xref: /freebsd/sys/net/vnet.c (revision e453e498cbb88570a3ff7b3679de65c88707da95)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2004-2009 University of Zagreb
5  * Copyright (c) 2006-2009 FreeBSD Foundation
6  * All rights reserved.
7  *
8  * This software was developed by the University of Zagreb and the
9  * FreeBSD Foundation under sponsorship by the Stichting NLnet and the
10  * FreeBSD Foundation.
11  *
12  * Copyright (c) 2009 Jeffrey Roberson <jeff@freebsd.org>
13  * Copyright (c) 2009 Robert N. M. Watson
14  * All rights reserved.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 #include <sys/cdefs.h>
39 #include "opt_ddb.h"
40 #include "opt_kdb.h"
41 
42 #include <sys/param.h>
43 #include <sys/kdb.h>
44 #include <sys/kernel.h>
45 #include <sys/jail.h>
46 #include <sys/sdt.h>
47 #include <sys/stdarg.h>
48 #include <sys/systm.h>
49 #include <sys/sysctl.h>
50 #include <sys/eventhandler.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/proc.h>
54 #include <sys/socket.h>
55 #include <sys/sx.h>
56 #include <sys/sysctl.h>
57 
58 #ifdef DDB
59 #include <ddb/ddb.h>
60 #include <ddb/db_sym.h>
61 #endif
62 
63 #include <net/if.h>
64 #include <net/if_var.h>
65 #include <net/vnet.h>
66 
67 /*-
68  * This file implements core functions for virtual network stacks:
69  *
70  * - Virtual network stack management functions.
71  *
72  * - Virtual network stack memory allocator, which virtualizes global
73  *   variables in the network stack
74  *
75  * - Virtualized SYSINIT's/SYSUNINIT's, which allow network stack subsystems
76  *   to register startup/shutdown events to be run for each virtual network
77  *   stack instance.
78  */
79 
80 FEATURE(vimage, "VIMAGE kernel virtualization");
81 
82 static MALLOC_DEFINE(M_VNET, "vnet", "network stack control block");
83 
84 /*
85  * The virtual network stack list has two read-write locks, one sleepable and
86  * the other not, so that the list can be stablized and walked in a variety
87  * of network stack contexts.  Both must be acquired exclusively to modify
88  * the list, but a read lock of either lock is sufficient to walk the list.
89  */
90 struct rwlock		vnet_rwlock;
91 struct sx		vnet_sxlock;
92 
93 #define	VNET_LIST_WLOCK() do {						\
94 	sx_xlock(&vnet_sxlock);						\
95 	rw_wlock(&vnet_rwlock);						\
96 } while (0)
97 
98 #define	VNET_LIST_WUNLOCK() do {					\
99 	rw_wunlock(&vnet_rwlock);					\
100 	sx_xunlock(&vnet_sxlock);					\
101 } while (0)
102 
103 struct vnet_list_head vnet_head = LIST_HEAD_INITIALIZER(vnet_head);
104 struct vnet *vnet0;
105 
106 /*
107  * The virtual network stack allocator provides storage for virtualized
108  * global variables.  These variables are defined/declared using the
109  * VNET_DEFINE()/VNET_DECLARE() macros, which place them in the 'set_vnet'
110  * linker set.  The details of the implementation are somewhat subtle, but
111  * allow the majority of most network subsystems to maintain
112  * virtualization-agnostic.
113  *
114  * The virtual network stack allocator handles variables in the base kernel
115  * vs. modules in similar but different ways.  In both cases, virtualized
116  * global variables are marked as such by being declared to be part of the
117  * vnet linker set.  These "master" copies of global variables serve two
118  * functions:
119  *
120  * (1) They contain static initialization or "default" values for global
121  *     variables which will be propagated to each virtual network stack
122  *     instance when created.  As with normal global variables, they default
123  *     to zero-filled.
124  *
125  * (2) They act as unique global names by which the variable can be referred
126  *     to, regardless of network stack instance.  The single global symbol
127  *     will be used to calculate the location of a per-virtual instance
128  *     variable at run-time.
129  *
130  * Each virtual network stack instance has a complete copy of each
131  * virtualized global variable, stored in a malloc'd block of memory
132  * referred to by vnet->vnet_data_mem.  Critical to the design is that each
133  * per-instance memory block is laid out identically to the master block so
134  * that the offset of each global variable is the same across all blocks.  To
135  * optimize run-time access, a precalculated 'base' address,
136  * vnet->vnet_data_base, is stored in each vnet, and is the amount that can
137  * be added to the address of a 'master' instance of a variable to get to the
138  * per-vnet instance.
