xref: /freebsd/sys/kern/vfs_vnops.c (revision 473c90ac04cec0abbb414978c53e9c259c9129e8)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
13  * Copyright (c) 2013, 2014 The FreeBSD Foundation
14  *
15  * Portions of this software were developed by Konstantin Belousov
16  * under sponsorship from the FreeBSD Foundation.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  */
42 
43 #include <sys/cdefs.h>
44 #include "opt_hwpmc_hooks.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/disk.h>
49 #include <sys/fail.h>
50 #include <sys/fcntl.h>
51 #include <sys/file.h>
52 #include <sys/kdb.h>
53 #include <sys/ktr.h>
54 #include <sys/stat.h>
55 #include <sys/priv.h>
56 #include <sys/proc.h>
57 #include <sys/limits.h>
58 #include <sys/lock.h>
59 #include <sys/mman.h>
60 #include <sys/mount.h>
61 #include <sys/mutex.h>
62 #include <sys/namei.h>
63 #include <sys/vnode.h>
64 #include <sys/dirent.h>
65 #include <sys/bio.h>
66 #include <sys/buf.h>
67 #include <sys/filio.h>
68 #include <sys/resourcevar.h>
69 #include <sys/rwlock.h>
70 #include <sys/prng.h>
71 #include <sys/sx.h>
72 #include <sys/sleepqueue.h>
73 #include <sys/sysctl.h>
74 #include <sys/ttycom.h>
75 #include <sys/conf.h>
76 #include <sys/syslog.h>
77 #include <sys/unistd.h>
78 #include <sys/user.h>
79 #include <sys/ktrace.h>
80 
81 #include <security/audit/audit.h>
82 #include <security/mac/mac_framework.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_extern.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pager.h>
91 #include <vm/vnode_pager.h>
92 
93 #ifdef HWPMC_HOOKS
94 #include <sys/pmckern.h>
95 #endif
96 
97 static fo_rdwr_t	vn_read;
98 static fo_rdwr_t	vn_write;
99 static fo_rdwr_t	vn_io_fault;
100 static fo_truncate_t	vn_truncate;
101 static fo_ioctl_t	vn_ioctl;
102 static fo_poll_t	vn_poll;
103 static fo_kqfilter_t	vn_kqfilter;
104 static fo_close_t	vn_closefile;
105 static fo_mmap_t	vn_mmap;
106 static fo_fallocate_t	vn_fallocate;
107 static fo_fspacectl_t	vn_fspacectl;
108 
109 struct 	fileops vnops = {
110 	.fo_read = vn_io_fault,
111 	.fo_write = vn_io_fault,
112 	.fo_truncate = vn_truncate,
113 	.fo_ioctl = vn_ioctl,
114 	.fo_poll = vn_poll,
115 	.fo_kqfilter = vn_kqfilter,
116 	.fo_stat = vn_statfile,
117 	.fo_close = vn_closefile,
118 	.fo_chmod = vn_chmod,
119 	.fo_chown = vn_chown,
120 	.fo_sendfile = vn_sendfile,
121 	.fo_seek = vn_seek,
122 	.fo_fill_kinfo = vn_fill_kinfo,
123 	.fo_mmap = vn_mmap,
124 	.fo_fallocate = vn_fallocate,
125 	.fo_fspacectl = vn_fspacectl,
126 	.fo_cmp = vn_cmp,
127 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
128 };
129 
130 const u_int io_hold_cnt = 16;
131 static int vn_io_fault_enable = 1;
132 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RWTUN,
133     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
134 static int vn_io_fault_prefault = 0;
135 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RWTUN,
136     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
137 static int vn_io_pgcache_read_enable = 1;
138 SYSCTL_INT(_debug, OID_AUTO, vn_io_pgcache_read_enable, CTLFLAG_RWTUN,
139     &vn_io_pgcache_read_enable, 0,
140     "Enable copying from page cache for reads, avoiding fs");
141 static u_long vn_io_faults_cnt;
142 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
143     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
144 
145 static int vfs_allow_read_dir = 0;
146 SYSCTL_INT(_security_bsd, OID_AUTO, allow_read_dir, CTLFLAG_RW,
147     &vfs_allow_read_dir, 0,
148     "Enable read(2) of directory by root for filesystems that support it");
149 
150 /*
151  * Returns true if vn_io_fault mode of handling the i/o request should
152  * be used.
153  */
154 static bool
do_vn_io_fault(struct vnode * vp,struct uio * uio)155 do_vn_io_fault(struct vnode *vp, struct uio *uio)
156 {
157 	struct mount *mp;
158 
159 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
160 	    (mp = vp->v_mount) != NULL &&
161 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
162 }
163 
164 /*
165  * Structure used to pass arguments to vn_io_fault1(), to do either
166  * file- or vnode-based I/O calls.
167  */
168 struct vn_io_fault_args {
169 	enum {
170 		VN_IO_FAULT_FOP,
171 		VN_IO_FAULT_VOP
172 	} kind;
173 	struct ucred *cred;
174 	int flags;
175 	union {
176 		struct fop_args_tag {
177 			struct file *fp;
178 			fo_rdwr_t *doio;
179 		} fop_args;
180 		struct vop_args_tag {
181 			struct vnode *vp;
182 		} vop_args;
183 	} args;
184 };
185 
186 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
187     struct vn_io_fault_args *args, struct thread *td);
188 
189 int
vn_open(struct nameidata * ndp,int * flagp,int cmode,struct file * fp)190 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
191 {
192 	struct thread *td = curthread;
193 
194 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
195 }
196 
197 static uint64_t
open2nameif(int fmode,u_int vn_open_flags)198 open2nameif(int fmode, u_int vn_open_flags)
199 {
200 	uint64_t res;
201 
202 	res = ISOPEN | LOCKLEAF;
203 	if ((fmode & O_RESOLVE_BENEATH) != 0)
204 		res |= RBENEATH;
205 	if ((fmode & O_EMPTY_PATH) != 0)
206 		res |= EMPTYPATH;
207 	if ((fmode & FREAD) != 0)
208 		res |= OPENREAD;
209 	if ((fmode & FWRITE) != 0)
210 		res |= OPENWRITE;
211 	if ((vn_open_flags & VN_OPEN_NOAUDIT) == 0)
212 		res |= AUDITVNODE1;
213 	if ((vn_open_flags & VN_OPEN_NOCAPCHECK) != 0)
214 		res |= NOCAPCHECK;
215 	if ((vn_open_flags & VN_OPEN_WANTIOCTLCAPS) != 0)
216 		res |= WANTIOCTLCAPS;
217 	return (res);
218 }
219 
220 /*
221  * Common code for vnode open operations via a name lookup.
222  * Lookup the vnode and invoke VOP_CREATE if needed.
223  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
224  *
225  * Note that this does NOT free nameidata for the successful case,
226  * due to the NDINIT being done elsewhere.
227  */
228 int
vn_open_cred(struct nameidata * ndp,int * flagp,int cmode,u_int vn_open_flags,struct ucred * cred,struct file * fp)229 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
230     struct ucred *cred, struct file *fp)
231 {
232 	struct vnode *vp;
233 	struct mount *mp;
234 	struct vattr vat;
235 	struct vattr *vap = &vat;
236 	int fmode, error;
237 	bool first_open;
238 
239 restart:
240 	first_open = false;
241 	fmode = *flagp;
242 	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
243 	    O_EXCL | O_DIRECTORY) ||
244 	    (fmode & (O_CREAT | O_EMPTY_PATH)) == (O_CREAT | O_EMPTY_PATH))
245 		return (EINVAL);
246 	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
247 		ndp->ni_cnd.cn_nameiop = CREATE;
248 		ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
249 		/*
250 		 * Set NOCACHE to avoid flushing the cache when
251 		 * rolling in many files at once.
252 		 *
253 		 * Set NC_KEEPPOSENTRY to keep positive entries if they already
254 		 * exist despite NOCACHE.
255 		 */
256 		ndp->ni_cnd.cn_flags |= LOCKPARENT | NOCACHE | NC_KEEPPOSENTRY;
257 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
258 			ndp->ni_cnd.cn_flags |= FOLLOW;
259 		if ((vn_open_flags & VN_OPEN_INVFS) == 0)
260 			bwillwrite();
261 		if ((error = namei(ndp)) != 0)
262 			return (error);
263 		if (ndp->ni_vp == NULL) {
264 			VATTR_NULL(vap);
265 			vap->va_type = VREG;
266 			vap->va_mode = cmode;
267 			if (fmode & O_EXCL)
268 				vap->va_vaflags |= VA_EXCLUSIVE;
269 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
270 				NDFREE_PNBUF(ndp);
271 				vput(ndp->ni_dvp);
272 				if ((error = vn_start_write(NULL, &mp,
273 				    V_XSLEEP | V_PCATCH)) != 0)
274 					return (error);
275 				NDREINIT(ndp);
276 				goto restart;
277 			}
278 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
279 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
280 #ifdef MAC
281 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
282 			    &ndp->ni_cnd, vap);
283 			if (error == 0)
284 #endif
285 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
286 				    &ndp->ni_cnd, vap);
287 			vp = ndp->ni_vp;
288 			if (error == 0 && (fmode & O_EXCL) != 0 &&
289 			    (fmode & (O_EXLOCK | O_SHLOCK)) != 0) {
290 				VI_LOCK(vp);
291 				vp->v_iflag |= VI_FOPENING;
292 				VI_UNLOCK(vp);
293 				first_open = true;
294 			}
295 			VOP_VPUT_PAIR(ndp->ni_dvp, error == 0 ? &vp : NULL,
296 			    false);
297 			vn_finished_write(mp);
298 			if (error) {
299 				NDFREE_PNBUF(ndp);
300 				if (error == ERELOOKUP) {
301 					NDREINIT(ndp);
302 					goto restart;
303 				}
304 				return (error);
305 			}
306 			fmode &= ~O_TRUNC;
307 		} else {
308 			if (ndp->ni_dvp == ndp->ni_vp)
309 				vrele(ndp->ni_dvp);
310 			else
311 				vput(ndp->ni_dvp);
312 			ndp->ni_dvp = NULL;
313 			vp = ndp->ni_vp;
314 			if (fmode & O_EXCL) {
315 				error = EEXIST;
316 				goto bad;
317 			}
318 			if (vp->v_type == VDIR) {
319 				error = EISDIR;
320 				goto bad;
321 			}
322 			fmode &= ~O_CREAT;
323 		}
324 	} else {
325 		ndp->ni_cnd.cn_nameiop = LOOKUP;
326 		ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
327 		ndp->ni_cnd.cn_flags |= (fmode & O_NOFOLLOW) != 0 ? NOFOLLOW :
328 		    FOLLOW;
329 		if ((fmode & FWRITE) == 0)
330 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
331 		if ((error = namei(ndp)) != 0)
332 			return (error);
333 		vp = ndp->ni_vp;
334 	}
335 	error = vn_open_vnode(vp, fmode, cred, curthread, fp);
336 	if (first_open) {
337 		VI_LOCK(vp);
338 		vp->v_iflag &= ~VI_FOPENING;
339 		wakeup(vp);
340 		VI_UNLOCK(vp);
341 	}
342 	if (error)
343 		goto bad;
344 	*flagp = fmode;
345 	return (0);
346 bad:
347 	NDFREE_PNBUF(ndp);
348 	vput(vp);
349 	*flagp = fmode;
350 	ndp->ni_vp = NULL;
351 	return (error);
352 }
353 
354 static int
vn_open_vnode_advlock(struct vnode * vp,int fmode,struct file * fp)355 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp)
356 {
357 	struct flock lf;
358 	int error, lock_flags, type;
359 
360 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock");
361 	if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0)
362 		return (0);
363 	KASSERT(fp != NULL, ("open with flock requires fp"));
364 	if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE)
365 		return (EOPNOTSUPP);
366 
367 	lock_flags = VOP_ISLOCKED(vp);
368 	VOP_UNLOCK(vp);
369 
370 	lf.l_whence = SEEK_SET;
371 	lf.l_start = 0;
372 	lf.l_len = 0;
373 	lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK;
374 	type = F_FLOCK;
375 	if ((fmode & FNONBLOCK) == 0)
376 		type |= F_WAIT;
377 	if ((fmode & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
378 		type |= F_FIRSTOPEN;
379 	error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
380 	if (error == 0)
381 		fp->f_flag |= FHASLOCK;
382 
383 	vn_lock(vp, lock_flags | LK_RETRY);
384 	return (error);
385 }
386 
387 /*
388  * Common code for vnode open operations once a vnode is located.
389  * Check permissions, and call the VOP_OPEN routine.
390  */
391 int
vn_open_vnode(struct vnode * vp,int fmode,struct ucred * cred,struct thread * td,struct file * fp)392 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
393     struct thread *td, struct file *fp)
394 {
395 	accmode_t accmode;
396 	int error;
397 
398 	if (vp->v_type == VLNK) {
399 		if ((fmode & O_PATH) == 0 || (fmode & FEXEC) != 0)
400 			return (EMLINK);
401 	}
402 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
403 		return (ENOTDIR);
404 
405 	accmode = 0;
406 	if ((fmode & O_PATH) == 0) {
407 		if (vp->v_type == VSOCK)
408 			return (EOPNOTSUPP);
409 		if ((fmode & (FWRITE | O_TRUNC)) != 0) {
410 			if (vp->v_type == VDIR)
411 				return (EISDIR);
412 			accmode |= VWRITE;
413 		}
414 		if ((fmode & FREAD) != 0)
415 			accmode |= VREAD;
416 		if ((fmode & O_APPEND) && (fmode & FWRITE))
417 			accmode |= VAPPEND;
418 #ifdef MAC
419 		if ((fmode & O_CREAT) != 0)
420 			accmode |= VCREAT;
421 #endif
422 	}
423 	if ((fmode & FEXEC) != 0)
424 		accmode |= VEXEC;
425 #ifdef MAC
426 	if ((fmode & O_VERIFY) != 0)
427 		accmode |= VVERIFY;
428 	error = mac_vnode_check_open(cred, vp, accmode);
429 	if (error != 0)
430 		return (error);
431 
432 	accmode &= ~(VCREAT | VVERIFY);
433 #endif
434 	if ((fmode & O_CREAT) == 0 && accmode != 0) {
435 		error = VOP_ACCESS(vp, accmode, cred, td);
436 		if (error != 0)
437 			return (error);
438 	}
439 	if ((fmode & O_PATH) != 0) {
440 		if (vp->v_type != VFIFO && vp->v_type != VSOCK &&
441 		    VOP_ACCESS(vp, VREAD, cred, td) == 0)
442 			fp->f_flag |= FKQALLOWED;
443 		return (0);
444 	}
445 
446 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
447 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
448 	error = VOP_OPEN(vp, fmode, cred, td, fp);
449 	if (error != 0)
450 		return (error);
451 
452 	error = vn_open_vnode_advlock(vp, fmode, fp);
453 	if (error == 0 && (fmode & FWRITE) != 0) {
454 		error = VOP_ADD_WRITECOUNT(vp, 1);
455 		if (error == 0) {
456 			CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
457 			     __func__, vp, vp->v_writecount);
458 		}
459 	}
460 
461 	/*
462 	 * Error from advlock or VOP_ADD_WRITECOUNT() still requires
463 	 * calling VOP_CLOSE() to pair with earlier VOP_OPEN().
464 	 */
465 	if (error != 0) {
466 		if (fp != NULL) {
467 			/*
468 			 * Arrange the call by having fdrop() to use
469 			 * vn_closefile().  This is to satisfy
470 			 * filesystems like devfs or tmpfs, which
471 			 * override fo_close().
472 			 */
473 			fp->f_flag |= FOPENFAILED;
474 			fp->f_vnode = vp;
475 			if (fp->f_ops == &badfileops) {
476 				fp->f_type = DTYPE_VNODE;
477 				fp->f_ops = &vnops;
478 			}
479 			vref(vp);
480 		} else {
481 			/*
482 			 * If there is no fp, due to kernel-mode open,
483 			 * we can call VOP_CLOSE() now.
484 			 */
485 			if ((vp->v_type == VFIFO ||
486 			    !MNT_EXTENDED_SHARED(vp->v_mount)) &&
487 			    VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
488 				vn_lock(vp, LK_UPGRADE | LK_RETRY);
489 			(void)VOP_CLOSE(vp, fmode & (FREAD | FWRITE | FEXEC),
490 			    cred, td);
491 		}
492 	}
493 
494 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
495 	return (error);
496 
497 }
498 
499 /*
500  * Check for write permissions on the specified vnode.
501  * Prototype text segments cannot be written.
502  * It is racy.
503  */
504 int
vn_writechk(struct vnode * vp)505 vn_writechk(struct vnode *vp)
506 {
507 
508 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
509 	/*
510 	 * If there's shared text associated with
511 	 * the vnode, try to free it up once.  If
512 	 * we fail, we can't allow writing.
513 	 */
514 	if (VOP_IS_TEXT(vp))
515 		return (ETXTBSY);
516 
517 	return (0);
518 }
519 
520 /*
521  * Vnode close call
522  */
523 static int
vn_close1(struct vnode * vp,int flags,struct ucred * file_cred,struct thread * td,bool keep_ref)524 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
525     struct thread *td, bool keep_ref)
526 {
527 	struct mount *mp;
528 	int error, lock_flags;
529 
530 	lock_flags = vp->v_type != VFIFO && MNT_EXTENDED_SHARED(vp->v_mount) ?
531 	    LK_SHARED : LK_EXCLUSIVE;
532 
533 	vn_start_write(vp, &mp, V_WAIT);
534 	vn_lock(vp, lock_flags | LK_RETRY);
535 	AUDIT_ARG_VNODE1(vp);
536 	if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
537 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
538 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
539 		    __func__, vp, vp->v_writecount);
540 	}
541 	error = VOP_CLOSE(vp, flags, file_cred, td);
542 	if (keep_ref)
543 		VOP_UNLOCK(vp);
544 	else
545 		vput(vp);
546 	vn_finished_write(mp);
547 	return (error);
548 }
549 
550 int
vn_close(struct vnode * vp,int flags,struct ucred * file_cred,struct thread * td)551 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
552     struct thread *td)
553 {
554 
555 	return (vn_close1(vp, flags, file_cred, td, false));
556 }
557 
558 /*
559  * Heuristic to detect sequential operation.
560  */
561 static int
sequential_heuristic(struct uio * uio,struct file * fp)562 sequential_heuristic(struct uio *uio, struct file *fp)
563 {
564 	enum uio_rw rw;
565 
566 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
567 
568 	rw = uio->uio_rw;
569 	if (fp->f_flag & FRDAHEAD)
570 		return (fp->f_seqcount[rw] << IO_SEQSHIFT);
571 
572 	/*
573 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
574 	 * that the first I/O is normally considered to be slightly
575 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
576 	 * unless previous seeks have reduced f_seqcount to 0, in which
577 	 * case offset 0 is not special.
578 	 */
579 	if ((uio->uio_offset == 0 && fp->f_seqcount[rw] > 0) ||
580 	    uio->uio_offset == fp->f_nextoff[rw]) {
581 		/*
582 		 * f_seqcount is in units of fixed-size blocks so that it
583 		 * depends mainly on the amount of sequential I/O and not
584 		 * much on the number of sequential I/O's.  The fixed size
585 		 * of 16384 is hard-coded here since it is (not quite) just
586 		 * a magic size that works well here.  This size is more
587 		 * closely related to the best I/O size for real disks than
588 		 * to any block size used by software.
