3_chain);
2781 #endif
2782 NET_EPOCH_EXIT(et);
2783 }
2784 /*
2785 * Check if we need to resize the hash:
2786 * if current number of states exceeds number of buckets in hash,
2787 * and dyn_buckets_max permits to grow the number of buckets, then
2788 * do it. Grow hash size to the minimum power of 2 which is bigger
2789 * than current states count.
2790 */
2791 if (V_curr_dyn_buckets < V_dyn_buckets_max &&
2792 (V_curr_dyn_buckets < V_dyn_count / 2 || (
2793 V_curr_dyn_buckets < V_dyn_count && V_curr_max_length > 8))) {
2794 buckets = 1 << fls(V_dyn_count);
2795 if (buckets > V_dyn_buckets_max)
2796 buckets = V_dyn_buckets_max;
2797 dyn_grow_hashtable(&V_layer3_chain, buckets, M_NOWAIT);
2798 }
2799
2800 callout_reset_on(&V_dyn_timeout, hz, dyn_tick, vnetx, 0);
2801 CURVNET_RESTORE();
2802 }
2803
2804 void
ipfw_expire_dyn_states(struct ip_fw_chain * chain,ipfw_range_tlv * rt)2805 ipfw_expire_dyn_states(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
2806 {
2807 /*
2808 * Do not perform any checks if we currently have no dynamic states
2809 */
2810 if (V_dyn_count == 0)
2811 return;
2812
2813 IPFW_UH_WLOCK_ASSERT(chain);
2814 dyn_expire_states(chain, rt);
2815 }
2816
2817 /*
2818 * Pass through all states and reset eaction for orphaned rules.
2819 */
2820 void
ipfw_dyn_reset_eaction(struct ip_fw_chain * ch,uint16_t eaction_id,uint16_t default_id,uint16_t instance_id)2821 ipfw_dyn_reset_eaction(struct ip_fw_chain *ch, uint16_t eaction_id,
2822 uint16_t default_id, uint16_t instance_id)
2823 {
2824 #ifdef INET6
2825 struct dyn_ipv6_state *s6;
2826 #endif
2827 struct dyn_ipv4_state *s4;
2828 struct ip_fw *rule;
2829 uint32_t bucket;
2830
2831 #define DYN_RESET_EACTION(s, h, b) \
2832 CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) { \
2833 if ((s->data->flags & DYN_REFERENCED) == 0) \
2834 continue; \
2835 rule = s->data->parent; \
2836 if (s->type == O_LIMIT) \
2837 rule = ((__typeof(s))rule)->limit->parent; \
2838 ipfw_reset_eaction(ch, rule, eaction_id, \
2839 default_id, instance_id); \
2840 }
2841
2842 IPFW_UH_WLOCK_ASSERT(ch);
2843 if (V_dyn_count == 0)
2844 return;
2845 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2846 DYN_RESET_EACTION(s4, ipv4, bucket);
2847 #ifdef INET6
2848 DYN_RESET_EACTION(s6, ipv6, bucket);
2849 #endif
2850 }
2851 }
2852
2853 /*
2854 * Returns size of dynamic states in legacy format
2855 */
2856 int
ipfw_dyn_len(void)2857 ipfw_dyn_len(void)
2858 {
2859
2860 return ((V_dyn_count + V_dyn_parent_count) * sizeof(ipfw_dyn_rule));
2861 }
2862
2863 /*
2864 * Returns number of dynamic states.
2865 * Marks every named object index used by dynamic states with bit in @bmask.
2866 * Returns number of named objects accounted in bmask via @nocnt.
2867 * Used by dump format v1 (current).
2868 */
2869 uint32_t
ipfw_dyn_get_count(uint32_t * bmask,int * nocnt)2870 ipfw_dyn_get_count(uint32_t *bmask, int *nocnt)
2871 {
2872 #ifdef INET6
2873 struct dyn_ipv6_state *s6;
2874 #endif
2875 struct dyn_ipv4_state *s4;
2876 uint32_t bucket;
2877
2878 #define DYN_COUNT_OBJECTS(s, h, b) \
2879 CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) { \
2880 MPASS(s->kidx != 0); \
2881 if (ipfw_mark_object_kidx(bmask, IPFW_TLV_STATE_NAME, \
2882 s->kidx) != 0) \
2883 (*nocnt)++; \
2884 }
2885
2886 IPFW_UH_RLOCK_ASSERT(&V_layer3_chain);
2887
2888 /* No need to pass through all the buckets. */
2889 *nocnt = 0;
2890 if (V_dyn_count + V_dyn_parent_count == 0)
2891 return (0);
2892
2893 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2894 DYN_COUNT_OBJECTS(s4, ipv4, bucket);
2895 #ifdef INET6
2896 DYN_COUNT_OBJECTS(s6, ipv6, bucket);
2897 #endif
2898 }
2899
2900 return (V_dyn_count + V_dyn_parent_count);
2901 }
2902
2903 /*
2904 * Check if rule contains at least one dynamic opcode.