139  *
140  * Virtualized global variables are handled in a similar manner, but as each
141  * module has its own 'set_vnet' linker set, and we want to keep all
142  * virtualized globals togther, we reserve space in the kernel's linker set
143  * for potential module variables using a per-vnet character array,
144  * 'modspace'.  The virtual network stack allocator maintains a free list to
145  * track what space in the array is free (all, initially) and as modules are
146  * linked, allocates portions of the space to specific globals.  The kernel
147  * module linker queries the virtual network stack allocator and will
148  * bind references of the global to the location during linking.  It also
149  * calls into the virtual network stack allocator, once the memory is
150  * initialized, in order to propagate the new static initializations to all
151  * existing virtual network stack instances so that the soon-to-be executing
152  * module will find every network stack instance with proper default values.
153  */
154 
155 /*
156  * Number of bytes of data in the 'set_vnet' linker set, and hence the total
157  * size of all kernel virtualized global variables, and the malloc(9) type
158  * that will be used to allocate it.
159  */
160 #define	VNET_BYTES	(VNET_STOP - VNET_START)
161 
162 static MALLOC_DEFINE(M_VNET_DATA, "vnet_data", "VNET data");
163 
164 /*
165  * VNET_MODMIN is the minimum number of bytes we will reserve for the sum of
166  * global variables across all loaded modules.  As this actually sizes an
167  * array declared as a virtualized global variable in the kernel itself, and
168  * we want the virtualized global variable space to be page-sized, we may
169  * have more space than that in practice.
170  */
171 #define	VNET_MODMIN	(8 * PAGE_SIZE)
172 #define	VNET_SIZE	roundup2(VNET_BYTES, PAGE_SIZE)
173 
174 /*
175  * Space to store virtualized global variables from loadable kernel modules,
176  * and the free list to manage it.
177  */
178 VNET_DEFINE_STATIC(char, modspace[VNET_MODMIN] __aligned(__alignof(void *)));
179 
180 /*
181  * A copy of the initial values of all virtualized global variables.
182  */
183 static uintptr_t vnet_init_var;
184 
185 /*
186  * Global lists of subsystem constructor and destructors for vnets.  They are
187  * registered via VNET_SYSINIT() and VNET_SYSUNINIT().  Both lists are
188  * protected by the vnet_sysinit_sxlock global lock.
189  */
190 static TAILQ_HEAD(vnet_sysinit_head, vnet_sysinit) vnet_constructors =
191 	TAILQ_HEAD_INITIALIZER(vnet_constructors);
192 static TAILQ_HEAD(vnet_sysuninit_head, vnet_sysinit) vnet_destructors =
193 	TAILQ_HEAD_INITIALIZER(vnet_destructors);
194 
195 struct sx		vnet_sysinit_sxlock;
196 
197 #define	VNET_SYSINIT_WLOCK()	sx_xlock(&vnet_sysinit_sxlock);
198 #define	VNET_SYSINIT_WUNLOCK()	sx_xunlock(&vnet_sysinit_sxlock);
199 #define	VNET_SYSINIT_RLOCK()	sx_slock(&vnet_sysinit_sxlock);
200 #define	VNET_SYSINIT_RUNLOCK()	sx_sunlock(&vnet_sysinit_sxlock);
201 
202 struct vnet_data_free {
203 	uintptr_t	vnd_start;
204 	int		vnd_len;
205 	TAILQ_ENTRY(vnet_data_free) vnd_link;
206 };
207 
208 static MALLOC_DEFINE(M_VNET_DATA_FREE, "vnet_data_free",
209     "VNET resource accounting");
210 static TAILQ_HEAD(, vnet_data_free) vnet_data_free_head =
211     TAILQ_HEAD_INITIALIZER(vnet_data_free_head);
212 static struct sx vnet_data_free_lock;
213 
214 SDT_PROVIDER_DEFINE(vnet);
215 SDT_PROBE_DEFINE1(vnet, functions, vnet_alloc, entry, "int");
216 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, alloc, "int",
217     "struct vnet *");
218 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, return,
219     "int", "struct vnet *");
220 SDT_PROBE_DEFINE2(vnet, functions, vnet_destroy, entry,
221     "int", "struct vnet *");
222 SDT_PROBE_DEFINE1(vnet, functions, vnet_destroy, return,
223     "int");
224 
225 /*
226  * Run per-vnet sysinits or sysuninits during vnet creation/destruction.