589 		 */
590 		if (uio->uio_resid >= IO_SEQMAX * 16384)
591 			fp->f_seqcount[rw] = IO_SEQMAX;
592 		else {
593 			fp->f_seqcount[rw] += howmany(uio->uio_resid, 16384);
594 			if (fp->f_seqcount[rw] > IO_SEQMAX)
595 				fp->f_seqcount[rw] = IO_SEQMAX;
596 		}
597 		return (fp->f_seqcount[rw] << IO_SEQSHIFT);
598 	}
599 
600 	/* Not sequential.  Quickly draw-down sequentiality. */
601 	if (fp->f_seqcount[rw] > 1)
602 		fp->f_seqcount[rw] = 1;
603 	else
604 		fp->f_seqcount[rw] = 0;
605 	return (0);
606 }
607 
608 /*
609  * Package up an I/O request on a vnode into a uio and do it.
610  */
611 int
vn_rdwr(enum uio_rw rw,struct vnode * vp,void * base,int len,off_t offset,enum uio_seg segflg,int ioflg,struct ucred * active_cred,struct ucred * file_cred,ssize_t * aresid,struct thread * td)612 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
613     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
614     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
615 {
616 	struct uio auio;
617 	struct iovec aiov;
618 	struct mount *mp;
619 	struct ucred *cred;
620 	void *rl_cookie;
621 	struct vn_io_fault_args args;
622 	int error, lock_flags;
623 
624 	if (offset < 0 && vp->v_type != VCHR)
625 		return (EINVAL);
626 	auio.uio_iov = &aiov;
627 	auio.uio_iovcnt = 1;
628 	aiov.iov_base = base;
629 	aiov.iov_len = len;
630 	auio.uio_resid = len;
631 	auio.uio_offset = offset;
632 	auio.uio_segflg = segflg;
633 	auio.uio_rw = rw;
634 	auio.uio_td = td;
635 	error = 0;
636 
637 	if ((ioflg & IO_NODELOCKED) == 0) {
638 		if ((ioflg & IO_RANGELOCKED) == 0) {
639 			if (rw == UIO_READ) {
640 				rl_cookie = vn_rangelock_rlock(vp, offset,
641 				    offset + len);
642 			} else if ((ioflg & IO_APPEND) != 0) {
643 				rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
644 			} else {
645 				rl_cookie = vn_rangelock_wlock(vp, offset,
646 				    offset + len);
647 			}
648 		} else
649 			rl_cookie = NULL;
650 		mp = NULL;
651 		if (rw == UIO_WRITE) {
652 			if (vp->v_type != VCHR &&
653 			    (error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH))
654 			    != 0)
655 				goto out;
656 			lock_flags = vn_lktype_write(mp, vp);
657 		} else
658 			lock_flags = LK_SHARED;
659 		vn_lock(vp, lock_flags | LK_RETRY);
660 	} else
661 		rl_cookie = NULL;
662 
663 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
664 #ifdef MAC
665 	if ((ioflg & IO_NOMACCHECK) == 0) {
666 		if (rw == UIO_READ)
667 			error = mac_vnode_check_read(active_cred, file_cred,
668 			    vp);
669 		else
670 			error = mac_vnode_check_write(active_cred, file_cred,
671 			    vp);
672 	}
673 #endif
674 	if (error == 0) {
675 		if (file_cred != NULL)
676 			cred = file_cred;
677 		else
678 			cred = active_cred;
679 		if (do_vn_io_fault(vp, &auio)) {
680 			args.kind = VN_IO_FAULT_VOP;
681 			args.cred = cred;
682 			args.flags = ioflg;
683 			args.args.vop_args.vp = vp;
684 			error = vn_io_fault1(vp, &auio, &args, td);
685 		} else if (rw == UIO_READ) {
686 			error = VOP_READ(vp, &auio, ioflg, cred);
687 		} else /* if (rw == UIO_WRITE) */ {
688 			error = VOP_WRITE(vp, &auio, ioflg, cred);
689 		}
690 	}
691 	if (aresid)
692 		*aresid = auio.uio_resid;
693 	else
694 		if (auio.uio_resid && error == 0)
695 			error = EIO;
696 	if ((ioflg & IO_NODELOCKED) == 0) {
697 		VOP_UNLOCK(vp);
698 		if (mp != NULL)
699 			vn_finished_write(mp);
700 	}
701  out:
702 	if (rl_cookie != NULL)
703 		vn_rangelock_unlock(vp, rl_cookie);
704 	return (error);
705 }
706 
707 /*
708  * Package up an I/O request on a vnode into a uio and do it.  The I/O
709  * request is split up into smaller chunks and we try to avoid saturating
710  * the buffer cache while potentially holding a vnode locked, so we
711  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
712  * to give other processes a chance to lock the vnode (either other processes
713  * core'ing the same binary, or unrelated processes scanning the directory).
714  */
715 int
vn_rdwr_inchunks(enum uio_rw rw,struct vnode * vp,void * base,size_t len,off_t offset,enum uio_seg segflg,int ioflg,struct ucred * active_cred,struct ucred * file_cred,size_t * aresid,struct thread * td)716 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
717     off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
718     struct ucred *file_cred, size_t *aresid, struct thread *td)
719 {
720 	int error = 0;
721 	ssize_t iaresid;
722 
723 	do {
724 		int chunk;
725 
726 		/*
727 		 * Force `offset' to a multiple of MAXBSIZE except possibly
728 		 * for the first chunk, so that filesystems only need to
729 		 * write full blocks except possibly for the first and last
730 		 * chunks.
731 		 */
732 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
733 
734 		if (chunk > len)
735 			chunk = len;
736 		if (rw != UIO_READ && vp->v_type == VREG)
737 			bwillwrite();
738 		iaresid = 0;
739 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
740 		    ioflg, active_cred, file_cred, &iaresid, td);
741 		len -= chunk;	/* aresid calc already includes length */
742 		if (error)
743 			break;
744 		offset += chunk;
745 		base = (char *)base + chunk;
746 		kern_yield(PRI_USER);
747 	} while (len);
748 	if (aresid)
749 		*aresid = len + iaresid;
750 	return (error);
751 }
752 
753 #if OFF_MAX <= LONG_MAX
754 off_t
foffset_lock(struct file * fp,int flags)755 foffset_lock(struct file *fp, int flags)
756 {
757 	volatile short *flagsp;
758 	off_t res;
759 	short state;
760 
761 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
762 
763 	if ((flags & FOF_NOLOCK) != 0)
764 		return (atomic_load_long(&fp->f_offset));
765 
766 	/*
767 	 * According to McKusick the vn lock was protecting f_offset here.
768 	 * It is now protected by the FOFFSET_LOCKED flag.
769 	 */
770 	flagsp = &fp->f_vnread_flags;
771 	if (atomic_cmpset_acq_16(flagsp, 0, FOFFSET_LOCKED))
772 		return (atomic_load_long(&fp->f_offset));
773 
774 	sleepq_lock(&fp->f_vnread_flags);
775 	state = atomic_load_16(flagsp);
776 	for (;;) {
777 		if ((state & FOFFSET_LOCKED) == 0) {
778 			if (!atomic_fcmpset_acq_16(flagsp, &state,
779 			    FOFFSET_LOCKED))
780 				continue;
781 			break;
782 		}
783 		if ((state & FOFFSET_LOCK_WAITING) == 0) {
784 			if (!atomic_fcmpset_acq_16(flagsp, &state,
785 			    state | FOFFSET_LOCK_WAITING))
786 				continue;
787 		}
788 		DROP_GIANT();
789 		sleepq_add(&fp->f_vnread_flags, NULL, "vofflock", 0, 0);
790 		sleepq_wait(&fp->f_vnread_flags, PUSER -1);
791 		PICKUP_GIANT();
792 		sleepq_lock(&fp->f_vnread_flags);
793 		state = atomic_load_16(flagsp);
794 	}
795 	res = atomic_load_long(&fp->f_offset);
796 	sleepq_release(&fp->f_vnread_flags);
797 	return (res);
798 }
799 
800 void
foffset_unlock(struct file * fp,off_t val,int flags)801 foffset_unlock(struct file *fp, off_t val, int flags)
802 {
803 	volatile short *flagsp;
804 	short state;
805 
806 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
807 
808 	if ((flags & FOF_NOUPDATE) == 0)
809 		atomic_store_long(&fp->f_offset, val);
810 	if ((flags & FOF_NEXTOFF_R) != 0)
811 		fp->f_nextoff[UIO_READ] = val;
812 	if ((flags & FOF_NEXTOFF_W) != 0)
813 		fp->f_nextoff[UIO_WRITE] = val;
814 
815 	if ((flags & FOF_NOLOCK) != 0)
816 		return;
817 
818 	flagsp = &fp->f_vnread_flags;
819 	state = atomic_load_16(flagsp);
820 	if ((state & FOFFSET_LOCK_WAITING) == 0 &&
821 	    atomic_cmpset_rel_16(flagsp, state, 0))
822 		return;
823 
824 	sleepq_lock(&fp->f_vnread_flags);
825 	MPASS((fp->f_vnread_flags & FOFFSET_LOCKED) != 0);
826 	MPASS((fp->f_vnread_flags & FOFFSET_LOCK_WAITING) != 0);
827 	fp->f_vnread_flags = 0;
828 	sleepq_broadcast(&fp->f_vnread_flags, SLEEPQ_SLEEP, 0, 0);
829 	sleepq_release(&fp->f_vnread_flags);
830 }
831 
832 static off_t
foffset_read(struct file * fp)833 foffset_read(struct file *fp)
834 {
835 
836 	return (atomic_load_long(&fp->f_offset));
837 }
838 #else
839 off_t
foffset_lock(struct file * fp,int flags)840 foffset_lock(struct file *fp, int flags)
841 {
842 	struct mtx *mtxp;
843 	off_t res;
844 
845 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
846 
847 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
848 	mtx_lock(mtxp);
849 	if ((flags & FOF_NOLOCK) == 0) {
850 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
851 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
852 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
853 			    "vofflock", 0);
854 		}
855 		fp->f_vnread_flags |= FOFFSET_LOCKED;
856 	}
857 	res = fp->f_offset;
858 	mtx_unlock(mtxp);
859 	return (res);
860 }
861 
862 void
foffset_unlock(struct file * fp,off_t val,int flags)863 foffset_unlock(struct file *fp, off_t val, int flags)
864 {
865 	struct mtx *mtxp;
866 
867 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
868 
869 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
870 	mtx_lock(mtxp);
871 	if ((flags & FOF_NOUPDATE) == 0)
872 		fp->f_offset = val;
873 	if ((flags & FOF_NEXTOFF_R) != 0)
874 		fp->f_nextoff[UIO_READ] = val;
875 	if ((flags & FOF_NEXTOFF_W) != 0)
876 		fp->f_nextoff[UIO_WRITE] = val;
877 	if ((flags & FOF_NOLOCK) == 0) {
878 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
879 		    ("Lost FOFFSET_LOCKED"));
880 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
881 			wakeup(&fp->f_vnread_flags);
882 		fp->f_vnread_flags = 0;
883 	}
884 	mtx_unlock(mtxp);
885 }
886 
887 static off_t
foffset_read(struct file * fp)888 foffset_read(struct file *fp)
889 {
890 
891 	return (foffset_lock(fp, FOF_NOLOCK));
892 }
893 #endif
894 
895 void
foffset_lock_uio(struct file * fp,struct uio * uio,int flags)896 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
897 {
898 
899 	if ((flags & FOF_OFFSET) == 0)
900 		uio->uio_offset = foffset_lock(fp, flags);
901 }
902 
903 void
foffset_unlock_uio(struct file * fp,struct uio * uio,int flags)904 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
905 {
906 
907 	if ((flags & FOF_OFFSET) == 0)
908 		foffset_unlock(fp, uio->uio_offset, flags);
909 }
910 
911 static int
get_advice(struct file * fp,struct uio * uio)912 get_advice(struct file *fp, struct uio *uio)
913 {
914 	struct mtx *mtxp;
915 	int ret;
916 
917 	ret = POSIX_FADV_NORMAL;
918 	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
919 		return (ret);
920 
921 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
922 	mtx_lock(mtxp);
923 	if (fp->f_advice != NULL &&
924 	    uio->uio_offset >= fp->f_advice->fa_start &&
925 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
926 		ret = fp->f_advice->fa_advice;
927 	mtx_unlock(mtxp);
928 	return (ret);
929 }
930 
931 static int
get_write_ioflag(struct file * fp)932 get_write_ioflag(struct file *fp)
933 {
934 	int ioflag;
935 	struct mount *mp;
936 	struct vnode *vp;
937 
938 	ioflag = 0;
939 	vp = fp->f_vnode;
940 	mp = atomic_load_ptr(&vp->v_mount);
941 
942 	if ((fp->f_flag & O_DIRECT) != 0)
943 		ioflag |= IO_DIRECT;
944 
945 	if ((fp->f_flag & O_FSYNC) != 0 ||
946 	    (mp != NULL && (mp->mnt_flag & MNT_SYNCHRONOUS) != 0))
947 		ioflag |= IO_SYNC;
948 
949 	/*
950 	 * For O_DSYNC we set both IO_SYNC and IO_DATASYNC, so that VOP_WRITE()
951 	 * or VOP_DEALLOCATE() implementations that don't understand IO_DATASYNC
952 	 * fall back to full O_SYNC behavior.
953 	 */
954 	if ((fp->f_flag & O_DSYNC) != 0)
955 		ioflag |= IO_SYNC | IO_DATASYNC;
956 
957 	return (ioflag);
958 }
959 
960 int
vn_read_from_obj(struct vnode * vp,struct uio * uio)961 vn_read_from_obj(struct vnode *vp, struct uio *uio)
962 {
963 	vm_object_t obj;
964 	vm_page_t ma[io_hold_cnt + 2];
965 	off_t off, vsz;
966 	ssize_t resid;
967 	int error, i, j;
968 
969 	MPASS(uio->uio_resid <= ptoa(io_hold_cnt + 2));
970 	obj = atomic_load_ptr(&vp->v_object);
971 	if (obj == NULL)
972 		return (EJUSTRETURN);
973 
974 	/*
975 	 * Depends on type stability of vm_objects.
976 	 */
977 	vm_object_pip_add(obj, 1);
978 	if ((obj->flags & OBJ_DEAD) != 0) {
979 		/*
980 		 * Note that object might be already reused from the
981 		 * vnode, and the OBJ_DEAD flag cleared.  This is fine,
982 		 * we recheck for DOOMED vnode state after all pages
983 		 * are busied, and retract then.
984 		 *
985 		 * But we check for OBJ_DEAD to ensure that we do not
986 		 * busy pages while vm_object_terminate_pages()
987 		 * processes the queue.
988 		 */
989 		error = EJUSTRETURN;
990 		goto out_pip;
991 	}
992 
993 	resid = uio->uio_resid;
994 	off = uio->uio_offset;
995 	for (i = 0; resid > 0; i++) {
996 		MPASS(i < io_hold_cnt + 2);
997 		ma[i] = vm_page_grab_unlocked(obj, atop(off),
998 		    VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY |
999 		    VM_ALLOC_NOWAIT);
1000 		if (ma[i] == NULL)
1001 			break;
1002 
1003 		/*
1004 		 * Skip invalid pages.  Valid mask can be partial only
1005 		 * at EOF, and we clip later.
1006 		 */
1007 		if (vm_page_none_valid(ma[i])) {
1008 			vm_page_sunbusy(ma[i]);
1009 			break;
1010 		}
1011 
1012 		resid -= PAGE_SIZE;
1013 		off += PAGE_SIZE;
1014 	}
1015 	if (i == 0) {
1016 		error = EJUSTRETURN;
1017 		goto out_pip;
1018 	}
1019 
1020 	/*
1021 	 * Check VIRF_DOOMED after we busied our pages.  Since
1022 	 * vgonel() terminates the vnode' vm_object, it cannot
1023 	 * process past pages busied by us.
1024 	 */
1025 	if (VN_IS_DOOMED(vp)) {
1026 		error = EJUSTRETURN;
1027 		goto out;
1028 	}
1029 
1030 	resid = PAGE_SIZE - (uio->uio_offset & PAGE_MASK) + ptoa(i - 1);
1031 	if (resid > uio->uio_resid)
1032 		resid = uio->uio_resid;
1033 
1034 	/*
1035 	 * Unlocked read of vnp_size is safe because truncation cannot
1036 	 * pass busied page.  But we load vnp_size into a local
1037 	 * variable so that possible concurrent extension does not
1038 	 * break calculation.
1039 	 */
1040 #if defined(__powerpc__) && !defined(__powerpc64__)
1041 	vsz = obj->un_pager.vnp.vnp_size;
1042 #else
1043 	vsz = atomic_load_64(&obj->un_pager.vnp.vnp_size);
1044 #endif
1045 	if (uio->uio_offset >= vsz) {
1046 		error = EJUSTRETURN;
1047 		goto out;
1048 	}
1049 	if (uio->uio_offset + resid > vsz)
1050 		resid = vsz - uio->uio_offset;
1051 
1052 	error = vn_io_fault_pgmove(ma, uio->uio_offset & PAGE_MASK, resid, uio);
1053 
1054 out:
1055 	for (j = 0; j < i; j++) {
1056 		if (error == 0)
1057 			vm_page_reference(ma[j]);
1058 		vm_page_sunbusy(ma[j]);
1059 	}
1060 out_pip:
1061 	vm_object_pip_wakeup(obj);
1062 	if (error != 0)
1063 		return (error);
1064 	return (uio->uio_resid == 0 ? 0 : EJUSTRETURN);
1065 }
1066 
1067 /*
1068  * File table vnode read routine.
1069  */
1070 static int
vn_read(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1071 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1072     struct thread *td)
1073 {
1074 	struct vnode *vp;
1075 	off_t orig_offset;
1076 	int error, ioflag;
1077 	int advice;
1078 
1079 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1080 	    uio->uio_td, td));
1081 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1082 	vp = fp->f_vnode;
1083 	ioflag = 0;
1084 	if (fp->f_flag & FNONBLOCK)
1085 		ioflag |= IO_NDELAY;
1086 	if (fp->f_flag & O_DIRECT)
1087 		ioflag |= IO_DIRECT;
1088 
1089 	/*
1090 	 * Try to read from page cache.  VIRF_DOOMED check is racy but
1091 	 * allows us to avoid unneeded work outright.
1092 	 */
1093 	if (vn_io_pgcache_read_enable && !mac_vnode_check_read_enabled() &&
1094 	    (vn_irflag_read(vp) & (VIRF_DOOMED | VIRF_PGREAD)) == VIRF_PGREAD) {
1095 		error = VOP_READ_PGCACHE(vp, uio, ioflag, fp->f_cred);
1096 		if (error == 0) {
1097 			fp->f_nextoff[UIO_READ] = uio->uio_offset;
1098 			return (0);
1099 		}
1100 		if (error != EJUSTRETURN)
1101 			return (error);
1102 	}
1103 
1104 	advice = get_advice(fp, uio);
1105 	vn_lock(vp, LK_SHARED | LK_RETRY);
1106 
1107 	switch (advice) {
1108 	case POSIX_FADV_NORMAL:
1109 	case POSIX_FADV_SEQUENTIAL:
1110 	case POSIX_FADV_NOREUSE:
1111 		ioflag |= sequential_heuristic(uio, fp);
1112 		break;
1113 	case POSIX_FADV_RANDOM:
1114 		/* Disable read-ahead for random I/O. */
1115 		break;
1116 	}
1117 	orig_offset = uio->uio_offset;
1118 
1119 #ifdef MAC
1120 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
1121 	if (error == 0)
1122 #endif
1123 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
1124 	fp->f_nextoff[UIO_READ] = uio->uio_offset;
1125 	VOP_UNLOCK(vp);
1126 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1127 	    orig_offset != uio->uio_offset)
1128 		/*
1129 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1130 		 * for the backing file after a POSIX_FADV_NOREUSE
1131 		 * read(2).