2905 *
2906 * Returns 1 if such opcode is found, 0 otherwise.
2907 */
2908 int
ipfw_is_dyn_rule(struct ip_fw * rule)2909 ipfw_is_dyn_rule(struct ip_fw *rule)
2910 {
2911 int cmdlen, l;
2912 ipfw_insn *cmd;
2913
2914 l = rule->cmd_len;
2915 cmd = rule->cmd;
2916 cmdlen = 0;
2917 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
2918 cmdlen = F_LEN(cmd);
2919
2920 switch (cmd->opcode) {
2921 case O_LIMIT:
2922 case O_KEEP_STATE:
2923 case O_PROBE_STATE:
2924 case O_CHECK_STATE:
2925 return (1);
2926 }
2927 }
2928
2929 return (0);
2930 }
2931
2932 static void
dyn_export_parent(const struct dyn_parent * p,uint16_t kidx,uint8_t set,ipfw_dyn_rule * dst)2933 dyn_export_parent(const struct dyn_parent *p, uint16_t kidx, uint8_t set,
2934 ipfw_dyn_rule *dst)
2935 {
2936
2937 dst->dyn_type = O_LIMIT_PARENT;
2938 dst->kidx = kidx;
2939 dst->count = (uint16_t)DPARENT_COUNT(p);
2940 dst->expire = TIME_LEQ(p->expire, time_uptime) ? 0:
2941 p->expire - time_uptime;
2942
2943 /* 'rule' is used to pass up the rule number and set */
2944 memcpy(&dst->rule, &p->rulenum, sizeof(p->rulenum));
2945
2946 /* store set number into high word of dst->rule pointer. */
2947 memcpy((char *)&dst->rule + sizeof(p->rulenum), &set, sizeof(set));
2948
2949 /* unused fields */
2950 dst->pcnt = 0;
2951 dst->bcnt = 0;
2952 dst->parent = NULL;
2953 dst->state = 0;
2954 dst->ack_fwd = 0;
2955 dst->ack_rev = 0;
2956 dst->bucket = p->hashval;
2957 /*
2958 * The legacy userland code will interpret a NULL here as a marker
2959 * for the last dynamic rule.
2960 */
2961 dst->next = (ipfw_dyn_rule *)1;
2962 }
2963
2964 static void
dyn_export_data(const struct dyn_data * data,uint16_t kidx,uint8_t type,uint8_t set,ipfw_dyn_rule * dst)2965 dyn_export_data(const struct dyn_data *data, uint16_t kidx, uint8_t type,
2966 uint8_t set, ipfw_dyn_rule *dst)
2967 {
2968
2969 dst->dyn_type = type;
2970 dst->kidx = kidx;
2971 dst->pcnt = data->pcnt_fwd + data->pcnt_rev;
2972 dst->bcnt = data->bcnt_fwd + data->bcnt_rev;
2973 dst->expire = TIME_LEQ(data->expire, time_uptime) ? 0:
2974 data->expire - time_uptime;
2975
2976 /* 'rule' is used to pass up the rule number and set */
2977 memcpy(&dst->rule, &data->rulenum, sizeof(data->rulenum));
2978
2979 /* store set number into high word of dst->rule pointer. */
2980 memcpy((char *)&dst->rule + sizeof(data->rulenum), &set, sizeof(set));
2981
2982 dst->state = data->state;
2983 if (data->flags & DYN_REFERENCED)
2984 dst->state |= IPFW_DYN_ORPHANED;
2985
2986 /* unused fields */
2987 dst->parent = NULL;
2988 dst->ack_fwd = data->ack_fwd;
2989 dst->ack_rev = data->ack_rev;
2990 dst->count = 0;
2991 dst->bucket = data->hashval;
2992 /*
2993 * The legacy userland code will interpret a NULL here as a marker
2994 * for the last dynamic rule.