227  */
228 static void vnet_sysinit(void);
229 static void vnet_sysuninit(void);
230 
231 #ifdef DDB
232 static void db_show_vnet_print_vs(struct vnet_sysinit *, int);
233 #endif
234 
235 /*
236  * Allocate a virtual network stack.
237  */
238 struct vnet *
vnet_alloc(void)239 vnet_alloc(void)
240 {
241 	struct vnet *vnet;
242 
243 	SDT_PROBE1(vnet, functions, vnet_alloc, entry, __LINE__);
244 	vnet = malloc(sizeof(struct vnet), M_VNET, M_WAITOK | M_ZERO);
245 	vnet->vnet_magic_n = VNET_MAGIC_N;
246 	SDT_PROBE2(vnet, functions, vnet_alloc, alloc, __LINE__, vnet);
247 
248 	/*
249 	 * Allocate storage for virtualized global variables and copy in
250 	 * initial values from our 'master' copy.
251 	 */
252 	vnet->vnet_data_mem = malloc(VNET_SIZE, M_VNET_DATA, M_WAITOK);
253 	memcpy(vnet->vnet_data_mem, (void *)VNET_START, VNET_BYTES);
254 
255 	/*
256 	 * All use of vnet-specific data will immediately subtract VNET_START
257 	 * from the base memory pointer, so pre-calculate that now to avoid
258 	 * it on each use.
259 	 */
260 	vnet->vnet_data_base = (uintptr_t)vnet->vnet_data_mem - VNET_START;
261 
262 	/* Initialize / attach vnet module instances. */
263 	CURVNET_SET_QUIET(vnet);
264 	vnet_sysinit();
265 	CURVNET_RESTORE();
266 
267 	VNET_LIST_WLOCK();
268 	LIST_INSERT_HEAD(&vnet_head, vnet, vnet_le);
269 	VNET_LIST_WUNLOCK();
270 
271 	SDT_PROBE2(vnet, functions, vnet_alloc, return, __LINE__, vnet);
272 	return (vnet);
273 }
274 
275 /*
276  * Destroy a virtual network stack.
277  */
278 void
vnet_destroy(struct vnet * vnet)279 vnet_destroy(struct vnet *vnet)
280 {
281 
282 	SDT_PROBE2(vnet, functions, vnet_destroy, entry, __LINE__, vnet);
283 	KASSERT(vnet->vnet_sockcnt == 0,
284 	    ("%s: vnet still has sockets", __func__));
285 
286 	VNET_LIST_WLOCK();
287 	LIST_REMOVE(vnet, vnet_le);
288 	VNET_LIST_WUNLOCK();
289 
290 	/* Signal that VNET is being shutdown. */
291 	vnet->vnet_shutdown = true;
292 
293 	CURVNET_SET_QUIET(vnet);
294 	sx_xlock(&ifnet_detach_sxlock);
295 	vnet_sysuninit();
296 	sx_xunlock(&ifnet_detach_sxlock);
297 	CURVNET_RESTORE();
298 
299 	/*
300 	 * Release storage for the virtual network stack instance.
301 	 */
302 	free(vnet->vnet_data_mem, M_VNET_DATA);
303 	vnet->vnet_data_mem = NULL;
304 	vnet->vnet_data_base = 0;
305 	vnet->vnet_magic_n = 0xdeadbeef;
306 	free(vnet, M_VNET);
307 	SDT_PROBE1(vnet, functions, vnet_destroy, return, __LINE__);
308 }
309 
310 /*
311  * Boot time initialization and allocation of virtual network stacks.