1132 		 */
1133 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1134 		    POSIX_FADV_DONTNEED);
1135 	return (error);
1136 }
1137 
1138 /*
1139  * File table vnode write routine.
1140  */
1141 static int
vn_write(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1142 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1143     struct thread *td)
1144 {
1145 	struct vnode *vp;
1146 	struct mount *mp;
1147 	off_t orig_offset;
1148 	int error, ioflag;
1149 	int advice;
1150 	bool need_finished_write;
1151 
1152 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1153 	    uio->uio_td, td));
1154 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1155 	vp = fp->f_vnode;
1156 	if (vp->v_type == VREG)
1157 		bwillwrite();
1158 	ioflag = IO_UNIT;
1159 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND) != 0)
1160 		ioflag |= IO_APPEND;
1161 	if ((fp->f_flag & FNONBLOCK) != 0)
1162 		ioflag |= IO_NDELAY;
1163 	ioflag |= get_write_ioflag(fp);
1164 
1165 	mp = NULL;
1166 	need_finished_write = false;
1167 	if (vp->v_type != VCHR) {
1168 		error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
1169 		if (error != 0)
1170 			goto unlock;
1171 		need_finished_write = true;
1172 	}
1173 
1174 	advice = get_advice(fp, uio);
1175 
1176 	vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
1177 	switch (advice) {
1178 	case POSIX_FADV_NORMAL:
1179 	case POSIX_FADV_SEQUENTIAL:
1180 	case POSIX_FADV_NOREUSE:
1181 		ioflag |= sequential_heuristic(uio, fp);
1182 		break;
1183 	case POSIX_FADV_RANDOM:
1184 		/* XXX: Is this correct? */
1185 		break;
1186 	}
1187 	orig_offset = uio->uio_offset;
1188 
1189 #ifdef MAC
1190 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1191 	if (error == 0)
1192 #endif
1193 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
1194 	fp->f_nextoff[UIO_WRITE] = uio->uio_offset;
1195 	VOP_UNLOCK(vp);
1196 	if (need_finished_write)
1197 		vn_finished_write(mp);
1198 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1199 	    orig_offset != uio->uio_offset)
1200 		/*
1201 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1202 		 * for the backing file after a POSIX_FADV_NOREUSE
1203 		 * write(2).
1204 		 */
1205 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1206 		    POSIX_FADV_DONTNEED);
1207 unlock:
1208 	return (error);
1209 }
1210 
1211 /*
1212  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
1213  * prevent the following deadlock:
1214  *
1215  * Assume that the thread A reads from the vnode vp1 into userspace
1216  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
1217  * currently not resident, then system ends up with the call chain
1218  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
1219  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
1220  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
1221  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
1222  * backed by the pages of vnode vp1, and some page in buf2 is not
1223  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
1224  *
1225  * To prevent the lock order reversal and deadlock, vn_io_fault() does
1226  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
1227  * Instead, it first tries to do the whole range i/o with pagefaults
1228  * disabled. If all pages in the i/o buffer are resident and mapped,
1229  * VOP will succeed (ignoring the genuine filesystem errors).
1230  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
1231  * i/o in chunks, with all pages in the chunk prefaulted and held
1232  * using vm_fault_quick_hold_pages().
1233  *
1234  * Filesystems using this deadlock avoidance scheme should use the
1235  * array of the held pages from uio, saved in the curthread->td_ma,
1236  * instead of doing uiomove().  A helper function
1237  * vn_io_fault_uiomove() converts uiomove request into
1238  * uiomove_fromphys() over td_ma array.
1239  *
1240  * Since vnode locks do not cover the whole i/o anymore, rangelocks
1241  * make the current i/o request atomic with respect to other i/os and
1242  * truncations.
1243  */
1244 
1245 /*
1246  * Decode vn_io_fault_args and perform the corresponding i/o.
1247  */
1248 static int
vn_io_fault_doio(struct vn_io_fault_args * args,struct uio * uio,struct thread * td)1249 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
1250     struct thread *td)
1251 {
1252 	int error, save;
1253 
1254 	error = 0;
1255 	save = vm_fault_disable_pagefaults();
1256 	switch (args->kind) {
1257 	case VN_IO_FAULT_FOP:
1258 		error = (args->args.fop_args.doio)(args->args.fop_args.fp,
1259 		    uio, args->cred, args->flags, td);
1260 		break;
1261 	case VN_IO_FAULT_VOP:
1262 		switch (uio->uio_rw) {
1263 		case UIO_READ:
1264 			error = VOP_READ(args->args.vop_args.vp, uio,
1265 			    args->flags, args->cred);
1266 			break;
1267 		case UIO_WRITE:
1268 			error = VOP_WRITE(args->args.vop_args.vp, uio,
1269 			    args->flags, args->cred);
1270 			break;
1271 		}
1272 		break;
1273 	default:
1274 		panic("vn_io_fault_doio: unknown kind of io %d %d",
1275 		    args->kind, uio->uio_rw);
1276 	}
1277 	vm_fault_enable_pagefaults(save);
1278 	return (error);
1279 }
1280 
1281 static int
vn_io_fault_touch(char * base,const struct uio * uio)1282 vn_io_fault_touch(char *base, const struct uio *uio)
1283 {
1284 	int r;
1285 
1286 	r = fubyte(base);
1287 	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
1288 		return (EFAULT);
1289 	return (0);
1290 }
1291 
1292 static int
vn_io_fault_prefault_user(const struct uio * uio)1293 vn_io_fault_prefault_user(const struct uio *uio)
1294 {
1295 	char *base;
1296 	const struct iovec *iov;
1297 	size_t len;
1298 	ssize_t resid;
1299 	int error, i;
1300 
1301 	KASSERT(uio->uio_segflg == UIO_USERSPACE,
1302 	    ("vn_io_fault_prefault userspace"));
1303 
1304 	error = i = 0;
1305 	iov = uio->uio_iov;
1306 	resid = uio->uio_resid;
1307 	base = iov->iov_base;
1308 	len = iov->iov_len;
1309 	while (resid > 0) {
1310 		error = vn_io_fault_touch(base, uio);
1311 		if (error != 0)
1312 			break;
1313 		if (len < PAGE_SIZE) {
1314 			if (len != 0) {
1315 				error = vn_io_fault_touch(base + len - 1, uio);
1316 				if (error != 0)
1317 					break;
1318 				resid -= len;
1319 			}
1320 			if (++i >= uio->uio_iovcnt)
1321 				break;
1322 			iov = uio->uio_iov + i;
1323 			base = iov->iov_base;
1324 			len = iov->iov_len;
1325 		} else {
1326 			len -= PAGE_SIZE;
1327 			base += PAGE_SIZE;
1328 			resid -= PAGE_SIZE;
1329 		}
1330 	}
1331 	return (error);
1332 }
1333 
1334 /*
1335  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1336  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1337  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1338  * into args and call vn_io_fault1() to handle faults during the user
1339  * mode buffer accesses.
1340  */
1341 static int
vn_io_fault1(struct vnode * vp,struct uio * uio,struct vn_io_fault_args * args,struct thread * td)1342 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1343     struct thread *td)
1344 {
1345 	vm_page_t ma[io_hold_cnt + 2];
1346 	struct uio *uio_clone, short_uio;
1347 	struct iovec short_iovec[1];
1348 	vm_page_t *prev_td_ma;
1349 	vm_prot_t prot;
1350 	vm_offset_t addr, end;
1351 	size_t len, resid;
1352 	ssize_t adv;
1353 	int error, cnt, saveheld, prev_td_ma_cnt;
1354 
1355 	if (vn_io_fault_prefault) {
1356 		error = vn_io_fault_prefault_user(uio);
1357 		if (error != 0)
1358 			return (error); /* Or ignore ? */
1359 	}
1360 
1361 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1362 
1363 	/*
1364 	 * The UFS follows IO_UNIT directive and replays back both
1365 	 * uio_offset and uio_resid if an error is encountered during the
1366 	 * operation.  But, since the iovec may be already advanced,
1367 	 * uio is still in an inconsistent state.
1368 	 *
1369 	 * Cache a copy of the original uio, which is advanced to the redo
1370 	 * point using UIO_NOCOPY below.
1371 	 */
1372 	uio_clone = cloneuio(uio);
1373 	resid = uio->uio_resid;
1374 
1375 	short_uio.uio_segflg = UIO_USERSPACE;
1376 	short_uio.uio_rw = uio->uio_rw;
1377 	short_uio.uio_td = uio->uio_td;
1378 
1379 	error = vn_io_fault_doio(args, uio, td);
1380 	if (error != EFAULT)
1381 		goto out;
1382 
1383 	atomic_add_long(&vn_io_faults_cnt, 1);
1384 	uio_clone->uio_segflg = UIO_NOCOPY;
1385 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1386 	uio_clone->uio_segflg = uio->uio_segflg;
1387 
1388 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1389 	prev_td_ma = td->td_ma;
1390 	prev_td_ma_cnt = td->td_ma_cnt;
1391 
1392 	while (uio_clone->uio_resid != 0) {
1393 		len = uio_clone->uio_iov->iov_len;
1394 		if (len == 0) {
1395 			KASSERT(uio_clone->uio_iovcnt >= 1,
1396 			    ("iovcnt underflow"));
1397 			uio_clone->uio_iov++;
1398 			uio_clone->uio_iovcnt--;
1399 			continue;
1400 		}
1401 		if (len > ptoa(io_hold_cnt))
1402 			len = ptoa(io_hold_cnt);
1403 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1404 		end = round_page(addr + len);
1405 		if (end < addr) {
1406 			error = EFAULT;
1407 			break;
1408 		}
1409 		/*
1410 		 * A perfectly misaligned address and length could cause
1411 		 * both the start and the end of the chunk to use partial
1412 		 * page.  +2 accounts for such a situation.
1413 		 */
1414 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1415 		    addr, len, prot, ma, io_hold_cnt + 2);
1416 		if (cnt == -1) {
1417 			error = EFAULT;
1418 			break;
1419 		}
1420 		short_uio.uio_iov = &short_iovec[0];
1421 		short_iovec[0].iov_base = (void *)addr;
1422 		short_uio.uio_iovcnt = 1;
1423 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1424 		short_uio.uio_offset = uio_clone->uio_offset;
1425 		td->td_ma = ma;
1426 		td->td_ma_cnt = cnt;
1427 
1428 		error = vn_io_fault_doio(args, &short_uio, td);
1429 		vm_page_unhold_pages(ma, cnt);
1430 		adv = len - short_uio.uio_resid;
1431 
1432 		uio_clone->uio_iov->iov_base =
1433 		    (char *)uio_clone->uio_iov->iov_base + adv;
1434 		uio_clone->uio_iov->iov_len -= adv;
1435 		uio_clone->uio_resid -= adv;
1436 		uio_clone->uio_offset += adv;
1437 
1438 		uio->uio_resid -= adv;
1439 		uio->uio_offset += adv;
1440 
1441 		if (error != 0 || adv == 0)
1442 			break;
1443 	}
1444 	td->td_ma = prev_td_ma;
1445 	td->td_ma_cnt = prev_td_ma_cnt;
1446 	curthread_pflags_restore(saveheld);
1447 out:
1448 	freeuio(uio_clone);
1449 	return (error);
1450 }
1451 
1452 static int
vn_io_fault(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1453 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1454     int flags, struct thread *td)
1455 {
1456 	fo_rdwr_t *doio;
1457 	struct vnode *vp;
1458 	void *rl_cookie;
1459 	struct vn_io_fault_args args;
1460 	int error;
1461 	bool do_io_fault, do_rangelock;
1462 
1463 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1464 	vp = fp->f_vnode;
1465 
1466 	/*
1467 	 * The ability to read(2) on a directory has historically been
1468 	 * allowed for all users, but this can and has been the source of
1469 	 * at least one security issue in the past.  As such, it is now hidden
1470 	 * away behind a sysctl for those that actually need it to use it, and
1471 	 * restricted to root when it's turned on to make it relatively safe to
1472 	 * leave on for longer sessions of need.
1473 	 */
1474 	if (vp->v_type == VDIR) {
1475 		KASSERT(uio->uio_rw == UIO_READ,
1476 		    ("illegal write attempted on a directory"));
1477 		if (!vfs_allow_read_dir)
1478 			return (EISDIR);
1479 		if ((error = priv_check(td, PRIV_VFS_READ_DIR)) != 0)
1480 			return (EISDIR);
1481 	}
1482 
1483 	do_io_fault = do_vn_io_fault(vp, uio);
1484 	do_rangelock = do_io_fault || (vn_irflag_read(vp) & VIRF_PGREAD) != 0;
1485 	foffset_lock_uio(fp, uio, flags);
1486 	if (do_rangelock) {
1487 		if (uio->uio_rw == UIO_READ) {
1488 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1489 			    uio->uio_offset + uio->uio_resid);
1490 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1491 		    (flags & FOF_OFFSET) == 0) {
1492 			/* For appenders, punt and lock the whole range. */
1493 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1494 		} else {
1495 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1496 			    uio->uio_offset + uio->uio_resid);
1497 		}
1498 	}
1499 	if (do_io_fault) {
1500 		args.kind = VN_IO_FAULT_FOP;
1501 		args.args.fop_args.fp = fp;
1502 		args.args.fop_args.doio = doio;
1503 		args.cred = active_cred;
1504 		args.flags = flags | FOF_OFFSET;
1505 		error = vn_io_fault1(vp, uio, &args, td);
1506 	} else {
1507 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1508 	}
1509 	if (do_rangelock)
1510 		vn_rangelock_unlock(vp, rl_cookie);
1511 	foffset_unlock_uio(fp, uio, flags);
1512 	return (error);
1513 }
1514 
1515 /*
1516  * Helper function to perform the requested uiomove operation using
1517  * the held pages for io->uio_iov[0].iov_base buffer instead of
1518  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1519  * instead of iov_base prevents page faults that could occur due to
1520  * pmap_collect() invalidating the mapping created by
1521  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1522  * object cleanup revoking the write access from page mappings.
1523  *
1524  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1525  * instead of plain uiomove().
1526  */
1527 int
vn_io_fault_uiomove(char * data,int xfersize,struct uio * uio)1528 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1529 {
1530 	struct uio transp_uio;
1531 	struct iovec transp_iov[1];
1532 	struct thread *td;
1533 	size_t adv;
1534 	int error, pgadv;
1535 
1536 	td = curthread;
1537 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1538 	    uio->uio_segflg != UIO_USERSPACE)
1539 		return (uiomove(data, xfersize, uio));
1540 
1541 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1542 	transp_iov[0].iov_base = data;
1543 	transp_uio.uio_iov = &transp_iov[0];
1544 	transp_uio.uio_iovcnt = 1;
1545 	if (xfersize > uio->uio_resid)
1546 		xfersize = uio->uio_resid;
1547 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1548 	transp_uio.uio_offset = 0;
1549 	transp_uio.uio_segflg = UIO_SYSSPACE;
1550 	/*
1551 	 * Since transp_iov points to data, and td_ma page array
1552 	 * corresponds to original uio->uio_iov, we need to invert the
1553 	 * direction of the i/o operation as passed to
1554 	 * uiomove_fromphys().
1555 	 */
1556 	switch (uio->uio_rw) {
1557 	case UIO_WRITE:
1558 		transp_uio.uio_rw = UIO_READ;
1559 		break;
1560 	case UIO_READ:
1561 		transp_uio.uio_rw = UIO_WRITE;
1562 		break;
1563 	}
1564 	transp_uio.uio_td = uio->uio_td;
1565 	error = uiomove_fromphys(td->td_ma,
1566 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1567 	    xfersize, &transp_uio);
1568 	adv = xfersize - transp_uio.uio_resid;
1569 	pgadv =
1570 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1571 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1572 	td->td_ma += pgadv;
1573 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1574 	    pgadv));
1575 	td->td_ma_cnt -= pgadv;
1576 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1577 	uio->uio_iov->iov_len -= adv;
1578 	uio->uio_resid -= adv;
1579 	uio->uio_offset += adv;
1580 	return (error);
1581 }
1582 
1583 int
vn_io_fault_pgmove(vm_page_t ma[],vm_offset_t offset,int xfersize,struct uio * uio)1584 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1585     struct uio *uio)
1586 {
1587 	struct thread *td;
1588 	vm_offset_t iov_base;
1589 	int cnt, pgadv;
1590 
1591 	td = curthread;
1592 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1593 	    uio->uio_segflg != UIO_USERSPACE)
1594 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1595 
1596 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1597 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1598 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1599 	switch (uio->uio_rw) {
1600 	case UIO_WRITE:
1601 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1602 		    offset, cnt);
1603 		break;
1604 	case UIO_READ:
1605 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1606 		    cnt);
1607 		break;
1608 	}
1609 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1610 	td->td_ma += pgadv;
1611 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1612 	    pgadv));
1613 	td->td_ma_cnt -= pgadv;
1614 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1615 	uio->uio_iov->iov_len -= cnt;
1616 	uio->uio_resid -= cnt;
1617 	uio->uio_offset += cnt;
1618 	return (0);
1619 }
1620 
1621 /*
1622  * File table truncate routine.
1623  */
1624 static int
vn_truncate(struct file * fp,off_t length,struct ucred * active_cred,struct thread * td)1625 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1626     struct thread *td)
1627 {
1628 	struct mount *mp;
1629 	struct vnode *vp;
1630 	void *rl_cookie;
1631 	int error;
1632 
1633 	vp = fp->f_vnode;
1634 
1635 retry:
1636 	/*
1637 	 * Lock the whole range for truncation.  Otherwise split i/o
1638 	 * might happen partly before and partly after the truncation.
1639 	 */
1640 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1641 	error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
1642 	if (error)
1643 		goto out1;
1644 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1645 	AUDIT_ARG_VNODE1(vp);
1646 	if (vp->v_type == VDIR) {
1647 		error = EISDIR;
1648 		goto out;
1649 	}
1650 #ifdef MAC
1651 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1652 	if (error)
1653 		goto out;
1654 #endif
1655 	error = vn_truncate_locked(vp, length, (fp->f_flag & O_FSYNC) != 0,
1656 	    fp->f_cred);
1657 out:
1658 	VOP_UNLOCK(vp);
1659 	vn_finished_write(mp);
1660 out1:
1661 	vn_rangelock_unlock(vp, rl_cookie);
1662 	if (error == ERELOOKUP)
1663 		goto retry;
1664 	return (error);
1665 }
1666 
1667 /*
1668  * Truncate a file that is already locked.
1669  */
1670 int
vn_truncate_locked(struct vnode * vp,off_t length,bool sync,struct ucred * cred)1671 vn_truncate_locked(struct vnode *vp, off_t length, bool sync,
1672     struct ucred *cred)
1673 {
1674 	struct vattr vattr;
1675 	int error;
1676 
1677 	error = VOP_ADD_WRITECOUNT(vp, 1);
1678 	if (error == 0) {
1679 		VATTR_NULL(&vattr);
1680 		vattr.va_size = length;
1681 		if (sync)
1682 			vattr.va_vaflags |= VA_SYNC;
1683 		error = VOP_SETATTR(vp, &vattr, cred);
1684 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1685 	}
1686 	return (error);
1687 }
1688 
1689 /*
1690  * File table vnode stat routine.
1691  */
1692 int
vn_statfile(struct file * fp,struct stat * sb,struct ucred * active_cred)1693 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred)
1694 {
1695 	struct vnode *vp = fp->f_vnode;
1696 	int error;
1697 
1698 	vn_lock(vp, LK_SHARED | LK_RETRY);
1699 	error = VOP_STAT(vp, sb, active_cred, fp->f_cred);
1700 	VOP_UNLOCK(vp);
1701 
1702 	return (error);
1703 }
1704 
1705 /*
1706  * File table vnode ioctl routine.