2995 */
2996 dst->next = (ipfw_dyn_rule *)1;
2997 }
2998
2999 static void
dyn_export_ipv4_state(const struct dyn_ipv4_state * s,ipfw_dyn_rule * dst)3000 dyn_export_ipv4_state(const struct dyn_ipv4_state *s, ipfw_dyn_rule *dst)
3001 {
3002 struct ip_fw *rule;
3003
3004 switch (s->type) {
3005 case O_LIMIT_PARENT:
3006 rule = s->limit->parent;
3007 dyn_export_parent(s->limit, s->kidx, rule->set, dst);
3008 break;
3009 default:
3010 rule = s->data->parent;
3011 if (s->type == O_LIMIT)
3012 rule = ((struct dyn_ipv4_state *)rule)->limit->parent;
3013 dyn_export_data(s->data, s->kidx, s->type, rule->set, dst);
3014 }
3015
3016 dst->id.dst_ip = s->dst;
3017 dst->id.src_ip = s->src;
3018 dst->id.dst_port = s->dport;
3019 dst->id.src_port = s->sport;
3020 dst->id.fib = s->data->fibnum;
3021 dst->id.proto = s->proto;
3022 dst->id._flags = 0;
3023 dst->id.addr_type = 4;
3024
3025 memset(&dst->id.dst_ip6, 0, sizeof(dst->id.dst_ip6));
3026 memset(&dst->id.src_ip6, 0, sizeof(dst->id.src_ip6));
3027 dst->id.flow_id6 = dst->id.extra = 0;
3028 }
3029
3030 #ifdef INET6
3031 static void
dyn_export_ipv6_state(const struct dyn_ipv6_state * s,ipfw_dyn_rule * dst)3032 dyn_export_ipv6_state(const struct dyn_ipv6_state *s, ipfw_dyn_rule *dst)
3033 {
3034 struct ip_fw *rule;
3035
3036 switch (s->type) {
3037 case O_LIMIT_PARENT:
3038 rule = s->limit->parent;
3039 dyn_export_parent(s->limit, s->kidx, rule->set, dst);
3040 break;
3041 default:
3042 rule = s->data->parent;
3043 if (s->type == O_LIMIT)
3044 rule = ((struct dyn_ipv6_state *)rule)->limit->parent;
3045 dyn_export_data(s->data, s->kidx, s->type, rule->set, dst);
3046 }
3047
3048 dst->id.src_ip6 = s->src;
3049 dst->id.dst_ip6 = s->dst;
3050 dst->id.dst_port = s->dport;
3051 dst->id.src_port = s->sport;
3052 dst->id.fib = s->data->fibnum;
3053 dst->id.proto = s->proto;
3054 dst->id._flags = 0;
3055 dst->id.addr_type = 6;
3056
3057 dst->id.dst_ip = dst->id.src_ip = 0;
3058 dst->id.flow_id6 = dst->id.extra = 0;
3059 }
3060 #endif /* INET6 */
3061
3062 /*
3063 * Fills the buffer given by @sd with dynamic states.
3064 * Used by dump format v1 (current).
3065 *
3066 * Returns 0 on success.
3067 */
3068 int
ipfw_dump_states(struct ip_fw_chain * chain,struct sockopt_data * sd)3069 ipfw_dump_states(struct ip_fw_chain *chain, struct sockopt_data *sd)
3070 {
3071 #ifdef INET6
3072 struct dyn_ipv6_state *s6;
3073 #endif
3074 struct dyn_ipv4_state *s4;
3075 ipfw_obj_dyntlv *dst, *last;
3076 ipfw_obj_ctlv *ctlv;
3077 uint32_t bucket;
3078
3079 if (V_dyn_count == 0)
3080 return (0);
3081
3082 /*
3083 * IPFW_UH_RLOCK garantees that another userland request
3084 * and callout thread will not delete entries from states
3085 * lists.
3086 */
3087 IPFW_UH_RLOCK_ASSERT(chain);
3088
3089 ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
3090 if (ctlv == NULL)
3091 return (ENOMEM);
3092 ctlv->head.type = IPFW_TLV_DYNSTATE_LIST;
3093 ctlv->objsize = sizeof(ipfw_obj_dyntlv);
3094 last = NULL;
3095
3096 #define DYN_EXPORT_STATES(s, af, h, b) \
3097 CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) { \
3098 dst = (ipfw_obj_dyntlv *)ipfw_get_sopt_space(sd, \
3099 sizeof(ipfw_obj_dyntlv)); \
3100 if (dst == NULL) \
3101 return (ENOMEM); \
3102 dyn_export_ ## af ## _state(s, &dst->state); \
3103 dst->head.length = sizeof(ipfw_obj_dyntlv); \
3104 dst->head.type = IPFW_TLV_DYN_ENT; \
3105 last = dst; \
3106 }
3107
3108 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3109 DYN_EXPORT_STATES(s4, ipv4, ipv4_parent, bucket);
3110 DYN_EXPORT_STATES(s4, ipv4, ipv4, bucket);
3111 #ifdef INET6
3112 DYN_EXPORT_STATES(s6, ipv6, ipv6_parent, bucket);
3113 DYN_EXPORT_STATES(s6, ipv6, ipv6, bucket);
3114 #endif /* INET6 */
3115 }
3116
3117 /* mark last dynamic rule */
3118 if (last != NULL)
3119 last->head.flags = IPFW_DF_LAST; /* XXX: unused */
3120 return (0);
3121 #undef DYN_EXPORT_STATES
3122 }
3123
3124 /*
3125 * Fill given buffer with dynamic states (legacy format).