312  */
313 static void
vnet_init_prelink(void * arg __unused)314 vnet_init_prelink(void *arg __unused)
315 {
316 
317 	rw_init(&vnet_rwlock, "vnet_rwlock");
318 	sx_init(&vnet_sxlock, "vnet_sxlock");
319 	sx_init(&vnet_sysinit_sxlock, "vnet_sysinit_sxlock");
320 }
321 SYSINIT(vnet_init_prelink, SI_SUB_VNET_PRELINK, SI_ORDER_FIRST,
322     vnet_init_prelink, NULL);
323 
324 static void
vnet0_init(void * arg __unused)325 vnet0_init(void *arg __unused)
326 {
327 
328 	if (bootverbose)
329 		printf("VIMAGE (virtualized network stack) enabled\n");
330 
331 	/*
332 	 * We MUST clear curvnet in vi_init_done() before going SMP,
333 	 * otherwise CURVNET_SET() macros would scream about unnecessary
334 	 * curvnet recursions.
335 	 */
336 	curvnet = prison0.pr_vnet = vnet0 = vnet_alloc();
337 }
338 SYSINIT(vnet0_init, SI_SUB_VNET, SI_ORDER_FIRST, vnet0_init, NULL);
339 
340 static void
vnet_init_done(void * unused __unused)341 vnet_init_done(void *unused __unused)
342 {
343 
344 	curvnet = NULL;
345 }
346 SYSINIT(vnet_init_done, SI_SUB_VNET_DONE, SI_ORDER_ANY, vnet_init_done,
347     NULL);
348 
349 /*
350  * Once on boot, initialize the modspace freelist to entirely cover modspace.
351  */
352 static void
vnet_data_startup(void * dummy __unused)353 vnet_data_startup(void *dummy __unused)
354 {
355 	struct vnet_data_free *df;
356 
357 	df = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO);
358 	df->vnd_start = (uintptr_t)&VNET_NAME(modspace);
359 	df->vnd_len = VNET_MODMIN;
360 	TAILQ_INSERT_HEAD(&vnet_data_free_head, df, vnd_link);
361 	sx_init(&vnet_data_free_lock, "vnet_data alloc lock");
362 	vnet_init_var = (uintptr_t)malloc(VNET_BYTES, M_VNET_DATA, M_WAITOK);
363 }
364 SYSINIT(vnet_data, SI_SUB_KLD, SI_ORDER_FIRST, vnet_data_startup, NULL);
365 
366 /* Dummy VNET_SYSINIT to make sure we always reach the final end state. */
367 static void
vnet_sysinit_done(void * unused __unused)368 vnet_sysinit_done(void *unused __unused)
369 {
370 
371 	return;
372 }
373 VNET_SYSINIT(vnet_sysinit_done, SI_SUB_VNET_DONE, SI_ORDER_ANY,
374     vnet_sysinit_done, NULL);
375 
376 /*
377  * When a module is loaded and requires storage for a virtualized global
378  * variable, allocate space from the modspace free list.  This interface
379  * should be used only by the kernel linker.
380  */
381 void *
vnet_data_alloc(int size)382 vnet_data_alloc(int size)
383 {
384 	struct vnet_data_free *df;
385 	void *s;
386 
387 	s = NULL;
388 	size = roundup2(size, sizeof(void *));
389 	sx_xlock(&vnet_data_free_lock);
390 	TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) {
391 		if (df->vnd_len < size)
392 			continue;
393 		if (df->vnd_len == size) {
394 			s = (void *)df->vnd_start;
395 			TAILQ_REMOVE(&vnet_data_free_head, df, vnd_link);
396 			free(df, M_VNET_DATA_FREE);
397 			break;
398 		}
399 		s = (void *)df->vnd_start;
400 		df->vnd_len -= size;
401 		df->vnd_start = df->vnd_start + size;
402 		break;
403 	}
404 	sx_xunlock(&vnet_data_free_lock);
405 
406 	return (s);
407 }
408 
409 /*
410  * Free space for a virtualized global variable on module unload.
411  */
412 void
vnet_data_free(void * start_arg,int size)413 vnet_data_free(void *start_arg, int size)
414 {
415 	struct vnet_data_free *df;
416 	struct vnet_data_free *dn;
417 	uintptr_t start;
418 	uintptr_t end;
419 
420 	size = roundup2(size, sizeof(void *));
421 	start = (uintptr_t)start_arg;
422 	end = start + size;
423 	/*
424 	 * Free a region of space and merge it with as many neighbors as
425 	 * possible.  Keeping the list sorted simplifies this operation.
426 	 */
427 	sx_xlock(&vnet_data_free_lock);
428 	TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) {
429 		if (df->vnd_start > end)
430 			break;
431 		/*
432 		 * If we expand at the end of an entry we may have to merge
433 		 * it with the one following it as well.