1707  */
1708 static int
vn_ioctl(struct file * fp,u_long com,void * data,struct ucred * active_cred,struct thread * td)1709 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
1710     struct thread *td)
1711 {
1712 	struct vnode *vp;
1713 	struct fiobmap2_arg *bmarg;
1714 	off_t size;
1715 	int error;
1716 
1717 	vp = fp->f_vnode;
1718 	switch (vp->v_type) {
1719 	case VDIR:
1720 	case VREG:
1721 		switch (com) {
1722 		case FIONREAD:
1723 			error = vn_getsize(vp, &size, active_cred);
1724 			if (error == 0)
1725 				*(int *)data = size - fp->f_offset;
1726 			return (error);
1727 		case FIOBMAP2:
1728 			bmarg = (struct fiobmap2_arg *)data;
1729 			vn_lock(vp, LK_SHARED | LK_RETRY);
1730 #ifdef MAC
1731 			error = mac_vnode_check_read(active_cred, fp->f_cred,
1732 			    vp);
1733 			if (error == 0)
1734 #endif
1735 				error = VOP_BMAP(vp, bmarg->bn, NULL,
1736 				    &bmarg->bn, &bmarg->runp, &bmarg->runb);
1737 			VOP_UNLOCK(vp);
1738 			return (error);
1739 		case FIONBIO:
1740 		case FIOASYNC:
1741 			return (0);
1742 		default:
1743 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1744 			    active_cred, td));
1745 		}
1746 		break;
1747 	case VCHR:
1748 		return (VOP_IOCTL(vp, com, data, fp->f_flag,
1749 		    active_cred, td));
1750 	default:
1751 		return (ENOTTY);
1752 	}
1753 }
1754 
1755 /*
1756  * File table vnode poll routine.
1757  */
1758 static int
vn_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)1759 vn_poll(struct file *fp, int events, struct ucred *active_cred,
1760     struct thread *td)
1761 {
1762 	struct vnode *vp;
1763 	int error;
1764 
1765 	vp = fp->f_vnode;
1766 #if defined(MAC) || defined(AUDIT)
1767 	if (AUDITING_TD(td) || mac_vnode_check_poll_enabled()) {
1768 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1769 		AUDIT_ARG_VNODE1(vp);
1770 		error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1771 		VOP_UNLOCK(vp);
1772 		if (error != 0)
1773 			return (error);
1774 	}
1775 #endif
1776 	error = VOP_POLL(vp, events, fp->f_cred, td);
1777 	return (error);
1778 }
1779 
1780 /*
1781  * Acquire the requested lock and then check for validity.  LK_RETRY
1782  * permits vn_lock to return doomed vnodes.
1783  */
1784 static int __noinline
_vn_lock_fallback(struct vnode * vp,int flags,const char * file,int line,int error)1785 _vn_lock_fallback(struct vnode *vp, int flags, const char *file, int line,
1786     int error)
1787 {
1788 
1789 	KASSERT((flags & LK_RETRY) == 0 || error == 0,
1790 	    ("vn_lock: error %d incompatible with flags %#x", error, flags));
1791 
1792 	if (error == 0)
1793 		VNASSERT(VN_IS_DOOMED(vp), vp, ("vnode not doomed"));
1794 
1795 	if ((flags & LK_RETRY) == 0) {
1796 		if (error == 0) {
1797 			VOP_UNLOCK(vp);
1798 			error = ENOENT;
1799 		}
1800 		return (error);
1801 	}
1802 
1803 	/*
1804 	 * LK_RETRY case.
1805 	 *
1806 	 * Nothing to do if we got the lock.
1807 	 */
1808 	if (error == 0)
1809 		return (0);
1810 
1811 	/*
1812 	 * Interlock was dropped by the call in _vn_lock.
1813 	 */
1814 	flags &= ~LK_INTERLOCK;
1815 	do {
1816 		error = VOP_LOCK1(vp, flags, file, line);
1817 	} while (error != 0);
1818 	return (0);
1819 }
1820 
1821 int
_vn_lock(struct vnode * vp,int flags,const char * file,int line)1822 _vn_lock(struct vnode *vp, int flags, const char *file, int line)
1823 {
1824 	int error;
1825 
1826 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1827 	    ("vn_lock: no locktype (%d passed)", flags));
1828 	VNPASS(vp->v_holdcnt > 0, vp);
1829 	error = VOP_LOCK1(vp, flags, file, line);
1830 	if (__predict_false(error != 0 || VN_IS_DOOMED(vp)))
1831 		return (_vn_lock_fallback(vp, flags, file, line, error));
1832 	return (0);
1833 }
1834 
1835 /*
1836  * File table vnode close routine.
1837  */
1838 static int
vn_closefile(struct file * fp,struct thread * td)1839 vn_closefile(struct file *fp, struct thread *td)
1840 {
1841 	struct vnode *vp;
1842 	struct flock lf;
1843 	int error;
1844 	bool ref;
1845 
1846 	vp = fp->f_vnode;
1847 	fp->f_ops = &badfileops;
1848 	ref = (fp->f_flag & FHASLOCK) != 0;
1849 
1850 	error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1851 
1852 	if (__predict_false(ref)) {
1853 		lf.l_whence = SEEK_SET;
1854 		lf.l_start = 0;
1855 		lf.l_len = 0;
1856 		lf.l_type = F_UNLCK;
1857 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1858 		vrele(vp);
1859 	}
1860 	return (error);
1861 }
1862 
1863 /*
1864  * Preparing to start a filesystem write operation. If the operation is
1865  * permitted, then we bump the count of operations in progress and
1866  * proceed. If a suspend request is in progress, we wait until the
1867  * suspension is over, and then proceed.
1868  */
1869 static int
vn_start_write_refed(struct mount * mp,int flags,bool mplocked)1870 vn_start_write_refed(struct mount *mp, int flags, bool mplocked)
1871 {
1872 	struct mount_pcpu *mpcpu;
1873 	int error, mflags;
1874 
1875 	if (__predict_true(!mplocked) && (flags & V_XSLEEP) == 0 &&
1876 	    vfs_op_thread_enter(mp, mpcpu)) {
1877 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
1878 		vfs_mp_count_add_pcpu(mpcpu, writeopcount, 1);
1879 		vfs_op_thread_exit(mp, mpcpu);
1880 		return (0);
1881 	}
1882 
1883 	if (mplocked)
1884 		mtx_assert(MNT_MTX(mp), MA_OWNED);
1885 	else
1886 		MNT_ILOCK(mp);
1887 
1888 	error = 0;
1889 
1890 	/*
1891 	 * Check on status of suspension.
1892 	 */
1893 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1894 	    mp->mnt_susp_owner != curthread) {
1895 		mflags = 0;
1896 		if ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0) {
1897 			if (flags & V_PCATCH)
1898 				mflags |= PCATCH;
1899 		}
1900 		mflags |= (PUSER - 1);
1901 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1902 			if ((flags & V_NOWAIT) != 0) {
1903 				error = EWOULDBLOCK;
1904 				goto unlock;
1905 			}
1906 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1907 			    "suspfs", 0);
1908 			if (error != 0)
1909 				goto unlock;
1910 		}
1911 	}
1912 	if ((flags & V_XSLEEP) != 0)
1913 		goto unlock;
1914 	mp->mnt_writeopcount++;
1915 unlock:
1916 	if (error != 0 || (flags & V_XSLEEP) != 0)
1917 		MNT_REL(mp);
1918 	MNT_IUNLOCK(mp);
1919 	return (error);
1920 }
1921 
1922 int
vn_start_write(struct vnode * vp,struct mount ** mpp,int flags)1923 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1924 {
1925 	struct mount *mp;
1926 	int error;
1927 
1928 	KASSERT((flags & ~V_VALID_FLAGS) == 0,
1929 	    ("%s: invalid flags passed %d\n", __func__, flags));
1930 
1931 	error = 0;
1932 	/*
1933 	 * If a vnode is provided, get and return the mount point that
1934 	 * to which it will write.
1935 	 */
1936 	if (vp != NULL) {
1937 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1938 			*mpp = NULL;
1939 			if (error != EOPNOTSUPP)
1940 				return (error);
1941 			return (0);
1942 		}
1943 	}
1944 	if ((mp = *mpp) == NULL)
1945 		return (0);
1946 
1947 	/*
1948 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1949 	 * a vfs_ref().
1950 	 * As long as a vnode is not provided we need to acquire a
1951 	 * refcount for the provided mountpoint too, in order to
1952 	 * emulate a vfs_ref().
1953 	 */
1954 	if (vp == NULL)
1955 		vfs_ref(mp);
1956 
1957 	error = vn_start_write_refed(mp, flags, false);
1958 	if (error != 0 && (flags & V_NOWAIT) == 0)
1959 		*mpp = NULL;
1960 	return (error);
1961 }
1962 
1963 /*
1964  * Secondary suspension. Used by operations such as vop_inactive
1965  * routines that are needed by the higher level functions. These
1966  * are allowed to proceed until all the higher level functions have
1967  * completed (indicated by mnt_writeopcount dropping to zero). At that
1968  * time, these operations are halted until the suspension is over.
1969  */
1970 int
vn_start_secondary_write(struct vnode * vp,struct mount ** mpp,int flags)1971 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1972 {
1973 	struct mount *mp;
1974 	int error, mflags;
1975 
1976 	KASSERT((flags & (~V_VALID_FLAGS | V_XSLEEP)) == 0,
1977 	    ("%s: invalid flags passed %d\n", __func__, flags));
1978 
1979  retry:
1980 	if (vp != NULL) {
1981 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1982 			*mpp = NULL;
1983 			if (error != EOPNOTSUPP)
1984 				return (error);
1985 			return (0);
1986 		}
1987 	}
1988 	/*
1989 	 * If we are not suspended or have not yet reached suspended
1990 	 * mode, then let the operation proceed.
1991 	 */
1992 	if ((mp = *mpp) == NULL)
1993 		return (0);
1994 
1995 	/*
1996 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1997 	 * a vfs_ref().
1998 	 * As long as a vnode is not provided we need to acquire a
1999 	 * refcount for the provided mountpoint too, in order to
2000 	 * emulate a vfs_ref().
2001 	 */
2002 	MNT_ILOCK(mp);
2003 	if (vp == NULL)
2004 		MNT_REF(mp);
2005 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
2006 		mp->mnt_secondary_writes++;
2007 		mp->mnt_secondary_accwrites++;
2008 		MNT_IUNLOCK(mp);
2009 		return (0);
2010 	}
2011 	if ((flags & V_NOWAIT) != 0) {
2012 		MNT_REL(mp);
2013 		MNT_IUNLOCK(mp);
2014 		*mpp = NULL;
2015 		return (EWOULDBLOCK);
2016 	}
2017 	/*
2018 	 * Wait for the suspension to finish.
2019 	 */
2020 	mflags = 0;
2021 	if ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0) {
2022 		if ((flags & V_PCATCH) != 0)
2023 			mflags |= PCATCH;
2024 	}
2025 	mflags |= (PUSER - 1) | PDROP;
2026 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags, "suspfs", 0);
2027 	vfs_rel(mp);
2028 	if (error == 0)
2029 		goto retry;
2030 	*mpp = NULL;
2031 	return (error);
2032 }
2033 
2034 /*
2035  * Filesystem write operation has completed. If we are suspending and this
2036  * operation is the last one, notify the suspender that the suspension is
2037  * now in effect.
2038  */
2039 void
vn_finished_write(struct mount * mp)2040 vn_finished_write(struct mount *mp)
2041 {
2042 	struct mount_pcpu *mpcpu;
2043 	int c;
2044 
2045 	if (mp == NULL)
2046 		return;
2047 
2048 	if (vfs_op_thread_enter(mp, mpcpu)) {
2049 		vfs_mp_count_sub_pcpu(mpcpu, writeopcount, 1);
2050 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
2051 		vfs_op_thread_exit(mp, mpcpu);
2052 		return;
2053 	}
2054 
2055 	MNT_ILOCK(mp);
2056 	vfs_assert_mount_counters(mp);
2057 	MNT_REL(mp);
2058 	c = --mp->mnt_writeopcount;
2059 	if (mp->mnt_vfs_ops == 0) {
2060 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
2061 		MNT_IUNLOCK(mp);
2062 		return;
2063 	}
2064 	if (c < 0)
2065 		vfs_dump_mount_counters(mp);
2066 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && c == 0)
2067 		wakeup(&mp->mnt_writeopcount);
2068 	MNT_IUNLOCK(mp);
2069 }
2070 
2071 /*
2072  * Filesystem secondary write operation has completed. If we are
2073  * suspending and this operation is the last one, notify the suspender
2074  * that the suspension is now in effect.
2075  */
2076 void
vn_finished_secondary_write(struct mount * mp)2077 vn_finished_secondary_write(struct mount *mp)
2078 {
2079 	if (mp == NULL)
2080 		return;
2081 	MNT_ILOCK(mp);
2082 	MNT_REL(mp);
2083 	mp->mnt_secondary_writes--;
2084 	if (mp->mnt_secondary_writes < 0)
2085 		panic("vn_finished_secondary_write: neg cnt");
2086 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
2087 	    mp->mnt_secondary_writes <= 0)
2088 		wakeup(&mp->mnt_secondary_writes);
2089 	MNT_IUNLOCK(mp);
2090 }
2091 
2092 /*
2093  * Request a filesystem to suspend write operations.
2094  */
2095 int
vfs_write_suspend(struct mount * mp,int flags)2096 vfs_write_suspend(struct mount *mp, int flags)
2097 {
2098 	int error;
2099 
2100 	vfs_op_enter(mp);
2101 
2102 	MNT_ILOCK(mp);
2103 	vfs_assert_mount_counters(mp);
2104 	if (mp->mnt_susp_owner == curthread) {
2105 		vfs_op_exit_locked(mp);
2106 		MNT_IUNLOCK(mp);
2107 		return (EALREADY);
2108 	}
2109 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
2110 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
2111 
2112 	/*
2113 	 * Unmount holds a write reference on the mount point.  If we
2114 	 * own busy reference and drain for writers, we deadlock with
2115 	 * the reference draining in the unmount path.  Callers of
2116 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
2117 	 * vfs_busy() reference is owned and caller is not in the
2118 	 * unmount context.
2119 	 */
2120 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
2121 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
2122 		vfs_op_exit_locked(mp);
2123 		MNT_IUNLOCK(mp);
2124 		return (EBUSY);
2125 	}
2126 
2127 	mp->mnt_kern_flag |= MNTK_SUSPEND;
2128 	mp->mnt_susp_owner = curthread;
2129 	if (mp->mnt_writeopcount > 0)
2130 		(void) msleep(&mp->mnt_writeopcount,
2131 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
2132 	else
2133 		MNT_IUNLOCK(mp);
2134 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) {
2135 		vfs_write_resume(mp, 0);
2136 		/* vfs_write_resume does vfs_op_exit() for us */
2137 	}
2138 	return (error);
2139 }
2140 
2141 /*
2142  * Request a filesystem to resume write operations.
2143  */
2144 void
vfs_write_resume(struct mount * mp,int flags)2145 vfs_write_resume(struct mount *mp, int flags)
2146 {
2147 
2148 	MNT_ILOCK(mp);
2149 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
2150 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
2151 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
2152 				       MNTK_SUSPENDED);
2153 		mp->mnt_susp_owner = NULL;
2154 		wakeup(&mp->mnt_writeopcount);
2155 		wakeup(&mp->mnt_flag);
2156 		curthread->td_pflags &= ~TDP_IGNSUSP;
2157 		if ((flags & VR_START_WRITE) != 0) {
2158 			MNT_REF(mp);
2159 			mp->mnt_writeopcount++;
2160 		}
2161 		MNT_IUNLOCK(mp);
2162 		if ((flags & VR_NO_SUSPCLR) == 0)
2163 			VFS_SUSP_CLEAN(mp);
2164 		vfs_op_exit(mp);
2165 	} else if ((flags & VR_START_WRITE) != 0) {
2166 		MNT_REF(mp);
2167 		vn_start_write_refed(mp, 0, true);
2168 	} else {
2169 		MNT_IUNLOCK(mp);
2170 	}
2171 }
2172 
2173 /*
2174  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
2175  * methods.
2176  */
2177 int
vfs_write_suspend_umnt(struct mount * mp)2178 vfs_write_suspend_umnt(struct mount *mp)
2179 {
2180 	int error;
2181 
2182 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
2183 	    ("vfs_write_suspend_umnt: recursed"));
2184 
2185 	/* dounmount() already called vn_start_write(). */
2186 	for (;;) {
2187 		vn_finished_write(mp);
2188 		error = vfs_write_suspend(mp, 0);
2189 		if (error != 0) {
2190 			vn_start_write(NULL, &mp, V_WAIT);
2191 			return (error);
2192 		}
2193 		MNT_ILOCK(mp);
2194 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
2195 			break;
2196 		MNT_IUNLOCK(mp);
2197 		vn_start_write(NULL, &mp, V_WAIT);
2198 	}
2199 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
2200 	wakeup(&mp->mnt_flag);
2201 	MNT_IUNLOCK(mp);
2202 	curthread->td_pflags |= TDP_IGNSUSP;
2203 	return (0);
2204 }
2205 
2206 /*
2207  * Implement kqueues for files by translating it to vnode operation.
2208  */
2209 static int
vn_kqfilter(struct file * fp,struct knote * kn)2210 vn_kqfilter(struct file *fp, struct knote *kn)
2211 {
2212 
2213 	return (VOP_KQFILTER(fp->f_vnode, kn));
2214 }
2215 
2216 int
vn_kqfilter_opath(struct file * fp,struct knote * kn)2217 vn_kqfilter_opath(struct file *fp, struct knote *kn)
2218 {
2219 	if ((fp->f_flag & FKQALLOWED) == 0)
2220 		return (EBADF);
2221 	return (vn_kqfilter(fp, kn));
2222 }
2223 
2224 /*
2225  * Simplified in-kernel wrapper calls for extended attribute access.
2226  * Both calls pass in a NULL credential, authorizing as "kernel" access.
2227  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
2228  */
2229 int
vn_extattr_get(struct vnode * vp,int ioflg,int attrnamespace,const char * attrname,int * buflen,char * buf,struct thread * td)2230 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
2231     const char *attrname, int *buflen, char *buf, struct thread *td)
2232 {
2233 	struct uio	auio;
2234 	struct iovec	iov;
2235 	int	error;
2236 
2237 	iov.iov_len = *buflen;
2238 	iov.iov_base = buf;
2239 
2240 	auio.uio_iov = &iov;
2241 	auio.uio_iovcnt = 1;
2242 	auio.uio_rw = UIO_READ;
2243 	auio.uio_segflg = UIO_SYSSPACE;
2244 	auio.uio_td = td;
2245 	auio.uio_offset = 0;
2246 	auio.uio_resid = *buflen;
2247 
2248 	if ((ioflg & IO_NODELOCKED) == 0)
2249 		vn_lock(vp, LK_SHARED | LK_RETRY);
2250 
2251 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2252 
2253 	/* authorize attribute retrieval as kernel */
2254 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
2255 	    td);
2256 
2257 	if ((ioflg & IO_NODELOCKED) == 0)
2258 		VOP_UNLOCK(vp);
2259 
2260 	if (error == 0) {
2261 		*buflen = *buflen - auio.uio_resid;
2262 	}
2263 
2264 	return (error);
2265 }
2266 
2267 /*
2268  * XXX failure mode if partially written?