3126 * IPFW_UH_RLOCK has to be held while calling.
3127 */
3128 void
ipfw_get_dynamic(struct ip_fw_chain * chain,char ** pbp,const char * ep)3129 ipfw_get_dynamic(struct ip_fw_chain *chain, char **pbp, const char *ep)
3130 {
3131 #ifdef INET6
3132 struct dyn_ipv6_state *s6;
3133 #endif
3134 struct dyn_ipv4_state *s4;
3135 ipfw_dyn_rule *p, *last = NULL;
3136 char *bp;
3137 uint32_t bucket;
3138
3139 if (V_dyn_count == 0)
3140 return;
3141 bp = *pbp;
3142
3143 IPFW_UH_RLOCK_ASSERT(chain);
3144
3145 #define DYN_EXPORT_STATES(s, af, head, b) \
3146 CK_SLIST_FOREACH(s, &V_dyn_ ## head[b], entry) { \
3147 if (bp + sizeof(*p) > ep) \
3148 break; \
3149 p = (ipfw_dyn_rule *)bp; \
3150 dyn_export_ ## af ## _state(s, p); \
3151 last = p; \
3152 bp += sizeof(*p); \
3153 }
3154
3155 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3156 DYN_EXPORT_STATES(s4, ipv4, ipv4_parent, bucket);
3157 DYN_EXPORT_STATES(s4, ipv4, ipv4, bucket);
3158 #ifdef INET6
3159 DYN_EXPORT_STATES(s6, ipv6, ipv6_parent, bucket);
3160 DYN_EXPORT_STATES(s6, ipv6, ipv6, bucket);
3161 #endif /* INET6 */
3162 }
3163
3164 if (last != NULL) /* mark last dynamic rule */
3165 last->next = NULL;
3166 *pbp = bp;
3167 #undef DYN_EXPORT_STATES
3168 }
3169
3170 void
ipfw_dyn_init(struct ip_fw_chain * chain)3171 ipfw_dyn_init(struct ip_fw_chain *chain)
3172 {
3173
3174 #ifdef IPFIREWALL_JENKINSHASH
3175 V_dyn_hashseed = arc4random();
3176 #endif
3177 V_dyn_max = 16384; /* max # of states */
3178 V_dyn_parent_max = 4096; /* max # of parent states */
3179 V_dyn_buckets_max = 8192; /* must be power of 2 */
3180
3181 V_dyn_ack_lifetime = 300;
3182 V_dyn_syn_lifetime = 20;
3183 V_dyn_fin_lifetime = 1;
3184 V_dyn_rst_lifetime = 1;
3185 V_dyn_udp_lifetime = 10;
3186 V_dyn_short_lifetime = 5;
3187
3188 V_dyn_keepalive_interval = 20;
3189 V_dyn_keepalive_period = 5;
3190 V_dyn_keepalive = 1; /* send keepalives */
3191 V_dyn_keepalive_last = time_uptime;
3192
3193 V_dyn_data_zone = uma_zcreate("IPFW dynamic states data",
3194 sizeof(struct dyn_data), NULL, NULL, NULL, NULL,
3195 UMA_ALIGN_PTR, 0);
3196 uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
3197
3198 V_dyn_parent_zone = uma_zcreate("IPFW parent dynamic states",
3199 sizeof(struct dyn_parent), NULL, NULL, NULL, NULL,
3200 UMA_ALIGN_PTR, 0);
3201 uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
3202
3203 SLIST_INIT(&V_dyn_expired_ipv4);
3204 V_dyn_ipv4 = NULL;
3205 V_dyn_ipv4_parent = NULL;
3206 V_dyn_ipv4_zone = uma_zcreate("IPFW IPv4 dynamic states",
3207 sizeof(struct dyn_ipv4_state), NULL, NULL, NULL, NULL,
3208 UMA_ALIGN_PTR, 0);
3209
3210 #ifdef INET6
3211 SLIST_INIT(&V_dyn_expired_ipv6);
3212 V_dyn_ipv6 = NULL;
3213 V_dyn_ipv6_parent = NULL;
3214 V_dyn_ipv6_zone = uma_zcreate("IPFW IPv6 dynamic states",