434 		 */
435 		if (df->vnd_start + df->vnd_len == start) {
436 			df->vnd_len += size;
437 			dn = TAILQ_NEXT(df, vnd_link);
438 			if (df->vnd_start + df->vnd_len == dn->vnd_start) {
439 				df->vnd_len += dn->vnd_len;
440 				TAILQ_REMOVE(&vnet_data_free_head, dn,
441 				    vnd_link);
442 				free(dn, M_VNET_DATA_FREE);
443 			}
444 			sx_xunlock(&vnet_data_free_lock);
445 			return;
446 		}
447 		if (df->vnd_start == end) {
448 			df->vnd_start = start;
449 			df->vnd_len += size;
450 			sx_xunlock(&vnet_data_free_lock);
451 			return;
452 		}
453 	}
454 	dn = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO);
455 	dn->vnd_start = start;
456 	dn->vnd_len = size;
457 	if (df)
458 		TAILQ_INSERT_BEFORE(df, dn, vnd_link);
459 	else
460 		TAILQ_INSERT_TAIL(&vnet_data_free_head, dn, vnd_link);
461 	sx_xunlock(&vnet_data_free_lock);
462 }
463 
464 /*
465  * When a new virtualized global variable has been allocated, propagate its
466  * initial value to each already-allocated virtual network stack instance.
467  */
468 void
vnet_data_copy(void * start,int size)469 vnet_data_copy(void *start, int size)
470 {
471 	struct vnet *vnet;
472 
473 	VNET_LIST_RLOCK();
474 	LIST_FOREACH(vnet, &vnet_head, vnet_le)
475 		memcpy((void *)((uintptr_t)vnet->vnet_data_base +
476 		    (uintptr_t)start), start, size);
477 	VNET_LIST_RUNLOCK();
478 }
479 
480 /*
481  * Save a copy of the initial values of virtualized global variables.
482  */
483 void
vnet_save_init(void * start,size_t size)484 vnet_save_init(void *start, size_t size)
485 {
486 	MPASS(vnet_init_var != 0);
487 	MPASS(VNET_START <= (uintptr_t)start &&
488 	    (uintptr_t)start + size <= VNET_STOP);
489 	memcpy((void *)(vnet_init_var + ((uintptr_t)start - VNET_START)),
490 	    start, size);
491 }
492 
493 /*
494  * Restore the 'master' copies of virtualized global variables to theirs
495  * initial values.
496  */
497 void
vnet_restore_init(void * start,size_t size)498 vnet_restore_init(void *start, size_t size)
499 {
500 	MPASS(vnet_init_var != 0);
501 	MPASS(VNET_START <= (uintptr_t)start &&
502 	    (uintptr_t)start + size <= VNET_STOP);
503 	memcpy(start,
504 	    (void *)(vnet_init_var + ((uintptr_t)start - VNET_START)), size);
505 }
506 
507 /*
508  * Support for special SYSINIT handlers registered via VNET_SYSINIT()
509  * and VNET_SYSUNINIT().
510  */
511 void
vnet_register_sysinit(void * arg)512 vnet_register_sysinit(void *arg)
513 {
514 	struct vnet_sysinit *vs, *vs2;
515 	struct vnet *vnet;
516 
517 	vs = arg;
518 	KASSERT(vs->subsystem > SI_SUB_VNET, ("vnet sysinit too early"));
519 
520 	/* Add the constructor to the global list of vnet constructors. */
521 	VNET_SYSINIT_WLOCK();
522 	TAILQ_FOREACH(vs2, &vnet_constructors, link) {
523 		if (vs2->subsystem > vs->subsystem)
524 			break;
525 		if (vs2->subsystem == vs->subsystem && vs2->order > vs->order)
526 			break;
527 	}
528 	if (vs2 != NULL)
529 		TAILQ_INSERT_BEFORE(vs2, vs, link);
530 	else
531 		TAILQ_INSERT_TAIL(&vnet_constructors, vs, link);
532 
533 	/*
534 	 * Invoke the constructor on all the existing vnets when it is
535 	 * registered.