2269  */
2270 int
vn_extattr_set(struct vnode * vp,int ioflg,int attrnamespace,const char * attrname,int buflen,char * buf,struct thread * td)2271 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
2272     const char *attrname, int buflen, char *buf, struct thread *td)
2273 {
2274 	struct uio	auio;
2275 	struct iovec	iov;
2276 	struct mount	*mp;
2277 	int	error;
2278 
2279 	iov.iov_len = buflen;
2280 	iov.iov_base = buf;
2281 
2282 	auio.uio_iov = &iov;
2283 	auio.uio_iovcnt = 1;
2284 	auio.uio_rw = UIO_WRITE;
2285 	auio.uio_segflg = UIO_SYSSPACE;
2286 	auio.uio_td = td;
2287 	auio.uio_offset = 0;
2288 	auio.uio_resid = buflen;
2289 
2290 	if ((ioflg & IO_NODELOCKED) == 0) {
2291 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2292 			return (error);
2293 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2294 	}
2295 
2296 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2297 
2298 	/* authorize attribute setting as kernel */
2299 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2300 
2301 	if ((ioflg & IO_NODELOCKED) == 0) {
2302 		vn_finished_write(mp);
2303 		VOP_UNLOCK(vp);
2304 	}
2305 
2306 	return (error);
2307 }
2308 
2309 int
vn_extattr_rm(struct vnode * vp,int ioflg,int attrnamespace,const char * attrname,struct thread * td)2310 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2311     const char *attrname, struct thread *td)
2312 {
2313 	struct mount	*mp;
2314 	int	error;
2315 
2316 	if ((ioflg & IO_NODELOCKED) == 0) {
2317 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2318 			return (error);
2319 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2320 	}
2321 
2322 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2323 
2324 	/* authorize attribute removal as kernel */
2325 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2326 	if (error == EOPNOTSUPP)
2327 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2328 		    NULL, td);
2329 
2330 	if ((ioflg & IO_NODELOCKED) == 0) {
2331 		vn_finished_write(mp);
2332 		VOP_UNLOCK(vp);
2333 	}
2334 
2335 	return (error);
2336 }
2337 
2338 static int
vn_get_ino_alloc_vget(struct mount * mp,void * arg,int lkflags,struct vnode ** rvp)2339 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2340     struct vnode **rvp)
2341 {
2342 
2343 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2344 }
2345 
2346 int
vn_vget_ino(struct vnode * vp,ino_t ino,int lkflags,struct vnode ** rvp)2347 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2348 {
2349 
2350 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2351 	    lkflags, rvp));
2352 }
2353 
2354 int
vn_vget_ino_gen(struct vnode * vp,vn_get_ino_t alloc,void * alloc_arg,int lkflags,struct vnode ** rvp)2355 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2356     int lkflags, struct vnode **rvp)
2357 {
2358 	struct mount *mp;
2359 	int ltype, error;
2360 
2361 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2362 	mp = vp->v_mount;
2363 	ltype = VOP_ISLOCKED(vp);
2364 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2365 	    ("vn_vget_ino: vp not locked"));
2366 	error = vfs_busy(mp, MBF_NOWAIT);
2367 	if (error != 0) {
2368 		vfs_ref(mp);
2369 		VOP_UNLOCK(vp);
2370 		error = vfs_busy(mp, 0);
2371 		vn_lock(vp, ltype | LK_RETRY);
2372 		vfs_rel(mp);
2373 		if (error != 0)
2374 			return (ENOENT);
2375 		if (VN_IS_DOOMED(vp)) {
2376 			vfs_unbusy(mp);
2377 			return (ENOENT);
2378 		}
2379 	}
2380 	VOP_UNLOCK(vp);
2381 	error = alloc(mp, alloc_arg, lkflags, rvp);
2382 	vfs_unbusy(mp);
2383 	if (error != 0 || *rvp != vp)
2384 		vn_lock(vp, ltype | LK_RETRY);
2385 	if (VN_IS_DOOMED(vp)) {
2386 		if (error == 0) {
2387 			if (*rvp == vp)
2388 				vunref(vp);
2389 			else
2390 				vput(*rvp);
2391 		}
2392 		error = ENOENT;
2393 	}
2394 	return (error);
2395 }
2396 
2397 static void
vn_send_sigxfsz(struct proc * p)2398 vn_send_sigxfsz(struct proc *p)
2399 {
2400 	PROC_LOCK(p);
2401 	kern_psignal(p, SIGXFSZ);
2402 	PROC_UNLOCK(p);
2403 }
2404 
2405 int
vn_rlimit_trunc(u_quad_t size,struct thread * td)2406 vn_rlimit_trunc(u_quad_t size, struct thread *td)
2407 {
2408 	if (size <= lim_cur(td, RLIMIT_FSIZE))
2409 		return (0);
2410 	vn_send_sigxfsz(td->td_proc);
2411 	return (EFBIG);
2412 }
2413 
2414 static int
vn_rlimit_fsizex1(const struct vnode * vp,struct uio * uio,off_t maxfsz,bool adj,struct thread * td)2415 vn_rlimit_fsizex1(const struct vnode *vp, struct uio *uio, off_t maxfsz,
2416     bool adj, struct thread *td)
2417 {
2418 	off_t lim;
2419 	bool ktr_write;
2420 
2421 	if (vp->v_type != VREG)
2422 		return (0);
2423 
2424 	/*
2425 	 * Handle file system maximum file size.
2426 	 */
2427 	if (maxfsz != 0 && uio->uio_offset + uio->uio_resid > maxfsz) {
2428 		if (!adj || uio->uio_offset >= maxfsz)
2429 			return (EFBIG);
2430 		uio->uio_resid = maxfsz - uio->uio_offset;
2431 	}
2432 
2433 	/*
2434 	 * This is kernel write (e.g. vnode_pager) or accounting
2435 	 * write, ignore limit.
2436 	 */
2437 	if (td == NULL || (td->td_pflags2 & TDP2_ACCT) != 0)
2438 		return (0);
2439 
2440 	/*
2441 	 * Calculate file size limit.
2442 	 */
2443 	ktr_write = (td->td_pflags & TDP_INKTRACE) != 0;
2444 	lim = __predict_false(ktr_write) ? td->td_ktr_io_lim :
2445 	    lim_cur(td, RLIMIT_FSIZE);
2446 
2447 	/*
2448 	 * Is the limit reached?
2449 	 */
2450 	if (__predict_true((uoff_t)uio->uio_offset + uio->uio_resid <= lim))
2451 		return (0);
2452 
2453 	/*
2454 	 * Prepared filesystems can handle writes truncated to the
2455 	 * file size limit.
2456 	 */
2457 	if (adj && (uoff_t)uio->uio_offset < lim) {
2458 		uio->uio_resid = lim - (uoff_t)uio->uio_offset;
2459 		return (0);
2460 	}
2461 
2462 	if (!ktr_write || ktr_filesize_limit_signal)
2463 		vn_send_sigxfsz(td->td_proc);
2464 	return (EFBIG);
2465 }
2466 
2467 /*
2468  * Helper for VOP_WRITE() implementations, the common code to
2469  * handle maximum supported file size on the filesystem, and
2470  * RLIMIT_FSIZE, except for special writes from accounting subsystem
2471  * and ktrace.
2472  *
2473  * For maximum file size (maxfsz argument):
2474  * - return EFBIG if uio_offset is beyond it
2475  * - otherwise, clamp uio_resid if write would extend file beyond maxfsz.
2476  *
2477  * For RLIMIT_FSIZE:
2478  * - return EFBIG and send SIGXFSZ if uio_offset is beyond the limit
2479  * - otherwise, clamp uio_resid if write would extend file beyond limit.
2480  *
2481  * If clamping occured, the adjustment for uio_resid is stored in
2482  * *resid_adj, to be re-applied by vn_rlimit_fsizex_res() on return
2483  * from the VOP.
2484  */
2485 int
vn_rlimit_fsizex(const struct vnode * vp,struct uio * uio,off_t maxfsz,ssize_t * resid_adj,struct thread * td)2486 vn_rlimit_fsizex(const struct vnode *vp, struct uio *uio, off_t maxfsz,
2487     ssize_t *resid_adj, struct thread *td)
2488 {
2489 	ssize_t resid_orig;
2490 	int error;
2491 	bool adj;
2492 
2493 	resid_orig = uio->uio_resid;
2494 	adj = resid_adj != NULL;
2495 	error = vn_rlimit_fsizex1(vp, uio, maxfsz, adj, td);
2496 	if (adj)
2497 		*resid_adj = resid_orig - uio->uio_resid;
2498 	return (error);
2499 }
2500 
2501 void
vn_rlimit_fsizex_res(struct uio * uio,ssize_t resid_adj)2502 vn_rlimit_fsizex_res(struct uio *uio, ssize_t resid_adj)
2503 {
2504 	uio->uio_resid += resid_adj;
2505 }
2506 
2507 int
vn_rlimit_fsize(const struct vnode * vp,const struct uio * uio,struct thread * td)2508 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2509     struct thread *td)
2510 {
2511 	return (vn_rlimit_fsizex(vp, __DECONST(struct uio *, uio), 0, NULL,
2512 	    td));
2513 }
2514 
2515 int
vn_chmod(struct file * fp,mode_t mode,struct ucred * active_cred,struct thread * td)2516 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2517     struct thread *td)
2518 {
2519 	struct vnode *vp;
2520 
2521 	vp = fp->f_vnode;
2522 #ifdef AUDIT
2523 	vn_lock(vp, LK_SHARED | LK_RETRY);
2524 	AUDIT_ARG_VNODE1(vp);
2525 	VOP_UNLOCK(vp);
2526 #endif
2527 	return (setfmode(td, active_cred, vp, mode));
2528 }
2529 
2530 int
vn_chown(struct file * fp,uid_t uid,gid_t gid,struct ucred * active_cred,struct thread * td)2531 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2532     struct thread *td)
2533 {
2534 	struct vnode *vp;
2535 
2536 	vp = fp->f_vnode;
2537 #ifdef AUDIT
2538 	vn_lock(vp, LK_SHARED | LK_RETRY);
2539 	AUDIT_ARG_VNODE1(vp);
2540 	VOP_UNLOCK(vp);
2541 #endif
2542 	return (setfown(td, active_cred, vp, uid, gid));
2543 }
2544 
2545 /*
2546  * Remove pages in the range ["start", "end") from the vnode's VM object.  If
2547  * "end" is 0, then the range extends to the end of the object.
2548  */
2549 void
vn_pages_remove(struct vnode * vp,vm_pindex_t start,vm_pindex_t end)2550 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2551 {
2552 	vm_object_t object;
2553 
2554 	if ((object = vp->v_object) == NULL)
2555 		return;
2556 	VM_OBJECT_WLOCK(object);
2557 	vm_object_page_remove(object, start, end, 0);
2558 	VM_OBJECT_WUNLOCK(object);
2559 }
2560 
2561 /*
2562  * Like vn_pages_remove(), but skips invalid pages, which by definition are not
2563  * mapped into any process' address space.  Filesystems may use this in
2564  * preference to vn_pages_remove() to avoid blocking on pages busied in
2565  * preparation for a VOP_GETPAGES.
2566  */
2567 void
vn_pages_remove_valid(struct vnode * vp,vm_pindex_t start,vm_pindex_t end)2568 vn_pages_remove_valid(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2569 {
2570 	vm_object_t object;
2571 
2572 	if ((object = vp->v_object) == NULL)
2573 		return;
2574 	VM_OBJECT_WLOCK(object);
2575 	vm_object_page_remove(object, start, end, OBJPR_VALIDONLY);
2576 	VM_OBJECT_WUNLOCK(object);
2577 }
2578 
2579 int
vn_bmap_seekhole_locked(struct vnode * vp,u_long cmd,off_t * off,struct ucred * cred)2580 vn_bmap_seekhole_locked(struct vnode *vp, u_long cmd, off_t *off,
2581     struct ucred *cred)
2582 {
2583 	off_t size;
2584 	daddr_t bn, bnp;
2585 	uint64_t bsize;
2586 	off_t noff;
2587 	int error;
2588 
2589 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2590 	    ("%s: Wrong command %lu", __func__, cmd));
2591 	ASSERT_VOP_ELOCKED(vp, "vn_bmap_seekhole_locked");
2592 
2593 	if (vp->v_type != VREG) {
2594 		error = ENOTTY;
2595 		goto out;
2596 	}
2597 	error = vn_getsize_locked(vp, &size, cred);
2598 	if (error != 0)
2599 		goto out;
2600 	noff = *off;
2601 	if (noff < 0 || noff >= size) {
2602 		error = ENXIO;
2603 		goto out;
2604 	}
2605 
2606 	/* See the comment in ufs_bmap_seekdata(). */
2607 	vnode_pager_clean_sync(vp);
2608 
2609 	bsize = vp->v_mount->mnt_stat.f_iosize;
2610 	for (bn = noff / bsize; noff < size; bn++, noff += bsize -
2611 	    noff % bsize) {
2612 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2613 		if (error == EOPNOTSUPP) {
2614 			error = ENOTTY;
2615 			goto out;
2616 		}
2617 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2618 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2619 			noff = bn * bsize;
2620 			if (noff < *off)
2621 				noff = *off;
2622 			goto out;
2623 		}
2624 	}
2625 	if (noff > size)
2626 		noff = size;
2627 	/* noff == size. There is an implicit hole at the end of file. */
2628 	if (cmd == FIOSEEKDATA)
2629 		error = ENXIO;
2630 out:
2631 	if (error == 0)
2632 		*off = noff;
2633 	return (error);
2634 }
2635 
2636 int
vn_bmap_seekhole(struct vnode * vp,u_long cmd,off_t * off,struct ucred * cred)2637 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2638 {
2639 	int error;
2640 
2641 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2642 	    ("%s: Wrong command %lu", __func__, cmd));
2643 
2644 	if (vn_lock(vp, LK_EXCLUSIVE) != 0)
2645 		return (EBADF);
2646 	error = vn_bmap_seekhole_locked(vp, cmd, off, cred);
2647 	VOP_UNLOCK(vp);
2648 	return (error);
2649 }
2650 
2651 int
vn_seek(struct file * fp,off_t offset,int whence,struct thread * td)2652 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2653 {
2654 	struct ucred *cred;
2655 	struct vnode *vp;
2656 	off_t foffset, fsize, size;
2657 	int error, noneg;
2658 
2659 	cred = td->td_ucred;
2660 	vp = fp->f_vnode;
2661 	noneg = (vp->v_type != VCHR);
2662 	/*
2663 	 * Try to dodge locking for common case of querying the offset.
2664 	 */
2665 	if (whence == L_INCR && offset == 0) {
2666 		foffset = foffset_read(fp);
2667 		if (__predict_false(foffset < 0 && noneg)) {
2668 			return (EOVERFLOW);
2669 		}
2670 		td->td_uretoff.tdu_off = foffset;
2671 		return (0);
2672 	}
2673 	foffset = foffset_lock(fp, 0);
2674 	error = 0;
2675 	switch (whence) {
2676 	case L_INCR:
2677 		if (noneg &&
2678 		    (foffset < 0 ||
2679 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2680 			error = EOVERFLOW;
2681 			break;
2682 		}
2683 		offset += foffset;
2684 		break;
2685 	case L_XTND:
2686 		error = vn_getsize(vp, &fsize, cred);
2687 		if (error != 0)
2688 			break;
2689 
2690 		/*
2691 		 * If the file references a disk device, then fetch
2692 		 * the media size and use that to determine the ending
2693 		 * offset.
2694 		 */
2695 		if (fsize == 0 && vp->v_type == VCHR &&
2696 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2697 			fsize = size;
2698 		if (noneg && offset > 0 && fsize > OFF_MAX - offset) {
2699 			error = EOVERFLOW;
2700 			break;
2701 		}
2702 		offset += fsize;
2703 		break;
2704 	case L_SET:
2705 		break;
2706 	case SEEK_DATA:
2707 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2708 		if (error == ENOTTY)
2709 			error = EINVAL;
2710 		break;
2711 	case SEEK_HOLE:
2712 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2713 		if (error == ENOTTY)
2714 			error = EINVAL;
2715 		break;
2716 	default:
2717 		error = EINVAL;
2718 	}
2719 	if (error == 0 && noneg && offset < 0)
2720 		error = EINVAL;
2721 	if (error != 0)
2722 		goto drop;
2723 	VFS_KNOTE_UNLOCKED(vp, 0);
2724 	td->td_uretoff.tdu_off = offset;
2725 drop:
2726 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2727 	return (error);
2728 }
2729 
2730 int
vn_utimes_perm(struct vnode * vp,struct vattr * vap,struct ucred * cred,struct thread * td)2731 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2732     struct thread *td)
2733 {
2734 	int error;
2735 
2736 	/*
2737 	 * Grant permission if the caller is the owner of the file, or
2738 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2739 	 * on the file.  If the time pointer is null, then write
2740 	 * permission on the file is also sufficient.
2741 	 *
2742 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2743 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2744 	 * will be allowed to set the times [..] to the current
2745 	 * server time.
2746 	 */
2747 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2748 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2749 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2750 	return (error);
2751 }
2752 
2753 int
vn_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)2754 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2755 {
2756 	struct vnode *vp;
2757 	int error;
2758 
2759 	if (fp->f_type == DTYPE_FIFO)
2760 		kif->kf_type = KF_TYPE_FIFO;
2761 	else
2762 		kif->kf_type = KF_TYPE_VNODE;
2763 	vp = fp->f_vnode;
2764 	vref(vp);
2765 	FILEDESC_SUNLOCK(fdp);
2766 	error = vn_fill_kinfo_vnode(vp, kif);
2767 	vrele(vp);
2768 	FILEDESC_SLOCK(fdp);
2769 	return (error);
2770 }
2771 
2772 static inline void
vn_fill_junk(struct kinfo_file * kif)2773 vn_fill_junk(struct kinfo_file *kif)
2774 {
2775 	size_t len, olen;
2776 
2777 	/*
2778 	 * Simulate vn_fullpath returning changing values for a given
2779 	 * vp during e.g. coredump.
2780 	 */
2781 	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2782 	olen = strlen(kif->kf_path);
2783 	if (len < olen)
2784 		strcpy(&kif->kf_path[len - 1], "$");
2785 	else
2786 		for (; olen < len; olen++)
2787 			strcpy(&kif->kf_path[olen], "A");
2788 }
2789 
2790 int
vn_fill_kinfo_vnode(struct vnode * vp,struct kinfo_file * kif)2791 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2792 {
2793 	struct vattr va;
2794 	char *fullpath, *freepath;
2795 	int error;
2796 
2797 	kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
2798 	freepath = NULL;
2799 	fullpath = "-";
2800 	error = vn_fullpath(vp, &fullpath, &freepath);
2801 	if (error == 0) {
2802 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2803 	}
2804 	if (freepath != NULL)
2805 		free(freepath, M_TEMP);
2806 
2807 	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2808 		vn_fill_junk(kif);
2809 	);
2810 
2811 	/*
2812 	 * Retrieve vnode attributes.
2813 	 */
2814 	va.va_fsid = VNOVAL;
2815 	va.va_rdev = NODEV;
2816 	vn_lock(vp, LK_SHARED | LK_RETRY);
2817 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2818 	VOP_UNLOCK(vp);
2819 	if (error != 0)
2820 		return (error);
2821 	if (va.va_fsid != VNOVAL)
2822 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2823 	else
2824 		kif->kf_un.kf_file.kf_file_fsid =
2825 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2826 	kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
2827 	    kif->kf_un.kf_file.kf_file_fsid; /* truncate */
2828 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2829 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2830 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2831 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2832 	kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
2833 	    kif->kf_un.kf_file.kf_file_rdev; /* truncate */
2834 	kif->kf_un.kf_file.kf_file_nlink = va.va_nlink;
2835 	return (0);
2836 }
2837 
2838 int
vn_mmap(struct file * fp,vm_map_t map,vm_offset_t * addr,vm_size_t size,vm_prot_t prot,vm_prot_t cap_maxprot,int flags,vm_ooffset_t foff,struct thread * td)2839 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2840     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2841     struct thread *td)
2842 {
2843 #ifdef HWPMC_HOOKS
2844 	struct pmckern_map_in pkm;
2845 #endif
2846 	struct mount *mp;
2847 	struct vnode *vp;
2848 	vm_object_t object;
2849 	vm_prot_t maxprot;
2850 	boolean_t writecounted;
2851 	int error;
2852 
2853 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2854     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2855 	/*
2856 	 * POSIX shared-memory objects are defined to have
2857 	 * kernel persistence, and are not defined to support
2858 	 * read(2)/write(2) -- or even open(2).  Thus, we can
2859 	 * use MAP_ASYNC to trade on-disk coherence for speed.