3215 sizeof(struct dyn_ipv6_state), NULL, NULL, NULL, NULL,
3216 UMA_ALIGN_PTR, 0);
3217 #endif
3218
3219 /* Initialize buckets. */
3220 V_curr_dyn_buckets = 0;
3221 V_dyn_bucket_lock = NULL;
3222 dyn_grow_hashtable(chain, 256, M_WAITOK);
3223
3224 if (IS_DEFAULT_VNET(curvnet))
3225 dyn_hp_cache = malloc(mp_ncpus * sizeof(void *), M_IPFW,
3226 M_WAITOK | M_ZERO);
3227
3228 DYN_EXPIRED_LOCK_INIT();
3229 callout_init(&V_dyn_timeout, 1);
3230 callout_reset(&V_dyn_timeout, hz, dyn_tick, curvnet);
3231 IPFW_ADD_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3232 }
3233
3234 void
ipfw_dyn_uninit(int pass)3235 ipfw_dyn_uninit(int pass)
3236 {
3237 #ifdef INET6
3238 struct dyn_ipv6_state *s6;
3239 #endif
3240 struct dyn_ipv4_state *s4;
3241 int bucket;
3242
3243 if (pass == 0) {
3244 callout_drain(&V_dyn_timeout);
3245 return;
3246 }
3247 IPFW_DEL_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3248 DYN_EXPIRED_LOCK_DESTROY();
3249
3250 #define DYN_FREE_STATES_FORCED(CK, s, af, name, en) do { \
3251 while ((s = CK ## SLIST_FIRST(&V_dyn_ ## name)) != NULL) { \
3252 CK ## SLIST_REMOVE_HEAD(&V_dyn_ ## name, en); \
3253 if (s->type == O_LIMIT_PARENT) \
3254 uma_zfree(V_dyn_parent_zone, s->limit); \
3255 else \
3256 uma_zfree(V_dyn_data_zone, s->data); \
3257 uma_zfree(V_dyn_ ## af ## _zone, s); \
3258 } \
3259 } while (0)
3260 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3261 DYN_BUCKET_LOCK_DESTROY(V_dyn_bucket_lock, bucket);
3262
3263 DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4[bucket], entry);
3264 DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4_parent[bucket],
3265 entry);
3266 #ifdef INET6
3267 DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6[bucket], entry);
3268 DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6_parent[bucket],
3269 entry);
3270 #endif /* INET6 */
3271 }
3272 DYN_FREE_STATES_FORCED(, s4, ipv4, expired_ipv4, expired);
3273 #ifdef INET6
3274 DYN_FREE_STATES_FORCED(, s6, ipv6, expired_ipv6, expired);
3275 #endif
3276 #undef DYN_FREE_STATES_FORCED
3277
3278 uma_zdestroy(V_dyn_ipv4_zone);
3279 uma_zdestroy(V_dyn_data_zone);
3280 uma_zdestroy(V_dyn_parent_zone);
3281 #ifdef INET6
3282 uma_zdestroy(V_dyn_ipv6_zone);
3283 free(V_dyn_ipv6, M_IPFW);
3284 free(V_dyn_ipv6_parent, M_IPFW);
3285 free(V_dyn_ipv6_add, M_IPFW);
3286 free(V_dyn_ipv6_parent_add, M_IPFW);
3287 free(V_dyn_ipv6_del, M_IPFW);
3288 free(V_dyn_ipv6_parent_del, M_IPFW);
3289 #endif
3290 free(V_dyn_bucket_lock, M_IPFW);
3291 free(V_dyn_ipv4, M_IPFW);
3292 free(V_dyn_ipv4_parent, M_IPFW);
3293 free(V_dyn_ipv4_add, M_IPFW);
3294 free(V_dyn_ipv4_parent_add, M_IPFW);
3295 free(V_dyn_ipv4_del, M_IPFW);
3296 free(V_dyn_ipv4_parent_del, M_IPFW);
3297 if (IS_DEFAULT_VNET(curvnet))
3298 free(dyn_hp_cache, M_IPFW);
3299 }
3300