536 	 */
537 	VNET_LIST_RLOCK();
538 	VNET_FOREACH(vnet) {
539 		CURVNET_SET_QUIET(vnet);
540 		vs->func(vs->arg);
541 		CURVNET_RESTORE();
542 	}
543 	VNET_LIST_RUNLOCK();
544 	VNET_SYSINIT_WUNLOCK();
545 }
546 
547 void
vnet_deregister_sysinit(void * arg)548 vnet_deregister_sysinit(void *arg)
549 {
550 	struct vnet_sysinit *vs;
551 
552 	vs = arg;
553 
554 	/* Remove the constructor from the global list of vnet constructors. */
555 	VNET_SYSINIT_WLOCK();
556 	TAILQ_REMOVE(&vnet_constructors, vs, link);
557 	VNET_SYSINIT_WUNLOCK();
558 }
559 
560 void
vnet_register_sysuninit(void * arg)561 vnet_register_sysuninit(void *arg)
562 {
563 	struct vnet_sysinit *vs, *vs2;
564 
565 	vs = arg;
566 
567 	/* Add the destructor to the global list of vnet destructors. */
568 	VNET_SYSINIT_WLOCK();
569 	TAILQ_FOREACH(vs2, &vnet_destructors, link) {
570 		if (vs2->subsystem > vs->subsystem)
571 			break;
572 		if (vs2->subsystem == vs->subsystem && vs2->order > vs->order)
573 			break;
574 	}
575 	if (vs2 != NULL)
576 		TAILQ_INSERT_BEFORE(vs2, vs, link);
577 	else
578 		TAILQ_INSERT_TAIL(&vnet_destructors, vs, link);
579 	VNET_SYSINIT_WUNLOCK();
580 }
581 
582 void
vnet_deregister_sysuninit(void * arg)583 vnet_deregister_sysuninit(void *arg)
584 {
585 	struct vnet_sysinit *vs;
586 	struct vnet *vnet;
587 
588 	vs = arg;
589 
590 	/*
591 	 * Invoke the destructor on all the existing vnets when it is
592 	 * deregistered.
593 	 */
594 	VNET_SYSINIT_WLOCK();
595 	VNET_LIST_RLOCK();
596 	VNET_FOREACH(vnet) {
597 		CURVNET_SET_QUIET(vnet);
598 		vs->func(vs->arg);
599 		CURVNET_RESTORE();
600 	}
601 
602 	/* Remove the destructor from the global list of vnet destructors. */
603 	TAILQ_REMOVE(&vnet_destructors, vs, link);
604 	VNET_SYSINIT_WUNLOCK();
605 	VNET_LIST_RUNLOCK();
606 }
607 
608 /*
609  * Invoke all registered vnet constructors on the current vnet.  Used during
610  * vnet construction.  The caller is responsible for ensuring the new vnet is
611  * the current vnet and that the vnet_sysinit_sxlock lock is locked.
612  */
613 static void
vnet_sysinit(void)614 vnet_sysinit(void)
615 {
616 	struct vnet_sysinit *vs;
617 
618 	VNET_SYSINIT_RLOCK();
619 	TAILQ_FOREACH(vs, &vnet_constructors, link) {
620 		curvnet->vnet_state = vs->subsystem;
621 		vs->func(vs->arg);
622 	}
623 	VNET_SYSINIT_RUNLOCK();
624 }
625 
626 /*
627  * Invoke all registered vnet destructors on the current vnet.  Used during
628  * vnet destruction.  The caller is responsible for ensuring the dying vnet
629  * the current vnet and that the vnet_sysinit_sxlock lock is locked.
630  */
631 static void
vnet_sysuninit(void)632 vnet_sysuninit(void)
633 {
634 	struct vnet_sysinit *vs;
635 
636 	VNET_SYSINIT_RLOCK();
637 	TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head,
638 	    link) {
639 		curvnet->vnet_state = vs->subsystem;
640 		vs->func(vs->arg);
641 	}
642 	VNET_SYSINIT_RUNLOCK();
643 }
644 
645 /*
646  * EVENTHANDLER(9) extensions.
647  */
648 /*
649  * Invoke the eventhandler function originally registered with the possibly
650  * registered argument for all virtual network stack instances.
651  *
652  * This iterator can only be used for eventhandlers that do not take any
653  * additional arguments, as we do ignore the variadic arguments from the
654  * EVENTHANDLER_INVOKE() call.
655  */
656 void
vnet_global_eventhandler_iterator_func(void * arg,...)657 vnet_global_eventhandler_iterator_func(void *arg, ...)