2860 	 * The shm_open(3) library routine turns on the FPOSIXSHM
2861 	 * flag to request this behavior.
2862 	 */
2863 	if ((fp->f_flag & FPOSIXSHM) != 0)
2864 		flags |= MAP_NOSYNC;
2865 #endif
2866 	vp = fp->f_vnode;
2867 
2868 	/*
2869 	 * Ensure that file and memory protections are
2870 	 * compatible.  Note that we only worry about
2871 	 * writability if mapping is shared; in this case,
2872 	 * current and max prot are dictated by the open file.
2873 	 * XXX use the vnode instead?  Problem is: what
2874 	 * credentials do we use for determination? What if
2875 	 * proc does a setuid?
2876 	 */
2877 	mp = vp->v_mount;
2878 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
2879 		maxprot = VM_PROT_NONE;
2880 		if ((prot & VM_PROT_EXECUTE) != 0)
2881 			return (EACCES);
2882 	} else
2883 		maxprot = VM_PROT_EXECUTE;
2884 	if ((fp->f_flag & FREAD) != 0)
2885 		maxprot |= VM_PROT_READ;
2886 	else if ((prot & VM_PROT_READ) != 0)
2887 		return (EACCES);
2888 
2889 	/*
2890 	 * If we are sharing potential changes via MAP_SHARED and we
2891 	 * are trying to get write permission although we opened it
2892 	 * without asking for it, bail out.
2893 	 */
2894 	if ((flags & MAP_SHARED) != 0) {
2895 		if ((fp->f_flag & FWRITE) != 0)
2896 			maxprot |= VM_PROT_WRITE;
2897 		else if ((prot & VM_PROT_WRITE) != 0)
2898 			return (EACCES);
2899 	} else {
2900 		maxprot |= VM_PROT_WRITE;
2901 		cap_maxprot |= VM_PROT_WRITE;
2902 	}
2903 	maxprot &= cap_maxprot;
2904 
2905 	/*
2906 	 * For regular files and shared memory, POSIX requires that
2907 	 * the value of foff be a legitimate offset within the data
2908 	 * object.  In particular, negative offsets are invalid.
2909 	 * Blocking negative offsets and overflows here avoids
2910 	 * possible wraparound or user-level access into reserved
2911 	 * ranges of the data object later.  In contrast, POSIX does
2912 	 * not dictate how offsets are used by device drivers, so in
2913 	 * the case of a device mapping a negative offset is passed
2914 	 * on.
2915 	 */
2916 	if (
2917 #ifdef _LP64
2918 	    size > OFF_MAX ||
2919 #endif
2920 	    foff > OFF_MAX - size)
2921 		return (EINVAL);
2922 
2923 	writecounted = FALSE;
2924 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2925 	    &foff, &object, &writecounted);
2926 	if (error != 0)
2927 		return (error);
2928 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2929 	    foff, writecounted, td);
2930 	if (error != 0) {
2931 		/*
2932 		 * If this mapping was accounted for in the vnode's
2933 		 * writecount, then undo that now.
2934 		 */
2935 		if (writecounted)
2936 			vm_pager_release_writecount(object, 0, size);
2937 		vm_object_deallocate(object);
2938 	}
2939 #ifdef HWPMC_HOOKS
2940 	/* Inform hwpmc(4) if an executable is being mapped. */
2941 	if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
2942 		if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
2943 			pkm.pm_file = vp;
2944 			pkm.pm_address = (uintptr_t) *addr;
2945 			PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
2946 		}
2947 	}
2948 #endif
2949 	return (error);
2950 }
2951 
2952 void
vn_fsid(struct vnode * vp,struct vattr * va)2953 vn_fsid(struct vnode *vp, struct vattr *va)
2954 {
2955 	fsid_t *f;
2956 
2957 	f = &vp->v_mount->mnt_stat.f_fsid;
2958 	va->va_fsid = (uint32_t)f->val[1];
2959 	va->va_fsid <<= sizeof(f->val[1]) * NBBY;
2960 	va->va_fsid += (uint32_t)f->val[0];
2961 }
2962 
2963 int
vn_fsync_buf(struct vnode * vp,int waitfor)2964 vn_fsync_buf(struct vnode *vp, int waitfor)
2965 {
2966 	struct buf *bp, *nbp;
2967 	struct bufobj *bo;
2968 	struct mount *mp;
2969 	int error, maxretry;
2970 
2971 	error = 0;
2972 	maxretry = 10000;     /* large, arbitrarily chosen */
2973 	mp = NULL;
2974 	if (vp->v_type == VCHR) {
2975 		VI_LOCK(vp);
2976 		mp = vp->v_rdev->si_mountpt;
2977 		VI_UNLOCK(vp);
2978 	}
2979 	bo = &vp->v_bufobj;
2980 	BO_LOCK(bo);
2981 loop1:
2982 	/*
2983 	 * MARK/SCAN initialization to avoid infinite loops.
2984 	 */
2985         TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
2986 		bp->b_vflags &= ~BV_SCANNED;
2987 		bp->b_error = 0;
2988 	}
2989 
2990 	/*
2991 	 * Flush all dirty buffers associated with a vnode.
2992 	 */
2993 loop2:
2994 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2995 		if ((bp->b_vflags & BV_SCANNED) != 0)
2996 			continue;
2997 		bp->b_vflags |= BV_SCANNED;
2998 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2999 			if (waitfor != MNT_WAIT)
3000 				continue;
3001 			if (BUF_LOCK(bp,
3002 			    LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL,
3003 			    BO_LOCKPTR(bo)) != 0) {
3004 				BO_LOCK(bo);
3005 				goto loop1;
3006 			}
3007 			BO_LOCK(bo);
3008 		}
3009 		BO_UNLOCK(bo);
3010 		KASSERT(bp->b_bufobj == bo,
3011 		    ("bp %p wrong b_bufobj %p should be %p",
3012 		    bp, bp->b_bufobj, bo));
3013 		if ((bp->b_flags & B_DELWRI) == 0)
3014 			panic("fsync: not dirty");
3015 		if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) {
3016 			vfs_bio_awrite(bp);
3017 		} else {
3018 			bremfree(bp);
3019 			bawrite(bp);
3020 		}
3021 		if (maxretry < 1000)
3022 			pause("dirty", hz < 1000 ? 1 : hz / 1000);
3023 		BO_LOCK(bo);
3024 		goto loop2;
3025 	}
3026 
3027 	/*
3028 	 * If synchronous the caller expects us to completely resolve all
3029 	 * dirty buffers in the system.  Wait for in-progress I/O to
3030 	 * complete (which could include background bitmap writes), then
3031 	 * retry if dirty blocks still exist.
3032 	 */
3033 	if (waitfor == MNT_WAIT) {
3034 		bufobj_wwait(bo, 0, 0);
3035 		if (bo->bo_dirty.bv_cnt > 0) {
3036 			/*
3037 			 * If we are unable to write any of these buffers
3038 			 * then we fail now rather than trying endlessly
3039 			 * to write them out.
3040 			 */
3041 			TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
3042 				if ((error = bp->b_error) != 0)
3043 					break;
3044 			if ((mp != NULL && mp->mnt_secondary_writes > 0) ||
3045 			    (error == 0 && --maxretry >= 0))
3046 				goto loop1;
3047 			if (error == 0)
3048 				error = EAGAIN;
3049 		}
3050 	}
3051 	BO_UNLOCK(bo);
3052 	if (error != 0)
3053 		vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error);
3054 
3055 	return (error);
3056 }
3057 
3058 /*
3059  * Copies a byte range from invp to outvp.  Calls VOP_COPY_FILE_RANGE()
3060  * or vn_generic_copy_file_range() after rangelocking the byte ranges,
3061  * to do the actual copy.
3062  * vn_generic_copy_file_range() is factored out, so it can be called
3063  * from a VOP_COPY_FILE_RANGE() call as well, but handles vnodes from
3064  * different file systems.
3065  */
3066 int
vn_copy_file_range(struct vnode * invp,off_t * inoffp,struct vnode * outvp,off_t * outoffp,size_t * lenp,unsigned int flags,struct ucred * incred,struct ucred * outcred,struct thread * fsize_td)3067 vn_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp,
3068     off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred,
3069     struct ucred *outcred, struct thread *fsize_td)
3070 {
3071 	struct mount *inmp, *outmp;
3072 	struct vnode *invpl, *outvpl;
3073 	int error;
3074 	size_t len;
3075 	uint64_t uval;
3076 
3077 	invpl = outvpl = NULL;
3078 	len = *lenp;
3079 	*lenp = 0;		/* For error returns. */
3080 	error = 0;
3081 
3082 	/* Do some sanity checks on the arguments. */
3083 	if (invp->v_type == VDIR || outvp->v_type == VDIR)
3084 		error = EISDIR;
3085 	else if (*inoffp < 0 || *outoffp < 0 ||
3086 	    invp->v_type != VREG || outvp->v_type != VREG)
3087 		error = EINVAL;
3088 	if (error != 0)
3089 		goto out;
3090 
3091 	/* Ensure offset + len does not wrap around. */
3092 	uval = *inoffp;
3093 	uval += len;
3094 	if (uval > INT64_MAX)
3095 		len = INT64_MAX - *inoffp;
3096 	uval = *outoffp;
3097 	uval += len;
3098 	if (uval > INT64_MAX)
3099 		len = INT64_MAX - *outoffp;
3100 	if (len == 0)
3101 		goto out;
3102 
3103 	error = VOP_GETLOWVNODE(invp, &invpl, FREAD);
3104 	if (error != 0)
3105 		goto out;
3106 	error = VOP_GETLOWVNODE(outvp, &outvpl, FWRITE);
3107 	if (error != 0)
3108 		goto out1;
3109 
3110 	inmp = invpl->v_mount;
3111 	outmp = outvpl->v_mount;
3112 	if (inmp == NULL || outmp == NULL)
3113 		goto out2;
3114 
3115 	for (;;) {
3116 		error = vfs_busy(inmp, 0);
3117 		if (error != 0)
3118 			goto out2;
3119 		if (inmp == outmp)
3120 			break;
3121 		error = vfs_busy(outmp, MBF_NOWAIT);
3122 		if (error != 0) {
3123 			vfs_unbusy(inmp);
3124 			error = vfs_busy(outmp, 0);
3125 			if (error == 0) {
3126 				vfs_unbusy(outmp);
3127 				continue;
3128 			}
3129 			goto out2;
3130 		}
3131 		break;
3132 	}
3133 
3134 	/*
3135 	 * If the two vnodes are for the same file system type, call
3136 	 * VOP_COPY_FILE_RANGE(), otherwise call vn_generic_copy_file_range()
3137 	 * which can handle copies across multiple file system types.
3138 	 */
3139 	*lenp = len;
3140 	if (inmp == outmp || inmp->mnt_vfc == outmp->mnt_vfc)
3141 		error = VOP_COPY_FILE_RANGE(invpl, inoffp, outvpl, outoffp,
3142 		    lenp, flags, incred, outcred, fsize_td);
3143 	else
3144 		error = ENOSYS;
3145 	if (error == ENOSYS)
3146 		error = vn_generic_copy_file_range(invpl, inoffp, outvpl,
3147 		    outoffp, lenp, flags, incred, outcred, fsize_td);
3148 	vfs_unbusy(outmp);
3149 	if (inmp != outmp)
3150 		vfs_unbusy(inmp);
3151 out2:
3152 	if (outvpl != NULL)
3153 		vrele(outvpl);
3154 out1:
3155 	if (invpl != NULL)
3156 		vrele(invpl);
3157 out:
3158 	return (error);
3159 }
3160 
3161 /*
3162  * Test len bytes of data starting at dat for all bytes == 0.
3163  * Return true if all bytes are zero, false otherwise.
3164  * Expects dat to be well aligned.
3165  */
3166 static bool
mem_iszero(void * dat,int len)3167 mem_iszero(void *dat, int len)
3168 {
3169 	int i;
3170 	const u_int *p;
3171 	const char *cp;
3172 
3173 	for (p = dat; len > 0; len -= sizeof(*p), p++) {
3174 		if (len >= sizeof(*p)) {
3175 			if (*p != 0)
3176 				return (false);
3177 		} else {
3178 			cp = (const char *)p;
3179 			for (i = 0; i < len; i++, cp++)
3180 				if (*cp != '\0')
3181 					return (false);
3182 		}
3183 	}
3184 	return (true);
3185 }
3186 
3187 /*
3188  * Look for a hole in the output file and, if found, adjust *outoffp
3189  * and *xferp to skip past the hole.
3190  * *xferp is the entire hole length to be written and xfer2 is how many bytes
3191  * to be written as 0's upon return.
3192  */
3193 static off_t
vn_skip_hole(struct vnode * outvp,off_t xfer2,off_t * outoffp,off_t * xferp,off_t * dataoffp,off_t * holeoffp,struct ucred * cred)3194 vn_skip_hole(struct vnode *outvp, off_t xfer2, off_t *outoffp, off_t *xferp,
3195     off_t *dataoffp, off_t *holeoffp, struct ucred *cred)
3196 {
3197 	int error;
3198 	off_t delta;
3199 
3200 	if (*holeoffp == 0 || *holeoffp <= *outoffp) {
3201 		*dataoffp = *outoffp;
3202 		error = VOP_IOCTL(outvp, FIOSEEKDATA, dataoffp, 0, cred,
3203 		    curthread);
3204 		if (error == 0) {
3205 			*holeoffp = *dataoffp;
3206 			error = VOP_IOCTL(outvp, FIOSEEKHOLE, holeoffp, 0, cred,
3207 			    curthread);
3208 		}
3209 		if (error != 0 || *holeoffp == *dataoffp) {
3210 			/*
3211 			 * Since outvp is unlocked, it may be possible for
3212 			 * another thread to do a truncate(), lseek(), write()
3213 			 * creating a hole at startoff between the above
3214 			 * VOP_IOCTL() calls, if the other thread does not do
3215 			 * rangelocking.
3216 			 * If that happens, *holeoffp == *dataoffp and finding
3217 			 * the hole has failed, so disable vn_skip_hole().
3218 			 */
3219 			*holeoffp = -1;	/* Disable use of vn_skip_hole(). */
3220 			return (xfer2);
3221 		}
3222 		KASSERT(*dataoffp >= *outoffp,
3223 		    ("vn_skip_hole: dataoff=%jd < outoff=%jd",
3224 		    (intmax_t)*dataoffp, (intmax_t)*outoffp));
3225 		KASSERT(*holeoffp > *dataoffp,
3226 		    ("vn_skip_hole: holeoff=%jd <= dataoff=%jd",
3227 		    (intmax_t)*holeoffp, (intmax_t)*dataoffp));
3228 	}
3229 
3230 	/*
3231 	 * If there is a hole before the data starts, advance *outoffp and
3232 	 * *xferp past the hole.
3233 	 */
3234 	if (*dataoffp > *outoffp) {
3235 		delta = *dataoffp - *outoffp;
3236 		if (delta >= *xferp) {
3237 			/* Entire *xferp is a hole. */
3238 			*outoffp += *xferp;
3239 			*xferp = 0;
3240 			return (0);
3241 		}
3242 		*xferp -= delta;
3243 		*outoffp += delta;
3244 		xfer2 = MIN(xfer2, *xferp);
3245 	}
3246 
3247 	/*
3248 	 * If a hole starts before the end of this xfer2, reduce this xfer2 so
3249 	 * that the write ends at the start of the hole.
3250 	 * *holeoffp should always be greater than *outoffp, but for the
3251 	 * non-INVARIANTS case, check this to make sure xfer2 remains a sane
3252 	 * value.
3253 	 */
3254 	if (*holeoffp > *outoffp && *holeoffp < *outoffp + xfer2)
3255 		xfer2 = *holeoffp - *outoffp;
3256 	return (xfer2);
3257 }
3258 
3259 /*
3260  * Write an xfer sized chunk to outvp in blksize blocks from dat.
3261  * dat is a maximum of blksize in length and can be written repeatedly in
3262  * the chunk.
3263  * If growfile == true, just grow the file via vn_truncate_locked() instead
3264  * of doing actual writes.
3265  * If checkhole == true, a hole is being punched, so skip over any hole
3266  * already in the output file.
3267  */
3268 static int
vn_write_outvp(struct vnode * outvp,char * dat,off_t outoff,off_t xfer,u_long blksize,bool growfile,bool checkhole,struct ucred * cred)3269 vn_write_outvp(struct vnode *outvp, char *dat, off_t outoff, off_t xfer,
3270     u_long blksize, bool growfile, bool checkhole, struct ucred *cred)
3271 {
3272 	struct mount *mp;
3273 	off_t dataoff, holeoff, xfer2;
3274 	int error;
3275 
3276 	/*
3277 	 * Loop around doing writes of blksize until write has been completed.
3278 	 * Lock/unlock on each loop iteration so that a bwillwrite() can be
3279 	 * done for each iteration, since the xfer argument can be very
3280 	 * large if there is a large hole to punch in the output file.
3281 	 */
3282 	error = 0;
3283 	holeoff = 0;
3284 	do {
3285 		xfer2 = MIN(xfer, blksize);
3286 		if (checkhole) {
3287 			/*
3288 			 * Punching a hole.  Skip writing if there is
3289 			 * already a hole in the output file.
3290 			 */
3291 			xfer2 = vn_skip_hole(outvp, xfer2, &outoff, &xfer,
3292 			    &dataoff, &holeoff, cred);
3293 			if (xfer == 0)
3294 				break;
3295 			if (holeoff < 0)
3296 				checkhole = false;
3297 			KASSERT(xfer2 > 0, ("vn_write_outvp: xfer2=%jd",
3298 			    (intmax_t)xfer2));
3299 		}
3300 		bwillwrite();
3301 		mp = NULL;
3302 		error = vn_start_write(outvp, &mp, V_WAIT);
3303 		if (error != 0)
3304 			break;
3305 		if (growfile) {
3306 			error = vn_lock(outvp, LK_EXCLUSIVE);
3307 			if (error == 0) {
3308 				error = vn_truncate_locked(outvp, outoff + xfer,
3309 				    false, cred);
3310 				VOP_UNLOCK(outvp);
3311 			}
3312 		} else {
3313 			error = vn_lock(outvp, vn_lktype_write(mp, outvp));
3314 			if (error == 0) {
3315 				error = vn_rdwr(UIO_WRITE, outvp, dat, xfer2,
3316 				    outoff, UIO_SYSSPACE, IO_NODELOCKED,
3317 				    curthread->td_ucred, cred, NULL, curthread);
3318 				outoff += xfer2;
3319 				xfer -= xfer2;
3320 				VOP_UNLOCK(outvp);
3321 			}
3322 		}
3323 		if (mp != NULL)
3324 			vn_finished_write(mp);
3325 	} while (!growfile && xfer > 0 && error == 0);
3326 	return (error);
3327 }
3328 
3329 /*
3330  * Copy a byte range of one file to another.  This function can handle the
3331  * case where invp and outvp are on different file systems.
3332  * It can also be called by a VOP_COPY_FILE_RANGE() to do the work, if there
3333  * is no better file system specific way to do it.
3334  */
3335 int
vn_generic_copy_file_range(struct vnode * invp,off_t * inoffp,struct vnode * outvp,off_t * outoffp,size_t * lenp,unsigned int flags,struct ucred * incred,struct ucred * outcred,struct thread * fsize_td)3336 vn_generic_copy_file_range(struct vnode *invp, off_t *inoffp,
3337     struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags,
3338     struct ucred *incred, struct ucred *outcred, struct thread *fsize_td)
3339 {
3340 	struct vattr inva;
3341 	struct mount *mp;
3342 	off_t startoff, endoff, xfer, xfer2;
3343 	u_long blksize;
3344 	int error, interrupted;
3345 	bool cantseek, readzeros, eof, first, lastblock, holetoeof, sparse;
3346 	ssize_t aresid, r = 0;
3347 	size_t copylen, len, savlen;
3348 	off_t outsize;
3349 	char *dat;
3350 	long holein, holeout;
3351 	struct timespec curts, endts;
3352 
3353 	holein = holeout = 0;
3354 	savlen = len = *lenp;
3355 	error = 0;
3356 	interrupted = 0;
3357 	dat = NULL;
3358 
3359 	error = vn_lock(invp, LK_SHARED);
3360 	if (error != 0)
3361 		goto out;
3362 	if (VOP_PATHCONF(invp, _PC_MIN_HOLE_SIZE, &holein) != 0)
3363 		holein = 0;
3364 	error = VOP_GETATTR(invp, &inva, incred);
3365 	if (error == 0 && inva.va_size > OFF_MAX)
3366 		error = EFBIG;
3367 	VOP_UNLOCK(invp);
3368 	if (error != 0)
3369 		goto out;
3370 
3371 	/*
3372 	 * Use va_bytes >= va_size as a hint that the file does not have
3373 	 * sufficient holes to justify the overhead of doing FIOSEEKHOLE.
3374 	 * This hint does not work well for file systems doing compression
3375 	 * and may fail when allocations for extended attributes increases
3376 	 * the value of va_bytes to >= va_size.
3377 	 */
3378 	sparse = true;
3379 	if (holein != 0 && inva.va_bytes >= inva.va_size) {
3380 		holein = 0;
3381 		sparse = false;
3382 	}
3383 
3384 	mp = NULL;
3385 	error = vn_start_write(outvp, &mp, V_WAIT);
3386 	if (error == 0)
3387 		error = vn_lock(outvp, LK_EXCLUSIVE);
3388 	if (error == 0) {
3389 		/*
3390 		 * If fsize_td != NULL, do a vn_rlimit_fsizex() call,
3391 		 * now that outvp is locked.
3392 		 */
3393 		if (fsize_td != NULL) {
3394 			struct uio io;
3395 
3396 			io.uio_offset = *outoffp;
3397 			io.uio_resid = len;
3398 			error = vn_rlimit_fsizex(outvp, &io, 0, &r, fsize_td);
3399 			len = savlen = io.uio_resid;
3400 			/*
3401 			 * No need to call vn_rlimit_fsizex_res before return,
3402 			 * since the uio is local.
3403 			 */
3404 		}
3405 		if (VOP_PATHCONF(outvp, _PC_MIN_HOLE_SIZE, &holeout) != 0)
3406 			holeout = 0;
3407 		/*
3408 		 * Holes that are past EOF do not need to be written as a block
3409 		 * of zero bytes.  So, truncate the output file as far as
3410 		 * possible and then use size to decide if writing 0
3411 		 * bytes is necessary in the loop below.
3412 		 */
3413 		if (error == 0)
3414 			error = vn_getsize_locked(outvp, &outsize, outcred);
3415 		if (error == 0 && outsize > *outoffp &&
3416 		    *outoffp <= OFF_MAX - len && outsize <= *outoffp + len &&
3417 		    *inoffp < inva.va_size &&
3418 		    *outoffp <= OFF_MAX - (inva.va_size - *inoffp) &&
3419 		    outsize <= *outoffp + (inva.va_size - *inoffp)) {
3420 #ifdef MAC
3421 			error = mac_vnode_check_write(curthread->td_ucred,
3422 			    outcred, outvp);
3423 			if (error == 0)
3424 #endif
3425 				error = vn_truncate_locked(outvp, *outoffp,
3426 				    false, outcred);
3427 			if (error == 0)
3428 				outsize = *outoffp;
3429 		}
3430 		VOP_UNLOCK(outvp);
3431 	}
3432 	if (mp != NULL)
3433 		vn_finished_write(mp);
3434 	if (error != 0)
3435 		goto out;
3436 
3437 	if (sparse && holein == 0 && holeout > 0) {
3438 		/*
3439 		 * For this special case, the input data will be scanned
3440 		 * for blocks of all 0 bytes.  For these blocks, the
3441 		 * write can be skipped for the output file to create
3442 		 * an unallocated region.
3443 		 * Therefore, use the appropriate size for the output file.
3444 		 */
3445 		blksize = holeout;
3446 		if (blksize <= 512) {
3447 			/*
3448 			 * Use f_iosize, since ZFS reports a _PC_MIN_HOLE_SIZE
3449 			 * of 512, although it actually only creates
3450 			 * unallocated regions for blocks >= f_iosize.
3451 			 */
3452 			blksize = outvp->v_mount->mnt_stat.f_iosize;
3453 		}
3454 	} else {
3455 		/*
3456 		 * Use the larger of the two f_iosize values.  If they are
3457 		 * not the same size, one will normally be an exact multiple of
3458 		 * the other, since they are both likely to be a power of 2.
3459 		 */
3460 		blksize = MAX(invp->v_mount->mnt_stat.f_iosize,
3461 		    outvp->v_mount->mnt_stat.f_iosize);
3462 	}
3463 
3464 	/* Clip to sane limits. */
3465 	if (blksize < 4096)
3466 		blksize = 4096;
3467 	else if (blksize > maxphys)
3468 		blksize = maxphys;
3469 	dat = malloc(blksize, M_TEMP, M_WAITOK);
3470 
3471 	/*
3472 	 * If VOP_IOCTL(FIOSEEKHOLE) works for invp, use it and FIOSEEKDATA
3473 	 * to find holes.  Otherwise, just scan the read block for all 0s
3474 	 * in the inner loop where the data copying is done.
3475 	 * Note that some file systems such as NFSv3, NFSv4.0 and NFSv4.1 may
3476 	 * support holes on the server, but do not support FIOSEEKHOLE.
3477 	 * The kernel flag COPY_FILE_RANGE_TIMEO1SEC is used to indicate
3478 	 * that this function should return after 1second with a partial
3479 	 * completion.
3480 	 */
3481 	if ((flags & COPY_FILE_RANGE_TIMEO1SEC) != 0) {
3482 		getnanouptime(&endts);
3483 		endts.tv_sec++;
3484 	} else
3485 		timespecclear(&endts);
3486 	first = true;
3487 	holetoeof = eof = false;
3488 	while (len > 0 && error == 0 && !eof && interrupted == 0) {
3489 		endoff = 0;			/* To shut up compilers. */
3490 		cantseek = true;
3491 		startoff = *inoffp;
3492 		copylen = len;
3493 
3494 		/*
3495 		 * Find the next data area.  If there is just a hole to EOF,
3496 		 * FIOSEEKDATA should fail with ENXIO.
3497 		 * (I do not know if any file system will report a hole to
3498 		 *  EOF via FIOSEEKHOLE, but I am pretty sure FIOSEEKDATA
3499 		 *  will fail for those file systems.)
3500 		 *
3501 		 * For input files that don't support FIOSEEKDATA/FIOSEEKHOLE,
3502 		 * the code just falls through to the inner copy loop.
3503 		 */
3504 		error = EINVAL;
3505 		if (holein > 0) {
3506 			error = VOP_IOCTL(invp, FIOSEEKDATA, &startoff, 0,
3507 			    incred, curthread);
3508 			if (error == ENXIO) {
3509 				startoff = endoff = inva.va_size;
3510 				eof = holetoeof = true;
3511 				error = 0;
3512 			}
3513 		}
3514 		if (error == 0 && !holetoeof) {
3515 			endoff = startoff;
3516 			error = VOP_IOCTL(invp, FIOSEEKHOLE, &endoff, 0,
3517 			    incred, curthread);
3518 			/*
3519 			 * Since invp is unlocked, it may be possible for
3520 			 * another thread to do a truncate(), lseek(), write()
3521 			 * creating a hole at startoff between the above
3522 			 * VOP_IOCTL() calls, if the other thread does not do
3523 			 * rangelocking.
3524 			 * If that happens, startoff == endoff and finding
3525 			 * the hole has failed, so set an error.
3526 			 */
3527 			if (error == 0 && startoff == endoff)
3528 				error = EINVAL; /* Any error. Reset to 0. */
3529 		}
3530 		if (error == 0) {
3531 			if (startoff > *inoffp) {
3532 				/* Found hole before data block. */
3533 				xfer = MIN(startoff - *inoffp, len);
3534 				if (*outoffp < outsize) {
3535 					/* Must write 0s to punch hole. */
3536 					xfer2 = MIN(outsize - *outoffp,
3537 					    xfer);
3538 					memset(dat, 0, MIN(xfer2, blksize));
3539 					error = vn_write_outvp(outvp, dat,
3540 					    *outoffp, xfer2, blksize, false,
3541 					    holeout > 0, outcred);
3542 				}
3543 
3544 				if (error == 0 && *outoffp + xfer >
3545 				    outsize && (xfer == len || holetoeof)) {
3546 					/* Grow output file (hole at end). */
3547 					error = vn_write_outvp(outvp, dat,
3548 					    *outoffp, xfer, blksize, true,
3549 					    false, outcred);
3550 				}
3551 				if (error == 0) {
3552 					*inoffp += xfer;
3553 					*outoffp += xfer;
3554 					len -= xfer;
3555 					if (len < savlen) {
3556 						interrupted = sig_intr();
3557 						if (timespecisset(&endts) &&
3558 						    interrupted == 0) {
3559 							getnanouptime(&curts);
3560 							if (timespeccmp(&curts,
3561 							    &endts, >=))
3562 								interrupted =
3563 								    EINTR;
3564 						}
3565 					}
3566 				}
3567 			}
3568 			copylen = MIN(len, endoff - startoff);
3569 			cantseek = false;
3570 		} else {
3571 			cantseek = true;
3572 			if (!sparse)
3573 				cantseek = false;
3574 			startoff = *inoffp;
3575 			copylen = len;
3576 			error = 0;
3577 		}
3578 
3579 		xfer = blksize;
3580 		if (cantseek) {
3581 			/*
3582 			 * Set first xfer to end at a block boundary, so that
3583 			 * holes are more likely detected in the loop below via
3584 			 * the for all bytes 0 method.
3585 			 */
3586 			xfer -= (*inoffp % blksize);
3587 		}
3588 
3589 		/*
3590 		 * Loop copying the data block.  If this was our first attempt
3591 		 * to copy anything, allow a zero-length block so that the VOPs
3592 		 * get a chance to update metadata, specifically the atime.
3593 		 */
3594 		while (error == 0 && ((copylen > 0 && !eof) || first) &&
3595 		    interrupted == 0) {
3596 			if (copylen < xfer)
3597 				xfer = copylen;
3598 			first = false;
3599 			error = vn_lock(invp, LK_SHARED);
3600 			if (error != 0)
3601 				goto out;
3602 			error = vn_rdwr(UIO_READ, invp, dat, xfer,
3603 			    startoff, UIO_SYSSPACE, IO_NODELOCKED,
3604 			    curthread->td_ucred, incred, &aresid,
3605 			    curthread);
3606 			VOP_UNLOCK(invp);
3607 			lastblock = false;
3608 			if (error == 0 && (xfer == 0 || aresid > 0)) {
3609 				/* Stop the copy at EOF on the input file. */
3610 				xfer -= aresid;
3611 				eof = true;
3612 				lastblock = true;
3613 			}
3614 			if (error == 0) {
3615 				/*
3616 				 * Skip the write for holes past the initial EOF
3617 				 * of the output file, unless this is the last
3618 				 * write of the output file at EOF.
3619 				 */
3620 				readzeros = cantseek ? mem_iszero(dat, xfer) :
3621 				    false;
3622 				if (xfer == len)
3623 					lastblock = true;
3624 				if (!cantseek || *outoffp < outsize ||
3625 				    lastblock || !readzeros)
3626 					error = vn_write_outvp(outvp, dat,
3627 					    *outoffp, xfer, blksize,
3628 					    readzeros && lastblock &&
3629 					    *outoffp >= outsize, false,
3630 					    outcred);
3631 				if (error == 0) {
3632 					*inoffp += xfer;
3633 					startoff += xfer;
3634 					*outoffp += xfer;
3635 					copylen -= xfer;
3636 					len -= xfer;
3637 					if (len < savlen) {
3638 						interrupted = sig_intr();
3639 						if (timespecisset(&endts) &&
3640 						    interrupted == 0) {
3641 							getnanouptime(&curts);
3642 							if (timespeccmp(&curts,
3643 							    &endts, >=))
3644 								interrupted =
3645 								    EINTR;
3646 						}
3647 					}
3648 				}
3649 			}
3650 			xfer = blksize;
3651 		}
3652 	}
3653 out:
3654 	*lenp = savlen - len;
3655 	free(dat, M_TEMP);
3656 	return (error);
3657 }
3658 
3659 static int
vn_fallocate(struct file * fp,off_t offset,off_t len,struct thread * td)3660 vn_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td)
3661 {
3662 	struct mount *mp;
3663 	struct vnode *vp;
3664 	off_t olen, ooffset;
3665 	int error;
3666 #ifdef AUDIT
3667 	int audited_vnode1 = 0;
3668 #endif
3669 
3670 	vp = fp->f_vnode;
3671 	if (vp->v_type != VREG)
3672 		return (ENODEV);
3673 
3674 	/* Allocating blocks may take a long time, so iterate. */
3675 	for (;;) {
3676 		olen = len;
3677 		ooffset = offset;
3678 
3679 		bwillwrite();
3680 		mp = NULL;
3681 		error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
3682 		if (error != 0)
3683 			break;
3684 		error = vn_lock(vp, LK_EXCLUSIVE);
3685 		if (error != 0) {
3686 			vn_finished_write(mp);
3687 			break;
3688 		}
3689 #ifdef AUDIT
3690 		if (!audited_vnode1) {
3691 			AUDIT_ARG_VNODE1(vp);
3692 			audited_vnode1 = 1;
3693 		}
3694 #endif
3695 #ifdef MAC
3696 		error = mac_vnode_check_write(td->td_ucred, fp->f_cred, vp);
3697 		if (error == 0)
3698 #endif
3699 			error = VOP_ALLOCATE(vp, &offset, &len, 0,
3700 			    td->td_ucred);
3701 		VOP_UNLOCK(vp);
3702 		vn_finished_write(mp);
3703 
3704 		if (olen + ooffset != offset + len) {
3705 			panic("offset + len changed from %jx/%jx to %jx/%jx",
3706 			    ooffset, olen, offset, len);
3707 		}
3708 		if (error != 0 || len == 0)
3709 			break;
3710 		KASSERT(olen > len, ("Iteration did not make progress?"));
3711 		maybe_yield();
3712 	}
3713 
3714 	return (error);
3715 }
3716 
3717 static int
vn_deallocate_impl(struct vnode * vp,off_t * offset,off_t * length,int flags,int ioflag,struct ucred * cred,struct ucred * active_cred,struct ucred * file_cred)3718 vn_deallocate_impl(struct vnode *vp, off_t *offset, off_t *length, int flags,
3719     int ioflag, struct ucred *cred, struct ucred *active_cred,
3720     struct ucred *file_cred)
3721 {
3722 	struct mount *mp;
3723 	void *rl_cookie;
3724 	off_t off, len;
3725 	int error;
3726 #ifdef AUDIT
3727 	bool audited_vnode1 = false;
3728 #endif
3729 
3730 	rl_cookie = NULL;
3731 	error = 0;
3732 	mp = NULL;
3733 	off = *offset;
3734 	len = *length;
3735 
3736 	if ((ioflag & (IO_NODELOCKED | IO_RANGELOCKED)) == 0)
3737 		rl_cookie = vn_rangelock_wlock(vp, off, off + len);
3738 	while (len > 0 && error == 0) {
3739 		/*
3740 		 * Try to deallocate the longest range in one pass.
3741 		 * In case a pass takes too long to be executed, it returns
3742 		 * partial result. The residue will be proceeded in the next
3743 		 * pass.
3744 		 */
3745 
3746 		if ((ioflag & IO_NODELOCKED) == 0) {
3747 			bwillwrite();
3748 			if ((error = vn_start_write(vp, &mp,
3749 			    V_WAIT | V_PCATCH)) != 0)
3750 				goto out;
3751 			vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
3752 		}
3753 #ifdef AUDIT
3754 		if (!audited_vnode1) {
3755 			AUDIT_ARG_VNODE1(vp);
3756 			audited_vnode1 = true;
3757 		}
3758 #endif
3759 
3760 #ifdef MAC
3761 		if ((ioflag & IO_NOMACCHECK) == 0)
3762 			error = mac_vnode_check_write(active_cred, file_cred,
3763 			    vp);
3764 #endif
3765 		if (error == 0)
3766 			error = VOP_DEALLOCATE(vp, &off, &len, flags, ioflag,
3767 			    cred);
3768 
3769 		if ((ioflag & IO_NODELOCKED) == 0) {
3770 			VOP_UNLOCK(vp);
3771 			if (mp != NULL) {
3772 				vn_finished_write(mp);
3773 				mp = NULL;
3774 			}
3775 		}
3776 		if (error == 0 && len != 0)
3777 			maybe_yield();
3778 	}
3779 out:
3780 	if (rl_cookie != NULL)
3781 		vn_rangelock_unlock(vp, rl_cookie);
3782 	*offset = off;
3783 	*length = len;
3784 	return (error);
3785 }
3786 
3787 /*
3788  * This function is supposed to be used in the situations where the deallocation
3789  * is not triggered by a user request.
3790  */
3791 int
vn_deallocate(struct vnode * vp,off_t * offset,off_t * length,int flags,int ioflag,struct ucred * active_cred,struct ucred * file_cred)3792 vn_deallocate(struct vnode *vp, off_t *offset, off_t *length, int flags,
3793     int ioflag, struct ucred *active_cred, struct ucred *file_cred)
3794 {
3795 	struct ucred *cred;
3796 
3797 	if (*offset < 0 || *length <= 0 || *length > OFF_MAX - *offset ||
3798 	    flags != 0)
3799 		return (EINVAL);
3800 	if (vp->v_type != VREG)
3801 		return (ENODEV);
3802 
3803 	cred = file_cred != NOCRED ? file_cred : active_cred;
3804 	return (vn_deallocate_impl(vp, offset, length, flags, ioflag, cred,
3805 	    active_cred, file_cred));
3806 }
3807 
3808 static int
vn_fspacectl(struct file * fp,int cmd,off_t * offset,off_t * length,int flags,struct ucred * active_cred,struct thread * td)3809 vn_fspacectl(struct file *fp, int cmd, off_t *offset, off_t *length, int flags,
3810     struct ucred *active_cred, struct thread *td)
3811 {
3812 	int error;
3813 	struct vnode *vp;
3814 	int ioflag;
3815 
3816 	KASSERT(cmd == SPACECTL_DEALLOC, ("vn_fspacectl: Invalid cmd"));
3817 	KASSERT((flags & ~SPACECTL_F_SUPPORTED) == 0,
3818 	    ("vn_fspacectl: non-zero flags"));
3819 	KASSERT(*offset >= 0 && *length > 0 && *length <= OFF_MAX - *offset,
3820 	    ("vn_fspacectl: offset/length overflow or underflow"));
3821 	vp = fp->f_vnode;
3822 
3823 	if (vp->v_type != VREG)
3824 		return (ENODEV);
3825 
3826 	ioflag = get_write_ioflag(fp);
3827 
3828 	switch (cmd) {
3829 	case SPACECTL_DEALLOC:
3830 		error = vn_deallocate_impl(vp, offset, length, flags, ioflag,
3831 		    active_cred, active_cred, fp->f_cred);
3832 		break;
3833 	default:
3834 		panic("vn_fspacectl: unknown cmd %d", cmd);
3835 	}
3836 
3837 	return (error);
3838 }
3839 
3840 /*
3841  * Keep this assert as long as sizeof(struct dirent) is used as the maximum
3842  * entry size.