658 {
659 	VNET_ITERATOR_DECL(vnet_iter);
660 	struct eventhandler_entry_vimage *v_ee;
661 
662 	/*
663 	 * There is a bug here in that we should actually cast things to
664 	 * (struct eventhandler_entry_ ## name *)  but that's not easily
665 	 * possible in here so just re-using the variadic version we
666 	 * defined for the generic vimage case.
667 	 */
668 	v_ee = arg;
669 	VNET_LIST_RLOCK();
670 	VNET_FOREACH(vnet_iter) {
671 		CURVNET_SET(vnet_iter);
672 		((vimage_iterator_func_t)v_ee->func)(v_ee->ee_arg);
673 		CURVNET_RESTORE();
674 	}
675 	VNET_LIST_RUNLOCK();
676 }
677 
678 #ifdef VNET_DEBUG
679 struct vnet_recursion {
680 	SLIST_ENTRY(vnet_recursion)	 vnr_le;
681 	const char			*prev_fn;
682 	const char			*where_fn;
683 	int				 where_line;
684 	struct vnet			*old_vnet;
685 	struct vnet			*new_vnet;
686 };
687 
688 static SLIST_HEAD(, vnet_recursion) vnet_recursions =
689     SLIST_HEAD_INITIALIZER(vnet_recursions);
690 
691 static void
vnet_print_recursion(struct vnet_recursion * vnr,int brief)692 vnet_print_recursion(struct vnet_recursion *vnr, int brief)
693 {
694 
695 	if (!brief)
696 		printf("CURVNET_SET() recursion in ");
697 	printf("%s() line %d, prev in %s()", vnr->where_fn, vnr->where_line,
698 	    vnr->prev_fn);
699 	if (brief)
700 		printf(", ");
701 	else
702 		printf("\n    ");
703 	printf("%p -> %p\n", vnr->old_vnet, vnr->new_vnet);
704 }
705 
706 void
vnet_log_recursion(struct vnet * old_vnet,const char * old_fn,int line)707 vnet_log_recursion(struct vnet *old_vnet, const char *old_fn, int line)
708 {
709 	struct vnet_recursion *vnr;
710 
711 	/* Skip already logged recursion events. */
712 	SLIST_FOREACH(vnr, &vnet_recursions, vnr_le)
713 		if (vnr->prev_fn == old_fn &&
714 		    vnr->where_fn == curthread->td_vnet_lpush &&
715 		    vnr->where_line == line &&
716 		    (vnr->old_vnet == vnr->new_vnet) == (curvnet == old_vnet))
717 			return;
718 
719 	vnr = malloc(sizeof(*vnr), M_VNET, M_NOWAIT | M_ZERO);
720 	if (vnr == NULL)
721 		panic("%s: malloc failed", __func__);
722 	vnr->prev_fn = old_fn;
723 	vnr->where_fn = curthread->td_vnet_lpush;
724 	vnr->where_line = line;
725 	vnr->old_vnet = old_vnet;
726 	vnr->new_vnet = curvnet;
727 
728 	SLIST_INSERT_HEAD(&vnet_recursions, vnr, vnr_le);
729 
730 	vnet_print_recursion(vnr, 0);
731 #ifdef KDB
732 	kdb_backtrace();
733 #endif
734 }
735 #endif /* VNET_DEBUG */
736 
737 /*
738  * DDB(4).
739  */
740 #ifdef DDB
741 static void
db_vnet_print(struct vnet * vnet)742 db_vnet_print(struct vnet *vnet)
743 {
744 
745 	db_printf("vnet            = %p\n", vnet);
746 	db_printf(" vnet_magic_n   = %#08x (%s, orig %#08x)\n",
747 	    vnet->vnet_magic_n,
748 	    (vnet->vnet_magic_n == VNET_MAGIC_N) ?