3843  */
3844 _Static_assert(_GENERIC_MAXDIRSIZ == sizeof(struct dirent),
3845     "'struct dirent' size must be a multiple of its alignment "
3846     "(see _GENERIC_DIRLEN())");
3847 
3848 /*
3849  * Returns successive directory entries through some caller's provided buffer.
3850  *
3851  * This function automatically refills the provided buffer with calls to
3852  * VOP_READDIR() (after MAC permission checks).
3853  *
3854  * 'td' is used for credentials and passed to uiomove().  'dirbuf' is the
3855  * caller's buffer to fill and 'dirbuflen' its allocated size.  'dirbuf' must
3856  * be properly aligned to access 'struct dirent' structures and 'dirbuflen'
3857  * must be greater than GENERIC_MAXDIRSIZ to avoid VOP_READDIR() returning
3858  * EINVAL (the latter is not a strong guarantee (yet); but EINVAL will always
3859  * be returned if this requirement is not verified).  '*dpp' points to the
3860  * current directory entry in the buffer and '*len' contains the remaining
3861  * valid bytes in 'dirbuf' after 'dpp' (including the pointed entry).
3862  *
3863  * At first call (or when restarting the read), '*len' must have been set to 0,
3864  * '*off' to 0 (or any valid start offset) and '*eofflag' to 0.  There are no
3865  * more entries as soon as '*len' is 0 after a call that returned 0.  Calling
3866  * again this function after such a condition is considered an error and EINVAL
3867  * will be returned.  Other possible error codes are those of VOP_READDIR(),
3868  * EINTEGRITY if the returned entries do not pass coherency tests, or EINVAL
3869  * (bad call).  All errors are unrecoverable, i.e., the state ('*len', '*off'
3870  * and '*eofflag') must be re-initialized before a subsequent call.  On error
3871  * or at end of directory, '*dpp' is reset to NULL.
3872  *
3873  * '*len', '*off' and '*eofflag' are internal state the caller should not
3874  * tamper with except as explained above.  '*off' is the next directory offset
3875  * to read from to refill the buffer.  '*eofflag' is set to 0 or 1 by the last
3876  * internal call to VOP_READDIR() that returned without error, indicating
3877  * whether it reached the end of the directory, and to 2 by this function after
3878  * all entries have been read.
3879  */
3880 int
vn_dir_next_dirent(struct vnode * vp,struct thread * td,char * dirbuf,size_t dirbuflen,struct dirent ** dpp,size_t * len,off_t * off,int * eofflag)3881 vn_dir_next_dirent(struct vnode *vp, struct thread *td,
3882     char *dirbuf, size_t dirbuflen,
3883     struct dirent **dpp, size_t *len, off_t *off, int *eofflag)
3884 {
3885 	struct dirent *dp = NULL;
3886 	int reclen;
3887 	int error;
3888 	struct uio uio;
3889 	struct iovec iov;
3890 
3891 	ASSERT_VOP_LOCKED(vp, "vnode not locked");
3892 	VNASSERT(vp->v_type == VDIR, vp, ("vnode is not a directory"));
3893 	MPASS2((uintptr_t)dirbuf < (uintptr_t)dirbuf + dirbuflen,
3894 	    "Address space overflow");
3895 
3896 	if (__predict_false(dirbuflen < GENERIC_MAXDIRSIZ)) {
3897 		/* Don't take any chances in this case */
3898 		error = EINVAL;
3899 		goto out;
3900 	}
3901 
3902 	if (*len != 0) {
3903 		dp = *dpp;
3904 
3905 		/*
3906 		 * The caller continued to call us after an error (we set dp to
3907 		 * NULL in a previous iteration).  Bail out right now.
3908 		 */
3909 		if (__predict_false(dp == NULL))
3910 			return (EINVAL);
3911 
3912 		MPASS(*len <= dirbuflen);
3913 		MPASS2((uintptr_t)dirbuf <= (uintptr_t)dp &&
3914 		    (uintptr_t)dp + *len <= (uintptr_t)dirbuf + dirbuflen,
3915 		    "Filled range not inside buffer");
3916 
3917 		reclen = dp->d_reclen;
3918 		if (reclen >= *len) {
3919 			/* End of buffer reached */
3920 			*len = 0;
3921 		} else {
3922 			dp = (struct dirent *)((char *)dp + reclen);
3923 			*len -= reclen;
3924 		}
3925 	}
3926 
3927 	if (*len == 0) {
3928 		dp = NULL;
3929 
3930 		/* Have to refill. */
3931 		switch (*eofflag) {
3932 		case 0:
3933 			break;
3934 
3935 		case 1:
3936 			/* Nothing more to read. */
3937 			*eofflag = 2; /* Remember the caller reached EOF. */
3938 			goto success;
3939 
3940 		default:
3941 			/* The caller didn't test for EOF. */
3942 			error = EINVAL;
3943 			goto out;
3944 		}
3945 
3946 		iov.iov_base = dirbuf;
3947 		iov.iov_len = dirbuflen;
3948 
3949 		uio.uio_iov = &iov;
3950 		uio.uio_iovcnt = 1;
3951 		uio.uio_offset = *off;
3952 		uio.uio_resid = dirbuflen;
3953 		uio.uio_segflg = UIO_SYSSPACE;
3954 		uio.uio_rw = UIO_READ;
3955 		uio.uio_td = td;
3956 
3957 #ifdef MAC
3958 		error = mac_vnode_check_readdir(td->td_ucred, vp);
3959 		if (error == 0)
3960 #endif
3961 			error = VOP_READDIR(vp, &uio, td->td_ucred, eofflag,
3962 			    NULL, NULL);
3963 		if (error != 0)
3964 			goto out;
3965 
3966 		*len = dirbuflen - uio.uio_resid;
3967 		*off = uio.uio_offset;
3968 
3969 		if (*len == 0) {
3970 			/* Sanity check on INVARIANTS. */
3971 			MPASS(*eofflag != 0);
3972 			*eofflag = 1;
3973 			goto success;
3974 		}
3975 
3976 		/*
3977 		 * Normalize the flag returned by VOP_READDIR(), since we use 2
3978 		 * as a sentinel value.
3979 		 */
3980 		if (*eofflag != 0)
3981 			*eofflag = 1;
3982 
3983 		dp = (struct dirent *)dirbuf;
3984 	}
3985 
3986 	if (__predict_false(*len < GENERIC_MINDIRSIZ ||
3987 	    dp->d_reclen < GENERIC_MINDIRSIZ)) {
3988 		error = EINTEGRITY;
3989 		dp = NULL;
3990 		goto out;
3991 	}
3992 
3993 success:
3994 	error = 0;
3995 out:
3996 	*dpp = dp;
3997 	return (error);
3998 }
3999 
4000 /*
4001  * Checks whether a directory is empty or not.
4002  *
4003  * If the directory is empty, returns 0, and if it is not, ENOTEMPTY.  Other
4004  * values are genuine errors preventing the check.
4005  */
4006 int
vn_dir_check_empty(struct vnode * vp)4007 vn_dir_check_empty(struct vnode *vp)
4008 {
4009 	struct thread *const td = curthread;
4010 	char *dirbuf;
4011 	size_t dirbuflen, len;
4012 	off_t off;
4013 	int eofflag, error;
4014 	struct dirent *dp;
4015 	struct vattr va;
4016 
4017 	ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
4018 	VNPASS(vp->v_type == VDIR, vp);
4019 
4020 	error = VOP_GETATTR(vp, &va, td->td_ucred);
4021 	if (error != 0)
4022 		return (error);
4023 
4024 	dirbuflen = max(DEV_BSIZE, GENERIC_MAXDIRSIZ);
4025 	if (dirbuflen < va.va_blocksize)
4026 		dirbuflen = va.va_blocksize;
4027 	dirbuf = malloc(dirbuflen, M_TEMP, M_WAITOK);
4028 
4029 	len = 0;
4030 	off = 0;
4031 	eofflag = 0;
4032 
4033 	for (;;) {
4034 		error = vn_dir_next_dirent(vp, td, dirbuf, dirbuflen,
4035 		    &dp, &len, &off, &eofflag);
4036 		if (error != 0)
4037 			goto end;
4038 
4039 		if (len == 0) {
4040 			/* EOF */
4041 			error = 0;
4042 			goto end;
4043 		}
4044 
4045 		/*
4046 		 * Skip whiteouts.  Unionfs operates on filesystems only and
4047 		 * not on hierarchies, so these whiteouts would be shadowed on
4048 		 * the system hierarchy but not for a union using the
4049 		 * filesystem of their directories as the upper layer.
4050 		 * Additionally, unionfs currently transparently exposes
4051 		 * union-specific metadata of its upper layer, meaning that
4052 		 * whiteouts can be seen through the union view in empty
4053 		 * directories.  Taking into account these whiteouts would then
4054 		 * prevent mounting another filesystem on such effectively
4055 		 * empty directories.
4056 		 */
4057 		if (dp->d_type == DT_WHT)
4058 			continue;
4059 
4060 		/*
4061 		 * Any file in the directory which is not '.' or '..' indicates
4062 		 * the directory is not empty.
4063 		 */
4064 		switch (dp->d_namlen) {
4065 		case 2:
4066 			if (dp->d_name[1] != '.') {
4067 				/* Can't be '..' (nor '.') */
4068 				error = ENOTEMPTY;
4069 				goto end;
4070 			}
4071 			/* FALLTHROUGH */
4072 		case 1:
4073 			if (dp->d_name[0] != '.') {
4074 				/* Can't be '..' nor '.' */
4075 				error = ENOTEMPTY;
4076 				goto end;
4077 			}
4078 			break;
4079 
4080 		default:
4081 			error = ENOTEMPTY;
4082 			goto end;
4083 		}
4084 	}
4085 
4086 end:
4087 	free(dirbuf, M_TEMP);
4088 	return (error);
4089 }
4090 
4091 
4092 static u_long vn_lock_pair_pause_cnt;
4093 SYSCTL_ULONG(_debug, OID_AUTO, vn_lock_pair_pause, CTLFLAG_RD,
4094     &vn_lock_pair_pause_cnt, 0,
4095     "Count of vn_lock_pair deadlocks");
4096 
4097 u_int vn_lock_pair_pause_max;
4098 SYSCTL_UINT(_debug, OID_AUTO, vn_lock_pair_pause_max, CTLFLAG_RW,
4099     &vn_lock_pair_pause_max, 0,
4100     "Max ticks for vn_lock_pair deadlock avoidance sleep");
4101 
4102 static void
vn_lock_pair_pause(const char * wmesg)4103 vn_lock_pair_pause(const char *wmesg)
4104 {
4105 	atomic_add_long(&vn_lock_pair_pause_cnt, 1);
4106 	pause(wmesg, prng32_bounded(vn_lock_pair_pause_max));
4107 }
4108 
4109 /*
4110  * Lock pair of (possibly same) vnodes vp1, vp2, avoiding lock order
4111  * reversal.  vp1_locked indicates whether vp1 is locked; if not, vp1
4112  * must be unlocked.  Same for vp2 and vp2_locked.  One of the vnodes
4113  * can be NULL.
4114  *
4115  * The function returns with both vnodes exclusively or shared locked,
4116  * according to corresponding lkflags, and guarantees that it does not
4117  * create lock order reversal with other threads during its execution.
4118  * Both vnodes could be unlocked temporary (and reclaimed).
4119  *
4120  * If requesting shared locking, locked vnode lock must not be recursed.
4121  *
4122  * Only one of LK_SHARED and LK_EXCLUSIVE must be specified.
4123  * LK_NODDLKTREAT can be optionally passed.
4124  *
4125  * If vp1 == vp2, only one, most exclusive, lock is obtained on it.
4126  */
4127 void
vn_lock_pair(struct vnode * vp1,bool vp1_locked,int lkflags1,struct vnode * vp2,bool vp2_locked,int lkflags2)4128 vn_lock_pair(struct vnode *vp1, bool vp1_locked, int lkflags1,
4129     struct vnode *vp2, bool vp2_locked, int lkflags2)
4130 {
4131 	int error, locked1;
4132 
4133 	MPASS((((lkflags1 & LK_SHARED) != 0) ^ ((lkflags1 & LK_EXCLUSIVE) != 0)) ||
4134 	    (vp1 == NULL && lkflags1 == 0));
4135 	MPASS((lkflags1 & ~(LK_SHARED | LK_EXCLUSIVE | LK_NODDLKTREAT)) == 0);
4136 	MPASS((((lkflags2 & LK_SHARED) != 0) ^ ((lkflags2 & LK_EXCLUSIVE) != 0)) ||
4137 	    (vp2 == NULL && lkflags2 == 0));
4138 	MPASS((lkflags2 & ~(LK_SHARED | LK_EXCLUSIVE | LK_NODDLKTREAT)) == 0);
4139 
4140 	if (vp1 == NULL && vp2 == NULL)
4141 		return;
4142 
4143 	if (vp1 == vp2) {
4144 		MPASS(vp1_locked == vp2_locked);
4145 
4146 		/* Select the most exclusive mode for lock. */
4147 		if ((lkflags1 & LK_TYPE_MASK) != (lkflags2 & LK_TYPE_MASK))
4148 			lkflags1 = (lkflags1 & ~LK_SHARED) | LK_EXCLUSIVE;
4149 
4150 		if (vp1_locked) {
4151 			ASSERT_VOP_LOCKED(vp1, "vp1");
4152 
4153 			/* No need to relock if any lock is exclusive. */
4154 			if ((vp1->v_vnlock->lock_object.lo_flags &
4155 			    LK_NOSHARE) != 0)
4156 				return;
4157 
4158 			locked1 = VOP_ISLOCKED(vp1);
4159 			if (((lkflags1 & LK_SHARED) != 0 &&
4160 			    locked1 != LK_EXCLUSIVE) ||
4161 			    ((lkflags1 & LK_EXCLUSIVE) != 0 &&
4162 			    locked1 == LK_EXCLUSIVE))
4163 				return;
4164 			VOP_UNLOCK(vp1);
4165 		}
4166 
4167 		ASSERT_VOP_UNLOCKED(vp1, "vp1");
4168 		vn_lock(vp1, lkflags1 | LK_RETRY);
4169 		return;
4170 	}
4171 
4172 	if (vp1 != NULL) {
4173 		if ((lkflags1 & LK_SHARED) != 0 &&
4174 		    (vp1->v_vnlock->lock_object.lo_flags & LK_NOSHARE) != 0)
4175 			lkflags1 = (lkflags1 & ~LK_SHARED) | LK_EXCLUSIVE;
4176 		if (vp1_locked && VOP_ISLOCKED(vp1) != LK_EXCLUSIVE) {
4177 			ASSERT_VOP_LOCKED(vp1, "vp1");
4178 			if ((lkflags1 & LK_EXCLUSIVE) != 0) {
4179 				VOP_UNLOCK(vp1);
4180 				ASSERT_VOP_UNLOCKED(vp1,
4181 				    "vp1 shared recursed");
4182 				vp1_locked = false;
4183 			}
4184 		} else if (!vp1_locked)
4185 			ASSERT_VOP_UNLOCKED(vp1, "vp1");
4186 	} else {
4187 		vp1_locked = true;
4188 	}
4189 
4190 	if (vp2 != NULL) {
4191 		if ((lkflags2 & LK_SHARED) != 0 &&
4192 		    (vp2->v_vnlock->lock_object.lo_flags & LK_NOSHARE) != 0)
4193 			lkflags2 = (lkflags2 & ~LK_SHARED) | LK_EXCLUSIVE;
4194 		if (vp2_locked && VOP_ISLOCKED(vp2) != LK_EXCLUSIVE) {
4195 			ASSERT_VOP_LOCKED(vp2, "vp2");
4196 			if ((lkflags2 & LK_EXCLUSIVE) != 0) {
4197 				VOP_UNLOCK(vp2);
4198 				ASSERT_VOP_UNLOCKED(vp2,
4199 				    "vp2 shared recursed");
4200 				vp2_locked = false;
4201 			}
4202 		} else if (!vp2_locked)
4203 			ASSERT_VOP_UNLOCKED(vp2, "vp2");
4204 	} else {
4205 		vp2_locked = true;
4206 	}
4207 
4208 	if (!vp1_locked && !vp2_locked) {
4209 		vn_lock(vp1, lkflags1 | LK_RETRY);
4210 		vp1_locked = true;
4211 	}
4212 
4213 	while (!vp1_locked || !vp2_locked) {
4214 		if (vp1_locked && vp2 != NULL) {
4215 			if (vp1 != NULL) {
4216 				error = VOP_LOCK1(vp2, lkflags2 | LK_NOWAIT,
4217 				    __FILE__, __LINE__);
4218 				if (error == 0)
4219 					break;
4220 				VOP_UNLOCK(vp1);
4221 				vp1_locked = false;
4222 				vn_lock_pair_pause("vlp1");
4223 			}
4224 			vn_lock(vp2, lkflags2 | LK_RETRY);
4225 			vp2_locked = true;
4226 		}
4227 		if (vp2_locked && vp1 != NULL) {
4228 			if (vp2 != NULL) {
4229 				error = VOP_LOCK1(vp1, lkflags1 | LK_NOWAIT,
4230 				    __FILE__, __LINE__);
4231 				if (error == 0)
4232 					break;
4233 				VOP_UNLOCK(vp2);
4234 				vp2_locked = false;
4235 				vn_lock_pair_pause("vlp2");
4236 			}
4237 			vn_lock(vp1, lkflags1 | LK_RETRY);
4238 			vp1_locked = true;
4239 		}
4240 	}
4241 	if (vp1 != NULL) {
4242 		if (lkflags1 == LK_EXCLUSIVE)
4243 			ASSERT_VOP_ELOCKED(vp1, "vp1 ret");
4244 		else
4245 			ASSERT_VOP_LOCKED(vp1, "vp1 ret");
4246 	}
4247 	if (vp2 != NULL) {
4248 		if (lkflags2 == LK_EXCLUSIVE)
4249 			ASSERT_VOP_ELOCKED(vp2, "vp2 ret");
4250 		else
4251 			ASSERT_VOP_LOCKED(vp2, "vp2 ret");
4252 	}
4253 }
4254 
4255 int
vn_lktype_write(struct mount * mp,struct vnode * vp)4256 vn_lktype_write(struct mount *mp, struct vnode *vp)
4257 {
4258 	if (MNT_SHARED_WRITES(mp) ||
4259 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount)))
4260 		return (LK_SHARED);
4261 	return (LK_EXCLUSIVE);
4262 }
4263 
4264 int
vn_cmp(struct file * fp1,struct file * fp2,struct thread * td)4265 vn_cmp(struct file *fp1, struct file *fp2, struct thread *td)
4266 {
4267 	if (fp2->f_type != DTYPE_VNODE)
4268 		return (3);
4269 	return (kcmp_cmp((uintptr_t)fp1->f_vnode, (uintptr_t)fp2->f_vnode));
4270 }
4271