749 		"ok" : "mismatch", VNET_MAGIC_N);
750 	db_printf(" vnet_ifcnt     = %u\n", vnet->vnet_ifcnt);
751 	db_printf(" vnet_sockcnt   = %u\n", vnet->vnet_sockcnt);
752 	db_printf(" vnet_data_mem  = %p\n", vnet->vnet_data_mem);
753 	db_printf(" vnet_data_base = %#jx\n",
754 	    (uintmax_t)vnet->vnet_data_base);
755 	db_printf(" vnet_state     = %#08x\n", vnet->vnet_state);
756 	db_printf(" vnet_shutdown  = %#03x\n", vnet->vnet_shutdown);
757 	db_printf("\n");
758 }
759 
DB_SHOW_ALL_COMMAND(vnets,db_show_all_vnets)760 DB_SHOW_ALL_COMMAND(vnets, db_show_all_vnets)
761 {
762 	VNET_ITERATOR_DECL(vnet_iter);
763 
764 	VNET_FOREACH(vnet_iter) {
765 		db_vnet_print(vnet_iter);
766 		if (db_pager_quit)
767 			break;
768 	}
769 }
770 
DB_SHOW_COMMAND(vnet,db_show_vnet)771 DB_SHOW_COMMAND(vnet, db_show_vnet)
772 {
773 
774 	if (!have_addr) {
775 		db_printf("usage: show vnet <struct vnet *>\n");
776 		return;
777 	}
778 
779 	db_vnet_print((struct vnet *)addr);
780 }
781 
782 static void
db_show_vnet_print_vs(struct vnet_sysinit * vs,int ddb)783 db_show_vnet_print_vs(struct vnet_sysinit *vs, int ddb)
784 {
785 	const char *vsname, *funcname;
786 	c_db_sym_t sym;
787 	db_expr_t  offset;
788 
789 #define xprint(...) do {						\
790 	if (ddb)							\
791 		db_printf(__VA_ARGS__);					\
792 	else								\
793 		printf(__VA_ARGS__);					\
794 } while (0)
795 
796 	if (vs == NULL) {
797 		xprint("%s: no vnet_sysinit * given\n", __func__);
798 		return;
799 	}
800 
801 	sym = db_search_symbol((vm_offset_t)vs, DB_STGY_ANY, &offset);
802 	db_symbol_values(sym, &vsname, NULL);
803 	sym = db_search_symbol((vm_offset_t)vs->func, DB_STGY_PROC, &offset);
804 	db_symbol_values(sym, &funcname, NULL);
805 	xprint("%s(%p)\n", (vsname != NULL) ? vsname : "", vs);
806 	xprint("  %#08x %#08x\n", vs->subsystem, vs->order);
807 	xprint("  %p(%s)(%p)\n",
808 	    vs->func, (funcname != NULL) ? funcname : "", vs->arg);
809 #undef xprint
810 }
811 
DB_SHOW_COMMAND_FLAGS(vnet_sysinit,db_show_vnet_sysinit,DB_CMD_MEMSAFE)812 DB_SHOW_COMMAND_FLAGS(vnet_sysinit, db_show_vnet_sysinit, DB_CMD_MEMSAFE)
813 {
814 	struct vnet_sysinit *vs;
815 
816 	db_printf("VNET_SYSINIT vs Name(Ptr)\n");
817 	db_printf("  Subsystem  Order\n");
818 	db_printf("  Function(Name)(Arg)\n");
819 	TAILQ_FOREACH(vs, &vnet_constructors, link) {
820 		db_show_vnet_print_vs(vs, 1);
821 		if (db_pager_quit)
822 			break;
823 	}
824 }
825 
DB_SHOW_COMMAND_FLAGS(vnet_sysuninit,db_show_vnet_sysuninit,DB_CMD_MEMSAFE)826 DB_SHOW_COMMAND_FLAGS(vnet_sysuninit, db_show_vnet_sysuninit, DB_CMD_MEMSAFE)
827 {
828 	struct vnet_sysinit *vs;
829 
830 	db_printf("VNET_SYSUNINIT vs Name(Ptr)\n");
831 	db_printf("  Subsystem  Order\n");
832 	db_printf("  Function(Name)(Arg)\n");
833 	TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head,
834 	    link) {
835 		db_show_vnet_print_vs(vs, 1);
836 		if (db_pager_quit)
837 			break;
838 	}
839 }
840 
841 #ifdef VNET_DEBUG
DB_SHOW_COMMAND_FLAGS(vnetrcrs,db_show_vnetrcrs,DB_CMD_MEMSAFE)842 DB_SHOW_COMMAND_FLAGS(vnetrcrs, db_show_vnetrcrs, DB_CMD_MEMSAFE)
843 {
844 	struct vnet_recursion *vnr;
845 
846 	SLIST_FOREACH(vnr, &vnet_recursions, vnr_le)
847 		vnet_print_recursion(vnr, 1);
848 }
849 #endif
850 #endif /* DDB */
851